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ÖZET

KATEGORİ KURAMI UYGULAMALARI ALTINDA
HASKELL DİLİNE BİR PARALELİZASYON

YAKLAŞIMI

EKİCİ, Burak

Yüksek Lisans Tezi, Bilgisayar Mühendisliği Bölümü

Tez Danışmanı: Dr. Ahmet Hasan KOLTUKSUZ

Haziran 2012, 189 sayfa

Kategori teorisi, cebirsel yapıların evrensel bileşenlerini görselleştirmemizi ve bazı

farklı yapıların aralarındaki ilişkileri kurmamızı sağlayan güçlü bir kuramsal çerçeve

ve soyut cebirsel dildir. Teori son yıllarda, bilgisayar bilimlerinde alt uygulama

alanları bulmuş, özellikle fonksiyonel programlama dilleri alanında birçok yeniliğin

ortaya çıkmasına katkıda bulunmuştur. Bu bağlamda; çalışma, kategori teorisinin

fonktörleri, doğal transformasyonları ve monadları ile birlikte gelen soyutlama yetisi

ile; çözümlerine katkıda bulunduğu ya da alternatif bakış açıları getirdiği prob-

lemlerin ve bu problemlerin ait oldukları alt alanların, “fonksiyonel bir program-

lama dilinin saflığından, yarı-belirgin paralelizasyon uygulamalarına” kadar, ince-

lenmesini hedeflemektedir.

Anahtar Kelimeler: Kategori Teori, Fonktörler, Doğal Dönüşümler, Monadlar,

Fonksiyonel Programlama, Kategori Teorisinin Bilgisayar Bilimleri Uygulamaları:

Haskell dilinin Maybe, List, IO, State ve Eval Monadları, Yarı-Belirgin Paraleliza-

syon, Paralel Programlama Stratejileri: Orjinal ve İkinci Nesil Paralel Haskell Strate-

jileri.



ABSTRACT

A PARALLELIZATION APPROACH TO HASKELL
LANGUAGE THROUGH CATEGORY THEORETIC

IMPLEMENTATIONS

EKİCİ, Burak

M.Sc. in Computer Engineering

Supervisor: Dr. Ahmet Hasan KOLTUKSUZ

June 2012, 189 pages

Category theory is a powerful abstract algebraic language and a conceptual frame-

work that lets us visualize universal components of structures of given types and

how those structures of different types are interrelated. In recent years, category

theory has found new application areas in theoretical computer science and has

contributed to developments of new logical systems, especially in the area of func-

tional programming languages. In that sense, this study aims to indicate the areas to

which category theory brings alternative solution methods by increasing the number

of abstraction layers together with the usage of its functors, natural transformations

and monads varying from “purity of a functional programming language” to “semi-

explicit parallelization in functional programming”.

Keywords: Category Theory, Functors, Natural Transformations, Monads, Func-

tional Programming, Usage of Category Theory in Computer Science: Maybe,

List, IO, State and Eval Monads of Haskell, Semi-explicit Parallelization, Paral-

lel Programming Strategies: Original and Second Generation Strategies of parallel

Haskell.
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Mr. Ertuğrul SÖYLEMEZ for letting me exploit their source codes in the declara-

tions and illustrations of IO and Maybe monads.

I owe my kind regards and thanks to Dr. Serap ŞAHİN for her always purely opti-
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xi

Contents
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Chapter 1

Introduction

Category theory is a powerful abstract algebraic language and a conceptual frame-

work that lets us to see;

1. the universal components of structures,

2. how those structures of different types are interrelated.

It is also has been given as an alternative to the set theory as a foundation in abstract

mathematics eliminating paradoxes that are involved in the set theory. [1]

In recent years, category theory found new application areas such as theoretical

computer science, and has contributed to developments of new logical systems and

semantic programming, exemplary Categorical Logic by Pitts [2], Algebra, Categories

and Databases by Plotkin [3] and Some Aspects of Categories in Computer Science

by Scott [4] in 2000. Even in theoretic physics, higher dimensional category the-

ory is exploited by [5] starting from 2001, in order to study “quantum groups” and

“quantum field theory”.[6] [1]

From the perspective of computational sciences, category theoretic objects such as

functors, natural transformations and especially monads are being used in func-

tional programming languages in order to provide abstraction layers that have al-

ready been used in object oriented programming paradigm for the encapsulation

of the objects. In particular, these objects corresponds to lambda expressions in

functional programming.

A purely functional programming language Haskell [7] [8], serves the opportunity

to its users to be able to implement above mentioned category theoretical objects
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in its own environment by providing functor and monad classes. Therefore, spe-

cial type constructors of the language could be defined as functor or monad class

instances together with the help of some natural transformations in order to supply

new solution strategies to the problems we are having in computing science, for

instance:

• The Maybe monad [9] of Haskell is standing for the representations of the

computations that are analog to the productions over an assembly line. If any

worker on the line does not return a product, then the whole of the computa-

tion will not be able to return one.

• The List monad [9] provides the opportunity to model the non-deterministic

programs that might end up with multiple results for any input query.

• The State monad [10] brings the feature called referential transparency to the

language.

• The IO monad [9] provides purity that indicates that any observable interac-

tion with calling functions or the outside world.

• The Identity monad is a base for the creations of monad transformers, Eval

monad and also represents identity structure in the category that Haskell pro-

gramming language involves.

• The Eval monad, by Marlow et al [11] [12], defines the evaluation order of

the computations which could be in serial or in parallel via the encapsulation

of some annotations that the language provides called par, pseq and seq, in

order to create second generation strategies by [11] which solves some mem-

ory management problems arise in original strategies by [13] and to separate

the parallel pragmas from the source code. By this way, some useful disci-

pline and structure is brought to the language which simplifies writing parallel

programs from coders point of view.

Therefore, monads of category theory implemented in Haskell effectively and brought

new line of vision to the current functional programming manner. Especially, pro-

viding purity in order to obey the rule of function based referential transparency and

controlling the evaluation order of the computations.

After the representations of all above mentioned monads implemented by some

specific type constructors and also illustrations of each, in the last chapter of the
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project, parallelism provided by eval monad [11] (Marlow et al) is investigated and

exemplified via parallelization of some recursive algorithms such as quicksort, cal-

culating Fibonacci numbers, Karatsuba multiplication and n-queens problem. As

an example to the data parallelization, encryption and decryption schemes of RSA

crypto-system are given.

Performance evaluations of the mentioned algorithms are also sketched and com-

pared with the ones that are not parallelized in the sense of monadic manner. (Jr. et

al) [14]

1.1 Road Map

• Chapter 1 gives mathematical background on the notions: graphs, categories,

functors, natural transformations and monads.

• Chapter 2 defines programming languages associated with the definitions of

algorithm stated by Alan Turing no his well known machine and by Alonzo

Church Lambda Calculus. By this way, the theoretical differences between

functional programming and the other programming paradigms are shown.

In the last part of the chapter, Haskell programming language with its type

system is explained.

• Chapter 3 relates Haskell programming language with category theory:

– Hask structure of Haskell is proven to be a category.

– Functor and Monad type classes of Haskell represent category theoretic

functor and monads.

– Some type constructors of Haskell are proven to be functors and/or mon-

ads with some natural transformations.

– Relevant Examples are provided.

• Chapter 4 completely focuses on the parallelization issue in Haskell program-

ming environment via both original and second generation strategies which

is based on Haskell’s Eval monad.

• Chapter 5 figures out the differences between original and second generation

strategies by the realization of Karatsuba multiplication and encryption, decryption

schemes of RSA cryptosystem.
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• Chapter 6 indicates the performance evaluations of the mentioned algorithms,

conclusion and future work.

In Figure 1.1 the flowchart of the thesis is given.

Start
Reading

Having interest
only in parallel

Haskell?

Having
knowledge of

Category
Theory?

Chapter 1

Having
knowledge of

Functional
Programming?

Chapter 2 Chapter 3

Chapter 4 Chapter 5 Chapter 6

0

1

0

1

0

1

FIGURE 1.1: Road Map for the reader
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Chapter 2

Mathematical Background

2.1 Preliminaries: Graphs

A graph is the abstract representation of a set of objects, some of which are con-

nected by links called arrows. The specific type of graphs, we discuss in this section

is directed multi-graphs with loops, the concept of which is very important in the

commutative diagram definitions to express equations from the point of view of cat-

egorists. Above all, it can be roughly said that a category is a graph whose paths

can be composed. Formally speaking; [15]

Definition 2.1.1. A graph is an ordered pair G = (V,E) forming a set V of vertices

or nodes together with a set E of edges or lines, which are 2-element subsets of V.

Definition 2.1.2. An undirected graph is a graph G = (V,E) for which the relations

between pairs of vertices are symmetric with the following properties:

1. The first component, V , is a finite, nonempty set.

2. The second component, E, is a finite set of sets. Each element of E is a set

that is comprised of exactly two (distinct) vertices.

Example 2.1.3. Consider the undirected graph G = (V,E) comprised of four ver-

tices and four edges: (see Figure 2.1)

V = {a,b,c,d}

E = {{a,b},{a,c},{b,c},{c,d}}

Definition 2.1.4. A directed graph or digraph is an ordered pair D = (V,A) with the

following properties:
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FIGURE 2.1: Undirected Graph

• The first component, V , is a finite, nonempty set.

• The second component, A, is a finite set of ordered pair of vertices called

directed edges. Each element of A is a set that is comprised of exactly two

(distinct) vertices

The notation f ∶a→ b means that f is a vertex, a and b are the domain and codomain

nodes, respectively.

In the above notation, if b = a, that means that a loop is created on the node a by

vertex f .

A directed graph having at least one loop on it, is called directed graphs with loops.

Example 2.1.5. Consider the directed graph G = (V,E) comprised of four vertices

and four edges:

V = {a,b,c,d}, E = {{a,b},{a,d},{b,c},{b,d},{c,d}}.
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FIGURE 2.2: Directed Graph

Example 2.1.6. Consider the directed graph with loops G = (V,E) comprised of

four vertices and four edges:

V = {a,b,c,d}, E = {{a,a},{a,b},{a,d},{b,b},{b,c},{b,d},{c,c},{c,d}}.

Definition 2.1.7. Multi-graphs with loops are directed graphs on which parallel

edges and loops are allowed.
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FIGURE 2.3: Directed Graph with Loops

Example 2.1.8. Consider the directed multi-graph with loops graph G = (V,E)
composed of four vertices and four edges:

V = {a,b,c,d}, E = {{a,a},{a,b},{a,d},{b,b},{b,c},{b,d},{c,c},{c,d}}.

●a

●b

●c

●d

<<yyyyyyy

++VVVVVVVVVVVVVVVVVVVVVVVV

++VVVVVVVVVV

77

��

&&

""EEEEEEEEEEEEEEEEEE

gg

��,
,,

,,
,,

,,

FIGURE 2.4: Directed Multi-Graph with Loops

Categories are specific types of graphs, for that reason, basic definitions and exam-

ples of graph theory are given in this section as an introduction. From next section

on, notions of Category Theory starts from categories and ends with monads are

defined in details.

2.2 Category Theory

Category theory is a general mathematical theory of structures and systems which

is still evolving in the sense that its functions are correspondingly developing and

expanding. From another point of view, it is a powerful language and a conceptual

framework that lets us to study the universal components of structures of given types

and the structures of different types that are interrelated.
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The Category Theory is an alternative theory to the Set Theory in abstract mathe-

matics. This feature brings much more consistency to category theory in compar-

ison to Set Theory. For instance, Russell’s paradox; which is the most famous of

the logical or set-theoretical paradoxes. The paradox arises within naive set theory

by considering the set of all sets that are not members of themselves. Such a set

appears to be a member of itself if and only if it is not a member of itself, hence the

paradox.

Note 2.2.1. Paradoxes come from the “primitive” or “undefined” terms of the Set

Theory; especially, ∈ (membership relation) causes troubles.

In order to avoid this paradox; Category Theory has been proposed as a theory of

concrete universals by both satisfying the laws of being a universal, doubtlessly, and

involving itself as a member with the help of unique identity morphisms. Therefore,

the membership paradox indicated by Bertrand Russell is eliminated.

The evolution of category theory was started in 1945 by Samuel Eilenberg and Saun-

ders Mac Lane who published an article that introduces the basic concepts of what

later became the mathematical theory of categories and functors, so called Category

Theory. [6] In fact, the French mathematician Dieudonné is the first to introduce

these notions.

After their paper in 1945, the clarity of newly developed concepts as a convenient

mathematical language was questionable. That condition lasted for about next fif-

teen years. In 1952, by Eilenberg & Steenrod, category theory was implemented

on the foundations of algebraic topology and in 1956, by Cartan & Eilenberg, ho-

mological algebra was considered in the manner of category theory. These two ap-

proaches gave birth to the opportunity for the new generation mathematicians learn

algebraic topology and homological algebra directly in a categorical sense. Indeed,

without the method of diagram chasing, many results in these two books seem in-

conceivable, or at the very least would have required a considerably more intricate

presentation.

In 1957, the situation was radically changed by Grothendieck’s landmark paper

entitled “Sur quelques points d’algébre homologique”, in which the categories were

used to define more general theories such as algebraic geometry. In 1958, Kan

showed that some crucial concepts of limits and co-limits could be demonstrated

via the usages of adjoint functors.
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Herein after, Category Theory became a convenient language together with the help

of two crucial developments:

1. Axiomatic method and language of categories are defined in an abstract fash-

ion types of categories which showed how to perform various constructions in

these categories, and proved various results about them. In the core, Grothendieck

showed how to develop part of homological algebra in an abstract setting of

this sort.

2. Category theorists gradually came to see the pervasiveness of the concept

of adjoint functors by published works of Freyd and Lawvere. By the early

1970’s, the concept of adjoint functors was seen as central to category theory.

Starting from 1980s, category theory found new application areas such as theoretical

computer science, and has contributed to developments of new logical systems and

semantic programming (by Pitts, Plotkin and Scott in 2000). Monads of Category

Theory are implemented in Haskell functional programming environment providing

some important features given in Chapter 4 and 5 that are bringing newline of vision

to the functional programming paradigm. Especially, providing purity in order to

obey the rule of function based referential transparency. Even in theoretic physics,

higher dimensional category theory is exploited by Baez & Dolan starting from

2001, in order to study “quantum groups” and “quantum field theory”.[6] [1]

2.2.1 Categories

A category is a graph with a rule to compose arrows from head to tail in order to

give another arrow. This rule is subject to certain conditions which will be precisely

given in this session.

Definition 2.2.2. A category C consists of following data:

• Objects: A,B,C, ...

• Arrows (Morphisms): f ,g,h, ...

• For each f ∶A→ B, there are given two objects :

– dom ( f ) = A and

– cod ( f ) = B
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• Given arrows f ∶A→ B and g∶B→C with dom ( f ) = cod (g) there must be an

arrow h called the composite of f and g.

– h = g○ f

• For each object A, there exist a morphism 1A∶A→A, called the identity or unit

on A.

These data are required to satisfy the following laws:

• ∀ f ,g,h ∈C∶ f ○(g○h) = ( f ○g)○h (Associativity of Composition)

• ∀ f ∈C∶ f ○1A = 1B ○ f = f which means A
1AÐ→ A

f
Ð→ B

1BÐ→ B. (Identity)

Note 2.2.3. In category theory, unlike in set theory; objects do not have to be sets

and morphisms functions. In this sense, category theory is a general abstraction of

mathematical concepts.

Definition 2.2.4. A small category is a category whose objects and morphisms con-

stitute sets, otherwise it is large .

Definition 2.2.5. If A and B are the objects of category C, then set of arrows from

A to B is denoted by HomC(A,B) or by only Hom(A,B) and is called homset.

Hence, for each triple Hom(B,C)×Hom(A,B) →Hom(A,C)

Proposition 2.2.6. For any path ( f1, f2, ..., fn) in a category C and any integer k

with 1 < k < n:
( f1 ○ ...○ fk)○( fk+1 ○ ...○ fn) = ( f1 ○ ...○ fn) (2.1)

Fact 2.2.7. When a binary operation is associative, it turns out that parentheses can

be removed.

Proof 2.2.8. As mentioned in the definition of categories, composition operation of

morphisms in a category is associative.

Thus;

( f1 ○ ...○ fk)○( fk+1 ○ ...○ fn) = f1 ○ ...○ fk ○ fk+1 ○ ...○ fn

for any k with 1 < k < n

f1 ○ ...○ fk ○ fk+1 ○ ...○ fn = f1 ○ ...○ fn
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Examples of Categories

1. Category of Sets

Definition 2.2.9. The category of sets is the category whose objects are sets

and morphisms are functions with the following properties:

Let Set denote the category of sets, then for each object (set) A in category

Set, there exist an identity function:

• 1A∶A→ A

For every pair of morphisms f ∶A→B and g∶B→C in category Set, there exist

a composite function h, where:

• h = g○ f ∶A→C.

2. Category of Finite Sets

Definition 2.2.10. The category of finite sets, denoted by Fin, is the category

whose objects are finite sets and morphisms are functions between finite sets.

Function composition and identity function are identical to the ones in cate-

gory of sets.

3. Category of Partial Ordered Sets

Definition 2.2.11. A Poset (partially ordered set) is a set (A,≤A) with a binary

relation a ≤A b, which is reflexive, antisymmetric and transitive.

Definition 2.2.12. Let (A,≤A) and (B,≤B) be two given posets. Then a func-

tion

m∶(A,≤A) → (B,≤B) is monotone (isotone, increasing, etc...) if a ≤A b implies

f (a) ≤B f (b).

Definition 2.2.13. The category of partially ordered sets is the category whose

objects are partially ordered sets and morphisms are monotone functions with

the following properties:

(a) Let PoSet denote the category of posets. Then for each object (poset)

(A,≤A) in category PoSet, there exist an identity function:

• 1(A,≤A)
∶ (A,≤A) → (A,≤A)

a ≤A b↦ a ≤A b
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(b) For every pair of monotone function f ∶(A,≤A) → (B,≤B) and

g∶(B,≤B)→(C,≤C) in category PoSet, there exist a composite monotone

function h, where:

• h = g○ f ∶(A,≤A) → (C,≤C).

• h = g○ f ∶a ≤A b↦ g( f (a)) ≤C g( f (b)).

4. Monoid as a Category

Definition 2.2.14. A monoid (or semi-group with an identity element) is a set

M with a binary operation ●∶M×M→M that satisfies the following axioms:

(a) ∀a,b ∈M,(a●b) ∈M (Closure)

(b) ∀a,b,c ∈M,(a●b)●c = a●(b●c) (Associativity)

(c) there exists an element e ∈M such that ∀a ∈M,e●a = a●e = a

Definition 2.2.15. Equivalently, a monoid is a category with one object. The

morphisms of the category are the elements of some monoid, the identity

morphism is e (identity element of monoid) and composition operation is ●.

Also given any set X , the set of functions from X to X , Hom(X ,X), is a

monoid under the operation of composition.

More generally, for any object A in a category C, the set of arrows from A to

A forms a monoid, written HomC(A,A).

5. Category of Groups

Definition 2.2.16. A group < G,+ > is a set G closed under the binary opera-

tion “+” such that

(a) + is associative, which means that (a+b)+c = a+(b+c)

(b) ∃e such that e+x = x = x+e for all x ∈G. (Identity Element)

(c) for each a ∈G, ∃a′ ∈G with a+a′ = e. (Inverse Element)

Definition 2.2.17. A map φ of a group < G,+ > into < G,+′ > is a homomor-

phism if φ(a+b) = φ(a)+′ φ(b) for all a,b ∈G.

Definition 2.2.18. The category of groups is the category whose objects are

groups and morphisms are group homomorphisms with the following proper-

ties:
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Let Grp denote the category of groups. Then for each object (group) <G,+ >
in category Grp, there exist an identity homomorphism:

• 1G∶ G →G

a↦ a

For every pair of group homomorphisms f ∶G1 →G2 and g∶G2 →G3 in cate-

gory Grp, there exist a composite group homomorphism h, where:

• h = g○ f ∶G1→G3.

6. Category of Relations

Definition 2.2.19. The category of relations is the category whose objects are

sets and morphisms are relations with the following properties:

Let Rel denote the category of relations. Then for each object (sets) A in

category Rel, there exist an identity morphism:

• 1A = {(a,a) ∣ a ∈ A} ⊆ A×B.

• A
1AÐ→ A

RÐ→ B, A
RÐ→ B

1BÐ→ B.

For every pair of relations R ⊆A×B and S ⊆B×C in category Rel, a composite

morphism T = S○R could be defined by:

• (a,c) ∈ (S○R) ⇐⇒ (∃b ∈ B)[(a,b) ∈ R∧(b,c) ∈ S]

7. Category of Matrices

Definition 2.2.20. The category of matrices is the category whose objects are

finite sets and morphisms are rectangular matrices of natural numbers.

Identity morphism is identity matrix and the composition operation is well-

known matrix multiplication.

Constructions on Categories

This section requires some level of abstract algebra. Additionally, the reader should

be aware that a structure may have “substructures” which are subsets closed under

predefined operations and “free” structures of given types.

Above mentioned structures could be performed in categories, as well. These struc-

tures are all outlined in this section.
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Definition 2.2.21. A subcategoryD of category C whose objects Obj(D) ∈ Obj(C)
and morphisms Morph(D) ∈ Morph(C) such that

• for each A ∈ Obj(D), the identity morphism of A, idA ∈ Morph(D).

• for each f ∈ Morph(D), dom( f ) and cod( f ) ∈ Obj(D).

• for every pair f , g ∈ Morph(D) such that f ○g exists, then f ○g ∈ Morph(D).

Example 2.2.22. The category of finite sets, Fin, is a subcategory of category Set.

Let A and B be finite sets, then HomFin(A,B) = HomSet(A,B), which means every

arrow of Set between objects of Fin is also an arrow of Fin.

Example 2.2.23. Set is a subcategory of a category whose objects are sets and

morphisms are partial functions.

Definition 2.2.24. If category D is subcategory of category C and for every pair of

objects A,B of D, HomD(A,B) =HomC(A,B), then D is called full subcategory of

C.

From this definition, it can be inferred that Fin is full subcategory of Set.

HomFin(A,B) =HomSet(A,B) (2.2)

Example 2.2.25. A category ζ, whose objects are sets and morphisms are surjective

(onto) mappings is a subcategory of Set.

Proof 2.2.26. Any identity 1A∶A→ A is surjective, where 1A∶A ∈ Morp(ζ).

Given two surjective mappings f ∶A → B and g∶B → C, compositions of them h =
g○ f ∶A→C is surjective, as well.

∀b ∈ B,∃a ∈ A∶ f (a) = b; because f is surjective.

∀c ∈C,∃b ∈ B∶g(b) = c; because g is surjective.

Therefore, g○ f ∈ Morph(ζ).

Definition 2.2.27. Let C and D are two categories, the product C ×D is also the

category whose objects are all ordered pairs (C,D) where C ∈ C and D ∈ D and

in which an arrow ( f ,g)∶(C,D) → (C′,D′) is a pair of arrows f ∶C → C′ ∈ C and

g∶D→D′ ∈ D. The identity morphism of (C,D) is (idC, idD), where:

• (idC, idD)∶(C,D) → (C,D).
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The composition of pair of morphisms ( f ,g)∶(C,D)→(C′,D′) and ( f ′,g′)∶(C′,D′)→
(C′′,D′′) is another pair of morphism (h, j) ∈ C ×D, where:

• (h, j) = ( f ,g)○( f ′,g′).

• ( f ,g)○( f ′,g′) = ( f ○ f ′,g○g′)∶(C,D) → (C′′,D′′).

Definition 2.2.28. Let C be a category. The dual or opposite of C is the category Cd

or Cop whose objects are the objects of C and whose arrows are the morphisms of C
in the reverse order.

• f ∶A→ B in C yields f ∶B→ A in Cop.

Any property satisfied by C is also satisfied by Cop.

Definition 2.2.29. For any given graph G, there exists a category C(G) whose ob-

jects are nodes of G and morphisms are paths in G.

Associative composition is defined like:

• ( f1 ○ ...○ fk)○( fk+1 ○ ...○ fn) = ( f1 ○ ...○ fn)

For each object A ∈ C(G), there exists an identity morphism 1A, where:

• 1A∶A→ A.

Properties of Objects and Morphisms in a Category

The specific properties, in the sense of the roles that objects and morphisms have

in a category, are called categorical properties. In this section; the definitions and

examples of some categorical properties such as isomorphisms, initial-terminal ob-

jects, mono and epimorphisms are given, in detail.

Isomorphism

Definition 2.2.30. Let C be a category. Let A,B be objects A,B ∈ C. A morphism

f ∶A→ B is an isomorphism if and only if there exists a unique morphism g∶B→ A

such that g○ f = 1A and f ○g = 1B. In this case, A is said to be isomorphic to B and

written A ≅ B.

Proof 2.2.31. Assume that there exists h1∶B→A, h2∶B→A such that f ○h1 = 1B and

h2 ○ f = 1B. It is enough to show that h1 and h2 are equal.

h1 = 1A ○h1 = (h2 ○ f )○h1 = h2 ○( f ○h1) = h2 ○1B = h2 (2.3)
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Initial, Terminal and Zero Objects

Definition 2.2.32. An object U of C is said to be an initial object if for every object

X in C, f ∶U → X ∈MorphC is a singleton.

Definition 2.2.33. An object U of C is said to be a terminal object if for every

object X in C, f ∶X →U ∈MorphC is a singleton.

Example 2.2.34. In Set the initial object is empty set, because for any X ∈ Obj(Set),

there exists a unique mapping, f , from empty set to X.

• f ∶∅ → X

Every set with a single element in category Set are terminal objects. Because, for

any X ∈ Obj(Set) there exist a unique mapping, f , from X to one element sets.

• f ∶X →{a}

Definition 2.2.35. If an object Z is both initial and terminal, it is called the zero object.

Note 2.2.36. A category which has initial and terminal objects do not need to have

a zero object.

Example 2.2.37. In Set, there is no zero objects, because initial and terminal ob-

jects are not intersecting.

Mono and Epimorphisms

Definition 2.2.38. A mapping f ∶Y → Z is left-cancellable if

• ∀X ,∀g1∶X →Y ∧g2∶X →Y

• f ○g1 = f ○g2Ô⇒ g1 = g2

X
g1Ð→
Ð→g2

Y
f
ÐÐ→ Z

Definition 2.2.39. Let C be a category, a morphism f ∶A→B in C is said to be monic
or monomoprhism if it is left-cancellable.

