

METAHEURISTICS FOR THE NO-IDLE

PERMUTATION FLOWSHOP SCHEDULING

PROBLEM

Özge BÜYÜKDAĞLI

Supervisor: Mehmet Fatih TAŞGETİREN

Bornova, İZMİR

2013

YASAR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCE

METAHEURISTICS FOR THE NO-IDLE

PERMUTATION FLOWSHOP SCHEDULING

PROBLEM

Özge BÜYÜKDAĞLI

Thesis Advisor: Mehmet Fatih TAŞGETİREN

Department of Industrial Engineering

Bornova, İZMİR

2013

This study titled “Metaheuristics for the No-Idle Permutation Flowshop

Scheduling Problem ” and presented as Master’s Thesis by Özge BÜYÜKDAĞLI

has been evaluated in compliance with the relevant provisions of Y.U Graduate

Education and Training Regulation and Y.U Institute of Science Education and

Training Direction and jury members written below have decided for the defence

of this thesis and it has been declared by consensus / majority of votes that the

candidate has succeeded in thesis defence examination dated……………………..

Jury Members: Signature:

Head: ……………… ………………...

Rapporteur Member: ………………. …………………

Member: ………………. …………………

i

TEXT OF OATH

I declare and honestly confirm that my study titled “Metaheuristics for the No-Idle

Permutatıon Flowshop Scheduling Problem”, and presented as Master’s Thesis

has been written without applying to any assistance inconsistent with scientific

ethics and traditions and all sources I have benefited from are listed in

bibliography and I have benefited from these sources by means of making

references.

.. / .. / 20…

Özge BÜYÜKDAĞLI

Signature

ii

ÖZET

BEKLEME ZAMANSIZ PERMÜTASYON AKIŞ TİPİ

ÇİZELGELEME PROBLEMİ İÇİN SEZGİSEL YÖNTEMLER

 BÜYÜKDAĞLI, Özge

Yüksek Lisans Tezi, Endüstri Mühendisliği Bölümü

Tez Danışmanı: Doç. Dr. Mehmet Fatih TAŞGETİREN

Mayıs 2013, 50 sayfa

Bu çalışmada, permütasyon akış tipi çizelgeleme probleminin, bekleme

zamanlarına izin verilmeyen hali ele alınmıştır. Güçlü bir metasezgisel algoritma

olan Genel Değişken Komşu Arama algoritması, dış döngüde ekle ve değiştir

operasyonları, iç döngüde ise iteratif açgözlü algoritma ve iteratif bölgesel arama

algoritması kullanılmıştır. Sunulan algoritmanın performansı, teknik yazında

sunulan 4 farklı algoritmayla sonuçlarının karşılaştırılması ile ölçülmüştür.

Karşılaştırma yapılan diğer algoritmalar şunlardır; (1) iteratif açgözlü, (2)

değişken iteratif açgözlü, (3) hibrit ayrık farksal evrim algoritması, (4) farksal

evrim ile değişken iteratif açgözlü algoritması. Bu algoritmaların performanslarını

test etmek için http://soa.iti.es/rruiz sayfasında, Prof. Ruben Ruiz tarafından

sunulan örnek problem yapısı kullanılmıştır. Yapılan karşılaştırmalar sonucunda

Genel Değişken Komşu Arama algoritmasının, mevcut bilinen en iyi 250 sonucun

85 tanesini iyileştirdiği gözlenmiştir.

iii

ABSTRACT

METAHEURISTICS FOR THE NO-IDLE PERMUTATION

FLOWSHOP SCHEDULING PROBLEM

 BÜYÜKDAĞLI, Özge

Master’s Thesis, Department of Industrial Engineering

Supervisor: Assoc. Prof. Mehmet Fatih TAŞGETİREN

May 2013, 50 pages

In this thesis, a variant of permutation flowshop scheduling problem, where

no-idle times are allowed on machines, is considered and a metaheuristic

algorithm; a General Variable Neighborhood Search algorithm with insert and

swap operations in outer loop and in the inner loop (Variable Neighborhood

Descent phase), Iterated Greedy algorithm and Iterated Local Search algorithm is

represented. The results of the algorithm are compared to the results with some

other algorithms to measure the performance. These algorithms are; (1) an

iterated greedy, (2) variable iterated greedy, (3) the hybrid discrete differential

evolution and (4) variable iterated greedy algorithm with differential evolution

algorithm. The performances of the proposed algorithms are tested on the Prof.

Ruben Ruiz’ benchmark suite that is presented in http://soa.iti.es/rruiz.

Computational results are proposed and concluded as the GVNS algorithm further

improved 85 out of 250 current best known solutions. In addition, these

conclusions are supported by the paired T-tests and the interval plot.

http://soa.iti.es/rruiz

iv

ACKNOWLEDGEMENTS

I owe my deepest gratitude to my thesis advisor Assoc. Prof. Mehmet Fatih

Taşgetiren for his invaluable support, encouragement and patience throughout my

research.

I gratefully acknowledge Assist. Prof. Önder Bulut for his help and

encouragement all the time.

This thesis would not have been possible without their encouragement and

support.

I thankfully acknowledge the support of TUBITAK - Turkish Technological

and Scientific Research Institute during my thesis period.

v

TABLE OF CONTENTS

Text of Oath ... i

Özet .. ii

Abstract .. iii

Acknowledgements .. iv

CHAPTER 1: Introduction ... 1

CHAPTER 2: No-Idle Permutation Flowshop Scheduling Problem 4

2.1 Forward Pass Calculation ... 6

2.2 Backward Pass Calculation .. 10

CHAPTER 3: Metaheuristic Algorithms ... 14

3.1 Iterated Greedy (IG) Algorithm ... 15

3.1.1 The Neh Heuristic .. 16

3.1.2 Destruction And Construction Procedure................................. 16

3.1.3 Referenced Insertion Algorithm ... 18

3.1.4 Iterated Local Search Algorithm .. 20

3.2 Variable Iterated Greedy Algorithm .. 21

3.3 Variable Iterated Greedy Algorithm With Differential Evolution22

3.4 Hybrid Discrete Differential Evolution.. 25

3.5 General Variable Neighbourhood Search 28

CHAPTER 4: Computational Results .. 32

CHAPTER 5: Conclusion .. 47

Bibliography ... 48

vi

LIST OF FIGURES

Figure 1. Computation of .. 6

Figure 2. Computation of .. 6

Figure 3. Computation of .. 7

Figure 4. Computation of .. 8

Figure 5. Computation of ... 10

Figure 6. Computation of .. 10

Figure 7. Computation of ... 11

Figure 8. Computation of .. 11

Figure 9 Iterated Greedy Algorithm ... 16

Figure 10. Referenced Insertion Algorithm ... 19

Figure 11. The general outline for an iterated local search 21

Figure 12. Variable Iterated Greedy Algortihm of Framinan and Leisten ... 22

Figure 13.Variable Iterated Greedy Algorithm with Differential Evolution 25

Figure 14. Perturbed Local Search ... 27

Figure 15. Hybrid Discrete Differential Evolution 28

Figure 16. General Variable Neighborhood Search Algorithm 29

Figure 17. Variable Neighborhood Descent ... 30

Figure 18. The first neighborhood structure of VND in GVNS 30

Figure 19. The second neighborhood structure of VND in GVNS 31

Figure 20. Interval plot of algoritms compared.. 35

vii

LIST OF TABLES

Table 1. An example instance for forward and backward pass calculation ... 8

Table 2. An example instance for Destruction and Construction Procedure 17

Table 3. Multi-vector chromosome representation 24

Table 4. Average relative percentage deviation of the algorithms 33

Table 5. Makespan values obtained by the algorithms 36

Table 6. Comparison of GVNS with competing algorithms 43

Table 7. Solutions obtained under total flow time criterion 43

viii

INDEX OF SYMBOLS AND ABBREVIATIONS

Symbols Explanations

 machine no-idle permutation

flowshop problem with makespan

minimization

 , jobs, total number of jobs

 , machines, total number of machines

 processing time of job j on machine

m

 starting time of processing jobs on

machine k

 , job permutation, j
th

job of

permutation

 () completion time of on machine k

 makespan

 population size

 mutation scale factor, crossover

probability

Abbreviations

PFSP permutation flowshop problem

NIPFS no-idle permutation flowshop

NEH Nawaz, Enscore, Ham heuristic

ix

IG Iterated Greedy

VNS Variable Neighborhood Search

GVNS Global Variable Neighborhood

Search

TFT total flow time

IG_LS iterated greedy with local search

VIG_FL variable iterated greedy by Framinan

and Leisten

DE differential evolution

DDE discrete differential evolution

HDDE hibrit discrete differential evolution

VIG_DE variable iterated greedy with

differential evolution

VND variable neighborhood descent

ILS iterated local search

RIS referenced insertion

NFL No-Free Lunch

1

CHAPTER 1

INTRODUCTION

A flowshop is a commonly used production system in manufacturing

industries. Generally, in manufacturing environments, the jobs should go through

different processes till the end items are obtained. If the route of each job is

different, then this environment is referred as jobshop. The production

environment with all jobs have the same route is called flowshop. Scheduling of a

flowshop has an essential role in competitive environments; therefore this

problem has been one of the most attractive subjects for researchers.

In a flowshop, there is more than one machine and each job must be

processed on each of the machines. Each job has the same ordering of machines

for its process sequence. Each job can be processed on one machine at a time, and

each machine can process only one job at a time. For the permutation flowshop,

the processing sequences of the jobs are the same on each machine. In other

words, jobs have a permutation and therefore, once a permutation is fixed for all

jobs on the first machine, this permutation is maintained for all other machines.

If one job is at the position on machine 1, then this job will be at the

position on all the machines.

In order to measure the performance of scheduling in a flowshop, there are

several criteria such as, makespan and due-date based performance measures.

Makespan criterion, without any doubt, the most widely used performance

measure in the literature. The popularity of makespan criterion comes from the

ease of implementation of this criterion to each kind of problem. On the other

hand, in real life considerations, meeting customers’ requirements on-time is

essential for several industries. For these problems which aim to satisfy promised

due dates to customers, due-date based performance measures have been attracted

interest from the researchers recently. There are many interesting and successful

studies that are considering total tardiness criterion in literature as well.

