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OZET

OZDES PARALEL MAKINELERDE
ATAMA VE CIZELGELEME PROBLEMI

KIZILAY, Damla

Yiiksek Lisans Tezi, Endiistri Miithendisligi Boliimii
Tez Danismant: Dog. Dr. Mehmet Fatih TASGETIREN
Ikinci Tez Danismant: Yard. Dog. Dr. Onder BULUT
Ocak, 2014

Bu ¢alismada ele alinan problem, iiretim siiregleri tamamlanmis ¢esitli boya
tiplerinin, istenilen ambalajlarla eslenerek, dolum makinalarinda
cizelgelenmesidir. DYO dolum {initesinde islem siireleri birbirinden farkli {i¢
makina grubu bulunmaktadir; otomatik, yar1 otomatik ve manuel. Her bir makina
grubu ise farkli sayilarda 6zdes makinalardan olusmaktadir. Bu nedenle, problem
iki asamali olarak ele alimmustir; islerin, dolum makinesi gruplarina atanmasi

ve akabinde atama yapilan grup icerisindeki paralel makinalarda ¢izelgelenmesi.

Problemi ¢6zmek i¢in, genellestirilmis atama problemine gomiilen genel
degisken komsuluk arama (gDKA) algoritmasi gelistirilmistir. Algoritma iki ana
kistmdan olusmaktadir. ilk kistmda, makina gruplarina islerin atanmasi DKA
algoritmasi ile ikinci kisimda (i¢ dongiide) ise, is kiimelerinin paralel makinalarda
cizelgelenmesi gene DKA algoritmasina dayanan liste cizelgeleme yontemi ile
yapilmistir. Ayrica ayni problemi ¢ézmek i¢in ayrik yapay ar1 kolonisi algoritmasi

ve genetik algoritma gelistirilmistir.

Anahtar Sozciikler: Genellestirilmis atama problemi, 6zdes paralel makina
cizelgeleme, degisken komsuluk arama yontemi, sezgisel optimizasyon.



ABSTRACT

ASSIGNMENT AND SCHEDULING PROBLEM IN IDENTICAL
PARALLEL MACHINES

KIZILAY, Damla

MSc in Industrial Engineering
Supervisor: Assoc. Prof. Dr. M. Fatih TASGETIREN
Co-Advisor: Assist. Prof. Dr. Onder BULUT
January, 2014

This paper presents a discrete artificial bee colony algorithm to solve the
assignment and scheduling problem in DYO painting company. In the DY O Paint
Company, there are three types of filling machines groups: automatic,
semiautomatic and manual. In each group, there are several numbers of identical
machines. The problem is to first assign these filling production orders to machine
groups. Then, these filling production orders on each machine groups should be
scheduled on identical parallel machines to minimize the sum of makespan and
total tardiness. We also develop a traditional genetic algorithm and variable
neighborhood search algorithm to solve the same problem. The computational
results show that the VNS algorithm slightly outperforms the GA and DABC on

set of benchmark problems we generated.

Keywords: Generalized assignment problem, identical parallel machine
scheduling, variable neighborhood search algorithm, and heuristic optimization.
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CHAPTER 1

INTRODUCTION

This work is based on SANTEZ project and supported by DYO Paint
Factory and ministry of science, industry, and technology. This assignment and
scheduling problem is applied for DYO Paint Factory in filling machine units.
DYO Paint Factory is the first domestic brand of Turkish paint industry.
DYO Paint Factories Industry and Trade SA were founded in 1954. There are
three factories which are located in Cigli, Gebze and Manisa. Yasas, Bayrakli and
Akril companies under the management of Yasar Paint Group were merged under
the name of DYO Paint Factories Industry and Trade SA in 2002. After this
merging, the existing activities of these three companies are performed in three
different business units in a more efficient way. Construction paints and
substructure materials under the trade name of DYO and marine coatings under
the trade name of DYO are manufactured and marketed in the business unit for
construction paints. The business unit for construction paints has a modern
factory, which can compete internationally with its automation level, in Gebze.
Product range of the factory exceeds 2,500 in color and package and its annual
manufacturing capacity is 120.000 tons. Beside these activities, high quality
application tools such as brush and roller are manufactured for housepainters.
Also, DYO-Wagner paint application machines have been introduced to the

market in cooperation with Wagner.

