
YAŞAR UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

A PRACTICAL AND FORMAL ANALYSIS OF
DISTRIBUTED PRIVATE KEY GENERATION FOR

IDENTITY BASED CRYPTOGRAPHY

Görkem KILINÇ

Thesis Advisor: Assoc. Prof. Ahmet Hasan KOLTUKSUZ, Ph.D

Department of Computer Engineering

Bornova-İZMİR
June 2012

ÖZET

KİMLİK TABANLI KRİPTOGRAFİK SİSTEMLER
İÇİN DAĞITIK GİZLİ ANAHTAR ÜRETİMİNİN

İŞLEVSEL VE BİÇİMSEL AÇIDAN İNCELENMESİ

KILINÇ, Görkem

Yüksek Lisans Tezi, Bilgisayar Mühendisliği Bölümü

Tez Danışmanı: Doç. Dr. Ahmet Hasan KOLTUKSUZ

Haziran 2012, 77 sayfa

Temelleri gizlilik paylaşımı yöntemlerine dayanan dağıtık gizli anahtar üretimi(DGAÜ)

kriptografide gizli anahtarların dağıtık olarak güvenli bir şekilde üretilmesi amacıyla

kullanılmaktadır. DGAÜ kullanımına en uygun olan kriptografik sistemlerden bir

tanesi kimlik tabanlı kriptografik sistemdir. DGAÜ kullanımı, kimlik tabanlı krip-

tografik sistemlerde var olan ve sistemin pratik olarak kullanımında engel teşkil

eden anahtar emaneti probleminin bir çözümü olarak bilinmektedir. Her ne kadar

bilinen matematiksel problemler üzerine oturmuş olsa da, öngörülmeyen açıklar

içerebileceği için protokolün doğrulanması çok önemlidir. Bu tezde, DGAÜ pro-

tokolünün hem işlevsel hem de biçimsel açıdan analizi hedeflenmiştir. Bu amaçla

öncelikle DGAÜ protokolü, endüstriyel kontrol sistemleri üzerinde büyük ölçüde

kullanılmakta olan SCADA protokolünde eksik olan kimlik denetimi sağlanarak

güvenli hale getirilmesi için uygulanmıştır ve işlevsel analiz bu uygulama üzerinde

yapılmıştır. Biçimsel (formal) analiz için ise protokol basit Petri ağları kullanılarak

modellenmiştir. Daha sonra bu model üzerinde yapısal ve davranışsal analizler

yapılarak protokolün biçimsel olarak doğrulanması için gerekli güvenlik özellikleri

ispatlanmıştır.

Anahtar Kelimeler: Dağıtık Gizli Anahtar Üretimi (DGAÜ), Kimlik Tabanlı Krip-

tografi, Endüstriyel Kontrol Sistemleri, SCADA, Basit Petri Ağları, Biçimsel (For-

mal) Analiz, Kriptografik Protokollerin Biçimsel (Formal) Doğrulaması.

ABSTRACT

A PRACTICAL AND FORMAL ANALYSIS OF
DISTRIBUTED PRIVATE KEY GENERATION FOR

IDENTITY BASED CRYPTOGRAPHY

KILINÇ, Görkem

M.Sc. in Computer Engineering

Supervisor: Assoc. Prof. Ahmet Hasan KOLTUKSUZ, Ph.D

June 2012, 77 pages

The basis of distributed private key generation (DPKG) scheme lies on secret shar-

ing and it has been used in cryptography for generating keys distributively and se-

curely. One of the most suitable cryptographic system for DPKG is identity based

cryptographic system. DPKG is enormously used for generating private keys for

the clients of an identity based cryptographic system. The scheme is claimed to be

a solution for the key escrow problem which exists in the identity based cryptogra-

phy and leads to impractical cryptographic systems. It is highly important to verify

the protocol even though the protocol lies on well known mathematical problems.

Clearly, the protocol might always preserve some unforeseen flaws. In this thesis,

we aimed to analyze DPKG protocol in both practical and formal manners. For this

aim, we implemented the protocol on industrial control systems (ICS) in order to se-

cure the widely used ICS protocol SCADA by providing it with authentication and

performed a practical analysis on the implementation. In order to perform formal

analysis, we first modeled the DPKG protocol by using elementary Petri nets then

we performed structural and behavioral analysis on the model for proving essential

security properties of the protocol with the eventual aim of formal verification.

Keywords: Distributed Private Key Generation (DPKG), Identity Based Cryptogra-

phy, Industrial Control Systems, SCADA, Elementary Petri Nets, Formal Analysis,

Formal Verification of Cryptographic Protocols.

vii

Acknowledgements

First and foremost, a very special thanks is due to my supervisor, Assoc. Prof.

Ahmet Koltuksuz, Ph.D for his invaluable guidance, patience and encouragement.

I feel very fortunate for having had the chance to work with him. He is such an

exceptional advisor that I will always be honored to be his student.

I also want to present my sincere thanks to European Commission Joint Research

Centre (JRC), Ispra. An important part of the work has been done during the year I

spent there as a trainee. Many thanks for the opportunity.

I would like to thank Carlo Ferigato, Ph.D who introduced me with Petri nets and

Igor Nai Fovino, Ph.D. They had been devoted advisors to me during my traineeship

in JRC. I am enormously thankful to them for their still-continuing support from

overseas.

I owe my deepest gratitude to Asst. Prof. Serap Şahin, Ph.D who has always stood

by me with her never ending support, guidance and positive energy. She was the

one who uplifted me during the hard times.

Many thanks go to Asst. Prof. Hüseyin Hışıl, Ph.D for his huge support. He helped

me study abstract algebra, elliptic curves and cryptographic pairings which formed

an important part of the mathematical basis for my study.

I also want to express my appreciations to my dear friends and classmates Burak

Ekici and Çağatay Yücel. For many years we have studied together and they have

been always very helpful and supportive.

Last but not the least I owe more than thanks to my mother Şengül Kılınç, my father

Hasan Kılınç, and two very special and valuable people in my life; Egemen Soylu

and Burcu Ezgi Özdemir. They have always believed in me and supported me.

Without them I might never have finished this thesis.

TEXT OF OATH

I declare and honestly confirm that my study titled “A Practical and Formal Anal-

ysis of Distributed Private Key Generation for Identity Based Cryptography”, and

presented as Master’s Thesis has been written without applying to any assistance in-

consistent with scientific ethics and traditions and all sources I have benefited from

are listed in bibliography and I have benefited from these sources by means of mak-

ing references.

11 / 06 / 2012

Görkem KILINÇ

ix

Contents

Özet v

Abstract vi

Acknowledgements vii

Text of Oath viii

List of Figures xi

1 Introduction 1
1.1 Motivation and Related Work . 1
1.2 Roadmap . 2

2 Identity Based Cryptography and Distributed Private Key Generation 5
2.1 Mathematical Background . 5

2.1.1 Preliminaries . 5
2.1.2 Elliptic Curve over a Finite Field 8
2.1.3 Cryptographic Pairings . 9
2.1.4 Verifiable Secret Sharing . 12

2.2 Identity Based Cryptography . 12
2.2.1 Encryption . 13
2.2.2 Signature . 14
2.2.3 Key Escrow Problem . 15
2.2.4 Distributed Private Key Generation 15
2.2.5 Setup . 15
2.2.6 Distribution . 16
2.2.7 Extraction . 20

3 An Implementation and Practical Analysis of Distributed Private Key
Generation for Identity Based Cryptography 23
3.1 Distributed Private Key Generation Implementation 23
3.2 Case Study: Implementing DPKG on Industrial Control Systems . . 24

3.2.1 Process Control System Vulnerabilities 25

3.2.1.1 PCS Architecture 25
3.2.1.2 Modbus Vulnerabilities 27
3.2.1.3 Distributed Identity Based Secure Modbus 28

3.2.2 Prototype Overview . 29
3.2.3 Experimental Tests . 31

3.2.3.1 Distribution . 31
3.2.3.2 Extraction . 32
3.2.3.3 Signature & Verification 33

3.2.4 Conclusion for the Case Study 34

4 Using Petri Nets for Modeling and Analyzing Cryptographic Protocols 37
4.1 Introduction to Petri Nets . 37
4.2 Modeling with Elementary Petri Nets 40
4.3 Properties of Petri Nets . 43

4.3.1 Behavioral Properties . 43
4.3.2 Structural Properties . 44

4.4 Analysis of Elementary Petri Nets . 45
4.5 Modeling and Analyzing Cryptographic Protocols with Elementary

Petri Nets . 46

5 Formal Model of Distributed Private Key Generation for Identity Based
Cryptography 49
5.1 Modeling Distributed Private Key Generation for Identity Based

Cryptography . 49
5.1.1 Modeling Overall Distributed Private Key Generation and

Analysis of the Model . 49
5.1.2 Model of Setup and Distribution Step 50
5.1.3 Model of Key Extraction Step 53
5.1.4 Analysis on the DPKG model 55
5.1.5 Intruder Model . 56
5.1.6 Analysis on the Intruder Model 58

6 Results and Conclusion 61

Bibliography 63

xi

List of Figures

2.1 Addition on an elliptic curve . 9
2.2 Identity based encryption scheme . 13
2.3 Identity based signature scheme . 14
2.4 Block schema of the distribution step of private key generation. . . . 18
2.5 Block schema of the extraction step. 20

3.1 A typical SCADA system embedded into a turbogas power plant
facility . 26

3.2 Distribution step . 30
3.3 Key extraction step . 30
3.4 Distribution phase performance test (Time in ms.) 31
3.5 Key extraction phase performance test (Time in ms.) 32
3.6 Simultaneous answer performance test (Time in ms.) 33
3.7 Time spent for signing and verifying a Modbus package 34

4.1 Demonstration of firing rule: (a) t0 is enabled (b) t0 is fired 38
4.2 Demonstration of firing rule: (a) t0 is not enabled (b) t0 cannot fire . 39
4.3 Sequence of events in a Petri net system 40
4.4 Conflict case in a Petri net system . 41
4.5 Concurrency of two events in a Petri net system 41
4.6 Case of synchronization in a Petri net system 42
4.7 Two mutually exclusive processes modeled with Petri nets 42

5.1 A net representing simple overall look to the DPKG 51
5.2 Petri net model of distribution step of distributed private key gener-

ation. 52
5.3 Petri net model of extraction step of distributed private key generation. 54
5.4 Petri net model of an intruder in the distribution step of DPKG. . . . 57
5.5 Petri net model of an intruder in the extraction step of DPKG. 58
5.6 The sequence of events for making Formula 5 true 59
5.7 The sequence of events for making formula 7 true 60

1

Chapter 1

Introduction

1.1 Motivation and Related Work

In 1984, Adi Shamir [1] put forward the idea of identity based cryptography. This

cryptographic scheme was not very practical because of the need for a private key

generator which is responsible for generating keys for the users. Generating private

keys for the user, private key generator can sign or decrypt a message on behalf of

any user and it can make users’ private keys public. This problem of identity based

cryptography is called key escrow problem. A solution to the key escrow problem

was proposed by Boneh and Franklin [2] in 2001. Their solution was distributing

the private key generation among multiple private key generators.

On the other side another concept was being developed which is called Petri nets.

The concept was first defined by Carl Adam Petri in his Ph.D. thesis in 1960 [3].

Petri net is a powerful modeling tool especially for distributed, concurrent, asyn-

chronous systems. It is intensively used for modeling communication and in the

last years it is being used for analysis and verification of cryptographic protocols

as well. However there is no known Petri net model for distributed private key

generation.

Considering all, the aim of the work is to provide a formal model of distributed pri-

vate key generation (DPKG) for identity based cryptography, to analyze the struc-

tural and behavioral properties, to use model checking methods on the model for

more detailed analysis and finally to verify some security properties of DPKG to

make a step for the verification of the protocol.