Note 2.2.40. In concrete categories, every injective morphism is monic, however

the converse, in general, is not true.

Definition 2.2.41. A mapping f ∶X →Y is right-cancellable if
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• ∀X ,∀g1,g2∶Y → Z,g1 ○ f = g2 ○ f Ô⇒ g1 = g2

X
f
ÐÐ→Y

g1Ð→
Ð→g2

Z

Definition 2.2.42. Let C be a category, a morphism f ∶A→ B in C is said to be epic
or epimorphism if it is right-cancellable.

Note 2.2.43. In concrete categories, every surjective morphism is epic, however the

converse, in general, is not true.

Assume that f ○g is defined;

1. if f ,g are monic, then f ○g is monic.

• ( f ○g)○h = ( f ○g)○k⇒ g○h = g○k⇒ h = k

2. if f ,g are epic, then f ○g is epic.

• h○( f ○g) = k○( f ○g)⇒ h○ f = k○ f ⇒ h = k

3. if f ○g is monic, then g is monic.

• g○h = g○k⇒ f ○g○h = f ○g○k⇒ h = k

4. if f ○g is epic, then f is epic.

• h○ f = k○ f ⇒ h○ f ○g = k○ f ○g⇒ h = k

2.2.2 Functors

In category theory, morphisms that are relation between objects are much more

important than objects, themselves. In this section, a wider notion of morphisms

called functor, a prescription between categories, is defined in detail.

Definition 2.2.44. Let C and D be two categories, a covariant functor F from C to

D is a prescription that assigns every object A of C to objects F(A) of D and every

morphism α∶A→ B of C to morphisms F(α)∶F(A) → F(B) of D such that;

1. F1A = 1F(A)

2. if β○α is defined in C, then there exist F(β)○F(α) in D where:

• F(β)○F(α) = F(β○α)
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Definition 2.2.45. A functor F is called endofunctor if it is defined from any cate-

gory C to itself.

• F ∶C→C.

Examples of Functors

1. Let C be a category, consider the assignment 1C ∶C → C described by setting

1C(X) =X for every object of C and 1C( f ) = f for every morphism of C. 1C is

the functor called identity functor on C.

2. Let C be a subcategory of category D, consider the assignment I∶C → D de-

scribed by I(X) = X for every object X of C and I( f ) for every morphism in

C then I is a functor from C to D, called inclusion functor.

3. Let (P,≤) and (Q,≤) be preorders seen as categories, then

• F ∶P→Q

– ∀a,b ∈ P,a ≤ b⇒ F(a) ≤ F(b)

4. Let (M,●,1) and (N,◇,1) are two monoids (a category with single object). A

morphism F ∶(M,●,1) → (N,◇,1) is a functor.

• F(1) = 1.

• ∀m,n ∈M, there exist F(m),F(n) ∈N wnhere F(m●n) = F(m)◇F(n).

5. A bifunctor F is a functor of the form: F ∶A×B → C.

Note 2.2.46. The notion of bifunctor could be generalized under the notion

of multifunctors.

Given mappings f ∶A→C and g∶B→D, we know from the universal property

of products that there exists a unique mapping f ×g∶A×B→C×D such that

the diagram

is commutative, naturally that is given by ( f × g)(a,b) = ( f (a),g(b)). We

define a functor F ∶Set×Set→ Set by assigning F(A,B) = A×B and F( f ,g) =
f ×g. This functor is called cartesian product bifunctor.
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A A×B B

C C×D D

πA

f

πB

f ×g g

πC

πD

FIGURE 2.5: Cartesian Bifunctor - Commutative Diagram

2.2.3 Natural Transformations

Natural transformations are one of the most important issues in category theory.

They map a functor into another with preserving the internal structure and also

could be counted as “morphisms between functors”. From another point of view,

natural transformations are used to formalize the categories of functors.

Definition 2.2.47. Define F ∶C →D,G∶C →D are functors, with categories C and D.

A transformation from F to G is a rule that assigns each object A ∈ C to a morphism

ηA∶F(A) →G(A) ∈ D.

Definition 2.2.48. If F ∶C → D,G∶C → D are functors, from category C to D, then

a natural transformation η∶F → G is a rule that assigns each object A ∈ C to a

morphism ηA∶F(A)→G(A) ∈ D in such a way that associated with every morphism

f ∶A→ B ∈ C, there exists a commutative diagram:

F(A)
F( f )

��

ηA // G(A)
G( f )

��
F(B) ηB // G(B)

FIGURE 2.6: Natural Transformation - Commutative Diagram

Example 2.2.49. Let U ∶Mon→Set be a functor between monoid and set categories.

Then we can define U ×U ∶Mon→ Set where:

• (U ×U)(M) =U(M)×U(M) for a monoid M.

• h∶M→N, (U ×U)(h)(m,n) = (h(m),h(n)) for a monoid homomorphism

Let µ∶U ×U →U and µM∶U(M) ×U(M) →U(M) defined by µM(m,m′) = mm′ ∈
M, then µ, monoid multiplication, is a natural transformation if following diagram

commutes.
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(U ×U)(M)
(U×U)(h)

��

µM // (U)(M)

h
��

(U ×U)(N) µN // U(N)

FIGURE 2.7: Natural Transformation - Commutative Diagram 2

Let (m,n) ∈ (U ×U)(M), then µM(m,n) = (m ⋅ n) (the product of m and n in M)

h(m ⋅n) = h(m) ⋅h(n) = h○µM(m,n).

(U ×U)(h)(m,n) = (h(m),h(n)) µN(h(m),h(n)) = h(m).h(n) = µN ○(U ×U)(h).

The above diagram is commutative, from the fact that h is a homomorphism.

µN ○(U ×U)(h) = h○µM(m,n) = h(m) ⋅h(n) (2.4)

2.2.4 Monads

Monads are a nice abstract way of talking about various algebras together with the

idea of adjunction whose part of structure is an endofunctor. On the other hand,

they play very critical and important role as a wrapping tool in the manner func-

tional programming that are defined in detail in the upcoming chapters, however

in this session, monads in the sense of category theory is defined and illustrated

particularly.

Definition 2.2.50. Let C be a category, T ∶C→ C an endofunctor, η∶IdC → T and

µ∶T 2→ T are two natural transformations, then the triple (T,µ,η) is called a monad
if and only if both of the below diagrams are commutative which means the equali-

ties:

µ○T µ = µ○µT and µ○T η = idT = µ○ηT

are being satisfied. As shown in the Figure 2.8.

Example 2.2.51. Let F ∶Set→ Set be an endofunctor, for any set A ∈ Set, if F(A) =
{a1,a2,a3, ...} represents set of all possible lists may be constructed by elements in A

including empty one, then together with two natural transformations ηA =A→F(A)
and µA∶F(F(A)) → F(A); triple (F,ηA,µA) constructs a monad.

Example 2.2.52. Let T ∶Set→ Set be an endofunctor, for any set A ∈ Set, and let T

maps them into their power sets, represented by T(A) and any function f ∶A→B into
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T 3

µT
��

T µ // T 2

µ
��

T 2
µ // T

T

ηT
��

T η //

id
BB

BB
BB

BB

BB
BB

BB
BB

T 2

µ
��

T 2
µ

// T

FIGURE 2.8: Commutative Diagrams - Monad

T( f )∶T(A)→ T(B), then together with two natural transformations ηA =A→ T(A)
and µA∶T(T(A)) → T(A); triple (T,ηA,µA) constructs a monad.

Note 2.2.53. Some definitions, theorems and proofs given in this chapter are taken

from Prof. Dr. Mehmet Terziler’s 2010-2011 fall term semester Category Theory

lecture notes in Yaşar University, Izmir, Turkey.
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Chapter 3

Haskell Programming Language

3.1 Programming Languages

In plain terms, an algorithm can be defined to be a collection of simple instruc-

tions for carrying out a task. Formal definitions are made by Alan Turing via his

machine so called “Turing Machine”, by Gödel–Herbrand–Kleene in the definition

recursive functions, by Alonzo Church in his Lambda Calculus and by Emile Post

in “Formulation 1”.

In Alan Turing’s model, there are three important notions to be defined, just in order

to be able to comprehend what algorithm means.

1. Turing Machine ∶

A Turing Machine is a hypothetical device that was described by Alan Turing

in 1936. It mainly consists of three parts:

(a) an infinite tape, which is divided into cells, on which symbols are being

manipulated,

(b) a head that is able to read and write symbols on the tape and also move

the tape left and right one cell at a time and

(c) a control unit which defines state transitions like either erasing or writ-

ing a symbol on the tape and moving the tape right or left direction.

Formally; a Turing Machine M is defined by the following multi tuple.
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In formal terms;

M = (Q,Σ,Γ,δ,q0,◻,F)

where

Q is the set of states,

Σ is the input alphabet,

Γ is the finite set of symbols. (called tape alphabet),

δ =Q×Γ→Q×Γ×{L,R} is the state transition function,

q0 ∈Q is the initial state,

◻ ∈ Γ is the blank symbol,

F ⊆Q is the set of final states.

In any time slot, we know two things about a Turing Machine:

• the content of each cell of the tape, especially the one under the tape.

• the current state of the machine.

2. Turing Transducers ∶

A Turing Machine which transduces an input sequence into an output se-

quence.

ω = f (w)⇒ q0 w ⊢∗ q f f (w) with q f ∈ F

where w represents input, ω represents output sequences and ⊢∗ is used to

define all of the transformations in between input and output sequences.

3. Turing Computable Functions ∶

A function f with domain D is said to be a Turing computable if there exist

some Turing Machine M such that

q0 w ⊢∗ q f f (w) with q f ∈ F and ∀w ∈D

Definition 3.1.1. Let a function f ∶ Σ∗→ Σ∗ is a computable function. If there exist

a Turing Machine transducer T such that on every input w. Then T halts with f (w)
on its tape. Such a Turing Machine is itself called an algorithm.
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In 1936, Alonzo Church also came up with a formalism to define the notion of al-

gorithm relying on his Lambda Calculus. However, the formalism done by Alan

Turing and Alonzo Church were shown to be equivalent, as indicated in the below

definition. That means that programming languages based on Turing’s computa-

tional model and Lambda Calculus computational model are intuitively equivalent.

In Lambda Calculus part of the thesis, the simulation of Lambda Calculus with

using Turing Machines is also given.

Intuitive notion of algorithms ≡ Turing Machine algorithms.

Definition 3.1.2. Over an alphabet Σ, Σ∗ is defined as the set of all possible com-

binations of words that could be generated by the elements of the given alphabet

Σ.

Definition 3.1.3. A formal language over an alphabet Σ is some fixed subset, L, of

Σ∗ whose members are called words.

Definition 3.1.4. A programming language is a formal language which expresses

algorithms in order to control the flow of instructions.

Programming languages include some elementary building blocks that are described

by syntactic and semantics rules, in order to define the process of the data or the data,

itself.

Syntax

Syntax of any programming language refers to the ways that symbols gather to

create well-formed sentences in the language. The syntax of textual programming

languages are totally the combinations of regular expressions, from lexical sense,

and Backus−Naur Form, which is one of the two main notation techniques for

context-free grammars, from the grammatical point of view.

Definition 3.1.5. A grammar G is defined by

G = (Σ,N,P,S)

where

Σ is the set of terminal symbols which cannot be broken down into smaller units.

N is the set of non-terminal symbols that can be broken down into other symbols.

P is the productions or rules to define non-terminal symbols.

S is the start symbol which is a distinguished non-terminal symbol.
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Example 3.1.6. Here is an example to the traditional grammar notations in pro-

gramming languages, known as Bakus−Naur Form:

<declaration> ∶∶= var <variable list> ∶ <type>;

where

“var”,“∶” and “;” are terminal symbols.

“∶∶=” is the description part for grammars which means “is defined to be”.

Definition 3.1.7. The part of the grammar which composed of its terminal and non-

terminal symbols is called vocabulary.

Within the field of formal computer science; Chomsky Hierarchy categorizes the

formal grammars into four types, from type 0 to type 3.

1. Type 0:

Type 0 grammars are the most general ones, so called unrestricted grammars
in which there is no requirements rather than at least one non-terminal symbol

should occur on the left side of a rule like “α ∶∶= β”.

For example, the grammar G with non-terminals N = {S,A,B,C}, terminals

Σ = {a,b,c}, start S = {S}and rules P =

S ⇒ SS ∣ ABC ∣ ε

AB ⇒ BA
BA ⇒ AB
AC ⇒ CA
CA ⇒ AC
BC ⇒ CB
CB ⇒ BC
A⇒ a
B⇒ b
C⇒ c

is a type 0 grammar.

Strings could be generated: ε,abc,aabbcc,cabcab, ...
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2. Type 1:

In type 1 grammar, the only restriction is that right side should not contain

fewer symbols than left one. They are also known as context sensitive grammars.

The form of the rule in type 1 grammars is “α < B > γ ∶∶= αβγ” where B ∈ N

and α,β,γ are the vocabularies together with the rule that β is not an empty

string.

For example, the grammar G of the language {anbncn}is context sensitive.

Non-terminals N = {S,A,B}, terminals Σ = {a,b,c}, start S = {S}and rules P =

S ⇒ abc ∣ aAbc ∣ ε

Ab ⇒ bA
Ac ⇒ Bbcc
bB ⇒ Bb
aB ⇒ aa ∣ aaAc

Strings could be generated: ε,abc,aabbcc,aaabbbccc, ...

3. Type 2:

In another saying context free grammars require that left side be a single

nonterminal producing rules of the form “ < A >∶∶= α” where A ∈ N and α ∈
{N ∪Σ}.

For example, the grammar G of the language {anbn}is context free.

Non-terminals N = {S,A}, terminals Σ = {a,b} ,start S = {S}and rules P =

S ⇒ ε ∣ A
A ⇒ aAb ∣ ab

Strings could be generated: ε,abc,aabb,aaabbb, ...

4. Type 3:

Type 3 grammars are the most restricted ones, also known as regular grammars
permitting only a terminal or a terminal followed by one nonterminal on the

right side. The form of the rule is “ < A >∶∶= a” or “ < A >∶∶= a < A > ” where

A ∈N and a ∈ Σ.

For example, the grammar G with non-terminals N = {S,A}, terminals Σ =
{a,b,c}, start S = {S}and rules P =
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S ⇒ aS ∣ bA
A ⇒ ε ∣ cA

is regular.

Strings could be generated: b,abc,abcc,aabc,aaabcc...

Definition 3.1.8. Let Σ be an alphabet. R is a regular expression, if it is in the from

of:

• a, for any a ∈ Σ, denoting any literal character

• ε, denoting empty string

• ∅, denoting empty set

additionally; if R1 and R2 are regular expressions, then

• (R1∪R2) (union)

• (R1 ○R2) (concatenation)

• R∗1 (Kleene Star)

are also regular expressions with the prior condition that number of application of

operations should be finite.

For example, regular expression a∗b∗ ∣ c corresponds to the set {ε,c,ab,abab,abababbbb, ...}

Semantics

The concept semantics was firstly used by M. Breal in his “Studies in the science

of meaning”, published in 1900. At that time, the concept was used to mean “the

study of the way that word changes its meaning”. However, nowadays in linguistics

or in computer science, the notion points out the meaning more generally that “the

study of the meaning“.

The notion of semantics of programming languages deals with the meaning of in-

structions in a language unlike the one called syntax which only checks if the ex-

pression is composed of valid or invalid symbols. The question that semantics look

for solutions is that what, actually, the programs do when they are executed. On the

other hand, it is hard to formalize the semantics of programming languages unlike

grammatical issues of it. [16]
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Formalization of semantics are used to increase comprehensibleness of general be-

haviors of programs and they also build a mathematical model which is useful for

program analysis and verification. [17]

There are three kinds of semantics: Operational, Denotational and Axiomatic Se-

mantics.

1. Operational Semantics ∶

Operational semantics describe the meaning of the programming language by

pointing out how it executes on an abstract machine.

The Structured Operational Semantics notation:

σ(e)⇒ v

is a statement about the computation of value v from expression e in state σ.

• if e is a constant, then v is corresponding value in semantic domain.

• If e is a variable, then v is the value of variable in state σ.

• v can also be a new state if e has side-effects.

An execution rule

premise
conclusion

means “if premise is true, then conclusion is true”. [18]

Example 3.1.9. An execution rule for addition:

(σ(e1)⇒ v1) ∧ (σ(e2)⇒ v2)
σ(e1+e2⇒ v1+v2

2. Denotational Semantics ∶

Denotational semantics define the meaning of programming languages by

mathematical concepts. They also provide deep and widely applicable tech-

niques for various languages.

Example 3.1.10. Composing denotations of a programming language. Con-

sider the expression “3 + 2”. In this case, compositionality means “3 + 2”

with respect to separate meanings of “3”, “2” and “+”.
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• meaning for types of the language, JT K is standing for the representation

of type T , i.e JnatK =N⊥ for natural numbers.

• meaning for typing contexts, Jx1 ∶ T1, ...,xn ∶ TnK = JT1K× ...× JTnK, i.e Jx ∶
nat,y ∶ natK =N⊥×N⊥.

• meanings of each program-fragment-in-typing-context, Let P be a pro-

gram fragment of type σ, in typing context ⌜, then the meaning of this

program-in-typing-context must be a continuous function J⌜ ⊢ P ∶ σK ∶
J⌜K→ JσK, i.e J⊢ 15 ∶ σK represents the constant function “15”.

• the meaning of “3 + 2” is represented by compositions of three func-

tions: J⊢ 3 ∶ σK ∶ 1→N⊥, J⊢ 2 ∶ σK ∶ 1→N⊥ and Jx ∶ nat,y ∶ nat ⊢ 1 ∶ x+y ∶
natK ∶N⊥×N⊥→N⊥.

3. Axiomatic Semantics ∶

Axiomatic semantics give the meaning of a programming construct by axioms

or proof rules in a program logic. They are more generally used in developing

and verifying programs.

There are also different styles of semantics that are dependent on each other.

• In order to check the correctness of proof rules of axiomatic semantics, un-

derlying denotational or operational semantics might be used.

• With respect to denotational semantics, to show the correctness of the imple-

mentation, it is needed to show the agreements of operational and denotational

semantics.

• In order to verify an operational semantics, use a denotational semantics to get

rid of implementation details which are not that important so that high-level

computational behavior becomes easier to comprehend.

Classifications of Programming Languages

There are many programming languages standing for different programming man-

ners available, nowadays. For that reason, the classifications of them could be done

via many ways. However, the most fundamental way is to do the categorization by

using programming paradigms of each.

All of the programming paradigms provide different code execution strategies to the

programmer. In this session, some of the most important ones such as imperative or
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the procedural, the declarative and the object oriented programming paradigms are

explained and illustrated via some number of comparisons among them. In the mean

time, it should be kept in mind that some of the programming languages embody

features of different paradigms, at the same time.

1. Imperative Programming Paradigm ∶

Imperative programming paradigm is defined by programming together with

a mutable state and some number of ordered commands. Each program has a

start state, list of commands to complete and a set of final states which should

not be an empty one. In that sense, this manner of programming could be

characterized by finite state machine computation model.

Imperative programming approach is called procedural if it is equipped with

procedures that might be functions, subroutines and methods. The idea is

to divide the whole program into relatively smaller pieces, so called proce-

dures, in order to make it easier for programmers to understand and maintain

program structure.

Programming languages like C, Pascal, Algol, Cobol are well-known exam-

ples of imperative programming paradigm.

2. Declarative Programming Paradigm ∶

In contrast to imperative manner, in declarative programming paradigm, pro-

grammers do not have to prescribe “how to do” in terms of sequences of ac-

tions to be taken. On the other side, “what to do” always have to be described

in both cases.

Declarative manner is divided into two sub-manners namely functional and

logical programming paradigms. In functional programming, which is ex-

pressed in much more detail in the next section, the computations are ex-

pressed as the evaluations of mathematical functions. Unlike in imperative

programming, values are never modified in functional manner. Instead of this,

values are transformed into another values and computations are performed

via applying functions to these values. For example; (∗2 5) = 10.

In logical programming paradigm, computations are expressed solely in terms

of mathematical logic. In comparison to the functional paradigm which em-

phasizes the idea of function applications, the logical manner focuses on the

predicate logic for which the relations are the basis. They are generally used

to solve problems when the problem can not obviously be solved by func-

tional manner.
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Prolog is the very well-known example to the logical programming languages.

Haskell and Scheme could be given as examples to functional programming

languages. [19]

3. Object Oriented Programming Paradigm ∶

The newest paradigm compared to the others is object oriented one. In this

programming paradigm, the designer specifies both the data structures and

the types of operations that can be applied to those data structures. These data

together with the applicable operations construct the notion of objects.

Fundamental characterization of object oriented paradigm was done by Alan

Kay, as follows:

• Everything in the language is modeled as objects.

• Communications of objects in the model is done by message passing

method.

• Similar types of objects are instances of the contexts called classes.

• The relationship between classes are giving birth to the notion called

inheritance.

Unlike imperative programming in which data are passive instead procedures

are active, object oriented manner combines data with procedures, by this

way, data take the active role.

Programming languages such as C#, C++ and Java are well-known examples

of object oriented programming paradigm.

Comparisons of Programming Languages

1. Imperative Programming vs Declarative Programming

In declarative programming, the programmer only specifies “what to do” but

the data organization and sequencing are done by the interpreter, in other

words, “how to do” part is not the job of programmer. On the other hand, in

imperative programming, both “what and how to do” should be specified by

the programmer.

Imperative programming languages were constructed on the basis of Turing

Machine computational model while functional ones are relying on Lambda

Calculus computational model. In imperative programming, the fundamental
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concepts are variables that are possible to modify numerously, representing

cells on the tape (memory), together with the operations of assigning values

to that variables and storing them into a specific hard drive, if exists. Be-

sides, the approach to accomplish a desired goal is iteration and that process

is called execution. While in functional programming, the concept variable

could be assigned only once that is also called binding or initializing. Ac-

complishing the goal is done via recursive model and the process is called

evaluation instead of execution.

2. Imperative Programming vs Object Oriented Programming

In imperative programming, the emphasis is on procedural abstraction while

in object oriented manner, data is the main focus of abstraction. Imperative-

ness brings the obligatory of top-down design manner due to the stepwise

refinement, however in object oriented one, both aspects of top-down and

bottom-up could be utilized.

Object oriented design manner provides data re-usability for that reason, it is

suitable to use this manner in large programming aspects, on the other side

of the comparison, imperative programming do not show the property of re-

usability so that they are suitable for short coding aspects.

3. Declarative Programming vs Object Oriented Programming

Rather than the differences that are already explained in the above sessions

the one might be given in this part is that especially in pure functional pro-

gramming languages; functions are easier to execute and parallelize due to

having lack of side effects, compared to object oriented design methodology.

3.2 Functional Programming

Functional programming is the style of programming in which neither procedures

nor objects are the fundamental building blocks. Instead, everything is done via

mathematical function applications.

In the above session, functional programming has been mentioned without examin-

ing thoroughly. However, in this section, functional manner of coding is evaluated

from the point of view of Lambda Calculus and then functional programming lan-

guages are being counted as categories that are defined and illustrated in detail in

the mathematical background 1.1 part of the thesis.
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Informally, the term computation refers to transfer information from an implicit

form to an explicit form by doing any kind of calculation. However, the notion

computation has solely no formal meaning, unless a formal computational model is

defined.

The concept of computing could be formalized in several different ways, that is

by means of several different computational models such as Turing Machine and

Lambda Calculus. Now then, it could be specified that the term programming car-

ries the meaning that expressing a specific computation on a computational model

by the help of programming languages. For example, as described in comparisons

of programming languages session, programming in any imperative language means

a sequence of instructions for a Turing Machine while in functional programming

languages, it specifies a collection of functions to be evaluated by the rules defined

in Lambda Calculus.

3.2.1 Definition, Syntax and Semantics of λ - Calculus

Lambda Calculus was invented by Alonzo Church in 1936 in order to formalize

computable mathematical functions. In other words, it is a functional language

based on mathematical function theory. As also mentioned in the previous sessions,

today’s implementation area of lambda calculus is to develop functional program-

ming languages. It is also equipped with the rules to make functional programming

languages pure.

The λ - Calculus Syntax

In λ calculus, we have only anonymous functions given by:

e ∶∶= x ∣ e1 e2 ∣ λx.e

which are called λ−expressions where

x represents variables.

e1 e2 standing for function applications.

λx.e for function abstractions.

The abstraction λx.e is an anonymous function with variable x and function body e.

Example 3.2.1. In anonymous function λx.x3, the variable is x and return value is

the cube of x.
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In application e1 e2; e1 represents the function that is applied to expression e2.

Example 3.2.2. In this anonymous function application (λx.x3) 5, the variable x

takes the value 5 and then anonymous function λx.x3 calculates cube of 5 and re-

turns 125 as the application result.

Note 3.2.3. Lambda expressions are extensible as far to the right as possible. How-

ever, consider that function application is left associative.

Example 3.2.4. (λx.x) y z is the same as ((λx.x) y) z.

Note 3.2.5. In lambda calculus, a variable is bound if it can be linked to a lambda

abstraction. Other variables that are not bound are called free.

Example 3.2.6. In lambda expression λx.xy;variable x is bound while y is free.

Definition 3.2.7. α−conversion renames bound variables. For instance, λx.x can

be lambda converted into λy.y.

Definition 3.2.8. λx.x and λy.y are called α−equivalent.

The λ - Calculus Semantics

β−Reduction

As defined earlier, function application (λx.e1) e2, applies the function (λx.e1) to

the expression e2. Consider that application operation could be also done by replac-

ing the free occurrences of variable x in expression e1 by expression e2 which is

called substitution and represented as e1{e2/x}.

Example 3.2.9. (λx.x+10)5 could be written as 15.

Therefore, it is obvious now to remark that the expressions (λx.e1) e2 and e1{e2/x}
are equivalent, which is known as β−equivalence. The operation of rewriting

(λx.e1) e2 as e1{e2/x} is called β−reduction.

So far, the only evaluation methodology known is β-reduction, hence the crucial

decision is ordering the evaluations of function applications. With regard to this,

we have different variations of semantics such as call by value and call by name

semantics.

Call by Value Semantics

In call by value semantics, the most important concern is:
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• Arguments of the functions are always evaluated to their values form before

the application of it.