In this thesis, a variant of permutation flowshop scheduling problem

(PFSP), where no-idle times are allowed on machines, is considered. The no-idle

constraint has an important role in scheduling environment, where expensive

2

machinery is employed. Idling machines in such environments is not cost-

effective. Another situation that production environment desires to have no-idle

times in schedule, is when high setup time or costs exist so that shutting down the

machines after initial setup is not wanted. In no-idle permutation flowshop

scheduling (NIPFS) problem, each machine must process each job without any

interruption from the beginning of the first job to the completion of the last job. In

order to meet this constraint, delays may occur in the processing of the first job on

any machine. There are various examples of this problem in manufacturing

industries. For instance, fiberglass processing has both costly and time consuming

setups where the furnaces must be heated up to 2800ºF which takes three days. So

furnace must stay on during the entire production to avoid long setup times but at

the same time, since the cost of idling furnace is too high, the production must be

scheduled considering no-idle restriction. (H. Saadani, A. Guinet, M. Moalla,

2003) presented a three-machine flowshop production of engine blocks in a

foundry.

 is a well-known notation of the m-machine

NIPFS problem where the makespan is minimized. (Baptiste, P., & Lee, K. H.,

1997) showed that is an NP-hard problem. Although it

has a great importance in both theory and practical applications, it has not

attracted much attention in the literature by the researchers. In (Adiri, I. and

Pohoryles, D., 1982) an algorithm to solve optimally,

is presented. The first time, problem is studied with the makespan criterion in

(Vachajitpan, 1982). (Woollam, 1986) examined heuristic approaches for the

general m-machine no-idle PFSP with the makespan criterion.

Recently, heuristic approaches have attracted increasing attention by many

researchers. The solution quality of heuristic approaches started to get higher

especially when the low computational effort is considered. A heuristic, based on

the traveling salesman problem (TSP), for the the was

represented in (Saadani, N. E. H., Guinet, A., and Moalla, M., 2005). (Kalczynski,

P.J. and Kamburowski, J., 2007) presented an adaptation of the NEH heuristic for

the NIPFS problem and also studied the interactions between the no-idle and no-

wait flowshops. In (Ruiz, R. , Vallada, E. , Fernández-Martínez, C., 2009), an IG

algorithm for the NIPFS problem with the makespan criterion was presented and

examined the performance against the existing algorithms. (Tasgetiren M.F., Pan

3

Q., Suganthan P.N.,Oner A.) presented a discrete artificial bee colony algorithm

to solve the no-idle permutation flowshop scheduling problem with the total

tardiness criterion. (Kirlik G., Oguz C., 2012) applied a different algorithm to a

different problem; the single machine scheduling problem to minimize the total

weighted tardiness with the sequence dependent setup times by using general

variable neighborhood search (GVNS) algorithm. This algorithm resulted very

well for that NP-hard problem, therefore, inspiring from (Kirlik G., Oguz C.,

2012), in this study, a GVNS algorithm is proposed to solve the NIPFS problem

with makespan criterion and compared the results with some other algorithms to

measure the performance.

This paper is organized as follows. In Chapter 2 NIPFS problem is defined.

Details of metaheuristic algorithms are given in Chapter 3. Computational

experiments that evaluate the performance of the solution methods are reported in

Chapter 4. Finally, conclusion is given in Chapter 5.

4

CHAPTER 2

NO-IDLE PERMUTATION FLOWSHOP SCHEDULING

PROBLEM

No-idle permutation flowshop scheduling is required when the production

environment desires to have no-idle times in production schedule because of the

high costs or setup complexity of the system. In order to avoid the troubles in the

production environment, the schedule must be done carefully while considering

the all systems behavior.

There are jobs to be processed successively on

 machines with the same sequence on each machine. Associated with

each job and machine , there is a processing time .

The assumptions for this problem are introduced;

 Each machine can perform at most one job at any given time;

 Each job can be processed on at most one machine at any given

time;

 Processing sequences of jobs are same on each machine;

 There cannot be idle times between the start of processing the first

job to the completion of processing the last job on any machine.

While constructing the algorithm that will determine the production

sequence of jobs, the time complexity of performance measures must be

considered as well as problems’ objective, which is the makespan minimization

for this problem. Both the reliability and the speed of the algorithm have an

essential importance for real life problems. In real life problems, it is desirable to

have a good quality solution in a short time period. In order to provide this,

researchers have been studying on decreasing the time complexity of algorithms.

(Ruiz, R. , Vallada, E. , Fernández-Martínez, C., 2009) proposed a formulation to

calculate makespan of no-idle flowshop. In this formulation, first, when a given

machine can start processing with no needed idle time is calculated. Then by

using these values, the completion times are calculated straight forward, by

adding processing times of jobs to the starting times for each machine, since the

jobs are processed with no-idle time. Moreover, (Pan, Q-K. and Wang, L., 2008)

also presented a formulation for the NIPFS problem with the makespan criterion.

5

This formulation consists of forward and backward pass calculation. These

methods decrease the time complexity of calculating the completion times

comparing to (Ruiz, R. , Vallada, E. , Fernández-Martínez, C., 2009) calculation

method, which is a very desirable property especially in algorithmic studies. Less

CPU time for calculation, provide opportunity to algorithm to apply more moves

or to generate more generations that increases the chance to obtain more improved

solutions.

In the formulation that (Ruiz, R. , Vallada, E. , Fernández-Martínez, C.,

2009) used in their study, the necessity of the delay of the jobs, to ensure that jobs

are processed without idle time, is considered and according to this feature, they

proposed to first calculate the starting time of processing jobs on each machine

which is denoted by where and denotes the machine.

Then by adding the processing times to these starting times, they calculate the

completion times. Let, a job permutation, be the sequence of

jobs to be processed on each machine and the completion time of on machine

be (). The formulations are given below;

 {∑ ()
 ∑ ()

 }

 (1)

After calculating the values, the completion time of each job can be

calculated by adding the processing times of jobs on each machine;

 (2)

 () () () , (3)

As a result, the completion time of jobs on the last machine gives the

makespan;

 . (4)

In order to come up with the complexity, the summations inside the max term in

expression (1) have to be stored at each step. For example:

∑
 ∑ ()

 (5)

6

As mentioned before, (Pan, Q-K. and Wang, L., 2008) proposed another

calculation method for NIPFS problem that consists of forward and backward

passes which is explained in the following sections.

2.1 Forward Pass Calculation

Let the partial sequence of ,
 represent the sequence of

jobs from the first job to the job of sequence where . The

minimum difference, between the completion of processing the last job of
 on

machines and is denoted as
 and restricted by no-idle

constraint.
 can be computed as shown below.

 (6)

 (
) { (

) () } ()

 (7)

1

2

3

1

1

1

t

Machine

 2,1,1EF 

 3,2,1EF 

Figure 1. Computation of (
)

1

2

3

1

1

1

2

2

2

Machine

 2,1,2EF   3,2,2EF 

Figure 2. Computation of (
)

7

t
1

2

3

1

1

1

2

2

2

3

3

3

Machine

 2,1,3EF   3,2,3EF 

Figure 3. Computation of (
)

In formulation (6), difference between the completions of processing the last

job of
 which only includes one job, on machines and is given. Since

there is only one job,
 can be calculated by considering processing

time of that job on corresponding, machine. In formulation (7),

calculation of (
) for is represented. It can be calculated by not

only considering processing time of j
th

 job on machine , also adding the positive

difference between the previous job’s completion of processing on machines

and .

The completion time of last job, on last machine can be calculated as

summation of
 value for all machines and the processing times of

all previously processed jobs including itself;

 ∑

 ∑ ()

 (8)

Then, for any job , completion time on last machine can be computed by

subtracting the processing time of the next job, from the completion time of

 on machine ;

 () () () (9)

Makespan can also be defined as the maximum completion time of jobs on

the last machine by using the no-idle constraint of this problem;

 (10)

And, the total flow time of the permutation , can be obtained as a

summation of all completion times;

 ∑ ()
 (11)

8

t
M1

M2

M3

1

1

1

2

2

2

3

3

3

Machine

 maxC

  

n

j jp
1

1,  2,1,3EF   3,2,3EF 

Figure 4. Computation of

For the example instance for 3-job 3-machine problem that is taken from

(Tasgetiren M.F., Pan Q., Suganthan P.N.,Oner A., In press), Figure 1 a to Figure

1 d, the forward calculation is illustrated with a permutation .

An example for forward pass calculation is represented below.

Example

 An example instance is given in Table 1 for 3-job 3-machine problem with

permutation and with due date tightness factor of . According to

the data given, the forward pass calculation is presented below, in detail.

 Machines (k)

Jobs

(j)
1 2 3

 4 1 3

 2 3 3

 2 2 3

Table 1. An example instance for forward and backward pass calculation

By using the equation (6), (
) for the first job is computed as;

9

Equation (7) is used to calculate (
) for the remaining jobs.

For and ;

For and ;

The completion time of the last job on last machine which

gives also the makespan of the permutation is computed by using the equation (8);

 ∑

 ∑ ()

For remaining jobs, completion time on last machine is

computed by using equation (9);

The makespan can also be computed by using (10);

As mentioned before, the makespan calculation by using equation (8) and

equation (10) results same since the problem has a no-idle constraint.

Total flow time is calculated with equation (11);

10

 ∑ ()

2.2 Backward Pass Calculation

Let, the partial sequence of ,
 represent the sequence

of jobs from the job to the last job of sequence where . And let

 be the lower bound for the minimum difference between the start

of processing the first job of
 on machines and . Then;

 (12)

 (
) { (

) () } ()

 (13)

t
1

2

3

3

3

3

 2,1,3FE 

 3,2,3FE 

Figure 5. Computation of (
)

t

1

2

3

2

2

2

3

3

3

Machine

 3,2,2FE 
 2,1,2FE

Figure 6. Computation of (
)

11

t
1

2

3

1

1

1

2

2

2

3

3

3

Machine

 2,1,1FE 

 3,2,1FE 

Figure 7. Computation of (
)

The completion time of the first job on last machine can be obtained

as follows;

 ∑

 (14)

Then, the completion time of any job on the last machine can be

computed as;

 () () (15)

The objective of no-idle permutation flowshop is to find the permutation

which has a minimum makespan or total flow time in the set of all permutations

∏. The permutation can be obtained as;

 or

 , ∏ (16)

 or

 , ∏ (17)

t
1

2

3

1

1

1

2

2

2

3

3

3

Machine

 2,1,1FE 

 3,2,1FE    

n

j jp
1

3,

 maxC

Figure 8. Computation of

12

Fig. 2 a to Fig.2 d illustrate the backward pass calculation of makespan for a

3-job 3-machine problem.

By using the example instance that is given in Table 1, a detailed backward

pass calculation is represented below.

Example

For the last job ,
 is computed by using equation (12);

Equation (13) is used to calculate
 for the remaining jobs.