2

Given the possibility to represent, at the lowest level, the communication flow and

for their intuitive graphical presentation, Petri Nets are used ever since for the de-

tailed analysis of communication protocols. Starting from the work of Nieh and

Tavares [4], Petri Nets have been applied to the analysis of security protocols as

well. While in [4] the construction of the model is based on a refinement process

involving Place/Transition net systems for the conceptual level and high-level nets

for the functional level, in more recent works, almost exclusively high-level nets

have been used. For example, in [5], Colored Petri Nets are used for re-discovering

known flaws in the Andrew secure RPC protocol while in [6], a special class of

composable high-level Petri Nets is used for showing flaws in the Kao-Chow au-

thentication protocol. In all of the cases, model checking techniques are applied to

the protocol model in order to generate the cases witnessing the flaw in the protocol.

In this study, a different approach to model a security protocol is chosen since the

application domain, Information and Communication Security (ICS), is quite spe-

cific and low level control flow should be represented. Consequently, we decided

to model the protocol with low-level nets starting with Elementary Net Systems. In

this way, we have at least three advantages: 1) leave the representation open to the

inclusion of low-level signal processing; 2) use basic tools for proving structural

properties of the model like invariants analysis at the level of basic signals; 3) con-

struct abstractions of the model easily by passing to higher-level nets. Moreover,

this choice allows for the use of powerful model checking tools like LoLA [7].

1.2 Roadmap

The rest of the thesis is structured as follows.

Chapter 2 provides operational description of identity based cryptography and dis-

tributed private key generation (DPKG) after giving a brief mathematical back-

ground.

Chapter 3 presents a practical specification of DPKG for identity based cryptogra-

phy. The chapter includes an implementation of DPKG on industrial control sys-

tems. In the implementation DPKG is used for generating identity based private

keys then these keys are used for performing identity based signature in the aim of

providing the system with authentication.

3

In Chapter 4, after an introduction to Petri nets, the definition and properties of

elementary Petri nets are given. In the end of the chapter we discuss how elementary

Petri nets are used for modeling and analyzing cryptographic protocols.

In Chapter 5, Petri net models of DPKG are introduced. First, a basic model of

the protocol is presented and then an intruder is added into the model. In addition

to traditional structural analysis, model checking methods are also used to prove

security properties of the protocol.

Chapter 6 discusses the results of the study and concludes the thesis.

5

Chapter 2

Identity Based Cryptography and
Distributed Private Key Generation

2.1 Mathematical Background

2.1.1 Preliminaries

Definition 2.1. A group is a pair (G,∗) where G is a nonempty set closed under the

binary operation ∗, such that the following axioms are satisfied:

• ∗ is associative; (P∗Q)∗R = P∗(Q∗R), where P,Q,R ∈G

• There is an identity element e such that; e∗P = P∗e = P where e,P ∈G

• Each element Q in G has a unique inverse Q′ in G with the property that;

Q∗Q′ =Q′∗Q = e

Definition 2.2. A group G is an abelian group if its binary operation ∗ is commu-

tative.

Example 2.1. The set Z+ is not a group, because there is no identity element in Z+.

Example 2.2. The set of all nonnegative integers Z+⋃{0} is still not a group. It has

an identity element which is 0 but not all the elements in the set has an inverse.

Example 2.3. The set of integers Z, rational numbers Q, real numbers R and com-

plex numbers C with the operation + are abelian groups.

Definition 2.3. If G is a finite group, the order of G, denoted by ∣G∣, is the number

of elements in G.

6

Definition 2.4. A subset H is a subgroup of G, if H is closed under the binary

operation of G and if H is a group itself.

Theorem 2.1. Let G be a group and P ∈G. Then,

• H = {Pn ∣ n ∈Z} is a subgroup of G.

• H is the smallest subgroup of G which contains P.

• Every subgroup containing P contains H.

Proof. See [8] page 64.

Definition 2.5. The group H of Theorem 2.1 is the cyclic subgroup of G generated
by P and it is denoted as H = ⟨P⟩.

Definition 2.6. If ⟨P⟩ =G, P generates group G and P is a generator for G.

Definition 2.7. A group G is cyclic if some element P of G generates G.

Let P ∈G, if the cyclic subgroup ⟨P⟩ is finite, the order of P is the order ⟨P⟩.

Theorem 2.2. Every cyclic group is abelian.

Proof. See [8] page 70.

Theorem 2.3. A subgroup of a cyclic group is cyclic.

Proof. See [8] page 72.

Discrete Logarithm Problem. Let (G,×) be a cyclic group of order n and let P be

a generator of it. The Discrete Logarithm Problem (DLP) for G is to find the unique

k such that;

Q = Pk =

k times
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
P×P× . . .×P (2.1)

where Q ∈G and 0 ≤ k ≤ n−1.

Note that it becomes finding k such that kP = Q if the group is defined additive. k

exists since P is a generator of the group.

The complexity of finding k depends on the selection of the group and the binary op-

eration. Discrete Logarithm Problem (DLP) is used as an underlying hard problem

in many cryptographic protocols (i.e. Diffie Hellman Key Exchange Protocol).

7

Diffie Hellman Problem. For arbitrary k,m,r, Diffie Hellman Problem is closely

related to DLP. Given P, Pk and Pm, finding Pkm is called Diffie Hellman Problem

(DHP). For certain groups it is assumed that the DHP is hard. Computing Pkm is

also referred as Computational Diffie Hellman Problem (CDHP) in order to sepa-

rate it from Decisional Diffie Hellman Problem (DDHP) which is the problem of

distinguishing between the distributions ⟨P;Pk;Pm;Pkm⟩ and ⟨P;Pk;Pm;Pr⟩.

Definition 2.8. A set F together with two operations, which are addition (denoted by

+) and multiplication (denoted by ⋅) is said to be a field if it satisfies the following

properties;

• (F,+) is an abelian group with additive identity element denoted by 0.

• (F/{0}, ⋅) is an abelian group with multiplicative identity element denoted by

1.

• (P+Q) ⋅R = P ⋅R+Q ⋅R for all P,Q,R ∈ F.

If F has finite number of elements then F is said to be a finite field.

Field Operations. A field is equipped with addition and multiplication. The other

operations are done by means of these two operations. Subtraction is defined by

means of addition as P−Q = P+ (−Q) where P,Q ∈ F. −Q is the negative of Q

which is the unique element in F such that Q+(−Q) = 0. Division is defined by

means of multiplication. Let P,Q ∈ F and Q ≠ 0. P/Q = P ⋅Q−1 where Q−1 is the

inverse of Q which is a unique element in F such that Q ⋅Q−1 = 1.

Definition 2.9. There exists a finite field F of order q if and only if q is a prime

power such that q = pn where p is a prime number and n ∈Z+. If n = 1, F is called a

prime field and denoted by Fp. The prime p is the modulus of Fp. If n > 1, the field

F is said to be an extension field.

Example 2.4. In the following there are some examples of arithmetic operations in

prime field F13.

• Addition: 12+3 = 2, (15 mod 13 = 2)

• Multiplication: 5 ⋅4 = 7, (20 mod 13 = 7)

• Subtraction: 8−11 = 10, (−3 mod 13 = 10)

• Inversion: 4−1 = 10, (4 ⋅10 mod 13 = 1)

8

2.1.2 Elliptic Curve over a Finite Field

The idea of using elliptic curves for cryptography was put forward independently

by N. Koblitz [9] and V. S. Miller [10] in 1985. The security of elliptic curve based

cryptographic systems depends on easy calculation of point multiplication on an

elliptic curve and inability to compute multiplicand back knowing resulting point

and the beginning point.

Simply, an elliptic curve is a cubic curve defined over two variables. Every elliptic

curve can be represented in Weierstrass form (2.2). As it can be defined over real

numbers, it can also be defined over a finite field.

Let p be a prime number and Fp a prime field, elliptic curve E over prime field Fp,

denoted by E(Fp), can be defined by the following equation;

y2 = x3+ax+b (2.2)

where a,b ∈Fp should satisfy 4a3+27b2 /≡ 0(mod p). An elliptic curve can be used

to form a group. Let x,y ∈ Fp, a pair (x,y) is a point on the curve if it satisfies the

equation. On an elliptic curve, there is also a special point called point at infinity

which is denoted by ∞ or O.

An elliptic curve group over Fp consists of the points on the corresponding elliptic

curve, together with the point at infinity and a properly defined addition operation.

Informally, the addition operation is defined in the following way; suppose that P

and Q are two distinct points on an elliptic curve. In order to add P and Q, a line is

drawn through these two points. This line will intersect the elliptic curve in another

point, −T . When we draw a perpendicular line to the x-axis we will find reflection

of point −T which is T . T is the resulting point as T = P+Q.

With this addition rule, the set of points E(Fp) forms an additive abelian group

whose identity element is the point at infinity and each element P has its inverse −P

such that;

f or P = (x,y) and −P = (x,−y),

it is written,

P+(−P) = (−P)+P =O.

9

FIGURE 2.1: Addition on an elliptic curve

Elliptic Curve Discrete Logarithm Problem. Let E be an elliptic curve defined

over a finite field Fp. Let P and Q be points in E(Fp). Finding an integer m ∈ Z+

such that;

Q =mP

is called the Elliptic Curve Discrete Logarithm Problem (ECDLP). The complexity

of ECDLP depends on the selection of the curve. There are different algorithms to

calculate the discrete logarithm. The fastest known algorithm to solve ECDLP in

E(Fp) takes approximately
√

p steps [11].

2.1.3 Cryptographic Pairings

Bilinear pairings are used in many cryptographic applications such as Boneh and

Franklin’s identity based encryption scheme [2]. The main idea of using pairings

in cryptography is to construct a mapping between two groups which provides a

reduction of one problem in one group to an easier problem in the other group. The

most well known cryptographic pairings are the Weil pairing and the Tate pairing.

Let p be a prime, G1 and G2 be additive cyclic groups. Suppose that the order of

G1 and G2 are p and G3 is a multiplicative cyclic group of order p then a pairing is

a map as :

e ∶G1×G2→G3 (2.3)

10

Note that G1 and G2 can also be the same groups.

Definition 2.10. Let G1 and G2 additive groups of order p with identity O. Let G3

is a multiplicative group of order p with identity 1. If the following properties are

correct for all P,P′ ∈G1 and all Q,Q′ ∈G2 then e is said to be bilinear pairing:

• e(P+P′,Q) = e(P,Q) ⋅e(P′,Q)

• e(P,Q+Q′) = e(P,Q) ⋅e(P,Q′)

• e(mP,Q) = e(P,Q)m

In addition to bilinearity, if there is an efficient algorithm to compute e(g1,g2) for

any g1 ∈ G1, g2 ∈ G2 and if e is non-degenerate which means the map does not send

all pairs in G1 ×G2 to unity in G3, then e is called admissible bilinear pairing.

Admissible bilinear pairings are preferred in cryptographic systems because it is

efficient to compute and hard to invert.

Pairings are also used over elliptic curves since they can be used to form groups as

mentioned in 2.1.2. A pairing function maps a pair of points in one elliptic group to

some elliptic curve group.

Definition 2.11. Let E be an elliptic curve defined over a field K0 then the set

µn = {u ∈ (K0)
∗∶un = 1 } (2.4)

is called nth root of unity set.

(K0)
∗ =K0−{0} (2.5)

where K0 is a field, K∗
0 is the multiplicative group of K0, K0 is the algebraic closure

of K0 and (K0)∗ is the multiplicative group of K0.

Let K = K0(µn) be the extension of K0 generated by the nth root of unity. n-torsion

of E(K) is defined as;

E(K)[n] = {P ∈ E(K) ∶ [n]P =O}. (2.6)

The point set of E(K) is;

11

E(K) = {(x,y) ∈K×K ∣ y2 = x3+ax+b}∪{O}. (2.7)

Tate Pairing. Let Fq be a finite field with q = pn elements where p is prime and E

be an elliptic curve defined over Fq. The identity of E is denoted by O.

Consider a large prime r such that r ∣ #E(Fq) and let k be the smallest integer such

that r ∣ qk−1 with r2 ∤ qk−1.