Note 3.2.10. In applied lambda calculus, value is an expression that can not

be reduced any more. [20]

Here are the operational semantics for call-by-value execution of the lambda calcu-

lus: [21]

x
cbvÐÐ→ x

(λx.e) cbvÐÐ→ (λx.e)

e1
cbvÐÐ→ (λx.e) e2

cbvÐÐ→ e
′

2 e[e′2/x]
cbvÐÐ→ e

′

(e1 e2)
cbvÐÐ→ (e′)

For instance; here is the call by value reduction of lambda expression (e1 e2) to

(e
′):

e1 e2
β reduction on e2ÐÐÐÐÐÐÐÐÐÐ→ e1 e

′

2

e1 ≡ (λx.e)

e1 e
′

2Ð→ (λx.e) e
′

2

(λx.e) e
′

2
β equivalence
ÐÐÐÐÐÐÐÐ→ e[e′2/x]

e[e′2/x]
β reduction on e

′

2ÐÐÐÐÐÐÐÐÐÐ→ e
′

In the sense that; before the application of function e1 which is (λx.e), the argument,

e2 is evaluated into its value form (impossible to reduce any more) by using β-

reduction which is represented with e
′

2 and then substitution is done as the last step

of the evaluation to get the result of function application, e
′

.

Example 3.2.11. Here is a basic example to call by value semantics. Notice that

function is applied after the argument is reduced. [22]
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(λ f . f 10) ((λx. x x) λy.y+2) Ð→ (λ f . f 10) ((λy.y+2) (λy.y+2))

(λ f . f 10) ((λy.y+2) (λy.y+2)) Ð→ (λ f . f 10) (λy.y+2+2)

(λ f . f 10) (λy.y+2+2) Ð→ (λ f . f 10) (λy.y+4)

(λy.y+4)(10) Ð→ 4+10Ð→ 14

Call by Name Semantics

In call by name semantics, the concern to be noticed is:

• The function is applied to its argument before the argument’s evaluation. In

other words, the argument is not reduced to its value form before the applica-

tion of the function.

Below is the operational semantics for call-by-name execution of the lambda calcu-

lus: [21]

x
cbnÐÐ→ x

(λx.e) cbnÐÐ→ (λx.e)

e1
cbnÐÐ→ (λx.e) e[e2/x]

cbnÐÐ→ e
′

(e1 e2)
cbnÐÐ→ (e′)

For instance; here is the call by name reduction of lambda expression (e1 e2) to

(e′):

e1 ≡ (λx.e)

e1 e2Ð→ (λx.e) e2

(λx.e) e2
β equivalence
ÐÐÐÐÐÐÐÐ→ e[e2/x]

e[e2/x]
β reduction on e2ÐÐÐÐÐÐÐÐÐÐ→ e

′
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Example 3.2.12. Here is a basic example to call by name semantics. Notice that

function is applied before the argument is reduced. [22]

(λ f . f 10) ((λx. x x) λy.y+2) Ð→ ((λx. x x) λy.y+2)(10)

(λx. x x) λy.y+2)(10) Ð→ ((λy.y+2) (λy.y+2))(10)

((λy.y+2) (λy.y+2))(10) Ð→ (λy.y+2+2)(10)

(λy.y+2+2)(10) Ð→ (λy.y+4)(10)

(λy.y+4)(10) Ð→ 4+10Ð→ 14

3.2.2 Identity Function, Function Application, Function Com-
position and Recursive Functions

In this session of the thesis, possible operations that could be implemented by using

lambda calculus semantic rules are given and illustrated via lambda calculus syntax.

Identity Function

Identity function is the one that returns the given argument as also its result.

id = (λx. x)

For example;

(λx. x) M ≡M for every term M.

Selection Function

Selection functions take two input as arguments and returns first or second argu-

ment, depending on the user’s choice, as its result.

fst = (λx.λy. x)
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For example;

(λx.λy. x) M N ≡M for every term M and N.

snd = (λx.λy. y)

For example;

(λx.λy. y) M N ≡N for every term M and N.

Function Application

The lambda term application takes a function and an argument in order to apply that

function on that lambda term.

apply = (λf.λx. f x)

For example;

(λ f .λx. f x) M N ≡M(N) for every function M and argument N.

Note 3.2.13. The number of function application could be increased, arbitrarily.

Example 3.2.14. Here are the lambda expressions for the application of the same

function twice and three times.

twice = (λf.λx. f (f x))

three times = (λf.λx. f (f (f x)))

Function Composition

If there are functions f ∶ A → B and g ∶ B →C, then there exists another function

h = g○ f ∶ A→C called compositions of f and g.

In lambda calculus, the term composition takes two functions and an argument as

inputs in order to first take the composition of the functions and then apply the

composition to the argument. These operations are represented in lambda calculus

syntax as:
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composition = (λg.λf.λx. g (f x))

For example;

(λg.λ f .λx. g ( f x)) M N a ≡M(N(a)) for functions M,N and argument a.

Self Application

Self application is a lambda calculus term that is not logical from the point of view

of mathematical function theory. It, roughly, takes a function and applies the input

function to itself.

self application = (λx. x x)

For example;

id id = (λx. x) id = id

snd snd = (λx.λy. y) snd = (λy. y) = id

The Y Combinator

Y combinator is a kind of fixed point combinator in lambda calculus that was dis-

covered by Haskell B. Curry. It, more or less, looks like the self application term

apart from the involvement of an additional function represented by t. Here is the

lambda calculus expression of Y- combinator:

Y t = (λx. t (x x))(λx. t (x x))

(λx. t (x x))(λx. t (x x))
β reduction
ÐÐÐÐÐÐ→ t ((λx. t (x x))(λx. t (x x)))

t ((λx. t (x x))(λx. t (x x))) = t (Y t)

Therefore, Y t equals to the function t applied to itself. Besides, it could be repeat-

edly unfold.

(Y t) = t (Y t) = t (t (Y t)) = t (t (t Y t)) = ...
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This equality provides an crucial feature in order to define recursive functions in

lambda calculus.

For instance, lets have look at the lambda calculus definition and evaluation of the

recursive factorial function.

1. Definition ∶

t = λ f . λn. if n = 0 then 1 else n∗ f (n−1)

2. Evaluation of Factorial 3 ∶

We already know that (Y t) = t (Y t), therefore: [23]

(Y (λ f . λn. if n = 0 then 1 else n∗ f (n−1))) 3 = (t (Y t))3

(t (Y t))3 = ((λ f . λn. if n = 0 then 1 else n∗ f (n−1)) (Y t))3

((λ f . λn. if n = 0 then 1 else n∗ f (n−1)) (Y t))3 = ((λn. if n = 0 then 1 else

n∗(Y t)(n−1)))3

((λn. if n = 0 then 1 else n ∗ (Y t)(n− 1)))3 = (( if 3 = 0 then 1 else 3 ∗
(Y t)(3−1)))

t (Y t)(3) = 3∗(Y t)(2)

3∗(Y t)(2) = 3∗ t (Y t)(2)

t (Y t)(2) = 2∗(Y t)(1)

2∗(Y t)(1) = 2∗ t (Y t)(1)

t (Y t)(1) = 1∗(Y t)(0)

consequently;

(Y t)(0) = 1Ð→ t (Y t)(1) = 1Ð→ t (Y t)(2) = 2Ð→ t (Y t)(3) = 6.
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3.2.3 Simulation of Turing Machines using Lambda Calculus
and Vice Versa

As declared by Church in his thesis or conjuncture; the effectively Turing com-

putable functions are also definable in the pure lambda calculus. That thesis still

cannot be proved due to the lack of informal definition of the notion “effectively

computable function”. However, since all methods developed to be computed by

Turing Machines have been proved to be no more powerful than the lambda calcu-

lus. On the other side, undecidability aspect of Turing Machines, so called Halting

Problem that states that there is no algorithmic way to decide whether or not a Turing

Machine will stop running on a given input, also exists in Lambda Calculus. There

exist some lambda expressions in Lambda Calculus for which it is not possible to

find a reduction combination to end the evaluation such as:

λ f . (λx. ( f (x x)) λx. ( f (x x))).

Here are the simulations to demonstrate equivalence of both models in computabil-

ity:

1. Everything computable by λ Calculus can be computed using the Turing Ma-

chine: In order to simulate λ calculus with Turing Machine:

• The initial tape is filled up with initial lambda expressions.

• Reduction rules in finite number could be represented by finite state au-

tomaton involved in Turing Machine.

Note 3.2.15. Informally, a Turing Machine consists of a finite state au-

tomaton as control unit that includes states, alphabets and state transi-

tion functions; a tape on which operations are happening and a head

that moves over the tape to read or write symbols on it.

• In order to stop the execution, Turing Machine has to encounter with the

final lambda expression on the tape; otherwise, it continues forever that

means that β reductions never end.

2. Everything computable by Turing Machine can be computed with λ Calculus.

In order to simulate Turing Machine with λ calculus: [21]

• Processing in Turing Machines is done via ways to make decisions that

are if then else condition sentences.
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if then else = λx.λy.λz. ((x) y) z

true = λx.λy. x

false = λx.λy. y

• The arithmetical and control unit operations that could be implemented

over a Universal Turing Machine, are also possible to represent in Lambda

Calculus.

Representations of numbers and arithmetical operations:

0 ≡ λ f x. x, 1 ≡ λ f x. f (x), 2 ≡ λ f x. f ( f (x)) ...

successor ≡ λn f x. f (n f x)

add ≡ λxy. x successor (y)

multiply ≡ λxy. x add (y) 0

power ≡ λxy. y x

predecessor ≡ λn f x. n (λgh. h (g f )) (λu. x) (λu. u)

subtraction ≡ λxy. y predecessor (x)

Here are the representations of logical expressions:

logical and = λx.λy. x y x

logical or = λx.λy. x x y

Logical and: (’true’ ’and’ ’false’)

– (λx.λy. x y x) true false
β reduction
ÐÐÐÐÐÐÐ→ true false true

– true false true = (λx.λy. x) false true
β reduction
ÐÐÐÐÐÐÐ→ false

Logical or: (’true’ ’or’ ’false’)

– (λx.λy. x x y) true false
β reduction
ÐÐÐÐÐÐÐ→ true true false

– true true false = (λx.λy. x) true false
β reduction
ÐÐÐÐÐÐÐ→ true

• Instead of Turing Machine tapes, mutable lists are used in Lambda Cal-

culus.

A list could be either a pair whose second element is a list or a null.
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pair ≡ λxy f . f x y

first ≡ λx. x true

second ≡ λx. x false

null ≡ λz. z (λxy. false)

As shown above, Turing Machines and Lambda Calculus are equivalent in terms of

computability in automation theory. That also proves that programming languages

based on Turing’s computational model and Lambda Calculus computational model

are intuitively equivalent.

3.2.4 Functional Programming Languages as Categories

Functional programming languages involve:

• Primitive data types that are already involved in programming language, not

user created ones.

• Constants for each type.

• Operations that are functions between data types.

• Data type and operation constructors in order to allow user to create new data

types and operations.

Together with the above mentioned fundamental features, if two assumptions and

an “innocent” feature is added on, then any functional programming language L

corresponds in a canonical way to a category C(L).

Assumptions:

1. There should be a do-nothing operation idA for each type A in order to satisfy

the identity morphism rule in mathematical category definition.

2. The language should have a composition constructor that takes two operations

as inputs. One of which, namely f , takes something in type A as input and

returns something in type B as output while the other one, namely g, takes

something in type B as input and returns something in type C, since composi-

tion constructor is expected to return another operation, namely h= g○ f , takes
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something in type A and returns something in type C. Besides, composition

should be associative. By this way, the composition of morphisms feature of

category theory is also satisfied.

The Innocent addition:

1. The type called 1 is the additional type which has the property that from every

type A there exists a unique operation to 1. That means that for each constant

c of type A, there is an arrow c ∶ 1→A. By this way, the constants are involved

in the set of operations, in other words, they will no longer appear as separate

data.

If the above mentioned features are added, then a functional programming language

L satisfies the rules to have the category structure C(L) for which:

• The objects of C(L) are the types of L.

• The arrows of C(L) are the operations of L.

• Input and output types of any operation in L are domains and co-domains of

the morphisms in C(L).

• Composition of the morphisms in C(L) are the composition operation in L in

the reverse order.

• Identity morphisms in C(L) are the do-nothing operations in L.

Example 3.2.16. A language L with three primitive data types: BOOL (booleans),

CHAR (characters) and NAT (natural numbers) together with following properties

constructs a category C(L):

1. NAT has a constant; 0 ∶ 1→NAT and an operation; successor ∶NAT→NAT.

2. BOOL has two constants; true, false ∶ 1→BOOL and a ’negation’ operator;

¬ ∶BOOL→BOOL.

3. CHAR has one constant; c ∶ 1→CHAR for each character.

4. L also has two type conversion operations; ord ∶ CHAR → NAT and chr ∶
NAT→ CHAR where ord ○ chr = idCHAR. For sure, composition operation

and identity morphisms for each data type are defined.
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The objects of category C(L) are CHAR, BOOL, NAT and 1.

The morphisms are combinations of all operations. For instance:

chr ○ successor ○ ord ○ chr ○ ord ∶CHAR→CHAR

3.3 Haskell Programming Language and its Type Sys-

tem

Haskell is a purely functional, lazy and polymorphically, statically and strongly typed

programming language. The name Haskell is coming from the name of Haskell

Brooks Curry who played very crucial role in the foundation of functional program-

ming languages. Besides, it relies on Lambda Calculus like the other functional

programming languages, actually for that reason, it uses the symbol λ as its logo.

Haskell offers some number of advantages to its programmers such as:

• Easily maintainable and shorter codes.

• Reliability.

• Nearly, no semantic gap between programmer and the language.

• A wide-range of programmer community.

The notion pure in functional programming requires following two features to be

satisfied:

1. The rule referential transparency should hold. That means that any function

in the language has to return the same result for the same input query, inde-

pendent of current state.

2. No side effects should be involved in the language which indicates the no-

tion that state modification and observable interaction with outside world are

restricted.

In addition, laziness carries the meaning that Haskell never evaluates functions un-

less they are forced to return a result.
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It is also given in the definition that Haskell is a polymorphically statically typed

language. In order to be able to explain the issue, type systems of programming

languages should be pointed out.

Type Systems

A data type is an agenda of the data which fundamentally consists of up to below

given three features:

1. The physical representation of the data which involves how the data is stored.

2. The operations that can or can not be implemented over the data.

3. Some outside program controls that are able to or surrounded with the right

to make changes on it.

For instance, some basic data types that are used nearly all of the programming

languages are integers, characters, booleans and etc...

In addition to the above definition, we can say a language L is strongly typed, if it

is not allowing automatic type conversions such as converting a float type to integer

type. Otherwise, it is called weakly typed which means type conversions are allowed

to be done, although they cause information losses.

Now, we can speak of the term type systems whose fundamental aim is to prevent

any kind of errors may happen in the running or compiling phases of the program.

They are generally composed of some rules in order to check the consistency of

programs. This process of verifying the consistency or checking if the constraints

of data types are obeyed or not is called type checking.

There are two kinds of type checking:

1. Static Type Checking: A programming language performs static typing if type

checking is done in compilation phase. Error detection before run time phase

could be spoken as an advantage of this kind.

2. Dynamic Type Checking: A programming language performs dynamic typing

if type checking is done in execution phase. The advantage is that utilizations

of the functions which execute on arbitrary data are permitted in this kind.

This option is also allowed in static type checking but together with the usage

of some algebraic data type implementation which brings additional effort in

the construction stage.
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Furthermore, Haskell’s type system also permits the usages of polymorphic types.

The term polymorphism refers to the types that are universally quantified in some

way, over all types.

In the light of such information given above, lets also illustrate Haskell’s type sys-

tem in order to convert the abstract definitions into concrete working examples.

Basic Haskell Types

Haskell has a number of basic types of values, including:

• Int Ð→ for 32-bit integers

• Integer Ð→ for arbitrarily long integers

• Char Ð→ for single characters

• Bool Ð→ for logical values

• String Ð→ for list of characters

• Float Ð→ for floating point numbers

Not only values but also functions have types in Haskell. For instance, lowercase

and uppercase functions take Char value type as input and returns the same value

type as output. Here are the type signatures of lowercase and uppercase functions:

lowercase, uppercase ∶∶Char → Char

In Haskell, for any functions with multiple arguments, anyone can distinguish be-

tween the input and output types by using the idea that in type signatures of these

functions, the last type represents output value while others are standing for input

values.

For example:

anonymous ∶∶Char→ Int → Int

In the signature of the above anonymous function; there are two value types for

inputs: Char and Int while the returned value type is Int.
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The other important notion in type theory is type variables. They range over all

types defined in the programming language.

For instance, lets consider the fst function in Haskell whose type signature is:

fst ∶∶ (a, b) → a

Function takes two types which are not obliged to be different (a and b might have

the same types) and returns the value of the first type. However, the crucial thing

here is that a and b could be any of the types involved in the programming language.

It could be, obviously, inferred that fst (1,“abba”) will return 1 as its result.

Furthermore, some types gather under the same root in order to express a specific

behavior. These new constructions are called type classes and they first appeared in

Haskell Programming Language.

Here is an example to type classes in Haskell syntax:

class Equality a where

eq ∶∶ a → a → Bool — function returns ’true’ if inputs are the same

neq ∶∶ a → a → Bool — function returns ’false’ if inputs are the same

A class Equality contains two function types each of which admits equality. The

instance declaration could be done for all a types involved in the language. Let’s

see, what does it look like if a is selected as Integer.

instance Equality Integer where

eq = (x == y)
neq = not (x / = y)

Apart from the primitive types that have been already stored in Haskell, any user

is also able to create specific types for specific issues by using the keyword called

data. There are two types of constructors.

1. Data Constructors:

As the name suggests; data constructors are gathering in order to produce new

data types.

data Bool = True ∣ False
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The left part of the above assignment represents the new data type which is

Bool. On the right hand side, we have two value or data constructors that are

True and False, specifying different values might be involved in this new data

type. Rather, the symbol — exemplifies logical or operator. Therefore, the

above assignment could be read as: New data type Bool can have a value of

True or False.

Here, the most important inference is that types are composed of data con-

structors.

For instance:

data Int = − 2147483647 ∣ ... ∣ 0 ∣ 1 ∣ ... ∣ 2147483647

values ranging from - 2147483647 to 2147483647 are the data constructors

of the type Int which consists of 32 bits: 31 bits for data and 1 bit for the sign.

2. Type Constructors:

A type constructor is a parameterized type definition used with polymorphic

types.

data Maybe a = Nothing ∣ Just a

In the above assignment, a is the type parameter, Maybe is the type construc-

tor, on the other side; Nothing and Just are the data constructors of Maybe.

In a sense, the Maybe type constructor can produce types as Maybe Integer,

Maybe Char, Maybe String, etc.

For instance; Just 10 has the type of Maybe Integer while Just ’x’ is having

the type of Maybe Char.

In parallel with these information given so far, in the next chapter of the thesis,

some special type constructors in Haskell are proved to satisfy the algebraic rules

of functors and monads.
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Chapter 4

Functors & Monads in Haskell

Category theoretic objects such as functors, natural transformations and monads can

be represented in Haskell programming language. Especially, usages of monads

bring a great number of features such as purity to Haskell.

In this chapter, the representations of all Category Theoretical notions in the lan-

guage and also proofs that are demonstrating some type constructors of the Haskell

language satisfy the algebraic rules of functors, natural transformations and monads

are given and illustrated by Haskell code examples.

4.1 HASK Category of Haskell

In order to be able to define functors, natural transformations and monads, first

of all, the category description should be done. The category of Haskell pro-

gramming language is called HASK which involves Haskell types as objects and

Haskell functions as morphisms.

As mentioned in the mathematical background part of the thesis, in order to con-

struct a category, the identity morphism for each object and the associative compo-

sition operation must be included.

Fact 4.1.1. HASK is a category.

Proof 4.1.2. In HASK , the identity morphism is defined and named as id.

Furthermore, the composition function is also defined and represented with ’.’ sym-

bol.
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1. ∀A,B,C ∈ Obj(HASK) and ∀ f ∶ A→ B,g ∶ B→C ∈ Morph(HASK), there also

exists

g. f = h ∶ A→C ∈Morph(HASK)

2. ∀A,B ∈Obj(HASK) and ∀ f ∶ A→ B ∈Morph(HASK)

idB (B → B) . f = f . idA (A → A) = f

3. ∀ f ,g,h ∈Morph(HASK):

(f .g).h = f .(g.h)

HASK is now said to be a category; since all algebraic properties, for constructing

a category, are satisfied.

4.2 Functor and Monad Type Classes of Haskell

Haskell functional programming language has some number of type classes like

Equality class that is described in the last part of the previous section. In order to

represent category theoretic concepts, it also involves specific type classes such as

Functor and Monad.

Here are the mentioned type classes with their category theoretic connections.

4.2.1 Functor Type Class in Haskell

class Functor F where

fmap ∶∶ (a → b) → F a → F b

As visible in the above definition suggests, functor type class has a fmap method

which takes a function whose domain is a type a and co-domain is another type b

and a type constructor F with its argument type a as inputs and returns the same

type constructor F, this time with its argument type b.

Informally, it can be thought like: The method fmap takes a function (a→ b) and

a container F in which an arbitrary value of type a is stored. Firstly, it opens the

container, then applies the input function over the inside value which means inside
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type value of a is converted into another type b value and lastly type b value is

returned inside the same container.

Formally, in order to be able to speak of that any instances f and g of type class

Functor is representing the category theoretic functors, it should satisfy the rules

that are originating from the underlying theory such as:

fmap id = id — F1A = 1F(A)

fmap (f .g) = fmap f . fmap g — F(β)○F(α) = F(β○α)

Note 4.2.1. It should be also noted that a functor defined in Haskell programming

language is an endo− functor whose domain is category HASK and co-domain

category is func which is a subcategory of HASK.

4.2.2 Monad Type Class in Haskell

There are two different ways to represents monads in Haskell language. That means

that two different type class definitions could be done.

The first one more explicitly demonstrates category theoretic rules to be satisfied. It

involves a functor class which has the fmap method representing the endo-functor

and a monad class in which natural transformation methods are included.

class Functor m where

fmap ∶∶ (a → b) → m a → m b

class Monad m where

join ∶∶ m (m a) → m a — corresponding to µ ∶∶ T 2→ T

return ∶∶ a → m a — corresponding to η ∶∶ 1C→ T

In the above monad class definition, it is obvious that m is a functor class type

constructor, we can suppose now that m is an endo-functor which is able to map

any type a (could be a function type) from category HASK to func with the fmap

method. We know that, m○m is another functor in HASK; therefore, the mapping,

namely join should be proven as a natural transformation via satisfying the rule that

below diagram commutes for all f ∶ a→ b ∈HASK :
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m (m a)
f map f map f

��

joina // m a

f map f
��

m (m b) joinb // m b

FIGURE 4.1: Natural Transformation Diagram for Haskell Types to be satisfied

which means:

( joinb ○ f map f map f ) [m (m a)] = ( f map f ○ joina) [m (m a)] =m b

Furthermore, the mapping called return should also be proven as a natural transfor-

mation by showing the commutativity given in Figure 4.2.

idHASK(a)
f

��

returna // m a

f map f
��

idHASK(b)returnb // m b

FIGURE 4.2: Natural Transformation Diagram for Haskell Types to be satisfied

In particular, this means:

(returnb ○ f ) [a] = ( f map f ○ returna) [a] =m b

After proving these two methods are representations of natural transformations, then

monadic laws also should be demonstrated satisfying which exactly means proving

commutativity of below diagrams in order to be able to speak of that any instance

m of type class Monad is representing the category theoretic monads:

m (m (m a))
join ( f map id)

//

f map join
��

m (m a)
join

��
m (m a) join // m a

m a
return ( f map id)

//

f map return
��

m (m a)
join

��
m (m a) join // m a

FIGURE 4.3: Commutative Diagrams - Monad
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which means:

1. join○ join ( f map id) = join○( f map join)

2. join○ return ( f map id) = join○( f map return) = id

Actually, these two features are sufficient to prove Haskell Monad class in-

stances are the representations of category theoretic monads, however, in

some literatures, two additional equalities are shown to be needed. Indeed,

additional laws are not requirements but they are the expected things about

how monads behave.

3. return○ f = ( f map f )○ return

4. join○( f map ( f map f )) = ( f map f )○ join

Here is the second way to implement monads in Haskell via using only return and

bind methods:

class Monad m where

bind ∶∶ m a → (a → m b) → m b

return ∶∶ a → m a

Implementation could be done in the way shown above, because of the reason that

both fmap and join methods are involved in bind method.

Informally, bind takes a container (m a) and a morphism (a→m b) as inputs; then

it opens the container, applies the function over the type constructor a, the result of

which is ended in another container, namely m b. Therefore, at this level, we have

a new type constructor b, saved in two containers one within the other, m (m b).

Finally, it joins these two containers together and returns the result type b inside

only one container, m b.

Formally;

fmap [(m a), (a → m b)] = [m (m b)]
join [m (m b)] = [m b]

Therefore;

bind [ X, f ] = join ○ fmap [ X, f ]
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For instance; the Haskell demonstration of above equality via list type constructor

is given below:

• For Integer type:

f x = return (x + 20) — function deceleration

join (fmap f ) [20] = [40] = bind [20] f — function calls

join. f map = bind

4.3 Proofs: Particular Type Constructors of Haskell

Behave as Functors and Monads

In this section of the thesis, some number of Haskell type constructors are proven

to satisfy the algebraic rules of being a functor and a monad together with the help

of Haskell programming language. At the same time, it could also be explained as

these type constructors are the instances of the functor and monad type classes in

Haskell. Here, the list of mentioned type constructors, each of which were designed

to develop solutions for specific issues, is given below:

• Maybe type constructor

• List type constructor

• State type constructor

• IO type constructor

• Identity type constructor

• Eval type constructor

In addition to this, do consider that while proving any above type constructor as a

monad, the methods of the monad type classes such as return and join are shown to

obey the algebraic rules of being a natural transformation.
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4.3.1 Maybe Type Constructor as Functor and Monad Class In-
stances

Maybe is a type constructor which enables the opportunity of creating new concrete

types in Haskell programming language. Besides, the data constructors of Maybe

are Just a and Nothing that means that a value of a Maybe type could either be just

a data value such as Just 10 or nothing which represents no value is contained in the

type, at that time.