For and ;

For and ;

The completion time for the first job on the last machine , is

obtained by equation (14);

 ∑

Using equation (15), all other remaining jobs’ completion time on

last machine is computed;

13

As mentioned before, the makespan can also be computed by using (10);

And the total flow time can be calculated same as forward pass method by

using equation (11).

As a result of this comparison study, the formulation of (Pan, Q-K. and

Wang, L., 2008) is selected to use in this study.

14

CHAPTER 3

METAHEURISTIC ALGORITHMS

In the last years, a new kind of approximate algorithm started to be used

by many researchers, which basically tries to combine basic heuristic methods in

higher level frameworks aimed at efficiently and effectively exploring a search

space. These methods are called metaheuristics.

Metaheuristic algorithms basically aim to provide nearly-optimal solutions

by creating an initial solution and improving this solution iteratively. These

algorithms help researchers to have qualified solutions for very complex problems

(i.e. NP-Hard problems) which are commonly needed to be solved in real-life

cases. There are several algorithms presented in literature; some of these

algorithms uniquely developed for a specific problem, some of these are

applicable for different types of problems. (Stützle, 1999) presented the definition

for the term metaheuristic as follows;

“Metaheuristics are typically high-level strategies which guide an underlying, more
problem pecific heuristic, to increase their performance. The main goal is to avoid the
disadvantages of iterative improvement and, in particular, multiple descents by allowing
the local search to escape from local optima. This is achieved by either allowing
worsening moves or generating new starting solutions for the local search in a more
“intelligent” way than just providing random initial solutions. Many of the methods can be
interpreted as introducing a bias such that high quality solutions are produced quickly.
This bias can be of various forms and can be cast as descent bias (based on the
objective function), memory bias (based on previously made decisions) or experience
bias (based on prior performance). Many of the metaheuristic approaches rely on
probabilistic decisions made during the search. But, the main difference to pure random
search is that in metaheuristic algorithms randomness is not used blindly but in an
intelligent, biased form.”

In literature, for NIPFS problem, many researchers proposed different

algorithms. In this thesis, the results obtained from four different algorithms that

are proposed for the NIPFS problem, are compared with the proposed GVNS

algorithm. These algorithms are;

 An Iterated Greedy (IG_LS) algorithm for the NIPFS problem with

the makespan criterion that is presented in (Ruiz, R. , Vallada, E. ,

Fernández-Martínez, C., 2009)

15

 Variable Iterated Greedy (VIG_FL) algorithm, that is presented and

implemented to solve the PFSP with the total tardiness criterion in

(Framinan and Leisten, 2008)

 The Hybrid Discrete Differential Evolution (HDDE) algorithm that

is proposed by (Deng G and Gu X., 2012)

 Variable Iterated Greedy algorithm with Differential Evolution

(VIG_DE).

In this chapter these algorithms and the algorithm that is proposed; a GVNS

algorithm with insert and swap operations in outer loop and in the inner loop

(VND), IG algorithm and iterated local search (ILS) algorithm are explained.

3.1 Iterated Greedy (IG) Algorithm

Iterated Greedy algorithm is presented in (Ruiz R., Stützle T., 2007), based

on a very simple principle and easy to implement as well as has successful

applications in discrete/combinatorial optimization problem. It produces solutions

with very good quality in a very short amount of time.

Algorithm starts with an initial solution that is generated either randomly or

using heuristics, such as NEH heuristic that is explained in Section 3.1.1 . Then

Destruction Construction Procedure is applied which is presented in Section 3.1.2

and repeated until some stopping criterion like a maximum number of iterations or

a computation time limit is met. An optional local search phase can be added

before the acceptance test for improving the re-constructed solution. For this

study, Referenced Insertion Algorithm is used as a local search and explained in

Section 3.1.3. . The pseudo code of the algorithm is given below;

 //(optional) Local Search

 //Acceptance test

 { () }

16

 //Stopping criterion

Figure 9 Iterated Greedy Algorithm

3.1.1 The NEH Heuristic

NEH heuristic is proposed by (Nawaz, M., Enscore, Jr, E. E., and Ham, I.,

1983) and has been recognized as the highest performing method for the

permutation flowshop scheduling problem. The NEH algorithm is based on

scheduling jobs with high processing times, as early as possible, on all the

machines. The NEH heuristic has three phases:

1. For each job , the total processing time on the machines are computed:

 ∑

 ,

2. Jobs are sorted in descending order of . Let the resulting permutation

be , then the first two jobs are selected and two possible permutations are

generated and the one that results with the minimum makespan or total

flowtime is selected.

3. Second phase is repeated until all jobs are sequenced. In order to

generalize the procedure; in the step, the job at position is taken

and inserted into possible positions of the permutation of the jobs that are

already scheduled. The best resulting permutation is selected.

The computational complexity of the NEH heuristic is , which

consumes a very high level of CPU especially for larger instances. There are some

speed-up methods that are introduced to reduce the complexity of NEH to

 . It is claimed that these speed-up methods are one of the key factors to

the success of most algorithms especially the ones with the makespan criterion.

Even though, in this study no speed-up method is used, the result of the proposed

algorithm is way better than most of the algorithms from the literature.

3.1.2 Destruction and Construction Procedure

Destruction and Construction Procedure consists of two main steps;

destruction step and construction step. In the destruction step, pre-determined

17

parameter many jobs are randomly chosen and removed from the current

solution. Therefore, two partial solutions obtained; one consists of the removed

jobs, in the order which they removed denoted as , the other one is the

remaining part of the initial solution with size and denoted as . In the

construction phase, a heuristic called NEH insertion is used. In this heuristic,

basically all jobs in is inserted into each position in one by one, and finally

the best permutation with the minimum makespan (or total tardiness) is selected.

In a more detailed way; the first job of the is selected and removed from

and inserted into all possible positions, thus many partial

solutions obtained. By considering the performance criterion, the best solution is

selected and kept. Next, the same procedure is applied for second job, third job

and so on, until the is empty. Therefore, the size of becomes again. In

order to be more descriptive, an example that is represented in (Ruiz R., Stützle

T., 2007) is given below.

Jobs (j)

Machines

(i)
1 2 3 4 5 6 7 8

1 456 654 852 145 632 425 214 654

2 789 123 369 678 581 396 123 789

3 654 123 632 965 475 325 456 654

4 321 456 581 421 32 147 789 123

5 456 789 472 365 536 852 654 123

6 789 654 586 824 325 12 321 456

7 654 321 320 758 863 452 456 789

8 789 147 120 639 21 863 789 654

 Table 2. An example instance for Destruction and Construction Procedure

 For the example instance given in Table 2, one iteration of the IG algorithm

is applied. Let the given sequence given below be the initial solution that is

obtained by using NEH algorithm with .

7 3 4 1 8 2 5 6

18

 For the destruction phase, let the destruction size be, . Then, three

jobs must be randomly chosen and removed from the current solution. Let these

jobs be 5, 1 and 4, respectively.

7 3 4 1 8 2 5 6

Then, the removed job to be reinserted, and the partial sequence to be

reconstructed becomes as follows, respectively;

5 1 4

7 3 8 2 6

In construction phase, each job in is reinserted in all possible positions in

 and the sequence with the best performance is selected. In the figures below,

the best sequence after the reinsertion of each job is given.

 After reinserting job 5,

 After reinserting job 1,

After reinserting job 4,

The example shows that a new solution obtained by removing jobs 5, 1 and 4 and

reinserting them, is which is a better solution than the inital

solution given by the NEH heuristic (). This new solution is

accepted by the acceptance criterion since it is better than the starting solution.

Furthermore, this new sequence is known to be an optimal solution for this

instance.

3.1.3 Referenced Insertion Algorithm

In the referenced insertion (RIS) procedure, as an initial step, a referenced

permutation, , is selected which is the best solution found so far. Then, the first

job of the is determined and the position of this job is found in the current

permutation . This corresponding job is removed from and inserted into all

possible positions of permutation . Next, second job of the is found in the

permutation , removed and inserted into the positions of its own permutation.

And the procedure goes on in this way, until all the jobs in the is processed.

For example, let the referenced sequence be, and the current

7 3 8 5 2 6

7 3 8 5 2 1 6

7 3 8 5 2 1 6 4

1 2

 1

3

19

solution be . The RIS procedure selects the first job of , which

is job 4 and finds it in the current sequence. It removes job 4 from and inserts

into all possible positions in . The objective function values of these newly

generated permutations are compared to and if any insertion is better than ,

then the current solution is replaced by that permutation obtained by the insertion.

Then the RIS procedure takes the second job of the referenced sequence which is

job 2 and finds it in . Procedure removes job 2 from current solution , and

inserts it into all possible positions of . This procedure is repeated until is

empty.

The RIS procedure claims to have better solutions since the jobs are selected

by referring to a good quality solution instead of a random choice. The pseudo

code of this algorithm is represented below;

 ()

Figure 10. Referenced Insertion Algorithm

In this study, an IG algorithm with RIS local search is applied to NIPFS

problem. In addition to IG, another powerful algorithm, Iterated Local Search

(ILS) algorithm is also applied to this problem. In the next section, ILS algorithm

is explained in details.

20

3.1.4 Iterated Local Search Algorithm

Iterated local search (ILS) is first presented in (H.R. Lourenc, O. Martin, T.

Stützle, 2002) and known as a simple and powerful stochastic local search

method. According to (H.R. Lourenc, O. Martin, T. Stützle, 2002), “ILS is a

simple and generally applicable stochastic local search method that iteratively

applies local search to perturbations of the current search point, leading to a

randomized walk in the space of local optima”. The main idea of iterated local

search (ILS) algorithm is to apply local search repeatedly to initial solutions

obtained by perturbations of a previously visited locally optimal solutions. The

simplicity, ease of implementation and at the same time efficiency of this

algorithm makes this algorithm eligible.

In (Thomas Stützle, 2006), the application of ILS to the quadratic

assignment problem is represented. In this study, as a second algorithm of VND

phase of the GVNS algorithm is inspired by this application of ILS.

In ILS algorithm, there are some procedures to be specified. These are;

 How to generate initial solution (GenerateInitialSolution),

 Perturbation type (Perturbation),

 Acceptance criterion (AcceptanceCriterion),

 Which local search to use (LocalSearch).

(Thomas Stützle, 2006), used a random assignment of items to locations as

the initial solution (GenerateInitialSolution). The phase Perturbation exchanges

randomly chosen items, corresponding to a random move in the k-opt

neighborhood. (Thomas Stützle, 2006) decided to determine value by using

VNS. In order to decide which solution to choose, as AcceptanceCriterion,

Better(s,s’) function is used. By using this function, good solutions () are

determined as;

 {

where represents the objective function value for solution . In

LocalSearch phase, an iterated descent algorithm with a first improvement

pivoting rule is used. The pseudo code of the ILS algorithm is given below, in

Figure 17.