If all conditions defined above are satisfied then

E[r] ⊆ E(Fqk) (2.8)

where k is called embedding degree or security multiplier. When the embedding

degree gets bigger, known algorithms for solving DLP in Fqk gets slower.

Let f be a function on E then the intersection function of f and elliptic curve E can

be defined as:

div(fr,p) = r(P)− r(O) (2.9)

or

div(fr,p) = s(P)−([s]P)−(s−1)(O) (2.10)

where fr,p defines a function which is having s roots on point P and div(fr,p) shows

the points on f which intersect E.

Let P ∈ E(Fqk)[r] and Q ∈ E(Fqk) then Tate Pairing t(., .) is defined as;

t(P,Q) ∶ E(Fqk)[r]×
E(Fqk)

rE(Fqk)
→ µr (2.11)

(P,Q) ↦ fr,p(Q)
qk
−1
r (2.12)

where

rE(Fqk) = {[n]P ∶ P ∈ E(K)} (2.13)

The Tate pairing is well defined, bilinear, non-degenerate and efficiently computable.

See Miller’s algorithm [12] for computing the Tate pairing.

12

The Weil pairing [13] [12] is another bilinear pairing which is used in Boneh and

Franklin’s Identity Based Encryption scheme [2] which relies on Bilinear Diffie

Hellman Problem.

Bilinear Diffie Hellman Problem. Let G1, G2 be two groups of prime order q.

Let e ∶ G1 ×G2 → G3 be an admissible bilinear map and let P be a generator of

G1. The Bilinear Diffie Hellman Problem (BDHP) in ⟨G1;G2;e⟩ is computing

W = e(P,P)kmr ∈G2 while ⟨P;Pk;Pm;Pr⟩ for some k,m,r ∈Z∗q are given.

DDHP in G1 is easy and cannot be used to build cryptographic systems while CDHP

can still be hard. The security of Boneh and Franklin’s Identity Based system is

based on BDHP which is a variant of CDHP. BDHP is hard in some certain groups,

see [2].

2.1.4 Verifiable Secret Sharing

Secret sharing is a method of distributing a secret among multiple players as no

player knows the whole secret but each player has a share for the secret. The secret

can be reconstructed only if a sufficient number of shares are retrieved. In 1979

Shamir put forward a scheme called (n,k) threshold scheme [14]. The scheme is

based on polynomial interpolation. Given k points in the form (xi,yi) where each xi

is distinct , there is only one polynomial f (x) of degree k−1 such that f (xi) = yi for

all i.

Verifiable secret sharing was first introduced by Chor, Goldwasser, Micali, and

Awerbuch in 1985 [15]. In such a scheme each player can verify its share. Feld-

man’s verifiable secret sharing scheme [16] is based on Shamir’s scheme and it

improves Shamir’s scheme by including verifiability. By using a verifiable secret

sharing scheme any dishonest or malicious node in the system can be found.

2.2 Identity Based Cryptography

In an identity based cryptographic system, unlike the other public key cryptographic

systems, a publicly known string such as e-mail address, domain name, a physical IP

address or a combination of more than one strings is used as public key. Shamir’s

13

scheme enables users to communicate securely and verify signatures without ex-

changing any private or public key. Consequently, there is no need for a certification

authority to verify the association between public keys and users.

In 2001, Boneh and Franklin devised the first practical implementation of such an

Identity-Based Encryption scheme [2]. Their approach uses bilinear maps and relies

on the BDH Assumption.

2.2.1 Encryption

Encryption using identity based cryptography works as in Figure 2.2. Node A wants

to send an encrypted message to node B. In order to encrypt the message M, instead

of asking for B’s public key it uses the identity string which defines B. H is a hash

function, which is known by each node in the system and used for creating public

keys of equal length and same form from the id strings. It is important to note

that, A can perform the encryption even if B doesn’t have its private key yet. After

receiving the cipher-text C, B can use its private key to decrypt the message if it

already has its private key. Otherwise, B asks to the private key generator (PKG) for

its private key. PKG generates the private key dIDB for node B using hashed value

of B’s identity string H(IDB) and the master private key s.

FIGURE 2.2: Identity based encryption scheme

14

2.2.2 Signature

Figure 2.3 shows how the identity based signature scheme works. When node A

wants to send a signed message to node B, it uses its own private key to sign the

message. It is worth to note that, if it doesn’t have, node A should ask private key

generator for its private key to be able to sign a message. Private key generation is

the same as it is in the encryption - decryption scheme.

After receiving the signed message SM, node B can use the hashed value of A’s

identity string to verify the signature. Verification of the signature doesn’t require

any certification authority or other trusted third parties.

Private key generation is only performed in such cases like the establishment of the

system, adding a new node to the system, when a renewal is needed, etc.

FIGURE 2.3: Identity based signature scheme

In section 3.2 an implementation of identity based signature on industrial control

systems is presented. The possibility to provide the low level devices of Super-

visory Control And Data Acquisition (SCADA) infrastructures with a mechanism

allowing to obtain automatically a private key for signing their own network packets

while limiting at the minimum interactions with the external world to verify a signed

packet, is extremely appealing. Since each entity in a SCADA system already has a

unique identity string known by everyone in the system (e.g. the PLC id for the low

15

level components and, eventually the MAC address for the SCADA servers), iden-

tity based cryptography is a very useful and suitable scheme to provide authenticity,

integrity and confidentiality for SCADA systems.

2.2.3 Key Escrow Problem

Although an identity based cryptographic system does not require a certification

authority, there is a need for a PKG. Basically, a trusted third party signs user’s

publicly known string using the master private key in order to generate a private

key for the user. Since the PKG can generate private keys for users, it can sign or

decrypt messages of any user or it can make users’ private keys public. This problem

about private key generation is called key escrow problem. Distributed private key

generation (DPKG) is one of the solutions to the key escrow problem. In both

schemes described in [2] and [17], secret sharing methods are used for distributing

private key generation among multiple PKGs.

2.2.4 Distributed Private Key Generation

As it is explained in section 2.2.3 the problem to be solved about identity based

scheme is the key escrow problem. In this thesis, in order to eliminate the problem, a

completely distributed private key generation scheme is performed. In this scheme,

a number of PKG nodes participate while they share the responsibility equally. The

private key generation scheme consists of three steps: setup, distribution and extrac-

tion. A bulletin board, n PKG nodes and clients who need to have private key are

the players in the distributed private key generation process. Algorithms presented

here are based on schemes described in [17], [2] and [16].

2.2.5 Setup

This step is a preparation step to create the system parameters and to get ready

for creating the master key pair distributively and extraction of private keys. It

is performed by the bulletin board application. The algorithm for setup phase of

DPKG is displayed in the algorithm 1.

To perform the setup for DPKG, given K as the security parameter, a prime q of size

K is selected. An elliptic curve group G of order q and a cyclic multiplicative group

16

Algorithm 1 Bulletin Board setup
Require: security parameter K and cryptographic hash function H ∶ {0,1}∗→G∗

1: q← generate prime of size K
2: G← choose elliptic curve group of order q
3: GT ← choose cyclic multiplicative group of order q
4: g← find a generator of G
5: choose pairing function e ∶G×G→GT
6: C[n][k] ← createcommitments()
7: for i = 0→ n do
8: for j = 0→ k do
9: C[i][j] ← 0

10: end for
11: end for
12: C f [k] ← create f inalcommitment()
13: for i = 0→ k do
14: C f [i] ← 0
15: end for
16: while system is on do
17: broadcast(q, G, GT , e, H, g)
18: end while

of order q GT are also selected. A cryptographic hash function has to be chosen as

H ∶ {0,1}∗ →G∗. Then a generator g of group G is chosen. It is important to note

that any element of group G except the identity element can be a generator since G is

a cyclic additive group of a prime order. A bilinear pairing function e ∶G×G→GT

is chosen to be used in the verification part of the key extraction. Commitment

vectors for PKG nodes, C[i][j] and the final commitment vector C f [j] are created

and initialized by setting to zero, where i = 1,2, . . . ,n and j = 0,1, . . . ,k−1. All above

public system parameters are broadcasted by the bulletin board.

2.2.6 Distribution

In this step, n PKG nodes create a master private key together without using any

dealer in a way that the key cannot be reconstructed without retrieving k shares

from these n PKGs. To do this, we use an improved version of (n,k) Feldman’s

secret sharing scheme which is stated in [17].

Since the private key generation for a client means to sign client’s hashed ID with

the master private key, no one is allowed to have access the master private key.

Thus, we distribute master private key among PKG nodes in a way nobody knows

it by using secret sharing approach. The idea behind secret sharing without a dealer

17

is to make each PKG node create a secret of their own and calculate subshares

to distribute among other PKG nodes. At the end, each PKG node will have n

subshares including the one it calculated for itself . The sum of these subshares will

be the share of the PKG node for the master private key.

The following steps are performed by every node PKGi where i = 1,2, . . . ,n.

Algorithm 2 PKGi distribution
Require: i
Require: system parameters (q, G, GT , e, H, g) are broadcasted on Bulletin Board

1: //create a polynomial fi(x) = ai0+ai1x+ai2x2+ . . .+ai(k−1)x(k−1)

2: for j = 0→ k−1 do
3: fi[j] ← random element()
4: end for
5: //calculate commitments to be broadcasted on Bulletin Board
6: for j = 0→ k−1 do
7: Ci[j] ← fi[j]g
8: end for
9: send Ci to Bulletin Board

10: for j = 1→ n do
11: subshare[j] ← evaluate (fi, j)
12: end for
13: for j = 1→ n do
14: if j ≠ i then
15: send(PKGj, subshare[j])
16: end if
17: end for
18: while not receive all do
19: wait for subshares from other PKG nodes
20: end while
21: subshares from n-1 PKG nodes are received
22: //subshares[k] is the set of subshares received
23: //num[k] is the set of PKG numbers. i.e. subshare[3] is sent by PKG num[3]
24: si← 0
25: for j = 1→ n do
26: si← add(si, subshare j)
27: //where subshare j was calculated by PKGj for PKGi
28: end for
29: check1 ← sig
30: check2 ← 0
31: for j = 0→ k−1 do
32: check2 ← add(check2, i jC f [j])
33: end for

18

34: if check1 = check2 then
35: //share si is correct
36: else
37: for m = 0→ n do
38: check1 ← subshare[m]g
39: check2 ← 0
40: for l = 0→ k−1 do
41: check2 ← add(check2, ilC[num[k][l]]
42: end for
43: if check1 = check2 then
44: //share subshare[m] is correct
45: else
46: //PKG num[m] sent incorrect subshare
47: //ask PKG num[m] again
48: //or mark PKG num[m] as malicious exclude it and repeat distribution
49: end if
50: end for
51: end if

FIGURE 2.4: Block schema of the distribution step of private key generation.

19

To perform the distribution step of DPKG, first of all a random polynomial is created

by PKGi as:

fi(x) = ai0+ai1x+ai2x2+ . . .+ai(k−1)x
(k−1) (2.14)

where fi(x) ∈ Zq[x] and the degree of the polynomial is k−1. ai0 is PKGi’s contri-

bution to the master private key and ai0g is the contribution to the master public key.

Node PKGi computes subshares by evaluating Function (2.14) for j = 1,2, . . . ,n. It

then sends si j = fi(j) mod q to node PKG j over a secure channel. It also sends

commitment vector Cil = ailg for l = 0,1, . . . ,k− 1 to be broad casted. Final com-

mitment values C f are updated and broad casted for as C f [l] ← C f [l] +C[i][l]

l = 0,1, . . . ,k−1. After each node receives n−1 subshares from other nodes, it cal-

culates its secret share as s j =∑
n
j=1 si j. Then it verifies its secret share by checking;

s jg
?
=

k−1
∑
l=0

jlC f l (2.15)

If the secret share is not verified, node PKG j checks the subshares it received from

each node PKGi by using Formula (2.16) in order to find the dishonest node.

si jg
?
=

k−1
∑
l=0

jlCil (2.16)

Bulletin Board collects commitments from all n PKG nodes then it updates final

commitment C f for each PKGi as C f [j]←C f [j]+C[i][j] j = 0,1, . . . ,k−1 . After all

the commitments are collected and final commitment is calculated, Bulletin Board

broadcasts all commitments.