The deceleration of Maybe in the prelude class of Haskell was made as:

data Maybe a = Just a ∣ Nothing

Maybe as a Functor Class Instance

Haskell code that defines Maybe as an instance of functor class:

class Functor F where

fmap ∶∶ (a → b) → F a → F b

instance Functor Maybe where

fmap f Nothing = Nothing

fmap f (Just x) = Just (f x)

Lemma 4.3.1. Type constructor Maybe : HASKÐ→ func is a functor.

Proof 4.3.2. Category theoretic rules, to represent a functor, that are given in sub-

section 4.2.1 must be shown to satisfy for all of the data constructors of given type

which are Nothing and Just, here.

1 fmap id Nothing = id Nothing = Nothing

2 fmap id (Just a) = id (Just a) = (Just a)

3 (fmap g . fmap h) Nothing = (fmap g.h) Nothing = Nothing

4 (fmap g . fmap h) (Just a) = (fmap g.h) (Just a) = (Just (g.h(a)))

Let’s assign Integer and Char types to type variable a, respectively and then check

all of the above equalities in Haskell environment.
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1. proof via Maybe Integer type:

1 -- FIdA = IdFA; fmap id = id

2 1. Main.fmap Main.id Nothing = Main.id Nothing = Nothing

3 2. Main.fmap Main.id (Just 10) = Main.id (Just 10) = Just 10

4 -- F(g . h) = F g . F h; fmap (f . g) = (fmap f) . (fmap g)

5 3. Main.fmap h(Main.fmap f Nothing)

6 = (Main.fmap (h.f)) Nothing = Nothing

7 4. Main.fmap h(Main.fmap f (Just 10))

8 = (Main.fmap (h.f)) (Just 10) = Just 25

9 where g, h :: Integer -> Integer; g x = x + 5, h x = x + 10 and

10 id x = x

2. proof via Maybe Char type:

1 -- FIdA = IdFA; fmap id = id

2 1. Main.fmap Main.id Nothing = Main.id Nothing = Nothing

3 2. (Main.fmap Main.id) (Main.Just ’a’) = Main.id (Just ’a’)

4 = Just ’a’

5 -- F(g . h) = F g . F h; fmap (f . g) = (fmap f) . (fmap g)

6 3. (Main.fmap Char.toLower(Main.fmap Char.toUpper Nothing))

7 = (Main.fmap (h.f)) Nothing = Nothing

8 4. (Main.fmap Char.toLower) (Main.fmap Char.toUpper(Main.Just ’a’))

9 = (Main.fmap (Char.toLower. Char.toUpper)) (Main.Just ’a’)

10 = Just ’a’

11 where g, h :: Char -> Char; g = Char.toLower , h = Char.toUpper

12 and id x = x

As seen above, the equalities coming from the functor algebra are also satisfied and

illustrated by codes written in Haskell via Maybe Integer and Maybe Char types.

Here, the crucial idea should be inferred is that Maybe maps objects and morphisms

of a category namely HASK into objects and morphisms of another category called

func whose objects are instances of functor class (Maybe a, ...) and morphisms are

the functions between these objects (Maybe (a→ a), ...). As mentioned before, func

is the subcategory of HASK.

Example 4.3.3. Type of ’a’ ∈Ob j (HASK) is Char; Char.toUpper function is (Char→
Char) ∈Morph (HASK) while type of Just ’a’ is Maybe Char ∈Ob j ( f unc) and

Just (Char.toUpper) is Maybe (Char→Char) ∈ Morph ( f unc).

The test in Haskell environment:
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1 :t ’a’ = Char

2 :t Main.Just (’a’) = Main.Maybe Char

3 :t Char.toUpper = (Char -> Char)

4 :t Main.Just (Char.toUpper) = Main.Maybe (Char -> Char)

Note that “:t” function returns the data types of its arguments. Eventually;

• Maybe ∶ Ob j (HASK) Ð→Ob j ( f unc)
Integer z→ Maybe Integer

Char z→ Maybe Char

Float z→ Maybe Float

• Maybe ∶ Morph (HASK) Ð→Morph ( f unc)
(Integer→ Integer→ ...) z→ Maybe (Integer→ Integer→ ...)
(Char→Char→ ...) z→ Maybe (Char→Char→ ...)
(Float → Float → ...) z→ Maybe (Float → Float → ...)

Maybe is said to be a functor defined between category HASK and its subcategory

func.

Maybe as a Monad Class Instance

class Functor F where

fmap ∶∶ (a → b) → F a → F b

instance Functor Maybe where

fmap f Nothing = Nothing

fmap f (Just x) = Just (f x)
class Monad m where

join ∶∶ m (m a) → m a

return ∶∶ (Show (m a)) => a → m a

bind ∶∶ m a → ( a → m b) → m b

instance Monad Maybe where

return x = Just x

join (Just (Nothing)) = Nothing

join (Just (Just x)) = Just x

bind Nothing g = Nothing

bind (Just x) g = g x



60

Lemma 4.3.4. join and return are representations of natural transformations in

Haskell environment.

Proof 4.3.5. Rules that are given in section 4.2.2 should be satisfied.

1. proof via Maybe Integer type:

1 -- (join . fmap fmap f) [m(m a)] = (fmap f . join) [m (m a) ]= m b

2 1. join((fmap (fmap f)) (Just(Just 10)))

3 = fmap f (join (Just(Just 10))) = Just 15

4 -- (return . f) [ a ] = (fmap f . return) [ a ]= m b

5 2. ((return (f 10)) :: Maybe Integer)

6 = fmap f ((return 10) :: Maybe Integer) = Just 15

7 where f, h :: Integer -> Integer; f x = x + 5, h x = x + 10 and

8 id x = x

Lemma 4.3.6. The triple (Maybe + fmap, join, return) is a monad in Haskell envi-

ronment.

Proof 4.3.7. The naturality of transformations join, return and functorial behavior

of Maybe + fmap are already proven. Therefore, category theoretic rules, to repre-

sent a monad, that are given in subsection 4.2.2 must be shown to satisfy for all of

the data constructors of given type which are Nothing and Just, here.

1 1. join . join (fmap id) (Just(Just(Just a)))

2 = join . join (Just(Just(Just a))) = Just a

3 = join . (fmap join) (Just(Just(Just a)))

4 2. join . return (fmap id) (Just a) = Just a

5 = join . (fmap return)(Just a)

6 3. return . f (a) = Just (f a) = (fmap f) . return (a)

7 4. join . (fmap (fmap f))(Just(Just a)) = join . (Just(Just(f a)))

8 = Just(f a) = (fmap f) . join (Just(Just a)) = join (Just(Just (f a))

Note 4.3.8. Note that proofs could be illustrated for all primitive and user created

data types in Haskell programming environment. Specific types (Here ∶ Integer and

Char) are used in order just to convert the abstract and logical idea into concrete

working examples. Since, as shown above, the feature of being a functor or a monad

class instance is originating from the reason that data constructors of given alge-

braic data types are satisfying the category theoretic rules of building a functor or a

monad. In the next sections of the thesis, proofs are done via limited number of data

types (1 or 2) without emphasizing all types might be used to represent the category

theoretic features of concerned type constructor.



61

Let’s assign Integer and Char types to type variable ’a’, respectively and then check

all of the above equalities in Haskell environment.

1. proof via Maybe Integer type:

1 -- join . join (fmap id) = join . (fmap join)

2 1. join(join((fmap id)(Just(Just(Just 15)))))

3 = join(fmap join(Just(Just(Just 15))))

4 -- join . return (fmap id) = join . (fmap return)

5 2. join(return(fmap id (Just 15))) = join(fmap return(Just 15))

6 -- return . f = (fmap f) . return

7 3. (return(f 10):: Maybe Integer)

8 = fmap f ((return 10) :: Maybe Integer)

9 -- join . (fmap (fmap f)) = (fmap f) . join

10 4. join(fmap(fmap f)(Just(Just 10))) = fmap f(join(Just(Just 10)))

11 where f :: Integer -> Integer; f x = x + 5 and id x = x

2. proof via Maybe Char type:

1 -- join . join (fmap id) = join . (fmap join)

2 1. join(join (.fmap id(Just(Just(Just ’a’)))))

3 = join(fmap join(Just(Just(Just ’a’))))

4 -- join . return (fmap id) = join . (fmap return)

5 2. join(return (fmap id (Just ’a’))) = join(fmap return(Just ’a’))

6 -- return . f = (fmap f) . return

7 3. return(Char.toUpper ’s’) :: Maybe Char

8 = ((fmap (Char.toUpper))(return ’s’) :: Maybe Char)

9 -- join . (fmap (fmap f)) = (fmap f) . join

10 4. join((fmap(fmap (Char.toUpper)))(Just(Just ’a’)))

11 = (fmap (Char.toUpper)) (join(Just(Just ’a’)))

As the above equalities hold, the triple (Maybe + fmap, return, join) or equally

(Maybe, return, bind) is proven as a monad which combines a chain of compu-

tations each of which could return Nothing or any other value within the container

of Just.

The crucial idea here is that if any computation fails to return a Nothing value, then

the result of the whole chain will also be Nothing.

For example, think a chain of computations that calculates if any given integer has

nth roots (suppose n is even) or not by first checking whether it has a square root;
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if so, then checking whether it has n/2th root. In the case that a given value has no

square roots (this part of the chain returns Nothing) that obviously means that it does

not have nth root, either (the whole calculation ends up with Nothing, either). Since,

the value of Nothing is binded to the second part of the chain in which exactly no

calculations done.

sqrt ∶∶ Integer → Maybe Integer

sqrt x = sqrt′ x (0, 0)
where

sqrt′ x (s,r)
∣ s > x = Nothing

∣ s == x = Just r

∣ otherwise = sqrt′ x (s + 2∗ r + 1, r+1)
4th root ∶∶ Integer → Maybe Integer

4th root x = sqrt x >>= sqrt

8th root ∶∶ Integer → Maybe Integer

8th root x = sqrt x >>= sqrt >>= sqrt

In example, calculation of 4th integer root of any given integer:

• First, calculate whether it has a square root, if so then bind the result of the

square root computation to the square root function one more in order to detect

whether it has a 4th root or not. Otherwise, return Nothing value as the result

of the whole computation (source code of sqrt function belongs to Mr. E.

Söylemez).

Additionally, Maybe monad plays an important role in the error detection area in

Haskell programming environment. For instance, a very well known divide-by-zero error

could be caught easily.

divby0 ∶∶ Float → Float → Maybe Float

divby0 x 0 = Nothing

divby0 x y = Just (x/y)

Above code, detects and returns Nothing if divider is inputted as zero, otherwise,

the result of the division operation is returned within the Just container.
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Besides, in database management systems, the operation of looking up a record that

might be missing is able to be managed smoothly by these Maybe monadic coding

manner. Here, a basic Haskell code is given in order to illustrate the issue.

stdCrs = fromList([(“Cagatay”, “Thesis”), (“Erdem”, “ParallelProg”),
(“Burak”, “Network”)])
crsInst = fromList([(“Thesis”, “DrKoltuksuz”), (“ParallelProg”, “DrSahin”),
(“Network”, “DrHisil”)])
InstUni = fromList([(“DrKoltuksuz”, “YasarUni”), (“DrSahin”, “Iztech”),
(“DrHisil”, “YasarUni”)])
stdUni ∶∶ String → Maybe String

stdUni stdName = do

course < −Data.Map.lookup stdName stdCrs

instructor < −Data.Map.lookup course crsInst

Data.Map.lookup instructor InstUni

Basically, in the above code:

1. Lookup lists, namely stdCrs, crsInst and InstUni that are analogies to database

tables, are created and for each table, some tuples are inserted.

2. Then, a method, stdUni which takes a sting query as an input and returns a

Maybe Sting type object as an output is given.

• This method checks if a given student is registered in which university

in Just container. If there is no student having the name inputted, then

Nothing value is returned to the user.

• For example; if you give the input query stdUni “Burak”, then you will

get Just “YasarUni”. For any name that is not stored in the first table,

Nothing will be returned as an output.

4.3.2 List Type Constructor as Functor and Monad Class In-
stances

List is another type constructor like Maybe in Haskell language whose data con-

structors are empty list, denoted by [ ], and an operation that prepends an element
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to the front of the list that is represented as ’∶’. Below, you see the definition of []
type in Haskell:

data [ ] a = [ ] ∣ a ∶ [a]

However, please note that no-one is allowed to use the above definition in any

Haskell code, since this definition is a special one that is already defined in lan-

guage specifics.

List as a Functor Class Instance

Haskell code that defines [ ] as an instance of functor class:

class Functor F where

fmap ∶∶ (a → b) → F a → F b

instance Functor [] where

fmap f [] = []
fmap f (x ∶ xs) = (f x) ∶ (fmap f xs)

Lemma 4.3.9. Type constructor [ ] : HASKÐ→ func is a functor.

Proof 4.3.10. Category theoretic rules, to represent a functor, that are given in

subsection 4.2.1 must be shown to satisfy for all of the data constructors of given

type which are empty list and prepending operation, here.

1. proof via [ Integer ] type:

1 -- FIdA = IdFA; fmap id = id

2 1. fmap id [ ] = id [ ]

3 2. fmap id ([1,2,3,4,5]) = id ([1,2,3,4,5])

4 -- F(g . h) = F g . F h; fmap (f . g) = (fmap f) . (fmap g)

5 3. fmap h(fmap f [ ]) = (fmap (h.f)) [ ]

6 4. fmap h(fmap f ([1,2,3,4,5])) = (fmap (h.f)) ([1,2,3,4,5])

7 where g, h :: Integer -> Integer; g x = x + 5, h x = x + 10 and

8 id x = x
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2. proof via [ Char ] type:

1 -- FIdA = IdFA; fmap id = id

2 1. fmap id [] = id []

3 2. fmap id ([‘‘ax‘‘, ‘‘bx‘‘]) = id ([‘‘ax‘‘, ‘‘bx‘‘])

4 -- F(g . h) = F g . F h; fmap (f . g) = (fmap f) . (fmap g)

5 3. fmap (map Char.toLower) ((fmap (map Char.toUpper))[])

6 = (fmap ((map Char.toLower).(map Char.toUpper)) [])

7 4. fmap (map Char.toLower) ((fmap (map Char.toUpper))

8 [‘‘ax‘‘, ‘‘bx‘‘])

9 = fmap ((map Char.toLower).(map Char.toUpper))[‘‘ax‘‘, ‘‘bx‘‘])

10 where g, h :: Char -> Char; g = Char.toLower , h = Char.toUpper

11 and id x = x

Eventually;

• [] ∶ Ob j (HASK) Ð→Ob j ( f unc)
Integer z→ [ Integer ]
Char z→ [ Char ]
Float z→ [ Float ]

• [] ∶ Morph (HASK) Ð→Morph ( f unc)
(Integer→ Integer→ ...) z→ [ Integer→ Integer→ ... ]
(Char→Char→ ...) z→ [ Char→Char→ ... ]
(Float → Float → ...) z→ [ Float → Float → ... ]

Such as Maybe type constructor; [ ] is also said to be a functor defined between

category HASK and its subcategory func.

List as a Monad Class Instance

class Functor F where

fmap ∶∶ (a → b) → F a → F b

instance Functor [ ] where

fmap f [ ] = [ ]
fmap f (x ∶ xs) = (f x) ∶ (fmap f xs)

class Monad m where

join ∶∶ m (m a) → m a

return ∶∶ (Show (m a)) => a → m a

bind ∶∶ m a → ( a → m b) → m b
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instance Monad [] where

return x = [x]
join [[x]] = [x]
join [[ ]] = [ ]
join (x ∶ xs) = x ++ join (xs)
bind (x ∶ xs) g = (fmap g (x ∶ xs))
bind [] g = []

Lemma 4.3.11. The triple ([] + fmap, join, return), equivalently ([], bind, return)
is a monad in Haskell environment.

Note 4.3.12. Naturalities of join and return transformations are proven in previous

session, 4.3.1, for Maybe type constructor. The same proof also for [] type or any

other type constructors in the next sections will not be given. Since, by the applica-

tion of the same methodology performed for Maybe, it is very elementary to prove it

also for any other type constructors. Additionally, the proof of functorial behavior

of [] + f map is done in this section.

Proof 4.3.13. Therefore, category theoretic rules, to represent a monad, that are

given in subsection 4.2.2 must be shown to satisfy for all of the data constructors of

given type which are empty list and ’∶’, here.

1. proof via [ Integer ] type:

1 -- join . join (fmap id) = join . (fmap join)

2 1. join(join((fmap id)[[[1,2],[3,4]],[[5,6],[7,8]]]))

3 = join(fmap join([[[1,2],[3,4]],[[5,6],[7,8]]]))

4 -- join . return (fmap id) = join . (fmap return)

5 2. join(return((fmap id)[1,2,3])) = join(fmap return[1,2,3])

6 -- return . f = (fmap f) . return

7 3. return(f 10) :: [Integer] = fmap f(return 10 :: [Integer])

8 -- join . (fmap (fmap f)) = (fmap f) . join

9 4. join(fmap(fmap f)([[1,2],[3,4],[5,6]]))

10 = fmap f(join([[1,2],[3,4],[5,6]]))

11 where f :: Integer -> Integer; f x = x + 5 and id x = x



67

2. proof via [ Char ] type:

1 -- join . join (fmap id) = join . (fmap join)

2 1. join(join((fmap id)[[[‘‘ax‘‘,‘‘bx‘‘],[‘‘cx‘‘,‘‘dx‘‘]],

3 [[‘‘ex‘‘,‘‘fx‘‘],[‘‘gx‘‘,‘‘hx‘‘]]]))

4 = join(fmap join([[[‘‘ax‘‘,‘‘bx‘‘],[‘‘cx‘‘,‘‘dx‘‘]],

5 [[‘‘ex‘‘,‘‘fx‘‘],[‘‘gx‘‘,‘‘hx‘‘]]]))

6 -- join . return (fmap id) = join . (fmap return)

7 2. join(return ((fmap id)[‘‘ax‘‘,‘‘bx‘‘,‘‘cx‘‘]))

8 = join(fmap return[‘‘ax‘‘,‘‘bx‘‘,‘‘cx‘‘])

9 -- return . f = (fmap f) . return

10 3. ((return (map Char.toUpper ‘‘ax‘‘)) :: [[Char]])

11 = (fmap (map Char.toUpper))(return ‘‘ax‘‘ :: [[Char]])

12 -- join . (fmap (fmap f)) = (fmap f) . join

13 4. join((fmap(fmap (map Char.toUpper))) ([[‘‘ax‘‘,‘‘bx‘‘],

14 [‘‘cx‘‘,‘‘dx‘‘]]))

15 = (fmap (map Char.toUpper))

16 (join [[‘‘ax‘‘,‘‘bx‘‘],[‘‘cx‘‘,‘‘dx‘‘]])

As the above equalities hold, the triple ([]+ f map,return, join) or equally ([],return,bind)
is proven as a monad. The main idea behind the implementation of list monad

is to model the non-deterministic programs that might end up with multiple re-

sults for any input query. The first basic example could be calculating power set of

a given set by using Haskell [] monad.

powerset [] = [[]]
powerset (x ∶ xq) = l ++map (x ∶) l

where l = powerset xq

Lets have a look at how code generates the power set of [0,1,2]:

Recursion points are: 0 ∶ [1,2],1 ∶ [2] and 2 ∶ [] which is also the base case. Then,

lets point out the calculation steps:

1. [[]]++map(2 ∶)[[]] = [[]]++[[2]] = [[],[2]]

2. [[],[2]]++map(1 ∶)[[],[2]] = [[],[2]]++[[1],[1,2]] = [[],[2],[1],[1,2]]

3. [[],[2],[1],[1,2]]++map(0 ∶)[[],[2],[1],[1,2]] = [[],[2],[1],[1,2]]++
[[0],[0,2],[0,1],[0,1,2]] = [[],[2],[1],[1,2],[0],[0,2],[0,1],[0,1,2]]
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Compared to the previous one, more meaningful example will be the implemen-

tation of a non-deterministic finite state automaton in Haskell language, using the

abstraction layer that [] monad brings.

data NFAState id = NFAState {StateId ∶∶ id,

isFinal ∶∶ Bool,

transitionF0 ∶∶ [NFAState id],
transitionF1 ∶∶ [NFAState id]}

expressiontoAutomata = [state1]
where

state1 = NFAState 1 False [state1,state2,state3] [state1]
state2 = NFAState 2 False [state4][state3]
state3 = NFAState 3 True [state4][state4]
state4 = NFAState 4 False [state4][state4]

strAccept start states str = any (/id → acceptP id str) start states

where

acceptP (NFAState isFinal ) [] = isFinal

acceptP (NFAState t0 t1) (x ∶ xs) = strAccept (if x then t1 else t0) xs

In the above Haskell coded non-deterministic finite state automaton (acceptor):

1. First part defines a new data type so-called NFAState, which represents the

states in the automation involving each ones id, a boolean value indicates

whether it is the final state or not and transition functions for the inputs both

1 and 0.

2. Second part defines the start state as state1 and also transition functions for

each state. For example; from state1 with input 0, possible transformations

are: state might not be changed, (staying in state1), changed into state2 or

state3 which is the only part yields the non-determinism.

3. Third part of the code, checks all possible state transformations might be

ended up with, then returns the Boolean value which demonstrates if the input

string is accepted or not.

In example, the input string, strAccept expressiontoAutomata(map (>0) [0,0,0,1,0,1,1]),

is not accepted by the automation while the string strAccept expressiontoAutomata (map (>
0) [0,0,0,1,0]) is accepted.
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4.3.3 State Type Constructor as Functor and Monad Class In-
stances

Similar to [] and Maybe; State s is also a type constructor in Haskell environment,

but, from another point of view, unlike Maybe and []; State s has a function which

takes a state value as an input and returns an intermediate value together with some

new state value, as of the data constructor. Below, you see the definition of State s

type in Haskell:

data (State s) a = State (s → (a,s))

In order to eliminate the confusions might arise, it should be noted that the term

State s standing on the left hand side of the deceleration represents the type con-

structor where the one on the right hand side is standing for the indication of data

constructors of any type created by State s .

Indeed, State s type constructor is nothing more than an encapsulation to the func-

tion that takes a state value, s, and returns an intermediate value and some new state

value, (a,s). Moreover, in order to be able to unwrap the inside function, another

function called runState is used. [10]

runState ∶∶ State s a → s → (a, s)
runState (State f ) s = f s

Note 4.3.14. Note that the data constructor here is “State s” not only “State”.

State as a Functor Class Instance

Haskell code that defines State s as an instance of functor class:

class Functor F where

fmap ∶∶ (a → b) → F a → F b

instance Functor (State s) where

fmap f m = State (/ k → let (a, s) = runState m k in (f a, s))

Lemma 4.3.15. Type constructor State s : HASKÐ→ func is a functor.

Proof 4.3.16. Category theoretic rules, to represent a functor, that are given in

subsection 4.2.1 must be shown to satisfy.



70

1. proof via State Integer Integer type:

1 -- FIdA = IdFA; fmap id = id

2 1. runState(fmap id (encap 10))’a’

3 = runState((fmap (h.f)) (encap 10))’a’

4 -- F(g . h) = F g . F h; fmap (f . g) = (fmap f) . (fmap g)

5 2. runState(fmap h(fmap f (encap 10)))’a’

6 = runState((fmap (h.f)) (encap 10))’a’

7 where f, h :: Integer -> Integer; f x = x + 5, h x = x + 10 and

8 encap :: Integer -> State s Integer; encap a = State (\s -> (a,s))

2. proof via State Integer Char type:

1 -- FIdA = IdFA; fmap id = id

2 1. runState(fmap id (encap 10))’a’

3 = runState((fmap (h.f)) (encap 10))’a’

4 -- F(g . h) = F g . F h; fmap (f . g) = (fmap f) . (fmap g)

5 2. runState(fmap h(fmap f (encap 10)))’a’

6 = runState((fmap (h.f)) (encap 10))’a’

7 where f, h :: Integer -> Integer; f x = x + 5, h x = x + 10 and

8 encap :: Integer -> State s Integer; encap a = State (\s -> (a,s))

Eventually;

• State s ∶ Ob j (HASK) Ð→Ob j ( f unc)
Integer z→ State s Integer

Char z→ State s Char

Float z→ State s Float

• State s ∶ Morph (HASK) Ð→Morph ( f unc)
(Integer→ Integer→ ...) z→ State s ( Integer→ Integer→ ... )
(Char→Char→ ...) z→ State s ( Char→Char→ ... )
(Float → Float → ...) z→ State s ( Float → Float → ... )

Such as Maybe and [] type constructors; State s is also said to be a functor defined

between category HASK and its subcategory func.
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State as a Monad Class Instance

class Functor F where

fmap ∶∶ (a → b) → F a → F b

instance Functor (State s) where

fmap f m = State (/ k → let (a, s) = runState m k in (f a, s))
class Monad m where

join ∶∶ m (m a) → m a

return ∶∶ a → m a

bind ∶∶ m a → ( a → m b) → m b

instance Monad (State s) where

return a = State (/ s − > (a,s))
bind (State x) f = State (/ s − > let (a,s′) = x s in runState (f a) s′)
join xss = State (/ s − > uncurry runState (runState(xss) s))

Lemma 4.3.17. The triple (State s + fmap, join, return), equivalently (State s, bind,

return) is a monad in Haskell environment.

Proof 4.3.18. Therefore, category theoretic rules, to represent a monad, that are

given in subsection 4.2.2 must be shown to satisfy for all of the data constructors of

given type that is a basic encapsulated function, here.

1. proof via State Integer Integer type:

1 -- join . join (fmap id) = join . (fmap join)

2 1. runState(join( join (fmap id(encap (encap(encap 4))))))5

3 = runState(join(fmap join (encap(encap(encap 4)))))5

4 -- join . return (fmap id) = join . (fmap return)

5 2. runState(join(return(fmap id(encap 4))))5

6 = runState(join(fmap return(encap 4)))5

7 -- return . f = (fmap f) . return

8 3. runState(return(f 10))30 = runState(fmap f(return 10))30

9 -- join . (fmap (fmap f)) = (fmap f) . join

10 4. runState(join(fmap(fmap f)(encap(encap 10))))30

11 = runState(fmap f(join(encap(encap 10))))30

12 where f :: Integer -> Integer; f x = x + 5 and id x = x
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2. proof via State String Integer type:

1 -- join . join (fmap id) = join . (fmap join)

2 1. runState(join( join (fmap id(encap (encap(encap ‘‘ax‘‘))))))5

3 = runState(join(fmap join (encap(encap(encap ‘‘ax‘‘)))))5

4 -- join . return (fmap id) = join . (fmap return)

5 2. runState(join(return(fmap id(encap ‘‘ax‘‘))))5

6 = runState(join(fmap return(encap ‘‘ax‘‘)))5

7 -- return . f = (fmap f) . return

8 3. runState(return(map Char.toUpper ‘‘ax‘‘))5

9 = runState((fmap (map Char.toUpper))(return ‘‘ax‘‘))5

10 -- join . (fmap (fmap f)) = (fmap f) . join

11 4. runState(join((fmap(fmap(map Char.toUpper)))

12 (encap(encap ‘‘ax‘‘))))5

13 = runState((fmap (map Char.toUpper))

14 (join(encap(encap ‘‘ax‘‘))))5

15 where f :: Integer -> Integer; f x = x + 5 and id x = x

As the above equalities hold, the triple ((State s)+ f map,return, join) or equally

((State s), return,bind) is proven as a monad. The main idea behind the imple-

mentation of state monad is to bring the feature called “referential transparency”,

that certifies that a function returns the same result for the same input regardless of

its current state, to the language and also model the input output system of it with

disabling side effects which is explained detailedly in the next section.