21

Figure 11. The general outline for an iterated local search

where indicates that also the search history may affect the

 and decisions.

3.2 Variable Iterated Greedy Algorithm

Variable IG algorithm (VIG_FL) is presented and implemented to solve the

PFSP with the total tardiness criterion in (Framinan and Leisten, 2008). This

algorithm is inspired from the idea of neighbourhood change of the VNS

algorithm that is explained in Section 3.5 . In (Ruiz R., Stützle T., 2007) it is

shown that destruction of 4 jobs is most adequate, so in their study, the destruction

size is used as a constant parameter which equals to 4. In VIG_FL, the destruction

size is developed as a variable and at the beginning it is fixed at . If the

solution is not improved, the destruction size is incremented by until the

maximum destruction size which is (where indicates the number

of jobs). At any destruction size, if there is an improvement in the solution,

destruction size is again fixed at and search starts all over again. The

pseudo code of VIG_FL is given below;

 ()

22

 ()

Figure 12. Variable Iterated Greedy Algortihm of Framinan and Leisten

3.3 Variable Iterated Greedy Algorithm with Differential

Evolution

Standard Differential Evolution (DE) algorithm is introduced by (Storn R,

Price K., 1997) for continuous optimization problems. DE algorithm is a

population-based algorithm and there are three different individual types; target,

mutant and trial. At the beginning, population is consisting of “population size”

() many target individuals. Mutant individuals are generated by applying

mutation operation and trial individuals are generated by crossover operation and

then applies selection operator to determine the new target individuals for the next

generation.

Let

 denote the th individual of target population at

generation .

 denote mutant and

denote trial individuals. Mutant and trial individuals are generated as follows;

 (18)

 {

 (19)

where , , and are random integers that are different than each other and

 , and take values between . is a random number between [), is

the mutation scale factor from [) and is the crossover probability from

[]. is a random integer from []. For creating a mutant individual in (18),

three different individuals are randomly chosen from target population and the

23

difference of two of these individuals’ th elements is multiplied with mutation

scale factor and added to third individual’s th element. So that, new mutant

individual’s th element is obtained. In (19), with crossover probability the trial

individual is taken from mutant population, otherwise it remains same as target

individual.

By using these formulations, (18) and (19), trial population is generated for

 and . In selection phase, target population and trial

population is compared and the one with better objective function value is

selected. This phase is performed as;

 {

 (20)

where is the objective function value for individual . These iterations

go on until pre-determined stopping criteria is satisfied.

A modified VIG algorithm is also applied to NIPFS problem to compare the

performance of proposed algorithm. (Tasgetiren M.F., Pan Q., Suganthan P.N.,

Buyukdagli O., 2013) proposed an algorithm that the standard DE algorithm is

modified and applied such that the probability to apply IG algorithm to the

specific individual in the target population and the parameter of IG, destruction

size is a variable. Thus, this algorithm is a variable iterated greedy algorithm

guided by differential evolution denoted by VIG_DE.

Basically, VIG_DE algorithm optimizes the probability to apply IG to an

individual () and the destruction size () that is used as a parameter of IG, by

using DE. In the initial population, the permutation of the first individual is

constructed by using NEH heuristic. All the remaining individuals in the target

population are generated randomly and NEH heuristic is applied each of them to

start the algorithm with relatively better individuals. The destruction size, , is

determined randomly and uniformly between . After generating target

population and for each individual of that population, IG algorithm is applied

the individuals in target population without considering the probability that

guides algorithm either IG is applied or not. Next, is determined as follows;

 ∑

 (21)

24

A uniform random number is generated between [0,1), if this number

is less than the probability , IG algorithm is applied to the trial individual with

the destruction size . This calculation gives a high ratio which means higher

probability to apply IG, when the objective function value is lower (for

minimization problem) for that individual. This means after applying IG if the

objective function value gets better, then the probability to apply IG gets higher

value.

In order to avoid complexity, a unique multi-vector chromosome

representation is used to keep all variables together in this problem. In Table 2, it

can be observed that, the variables and appear in the first vector.

corresponds to destruction size and to probability . The second vector

contains the permutation that is assigned to each individual.

 1 2 3 …

 id i

 1i 2i 3i … in

Table 3. Multi-vector chromosome representation

In VIG_DE algorithm, mutant individuals are obtained by using formulation

(18), for and , , and are randomly chosen integers by tournament

selection with size of 2 that are different than each other and , and take values

between .

For the crossover phase, an arithmetic crossover operator is applied to

generate trial population.

 (22)

where is a crossover probability from the range and . The

higher value means, the higher effect of mutant individual comparing to target

individual on the new trial individual. This arithmetic calculation may cause the

individual to violate the search range. In order to fix this problem, following

formulation is used;

 (23)

25

where and

 ,

 and is a

uniform random number from . Since the first dimension is taken as a

destruction size, this value should be an integer value. Therefore, destruction size

is obtained by truncating
 such that; ⌈

 ⌉. The second dimension is used

as the probability to apply IG algorithm,
 . If a uniform random number

is less than the probability
 , then the IG algorithm is applied and the

fitness value of the generated trial individual is computed. In the selection phase,

the survival of the fittest among all the trial and target individuals is considered as

shown below;

 {

 (24)

Differential evolution part of the algorithm, that is explained above, is

applied only the first vector of the solution representation which contains

and . The pseudo code of the whole VIG_DE algorithm is given in Figure

XXX.

Figure 13. Variable Iterated Greedy Algorithm with Differential Evolution

3.4 Hybrid Discrete Differential Evolution

The DE algorithm is proposed for continuous optimization problems where

the individuals are represented by floating-point numbers, so in order to apply this

algorithm to the problems where discrete job permutation is needed to be

generated. (Tasgetiren, M. F., Pan, Q. -K., Liang, Y. -C., Suganthan, P.N., 2007a)

proposed an algorithm for scheduling problems which is called Discrete

26

Differential Evolution (DDE) algorithm. Mutation and crossover operations are

re-designed as job-permutation-based that is applicable for discrete cases.

The Hybrid DDE (HDDE) algorithm is the combination of DDE-based

evolutionary searching technique and a problem specific local search. (Deng G

and Gu X., 2012) inspired from (Tasgetiren M.F., Pan Q.K., Suganthan P.N.,

Liang Y.C., 2007b) study and applied their perturbed local search after the new

population generated by using DDE which provides algorithm to start the new

search with a qualified individuals. HDDE algorithm that (Deng G and Gu X.,

2012) proposed is one of the metaheuristic algorithms that is compared with the

algorithm presented in this study.

In this algorithm, the individuals are represented as job permutations;

 (). Different than standard DE that is explained in

Section 3.3 , th individual of target population at generation is represented as

 . Mutant and trial individuals are generated as follows;

 {

 (
)

 (25)

 {

 (26)

where
 is a relatively better solution than current one, from generation

 . operator is a random insert move in an individual ,

represents a crossover operator (partially mapped crossover) applied to and ,

 is the insert mutation scale factor and is the crossover probability. is a

random number between but different than and is a uniform

random number between [). In (25), mutant individual is obtained as

following; if is less than , insertion move is applied to a relatively better

solution , otherwise to a random target individual different than th. Similarly,

for the trial individual generation in (26), if is less than , partially mapped

crossover is applied to mutant individual
 and the corresponding target value at

the previous generation
 , otherwise mutant individual is directly taken.

Selection phase of HDDE is performed same as in standard DE that is

represented in (20) in Section 3.3 .

27

As a local search, in (Deng G and Gu X., 2012) perturbed local search is

presented. This local search algorithm is a combination of destruction

construction algorithm that is explained in Section 3.1.2 , referenced insertion

algoritm that is presented in Section 3.1.3 and IterativeImprovement_Insertion

that is represented in (Ruiz R., Stützle T., 2007). The outline of perturbed local

search is shown below;

 ()

 ()

 { () }

Figure 14. Perturbed Local Search

where is the best individual found by HDDE so far. For a given

permutation , first destruction construction is applied, then insertion-based local

search and lastly the acceptance criterion is checked.

The initial target population is generated randomly except two individuals

of this population. One is generated by using NEH heuristic that is explained in

Section 3.1.1, the other is generated by a variant of InsertionImprovement().

The pseudo code of HDDE algorithm is given below. This algorithm

includes standard DE procedures, mutation, crossover and selection and as a local

search perturbed local search.

28

Figure 15. Hybrid Discrete Differential Evolution

3.5 General Variable Neighbourhood Search

Variable neighborhood search (VNS) is a common approach to enhance the

solution quality with systematic changes of neighborhood within a local search. It

is proposed by (Mladenovic´, N., Hansen, P., 1997). The algorithm involves

iterative exploration of larger and larger neighborhoods for a given local optima

until there is an improvement, after which time the search is repeated. The basic

steps of VNS algorithm can be summarized as given below:

Initially, a set of neighborhood structures, is selected where

 . Having a multi neighborhood structure makes VNS an effective

algorithm since most local search heuristics use one structure, . Then the

initial solution is generated either randomly or using heuristics, such as NEH

heuristic. The stopping criteria can be selected as maximum CPU time allowed or

maximum number of iterations. Then, following steps are repeated until the

stopping criterion is met;

 Set ;

 Repeat the following steps until :

o Generate a point at random from neighborhood of

 , (shaking)

o Apply local search method by considering as initial solution and

obtain a local optimum denoted by . (local search)

o If this local optimum is better than , and continue search

with current neighborhood structure meaning ; otherwise set

 .

There are some decisions to be made before using VNS algorithm. These are;

 Number and types of neighborhoods to be used

 Order of their use in the search

 Strategy for changing the neighborhoods

 Local search method

 Stopping condition

29

Shaking step of VNS algorithm provides randomness in search. If this step

is eliminated from algorithm, variable neighborhood descent (VND) algorithm is

obtained. The steps of VND can be explained briefly, as follows;

 Set ;

 Repeat the following steps until :

o Find the best

o If is better than , then set ; otherwise set .

An extended VNS algorithm called general variable neighborhood search

(GVNS) that is proposed in (Hansen P., Mladenovic N., Urosevic D., 2006). It can

be obtained by replacing the local search step of VNS with VND algorithm. In

this study, a different version of the GVNS algorithm with insert and swap

operations in outer loop and in the inner loop (VND), IG algorithm and iterated

local search (ILS) algorithm is applied to NIPFS problem and compared to all

other algorithms. Using an another algorithm in local search step of the VNS

provides to have a more powerful algorithm.