Note that, the master secret key is s = ∑n
i=1 ai0 but none of the PKG nodes knows it

since each of them has only its own secret, ai0. Master public key is Pub=∑n
i=1 ai0g=

C f [0]. Public key share for the node PKG j is Pub j =∑
k−1
l=0 jlC f [l]. C f , Cil , Pub and

Pubi must be known by all the PKG nodes, where i = 1,2, . . . ,n and l = 0,1, . . . ,k−1.

These are broad casted by bulletin board application.

Keeping the threshold number (k) constant while incrementing the number of nodes

increases the reliability of the system as well. Indeed a client has a wide range of

available PKG nodes to choose the k needed to compute its private key.

20

FIGURE 2.5: Block schema of the extraction step.

2.2.7 Extraction

Let O be the set of available PKG nodes and g,e,H,Pub,Pubi are known by both

PKG nodes and clients where i = 1,2, . . . ,n.

Client A with identity IDA contacts k alive nodes from O. Each node PKGi returns

a private key piece as siH(IDA) over a secure and authenticated channel. After

receiving k pieces from k available PKG nodes, client A constructs its private key

by following Algorithm 3.

After receiving k pieces, client A constructs its private key by evaluating the for-

mula;

dIDA = ∑
PKGi∈O

λisiH(IDA) (2.17)

where the Lagrange coefficient is;

λi = ∏
PKG j∈O/{i}

j
j− i

(2.18)

21

Algorithm 3 Client extraction
Require: O, k pieces, g,e,H,Pub[n] to be known, where i = 1,2, . . ., n and master

public key Pub.
Require: PKG numbers are known

1: //s[k] is the set of pieces received
2: //num[k] is the set of PKG numbers which sent a piece to the client
3: //s[1] is the piece received from PKG num[1]
4: d ←∑PKGi∈OλisiH(IDA)

5: // where λi =∏PKG j∈O/{i}
j

j−i
6: check1 ← pairinge(d,g)
7: check2 ← pairinge(H(ID),Pub)
8: if check1 = check2 then
9: //the key is verified

10: else
11: //key is not verified find the malicious node
12: m← 0
13: for j = 0→ k−1 do
14: check1 ← pairinge(s[j]H(ID),g)
15: check2 ← pairinge(H(ID),Pub[num[j]])
16: if check1 ≠ check2 then
17: //PKG num[j] sent malicious piece
18: m← num[j]
19: end if
20: end for
21: if m ≠ 0 then
22: //ask PKG node m to send the piece again and repeat calculation of d
23: // or exclude PKG node m and start again
24: else
25: // repeat extraction starting from asking to k PKG nodes for pieces
26: end if
27: end if

The client A can verify the its private key by checking;

e(dIDA ,g)
?
= e(H(IDA),Pub) (2.19)

In the algorithm e is a bilinear pairing function. As a result of bilinearity prop-

erty of the pairing function, the dishonest node can be recognized by observing an

inequality in the pairing checks.

e(dIDA,g) = e(H(IDA),Pub)

e(sH(IDA),g) = e(H(IDA),sg)

22

If the verification is unsuccessful, it then can verify each received piece siH(IDA)

by checking;

e(siH(IDA),g)
?
= e(H(IDA),Pubi) (2.20)

The dishonest node PKGi can be recognized by observing an inequality in Formula

(2.20).

Whenever a new node is included to the system it performs this extraction part to

have a private key so that it can start communicating with the other system nodes.

However when the system requires a change of the master key, all three steps (setup,

distribution, extraction) have to be executed from the beginning.

23

Chapter 3

An Implementation and Practical
Analysis of Distributed Private Key
Generation for Identity Based
Cryptography

3.1 Distributed Private Key Generation Implementa-

tion

Distributed private key generation (DPKG) is needed to generate keys for Identity

Based Cryptography however it is used in some other cryptographic systems as well.

Identity based cryptography is advantageous when the public key management is

difficult for the system. In our work we have used the DPKG implementation for

securing Supervisory Control and Data Acquisition (SCADA) systems since it is

highly appropriate area due to its security need and its shortcomings that makes the

traditional key management methods not feasible to implement. In this section after

a short look at the implementation, a case study on SCADA systems is presented.

24

3.2 Case Study: Implementing DPKG on Industrial

Control Systems

This part of the study has been done in European Commission Joint Research Cen-

tre, Ispra, in collaboration with Igor Nai Fovino and Marco Taddeo.

In this digital age, one of the most important problems is the security threats related

to the Information and Communication Technologies (ICT). All systems deploy-

ing ICT are prone to failures and vulnerabilities that can be exploited by malicious

software and agents. Modern Critical Infrastructures (e.g. Power Plants, Water

Grids etc.) largely use ICT in order to provide new services and offer new fea-

tures. In particular, according to a relatively new trend, several of the maintenance

and management operations related to such installations are conducted remotely

taking advantage of public networks (i.e. the Internet). Using these facilities con-

tributes to make many operations taking place in critical infrastructures faster and

easier. It also reduces maintenance costs (less operators, unified control centers

etc.) and improves efficiency. Despite the advantages, ICT and Internet expose the

critical infrastructures to new range of security threats. Since the security of the

critical infrastructures have great importance and effect on the security of citizens,

the problem described above requires urgent solution.

The use of traditional ICT protection techniques (Firewalls, Intrusion Detection

Systems, Anti-viruses etc.) for securing process networks only mitigates the risk

of successful attacks [18], mainly limiting those caused by traditional issues in the

office environment. In fact, traditional firewalls and anti-virus can easily, if well

configured, stop known ICT attacks, for which they have the proper signatures and

detection rules. However those networks remain exposed to other threats (for more

details please refer to the subsection 3.2.1). The motivation of such level of exposure

is mainly connected to the intrinsic weakness of the communication protocols used

in the “Supervisory Control And Data Acquisition” (SCADA) systems to monitor

and control the field devices.

Several SCADA systems are geographically very sparse (e.g., a gas pipeline) and

composed by thousand of elements, making the key management process extremely

complex and resource consuming. The use of certification authorities and the use

of centralized repositories for public key management etc. result generally in a too

heavy and complex burden to be considered a valid solution for distributed SCADA

systems. To solve this problem, we use a key management scheme that deploys

25

an identity-based approach. Identity based cryptographic schemes are commonly

based on using a rather sophisticated mathematical concept, e.g. pairings defined

over elliptic curves.

3.2.1 Process Control System Vulnerabilities

Process Control Systems (PCS) are used in industrial installations to control the

production process. In other words, they are used to monitor and manage the field

devices (valves, pumps heaters etc.) in charge of performing operations on the

field. PCSs are normally used to control installations such as power plants, nuclear

plants, chemical installations, gas pipelines etc. It is evident that how their security

should be considered critical. In the following we firstly provide brief description

of the relevant bricks of a PCS, then we present the related vulnerability problems

and finally we discuss the desirable features that a possible countermeasure should

implement.

3.2.1.1 PCS Architecture

The core of PCSs is normally the Supervisory Control and Data Acquisition system

(SCADA). The basic components characterizing a SCADA system are:

• Master Terminal Unit (MTU): The MTU presents data to the operator, gath-

ers data form the remote Programmable Logic Controllers (PLCs) and actua-

tors site, and transmits control signals. It contains the high level logic of the

industrial system under control.

• Remote Terminal Unit (RTU): It acts as a slave in the master/slave architec-

ture.It sends control signals to the device under control, acquires data from

these devices, receives commands from the MTU and transmits the data gath-

ered to the MTU. An RTU may be a PLC.

• Field Devices: They are the physical devices in charge of executing the oper-

ations requested by the PLCs and the MTU.

Figure 3.1 shows how a SCADA system is integrated in a typical turbo-gas power

plant facility: SCADA servers are located into a process network, while the RTUs

(or the PLCs) are located into the field network. Between these networks exists

26

the control network. The masters are also controlled remotely by systems into the

company intranet, or through a remote connection using typically a site to site VPN

through the public network.

DMZ

M

SCADA Servers

Diagnostic Systems

Central Switch

Field

Network

Process Network

Power Plant

Intranet

INTERNET
Router

Power

Plant A

Power

Plant B

Power

Plant C

Production

Regulation

Services

Secondary

Regulation

Network

RTUs

DATA

NETWORK

Router

Process Firewall

High

Performance

Firewall

Company

Intranets

Router

Power

Plant D

Analogic Line

FIGURE 3.1: A typical SCADA system embedded into a turbogas power plant
facility

The core of the control network of every SCADA system is the communication

protocol (e.g. Modbus, Profibus, DNP3 etc.) used to collect data and dispatch

commands. In this study we focus our attention on the Modbus protocol but the

architecture proposed can be easily applied to all the other known SCADA pro-

tocols. Modbus is an application layer messaging protocol, positioned at level 7

of the OSI model (in the case of Modbus over TCP), which provides client/server

communication between devices connected on different types of buses or networks.

Communications can be (i) query/response type (communication between a master

and a slave), or (ii) broadcast response type where the master sends a command to

all the slaves. A transaction comprises one single query and single response frame,

or one single broadcast frame. A Modbus frame message contains the address of the

intended receiver (e.g. PLC number), the command to be executed by the receiver

and eventually the data needed for the execution of such a command. Modbus/TCP

embeds a Modbus frame into a TCP frame [19]. All the functions supported by

the Modbus protocol are identified by an index number (e.g. 01 (0x01) Read Coils

is a function used to read the status of the coils in a remote device). These func-

tions can be operational (write/read registers, coils etc.) or diagnostic. The Modbus

communication interface was originally designed for a multi-drop network based

27

on a master/client serial architecture. Due to the fact that, when designed, the de-

ployment was in isolated, tightly controlled systems. All security aspects such as

integrity, authentication, non-repudiation etc. were not taken into consideration.

3.2.1.2 Modbus Vulnerabilities

The porting of Modbus over TCP/IP has obviously introduced new layers of com-

plexity in the management of the reliable delivery of control packets in an environ-

ment with strong real time constraints. In addition, it has opened new possibilities

to attackers motivated to cause damages to target industrial systems. In particular,

this protocol (and generally all the SCADA protocols):

1. Do not apply any mechanism for checking the integrity of the command pack-

ages sent by a master to a slave and vice-versa.

2. Do not perform any authentication mechanism between master and slaves, i.e.

everyone could claim to be the “master” and send commands to the slaves.

3. Do not apply any non-repudiation and anti anti-replay mechanisms.

These security shortcomings can be used by malicious users for performing different

kind of attacks:

• Unauthorized Command Execution: The lack of authentication between

master and slave can be used by attackers to forge packets which can be di-

rectly sent to a pool of slaves. This is, specifically considering the use of

SCADA system in critical infrastructures like Nuclear plants, and extremely

dangerous class of threats, allowing to a well determined attacker to change

the entire configuration of a field network.

• SCADA-DOS: On the basis of the same principle, an attacker can also forge

meaningless Modbus packets, always impersonating the master, and consume

the resources of the RTU

• Man-in-the-Middle attacks: The lack of integrity checks allows attackers to

access the production network for implementing typical Man-in-the-Middle

(MITM) attacks, modifying the licit packets sent by the master.

28

• Replay-Attacks: The lack of anti-replay mechanisms allows attackers to re-

use captured legitimate Modbus/DNP3 packets.

Huitsing et all [20] presented a wide overview of the Modbus vulnerabilities; more-

over Nai et all [21] presented a first proof of concept of a ad-hoc created malware

able to take the control of an entire power plant field network (i.e. able to directly

send commands to the actuators of the power plant), by taking advantage of the

vulnerabilities of Modbus.