A random number generator function in Haskell could be given as an example to the

implementation of the state monad. Since, consider that random number generation

is not even a function in large number of programming languages. For instance,

in C programming language, random number generation is such a method whose

signature is int rand (void). That means that rand returns different values even

without taking a parameter, therefore this situation yields in violation of referential

transparency rule. In order to avoid this violation, random number generation work,

in Haskell, is done with great amount of help of the state monad.

genRand ∶∶ State StdGen Integer

genRand = do generator < − get

let ( value, newGenerator ) = randomR (1,566564653213) generator

put newGenerator

return value
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Primarily, get function takes the current state of the monad and assigns it to a vari-

able called generator. Secondly, randomR function is called with two integer pa-

rameters and a generator that was derived from the state monad itself. Then, results

returned from randomR function are assigned to value and newGenerator variables.

Lastly, after the assignment of newGenerator to the state monad as a new state, the

random number, inside the value parameter, is returned to the user.

4.3.4 IO Type Constructor as Impure Monad Class Instances

IO type constructor of Haskell is a specific type of the state constructor. In this

section of the thesis, input-output operations of Haskell programming language are

explained and illustrated together with disabling side effects that indicates that any

observable interaction with calling functions or the outside world, by performing all

I/O operations inside the IO monad.

Here is the definition of IO type constructor:

data IO a = IO ((String,String) → (a,(String,String)))

Informally, IO type constructor, correspondingly State s, involves a function inside

the IO wrapper which takes a pair of strings, matches up to s (state value in the

State monad), as an input and returns an intermediate value, a (stays unchanged

compared to State monad), together with some new pair of strings, as of the data

constructor. Furthermore, in order to be able to unwrap the inside function, runIO

function should be used:

runIO ∶∶ IO a → (a,(String,String))
runIO (IO p) = (p undefined)

runIO function takes another function inside the IO wrapper, first unwraps it, then

returns the intermediate value and the pair of strings as output regardless of inter-

mediate value’s type which is reported by the usage of undefined pragma to the

compiler.

After taking above things into consideration, it could be said that IO type construc-

tor is the specific case of State s type constructor and undoubtedly a monad which

generates the below instance:
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instance Monad (IO) where

return a = IO(/ → (a,(“ ”, “ ”)))
(IO t0) >>= f = IO(/ s0 → let (a,s1) = t0 s0

(IO t1) = f a

in t1 s1 )

Note 4.3.19. IO type constructor together with (bind + return) or (fmap, join+ return)
natural transformations could be proven as a monad, like the ones done for before

type constructors. However, due to being a specific type of State s monad, this proof

is not given. Since, the crucial inference is that if State s with mentioned transforma-

tions is a monad, then IO also constructs a monad with the same transformations.

Let’s basically illustrate the I/O functions such as getChar, putChar, getLine and

putStr, in Haskell environment by the usage of IO monad.

1. Initialization of the environment in which I/O operations are done.

• The void type environment. (State is represented by pair of strings, in-

termediate value is a void type one)

init ∶∶ IO ()
init = IO(/ → ((),(“burak”,“”)))

• The Char type environment. (State is represented by pair of strings,

intermediate value is a Char type one)

initChar ∶∶ IO Char

initChar = IO(/ → (′ ′,(“burak”,“”)))

2. Get character and put character functions.

getc ∶∶ IO Char

getc = IO(/((i ∶ is),os) → (i,(is,os)))

where is and os represent input and output streams, respectively.

Function getc operates inside the environment which is already initialized. It

takes the first element of input stream and puts that character into the inter-

mediate variable, does not append it into output stream, and returns the pair

of strings with its new configuration.
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For instance:

t0 = runIO ( do initChar

getc)

returns (′b′,(“urak”,“”)) as output. Meanwhile, do is called syntactic sugar

in Haskell environment which is used instead of binding inside the IO monad

in order to ease the operations.

getc2 ∶∶ Char → IO Char

getc2 i = IO(/((i ∶ is),os) → (i,(is,os)))

If getc is defined in the above form, then runIO(Main.initChar >>= getc2)
returns the same result, (′b′,(“urak”,“”)), with t0. That means that the do

block provides the opportunity to bind values to functions in a much more

easier way inside the monad.

putc ∶∶ Char → IO ()
putc c = IO(/(is,os) → ((),(is,os++[c])))

Function putc takes the intermediate value inside the monad and then assigns

it to the output stream. For instance:

t1 = runIO ( do initChar

x < − getc

putc x )

returns ((),(“urak”,“b”)) as output where getc takes the char b from the

intermediate variable a, then putc takes it as input and appends it to the output

stream.

For sure, binding could be used instead of syntactic sugar do:

putc2 ∶∶ Char → IO ()
putc2 c = IO(/(is,os) → ((),(is,os++[c])))

Query: runIO(initChar >>= getc2 >>= putc2) returns the same result, ((),
(“urak”,“b”)), with t1.
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putstr ∶∶ String → IO ()
putstr “” = putc ′ ′

putstr (x ∶ xs) = ( do putc x

putstr xs )

Above putstr function which corresponds to putStr in Haskell, is nothing

more than recursively called putc function till a base case (empty string) is

detected.

For instance, the below function returns the first element of the given input

string with the explanation sentence: “1st char is”:

t2 = runIO ( do initChar

x < − getc

putstr “1st char is”

putc x )
initString ∶∶ IO String

initString = IO(/ → (“ ”,(“burak”,“”)))
getline ∶∶ IO String

getline = IO(/(is,os) → (is,(“ ”,os)))

Function getline transfers the input string to the intermediate value which is also ini-

tialized as string in IO String monad (the originals of example codes for IO monad

belong to S. Klinger [9]). After the illustrations of all basic I/O operations operate

in Haskell IO monad, let’s also give a basic working example:

main ∶∶ IO()
main = do putStrLn “What is your name?”

x < − getLine

if x == “burak”

then putStrLn “You are right!”

else putStrLn “You are wrong!”

As seen in the above code, main function is defined as an IO monad type and all of

the I/O operations are done inside the monad in order to avoid the side effects that

were going to occur due to the interaction with the real world. [9]
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4.3.5 Identity Type Constructor as Functor and Monad Class
Instances

Similar to [], Maybe and State s; Identity is also a type constructor in Haskell en-

vironment, but, from another point of view, unlike Maybe, [] and State s, there is

no computational reason to use Identity monad, since it only applies the function

was bound inside the monad to its arguments without making any changes (only a

simple wrapper). However, it plays very critical role in the creation of Eval monad

which provides the evaluation order to the computation via parallel and sequential

strategies and also in the area of monad transformers, that are beyond the scope of

this project. Below, you see the definition of Identity type in Haskell:

data Identity a = Identity a

In order to unwrap the inside type, runIdentity function, whose signature given be-

low, is used:

runIdentity ∶∶ Identity a → a

runIdentity (Identity a) = a

Identity as a Functor Class Instance

Haskell code that defines Identity as an instance of functor class:

class Functor F where

fmap ∶∶ (a → b) → F a → F b

instance Functor Identity where

fmap f m = Identity (f (runIdentity m))

Lemma 4.3.20. Type constructor Identity : HASKÐ→ func is a functor.

Proof 4.3.21. Category theoretic rules, to represent a functor, that are given in

subsection 4.2.1 must be shown to satisfy.
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1. proof via Identity Integer type:

1 -- FIdA = IdFA; fmap id = id

2 1. runIdentity(fmap id (return 10)) = runIdentity(id (return 10))

3 -- F(g . h) = F g . F h; fmap (f . g) = (fmap f) . (fmap g)

4 2. runIdentity(fmap h(fmap f (return 10)))

5 = runIdentity((fmap (h.f)) (return 10))

6 where f, h :: Integer -> Integer; f x = x + 5, h x = x + 10

2. proof via Identity Char type:

1 -- FIdA = IdFA; fmap id = id

2 1. runIdentity(fmap id (return ’a’) = runIdentity(id (return ’a’))

3 -- F(g . h) = F g . F h; fmap (f . g) = (fmap f) . (fmap g)

4 2. runIdentity(fmap (Char.toLower)(fmap(Char.toUpper)(return ’a’)))

5 = runIdentity((fmap ((Char.toLower).(Char.toUpper)))

6 (return ’a’))

Eventually;

• Identity ∶ Ob j (HASK) Ð→Ob j ( f unc)
Integer z→ Identity Integer

Char z→ Identity Char

Float z→ Identity Float

• Identity ∶ Morph (HASK) Ð→Morph ( f unc)
(Integer→ Integer→ ...) z→ Identity ( Integer→ Integer→ ... )
(Char→Char→ ...) z→ Identity ( Char→Char→ ... )
(Float → Float → ...) z→ Identity ( Float → Float → ... )

Such as Maybe, [] and State s type constructors; Identity is also said to be a functor

defined between category HASK and its subcategory func.

Identity as a Monad Class Instance

class Functor F where

fmap ∶∶ (a → b) → F a → F b

instance Functor Identity where

fmap f m = Identity (f (runIdentity m))
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class Monad m where

join ∶∶ m (m a) → m a

return ∶∶ a → m a

bind ∶∶ m a → ( a → m b) → m b

instance Monad Identity where

return a = Identity a

m >>= k = k (runIdentity m)
join m = runIdentity m

Lemma 4.3.22. The triple (Identity + fmap, join, return), equivalently (Identity, bind,

return) is a monad in Haskell environment.

Proof 4.3.23. Therefore, category theoretic rules, to represent a monad, that are

given in subsection 4.2.2 must be shown to satisfy for all of the data constructors of

given type that is a basic encapsulated function, here.

1. proof via Identity Integer type:

1 -- join . join (fmap id) = join . (fmap join)

2 1. runIdentity(join(fmap join (encap(encap(encap 4)))))

3 = runIdentity(join( join (fmap id(encap (encap(encap 4))))))

4 -- join . return (fmap id) = join . (fmap return)

5 2. runIdentity(join(fmap return(encap 4)))

6 = runIdentity(join(return(fmap id(encap 4))))

7 -- return . f = (fmap f) . return

8 3. runIdentity(return(f 10)) = runIdentity(fmap f(return 10))

9 -- join . (fmap (fmap f)) = (fmap f) . join

10 4. runIdentity(join(fmap(fmap f)(encap(encap 10))))

11 = runIdentity(fmap f(join(encap(encap 10))))

12 where f :: Integer -> Integer; f x = x + 5 and id x = x
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2. proof via Identity Char type:

1 -- join . join (fmap id) = join . (fmap join)

2 1. runIdentity(join(fmap join (return(return(return ’a’)))))

3 = runIdentity(join( join (return(return(return ’a’)))))

4 -- join . return (fmap id) = join . (fmap return)

5 2. runIdentity(join(fmap return(return ’a’)))

6 = runIdentity(join(return(return ’a’)))

7 -- return . f = (fmap f) . return

8 3. runIdentity(return(Char.toUpper ’a’))

9 = runIdentity(fmap Char.toUpper(return ’a’))

10 -- join . (fmap (fmap f)) = (fmap f) . join

11 4. runIdentity(join(fmap(fmap Char.toUpper)(return(return ’a’))))

12 = runIdentity(fmap Char.toUpper(join(return(return ’a’))))

13 where id x = x

As the above equalities hold, the triple (Identity+ f map,return, join) or equally

(Identity,return, bind) is proven as a monad. As mentioned, the main idea behind

the implementation of Identity monad is to create the Eval monad in order to define

the evaluation strategies to parallelize the computations, if possible.

Next chapter of the project is completely relying on the parallelization issue via

original strategies and the second generation ones that are encapsulated by Eval type

constructor with the proof demonstrates that it satisfies the rules of constructing

a monad by the help of natural transformations: bind + return or ( join, f map) +
return.
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Chapter 5

Semi Explicit Parallelism in Haskell

5.1 Terminology: Parallel Computing

Parallel computing is splitting up the solution of a large computational problem into

smaller tasks and performing them simultaneously over multiple processors to speed

up the computations by exploiting the underlying hardware. In order to implement

parallel computation in the solution of any problem; techniques and strategies to be

applied and the subtasks where the potential parallelism might occur, should already

been defined.

Parallel computing has been used for many years, mostly in high-performance com-

puting, however, interest in it has grown in recent years due to the development

and improvement of multi core chips. After the improvements happened in hard-

ware, parallel computation has become a dominant paradigm in software design,

especially creating parallel algorithmic solutions to the problems which seems to

become a hot topic in computing science.

In accordance with the above mentioned innovations, programming languages have

also began to provide parallel programming support. For instance, Intel has come up

with a library, called OpenMp, which involves some number of external pragmas to

bring the parallel programming opportunity for C++ users. As a functional program-

ming language, Haskell also provides the opportunity to create parallel programs to

its users via specific methodologies called strategies that are defined detailedly in

this section of the project.

Haskell seems very convenient language for parallel computations due to the rea-

sons:
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• Being purely functional, means there is no side effects.

• Having a strong type system (type castings are not allowed).

• Including a runtime system (GHC) that supports light-weight threading called

sparks.

• Involving second generation strategies that are non-strict. Assume function

evaluation f x ∶

– f might never need x, then no problem occurs.

– f might need x immediately, then no problem occurs but parallelization

is interrupted.

– f might not need x immediately which means parallelization is provided.

On the other hand, parallelization internally has some number of disadvantages

should be envisaged before the implementation of the process:

• Creation of threads or sparks brings an overhead to the system.

• Garbage collection should be evaluated in the sense of parallelization.

• Non-strictness in second generation strategies might be problematic in some

cases such as:

– How far to be evaluated seems unclear.

– The interaction of it with garbage collection should be made clear.

Note 5.1.1. Due to the above mentioned problematic cases, implicit or fully auto-

matic parallelization still seems a future goal. For the time being, the only thing

can be done is to help the compiler by using basic annotations that are providing

parallelization. [12]

However, Haskell eliminates such number of traditional error-prone issues of par-

allel programming due to being a safe (in terms of type casting and consistency of

semantics) programming language:

1. Parallel programming in Haskell is deterministic: The algorithm is called

deterministic parallel algorithm, if it returns the same result for the same input

query regardless of the number of processors it has been run over. Therefore,

anyone could debug the parallel Haskell programs without running them in

parallel.
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2. Parallel programs in Haskell do not explicitly deal with the synchronization

and communication issues.

• Synchronization is the term used to indicate the action of waiting for the

other task to complete by an arbitrary task, most probably, because of

the dependencies between them.

• Communication defines the interactions done in between the tasks, run-

ning over different cores in parallel.

Synchronization is done by the GHC runtime system and/or the parallelism

libraries. From the point of communication view, it could be noted that com-

munication is also done internally by the runtime system GHC, since all the

tasks share the same heap and share data without any constraints which means

that although there is no communications in the program level, it is done in

hardware level as the transmission of data between the caches of the different

cores.

Deterministic computation, Synchronization and Communication terms are guaran-

teed to be done by the runtime system of Haskell. On the other hand, Haskell

programmer has to deal with some issues given below to get the tasks working in

parallel:

1. Partitioning refers to the meaning that a whole work is divided into subtasks

that could execute in parallel.

• Granularity indicates the sizes of subtasks. If tasks are divided into rel-

atively small subtasks, then the thread or spark overhead that removes

the aim of parallelism, occurs. If tasks are divided into relatively large

subtasks, this time the parallelization potential decreases. Ideally, gran-

ularity of the subtasks should be large enough the gain the parallelization

potential together with minimum overhead.

2. Data dependencies are the mathematical dependency in between any subtasks

of an arbitrarily given task which forces the serialization of these dependent

tasks. [12]

As it is inferred from the above work-sharing, the notion Semi-explicit parallelization

originates from the feature that both compiler and programmer have, nearly, the

same load of responsibilities in creating the parallelization. The notion, Explicit
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parallelization, is spoken of when all of the responsibility is put on the programmer,

while everything to be done, in terms of parallelization, is expected from compiler

(still a future goal), to define the computation the term Implicit parallelization is

used.

Furthermore, parallelization process involves so many approaches depending on its

own demands such as:

1. Data parallelism, in which data is divided into many pieces and the general

operation is implemented over each subpart (piece) in parallel.

2. Task parallelism, in which the whole work is divided into its subtasks and

these tasks are evaluated (executed) in parallel.

In this part of the thesis project, we are completely focusing on the special strategies

that are defining the evaluation of a structure with components in sequence or in

parallel without generating interesting results.

Haskell programming language involves two versions of Second Generation strategies:

1. Original Strategies.

2. Second Generation Strategies which are the evolved versions of the original

strategies encapsulated by Eval monad.

The parallel programming model in Haskell is based on two annotations:

• par ∶∶ a→ b→ b

• pseq ∶∶ a→ b→ b

As inferred from their type signatures, both par and pseq annotations take two argu-

ments, a, b, as inputs and return a value in the form of second argument, b. There-

fore, computationally, no difference exists between these two functions. However,

the key point is hidden in the sense of evaluation order that is under their guid-

ance which means that par annotation hints to the Haskell implementation that it

might be beneficial to evaluate the first argument in parallel while pseq guarantees

the second argument is evaluated after the evaluation of the first one (in sequence).

[14][24]
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• par annotation stores its first argument, a, as a spark which is a light-weighted

thread, into the spark pool, then resumes the evaluation of its second argu-

ment, b. The idea is that an idle processor might find that spark in the pool

and evaluates it. Therefore, an uncertified parallelization is supplied by the

GHC run time system in between the evaluations of the arguments a and b.

• pseq is used to sequentialize the computation. Since, in lazy programming

languages such as Haskell, the sequence of evaluation is undefined. By the

usage of the pseq annotation sequence is converted clear by evaluating first

argument before than second one. [12]

Note 5.1.2. Both par and pseq annotations evaluate their first arguments to weak head

normal form (WHNF) and second arguments to normal form (NF). [25]

Note 5.1.3. Normal Form (NF) is the notion indicating the situation that if there is

no more evaluation could be performed over an arbitrary expression, which means

that the expression, under discussion, is already reduced to its value form and values

are always in the normal form. On the other hand, if there is at least one evaluation

to be done then, that expression is still not evaluated until its value form, therefore

it is called in Weak Head Normal Form (WHNF).

An expression is called in WHNF, if and only if it is either:

• a function applied to too few arguments such as (∗)8, fib

• a constructor that is already applied to arguments such as Just 100, [100]

• or a lambda expression in the form of (/x→ expression).

5.2 Original Strategies

Original evaluation strategies, generated by [26] Trinder et al, are actually higher

order functions which indicate the program’s dynamic evaluation behavior without

making any change on the algorithmic construction. Therefore, the program, now,

could be said to be composed of two parts: Algorithm and Strategies.

Here is the definition of original strategies:

type Strategy a = a → ()

which is a function, takes an argument a as input and returns (), unit type, as output,

since it only defines nothing more than the dynamic behavior of the program.
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5.2.1 Strategies for the Control of Evaluation Degree: r0, rwhnf,
rnf.

In this session, original strategies that are dealing with evaluation degree not with

order are defined and demonstrated via their signatures.

The first one, r0, is the most basic one:

rnf r0 ∶∶ Strategy a

r0 = ()

deals with, actually, nothing. Although it seems to make effort only on the eval-

uation degree of the computation, it does not cause any reduction over the given

expression.

In Haskell, an arbitrary expression could be either in WHNF or in NF. Reducing an

expression into WHNF is done by a function whose signature is given below:

rwhnf ∶∶ Strategy a

rwhnf x = x ‘pseq‘ ()

Therefore, rwhnf function takes an expression x; passes it into pseq annotation as

its first input and () as the second one. By this way, expression x is evaluated into

WHNF and then () is returned.

In order to be able to reduce an arbitrary expression into its NF or value form, rwhnf

function is called recursively till the evaluation ends up with a value.

class NFData a where

rnf ∶∶ Strategy a

rnf = rwhnf

Since, different datatypes require different ways to be reduced into their NFs, above

type class is defined to encapsulate each datatype. Consider the list datatype is

demanded to be reduced into NF:

instance NFData [a] where

rnf [] = ()
rnf (x ∶ xs) = rnf x ‘pseq‘ rnf xs
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In order to be able to apply strategies, using combinator is used:

using ∶∶ a → Strategy a → a

x ‘using‘ s = s x ‘pseq‘ x

It takes an argument, a, and a strategy, Strategy a. Evaluation of the argument

depending on the inputted strategy is returned as the result.

5.2.2 Combined Original Strategies for Sequentialization and
Parallelization: seqList, parList, seqMap, parMap.

Due to being just higher order function, second generation strategies could be com-

bined to be passed like parameters or to be composed by the function composition

operation. This combination is done either in sequence or in parallel.

For instance, strategy seqList applies the given strategy to every element of a given

list in sequence:

seqList ∶∶ Strategy a → Strategy [a]
seqList strat [] = ()
seqList strat (x ∶ xs) = strat x ‘pseq‘ (seqList strat xs)

There is no doubt that the same strategy could be changed as parList which applies

the input strategy to each element of the given list in parallel:

parList ∶∶ Strategy a → Strategy [a]
parList strat [] = ()
parList strat (x ∶ xs) = strat x ‘par‘ (parList strat xs)

Besides, a function could be applied to elements of a given list either in parallel or

in sequence:

seqMap ∶∶ Strategy b → (a → b) → [a] → [b]
seqMap strat f xs = map f xs ‘using‘ seqList strat

seqMap takes a strategy, Strategy b, a function, (a→ b), and a list, [a], then applies

the function together with the light of the inputted strategy to every element of the

given list in sequence and returns the new generated list as its output.
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parMap ∶∶ Strategy b → (a → b) → [a] → [b]
parMap strat f xs = map f xs ‘using‘ parList strat

In contrast to seqMap; parMap applies the function to every element of the list with

the input strategy in parallel and returns the new list as output.

5.3 Second Generation Strategies via Eval Monad

Second generation strategies by [11] do not change some number of features that

are also provided by original ones. Here are the preserved features:

• The feature that introduces evaluation order which is left unspecified in Haskell

environment stays unchanged.

• The abstraction layer which distinguishes between the parallel pragmas and

algorithm is also left unchanged.

Second generation strategies bring some additional benefits onto the already exist-

ing ones, due to returning the arguments of computations inside a new data type

constructor, Eval, (instead of returning unit types) which is proven as a monad in

the next session, such as:

• Unlike original compositional strategies; the ones that are defined by the help

of Eval monad allows garbage collector to define already evaluated (fizzled)

sparks and discard them from the spark pool.

• Speculative parallelism is supported in second generation strategies which

is impossible to implement in original ones due to only relying on the root

garbage collection policy.

5.3.1 Eval Type Constructor as a Functor and Monad Instance

Eval monad, like Identity; does not make any change in the computation but it

effects the evaluation order of it. For instance, some parts of the computation might

be evaluated in parallel while others are done in a serial manner, with encapsulating

the basic annotations of par and pseq. Below, you see the definition of Eval type in

Haskell:
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data Eval a = Done a

In order to unwrap the inside type, runEval function, whose signature given below,

is used:

runEval ∶∶ Eval a → a

runEval (Done a) = a

Eval as a Functor Class Instance

Haskell code that defines Eval as an instance of functor class:

class Functor f where

fmap ∶∶ (a → b) → f a → f b

instance Functor Eval where

fmap f x = (return . f )(runEval x)

Lemma 5.3.1. Type constructor Eval : HASKÐ→ func is a functor.

Proof 5.3.2. Category theoretic rules, to represent a functor, that are given in sub-

section 4.2.1 must be shown to satisfy.

1. proof via Eval Integer type:

1 -- FIdA = IdFA; fmap id = id

2 1. runEval(Main. fmap Main. id (encap 10))

3 = runEval(Main. id (encap 10))

4 -- F(g . h) = F g . F h; fmap (f . g) = (fmap f) . (fmap g)

5 2. runEval(Main. fmap h(Main. fmap f (encap 10)))

6 = runEval((Main. fmap (h. f))

7 where f, h :: Integer -> Integer; f x = x + 5, h x = x + 10

2. proof via Eval Char type:

1 -- FIdA = IdFA; fmap id = id

2 1. runEval(Main. fmap Main. id (Main. return ’a’))

3 = runEval(Main. id (Main. return ’a’))

4 -- F(g . h) = F g . F h; fmap (f . g) = (fmap f) . (fmap g)

5 2. runEval(Main. fmap (Char. toLower)

6 (Main. fmap(Char. toUpper)(Main. return ’a’)))

7 = runEval((Main. fmap ((Char. toLower). (Char. toUpper)))

8 (Main. return ’a’))



90

Eventually;

• Eval ∶ Ob j (HASK) Ð→Ob j ( f unc)
Integer z→ Eval Integer

Char z→ Eval Char

Float z→ Eval Float

• Eval ∶ Morph (HASK) Ð→Morph ( f unc)
(Integer→ Integer→ ...) z→ Eval ( Integer→ Integer→ ... )
(Char→Char→ ...) z→ Eval ( Char→Char→ ... )
(Float → Float → ...) z→ Eval ( Float → Float → ... )

Such as Maybe, [], State s and Identity type constructors; Eval is also said to be

a functor defined between category HASK and its subcategory func. Eval as a
Monad Class Instance

class Functor f where

fmap ∶∶ (a → b) → f a → f b

instance Functor Eval where

fmap f x = (return . f )(runEval x)
class Monad m where

join ∶∶ m (m a) → m a

return ∶∶ a → m a

bind ∶∶ m a → ( a → m b) → m b

instance Monad Eval where

return x = Done x

join x = runEval x

x >>= k = k x

Lemma 5.3.3. The triple (Eval + fmap, join, return), equivalently (Eval, bind, return)
is a monad in Haskell environment.