In the DYO Paint Company there are different types of paints and different

types of packages. There are four types of packages and these are:

1/1 1 kg

Gallon 2-3 kg

Can 15-30 kg

Barrel 150-250 kg

Also, in DYO Company there are three types of filling machines groups:

automatic, semiautomatic and manual. In each group, there is several numbers of



identical machines. The production orders for the filling machines are generated
by SAP software and they are sent to filling machine units. In the thesis it is
assumed that all kinds of packages can be filled by all types of filling machine
groups. Currently, the scheduling and assignment processes of production orders
are based on experience. Production orders are scheduled without using any
heuristic or meta-heuristic algorithm. They are just based the urgency of
production orders. The production orders are accumulated in front of the filling

machines and this causes bottlenecks.

Problem is handled by considering two stages. The first stage is the
assignment stage which assigns each production orders to the machine groups.

The following figure explains the assignment stage.

/r \ Automatic Machine

Groups

| 14 |
17 Semi-Automatic
I 13 14 18 111 112 117

Machine Groups

k 113 / Manual

Machine Groups

Figure 1. Assignment Stage of the Problem

In the left side of the figure 1, all production orders, which are generated by
SAP software, are obtained. These production orders are formed by matched paint
and package types. The figure is created as an example and there are 17
production orders and 3 machine groups. In DYO Company there are also 3
machine groups but more than 17 production orders in a week. As shown in the
figure 1, all production orders are assigned to each machine group. One
production order can be assigned to one machine group. In each machine group
the filling times are different, but filling process is same. For this reason, we

cannot assign a production order to more than one machine group. In the thesis



work, production orders are called as jobs. The assigned production orders in each
machine group are called as partial job sets, so there are three partial job sets.

The second stage is the scheduling stage which is about scheduling of the
partial jobs in each machine group having identical parallel machines. In each
machine group there are several identical machines. According to data from DYO
Company, for the automatic and semi-automatic machine groups, there are 9
identical parallel machines. For the manual machine group there are 4 identical
parallel machines. Same scheduling process is done for each machine group. In

the figure 2, scheduling stage is explained for the manual machine group.

Assigned jobs to the
manual machine groups
MM1
MM2
113
\ _/ MM4

Figure 2. Scheduling Stage of the Problem

In the left side of the figure 2, there are 6 jobs which are assigned to manual
machine group in the first stage (assignment stage). J2, J6, J10, J13, J15, and J16
are called as partial job set. MM1, MM2, MM3 and MM4 are the identical
parallel machines in manual machine group. MM stands for manual machine in
the figure. This job set is scheduled to these parallel machines using heuristic

methods.



CHAPTER 2

LITERATURE REVIEW

Parallel machine scheduling has a wide range of literature. In DYO
Company, the parallel machines are identical so a part of literature which includes

parallel machine scheduling for identical machines is explained.

First study about parallel machine was at the end of the 50s by
(McNaughton, 1959). After that, it is concentrated on the rules of assigning the
jobs, which does not have any priorities, to the identical machines by (Graham L. ,
1969). At scheduling the parallel machines procedure, while n jobs are
scheduling m identical machines, total weighted tardiness and total flow time or
maximum completion time functions are minimized. For the single machine
systems, (Du & Leung, 1990) stated that minimizing the total tardiness with
scheduling is NP-hard problem. Under the same conditions, scheduling problem
in identical parallel machines is also strongly NP-hard problem. For this reason,
the algorithms which are deterministic have some constraints for some special
issues like common due date and equal processing times (Root, 1965), (Lawler,
1977), (Elmagraby & Park, 1974), (Dessouky, 1998). Therefore, many researchers
are concentrated on heuristic methods. Many heuristic methods are based on List
scheduling method in which, the jobs are sorted using a rule and based on this
rule, they are assigned to the machines according to their earliest time to finish.
These kind of heuristic methods are studied in by (Wilkerson & Irwin, 1971),
(Dogramaci & Surkis, 1979), (Ho & Chang, 1991), (Koulamas C. P., 1994). In
addition, a decomposition heuristic and hybrid simulated annealing heuristic are
proposed by (Koulamas C. , 1997). Also, for the scheduling problem in parallel
machines which has objective to minimize the total tardiness, Genetic Algorithm
was used by (Bean, 1994). For minimizing the completion time of the parallel
machine flowshop scheduling problem, tabu search was used by (Nowicki &
Smutnicki, 1998). Tabu search and simulated annealing algorithms are compared
by (Park & Kim, 1997). Recently, hybrid heuristic algorithm was proposed by