3.2.1.3 Distributed Identity Based Secure Modbus

As it is possible to guess from the previous section, several of the vulnerabilities

related to the PCS are due to the weaknesses of the industrial communication proto-

cols used to control the field devices. An apparently quick solution to the problem

would be to introduce in the communication channel in between master and slaves

a cryptographic layer allowing to guarantee the traditional properties of:

• Authentication

• Confidentiality

• Integrity

Among those requirements, the confidentiality can be considered as an unnecessary

issue for the security of SCADA, since the knowledge of the fact that a certain

command sent from a master to a slave is not considered a sensible information. The

most important and urgent requirement is authentication to prevent unauthorized

command executions since it can cause severe damage on a critical infrastructure in

case an attacker finds a way to sneak to the system and sends the SCADA devices

malicious commands.

A signature implementation can be used for providing the system with authentica-

tion but the public key management is a problem for a SCADA system considering

the low power computation of the field devices, low memory space available and

limited network bandwidth. In addition, several of these systems are very sparse

and composed by thousand of elements, making the key management process a

complex problem.

29

The traditional way of public key management is using Certification Authorities

(CA) but using a CA requires to open the critical infrastructure to external world

which makes the infrastructure open to external attacks. In this point building a

private Certification Authority for the system can be considered. However, it is still

unlikely to use CA for the following reasons:

• PLCs are not capable of handling certificates

• For each message public key verification is needed

• PLCs do not have enough memory for local repositories

• Open to single point of failure

Instead of CA, using identity based approach is more advantageous for a SCADA

system considering the below facts:

• Each element in a SCADA system has an identity string (i.e. PLC number)

• SCADA communication protocols already use these id strings in messages

• Verification is done only during system establishment and when master key is

needed a renewal

• Distributed key generation eliminates the key escrow problem and single point

of failure risk

In the following, we present the first working prototype of a secure Modbus protocol

based on identity based signature with distributed private key generation.

3.2.2 Prototype Overview

Our Distributed PKG is implemented as sequential steps where different parts com-

municate each other by the TCP/IP protocol in a Linux environment. In this envi-

ronment, we have a bulletin board, n PKG nodes and numerous clients as system

entities. The prototype is implemented in C for two main reason: The first is that

the Pairing Based Cryptography (PBC) library [22] is used for the underlying low

level elliptic curve and finite field operations and the second reason is the low level

control of the information exchanged by the nodes.

30

FIGURE 3.2: Distribution step

FIGURE 3.3: Key extraction step

In the start-up phase, the bulletin board loads the parameters and generates ran-

domly the curve generator. This value is public and is stored in a file shared by the

entire system and will never change once initiated. A list containing the network

topology information is shared between all the PKG nodes available in the system.

In particular, each node has a special file with a name, an IP and a listening port of

the system’s PKG.

No client can contact the nodes until the build-up phase is completed and master-key

is created and shared because the system is closed and there are no sockets opened

31

to the outside.

Figure 3.2 and Figure 3.3 demonstrates the prototype we have developed.

3.2.3 Experimental Tests

To verify the efficiency and the validity of our approach, several comparative tests

were performed on a protected environment which reproduces the network of a

typical Gas Power Plant. The test was organized in three steps:

• In the distribution step, the distribution phase performance were tested.

• In the extraction step, we focused our attention on the client key extraction.

• In the signcryption step, we performed some tests on signing Modbus pack-

ages.

All the computers that the tests ran on were Linux based (Ubuntu 10.10).

3.2.3.1 Distribution

In order to measure the time required for completing the distribution phase with

different numbers of PKG nodes, we performed several tests by keeping all other

system parameters constant. More specifically, we changed the number of nodes (n)

from 6 to 18 while keeping the threshold number (k) and other system parameters

constant in order to see how the number of nodes effects the start-up time (time for

completing the setup and the distribution steps).

FIGURE 3.4: Distribution phase performance test (Time in ms.)

32

Graph displayed in Figure 3.4 shows how the time increases exponentially with the

number of nodes (n). PKGs exchange n×n messages during setup and distribution

steps. Considering that this setup phase needs to be executed only during system

establishment or whenever a master key renewal is needed, an average time of 2

seconds is considered acceptable.

3.2.3.2 Extraction

In this test phase we focused on the time required by the client for extracting its pri-

vate key. We changed the threshold number (k) from 2 to 8 while keeping the num-

ber of nodes (n) and the other system parameters constant. Changing the threshold

value, the number of PKG nodes that the client needs to contact for key extrac-

tion changes. The value displayed in Figure 3.5 indicates the total extraction time

together with the network delay and the .

FIGURE 3.5: Key extraction phase performance test (Time in ms.)

This test shows that the performance of the key extraction phase mostly depends

on the network delay. The time increases logarithmically with the threshold value.

In fact the client has to contact k PKG nodes and every signed piece (siH(ID))

retrieval increases the total time. Keeping the threshold value too low will cause

the system to be more exposed to an attacker trying to capture the user’s private

key, while keeping it too high will slow down the key extraction process. When the

threshold value is higher than k = ⌊n/2⌋+1 we also sacrifice reliability considering

the case that some of the PKG nodes crashes.

By using a (n,k) threshold scheme for secret sharing which is summarized in Sec-

tion 2.1.4 with n = 2k−1 we get a robust key management scheme. Even if ⌊n/2⌋ =

k−1 of the n pieces are destroyed, we still can recover the original key. On the other

hand, our opponents cannot reconstruct the key even if they retrieve ⌊n/2⌋ = k−1 of

the remaining k pieces.

33

According to the practical analysis performed, it can be said that the selection of n

between 7 and 14 and k between 4 and 7 (complying with the equation n = 2k−1) is

acceptable and applicable in terms of security, reliability and speed.

100	

200	

300	

400	

500	

600	

0	
 4	
 8	
 12	
 16	
 20	
 24	
 28	
 32	

FIGURE 3.6: Simultaneous answer performance test (Time in ms.)

In most environments, many PLCs and masters can be turned on or connected to the

system simultaneously. In order to verify the performance of the DPKG system we

performed several test increasing the number of clients that simultaneously com-

municate with the DPKG system. Different numbers of clients contact the DPKG

system to extract their private keys. The test is performed contacting 8 PKG nodes

and number of clients that simultaneously contact to the PKG nodes rages from 2

to 32. The results displayed in Figure 3.2.3.2 show that there is not an explicit limit

to the simultaneous requests. The implicit limits are only due to the computational

resources of the machines.

3.2.3.3 Signature & Verification

The goal of this test is to present some preliminary values of a signature imple-

mentation between two SCADA entities: master and slave. The communication is

performed through the Modbus protocol [23] [19]. In particular, a master signs a

Modbus package by using the private key generated in the previous step and sends

it to a slave (PLC). The client verifies the data integrity and sender’s identity by

following the identity based signature scheme described in Section 2.2.

Throughout the testing phase we used type A elliptic curves. This type of curve is

described by the equation

y2 = x3+x. (3.1)

34

(a) Read coils command (b) Write coils command

FIGURE 3.7: Time spent for signing and verifying a Modbus package

The curve is defined over the field Fq for some prime q = 3 mod 4. The order r is

some prime factor of q+1. Moreover, we used a symmetric pairing where G1 and

G2 are the set of points E(Fp).

The test is performed in two parts as:

• Master sends a ReadCoilsRequest to slave and waits ReadCoilsResponse;

• Master sends a WriteCoilsRequest to slave and waits WriteCoilsResponse.

Tables below show the total time spent (in msec) for signing and verifying Modbus

packages according to the length (in bits) of selected security parameters r and q

where q+1 = r∗h.

As it is possible to see in Figure 3.7(a) and 3.7(b) the total time spent rages from

minimum 17 msec to maximum 380 msec. Considering that we used a non-optimized

prototype, we can consider that these results are quite promising.

3.2.4 Conclusion for the Case Study

SCADA systems are usually used to control critical infrastructures which makes

security of them highly essential. The most important vulnerability of SCADA

systems is the lack of authentication mechanism due to the SCADA protocols. In

this study after proposing the use of an identity based signature scheme to secure

SCADA protocols, we presented a completely distributed scheme for generating

identity based private keys for the entities involved in a SCADA system. The ad-

vantages of this approach are not negligible. The use of identity based signatures

makes the use of certificates and certification authorities unnecessary as well as it

35

makes the use of centralized repositories for storing public keys also unnecessary. It

provides SCADA systems with authenticity efficiently. Moreover, after performing

a private key generation the keys can also be used for encryption to provide confi-

dentiality if it is needed. The presented distributed architecture provides robustness

against ICT attacks and finds its perfect application in those geographically sparse

SCADA systems composed of a huge number of active elements. The tests pre-

sented show how this approach is applicable for the SCADA environment in terms

of security, reliability and time.

37

Chapter 4

Using Petri Nets for Modeling and
Analyzing Cryptographic Protocols

4.1 Introduction to Petri Nets

The mathematical concept to describe systems with distributed states was developed

by Carl Adam Petri in 1962 in his thesis [24]. With his dissertation he laid the basis

of Petri net theory.

Petri net is a mathematical and graphical modeling tool useful for modeling con-

current, distributed, asynchronous, parallel, nondeterministic, and/or stochastic sys-

tems. As a graphical tool, it can be used as a visual-communication aid similar to

flow charts, block diagrams and networks. Tokens are used in these nets to simu-

late the dynamic and concurrent activities of systems. As a mathematical tool, it is

possible to set up state equations, algebraic equations, etc.

The concept of Petri nets is a result of searching methods for describing and ana-

lyzing information and control data flow in information processing. The Petri net

theory is well suited to describe the dynamic behavior of complex concurrent sys-

tems based on graph theoretical concepts.

In this chapter a brief summary of Petri net theory is given with respect to the nota-

tion and terminology of [25] and [26].

Definition 4.1. Formally, a net is a bipartite, non-empty, directed graph without

isolated nodes and it is represented as;

N = (B,E,F)

38

FIGURE 4.1: Demonstration of firing rule: (a) t0 is enabled (b) t0 is fired

where

• B = b1,b2, . . .bm is a finite set of places,

• E = e1,e2, . . . ,en is a finite set of transitions,

• F ⊆ (B×E)⋃(E ×B) ∈ is a set of arcs,

• B∩E = ∅ and B∪E ≠ ∅.

Set B is also considered as the set of atomic (local) states / conditions while set E

is the set of atomic (local) transitions/ events. It is important to note that states and

transitions are distinct. Global (distributed) state is the case set of conditions hold-

ing concurrently while global (distributed) transition is the set of events occurring

concurrently.

There is also a graphical notation for the elements of Petri nets. State elements are

drawn as circles , the transition elements are represented with boxes and the

flow relation is shown as edges

If X = B∪E and x ∈ X , as usual ●x denotes the set {y ∈ X ∣(y,x) ∈ F}; x● is defined

similarly. A net is pure when ∀x ∈ X ●x∩ x● = ∅. A net is simple when (∀x,y ∈ X)
●x =● y and x● = y● implies x = y. In this study pure and simple nets are used.

A set of conditions c ⊆ B is called a case. An event e ∈ E can occur at a case c when
●e ⊆ c and e●∩c = ∅; we say that e is enabled at case c. When e occurs at c, the case

following c will be c′ = (c∖●e)∪e●. When e occurs and transforms case c in c′ we

say that event e is fired. Cases are graphically represented by black tokens in the

conditions belonging to c.

Example 4.1. In Figure 4.1 firing rule of Petri nets is shown by a simple example.

39

FIGURE 4.2: Demonstration of firing rule: (a) t0 is not enabled (b) t0 cannot fire

Example 4.2. Another example shown in Figure 4.2 demonstrates a case that vio-

lates firing rule.

In Figure 4.2 (a) t0 cannot fire since its preconditions are not held. In other words

p1 must hold a token so that t0 would be enabled. In Figure 4.2 (b) t0 cannot fire

because its postcondition is not empty.

There are many types of Petri Nets including place – transition nets, condition –

event nets / elementary nets , colored Petri nets, timed Petri nets and stochastic Petri

nets.

In this thesis only the elementary Petri nets are used. In an elementary Petri net

system there are conditions, that can either be true or false represented by places

and events, that can occur represented by transitions.