 The pseudo code of the GVNS algorithm we applied in this study is given

below;

Figure 16. General Variable Neighborhood Search Algorithm

where, and operations.

Shaking phase is composed of two different operations. The and

 operations applies only one insert and one swap move, respectively,

to shake the permutation. The sequence of these operations has an

30

important role in search. In literature many study shows that putting insert

operation before swap results better than the converse version. After

shaking phase is applied, as a local search, and is explained

below;

Figure 17. Variable Neighborhood Descent

where which is explained in Section 3.1 but with some

differences. These differences will be shown in pseudo code given below.

 , that will be explained briefly in Section 3.1.4 .

In phase, IG algorithm is applied until there is no improvement.

After the neighborhood structure is changed as ILS algorithm. ILS algorithm is

also applied as long as there is improvement. Otherwise the search is stopped.

Figure 18. The first neighborhood structure of VND in GVNS

In this study, as mentioned before, ILS algorithm is used as a second

neighborhood structure in VND phase. Using that much powerful algorithm as a

neighborhood structure instead of more basic ones, increase this phase’s ability to

31

reach better solutions. According to the No-Free Lunch (NFL) theorem that is

proposed in (Wolpert D. H. and Macready W. G., 1997); “For any algorithm, any

elevated performance over one class of problems is offset by performance over another

class”. Meaning that, any algorithms performance may differ from problem to

problem. So applying two different algorithms to a specific problem and changing

the neighborhood while there is no improvement may increase the chance to get

better solution. At some point, one of the algorithms may stuck and perform

worse, when the neighborhood is changed, the other algorithm may perform very

well.

Figure 19. The second neighborhood structure of VND in GVNS

where has a variable input that is called perturbation size and

selected randomly between as applied and shown in (Pan, Q-K. and Wang,

L., 2008) study that these interval results better than other. The perturbation is

applied to permutation , that is obtained from the first neighborhood structure of

VND. Perturbation strength many inserts are made in this step. Then, the local

search RIS, that is explained in Section 3.1.3, is applied to newly generated

permutation until there is no improvement.

32

CHAPTER 4

COMPUTATIONAL RESULTS

In this thesis, different algorithms that are proposed to solve no-idle

permutation flow shop scheduling problem is compared with a newly modified

GVNS algorithm, as mentioned in previous chapters. In Chapter 3, some

metaheuristics that are applied to NIPFS problem from the literature are

explained. Then, the computational results of these algorithms are compared with

the GVNS algorithm.

In order to test the performance of these algorithms, the benchmark suite

presented in the personal website of Ruiz García, Rubén
1
 is used. This benchmark

is designed for NIPFS problem with makespan criterion specifically, with the

number of jobs and the

number of machines . There are 50 combinations with

different sizes and each combination has 5 different instances. Thus, there are 250

instances in total. 5 runs were carried out for each instance for each algorithm. All

results are compared with the best-known solutions presented in the website of

Ruiz García, Rubén
1
. In order to compare these results, an average relative

percentage deviation is calculated for each combination by using the following

equation;

 ∑
(

)

⁄

 (26)

where is the objective function value that is obtained in run of each

algorithm, is the best-known solution presented in the website of Ruiz

García, Rubén
1
 and is the number of runs. The stopping criterion is selected as

a maximum run time of each algorithm which is defined as

milliseconds where the value of can be taken as, or depending on

the comparison case. In the comparison tables, denotes that

the algorithm was run for .

The proposed algorithms are coded in C++ and run on an Intel Core 2 Quad

2.66 GHz PC with 3.5 GB memory. The parameters of DE, the crossover

1
 http://soa.iti.es/rruiz

http://soa.iti.es/rruiz

33

probability and mutation scale factor are taken as and ,

respectively. These high ratios provide algorithms to enhance the search space and

to increase the diversification of solutions. The population size is taken as

 . For the Destruction and Construction procedure, the destruction size is

fixed at .

The results of HDDE algorithm are taken directly from (Deng G and Gu X.,

2012) study. They implemented the proposed algorithm HDDE to NIPFS problem

with termination criterion of milliseconds where .

There are a few differences in properties of their computer and the computer that

is used in this study. These differences may cause an unfair comparison, therefore,

in order to avoid this inequality, the algorithms other than HDDE were run with

termination criterion milliseconds where . In other

words, all other algorithms were run for half of the CPU time that HDDE

algorithm was run for. The computational results are given in Table 4.

From Table 4, it can be observed that the proposed algorithm, GVNS, has

better average relative percentage deviations than the other algorithms that applied

to NIPFS problem. The GVNS algorithm was able to further improve the Best

results to -0.213 which indicates that this algorithm is superior than the other four

algorithms.

Table 4. Average relative percentage deviation of the algorithms

Jobs Machines HDDE
60

 vIG_DE
30

 IG_RIS
30

 VIG_FL
30

 GVNS
30

50 10 0.20 0.03 0.04 0.08 0.14

 20 0.29 -0.04 -0.06 0.04 -0.04

 30 0.25 -0.17 0.08 0.06 -0.12

 40 0.36 -0.41 0.13 -0.10 -0.41

 50 1.15 -0.16 1.06 0.56 -0.23

100 10 0.10 0.04 0.06 0.06 0.08

 20 0.09 -0.09 0.07 -0.04 -0.03

 30 0.50 -0.19 -0.17 0.05 -0.30

 40 0.07 -0.65 -0.41 -0.41 -0.95

 50 0.45 -0.12 0.35 0.49 -0.27

150 10 0.01 0.00 0.00 0.01 0.00

 20 0.43 0.05 0.04 0.12 0.02

 30 0.14 -0.18 0.01 -0.07 -0.12

 40 0.25 -0.07 -0.05 0.29 -0.25

34

Jobs Machines HDDE
60

 vIG_DE
30

 IG_RIS
30

 VIG_FL
30

 GVNS
30

 50 0.17 -0.85 -0.46 -0.57 -0.97

200 10 0.03 0.00 0.00 0.00 -0.00

 20 0.04 -0.07 0.00 -0.01 -0.05

 30 0.01 -0.31 -0.17 -0.20 -0.33

 40 0.10 -0.26 -0.29 -0.26 -0.61

 50 0.45 -0.40 -0.22 -0.17 -0.53

250 10 0.00 -0.01 0.00 0.00 -0.01

 20 0.13 -0.03 0.05 0.02 -0.01

 30 0.00 -0.14 -0.06 -0.12 -0.28

 40 0.31 0.02 0.04 0.11 -0.14

 50 0.06 -0.60 -0.77 -0.49 -1.09

300 10 0.00 0.00 0.00 0.00 0.00

 20 0.12 0.00 -0.03 -0.03 -0.05

 30 0.30 0.02 0.00 -0.06 -0.05

 40 0.15 -0.34 -0.04 -0.17 -0.32

 50 0.10 -0.23 -0.27 -0.15 -0.54

350 10 0.02 0.00 0.02 0.00 0.01

 20 0.05 -0.01 0.02 -0.01 0.00

 30 0.11 -0.05 -0.01 -0.08 -0.14

 40 0.31 0.08 0.02 0.01 -0.17

 50 0.18 -0.44 -0.40 -0.38 -0.72

400 10 0.01 0.00 0.00 0.00 -0.00

 20 0.14 0.04 0.06 -0.01 0.00

 30 0.23 0.11 0.05 -0.01 -0.02

 40 0.20 -0.04 -0.09 -0.15 -0.16

 50 0.08 -0.25 -0.28 -0.33 -0.49

450 10 0.02 0.00 0.00 0.00 0.01

 20 0.12 0.00 0.04 0.00 0.04

 30 0.08 -0.03 -0.09 -0.12 -0.16

 40 0.01 -0.09 -0.02 -0.23 -0.23

 50 0.21 -0.07 -0.27 -0.43 -0.53

500 10 0.01 0.00 0.01 0.00 0.00

 20 0.04 -0.04 0.00 -0.04 -0.04

 30 0.13 0.08 0.04 0.00 -0.05

 40 0.13 0.10 -0.04 -0.04 -0.17

 50 0.17 -0.03 -0.08 -0.23 -0.38

Overall Avg 0.16 -0.12 -0.04 -0.06 -0.213

35

In order to determine if the average relative percentage deviations of

algorithms are statistically significant, an interval plot is given in Figure 20.

Vertical lines with horizontal lines at their end points represent the 95%

confidence interval for the mean and the symbol at the middle indicates the mean

of each algorithm’s relative percentage deviations. As can be observed from the

interval plot, 95% confidence interval for the mean of GVNS algorithm is

obviously does not coincide with the others which means that the means are

statistically significant. In addition the mean of GVNS is significantly lower than

the others.

Figure 20. Interval plot of algoritms compared

In Table 5, the best makespan values obtained by applying the compared

algorithms to the benchmark suits are presented. The first three columns represent

the number of jobs, number of machines and the instance number of the problem

solved in that row, respectively. The column “Best” represents the best-known

solutions presented in the website of Ruiz García, Rubén. The values in column

HDDE
60

are directly taken from (Deng G and Gu X., 2012), the remaining results

obtained by applying these algorithms to the problem. For each row, meaning an

instance, the minimum result is represented in bold font.