Proof 5.3.4. Therefore, category theoretic rules, to represent a monad, that are

given in subsection 4.2.2 must be shown to satisfy for all of the data constructors of

given type that is a basic encapsulated function, here.
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1. proof via Eval Integer type:

1 -- join . join (fmap id) = join . (fmap join)

2 1. runEval(Main. join(Main. fmap

3 Main. join (encap(encap(encap 4)))))

4 = runEval(Main. join( Main. join (Main. fmap

5 Main. id(encap (encap(encap 4))))))

6 -- join . return (fmap id) = join . (fmap return)

7 2. runEval(Main. join(Main. fmap Main. return(encap 4)))

8 = runEval(Main. join(Main. return(Main. fmap

9 Main. id(encap 4))))

10 -- return . f = (fmap f) . return

11 3. runEval(Main. return(f 10))

12 = runEval(Main. fmap f(Main. return 10))

13 -- join . (fmap (fmap f)) = (fmap f) . join

14 4. runEval(Main. join(Main. fmap(Main. fmap f)(encap(encap 10))))

15 = runEval(Main. fmap f(Main. join(encap(encap 10))))

16 where f :: Integer -> Integer; f x = x + 5 and id x = x

2. proof via Eval Char type:

1 -- join . join (fmap id) = join . (fmap join)

2 1. runEval(Main. join(Main. fmap Main. join (Main. return

3 (Main. return(Main. return ’a’)))))

4 = runEval(Main. join( Main. join (Main. return(Main. return

5 (Main. return ’a’)))))

6 -- join . return (fmap id) = join . (fmap return)

7 2. runEval(Main. join(Main. fmap Main. return(Main. return ’a’)))

8 = runEval(Main. join(Main. return(Main. return ’a’)))

9 -- return . f = (fmap f) . return

10 3. runEval(Main. return(Char. toUpper ’a’))

11 = runEval(Main. fmap Char. toUpper(Main. return ’a’))

12 -- join . (fmap (fmap f)) = (fmap f) . join

13 4. runEval(Main. join(Main. fmap(Main. fmap Char. toUpper)

14 (Main. return(Main. return ’a’))))

15 = runEval(Main. fmapChar. toUpper(Main. join

16 (Main. return (Main. return ’a’))))

17 where id x = x

As the above equalities hold, the triple (Eval+ f map,return, join) or equally (Eval,return,

bind) is proven as a monad. As mentioned, the main idea behind the implementation

of Eval monad is to encapsulate the par and pseq annotations of Haskell language to
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affect the evaluation order and solve some memory management problems arise in

original strategies, by this way parallelization is getting closer to implicit one since

the amount of help done for compiler is increasing.

Together with the help of Eval monad, below you see the new definition of strate-

gies:

type Strategy a = a → Eval a

which is again a function, takes an argument a as input, lifts or puts that input into

the Eval monad (container) and returns that container.

5.3.2 Original Strategies Revisited (Second Generation Strate-
gies): rpar, rseq, rdeepseq, parList

In this session, second generation strategies are defined and demonstrated via their

type signatures.

The first one is correspondence of r0 in original strategies. Again, it does not have

any effects in evaluation order or reduction, it only lifts or puts the input argument

into Eval monad. Its name also remains unchanged:

r0 ∶∶ Strategy a

r0 x = return x

The second one corresponds to rwhnf in original strategies. Similarly, it takes an

argument, x, evaluates it into its WHNF and then returns its lifted version which is

in the Eval monad, in serial.

rseq ∶∶ Strategy a

rseq x = x ‘pseq‘ return x

The third one does not exist in original strategies. Similar to rseq, it takes an argu-

ment, x, evaluates it into its WHNF and returns its lifted version in the Eval monad,

but in parallel.

rpar ∶∶ Strategy a

rpar x = x ‘par‘ return x
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The fourth strategy, namely rdeepseq and correspondingly rnf in original strategies,

takes an argument as an input and evaluates it into its NF and lifts the evaluated

version into Eval monad and returns it as output.

rdeepseq ∶∶ NFData a => Strategy a

rdeepseq x = rnf x ‘pseq‘ return x

Analogous to original strategies, in second generation strategies, an input strategy

could be applied to each element of a given list in parallel.

parList ∶∶ Strategy a → Strategy [a]
parList s = evalList (rpar ‘dot‘ s)

where

evalList ∶∶ Strategy a → Strategy [a]
evalList s [] = ()
evalList s (x ∶ xs) = do x′ < − s x

xs′ < − evalList s xs

return (x′ ∶ xs′)
dot ∶∶ Strategy a → Strategy a → Strategy a

s2 ‘dot‘ s1 = s2 . runEval . s1

evalList traverses the list and forces each element for a strategy to be applied while

dot combines given two strategies and returns the combined strategy.

In the sense of evalList strategy in second generation ones, input strategy is applied

to each element of the list in parallel.

5.3.3 New Memory Management Methodology

New generation of strategies, that are defined in the previous session, supply the

additional feature of returning arguments of an arbitrary strategy inside the Eval

monad, instead of returning a void pointer. This innovation lets compiler do memory

management much more feasibly by using a smart garbage collector.

In oder to be able to make benefits of second generation strategies visible, first of all,

the problem arising from the usages of original strategies should be explained. For
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that reason, let’s consider the par annotation which saves a pointer to the heap node,

namely spark pool, to represents its first argument inside. At exactly this point, the

management of that spark pool comes to the surface which involves the problematic

case of when to remove the spark from the pool.

Let’s go a little deeper in spark pool management mechanisms. Here, two main

policies are given by using the terminology of [14]:

1. Weak Policy: In this policy weak references are used. Weak references permit

garbage collector to collect any object although it could be accessed by main

program. They are generally used in the programs demand too much memory

space to run. It is tempting to remember that collecting them is as easy as

recreating them. (does not keep the object it refers to alive. )

2. Root Policy: Unlike weak policy, in the root policy, strong references are used

which means while main program has an access to the referenced object in a

way, garbage collection cannot collect it, only when main program loses the

access or reference, then this object could be collected. (keeps the object it

refers to alive. )

Both policies end up with problematic issues, if they are used together with the

original strategies:

1. Weak policy causes all potential parallelism to be lost, since in the case of

garbage collector collects all of the created sparks, it is not possible to recre-

ate the references again. Because, original strategies do not return any infor-

mation to its caller.

2. On the other side, Root policy supports potential parallelism to be imple-

mented. However, if there are no enough processors available, then most of the sparks

will never be fizzled and will be referenced as space leaks, unless their ref-

erence is canceled by the main program (if they are not needed any more).

[25]

5.3.3.1 Fizzled Sparks

A spark fizzles when the expression that it points is evaluated to its normal form (not

possible to reduce it any more) by the main thread, not by the one it is assigned to
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be evaluated in parallel. Therefore, if a spark is fizzled, then it should be dismissed

from the pool. However, composed original strategies do not provide this kind of

a feature, since they do not return information about the expression’s evaluation

degree to its caller (program). In other words, no mater if it is fizzled or not, most

of the sparks are converted into real operating system threads causing space leaks,

although they are potentially fizzled.

In second generation strategies, fizzled sparks are not allowed to be converted into

real operating system threads; instead they are pruned. Since together with the

usage of rpar annotation, the evaluation degree information of every expression has

been put in spark pool is returned to the caller into a container that is Eval monad.

By this way, garbage collection could be done in a better way in order to prevent

space leaks in the memory which means that while an expression has already been

evaluated to its NF is discarded, another one that is still under evaluation could be

reached depending on the demand of the main program (caller).

5.3.3.2 Speculative Parallelism

Speculative parallelism could be used when there is an inner dependency among

the threads expected to be run in parallel without waiting affiliated thread to halt,

dependent thread could start its evaluation by predicting the demanded value, soon

after, affiliated thread returns a result, predicted value is compared with it, if any

difference arises, then result of the dependent thread is scaled in association with

the result of the affiliated thread.

In root garbage collection policy, speculative parallelism is not supported, since

any speculative spark would become a space leak. On the other hand, weak policy

prunes speculative sparks from the pool, if they are not reachable any more..

5.3.3.3 Life Cycle of a Spark

In advance of mentioning about the performance analyses, most important notice

should be the life cycle of a GHC spark. In this sense; a spark is called:

• overflowed, if the spark pool is already full.

• dud, if it is already evaluated before the creation.

• created, if it is put in the spark pool.



96

Soon after a sparks is created, then it could be threated in three ways. It is said; a

spark could be:

• converted, if it runs in parallel with the others by the Haskell Execution Con-

text it was assigned before.

• fizzled, if it is evaluated into its Normal Form by the main thread and called

pruned when it is dismissed out of the pool by the garbage collector during

the evaluation.

• garbage collected, if it is not needed during the evaluation. The idea is dis-

carding these sparks right after the evaluation (for sure) with the help of

garbage collector. This option is only valid for second generation strategies

due to the usage of weak references as the garbage collection policy which

enables not to evaluate unnecessary sparks for the computation.

Note 5.3.5. The lifecycle of a spark, installation and usage details of program called

Threadscope could be found on this website:

http://www.haskell.org/haskellwiki/ThreadScope_Tour.

Note 5.3.6. Different number of threads could be created when the same paral-

lelization effort spent for the same algorithm by second generation and original

strategies. The reason for that originates from GHC that has a non-deterministic

execution model in which a particular expression may be evaluated multiple times

at runtime.

Basically; implementation allows multiple processors to evaluate any thunk at the

same time that is not tried to be prevented. The actual attempt of second generation

strategies focuses on detecting large amount of duplicate evaluations. That means

that number of sparks created in the evaluation of an arbitrary thunk completely

depends on the number of processors performed the evaluation in question at the

same time. (from the explanation of Dr. Simon Marlow. )

Note 5.3.7. In both second generation and original strategies total number of created sparks

might not be equal to created sparks + fizzled sparks that means that there might be

some number of sparks created but neither converted nor fizzled. Since, suppose

that an arbitrary thunk, involving par annotations, is started to be evaluated by

more than one core which yields in the creation of multiple number of sparks for

the same job (spark pools are actually circular heaps, existing one for each core,

that are managed by lock-free and work stealing manner for load balancing issues).

http://www. haskell. org/haskellwiki/ThreadScope_Tour
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From that point on, some of these sparks will be fizzled, some others will be con-

verted into OS threads to provide parallelism and the rest will not be needed during

the evaluation, since sub-tasks assigned to them are already evaluated by other

spark(s).

Note 5.3.8. The number of created sparks for each parallelization attempt per-

formed by using original and second generation strategies are more or less the

same that demonstrates that both of the two formulations are expressing the same

parallelism.

Following chapter of the project demonstrates the implementations of some algo-

rithms that could be parallelized by using both original and second generation strate-

gies, comparatively in the senses of memory management and elapsed time perfor-

mance issues.
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Chapter 6

Comparisons of Original and Second
Generation Strategies

In order to be able to illustrate and compare original and second generation strate-

gies, here, in this chapter of the project, parallelized versions of calculating de-

manded Fibonacci number within the series, sorting a given list with quick-sort

algorithm, RSA encryption, decryption of given texts and Karatsuba multiplication

of large numbers are given as examples both with original and second generation

strategies with their performance analyses, comparatively.

6.1 Parallel Fibonacci

The well-known function which calculates the intended element of the Fibonacci

series is written in both of the parallelization manners and performance evaluations

are given in this part. The recursive function also checks the depth of the paral-

lelization to be able to finalize it at a demanded level.

First of all, lets evaluate the parallel code without using strategies, only by anno-

tations provided by Haskell runtime system, that takes the current parallelization

depth, limit of it with the sequence of intended Fibonacci number in the series and

returns the corresponding value.

Function first checks whether current parallelization depth is equal to or greater than

the limit, if yes, then it no more creates sparks to be evaluated in parallel, instead it

calls the serial version of the function which is also recursive. Otherwise, function

creates a spark for its each recursive call to calculate the Fibonacci series values of
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two numbers, one of which is one and the other is two less than the input value, in

parallel. These recursive calls proceed until demanded parallelization depth or the

base case (n <= 1) is reached.

fibParWs ∶∶ Integer → Integer → Integer → Integer

fibParWs currentDepth limit n

∣ n <= 1 = 1

∣ currentDepth >= limit = fibSer n

∣ otherwise = x ‘par‘ (y ‘pseq‘ x + y)
where

x = fibParWs (currentDepth+1) limit (n−1)
y = fibParWs (currentDepth+1) limit (n−2)

In the above code, algorithm and the annotations providing parallelism, (par and pseq),

are not split off each other. As emphasized in the section which explains the reason

why strategies are standing for, it is better to distinguish between the algorithm and

the parallel annotations in parallel with the motto Algorithm + Strategies = Parallelism.

fibParOr ∶∶ Integer → Integer → Integer → Integer

fibParOr currentDepth limit n

∣ n <= 1 = 1

∣ currentDepth >= limit = fibSer n

∣ otherwise = x + y ‘using‘ strategy

where

x = fibParOr (currentDepth+1) limit (n−1)
y = fibParOr (currentDepth+1) limit (n−2)
strategy res = (rnf x) ‘par‘ (rnf y)

In both of the codes above and below, the crucial idea is to divide the problem that

indicates the calculation of the correspondence of the input values in the Fibonacci

series, into two sub problems (calculation of the values fib (n-1) and (n-2)) after than

assigning them to the GHC sparks and calling the function recursively until the base

case or enough depth is reached. In other words, a kind of tree structure, demon-

strated below, is constructed. At each level of the tree, one GHC spark is created

and assigned to the relevant calculation (evaluation of ’x’) which is expected to be

evaluated to their normal forms by the usages of rnf and rpar functions. Evaluation

of ’y’ is already done by main thread, so there is no need to create one spark also

for it.
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fibParEval ∶∶ Integer → Integer → Integer → Integer

fibParEval currentDepth limit n

∣ n <= 1 = 1

∣ currentDepth >= limit = fibSer n

∣ otherwise = x + y ‘using‘ strategy

where

x = fibParEval (currentDepth+1) limit (n−1)
y = fibParEval (currentDepth+1) limit (n−2)
strategy s = do {rpar x; rseq y}

Furthermore, the main difference between the semantics of the functions fibParOr

and fibParEval is the memory management mechanism of second generation strate-

gies which allows fizzled sparks to be discarded out of the pool without evaluated

it once again (due to usage of Eval monad) which supplies prevention of possible

space leaks in the main memory.

fib(n)

fib(n-1)

fib(n-1-1)

toBaseOrLimitCase

fib(n-1-2)

toBaseOrLimitCase

fib(n-2)

fib(n-2-1)

toBaseOrLimitCase

fib(n-2-2)

toBaseOrLimitCase

FIGURE 6.1: Fibonacci n Calculation Tree

Performance analyses of the calculations of Fibonacci 35, 37 and 40, in both orig-

inal and second generation strategies, are comparatively plotted on graphs and the

program called threadscope is used to evaluate eventlog extended files of the calcu-

lations visually to be able to see the occurrence of the parallelization.

Note 6.1.1. The performance analyses that are given in this part is carried out on

Intel Core™ 2 Quad Processor Q6600 (8M Cache, 2.40 GHz, 1066 MHz FSB) CPU

and 64-bit Ubuntu 11.10 OS running, environment.

In all of the performance analysis tables, for each parallelization depth from 1 to 32,

handled elapsed times of each evaluation, total number of sparks with created and
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pruned ones and maximum amount of heap space used (maximum heap residency)

together with total memory usages are given, respectively.

As seen in the Fibonacci 35, 37 and 40’s performance tables; total number of created

sparks both for original and second generation strategies at each level are more or

less the same; which demonstrates that the same conditions are satisfied for the

comparison issue, therefore comparison could now be focused on the parts showing

the handled elapsed times, number of created sparks and maximum amount of heap

spaces occupied during the parallel evaluation.

For the evaluation of Fibonacci 35 over 2 cores; Second Generation Strategies give

the best improvement in the elapsed time of 0.83 seconds at 16th level with maxi-

mum heap residency of 15224 bytes by using only 28 sparks converted. On the other

side of the comparison, Original Strategies serve the best elapsed time as 0.82 sec-

onds again at parallelization depth 16 with 22384 bytes of maximum heap residency

by converting 29741 sparks. Since, original strategies evaluate all of the sparks al-

though some of them are not actually needed for the whole computation (sparks to

which the same sub-calculation is assigned), due to root garbage collecting policy.

The same evaluation over 3 and 4 cores end up with more or less same situations.

Over 3 cores, the best time handled by Original Strategies is 0.59 seconds at depth

4 with 15 sparks converted and 38752 bytes of heap residency. Second Generation

Strategies could reach its best performance at parallelization depth number 8 with

0.60 seconds, only 9 of 255 sparks is converted with the same heap residency of

38752 bytes.

Over 4 cores, Original Strategies provide its best performance in elapsed times

at both 8th and 12th levels with 0.51 seconds. At level 8; all of the created 274

sparks are converted into real OS threads resulting in 39776 bytes of maximum

heap residency. Second Generation Strategies returns the result of the evaluation in

the fastest way at depth 16 in 0.53 seconds by only converting 50 sparks into real

OS threads with the 38752 bytes of maximum heap residency.

In the above table, performances of calculating Fibonacci 35 is examined detailedly.

Even though, original strategies seem a little ahead of second generation strategies

in terms of elapsed time performances, heap residencies demonstrate that the same

job is done by using less space allocation in the heap by second generation strate-

gies.
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TABLE 6.1: Fibonacci 35

Number o f Strategy Best Average Max. Heap Avg. Heap
Cores Type Time Time Residency o f Best Residency

(sec.) (sec.) (bytes) (bytes)
2 Original 0.82 0.88 22384 14285

Sec. 0.83 0.85 15224 15598

3 Original 0.59 0.66 38752 45560
Sec. 0.60 0.70 38752 34532

4 Original 0.51 0.60 39776 41423
Sec. 0.53 0.61 38752 38030

TABLE 6.2: Fibonacci 37

Number o f Strategy Best Average Max. Heap Avg. Heap
Cores Type Time Time Residency o f Best Residency

(sec.) (sec.) (bytes) (bytes)
2 Original 1.57 1.66 13640 13116

Sec. 1.63 1.69 13664 11131

3 Original 1.28 1.39 27584 18364
Sec. 1.25 1.37 11864 13691

4 Original 1.14 1.30 24312 21896
Sec. 1.16 1.31 24200 18734

TABLE 6.3: Fibonacci 40

Number o f Strategy Best Average Max. Heap Avg. Heap
Cores Type Time Time Residency o f Best Residency

(sec.) (sec.) (bytes) (bytes)
2 Original 5.47 5.88 13952 12049

Sec. 5.50 5.86 14072 11662

3 Original 3.98 4.69 19488 15519
Sec. 3.96 4.42 18632 14666

4 Original 3.62 4.38 24608 18933
Sec. 3.44 4.01 23584 17582

The same examination is also done for evaluations of Fibonacci 37 and 40. In these

cases, more or less, same conditions arise. Some number of created sparks are

fizzled and discarded from the spark pool preventing possible space leaks on the

memory.
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Parallel Fibonacci 40 Calculation: Speed Up
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FIGURE 6.2: Parallelization of Fibonacci 40: Speed Up Values

For more details, related tables in the appendix part could be examined, in the ver-

sion which parallelization implemented by original strategies, maximum heap resi-

dencies are behind of second generation ones but they perform better timings than

second generation ones. Since, in second generation strategies, fizzled sparks are

discarded as soon as being noticed, but in original ones, to be able to understand

whether a spark is fizzled or not it should be evaluated once again creating extra

workload for CPU resulting in waste of time that indicates that extra evaluation in

original strategies took less time than big amount of garbage collection performed

in second generation ones.

6.2 Parallel QuickSort

Quicksort is a very well-know sorting algorithm in computer science which also

could be implemented by recursive coding style as defining a number in Fibonacci

series. Algorithm divides the input list into its sublists recursively until a base point

is reached and sorts the handled sublists depending on the selected pivot elements:

lower elements are put left part of the pivot while higher ones are placing on the

right part. If pivot element is selected randomly, then algorithm is called randomized

quicksort.

Parallelization is provided by assigning a spark to sort each sublist. Parallelized

quicksort algorithm which are coded both by original and second generation strate-

gies are given below.
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orQuickSortPar ∶∶ Integer → Integer → [Integer] → [Integer]
orQuickSortPar [] = []
orQuickSortPar currentDepth limit (x ∶ xs)

∣ currentDepth >= limit = sort (x ∶ xs)
∣ otherwise = (k ++ (x ∶ l)) ‘using‘ strategy

where

k = orQuickSortPar (currentDepth+1) limit [y ∣ y < − xs, y <= x]
l = orQuickSortPar (currentDepth+1) limit [y ∣ y < − xs, y > x]
strategy res = (rnf k) ‘par‘ (rnf l) ‘pseq‘ (rnf res)

In the above code, a compositional strategy res is used to reduce the recursive jobs

k and l to their normal forms in parallel which means for every recursive call of

the main function, one spark is created and assigned to evaluate sorting operation,

k, completely in parallel with main threads job, l. Evaluation of strategy itself to

normal form, rnf res, provides the guarantee to the fully evaluations of the jobs k

and l. It is tempting to note that if rnf res is removed from the code, result will not

change and the difference between the elapsed times, with and without it, will be

negligible.

EvalQuickSortPar ∶∶ Integer → Integer → [Integer] → [Integer]
EvalQuickSortPar [] = []
EvalQuickSortPar currentDepth limit (x ∶ xs)

∣ currentDepth >= limit = sort (x ∶ xs)
∣ otherwise = (k ++ (x ∶ l)) ‘using‘ strategy

where

k = EvalQuickSortPar (currentDepth+1) limit [y ∣ y < − xs, y <= x]
l = EvalQuickSortPar (currentDepth+1) limit [y ∣ y < − xs, y > x]
strategy res = do (rpar k)

(rseq l)
(rdeepseq res)

The same sparking manner is also used for second generation strategies by sparking

job k in parallel with l. However, this time rdeepseq res had to be used in order

to evaluate jobs k and l to their normal forms. Since, rpar and rseq are not the

strategies to evaluate their parameters completely.
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Performance analyses of sorting 1 and 2 millions of randomly generated numbers,

are summarized into below tables such as the ones standing to demonstrate perfor-

mances of parallel Fibonacci algorithm. Over 2, 3 and 4 cores, best elapsed times,

their corresponding heap residencies; average elapsed times measured with average

heap residencies according to parallelization depths are depicted in the tables.

TABLE 6.4: Quicksort 1.000.000 Random Numbers

Number o f Strategy Best Average Max. Heap Avg. Heap
Cores Type Time Time Residency o f Best Residency

(sec.) (sec.) (bytes) (bytes)
2 Original 3.83 3.99 55265480 55747120

Sec. 3.55 3.74 58246468 57351696

3 Original 3.79 3.90 50415960 51295302
Sec. 3.54 3.71 50045216 51767145

4 Original 3.69 3.78 49815776 63333515
Sec. 3.47 3.66 57118432 53385031

In the above case, second generation strategies seem ahead of original ones in the

sense of elapsed time performances of the evaluation whose serial measured time

is 7.08 seconds. Additionally, averages of maximum heap residencies during the

second generation are also by second generation strategies’ side. Since, maximum

heap residencies of best measured time could convince the reader due to the reason

why they could be measured at different parallelization depths which does not let

comparison to be done. In order to avoid this condition, it is much more meaningful

to take average values into account in both cases.

Quicksort Speed Up: 2 Million Entries

S
p

e
e

d
 U

p
 V

al
u

e
s

1.7

1.8

1.9

2

2.1

2.2

2.3

1.7

1.8

1.9

2

2.1

2.2

2.3

Number of Cores
2 3 4

2 3 4

Original Strategies
Second Generation Strategies

FIGURE 6.3: Quicksort Speed Up: 2 Million Entries
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TABLE 6.5: Quicksort 2.000.000 Random Numbers

Number o f Strategy Best Average Max. Heap Avg. Heap
Cores Type Time Time Residency o f Best Residency

(sec.) (sec.) (bytes) (bytes)
2 Original 9.53 11.11 84299840 128311643

Sec. 8.87 9.40 128483984 127573634

3 Original 8.78 10.44 84786832 115139868
Sec. 7.91 8.64 96010296 107357999

4 Original 8.73 9.26 102512456 105088678
Sec. 7.29 8.14 82052784 91115522

Parallelization with second generation strategies are again ahead of original strate-

gies, in both senses, for sorting 2 million randomly generated numbers which se-

rially takes 16.33 seconds to succeed. For more detailed information tables in the

appendix part could be checked. These tables involve measurements for both man-

ner of strategies such as measured times, maximum heap residencies, total number

of sparks, converted sparks, pruned sparks achieved at each parallelization depth (1,

2, 4, 8, 12, 13, 14 and 16).

6.3 Parallel RSA Cryptosystem

RSA is a well-known public key (asymmetric) cryptosystem developed by Ron

Rivest, Adi Shamir and Leonard Adleman in 1978 whose presumed difficulty is

based on prime factorization of a given integer. In this part of the project; encryp-

tion and decryption schemes of cryptosystem are parallelized and compared with

regards to both original and second generation strategies.

Parallelization is not thought in mathematical calculation parts in recursive manner,

instead it is implemented as dividing the given plain or cipher texts into sub texts,

applying the same function over them and lasts with the combination of the texts

which were encrypted or decrypted in parallel.