In this work elementary Petri nets are used due to the below considerations:

• Elementary nets leave the representation open to the inclusion of low-level

signal processing;

• They provide use of basic tools for proving structural properties of the model

like invariants analysis at the level of basic signals;

• By using elementary nets one has the properties of interest represented as

boolean variables;

• Use of Elementary Petri Nets allows researchers to use powerful model check-

ing tools like LOLA [7] [27].

40

4.2 Modeling with Elementary Petri Nets

In this work we used elementary Petri nets for modeling DPKG for the formal anal-

ysis of the protocol. The reasons for choosing elementary nets are stated in previous

section.

Definition 4.2. An elementary net is a 4-tuple

EN = (B,E,F,m0)

where (B,E,F) is the underlying net of EN denoted by und(N) and m0 is the initial

marking (initial case) of EN, inc(EN)

Let EN be an elementary net system and BEN , EEN and FEN denote respectively

the set of conditions in EN, the set of transitions in EN and the set of arcs in EN.

Furthermore, MEN = [m0 >EN the set of markings (cases) of EN.

While m ∈ MEN and e1,e2 ∈ EEN e1 and e2 can be related to each other at m in five

ways at least:

1. Sequence:

FIGURE 4.3: Sequence of events in a Petri net system

e1 can occur but e2 cannot occur until e1 occurs. e1 and e2 are in sequence at m if

and only if m[e1 >,¬(m[e2 >),andm′[e2 > m′. Sequence of events is demonstrated

in Figure 4.3.

2. Conflict (choice):

e1 and e2 can occur individually at m but they cannot occur together at the same

time. e1 and e2 are in conflict at m if and only if m[e1 >,m[e2 > and¬(m[e1,e2]).

An example of conflict case is displayed in Figure 4.4.

3. Concurrency:

41

FIGURE 4.4: Conflict case in a Petri net system

e1 and e2 can occur at m without interfering each other. No order is specified over

the occurrence. e1 and e2 can occur at m if and only if m[e1,e2 >. Concurrency of

two events e1 and e2 can be seen in Figure 4.5.

FIGURE 4.5: Concurrency of two events in a Petri net system

In addition to sequence, conflict and concurrency many other characteristics of a

distributed system activities can be modeled by elementary Petri nets such as syn-

chronization and mutually exclusion.

4. Synchronization:

42

In a distributed event system an event may require multiple resources. The resulting

synchronization of resources can be captured by transitions of the type shown in

Figure 4.6. In the figure, e1 is enabled only when each of p1 and p2 receives a

token. The arrival of a token into each of the two places could be the result of a

sequence of events elsewhere in the rest of the Petri net model.

FIGURE 4.6: Case of synchronization in a Petri net system

5. Mutually exclusion:

Two processes are mutually exclusive if they cannot be performed at the same time

due to constraints on the usage of shared resources. Demonstration of this situation

in Petri nets is given in Figure 4.7.

FIGURE 4.7: Two mutually exclusive processes modeled with Petri nets

43

4.3 Properties of Petri Nets

In this section some of the behavioral and structural properties of Petri nets are con-

sidered. Behavioral properties refer to the properties of a Petri net that are dependent

on the initial marking of the net and structural properties. Structural properties are

only dependent on the structure of the net.

4.3.1 Behavioral Properties

The reachability, boundedness, safety, limitation, liveness, deadlock, reversibility,

home state, coverability, persistence and fairness are often referred behavioral prop-

erties. For more detailed information referring to [26] is recommended. In the

following some of the behavioral properties of Petri nets are given.

When analyzing Petri net systems it is often desirable to know if the given marking

m1 can be reached from the initial marking m0 or if an undesirable marking m2 can

be avoided. To know the reachability of a marking it is necessary to know if there is

a firing sequence that can bring the net to a new marking. This problem is referred

as reachability problem.

Definition 4.3. A marking mi is said to be reachable from a marking m0 if there

exists a sequence of firings which transforms marking m0 to mi.

A marking m1 is said to be immediately reachable from m0 if firing an enabled

transition in m0 results in m1.

Possible markings reachable from m0 for Petri net N is denoted by R(N,m0).

Another property which is especially useful when the size of the system is wanted

to be defined is boundedness.

Definition 4.4. A Petri net (N,m0) is k-bounded or simply bounded if m(p) ≤ k for

every place p and every marking m ∈ R(m0).

Definition 4.5. A Petri net is safe if it is k-bounded and k = 1.

By verifying that the net is bounded or safe it is guaranteed that there will be no

overflows in the buffers or registers of the system, No matter what firing sequence

is taken.

The liveness property is closely related to the complete absence of deadlocks in

a system. A Petri net (N,m0) is said to be live if, no matter what marking has

44

been reached from m0 , it is possible to ultimately fire any transition of the net by

progressing through some further firing sequence. This means that a live Petri net

guarantees deadlock-free operation, no matter what firing sequence is chosen.

Definition 4.6. A Petri net is said to be live if for all transitions there is a way to fire

transition in any marking m′ reachable from the initial marking m0 i.e. ∀m′ ∈R(m0)

and ∀e ∈ E,∃m ∈ R(m′) such that e is enabled in m .

Definition 4.7. A marking m′ reachable from the initial marking m0 is a deadlock if

none of the transitions of the Petri net is enable in m′ .

Reversibility is one of the often used properties demanded by many applications. In

reversible net one can always get back to the initial marking or state.

Definition 4.8. A Petri net (N,m0) is said to be reversible if for each marking m ∈

R(m0),m0 is reachable from m .

In many applications, it is not necessary to get back to the initial state as long as one

can get to some (home) state.

Definition 4.9. A marking m′ is said to be a home state if, for each marking m ∈

R(m0),m′ is reachable from m.

These three properties boundedness, liveness and reversibility are independent from

each other. A reversible net can be live or not live and bounded or not bounded.

Another property is coverability and it is closely related to 1-liveness (potential

firability).

Definition 4.10. A marking m in a Petri net (N,m0) is said to be coverable if, there

exists a marking m′ ∈ R(m0) such that m′(p) ≥m(p) f orall p ∈ P.

4.3.2 Structural Properties

Structural properties are the properties that depend on the topological structures of

Petri nets. They are independent of the initial marking m0. Some of the structural

properties of Petri nets are listed below:

• Structural Liveness: A Petri net N is said to be structurally live if there exists

a live initial marking m0 for N.

• Controllability: A Petri net N is said to be completely controllable if any

marking is reachable from any other marking.

45

• Structural Boundedness: A Petri net N is said to be structurally bounded if it

is bounded for any finite initial marking m0.

• Repetitiveness: A Petri net N is said to be repetitive if there exists a marking

m0 and a firing sequence from m0 such that every transition occurs infinitely

often.

• Consistency: A Petri net N is said to be consistent if there exists a marking

m0 and a firing sequence from m0 back to m0 such that every transition occurs

at least once.

4.4 Analysis of Elementary Petri Nets

Methods for analyzing Petri nets can be classified in three groups as the coverability

/ reachability tree method, matrix equation approach and reduction or decomposi-

tion techniques. Coverability / reachability tree method involves the enumeration

of all reachable markings or their coverable markings instead. This method is lim-

ited to small nets due to the complexity of the state space explosion. Boundedness,

safeness, liveness and reachability are some of the properties can be studied by us-

ing coverability trees. However, the reachability and liveness problems cannot be

solved by the coverability tree method alone.

For a bounded Petri net, the coverability tree is equal the reachability tree since it

contains all possible markings.

Definition 4.11. The coverability graph of Petri net (N,m0) is labeled directed graph

G = (V,E). Its node set V is the set of all distinct labeled nodes in the coverability

tree and the arc set E is the set of arcs labeled with single transition tk representing

all possible single transition firings such that mi[tk > m j, where mi and m j are in

V . For a bounded Petri net, the coverability graph is referred to as the reachability

graph, because the vertex set V becomes the same as the reachability set R(m0).

Definition 4.12. A reachability graph of a Petri net N is a directed graph G = (V,E),

where v ∈V represents a class of reachable markings; e ∈ E represents a directed arc

from a class of markings to the other class of markings.

A reachability graph is also called occurrence graph or state space. The reachability

graph demonstrates a better performance than the reachability tree.

46

Although a Petri net is finite, the set of its reachable markings is not always finite.

For instance, when a Petri net is not safe or bounded, its number of tokens can be

infinite, thus the set of reachable markings being infinite. This situation is not likely

to happen in elementary Petri nets due to its structure letting a place/condition to

have only one token or no token at all. However, the reachability graph analysis still

can be applied on the small nets due to the state space explosion. In this study the

nets are divided into smaller ones in the aim of creating feasible reachability graphs

for analysis. The reachability graphs are used to determine and analysis the safe-

ness, boundedness, conservation, reachability/coverability and liveness properties

of Petri nets. The major reason for using reachability graph analysis in this study is

to determine whether a specific marking/case is reachable where the specific mark-

ing demonstrates a situation which violates the security of a system or a situation

that has to be reached in order to perform a protocol successfully.

Matrix equations and reduction techniques are powerful but they are only applicable

for special subclasses of Petri nets or for some special situations.

For more detailed information about analysis methods it is recommended to read

[26].

4.5 Modeling and Analyzing Cryptographic Protocols

with Elementary Petri Nets

Using cryptographic techniques to provide network or information security can end

up with potential loopholes for an intruder to compromise the system security no

matter how strong is the cryptographic algorithm implemented is if the protocol is

improperly designed. Hence, the security of these applications does not only depend

on the strength of the underlying cryptographic algorithm but also on the security

and correctness of the protocols.

The purpose of cryptographic protocol modeling is to provide a formal represen-

tation of protocol systems as well as facilitate formal analysis on these systems.

Elementary Petri nets provide a formal basis on which we can investigate security

properties of the protocols and search for security flaws and it also provides struc-

tural property analysis such that liveness, safeness and boundedness.

47

As it is also stated in the Chapter 1, one of the reasons for choosing elementary Petri

nets for this study is because it allows us for the use of powerful model checking

tools like LoLA [7].

49

Chapter 5

Formal Model of Distributed Private
Key Generation for Identity Based
Cryptography

5.1 Modeling Distributed Private Key Generation for

Identity Based Cryptography

In this section Petri net model of Distributed Private Key Generation (DPKG) for

Identity Based Cryptography is presented in the aim of providing a formal model

of the system and analyzing the security properties of DPKG protocol. In Section

5.1.1, a simple model for the whole DPKG is represented for a better understanding

of the process. In the following sections, more detailed models are presented and

being analyzed by means of structural properties as well as behavioral properties

of the nets. An intruder model is also provided for analyzing the behavior of the

system under an attack against the protocol. PIPE2 [28] and LoLA [7] [27] tools

are used for creating and analyzing the nets.

5.1.1 Modeling Overall Distributed Private Key Generation and
Analysis of the Model

To begin with, an overall model for DPKG is presented in Figure 5.1. The Petri net

represents a (3,2) DPKG system with three Private Key Generator (PKG) nodes, a

50

bulletin board and a client. In the beginning, three PKG nodes wait for a distribution

and a bulletin board stores and broadcasts the system parameters. Together they

generate a master key pair consists of master private key s and master public key

(Pub) in a distributed manner. In the model, it can be seen that a client applies to

two PKG nodes to extract a private key regarding the fact that it is a (3,2) system.

Having two signed pieces as siH(IDA) (i = 1, 2, 3 here) from two distinct PKG

nodes, client A can extract its private key by evaluating the formula 2.17. It is

important to note that there are 3 pieces of master private key and none of the PKG

nodes has the whole key s. Each of them has a share for it sharei and a share for the

master public key Pubi. In the model, share1, share 2 and share 3 represents

PKG1, PKG2 and PKG3 holding the shares. The reason for duplicating those places

with p11, p12 and p13 is to represent that the shares are not consumed after a client

applies to the PKG node without using a self loop which would cause the net to

loose its simplicity. The simplicity of a Petri net is described in Section 4.1. For

more information about elementary Petri nets it is recommended to refer to [25].