D
a

ta

GVNSVIG_FLIG_RISVIG_DEHDDE

0,3

0,2

0,1

0,0

-0,1

-0,2

-0,3

Interval Plot of HDDE; VIG_DE; IG_RIS; VIG_FL; GVNS
95% CI for the Mean

36

Table 5. Makespan values obtained by the algorithms

Jobs Machines Instances Best HDDE
60

 VIG_DE
60

 IG_RIS
60

 VIG_FL
60

 GVNS
60

50 10 1 4127 4127 4127 4127 4127 4127

 2 4283 4283 4283 4283 4283 4283

 3 3262 3263 3262 3262 3262 3267

 4 3219 3216 3216 3219 3219 3219

 5 3470 3470 3470 3471 3471 3470

 20 1 5647 5647 5647 5647 5647 5646

 2 5834 5820 5818 5820 5820 5814

 3 5794 5793 5793 5793 5793 5793

 4 5803 5798 5799 5798 5795 5798

 5 4907 4881 4884 4900 4897 4874

 30 1 7243 7256 7223 7239 7239 7242

 2 7381 7351 7351 7331 7330 7334

 3 6902 6844 6857 6900 6885 6850

 4 7624 7579 7579 7580 7580 7585

 5 7340 7338 7333 7366 7366 7337

 40 1 9264 9227 9168 9167 9130 9171

 2 10164 10116 10137 10121 10117 10134

 3 9896 9791 9782 9854 9836 9822

 4 9575 9607 9523 9550 9533 9495

 5 9082 8967 8968 8960 8957 8904

 50 1 11652 11717 11604 11753 11753 11584

 2 10946 10980 10893 10942 10942 10857

 3 10960 10960 10885 10955 10935 10873

 4 10026 10044 9967 10030 10030 9890

 5 11380 11349 11316 11365 11348 11359

100 10 1 6575 6570 6570 6575 6575 6575

 2 5798 5802 5803 5808 5802 5802

 3 6533 6533 6533 6533 6533 6533

 4 6161 6171 6158 6158 6158 6158

 5 6654 6654 6654 6654 6654 6654

 20 1 8611 8606 8606 8606 8606 8606

 2 8223 8218 8224 8241 8241 8235

 3 9057 9057 9043 9055 9043 9043

 4 9031 9029 8972 8973 8970 8970

 5 9126 9125 9109 9109 9109 9109

 30 1 11249 11228 11210 11210 11202 11202

 2 10989 10943 10938 10938 10938 10943

 3 10666 10674 10571 10555 10555 10549

37

Jobs Machines Instances Best HDDE
60

 VIG_DE
60

 IG_RIS
60

 VIG_FL
60

 GVNS
60

 4 11175 11137 11103 11097 11097 11097

 5 11030 11065 10983 10996 10985 10986

 40 1 12806 12721 12606 12640 12640 12608

 2 13306 13295 13117 13206 13202 13162

 3 12654 12574 12488 12528 12504 12411

 4 12044 11934 11781 11857 11829 11778

 5 12934 12911 12920 12919 12919 12902

 50 1 16111 16035 16019 16057 16050 15998

 2 15019 14800 14787 14989 14916 14853

 3 17755 17798 17585 17686 17650 17571

 4 16672 16703 16684 16692 16667 16626

 5 14827 14948 14802 14920 14854 14746

150 10 1 10404 10404 10404 10404 10404 10404

 2 8824 8824 8824 8826 8824 8826

 3 9180 9180 9180 9180 9181 9180

 4 10032 10032 10032 10032 10032 10032

 5 9870 9870 9866 9870 9870 9870

 20 1 10768 10823 10758 10800 10790 10771

 2 11718 11725 11699 11704 11699 11699

 3 12063 12058 12046 12063 12060 12046

 4 10965 11001 10936 10933 10933 10903

 5 13210 13210 13210 13210 13210 13210

 30 1 15569 15548 15505 15500 15500 15482

 2 13747 13719 13667 13699 13667 13667

 3 14688 14688 14651 14673 14651 14650

 4 14627 14574 14549 14549 14549 14549

 5 15257 15259 15265 15277 15277 15276

 40 1 16217 16114 16025 16135 16120 15935

 2 18235 18238 18122 18218 18173 18075

 3 16416 16434 16356 16419 16381 16375

 4 14658 14647 14648 14651 14640 14555

 5 17298 17260 17246 17288 17244 17234

 50 1 20625 20388 20364 20371 20367 20298

 2 19512 19389 19121 19247 19227 19173

 3 19702 19655 19447 19476 19358 19419

 4 20355 20166 20139 20237 20224 20143

 5 19611 19342 19308 19429 19418 19241

200 10 1 12155 12155 12155 12155 12155 12155

38

Jobs Machines Instances Best HDDE
60

 VIG_DE
60

 IG_RIS
60

 VIG_FL
60

 GVNS
60

 2 12227 12227 12227 12227 12227 12227

 3 12595 12595 12595 12595 12595 12595

 4 12304 12301 12301 12301 12301 12301

 5 12076 12076 12076 12076 12076 12076

 20 1 14864 14877 14864 14864 14864 14864

 2 14134 14093 14095 14126 14086 14086

 3 16135 16115 16115 16115 16115 16115

 4 15972 15972 15972 15972 15972 15972

 5 14225 14214 14175 14211 14211 14190

 30 1 17222 17116 17053 17044 17044 17034

 2 17126 16972 16994 17019 17014 16975

 3 17529 17501 17428 17428 17420 17420

 4 20032 20020 19991 19986 19986 20008

 5 17995 18077 17974 17988 17982 17970

 40 1 20128 20024 19965 19953 19953 19909

 2 21801 21743 21724 21797 21763 21708

 3 20609 20642 20564 20629 20624 20607

 4 17864 17624 17507 17628 17548 17420

 5 21258 21234 21237 21216 21209 21217

 50 1 22912 22959 22729 22632 22580 22656

 2 23664 23631 23488 23528 23509 23429

 3 22615 22561 22431 22471 22438 22296

 4 24140 24221 23969 24092 24022 23929

 5 24424 24334 24275 24374 24355 24321

250 10 1 16640 16640 16639 16640 16640 16639

 2 15483 15476 15476 15476 15476 15476

 3 14872 14872 14872 14872 14872 14872

 4 15247 15248 15247 15250 15250 15247

 5 15026 15026 15026 15026 15026 15026

 20 1 17613 17633 17577 17583 17578 17593

 2 17692 17684 17683 17683 17683 17683

 3 17534 17543 17500 17522 17487 17496

 4 17651 17646 17645 17647 17647 17639

 5 17274 17297 17277 17277 17277 17282

 30 1 21920 21920 21920 21920 21920 21920

 2 21946 21876 21853 21890 21884 21824

 3 20196 20096 20111 20107 20077 20082

 4 19886 19807 19794 19821 19809 19744

39

Jobs Machines Instances Best HDDE
60

 VIG_DE
60

 IG_RIS
60

 VIG_FL
60

 GVNS
60

 5 20991 20910 20906 20909 20907 20941

 40 1 22871 22870 22820 22957 22899 22780

 2 24193 24247 24119 24152 24149 24098

 3 24412 24482 24353 24394 24394 24337

 4 24913 24876 24748 24824 24824 24741

 5 23536 23562 23506 23478 23471 23468

 50 1 28662 28898 28563 28610 28599 28548

 2 24932 24930 24577 24770 24480 24276

 3 26973 26678 26512 26563 26528 26351

 4 25971 25565 25611 25612 25608 25500

 5 27670 27542 27389 27393 27393 27332

300 10 1 17498 17498 17498 17498 17498 17498

 2 17350 17350 17350 17351 17351 17350

 3 18627 18627 18627 18628 18627 18627

 4 16941 16941 16941 16941 16941 16941

 5 17524 17524 17521 17524 17524 17521

 20 1 18873 18884 18837 18870 18859 18840

 2 22032 22035 22032 22032 22032 22032

 3 20268 20278 20230 20235 20235 20229

 4 19516 19497 19490 19484 19484 19490

 5 20705 20707 20705 20705 20705 20705

 30 1 26565 26529 26501 26530 26530 26487

 2 24290 24350 24267 24261 24261 24269

 3 24386 24381 24370 24369 24369 24363

 4 23728 23761 23710 23727 23726 23726

 5 22638 22630 22568 22558 22558 22553

 40 1 26817 26762 26599 26640 26639 26600

 2 29332 29316 29158 29175 29173 29180

 3 25534 25391 25362 25598 25565 25361

 4 27648 27565 27479 27498 27498 27466

 5 28872 28812 28760 28810 28810 28822

 50 1 31860 31755 31667 31775 31683 31538

 2 29834 29515 29490 29676 29657 29474

 3 30867 30892 30731 30747 30747 30701

 4 32402 32405 32265 32350 32346 32286

 5 29512 29359 29051 29239 29239 29110

350 10 1 19302 19300 19302 19302 19302 19297

 2 21319 21319 21316 21319 21320 21318

40

Jobs Machines Instances Best HDDE
60

 VIG_DE
60

 IG_RIS
60

 VIG_FL
60

 GVNS
60

 3 21330 21330 21330 21330 21330 21330

 4 21759 21759 21759 21759 21759 21759

 5 20591 20591 20591 20591 20591 20591

 20 1 25417 25417 25413 25415 25413 25417

 2 27185 27185 27185 27185 27185 27185

 3 22906 22906 22880 22907 22907 22880

 4 22994 22985 22968 22971 22970 22968

 5 22778 22750 22746 22750 22750 22756

 30 1 25382 25393 25226 25355 25275 25275

 2 27773 27812 27744 27740 27740 27741

 3 27775 27673 27653 27657 27657 27638

 4 29358 29306 29295 29295 29295 29297

 5 25240 25209 25230 25221 25211 25211

 40 1 29381 29282 29182 29241 29241 29072

 2 29163 29239 29043 29024 29024 29010

 3 36287 36368 36247 36253 36249 36252

 4 34788 34744 34644 34677 34669 34692

 5 29847 29905 29840 29879 29814 29742

 50 1 32559 32375 32144 32435 32178 32167

 2 33454 33167 32911 33042 33032 32882

 3 34982 34908 34718 34735 34697 34682

 4 37210 37081 37009 37031 36996 36985

 5 35710 35588 35390 35349 35348 35363

400 10 1 25244 25238 25238 25238 25238 25238

 2 23001 23001 23001 23001 23001 23001

 3 23665 23665 23665 23665 23665 23665

 4 23275 23277 23275 23275 23275 23275

 5 21956 21956 21956 21956 21956 21956

 20 1 27704 27696 27686 27686 27686 27686

 2 28092 28092 28088 28092 28092 28089

 3 26254 26274 26224 26224 26224 26227

 4 25164 25177 25155 25168 25168 25105

 5 24753 24711 24688 24707 24702 24690

 30 1 29487 29473 29405 29446 29444 29467

 2 29295 29296 29217 29274 29241 29275

 3 28725 28793 28733 28691 28633 28657

 4 31324 31381 31279 31281 31278 31282

 5 34543 34579 34535 34534 34533 34539

41

Jobs Machines Instances Best HDDE
60

 VIG_DE
60

 IG_RIS
60

 VIG_FL
60

 GVNS
60

 40 1 37552 37587 37440 37498 37464 37426

 2 33936 33912 33805 33839 33839 33811

 3 34548 34498 34482 34499 34491 34450

 4 35406 35403 35306 35262 35245 35247

 5 32853 32936 32739 32777 32776 32730

 50 1 38000 38006 37825 37871 37827 37849

 2 38411 38342 38237 38275 38275 38283

 3 38337 38122 37880 37930 37912 37680

 4 40578 40521 40465 40523 40480 40444

 5 35968 35921 35516 35628 35527 35499

450 10 1 23989 23989 23987 23987 23987 23987

 2 26277 26277 26277 26277 26277 26277

 3 25849 25849 25849 25849 25849 25849

 4 26910 26911 26910 26911 26910 26910

 5 25191 25191 25191 25191 25191 25191

 20 1 27533 27522 27514 27527 27521 27519

 2 27924 27930 27924 27930 27924 27924

 3 28811 28808 28770 28772 28769 28774

 4 28485 28494 28446 28459 28446 28457

 5 28543 28585 28541 28541 28539 28540

 30 1 35197 35222 35127 35123 35123 35152

 2 32639 32544 32517 32565 32561 32494

 3 32131 32057 32021 32036 32001 31968

 4 33769 33754 33700 33731 33731 33691

 5 33732 33755 33667 33664 33658 33641

 40 1 39797 39677 39562 39596 39557 39547

 2 36174 36137 36020 36050 36050 36045

 3 37917 37794 37811 37829 37829 37817

 4 37774 37770 37606 37610 37596 37674

 5 35870 35773 35712 35731 35731 35681

 50 1 37913 37847 37563 37442 37442 37287

 2 43449 43503 43392 43447 43431 43461

 3 44275 44157 44087 44010 44010 44152

 4 41295 41421 41036 41044 41044 41040

 5 41348 41180 40923 41047 41044 40931

500 10 1 28839 28840 28839 28840 28840 28839

 2 27924 27923 27923 27923 27923 27925

 3 27349 27349 27349 27349 27349 27349

42

Jobs Machines Instances Best HDDE
60

 VIG_DE
60

 IG_RIS
60

 VIG_FL
60

 GVNS
60

 4 27575 27575 27575 27575 27575 27575

 5 27457 27457 27457 27457 27457 27457

 20 1 35973 35948 35948 35948 35948 35948

 2 34134 34129 34129 34129 34129 34129

 3 31114 31102 31066 31069 31065 31071

 4 30916 30905 30900 30900 30900 30900

 5 33776 33782 33768 33768 33768 33776

 30 1 36381 36417 36337 36345 36345 36358

 2 39381 39367 39357 39357 39356 39348

 3 39261 39290 39226 39256 39250 39273

 4 34003 33972 33918 33942 33927 33896

 5 38368 38390 38340 38353 38348 38339

 40 1 40793 40768 40708 40732 40685 40747

 2 44170 44181 44099 44144 44144 44148

 3 40523 40485 40366 40357 40357 40313

 4 41992 42094 41917 41886 41886 41907

 5 36448 36343 36312 36449 36351 36203

 50 1 46461 46331 46238 46268 46263 46175

 2 43461 43552 43281 43379 43379 43345

 3 45484 45409 45206 45164 45164 45193

 4 42620 42687 42417 42454 42454 42345

 5 43346 43224 43145 43061 43048 43000

As it can be observed from the table, GVNS improved 85 out of 250

solutions, when its results are compared to other four algorithms. It was able to

obtain 71 equal solutions as other algorithms did. These results are further

analyzed in Table 6 in terms of the number of improvements, number of equal and

number of worse solutions of GVNS when it is compared to each competing

algorithm.

43

Table 6. Comparison of GVNS with competing algorithms

Algorithm Name
Number of

Improvement

Number of Equal

Solutions

Number of Worse

Solutions

Best 193 47 10

HDDE 184 47 19

VIG_DE 110 66 74

IG_RIS 151 56 43

VIG_FL 127 67 56

 In (Tasgetiren M.F., Pan Q., Suganthan P.N., Buyukdagli O., 2013), also

the best known solutions for the total flowtime criterion are presented. In order to

compare GVNS algorithm’s performance in more detailed way, the total flowtime

values are provided and compared with the (Tasgetiren M.F., Pan Q., Suganthan

P.N., Buyukdagli O., 2013) solutions. For both solutions, the maximum run time

is taken as, milliseconds where . In Table 7, the

results of each algorithm are represented in the corresponding column. Instances

are indicated as, x_y_z where x is the number of jobs, y is the number of machines

and z is the instance number.