6.3.1 Parallel RSA Encryption Scheme

In this section encryption scheme of RSA cryptosystem is parallelized; codes and

measured results with their log files that were processed by threadscope are given.
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split4ToEncOr ∶∶ [Integer] → [Integer]
split4ToEncOr (PUB n e) [] = []
split4ToEncOr (PUB n e) (x ∶ xs) = (d ++ c ++ b ++ a) ‘using‘ strategy

where

len = length (x ∶ xs)
(firstHalf ,secondHalf ) = Main.splitAt (len ‘quot‘ 2) (x ∶ xs)
(secondPart1,secondPart2) = Main.splitAt (len ‘quot‘ 4) secondHalf

a = (ersa (PUB n e) firstPart1)
b = (ersa (PUB n e) firstPart2)
c = (ersa (PUB n e) secondPart1)
d = (ersa (PUB n e) secondPart2)
strategy res = (rnf a) ‘par‘ (rnf b) ‘par‘ (rnf c) ‘par‘ (rnf d)

Above and below codes divide the given integer list (after text to integer conversion)

into 4 sublists and create a spark to apply encryption function namely, ersa, to each

sublist in parallel over 4 cores. Totally; three sparks are created to evaluate the jobs

a, b, c and main thread does the evaluation of job d into their normal forms by using

both original and second generation strategies. Other versions of the function also

exist such as dividing the given list into 2 and 3 sub-lists to make it executed over 2

and 3 cores.

split4ToEncEval ∶∶ [Integer] → [Integer]
split4ToEncEval (PUB n e) [] = []
split4ToEncEval (PUB n e) (x ∶ xs) = (d ++ c ++ b ++ a) ‘Main.using‘ strategy

where

len = length (x ∶ xs)
(firstHalf ,secondHalf ) = Main.splitAt (len ‘quot‘ 2) (x ∶ xs)
(secondPart1,secondPart2) = Main.splitAt (len ‘quot‘ 4) secondHalf

a = (ersa (PUB n e) firstPart1)
b = (ersa (PUB n e) firstPart2)
c = (ersa (PUB n e) secondPart1)
d = (ersa (PUB n e) secondPart2)
strategy s = do (rpar ‘dot‘ rdeepseq a)

(rpar ‘dot‘ rdeepseq b)
(rpar ‘dot‘ rdeepseq c)
(rseq ‘dot‘ rdeepseq d)
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Performance analyses of parallel encryption scheme for 50, 100 and 125K1of plain

texts with 186 bits of encryption key are given below whose serial elapsed times are

7.36, 7.73, 8.09 seconds that are measured during the division process of input plain

text into 4, 3 and 2 sub-lists + their encryption processes implemented over a single

core for 50K of input text, respectively. Corresponding results for 100K are 23.79,

24.94 and 26.89 seconds and 34.86, 36.61, 40.05 seconds for 125K of input plain

text.

TABLE 6.6: RSA Encryption of 50K plain text

Number o f Strategy Parallel Max. Heap
Cores Type Time (sec.) Residency o f Best (bytes)

2 Original 6.18 2444576
Sec. 6.13 2335496

3 Original 5.50 2449304
Sec. 5.27 2474656

4 Original 5.09 1722824
Sec. 4.92 1719392

In other words; serial encryption of 50K list (after text to integer conversion) on a

single core after dividing it into 2, 3 and 4 sub-lists takes 8.09, 7.73 and 7.36 seconds

to complete. Therefore, parallelization in this case causes to speed the evaluation

up 1.32, 1.47 and 1.50 times for second generation; 1.31, 1.41 and 1.45 times for

original strategies over 2, 3 and 4 cores.

FIGURE 6.4: Parallel RSA Encryption Scheme: 50K Plain Text

For serial encryption of 100K list (after text to integer conversion)on a single core

after dividing it into 2, 3 and 4 sub-lists with takes 26.89, 24.94 and 23.79 seconds

11K = 1024 bytes
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TABLE 6.7: RSA Encryption of 100K plain text

Number o f Strategy Parallel Max. Heap
Cores Type Time (sec.) Residency o f Best (bytes)

2 Original 22.26 4892176
Sec. 22.16 4992200

3 Original 20.31 5433968
Sec. 20.28 5296960

4 Original 19.46 5104312
Sec. 18.94 5032104

to complete. Therefore, parallelization speeds the evaluation up 1.21, 1.23 and 1.26

times for second generation; 1.21, 1.22 and 1.22 times for original strategies over 2,

3 and 4 cores.

For 125K list, more or less, the same performances are handled with speed up val-

ues of 1.10, 1.15 and 1.18 for second generation; 1.06, 1.15 and 1.17 for original

strategies. For the details; below table could be examined.

TABLE 6.8: RSA Encryption of 125K plain text

Number o f Strategy Parallel Max. Heap
Cores Type Time (sec.) Residency o f Best (bytes)

2 Original 37.87 5656744
Sec. 36.99 5575016

3 Original 31.83 6168648
Sec. 31.73 6128688

4 Original 29.85 5949632
Sec. 29.55 5816496

Above three tables demonstrate that second generation and original strategies have

nearly the same performance results both in the elapsed time and maximum heap

space allocated during the evaluation. The differences are all negligible, since they

originate from the benchmarking process performed one after another. Since, the

number of created, converted, fizzled and unneeded sparks are completely same.

The main difference in the design criteria of second generation and original strate-

gies is that in second generation ones, the whole effort is spent to catch large

amounts of duplicate spark evaluations and to discard them. In this case, all created

sparks are converted to encrypt different sub-lists therefore, there was no duplica-

tion to be caught causing performance differences.
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6.3.2 Parallel RSA Decryption Scheme

The same division and sparking manner in parallel encryption scheme is also used

to parallelize decryption scheme of RSA into 2, 3 and 4 sub-lists to be able to run

them over 2,3 and 4 cores in parallel. Full working codes could be found in the

appendix part of the thesis. Measured results are given in the same manner with the

above one. Below code parallelizes RSA decryption scheme by original strategies:

split4ToDecOr ∶∶ [Integer] → [Integer]
split4ToDecOr (PRIV n d) [] = []
split4ToDecOr (PRIV n d) (x ∶ xs) = (e ++ c ++ b ++ a) ‘Main.using‘ strategy

where

len = length (x ∶ xs)
(firstHalf ,secondHalf ) = Main.splitAt (len ‘quot‘ 2) (x ∶ xs)
(secondPart1,secondPart2) = Main.splitAt (len ‘quot‘ 4) secondHalf

a = (drsa (PRIV d e) firstPart1)
b = (drsa (PRIV d e) firstPart2)
c = (drsa (PRIV d e) secondPart1)
d = (drsa (PRIV n e) secondPart2)
strategy res = (rnf a) ‘par‘ (rnf b) ‘par‘ (rnf c) ‘par‘ (rnf e)

An the code parallelizing RSA decryption scheme by second generation strategies:

split4ToDecEval ∶∶ [Integer] → [Integer]
split4ToDecEval. (PRIV n d) [] = []
split4ToDecEval. (PRIV n d) (x ∶ xs) = (e ++ c ++ b ++ a) ‘Main.using‘ strategy

where

len = length (x ∶ xs)
(firstHalf ,secondHalf ) = Main.splitAt (len ‘quot‘ 2) (x ∶ xs)
(secondPart1,secondPart2) = Main.splitAt (len ‘quot‘ 4) secondHalf

a = (drsa (PRIV n d) firstPart1)
b = (drsa (PRIV n d) firstPart2)
c = (drsa (PRIV n d secondPart1)
d = (drsa (PRIV n d) secondPart2)
strategy s = do (rpar ‘dot‘ rdeepseq a)

(rpar ‘dot‘ rdeepseq b)
(rpar ‘dot‘ rdeepseq c)
(rseq ‘dot‘ rdeepseq e)
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Performance analyses of parallel decryption scheme for 50, 100 and 125K of cipher

texts with 188 bits of decryption key are given below whose serial elapsed times

are 7.14, 7.35, 7.94 seconds that are measured during the division process of input

cipher text into 4, 3 and 2 sub-lists + their decryption processes implemented over a

single core for 50K of input text, respectively. Corresponding results for 100K are

23.86, 25.17 and 26.84 seconds and 37.80, 38.61, 40.02 seconds for 125K of input

cipher text.

TABLE 6.9: RSA Decryption of 50K cipher text

Number o f Strategy Parallel Max. Heap
Cores Type Time (sec.) Residency o f Best (bytes)

2 Original 6.07 2401464
Sec. 6.05 2317680

3 Original 5.52 2477016
Sec. 5.26 2499048

4 Original 5.12 1772792
Sec. 4.93 1719392

For decryption process of 50K cipher text, speed up values are 1.31, 1.40 and 1.45

for second generation; 1.31, 1.33 and 1.39 for original strategies over 2,3 and 4

cores.

Parallel RSA Decryption Scheme: 50K Cipher Text
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FIGURE 6.5: Parallel RSA Decryption Scheme: 50K Cipher Text

Speed up values for the decryptions 100K and 125K of cipher texts are 1.21, 1.22,

1.24; 1.08, 1.13, 1.17 for second generation; 1.21, 1.22, 1.22; 1.06, 1.15 and 1.17

for original strategies, respectively.

Similar to encryption scheme, also in decryption one; performance results are more

or less the same. The reason for small differences is again benchmarking effort
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TABLE 6.10: RSA Decryption of 100K cipher text

Number o f Strategy Parallel Max. Heap
Cores Type Time (sec.) Residency o f Best (bytes)

2 Original 22.39 5113736
Sec. 22.17 4871304

3 Original 20.59 5432688
Sec. 20.55 5325880

4 Original 19.55 5044568
Sec. 19.21 5068864

which follows one another exploiting the better caching effect, since number of

created, converted, fizzled and unneeded sparks are completely same that hides the

advantages of second generation strategies against original ones.

TABLE 6.11: RSA Decryption of 125K cipher text

Number o f Strategy Parallel Max. Heap
Cores Type Time (sec.) Residency o f Best (bytes)

2 Original 38.20 5960984
Sec. 37.00 5703536

3 Original 34.38 6227008
Sec. 34.28 6181032

4 Original 32.75 5979888
Sec. 32.23 5922952

6.4 Parallel Karatsuba Multiplication

Karatsuba algorithm is mainly used to multiply large scale of numbers within the

range of 1K and 4K with the computational time complexity of O(nlog23) for cryp-

tographic implementation reasons. As the other algorithms given above; paralleliza-

tion of Karatsuba multiplication is also done within the same scope via both original

and second generation strategies.

Here is the main function which supports parallelism by the manner of original

strategies:
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OrKaratsuba ∶∶ Int → [Bool] → [Bool] → [Bool]
OrKaratsuba [] = []
OrKaratsuba [] = []

∣ (l < 32 ∣∣ currentDepth >= limit) = mul xs ys

∣ otherwise = (x ‘add‘ (replicate l False ++ (z ‘add‘ (replicate l False ++ y)))) ‘using‘

where

l = (min (length xs) (length ys)) ‘div‘ 2

(xs0, xs1) = splitAt l xs

(ys0, ys1) = splitAt l ys

x = (normalize (OrKaratsuba (currentDepth+1) xs0 ys0))
y = (normalize (OrKaratsuba (currentDepth+1) xs1 ys1))
z = (normalize (OrKaratsuba (currentDepth+1) (add xs0 xs1) (add ys0 ys1))
v = z ‘sub‘ x ‘sub‘ y

strategy res = (rnf x) ‘par‘

(rnf y) ‘par‘

(rnf z) ‘par‘

(rnf v) ‘pseq‘

(rnf res)

Here is the main function which supports parallelism by the manner of second gen-

eration strategies:

EvalKaratsuba ∶∶ Int → [Bool] → [Bool] → [Bool]
EvalKaratsuba [] = []
EvalKaratsuba [] = []

∣ (l < 32 ∣∣ currentDepth >= limit) = mul xs ys

∣ otherwise = (x ‘add‘ (replicate l False ++ (z ‘add‘ (replicate l False ++ y)))) ‘using‘

where

l = (min (length xs) (length ys)) ‘div‘ 2

(xs0, xs1) = splitAt l xs

(ys0, ys1) = splitAt l ys

x = (normalize (EvalKaratsuba (currentDepth+1) xs0 ys0))
y = (normalize (EvalKaratsuba (currentDepth+1) xs1 ys1))
z = (normalize (EvalKaratsuba (currentDepth+1) (add xs0 xs1) (add ys0 ys1))
v = z ‘sub‘ x ‘sub‘ y

strategy res = do

(Main.rpar ‘Main.dot‘ Main.rdeepseq) (x)
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(Main.rpar ‘Main.dot‘ Main.rdeepseq) (y)
(Main.rpar ‘Main.dot‘ Main.rdeepseq) (z)
(Main.rpar ‘Main.dot‘ Main.rdeepseq) (v)
(Main.rdeepseq) (res)

Both in second generation and original strategies; parallelization idea was just div-

ing the given inputs to be multiplied recursively, that are actually in base 2, into sub

numbers until the length of any input number is decreased to 32 bits or below, and

then multiplications of each sub-number pairs are performed in parallel.

Karatsuba Multiplication Speed Up: 1K Integers
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FIGURE 6.6: Parallel Karatsuba Multiplication: 1K Integers

TABLE 6.12: Karatsuba Multiplication of 1K integers

Number o f Strategy Best Average Max. Heap Avg. Heap
Cores Type Time Time Residency o f Best Residency

(sec.) (sec.) (bytes) (bytes)
2 Original 0.85 1.22 1159200 1527382

Sec. 0.78 1.16 1130272 1300553

3 Original 0.73 1.06 38752 851410
Sec. 0.72 1.07 38752 699193

4 Original 0.67 1.06 38752 910059
Sec. 0.66 1.04 38640 658821

Here, in th below table; the measured results from the multiplication of 1Kb long

integers are demonstrated. As could be inferred; from both speed up and mem-

ory allocation amount points of view, second generation strategies are ahead of the

original ones due to missing CPU cycles in order to evaluate already fizzled (eval-

uated) sparks. For more and detailed information, corresponding table involved in

Appendix A could be checked.
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Note 6.4.1. Serial (Original) Versions of codes:

1. RSA Scheme is taken from the paper published by David Gray named as

Implementing Public-Key Cryptography in Haskell [27]

2. Karatsuba Multiplication: from Goerch’s corner.

http://goerchs-corner.blogspot.com/2007/03/karatsuba-in-haksell.

html

3. Quicksort Scheme: Haskell-Wiki page.

http://www.haskell.org/haskellwiki/Introduction#Quicksort_

in_Haskell

http://goerchs-corner.blogspot.com/2007/03/karatsuba-in-haksell.html
http://goerchs-corner.blogspot.com/2007/03/karatsuba-in-haksell.html
http://www.haskell.org/haskellwiki/Introduction#Quicksort_in_Haskell
http://www.haskell.org/haskellwiki/Introduction#Quicksort_in_Haskell
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Chapter 7

Conclusion & Future Work

Functional programming paradigm is reclaimed by category theory which alternates

to set theory without any paradoxes. In this project, the general aim was to examine

how objects of category theory are represented in a functional programming lan-

guage called Haskell, in which cases they offer better solution methodologies via

functors, natural transformations and monads. In that sense; some of the polymor-

phic data types of Haskell programming language such as Maybe, List, State, IO and

Eval are proven as functors and monads together with some natural transformations

like fmap, join and return.

For each mentioned polymorphic data type; the specific areas of computing sci-

ence are explained and abstract solution manners are illustrated via some number

of codes. Especially, the new memory management methodology that Eval monad

provides to the original strategies or data structures in parallelization area is demon-

strated, in detail. Calculating the correspondence of any input number within the

Fibonacci series, Quicksort, Karatsuba multiplication algorithms are given as exam-

ples to parallelization of recursive functions. On the other side, RSA Encryption and

Decryption schemes are the functions that parallelized to illustrate non-recursive

approach. At the end of each parallelization trial; measured elapsed time and heap

residencies together with handled speed up values for both original and second gen-

eration strategies, in which Eval monad is used, are given, comparatively.

Below table includes the demonstrates the reason of all possible parallelization out-

comes in terms of elapsed time performances and allocated heap residency amounts

from the point of second generation strategies’ view, for sure under the same cir-

cumstances like identically applied parallelization manners and more or less the

same total number of created sparks.
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Spped Up Chart: All Evaluations
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FIGURE 7.1: Speed Up Values for Each Parallel Evaluation

Time Elapsed (seconds) Heap Residency (bytes) Reason

– – less amount GC > CPU cycles

– 4 big amount GC > CPU cycles

4 – less amount GC < CPU cycles

4 4 big amount GC < CPU cycles

The first case, actually, explains the reason why second generation strategies stand

behind of original ones in both performance aspects as less amount of garbage col-

lection for second generation strategies takes more time than the CPU cycles lost

during the evaluations of already fizzled sparks in original strategies.

In the second case; big amount of garbage collection for second generation strate-

gies takes more time than lost CPU cycles of original ones, so that second gener-

ation strategies have better (less) amount of heap residency during the calculation

but much amount of time required for that calculation to be done.

Third case is the one completely opposite of the second which explains better

elapsed time performance and worse heap residency for second generation strategies

with the indication that less amounts of garbage collection for second generation

strategies takes less time than lost CPU cycles of original strategies.

The last case is actually the best one in the second generation strategies’ sense.

Being ahead of original strategies in accordance both with elapsed time performance

and amount of allocated heap space.

According to our results; parallelization of Karatsuba Multiplication algorithm and

some parts of Quicksort and Fibonacci Series calculation are included in the last

case which declares that the aim of the project seem to be achieved.
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Nearly all cases of RSA Encryption, Decryption schemes are seemingly participated

in the best case, but as explained, the reason for that is not the advantages provided

by second generation ones. The actual reason is the benchmarking effort done one

after another causing better cache exploitations, since the number of created, con-

verted and fizzled sparks are completely same.

For further information; detailed tables of each parallelization trial could be checked

in Appendix A part.

In brief; second generation strategies provide ability to discard fizzled sparks by

the help of category theoretic monad usage. For that reason, compared to origi-

nal ones, they do not waste time (CPU cycles) to decide whether a spark is fizzled

or not. For the other case which is not an improvement supplied by monads but

the garbage collection policy (so that this could be valid for both second genera-

tion and original strategies), in which there exists some unnecessary ones created

by at least two cores to perform the same job, these unnecessary sparks are refer-

enced by weak pointers in the memo tables that are standing for the registration of

the results of last evaluated functions provided by tracing garbage collection policy

where referenced sparks do not have to be evaluated by the program if they are not

needed (the same subtask was already assigned to another spark which finalized its

evaluation and registered the result into the memo table, since for the same evalu-

ation, memo table is checked and result found! No need to evaluate another spark

for the same task). By that way, no CPU cycles are wasted for the evaluations of

some number of sparks never become necessary during the evaluation. Addition-

ally; speculative parallelism is also supported in second generation strategies which

prunes any spark when it is proven to be never needed again due to the usages of

weak references for the management of the spark pool.
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Appendix A

Performance Analysis Tables

Serially calculated Fibonacci 35: 1.22 seconds,

Serially calculated Fibonacci 37: 2.86 seconds,

Serially calculated Fibonacci 40: 10.21 seconds,

Serial Quicksort of 1 million integers: 7.16 seconds,

Serial Quicksort of 2 million integers:16.33 seconds,

Serial RSA Encryption of 125Kb plain text via 2 sub-texts: 40.05 seconds,

Serial RSA Encryption of 125Kb plain text via 3 sub-texts: 36.31 seconds,

Serial RSA Encryption of 125Kb plain text via 4 sub-texts: 34.86 seconds,

Serial RSA Encryption of 100Kb plain text via 2 sub-texts: 26.89 seconds,

Serial RSA Encryption of 100Kb plain text via 3 sub-texts: 24.94 seconds,

Serial RSA Encryption of 100Kb plain text via 4 sub-texts: 23.79 seconds,

Serial RSA Encryption of 50Kb plain text via 2 sub-texts: 8.09 seconds,

Serial RSA Encryption of 50Kb plain text via 3 sub-texts: 7.73 seconds,

Serial RSA Encryption of 50Kb plain text via 4 sub-texts: 7.36 seconds,

Serial RSA Decryption of 125Kb cipher text via 2 sub-texts: 40.02 seconds,

Serial RSA Decryption of 125Kb cipher text via 3 sub-texts: 38.61 seconds,

Serial RSA Decryption of 125Kb cipher text via 4 sub-texts: 37.80 seconds,

Serial RSA Decryption of 100Kb cipher text via 2 sub-texts: 26.84 seconds,

Serial RSA Decryption of 100Kb cipher text via 3 sub-texts: 25.17 seconds,

Serial RSA Decryption of 100Kb cipher text via 4 sub-texts: 23.86 seconds,

Serial RSA Decryption of 50Kb cipher text via 2 sub-texts: 7.94 seconds,

Serial RSA Decryption of 50Kb cipher text via 3 sub-texts: 7.35 seconds,

Serial RSA Decryption of 50Kb cipher text via 4 sub-texts: 7.14 seconds,

Serial Karatsuba Multiplication of 1K integers, takes 1.20 seconds to conclude.
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TABLE A.1: Performance Analysis of Parallel Fibonacci 35 over 2 Cores

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
1 Original 0.92 1 1 0 5432 713 - 1

Sec. 0.90 1 1 0 6592 713 - 1

2 Original 0.90 3 3 0 6592 713 - 1
Sec. 0.90 3 1 0 6576 713 - 1

4 Original 0.90 15 12 3 11096 713 - 1
Sec. 0.85 15 2 0 7704 713 - 1

8 Original 0.88 311 240 71 14504 713 - 1
Sec. 0.84 255 3 0 38752 713 - 1

12 Original 0.89 4965 3814 1150 17976 713 - 1
Sec. 0.83 4144 7 92 16584 713 -1

13 Original 0.89 10072 8011 2061 17936 713 - 1
Sec. 0.85 8324 9 317 16672 713 - 1

14 Original 0.89 19848 15829 4019 18360 713 - 1
Sec. 0.85 16673 12 631 16680 713 - 1

16 Original 0.82 65661 29741 3147 22384 713 - 1
Sec. 0.83 66375 28 670 15224 713 - 1

32 Original 1.83 15199333 557031 49345 14880 713 - 1
Sec. 1.50 15332997 57 49144 14344 713 - 1
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TABLE A.2: Performance Analysis of Parallel Fibonacci 35 over 3 Cores

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
1 Original 0.93 1 1 0 5432 1069 - 2

Sec. 0.93 1 1 0 6560 1069 - 2

2 Original 0.66 3 3 0 38752 1069 - 2
Sec. 0.86 3 3 0 7672 1069 - 2

4 Original 0.59 15 15 0 38752 1069 - 2
Sec. 0.65 15 5 0 38752 1069 - 2

8 Original 0.63 282 282 0 38752 1069 - 2
Sec. 0.60 255 9 0 38752 1069 - 2

12 Original 0.63 4523 4523 0 43920 1069 - 2
Sec. 0.67 4404 31 0 38752 1069 - 2

13 Original 0.60 8596 8596 0 72400 1069 - 2
Sec. 0.68 8721 14 0 55024 1069 - 2

14 Original 0.67 19808 19808 0 38752 1069 - 2
Sec. 0.63 16757 36 0 42848 1069 - 2

16 Original 0.62 69765 56608 0 87760 1069 - 2
Sec. 0.64 67456 36 0 47896 1069 - 2

32 Original 1.73 15570906 880437 49146 20992 1069 - 2
Sec. 1.42 15420117 100 49139 19552 1069 - 2
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TABLE A.3: Performance Analysis of Parallel Fibonacci 35 over 4 Cores

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
1 Original 0.95 1 1 0 5432 1425 - 2

Sec. 0.94 1 1 0 6560 1425 - 2

2 Original 0.66 3 3 0 38752 1425 - 2
Sec. 0.68 3 3 0 38752 1425 - 2

4 Original 0.56 15 15 0 38752 1425 - 2
Sec. 0.55 15 7 0 38752 1425 - 2

8 Original 0.51 274 274 0 39776 1425 - 2
Sec. 0.55 262 21 0 38752 1425 - 2

12 Original 0.51 4251 4251 0 43920 1425 - 2
Sec. 0.54 4275 42 0 45824 1425 - 2

13 Original 0.53 9209 9209 0 39776 1425 - 2
Sec. 0.55 8770 32 0 39664 1425 - 2

14 Original 0.57 19114 18262 852 61136 1425 - 2
Sec. 0.59 17786 116 62 57184 1425 - 2

16 Original 0.58 78481 70289 0 38752 1425 - 2
Sec. 0.53 66580 50 0 38752 1425 - 2

32 Original 1.57 15195235 683734 34097 30256 1425 - 2
Sec. 1.31 16305901 110 32759 28536 1425 - 2
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TABLE A.4: Performance Analysis of Parallel Fibonacci 37 over 2 Cores

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
Sec. 1.83 1 1 0 6840 713 - 1

2 Original 1.85 3 1 2 7016 713 - 1
Sec. 1.85 3 1 1 6912 713 - 1

4 Original 1.64 15 6 9 10264 713 - 1
Sec. 1.63 15 2 8 7016 713 - 1

8 Original 1.57 258 175 83 13640 713 - 1
Sec. 1.64 258 5 149 10384 713 - 1

12 Original 1.59 4180 3067 1113 14048 713 - 1
Sec. 1.63 4158 8 2419 13664 713 -1

13 Original 1.59 8415 6236 2179 14368 713 - 1
Sec. 1.64 8319 8 4803 13704 713 - 1

14 Original 1.58 16756 12456 4300 14224 713 - 1
Sec. 1.64 16641 11 9660 13816 713 - 1

16 Original 1.59 66621 34100 13912 14528 713 - 1
Sec. 1.67 66383 45 16710 13944 713 - 1

32 Original 3.87 39325069 436748 204775 16056 713 - 1
Sec. 3.31 39402722 71 134005 14504 713 - 1
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TABLE A.5: Performance Analysis of Parallel Fibonacci 37 over 3 Cores

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
1 Original 1.86 1 1 0 6885 1069 - 2

Sec. 1.86 1 1 0 6904 1069 - 2

2 Original 1.38 3 3 0 8328 1069 - 2
Sec. 1.35 3 2 1 8248 1069 - 2

4 Original 1.34 15 11 4 12728 1069 - 2
Sec. 1.32 15 4 10 8392 1069 - 2

8 Original 1.29 278 252 26 21976 1069 - 2
Sec. 1.25 257 10 185 11864 1069 - 2

12 Original 1.30 4774 3429 1345 22944 1069 - 2
Sec. 1.25 4128 21 2960 18360 1069 - 2

13 Original 1.32 9871 7211 2660 23120 1069 - 2
Sec. 1.37 8721 15 6015 18432 1069 - 2

14 Original 1.34 19550 14282 5268 23344 1069 - 2
Sec. 1.29 16809 41 11994 18584 1069 - 2

16 Original 1.28 71184 55914 6916 27584 1069 - 2
Sec. 1.27 66157 36 24573 18744 1069 - 2

32 Original 3.85 39600827 1403334 229348 21336 1069 - 2
Sec. 3.15 39634470 103 196573 19696 1069 - 2
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TABLE A.6: Performance Analysis of Parallel Fibonacci 37 over 4 Cores

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
1 Original 1.89 1 1 0 6776 1425 - 2