The net is constructed in a way to represent the basic concept of the DPKG. It is also

taken into consideration that both the distribution of the shares and the extraction of

the client’s private key has to be repeatable. One can easily notice that the net can be

divided into two parts as distribution of the shares and the extraction of the client’s

private key in a way that two nets can overlap. This kind of division provides us

with a more detailed and powerful modeling capability and a possibility to analyze

the models without having memory and time constraint problems.

5.1.2 Model of Setup and Distribution Step

The net shown in Figure 5.2 represents the distribution step of (3,2) distributed

private key generation scheme which means that there are three private key genera-

tors (PKG) and the key can be constructed only if at least two pieces of the key are

acquired from two distinct PKG nodes.

The net starts with the case that places with labels idle, initCanStart and BBidle

have one token each, while the other places have no tokens. Since the model is

constructed by using elementary net systems, it is possible to claim that idle,

initCanStart and BBidle local conditions are logically true while all the other lo-

cal conditions are logically false. The only event that can be fired is initializePKGnodes.

51

FIGURE 5.1: A net representing simple overall look to the DPKG

After initializing PKG nodes PKG1 PKG2 and PKG3 are ready. From this point

on, there are three flows (subnets) representing three PKG nodes. The fourth sub-

net represents bulletin board. Only one of the flows will be explained here since

the other two are alike. The event chooseP1andSendToBB means PKG1 chooses

a polynomial whose coefficients are random elements from a predefined field. Af-

ter choosing the polynomial P1, PKG1 also sends the commitments C1l = a1lg for

l = 0,1,2 to the Bulletin Board to be broad casted. ail is the lth coefficient of ith poly-

nomial. It is important to note that PKG1 does not send the polynomial it only sends

the commitments. When this event is fired, the local states P1readyForSubshares

and commitmentsP1 become true.

52

FIGURE 5.2: Petri net model of distribution step of distributed private key gener-
ation.

Independently, when all three PKG nodes send the commitments, all four precondi-

tion states of calculate final commitment event become true so the event is en-

abled. After p1ReadyForSubshares becomes true, the event calculate subshares

is enabled. The firing of this event leads to the case that three subshares of P1 (

subshare1-1, subshare1-2, subshare1-3) are calculated and these three local

states become true, while the token of p1ReadyForSubshares is consumed. One

of the subshares of each PKG node is for their selves while the other two are to send

53

to other PKG nodes.

A PKG node needs three subshares including its own to continue with calculating

its share for the master private key. Thus, PKG1 needs PKG2 to send subshare2-1

and PKG3 to send subshare3-1. If related events are already fired and subshare

2 1, subshare1-1 and subshare3 1 local states are all true, The event calculate

share1 is enabled. Note that the local states subsharei-j and subsharei j are

different places. subsharei j represents the subshare which is sent to PKGj by

PKGi, while subsharei-j is the subshare calculated by PKGi to send the PKGj

but still being held in PKGi.

After share 1 becomes true, if final commitment is calculated, two events are en-

abled: verify share1 as correct and not verify share1. Each PKG node

follows the same flow and verifies their shares by using the final commitment which

is held by bulletin board. If all the PKG nodes verify their shares as correct, then

the system is ready for the extraction. Otherwise, there can be no extraction and

the system needs to restart. If at least one of the shares is incorrect then one of

the events t4, t5, t6, t7, t8, t9, t10 becomes enabled. Firing of this event

consumes the remaining tokens to make system ready to restart. The arrows in this

part are not shown separately to prevent the complicity.

Only one of the local states systemReadyForExtraction and

distributionNotSuccessful can be true and the system can be restarted both af-

ter a success and fail. In any of the restart cases Bulletin Board also becomes ready

to restart. The place BBCanRestart eliminates deadlock situations like the final

commitment is still being used but bulletin board restarts and there is no final com-

mitment. InitCanStart ensures that Bulletin Board restarts before initialization of

the PKG nodes. It is necessary to clear the previous commitment values from the

Bulletin Board and make the system ready for the new distribution.

5.1.3 Model of Key Extraction Step

The Petri Net model of the extraction part is shown in Figure 5.3. Extraction starts

after all three shares are ready and verified as correct and there is a client requesting

a private key. The places PKG1 ready, PKG2 ready and PKG3 ready in extraction

model overlaps with share1correct, share2correct and share3correct in the

distribution model.

54

FIGURE 5.3: Petri net model of extraction step of distributed private key genera-
tion.

We could have combined these two models to make the model complete, but in this

case the model would be too big to analyze. We have stated that the models represent

a (3,2) scheme which means has to apply to two of the PKG nodes because in this

(3,2) scheme private key can be constructed by using two shares from two distinct

PKG nodes. When the system starts, there is a client, whose ID is known by every

node, waiting for a private key and three nodes with three shares are ready for an

extraction.

All of the three events (apply to PKG1 and PKG2, apply to PKG1 and PKG3

and apply to PKG2 and PKG3) are enabled but only one can be fired.

For instance if apply to PKG1 and PKG2 event is fired, share1H(ID) and share2H(ID)

become true. The firing of the event actually means that PKG1 does elliptic curve

scalar multiplication with share1 and hashed ID of client and PKG2 does the same.

In the net sending the result to the client is done by events PKG1 sends to client

and PKG2 sends to client.

55

After sending, the flow goes on in the client part. In this case, piece1 and piece

2 states become true. For each state representing a piece there are two events as

verify or not verify. Both of the pieces need to be verified so that client can

use the pieces and calculate its private key. If any of the pieces is not verified, the

system reaches an unsuccessful state and the local state at least one piece not

verified becomes true. After both successful and unsuccessful states the system

can be restarted for a new extraction. There are six restart events since each one is

enabled in a different ending state and the old tokens are needed to be consumed to

go back to the starting state.

5.1.4 Analysis on the DPKG model

In this section, we first introduce a structural analysis of the DPKG model for Iden-

tity based Cryptography then continue with a more detailed analysis. The purpose

of modeling the protocol is not only to provide a formal representation of the system

but also a basis for formal analysis of it. Elementary Petri net model enables us to

do a security property analysis for the protocol.

The first basic analysis on the models in Figure 5.2 and Figure 5.3 shows that the

nets are both bounded both safe and they are deadlock free. The analysis result tells

us that the system will go on working safely unless there is a physical, electrical,

human error problem, etc. The model supports the fact that DPKG can perform

repeatedly whenever there is a need for

1. changing the master key and recreate shares for PKGs,

2. extracting the same private key for the client in case it has lost its key or

3. extracting a new private key for a new client who has just joined the system.

For a more specified analysis we move to the model checking environment and use

the model checking tool LoLA. To express the properties or situations needed to be

analyzed, we first defined the situation as a global states of the model and translated

it into temporal logic formulas expressed in CTL (Computation Tree Logic).

FORMULA 1: EXPATH EVENTUALLY (finalCommitments = 0 AND (system-

ReadyForExtraction = 1 OR distributionNotSuccessful = 1))

56

The above formula investigates the existence of a global state in which PKG nodes

finish the distribution of subshares and calculating shares before BulletinBoard cal-

culates final commitments. This is an unwanted situation which means that the ver-

ification of the shares is not performed and the calculated shares cannot be trusted.

When we check the model in Figure 5.2, we see the result for the formula is false

which means the global state is not reachable in the model.

FORMULA 2: EXPATH EVENTUALLY systemReadyForExtraction = 1 AND dis-

tributionNotSuccessful = 1

The second formula focuses on the possibility of a conflict in the end of the distri-

bution step. It asks if there exists a global state in which the success and the fail

states are true in the same time. The result of the formula is false when the model

in Figure 5.2 is checked for the formula.

FORMULA 3: EXPATH EVENTUALLY (clientHasCorrectKey = 1 AND atLeast-

OnePieceNotVerified = 1)

The last formula checks the existence of a global state in the extraction model shown

in Figure 5.3. This global state defines the case in which client has the correct key

but at least one of the pieces is not verified. When the model is checked for the

formula, it is proved that the global state is not reachable.

5.1.5 Intruder Model

As in the traditional attack models, an attacker is represented by an insecure chan-

nel. The channel can consequently substitute packets, re-use old keys and play all

the possible man-in-the-middle tactics. Two main goals are foreseen: 1) to block

the process by exploiting the weaknesses of the DPKG protocol; 2) to extract infor-

mation about the system.

We introduce an intruder model which sneaks into the channel during the distributed

key generation. Since the model is too complex to analyze, it is split into two parts

as distribution and extraction.

The first intruder model is shown in Figure 5.4. In this model we included only two

PKG nodes to keep the model small but sufficient enough to analyze the properties

we are interested in like what can be done by the intruder in such a scenario. The in-

truder in the model listens to the channel between PKG1 and PKG2 having also the

57

FIGURE 5.4: Petri net model of an intruder in the distribution step of DPKG.

possibility to change the message on the channel. When PKG1 sends the subshare

for PKG2, subshare1-2, the intruder has two options. It can read subshare1-2

and do no change on it or it can send a fake subshare1-2 to PKG2 while keeping

the original one to itself. The same flow exists also on the opposite direction to read

and change the subshare2-1. The modeled DPKG here is (2,1) which means

there are two PKG nodes and in the distribution step they produces two subshares.

To explain with an example, in order to have a share for the master private key

PKG1 needs to obtain two subshares. One is the subshare created by PKG1 and the

other is the subshare created by PKG2 for PKG1 as < i,P(i) > where P is the secret

polynomial of the PKG2.

The second intruder model representing the extraction step with an intruder is shown

in Figure 5.5. In this model there are three PKG nodes and the system is (3,2). This

is the smallest sufficient and meaningful model for analyzing the intruder behavior.

58

FIGURE 5.5: Petri net model of an intruder in the extraction step of DPKG.

In this model intruder listens to the channels between three PKG nodes and the

client. The intruder can read the piece sent by the PKG node to the client and then

can change the message or leave it as it is. Another option is that the intruder does

not read anything from the channel. In this way, we model an intruder who can

choose the channel to be listened and has the ability to change the messages on the

channels.

5.1.6 Analysis on the Intruder Model

After creating the model we used model checking with LoLA to test the reachability

of specific global states threatening the system. To express the unwanted situations

we first defined the situation as a global states of the model and translated it into

temporal logic formulas expressed in CTL as we did for the DPKG analysis in

Section 5.1.4.

59

FIGURE 5.6: The sequence of events for making Formula 5 true

FORMULA 4: EXPATH EVENTUALLY ((subshare1-2AtIntruder = 1 AND subshare2-

2AtIntruder = 1) OR (subshare2-1AtIntruder = 1 AND subshare1-1AtIntruder = 1)

)

With this formula we ask if it is possible that there exists a global state in which the

intruder captures both subshares for PKG1 or PKG2. When the model displayed in

Figure 5.4 is checked for this formula, the result is found to be false. In an (n,k)

system, to be able to have a PKG node’s share, an intruder has to capture n subshares

addressing that specific PKG node. But this situation cannot occur, because one of

these subshares is created by the node itself and it is never sent to the channel.

FORMULA 5: EXPATH EVENTUALLY (subshare1-2AtIntruder = 1 AND share2Correct

= 1)

The next formula checks if there exists a global state in which intruder reads the

subshare 1-2 but PKG2 does not know it. The result is true since this situation is

likely to happen when the intruder only reads and forwards the subshare without

changing it. It is not fatal until all the required subshares are read by the intruder. In

Figure 5.6 the path of firings leading the mentioned global state is given.

FORMULA 6: EXPATH EVENTUALLY (clientHasCorrectKey = 1 AND atLeast-

OnePieceNotVerified = 1)

The above formula investigates a situation in which the client supposes to have the

correct key while at least one of the pieces she received is not verified. When the

model shown in Figure 5.5 is checked for this formula we see that the result is false.

This scenario could be correct if the result of verification done by using bilinear

60

FIGURE 5.7: The sequence of events for making formula 7 true

cryptographic pairings in Algorithm 3 is correct while the parameter of the pairing

function is wrong. The details about cryptographic pairing functions can be seen in

[29].