Table 7. Solutions obtained under total flow time criterion

Instance VIG_DE GVNS Instance VIG_DE GVNS

50_10_1 125380 125026 300_10_1 2733950 2713771

50_10_2 131385 131117 300_10_2 2707337 2677669

50_10_3 106832 105814 300_10_3 3103430 3072335

50_10_4 101154 101805 300_10_4 2723606 2681871

50_10_5 107635 107697 300_10_5 2884897 2832388

50_20_1 223411 222529 300_20_1 3392341 3321959

50_20_2 224312 224012 300_20_2 4025018 3977650

50_20_3 226144 225245 300_20_3 3667443 3647064

50_20_4 227380 226150 300_20_4 3563901 3541882

50_20_5 178918 178707 300_20_5 3794552 3759573

50_30_1 298825 299472 300_30_1 5417342 5347946

50_30_2 298813 296834 300_30_2 4857488 4811351

50_30_3 292663 291845 300_30_3 5076261 5031066

50_30_4 319430 318373 300_30_4 4822848 4798993

50_30_5 299626 298164 300_30_5 4429028 4382620

50_40_1 395014 392283 300_40_1 5670453 5582637

50_40_2 444201 445392 300_40_2 6349566 6295754

50_40_3 416128 414220 300_40_3 5389312 5249852

50_40_4 405692 404922 300_40_4 6088014 5985650

50_40_5 389638 389210 300_40_5 6431843 6365812

50_50_1 512272 508814 300_50_1 7187544 7174223

44

Instance VIG_DE GVNS Instance VIG_DE GVNS

50_50_2 475389 472957 300_50_2 6705587 6578671

50_50_3 493319 493563 300_50_3 6966348 6858634

50_50_4 429130 429085 300_50_4 7339019 7152297

50_50_5 507519 507881 300_50_5 6557870 6496540

100_10_1 371774 366981 350_10_1 3512173 3483122

100_10_2 343116 340275 350_10_2 4264790 4219816

100_10_3 384173 382838 350_10_3 3838239 3802096

100_10_4 338206 336136 350_10_4 4285421 4254393

100_10_5 376015 375439 350_10_5 3807928 3784085

100_20_1 587306 583452 350_20_1 5523837 5443896

100_20_2 572831 568325 350_20_2 5989808 5954925

100_20_3 624842 623000 350_20_3 4776536 4742525

100_20_4 613650 611482 350_20_4 4959059 4930389

100_20_5 652339 650159 350_20_5 4842744 4803664

100_30_1 871063 862679 350_30_1 5979224 5973182

100_30_2 804380 801285 350_30_2 6507562 6478620

100_30_3 789281 782342 350_30_3 6469955 6410434

100_30_4 836288 833336 350_30_4 7015586 6931007

100_30_5 822142 810814 350_30_5 5800519 5786951

100_40_1 1015413 1002334 350_40_1 6954417 6848557

100_40_2 1046051 1037251 350_40_2 7141816 7104329

100_40_3 989818 990844 350_40_3 9289344 9255174

100_40_4 945786 936833 350_40_4 9052676 9050309

100_40_5 1053204 1050558 350_40_5 7352826 7231418

100_50_1 1328844 1311898 350_50_1 8367007 8235041

100_50_2 1231619 1223158 350_50_2 8674513 8556589

100_50_3 1486911 1480802 350_50_3 9133211 9128903

100_50_4 1411469 1407128 350_50_4 9898786 9870169

100_50_5 1241533 1227216 350_50_5 9275077 9184272

150_10_1 895229 889325 400_10_1 5391735 5336429

150_10_2 748122 741828 400_10_2 4599658 4517166

150_10_3 766768 757007 400_10_3 5166180 5118178

150_10_4 870653 861657 400_10_4 4928345 4880977

150_10_5 855290 852469 400_10_5 4511915 4460947

150_20_1 1066328 1054782 400_20_1 6702405 6664032

150_20_2 1103487 1089865 400_20_2 7101551 7053722

150_20_3 1175110 1162497 400_20_3 6275051 6262191

150_20_4 1068552 1046514 400_20_4 5845455 5764795

150_20_5 1390521 1380852 400_20_5 5836249 5839567

150_30_1 1617787 1598141 400_30_1 7765965 7817646

150_30_2 1474905 1463178 400_30_2 7412412 7368701

150_30_3 1647655 1631426 400_30_3 7214769 7120824

150_30_4 1575960 1562657 400_30_4 8505084 8491659

150_30_5 1640144 1624253 400_30_5 9358018 9258822

150_40_1 1856681 1855503 400_40_1 10803267 10806716

150_40_2 2050045 2028323 400_40_2 9479914 9431776

150_40_3 1896527 1899126 400_40_3 9788011 9796524

150_40_4 1682298 1661276 400_40_4 9861591 9807235

150_40_5 2026015 2013379 400_40_5 9088311 9010777

45

Instance VIG_DE GVNS Instance VIG_DE GVNS

150_50_1 2516185 2497923 400_50_1 11166074 11108239

150_50_2 2300230 2279871 400_50_2 11237488 11159647

150_50_3 2329927 2315911 400_50_3 10887948 10691426

150_50_4 2449533 2436737 400_50_4 12045944 11921693

150_50_5 2354078 2329534 400_50_5 10494339 10424610

200_10_1 1358622 1347340 450_10_1 5533817 5451458

200_10_2 1377316 1364514 450_10_2 6131390 6076454

200_10_3 1404810 1389642 450_10_3 5974770 5886567

200_10_4 1366985 1345497 450_10_4 6647632 6579005

200_10_5 1339260 1341177 450_10_5 5673018 5657365

200_20_1 1865167 1835590 450_20_1 7248737 7118553

200_20_2 1720128 1694132 450_20_2 7356184 7308989

200_20_3 2094286 2077777 450_20_3 7860688 7803450

200_20_4 2152333 2125580 450_20_4 7518296 7471249

200_20_5 1840898 1800455 450_20_5 7474315 7393563

200_30_1 2392036 2378906 450_30_1 10270198 10195381

200_30_2 2321316 2292998 450_30_2 9209464 8996567

200_30_3 2422092 2376247 450_30_3 9397035 9278882

200_30_4 2863910 2826109 450_30_4 9790031 9689365

200_30_5 2511521 2478473 450_30_5 9450992 9205719

200_40_1 3020448 3006439 450_40_1 12610909 12500237

200_40_2 3182705 3152290 450_40_2 11153309 10973657

200_40_3 3144740 3120945 450_40_3 11798619 11695071

200_40_4 2550159 2507863 450_40_4 11798390 11644774

200_40_5 3179470 3146713 450_40_5 10912158 10887270

200_50_1 3535086 3508156 450_50_1 12011731 11808223

200_50_2 3753945 3724370 450_50_2 14690680 14677991

200_50_3 3469069 3396039 450_50_3 14564560 14397517

200_50_4 3758949 3763278 450_50_4 13652052 13500037

200_50_5 3793772 3763148 450_50_5 13590028 13523934

250_10_1 2385078 2360814 500_10_1 7598974 7522649

250_10_2 2106167 2066518 500_10_2 7102394 7022973

250_10_3 2036196 1999403 500_10_3 6957682 6882112

250_10_4 2016989 1988889 500_10_4 7062995 7015011

250_10_5 1966408 1945311 500_10_5 7290714 7220547

250_20_1 2799970 2769381 500_20_1 10777501 10717624

250_20_2 2699738 2671260 500_20_2 9682988 9652758

250_20_3 2704526 2662172 500_20_3 9058512 9000096

250_20_4 2765178 2747653 500_20_4 8726791 8706843

250_20_5 2655471 2641649 500_20_5 10223564 10191122

250_30_1 3864142 3844038 500_30_1 11648780 11602319

250_30_2 3542779 3489081 500_30_2 12888556 12839912

250_30_3 3428481 3369936 500_30_3 13051895 13024061

250_30_4 3370868 3322982 500_30_4 10403033 10287342

250_30_5 3702931 3677503 500_30_5 12323304 12242723

250_40_1 4158216 4064573 500_40_1 14019665 13937648

250_40_2 4271224 4177475 500_40_2 15153155 15128277

250_40_3 4457779 4438585 500_40_3 13706925 13538076

250_40_4 4580109 4534462 500_40_4 14577131 14320458

46

Instance VIG_DE GVNS Instance VIG_DE GVNS

250_40_5 4243709 4158624 500_40_5 11902207 11605651

250_50_1 5570902 5534031 500_50_1 16633031 16496225

250_50_2 4724396 4591831 500_50_2 15315588 15251117

250_50_3 5150808 5097909 500_50_3 16252743 16191002

250_50_4 4808325 4702710 500_50_4 15497661 15245952

250_50_5 5166847 5112169 500_50_5 15283675 15169049

As it can be observed from Table 7, GVNS improved 236 out of 250 current best

known solutions under the total flow time criterion obtained by using the VIG_DE

algorithm that is proposed in (Tasgetiren M.F., Pan Q., Suganthan P.N.,

Buyukdagli O., 2013), as well.

47

CHAPTER 5

CONLUSION

In this thesis study, a metaheuristic algorithm for no idle permutation

flowshop problem is represented. In a no idle permutation flowshop, there is more

than one machine and each job must be processed on each of the machines. Each

job has the same ordering of machines for its process sequence and the processing

sequences of the jobs are the same on each machine. Each job can be processed on

one machine at a time, and each machine can process only one job at a time, each