Sec. 1.89 1 1 0 6776 1425 - 2

2 Original 1.38 3 3 0 8344 1425 - 2
Sec. 1.37 3 3 0 9408 1425 - 2

4 Original 1.26 15 13 2 12912 1425 - 2
Sec. 1.19 15 7 1 12928 1425 - 2

8 Original 1.16 276 234 42 33176 1425 - 2
Sec. 1.22 268 30 94 18512 1425 - 2

12 Original 1.20 4697 3960 737 24352 1425 - 2
Sec. 1.21 4254 37 1562 20904 1425 - 2

13 Original 1.17 9245 6178 3067 36800 1425 - 2
Sec. 1.16 8397 35 2808 24200 1425 - 2

14 Original 1.17 19139 13124 6015 28496 1425 - 2
Sec. 1.21 16868 41 5963 24408 1425 - 2

16 Original 1.14 69527 45198 16146 24312 1425 - 2
Sec. 1.23 69203 127 11674 32736 1425 - 2

32 Original 3.89 39930049 2426378 172142 26776 1425 - 2
Sec. 3.03 39561515 77 163807 24792 1425 - 2
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TABLE A.7: Performance Analysis of Parallel Fibonacci 40 over 2 Cores

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
1 Original 6.72 1 1 0 6936 713 - 1

Sec. 6.69 1 1 0 6888 713 - 1

2 Original 6.72 3 1 2 7144 713 - 1
Sec. 6.61 3 1 2 7000 713 - 1

4 Original 5.79 15 2 13 10472 713 - 1
Sec. 5.78 15 2 12 10200 713 - 1

8 Original 5.47 255 38 217 13952 713 - 1
Sec. 5.56 255 4 246 13568 713 - 1

12 Original 5.58 4177 679 3498 14272 713 - 1
Sec. 5.52 4096 8 3973 13784 713 - 1

13 Original 5.58 8371 1396 6974 14360 713 - 1
Sec. 5.51 8194 10 7942 13840 713 - 1

14 Original 5.59 16786 3088 13698 14576 713 - 1
Sec. 5.70 16525 9 16217 13928 713 - 1

16 Original 5.55 67039 12625 54414 14680 713 - 1
Sec. 5.50 65566 9 63488 14072 713 - 1

32 Original 14.76 164535147 676337 802718 14848 713 - 1
Sec. 12.79 165776604 238 666609 14848 713 - 1
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TABLE A.8: Performance Analysis of Parallel Fibonacci 40 over 3 Cores

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
1 Original 6.77 1 1 0 6888 1069 - 2

Sec. 6.67 1 1 0 5952 1069 - 2

2 Original 6.78 3 2 1 8464 1069 - 2
Sec. 4.44 3 2 1 8384 1069 - 2

4 Original 4.69 15 6 9 12016 1069 - 2
Sec. 4.37 15 4 10 11680 1069 - 2

8 Original 4.04 261 114 147 19696 1069 - 2
Sec. 3.97 255 9 236 15208 1069 - 2

12 Original 4.03 4234 1756 2478 19112 1069 - 2
Sec. 3.96 4099 16 3851 18632 1069 - 2

13 Original 4.10 8707 4767 3940 23120 1069 - 2
Sec. 3.98 8205 25 7662 18752 1069 - 2

14 Original 3.98 16963 5663 11296 19488 1069 - 2
Sec. 3.93 16391 21 15412 18784 1069 - 2

16 Original 3.99 69065 25296 43679 20000 1069 - 2
Sec. 4.03 66007 42 59385 18936 1069 - 2

32 Original 15.36 166166425 5832108 1045253 22008 1069 - 2
Sec. 12.08 164402198 59 909123 20160 1069 - 2
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TABLE A.9: Performance Analysis of Parallel Fibonacci 40 over 4 Cores

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
1 Original 6.85 1 1 0 6952 1425 - 2

Sec. 6.80 1 1 0 6888 1425 - 2

2 Original 4.63 3 3 0 9752 1425 - 2
Sec. 4.64 3 3 0 9688 1425 - 2

4 Original 4.96 15 7 8 13456 1425 - 2
Sec. 3.75 15 7 7 13120 1425 - 2

8 Original 3.69 256 120 136 23312 1425 - 2
Sec. 3.53 258 20 214 16648 1425 - 2

12 Original 3.73 4497 3166 1331 23912 1425 - 2
Sec. 3.49 4106 51 3172 23352 1425 - 2

13 Original 3.68 9060 7021 2039 24384 1425 - 2
Sec. 3.53 8240 52 7079 23464 1425 - 2

14 Original 3.62 18263 13190 5073 24608 1425 - 2
Sec. 3.44 16506 44 13956 23584 1425 - 2

16 Original 3.88 77096 57214 19882 25088 1425 - 2
Sec. 3.53 65794 58 63128 23912 1425 - 2

32 Original 15.05 166303861 7292869 755777 27632 1425 - 2
Sec. 12.03 165993284 285 687980 25272 1425 - 2
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TABLE A.10: Performance Analysis of Quicksort of 1 Million Random Integers
over 2 Cores

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
1 Original 4.04 1 1 0 51165008 836 - 0

Sec. 4.06 1 1 0 49918056 809 - 0

2 Original 4.00 3 1 2 55475600 811 - 0
Sec. 3.98 3 1 2 49863632 806 - 0

4 Original 3.99 15 1 14 57220040 818 - 0
Sec. 3.58 15 1 12 58246768 811 - 0

8 Original 3.83 251 31 210 55265480 858 - 0
Sec. 3.58 256 1 231 59433568 824 - 0

12 Original 3.90 3547 1768 1779 47918984 827 - 0
Sec. 3.71 3305 7 2041 61705090 831 - 0

13 Original 3.91 5773 2332 3541 62005832 849 - 0
Sec. 3.70 5797 7 3514 58205792 830 - 0

14 Original 4.08 9922 2635 7287 57874096 840 - 0
Sec. 3.71 9855 13 5778 61195584 825 - 0

16 Original 4.15 25006 10911 14095 59051920 837 - 0
Sec. 3.64 24863 7 14701 60245080 826 - 0
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TABLE A.11: Performance Analysis of Quicksort of 1 Million Random Integers
over 3 Cores

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
1 Original 3.93 1 1 0 49898894 1155 - 0

Sec. 4.04 1 1 0 49918176 1165 - 0

2 Original 3.79 3 2 1 47269000 1162 - 0
Sec. 3.73 3 2 1 50011920 1218 - 0

4 Original 3.97 15 4 11 47688984 1173 - 0
Sec. 3.69 15 3 11 58842912 1183 - 0

8 Original 3.88 262 114 148 49086736 1193 - 0
Sec. 3.54 255 11 33 50045216 1213 - 0

12 Original 3.79 3330 1318 2012 50415960 1213 - 0
Sec. 3.78 3423 28 2174 52032600 1232 - 0

13 Original 3.87 5836 5265 571 54434312 1199 - 0
Sec. 3.64 5790 25 3366 52446096 1220 - 0

14 Original 3.95 10607 9961 646 53068688 1197 - 0
Sec. 3.67 9917 22 4775 51273584 1254 - 0

16 Original 4.03 25214 17184 8030 58499840 1209 - 0
Sec. 3.56 25352 48 3206 49566664 826 - 0



133

TABLE A.12: Performance Analysis of Quicksort of 1 Million Random Integers
over 4 Cores

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
1 Original 3.70 1 1 0 49910592 1510 - 0

Sec. 4.09 1 1 0 49917788 1521 - 0

2 Original 3.92 3 3 0 49455480 1511 - 0
Sec. 3.78 3 3 0 49723576 1517 - 0

4 Original 3.71 15 6 9 49365984 1520 - 0
Sec. 3.66 15 7 1 51164264 1511 - 0

8 Original 3.69 255 213 42 49814776 1526 - 0
Sec. 3.56 255 18 81 52650336 1516 - 0

12 Original 3.75 3333 1884 1449 58627712 1533 - 0
Sec. 3.47 3360 44 992 57118432 1519 - 0

13 Original 3.83 5771 4052 1819 55847544 1558 - 0
Sec. 3.63 5994 69 1709 60207304 1524 - 0

14 Original 3.93 9894 7897 1997 146303360 1516 - 0
Sec. 3.62 10282 56 4506 52614544 1526 - 0

16 Original 3.75 26163 19813 6350 47341672 1209 - 0
Sec. 3.49 25200 44 7124 53684008 1517 - 0
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TABLE A.13: Performance Analysis of Quicksort of 2 Million Random Integers
over 2 Cores

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
1 Original 9.53 1 1 0 84299840 955 - 0

Sec. 9.25 1 1 0 99822088 912 - 0

2 Original 9.70 3 1 2 104963616 968 - 0
Sec. 9.35 3 1 2 108163992 1011 - 0

4 Original 9.58 15 4 11 133324392 1057 - 0
Sec. 9.65 15 2 9 94917200 1001 - 0

8 Original 9.93 255 31 210 55265480 858 - 0
Sec. 8.87 255 4 193 128483984 973 - 0

12 Original 9.93 3313 1018 2295 1245588880 1048 - 0
Sec. 9.11 3338 12 2516 162482400 1063 - 0

13 Original 12.25 5782 741 5041 128608936 1065 - 0
Sec. 9.70 5770 8 4141 158590040 1036 - 0

14 Original 12.96 9769 2512 7257 129772672 1044 - 0
Sec. 9.51 9721 7 7375 156675280 993 - 0

16 Original 13.97 24946 5238 19708 171955208 1098 - 0
Sec. 10.08 24958 13 18363 111454088 1033 - 0
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TABLE A.14: Performance Analysis of Quicksort of 2 Million Random Integers
over 3 Cores

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
1 Original 9.12 1 1 0 97491656 1330 - 0

Sec. 9.22 1 1 0 99822072 1267 - 0

2 Original 9.65 3 2 1 87132568 1333 - 0
Sec. 8.40 3 2 1 102132504 1409 - 0

4 Original 8.78 15 7 8 84786832 1313 - 0
Sec. 8.78 15 3 8 93623968 1348 - 0

8 Original 8.95 258 118 140 121246328 1363 - 0
Sec. 7.91 255 10 150 96010296 1354 - 0

12 Original 10.49 3369 2750 619 136572712 1338 - 0
Sec. 8.88 3308 15 2039 100983592 1400 - 0

13 Original 11.09 5877 2373 3504 166950512 1390 - 0
Sec. 8.58 5782 19 3564 108678712 1399 - 0

14 Original 12.41 9980 4993 4887 124999792 1420 - 0
Sec. 8.99 9714 34 4320 109211856 1314 - 0

16 Original 13.07 25316 9946 15370 101938544 1404 - 0
Sec. 8.35 25241 46 12645 148400992 1380 - 0
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TABLE A.15: Performance Analysis of Quicksort of 2 Million Random Integers
over 4 Cores

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
1 Original 8.73 1 1 0 99823736 1623 - 0

Sec. 9.19 1 1 0 49917788 1521 - 0

2 Original 10.93 3 3 0 98078200 1681 - 0
Sec. 8.25 3 3 0 99503128 1634 - 0

4 Original 10.29 15 8 7 87821440 1718 - 0
Sec. 8.27 15 7 7 91752496 1701 - 0

8 Original 10.10 255 122 133 121707384 1694 - 0
Sec. 7.72 255 14 62 83049904 1738 - 0

12 Original 9.49 3361 2324 1037 97230248 1656 - 0
Sec. 8.91 3339 99 1542 93719248 1689 - 0

13 Original 9.64 6116 3874 2242 105653904 1699 - 0
Sec. 7.29 5821 41 2430 82052784 1705 - 0

14 Original 12.03 9961 5961 4000 110005304 1708 - 0
Sec. 7.77 10127 127 5012 86798080 1679 - 0

16 Original 11.97 27824 20899 6925 117700488 1745 - 0
Sec. 7.75 25070 47 12912 92224800 1321 - 0

TABLE A.16: RSA Encryption of 100Kb plain text

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
2 Original 22.16 1 1 0 4892176 1079 - 10

Sec. 22.16 1 1 0 4992200 1079 - 10

3 Original 20.31 2 2 0 5433968 1435 - 10
Sec. 20.28 2 2 0 5296960 1435 - 10

4 Original 19.46 3 3 0 5104312 1790 - 10
Sec. 18.94 3 3 0 5032104 1793 - 12
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TABLE A.17: Parallel RSA Encryption of 50Kb plain text

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
2 Original 6.18 1 1 0 24445976 932 - 0

Sec. 6.13 1 1 0 2335496 932 - 0

3 Original 5.50 2 2 0 2449304 1287 - 0
Sec. 5.27 2 2 0 2474656 1288 - 0

4 Original 5.09 3 3 0 1722824 1643 - 0
Sec. 4.92 3 3 0 1719392 1643 - 0

TABLE A.18: Parallel RSA Decryption of 125Kb cipher text

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
2 Original 38.20 1 1 0 5960984 1082 - 12

Sec. 37.00 1 1 0 5700536 1082 - 12

3 Original 34.38 2 2 0 6227008 1438 - 13
Sec. 34.28 2 2 0 6181032 1438 - 13

4 Original 32.75 3 3 0 5979888 1793 - 12
Sec. 32.23 3 3 0 5922952 1793 - 12

TABLE A.19: RSA Decryption of 100Kb cipher text

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
2 Original 22.39 1 1 0 5113736 1079 - 10

Sec. 22.17 1 1 0 4871304 1079 - 10

3 Original 20.59 2 2 0 5432688 1435 - 10
Sec. 20.55 2 2 0 5325880 1435 - 10

4 Original 19.55 3 3 0 5044568 1790 - 10
Sec. 19.21 3 3 0 5068864 1793 - 12
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TABLE A.20: RSA Decryption of 50Kb cipher text

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
2 Original 6.07 1 1 0 2401464 932 - 0

Sec. 6.05 1 1 0 2317680 932 - 0

3 Original 5.52 2 2 0 2477016 1287 - 0
Sec. 5.26 2 2 0 2499048 1288 - 0

4 Original 5.12 3 3 0 1772792 1643 - 0
Sec. 4.93 3 3 0 1719392 1643 - 0
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TABLE A.21: Performance Analysis of Karatsuba Multiplication of 1K Integers
over 2 Cores

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
1 Original 2.86 3 3 0 3058728 716 - 0

Sec. 2.84 3 2 1 2474416 754 - 0

2 Original 1.84 12 3 9 2274696 749 - 0
Sec. 1.88 12 5 7 1294400 714 - 0

4 Original 1.10 120 36 84 1485104 715 - 0
Sec. 1.05 120 42 78 1104344 714 - 0

8 Original 0.86 9849 5929 3920 1141104 713 - 0
Sec. 0.78 9810 4114 5277 1130272 713 - 0

12 Original 0.86 9969 6046 3923 1143744 713 - 0
Sec. 0.78 9810 3939 5346 1138736 713 - 0

13 Original 0.86 9849 5911 3938 1247768 713 - 0
Sec. 0.78 9810 3801 5319 1146416 713 - 0

14 Original 0.86 9888 5974 3914 1089184 713 - 0
Sec. 0.78 9810 4500 5310 1143400 713 - 0

16 Original 0.85 9849 5932 3917 1159200 713 - 0
Sec. 0.78 9810 4063 5323 1145528 713 - 0

32 Original 0.86 9969 6046 3923 1146912 713 - 0
Sec. 0.80 9810 3866 5338 1127464 713 - 0
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TABLE A.22: Performance Analysis of Karatsuba Multiplication of 1K Integers
over 3 Cores

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
1 Original 2.38 3 3 0 3296360 1072 - 0

Sec. 2.35 3 3 0 3059672 1073 - 1

2 Original 1.78 12 5 7 2654120 1071 - 0
Sec. 1.86 12 8 4 1628952 1070 - 0

4 Original 1.00 120 79 41 1479696 1070 - 0
Sec. 1.04 123 102 21 1371968 1071 - 0

8 Original 0.73 9981 9981 0 38752 1069 - 1
Sec. 0.72 10863 10863 0 38752 1069 - 1

12 Original 0.73 10050 10050 0 38752 1069 - 1
Sec. 0.72 10878 10878 0 38640 1069 - 1

13 Original 0.73 9939 9939 0 38752 1069 - 1
Sec. 0.73 10869 10869 0 38752 1069 - 1

14 Original 0.73 9810 9810 0 38752 1069 - 1
Sec. 0.73 10965 10965 0 38608 1069 - 1

16 Original 0.74 10212 10212 0 38752 1069 -1
Sec. 0.72 10956 10956 0 38752 1069 - 1

32 Original 0.75 10173 10173 0 38752 1069 - 1
Sec. 0.72 10809 10809 0 38640 1069 - 1
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TABLE A.23: Performance Analysis of Karatsuba Multiplication of 1K Integers
over 4 Cores

Depth Strategy Time Total Converted Pruned Max. Memory
Type (sec.) Number Sparks Sparks Heap Usage

o f Sparks Residency (MB)
1 Original 2.73 3 3 0 3094272 1428 - 0

Sec. 2.55 3 3 0 3072392 1428 - 0

2 Original 1.67 12 7 5 2966816 1439 - 1
Sec. 1.71 12 11 1 1064072 1428 - 0

4 Original 0.98 123 92 31 1896928 1426 - 0
Sec. 1.01 123 111 12 1560752 1427 - 0

8 Original 0.67 10950 10950 0 38752 1425 - 1
Sec. 0.66 11307 11307 0 38640 1425 - 1

12 Original 0.69 10134 10134 0 38752 1425 - 1
Sec. 0.68 12123 12123 0 38752 1425 - 0

13 Original 0.69 11229 11229 0 38752 1425 - 1
Sec. 0.69 12084 12084 0 38752 1425 - 0

14 Original 0.70 10257 10257 0 38752 1425 - 1
Sec. 0.69 11550 11550 0 38640 1425 - 0

16 Original 0.69 11121 11121 0 38752 1425 -1
Sec. 0.67 11514 11514 0 38752 1425 - 0

32 Original 0.68 10791 10791 0 38752 1425 - 1
Sec. 0.67 11604 11604 0 38752 1425 - 0
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Appendix B

Threadscope Results

FIGURE B.1: Parallelization of Fibonacci 35 over 2 Cores - Original Strategies -
Depth: 16 view

FIGURE B.2: Parallelization of Fibonacci 35 over 2 Cores - Evaluation Strategies
- Depth: 16 view
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FIGURE B.3: Parallelization of Fibonacci 35 over 3 Cores - Original Strategies -
Depth: 4 view

FIGURE B.4: Parallelization of Fibonacci 35 over 3 Cores - Evaluation Strategies
- Depth: 8 view

FIGURE B.5: Parallelization of Fibonacci 35 over 4 Cores - Original Strategies -
Depth: 8 view
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FIGURE B.6: Parallelization of Fibonacci 35 over 4 Cores - Evaluation Strategies
- Depth: 16 view

FIGURE B.7: Parallelization of Fibonacci 37 over 2 Cores - Original Strategies -
Depth: 8 view

FIGURE B.8: Parallelization of Fibonacci 37 over 2 Cores - Evaluation Strategies
- Depth: 12 view
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FIGURE B.9: Parallelization of Fibonacci 37 over 3 Cores - Original Strategies -
Depth: 16 view

FIGURE B.10: Parallelization of Fibonacci 37 over 3 Cores - Evaluation Strategies
- Depth: 8 view

FIGURE B.11: Parallelization of Fibonacci 37 over 4 Cores - Original Strategies -
Depth: 16 view
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FIGURE B.12: Parallelization of Fibonacci 37 over 4 Cores - Evaluation Strategies
- Depth: 13 view

FIGURE B.13: Parallelization of Fibonacci 40 over 2 Cores - Original Strategies -
Depth: 8 view

FIGURE B.14: Parallelizattheoryion of Fibonacci 40 over 2 Cores - Evaluation
Strategies - Depth: 16 view
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FIGURE B.15: Parallelization of Fibonacci 40 over 3 Cores - Original Strategies -
Depth: 14 view

FIGURE B.16: Parallelization of Fibonacci 40 over 3 Cores - Evaluation Strategies
- Depth: 14 view

FIGURE B.17: Parallelization of Fibonacci 40 over 4 Cores - Original Strategies -
Depth: 14 view
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FIGURE B.18: Parallelization of Fibonacci 40 over 4 Cores - Evaluation Strategies
- Depth: 14 view

FIGURE B.19: Parallelization of QuickSort for 1 Million Entries over 2 Cores -
Original Strategies -Depth: 8 view

FIGURE B.20: Parallelization of QuickSort for 1 Million Entries over 3 Cores -
Original Strategies -Depth: 12 view
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FIGURE B.21: Parallelization of QuickSort for 1 Million Entries over 4 Cores -
Original Strategies -Depth: 8 view

FIGURE B.22: Parallelization of QuickSort for 1 Million Entries over 2 Cores -
Evaluation Strategies -Depth: 8 view

FIGURE B.23: Parallelization of QuickSort for 1 Million Entries over 3 Cores -
Evaluation Strategies -Depth: 8 view
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FIGURE B.24: Parallelization of QuickSort for 1 Million Entries over 4 Cores -
Evaluation Strategies -Depth: 12 view

FIGURE B.25: Parallelization of QuickSort for 2 Million Entries over 2 Cores -
Original Strategies -Depth: 1 view

FIGURE B.26: Parallelization of QuickSort for 2 Million Entries over 3 Cores -
Original Strategies -Depth: 4 view
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FIGURE B.27: Parallelization of QuickSort for 1 Million Entries over 4 Cores -
Original Strategies -Depth: 1 view

FIGURE B.28: Parallelization of QuickSort for 2 Million Entries over 2 Cores -
Evaluation Strategies -Depth: 8 view

FIGURE B.29: Parallelization of QuickSort for 2 Million Entries over 3 Cores -
Evaluation Strategies -Depth: 8 view
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FIGURE B.30: Parallelization of QuickSort for 2 Million Entries over 4 Cores -
Evaluation Strategies -Depth: 13 view

FIGURE B.31: RSA Encryption of 125K Plain-text over 2 Cores - Original Strate-
gies

FIGURE B.32: RSA Encryption of 125K Plain-text over 3 Cores - Original Strate-
gies
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FIGURE B.33: RSA Encryption of 125K Plain-text over 4 Cores - Original Strate-
gies

FIGURE B.34: RSA Encryption of 125K Plain-text over 2 Cores - Evaluation
Strategies

FIGURE B.35: RSA Encryption of 125K Plain-text over 3 Cores - Evaluation
Strategies
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FIGURE B.36: RSA Encryption of 125K Plain-text over 4 Cores - Evaluation
Strategies

FIGURE B.37: RSA Encryption of 100K Plain-text over 2 Cores - Original Strate-
gies

FIGURE B.38: RSA Encryption of 100K Plain-text over 3 Cores - Original Strate-
gies
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FIGURE B.39: RSA Encryption of 100K Plain-text over 4 Cores - Original Strate-
gies

FIGURE B.40: RSA Encryption of 100K Plain-text over 2 Cores - Evaluation
Strategies

FIGURE B.41: RSA Encryption of 100K Plain-text over 3 Cores - Evaluation
Strategies
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FIGURE B.42: RSA Encryption of 100K Plain-text over 4 Cores - Evaluation
Strategies

FIGURE B.43: RSA Encryption of 50K Plain-text over 2 Cores - Original Strate-
gies

FIGURE B.44: RSA Encryption of 50K Plain-text over 3 Cores - Original Strate-
gies
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FIGURE B.45: RSA Encryption of 50K Plain-text over 4 Cores - Original Strate-
gies

FIGURE B.46: RSA Encryption of 50K Plain-text over 2 Cores - Evaluation
Strategies

FIGURE B.47: RSA Encryption of 50K Plain-text over 3 Cores - Evaluation
Strategies
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FIGURE B.48: RSA Encryption of 50K Plain-text over 4 Cores - Evaluation
Strategies

FIGURE B.49: RSA Decryption of 125K Cipher-text over 2 Cores - Original
Strategies

FIGURE B.50: RSA Decryption of 125K Cipher-text over 3 Cores - Original
Strategies
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FIGURE B.51: RSA Decryption of 125K Cipher-text over 4 Cores - Original
Strategies

FIGURE B.52: RSA Decryption of 125K Cipher-text over 2 Cores - Evaluation
Strategies

FIGURE B.53: RSA Decryption of 125K Cipher-text over 3 Cores - Evaluation
Strategies
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FIGURE B.54: RSA Decryption of 125K Cipher-text over 4 Cores - Evaluation
Strategies

FIGURE B.55: RSA Decryption of 100K Cipher-text over 2 Cores - Original
Strategies

FIGURE B.56: RSA Decryption of 100K Cipher-text over 3 Cores - Original
Strategies
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FIGURE B.57: RSA Decryption of 100K Cipher-text over 4 Cores - Original
Strategies

FIGURE B.58: RSA Decryption of 100K Cipher-text over 2 Cores - Evaluation
Strategies

FIGURE B.59: RSA Decryption of 100K Cipher-text over 3 Cores - Evaluation
Strategies
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FIGURE B.60: RSA Decryption of 100K Cipher-text over 4 Cores - Evaluation
Strategies

FIGURE B.61: RSA Decryption of 50K Cipher-text over 2 Cores - Original Strate-
gies

FIGURE B.62: RSA Decryption of 50K Cipher-text over 3 Cores - Original Strate-
gies
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FIGURE B.63: RSA Decryption of 50K Cipher-text over 4 Cores - Original Strate-
gies

FIGURE B.64: RSA Decryption of 50K Cipher-text over 2 Cores - Evaluation
Strategies

FIGURE B.65: RSA Decryption of 50K Cipher-text over 3 Cores - Evaluation
Strategies
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FIGURE B.66: RSA Decryption of 50K Cipher-text over 4 Cores - Evaluation
Strategies

FIGURE B.67: Karatsuba Multiplications of 1K Integers over 2 Cores - Original
Strategies - Depth: 16 view

FIGURE B.68: Karatsuba Multiplications of 1K Integers over 3 Cores - Original
Strategies - Depth: 8 view
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FIGURE B.69: Karatsuba Multiplications of 1K Integers over 4 Cores - Original
Strategies - Depth: 8 view

FIGURE B.70: Karatsuba Multiplications of 1K Integers over 2 Cores - Evaluation
Strategies - Depth: 8 view

FIGURE B.71: Karatsuba Multiplications of 1K Integers over 3 Cores - Evaluation
Strategies - Depth: 8 view
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FIGURE B.72: Karatsuba Multiplications of 1K Integers over 4 Cores - Evaluation
Strategies - Depth: 8 view
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