FORMULA 7: EXPATH EVENTUALLY (intruderHasTheKey = 1 AND clientHas-

CorrectKey = 1)

The last formula asks if it is possible for the intruder to have the client’s key without

the client being informed about it.

Figure 5.7 shows the path of firings which make formula 7 true.

This situation is likely to occur if the intruder captures all the pieces needed for

extraction of the client’s key and does no change on them so that client will also

have the same key. The number of required pieces is k in an (n,k) system. After

checking the model shown in Figure 5.5 for this formula, the result turns out to

be true. However, this situation is a natural outcome for threshold cryptographic

protocols such as DPKG for identity based cryptography.

61

Chapter 6

Results and Conclusion

In this thesis it is aimed to create a formal model for Distributed Private Key Gen-

eration protocol and analyze the behavior of it for proving its properties.

To this end, a basic model of the protocol is built by using Elementary Net Sys-

tems. This model allows for the first reflections about the protocol by means of

traditional structural analysis techniques. Then the work is extended by including

an intruder in the model aiming at analyzing the behavior of the protocol under an

attack and revealing possible flaws. The results indicate that there is no way to ex-

tract information about the master key or the private keys of the clients. Thus it can

be concluded that the models drawn and the analysis performed on them have not

pointed out any flaws except the drawbacks of the threshold cryptography. In this

way, use of the protocol in the industrial control systems is partially proved to be

safe. An attacker is not able to gain any information about the system and two main

goals of an attacker which are stated in the beginning of Section 5.1.5 are not to be

achieved. This thesis focuses on the protocol of distributed private key generation,

thus we cannot say anything about the flaws that can occur due to the wrong use of

the keys for encryption, decryption and signature.

In addition to the formal analysis, a practical analysis of the protocol is also per-

formed by implementing DPKG on industrial control systems including use of the

generated keys for providing the system with authenticity by identity based signa-

tures. After several tests and analysis it is concluded that identity based crypto-

graphic approach with distributed private key generation is advantageous for sys-

tems like SCADA since it makes the use of certificates and certification authorities

unnecessary as well as it does not require use of centralized repositories for stor-

ing public keys. Excluding the certificates from the system makes the encryption

62

& decryption and signature & verification processes faster and easier in terms of

managing the public keys.

63

Bibliography

[1] A. Shamir, “Identity-based cryptosystems and signature schemes,” in

CRYPTO, ser. Lecture Notes in Computer Science, G. R. Blakley and

D. Chaum, Eds., vol. 196. Springer, 1984, pp. 47–53.

[2] D. Boneh and M. K. Franklin, “Identity-based encryption from the weil pair-

ing,” in CRYPTO, ser. Lecture Notes in Computer Science, J. Kilian, Ed., vol.

2139. Springer, 2001, pp. 213–229.

[3] C. A. Petri, “Fundamentals of a theory of asynchronous information flow,” in

IFIP Congress, 1962, pp. 386–390.

[4] B. B. Nieh and S. E. Tavares, “Modelling and analyzing cryprographic proto-

cols using petri nets,” in AUSCRYPT, ser. Lecture Notes in Computer Science,

J. Seberry and Y. Zheng, Eds., vol. 718. Springer, 1992, pp. 275–295.

[5] Y. Xu and X. Xie, “Modeling and analysis of security protocols using colored

petri nets,” JCP, vol. 6, no. 1, pp. 19–27, 2011.

[6] R. Bouroulet, R. R. Devillers, H. Klaudel, E. Pelz, and F. Pommereau, “Mod-

eling and analysis of security protocols using role based specifications and

petri nets,” in Petri Nets, ser. Lecture Notes in Computer Science, K. M. van

Hee and R. Valk, Eds., vol. 5062. Springer, 2008, pp. 72–91.

[7] K. Schmidt, “Distributed verification with lola,” Fundam. Inform., vol. 54, no.

2-3, pp. 253–262, 2003.

[8] J. B. Fraleigh, A first course in abstract algebra, 5th ed., L. Rosatone, Ed.

Addison-Wesley Pub. Co, 1994.

[9] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation,

vol. 48, no. 177, pp. 203–209, Jan. 1987.

[10] V. S. Miller, “Use of elliptic curves in cryptography,” in Lecture notes in

computer sciences; 218 on Advances in cryptology—CRYPTO 85. New

64

York, NY, USA: Springer-Verlag New York, Inc., 1986, pp. 417–426.

[Online]. Available: http://dl.acm.org/citation.cfm?id=18262.25413

[11] J. Hoffstein, J. Pipher, and J. Silverman, An Introduction to Mathematical

Cryptography, ser. Undergraduate Texts in Mathematics. New York, NJ,

USA: Springer, 2008. [Online]. Available: http://books.google.com/books?

id=62PYj63QalkC

[12] V. S. Miller, “The weil pairing, and its efficient calculation,” J.

Cryptol., vol. 17, no. 4, pp. 235–261, Sep. 2004. [Online]. Available:

http://dx.doi.org/10.1007/s00145-004-0315-8

[13] S. Edixhoven, “Le couplage weil: de la geometrie a l arithmetique,” 2002.

[14] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–

613, 1979.

[15] S. M. Benny Chor, Shaft Goldwasser and B. Awerbuch, “Verifiable secret shar-

ing and achieving simultaneity in the presence of faults,” in proceedings of 6th

IEEE Symposium on Foundations of Computer Science, 1985, pp. 383–395.

[16] P. Feldman, “A practical scheme for non-interactive verifiable secret sharing,”

in Proceedings of the 28th Annual Symposium on Foundations of Computer

Science, ser. SFCS ’87. Washington, DC, USA: IEEE Computer Society,

1987, pp. 427–438. [Online]. Available: http://dx.doi.org/10.1109/SFCS.

1987.4

[17] A. Kate and I. Goldberg, “Asynchronous distributed private-key generators for

identity-based cryptography,” IACR Cryptology ePrint Archive, vol. 2009, p.

355, 2009.

[18] R. L. Igor Nai Fovino, Marcelo Masera, “Ict security assessment of a power

plant, a case study,” in Second Annual IFIP Working Group 11.10 Inter-

national Conference on Critical Infrastructure Protection, Arlington, USA,

2008.

[19] M. IDA. Modbus application protocol specification. [Online]. Available:

http://www.modbus.org/specs.php

[20] M. P. P. Huitsing, R. Chandia and S. Shenoi, “Attack taxonomies for the mod-

bus serial and tcp protocols,” in Second Annual IFIP Working Group 11.10

International Conference on Critical Infrastructure Protection, 2008.

http://dl.acm.org/citation.cfm?id=18262.25413
http://books.google.com/books?id=62PYj63QalkC
http://books.google.com/books?id=62PYj63QalkC
http://dx.doi.org/10.1007/s00145-004-0315-8
http://dx.doi.org/10.1109/SFCS.1987.4
http://dx.doi.org/10.1109/SFCS.1987.4
http://www.modbus.org/specs.php

65

[21] R. Leszczyna, I. N. Fovino, and M. Masera, “Maisim: mobile agent malware

simulator,” in SimuTools, S. Molnár, J. R. Heath, O. Dalle, and G. A. Wainer,

Eds. ICST, 2008, p. 35.

[22] [Online]. Available: http://crypto.stanford.edu/pbc/

[23] T. modbus consortium. (2012, Jan) The modbus organization web page.

[Online]. Available: http://www.modbus.org/

[24] C. A. Petri, “Kommunikation mit Automaten,” Ph.D. dissertation, Institut für

instrumentelle Mathematik, Bonn, 1962.

[25] M. Nielsen and D. Simpson, Eds., Application and Theory of Petri Nets 2000,

21st International Conference, ICATPN 2000, Aarhus, Denmark, June 26-

30, 2000, Proceeding, ser. Lecture Notes in Computer Science, vol. 1825.

Springer, 2000.

[26] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings

of the IEEE, vol. 77, no. 4, pp. 541–580, Apr. 1989. [Online]. Available:

http://dx.doi.org/10.1109/5.24143

[27] [Online]. Available: http://www.informatik.uni-rostock.de/tpp/lola/

[28] [Online]. Available: http://pipe2.sourceforge.net/

[29] G. S. Ian F. Blake and N. P. Smart, Advances in Elliptic Curve Cryptography

(London Mathematical Society Lecture Note Series), I. F. Blake, Ed.

New York, NY, USA: Cambridge University Press, 2005. [Online]. Avail-

able: http://books.google.com/books?hl=en&lr=&id=JQv2ySOsQkQC&oi=

fnd&pg=PR9&dq=Advances+in+Elliptic+Curves+Cryptography&ots=

AIHCUP BxK&sig=v1DQu-8PBJmmLywGSnMRq-LyZYE

http://crypto.stanford.edu/pbc/
http://www.modbus.org/
http://dx.doi.org/10.1109/5.24143
http://www.informatik.uni-rostock.de/tpp/lola/
http://pipe2.sourceforge.net/
http://books.google.com/books?hl=en&lr=&id=JQv2ySOsQkQC&oi=fnd&pg=PR9&dq=Advances+in+Elliptic+Curves+Cryptography&ots=AIHCUP_BxK&sig=v1DQu-8PBJmmLywGSnMRq-LyZYE
http://books.google.com/books?hl=en&lr=&id=JQv2ySOsQkQC&oi=fnd&pg=PR9&dq=Advances+in+Elliptic+Curves+Cryptography&ots=AIHCUP_BxK&sig=v1DQu-8PBJmmLywGSnMRq-LyZYE
http://books.google.com/books?hl=en&lr=&id=JQv2ySOsQkQC&oi=fnd&pg=PR9&dq=Advances+in+Elliptic+Curves+Cryptography&ots=AIHCUP_BxK&sig=v1DQu-8PBJmmLywGSnMRq-LyZYE

	Özet
	Abstract
	Acknowledgements
	Text of Oath
	List of Figures
	1 Introduction
	1.1 Motivation and Related Work
	1.2 Roadmap

	2 Identity Based Cryptography and Distributed Private Key Generation
	2.1 Mathematical Background
	2.1.1 Preliminaries
	2.1.2 Elliptic Curve over a Finite Field
	2.1.3 Cryptographic Pairings
	2.1.4 Verifiable Secret Sharing

	2.2 Identity Based Cryptography
	2.2.1 Encryption
	2.2.2 Signature
	2.2.3 Key Escrow Problem
	2.2.4 Distributed Private Key Generation
	2.2.5 Setup
	2.2.6 Distribution
	2.2.7 Extraction

	3 An Implementation and Practical Analysis of Distributed Private Key Generation for Identity Based Cryptography
	3.1 Distributed Private Key Generation Implementation
	3.2 Case Study: Implementing DPKG on Industrial Control Systems
	3.2.1 Process Control System Vulnerabilities
	3.2.1.1 PCS Architecture
	3.2.1.2 Modbus Vulnerabilities
	3.2.1.3 Distributed Identity Based Secure Modbus

	3.2.2 Prototype Overview
	3.2.3 Experimental Tests
	3.2.3.1 Distribution
	3.2.3.2 Extraction
	3.2.3.3 Signature & Verification

	3.2.4 Conclusion for the Case Study

	4 Using Petri Nets for Modeling and Analyzing Cryptographic Protocols
	4.1 Introduction to Petri Nets
	4.2 Modeling with Elementary Petri Nets
	4.3 Properties of Petri Nets
	4.3.1 Behavioral Properties
	4.3.2 Structural Properties

	4.4 Analysis of Elementary Petri Nets
	4.5 Modeling and Analyzing Cryptographic Protocols with Elementary Petri Nets

	5 Formal Model of Distributed Private Key Generation for Identity Based Cryptography
	5.1 Modeling Distributed Private Key Generation for Identity Based Cryptography
	5.1.1 Modeling Overall Distributed Private Key Generation and Analysis of the Model
	5.1.2 Model of Setup and Distribution Step
	5.1.3 Model of Key Extraction Step
	5.1.4 Analysis on the DPKG model
	5.1.5 Intruder Model
	5.1.6 Analysis on the Intruder Model

	6 Results and Conclusion
	Bibliography