machine must process each job without any interruption from the beginning of the

first job to the completion of the last job. Two different formulations that are

proposed to calculate makespan of no-idle flowshop are explained and the one

with the better performance is selected.

After a detailed explanation of the problem, first the competing algorithms

that are proposed in the literature to solve NIPFS problem is explained. These

algorithms are; (1) an iterated greedy, (2) variable iterated greedy, (3) the hybrid

discrete differential evolution and (4) variable iterated greedy algorithm with

differential evolution algorithm. Then, a new version of the GVNS algorithm with

insert and swap operations in outer loop, and in the inner loop, IG algorithm and

iterated local search algorithm is applied to NIPFS problem and then compared to

all other algorithms. The performances of the proposed algorithms are tested on

the Prof. Ruben Ruiz’s benchmark suite.

Computational results are proposed and concluded as the GVNS algorithm

further improved 85 out of 250 current best known solutions. This high

performance of the algorithm can be explained as; using that much powerful

algorithm as a neighborhood structure instead of more basic ones, increases this

phase’s ability to reach better solutions. In addition, these conclusions are

supported by the paired T-tests and the interval plot.

48

Bibliography

Adiri, I. and Pohoryles, D. Flow-shop/no-idle or no-wait scheduling to

minimize the sum of completion times [Journal]. - [s.l.] : Naval Research

Logistics Quarterly, 1982. - 3 : Vol. 29. - pp. 495–504..

Baptiste, P., & Lee, K. H. A branch and bound algorithm for the F|no-

idle|Cmax [Journal]. - Lyon : Proceedings of the international conference on

industrial engineering and production management (IEPM), 1997. - Vol. 1. - pp.

429–438.

Deng G and Gu X. A hybrid discrete differential evolution algorithm for

the no-idle permutation flowshop scheduling problem with makespan criterion

[Journal]. - [s.l.] : Computers & Operations Research, 2012. - 9 : Vol. 39. - pp.

2152-2160 .

Framinan and Leisten Total tardiness minimization in permutation flow

shops: a simple approach based on a variable greedy algorithm [Journal]. - [s.l.] :

Int. J. Prod. Res., 2008. - 22 : Vol. 46. - pp. 6479 - 6498.

H. Saadani, A. Guinet, M. Moalla Three stage no-idle flow-shops

[Journal] // Computers and Industrial Engineering. - 2003. - Vol. 44. - pp. 425–

434.

H.R. Lourenc, O. Martin, T. Stützle Iterated local search [Book

Section] // Handbook of Metaheuristics, International Series in Operations

Research & Management Science / book auth. F. Glover G. Kochenberger

(Eds.). - Norwell, MA : Kluwer Academic Publishers, 2002. - Vol. 57.

Hansen P., Mladenovic N., Urosevic D. Variable neighborhood search and

the local search and local branching [Journal]. - [s.l.] : Computers & Operations

Research, 2006. - 10 : Vol. 33. - pp. 3034-3045.

Kalczynski, P.J. and Kamburowski, J. On no-wait and no-idle flow shops

with makespan criterion [Journal]. - [s.l.] : European Journal of Operational

Research, 2007. - 3 : Vol. 178. - pp. 677-685.

Kirlik G., Oguz C. A variable neighborhood search for minimizing total

weighted tardiness with sequence dependent setup times on a single machine

49

[Journal]. - [s.l.] : Computers & Operations Research, 2012. - Vol. 39. - pp. 1506-

1520.

Mladenovic´, N., Hansen, P. Variable neighborhood search [Journal]. -

[s.l.] : Computers and Operations Research, 1997. - Vol. 24. - pp. 1097–1100.

Nawaz, M., Enscore, Jr, E. E., and Ham, I. A heuristic algorithm for the

m-machine, njob flow-shop sequencing problem [Journal]. - [s.l.] : OMEGA, The

International Journal of Management Science, 1983. - 1 : Vol. 11. - pp. 91–95..

Pan, Q-K. and Wang, L. A novel differential evolution algorithm for no-

idle permutation flowshop scheduling problems [Journal]. - [s.l.] : European

Journal of Industrial Engineering, 2008. - 3 : Vol. 2. - pp. 279–297.

Ruiz R., Stützle T. A simple and effective iterated greedy algorithm for the

permutation flowshop scheduling problem [Journal]. - [s.l.] : European Journal of

Operational Research, 2007. - 3 : Vol. 177. - pp. 2033-49.

Ruiz, R. , Vallada, E. , Fernández-Martínez, C. Scheduling in Flowshops

with No-Idle Machines [Journal]. - [s.l.] : Computational Intelligence in Flow

Shop and Job Shop Scheduling Studies in Computational Intelligence, 2009. -

Vol. 230. - pp. 21-51.

Ruiz, R., Vallada, E., and Fernandez-Martinez, C. Scheduling in

flowshops with no-idle machines [Journal] // Computational Intelligence in

Flowshop and Job Shop Scheduling / ed. Chakraborthy U.K. - Berlin :

Heidelberg: Springer Verlag, 2009.

Saadani, N. E. H., Guinet, A., and Moalla, M. A travelling salesman

approach to solve the F/no−idle/Cmax problem [Journal]. - [s.l.] : European

Journal of Operational Research, 2005. - 1 : Vol. 161. - pp. 11–20.

Storn R, Price K. Differential Evolution - A Simple and Efficient Heuristic

for Global Optimization over Continuous Space [Journal]. - [s.l.] : Journal of

Global Optimization, 1997. - Vol. 11. - pp. 341-359.

Stützle Thomas Local Search Algorithms for Combinatorial Problems—

Analysis, Algorithms and New Applications [Book]. - Sankt Augustin, Germany :

[s.n.], 1999.

Taillard E. Some efficient heuristic methods for the flow shop sequencing

problem [Journal]. - [s.l.] : European Journal of Operational Research, 1990. - 1 :

Vol. 47. - pp. 65-74.

50

Tasgetiren M.F., Pan Q., Suganthan P.G., Oner A. A discrete artificial

bee colony algorithm for the no-idle permutation flowshop scheduling problem

with the total tardiness criterion [Journal]. - [s.l.] : Applied Mathematical

Modelling, (In Press).

Tasgetiren M.F., Pan Q., Suganthan P.N., Buyukdagli O. A variable

iterated greedy algorithm with differential evolution for the no-idle permutation

flowshop scheduling problem [Journal]. - [s.l.] : Computers & Operations

Research, 2013. - Vol. 40. - pp. 1729–1743.

Tasgetiren M.F., Pan Q.K., Suganthan P.N., Liang Y.C. A discrete

differential evolution algorithm for the no-wait flowshop scheduling problem with

total flowtime criterion [Journal]. - Hawaii, USA : Proceedings of the 2007 IEEE

symposium on computatiıonal intelligence in scheduling., 2007b. - pp. 251-258.

Tasgetiren, M. F., Pan, Q. -K., Liang, Y. -C., Suganthan, P.N. A discrete

differential evolution algorithm for the total earliness and tardiness penalties with

a common due date on a single machine [Journal]. - Hawaii : In Proceedings of

the 2007 IEEE symposium on computational intelligence in scheduling

(CISched2007),, 2007a. - pp. 271–278.

Thomas Stützle Iterated local search for the quadratic assignment problem

[Journal]. - [s.l.] : European Journal of Operational Research, 2006. - Vol. 174. -

pp. 1519-1539.

Vachajitpan P. Job sequencing with continuous machine operation

[Journal]. - [s.l.] : Computers and Industrial Engineering, 1982. - 3 : Vol. 6. - pp.

255-259.

Wolpert D. H. and Macready W. G. No Free Lunch Theorems for

Optimization [Journal]. - [s.l.] : IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION, 1997. - Vol. 1.

Woollam C. R. Flowshop with no idle machine time allowed [Journal]. -

[s.l.] : Computers and Industrial Engineering, 1986. - 1 : Vol. 10. - pp. 69–76.