(Anghinolfi & Paolucci, 2007). In order to minimize total tardiness of parallel



machine problems, that include non-cumulative setup times, tabu search was used
by (Bilge, Kyrac, Kurtulan, & Pekgun, 2004).

Moreover, in the literature there are wide range of topics about the usage of
the algorithms such as insertion (taking off a job from its position and replacing it
in a new position) and swap (switching the positions of two or more jobs) for the
single machine system that minimizes the total weighted tardiness. The most
known and exact solution algorithm of this problem in the parallel machine
systems was proposed by (Pessoa, Uchoa, Aragao, & Rodrigues, 2008). This
algorithm can find solution to the problems that have up to 50 jobs.

3.1 GENERALIZED ASSIGNMENT PROBLEM (GAP)

The main purpose in GAP is to assign a set of tasks to a set of agents with a
minimum total cost. In each agent, there is a single resource and the resources in
the agents have limited capacity. Each tasks that are assigned to an agent, needs a
certain number of resource. GAP can be applied to several problems such as
location problems, vehicle routing, group technology, and scheduling. Extended
review of GAP and its applications was presented in (Martello & Toth, 1981) and
(Cattrysse, Salomon, & Wassenhove, 1994). Several exact algorithms for GAP
were proposed by (Ross & Soland, 1975), (Fisher, M. L.; Jaikumar, R;
Wassenhove, L.N. Van;, 1986), (Savelsbergh, 1997), and (Nauss, 2003). Several
heuristic algorithms for GAP were proposed. Simulated annealing and tabu search
algorithms were developed to solve GAP by (Osman, 1995). A genetic algorithm
which tries to improve feasibility and optimality simultaneously for GAP was
presented by (Chu & Beasley, 1997). Several meta-heuristic approaches were
proposed for GAP, such as; Different variable depth search algorithms (Yagiura,
M.; Yamaguchi, T.; Ibaraki, T., 1998), (Yagiura, M.; Yamaguchi, T.; Ibaraki, T.,
1999) and another variable depth search algorithm (Racer & Amini, 1994),
ejection chain based tabu search algortihms (Laguna, Kelly, Gonzalez-Valerde, &
Glover, 1995), (Diaz & Fernandez, 2001), and (Yaguira, Ibaraki, & Glover,
2004), ant colony optimization (Randall, 2004), max-min ant system based on
greedy randomized adaptive heuristic (Lourenco & Serra, 2002), genetic

algorithm with constraint ratio heuristic (Feltl & Raidl, 2004), path relinking



approaches (Alfadari, Plateau, & Tolla, 2004), (Yagiura, M.; Ibaraki, T.; Glover,
F., 2006), Lagrangian heuristic algorithm (Haddadi & Ouzia, 2001).

Generalized assignment problem is known to be NP-hard by (Fisher, M. L.;
Jaikumar, R.; Wassenhove, L.N. Van;, 1986), and (Sahni & Gonzalez, 1976). The
GAP can be formulated as follows:

n m
mlnz Z CijXij, (1)

i=1j=1

n

subject to Z ajxij < b Vj, 1<j<m, (2)
i=1

m

inj=1 vii 1<i<n, 3)

j=1

x;j€{01} 1<i<n Vi 1<j<m Vj 4)

In the formulation I is the set of tasks I = {1,2, ..., n}; J is the set of agents
J ={12,..,m}; b; denotes the resource capacity of each agent j (bj > 0); a;j
denotes the needed amount of resource if task i is assigned to agent j (al-j > 0);
c;j denotes the cost of assigning task i to agent j (cl-]- > 0); x;;j Is the decision

variable:

v = {1, if task iis assigned to agent j
y 0, otherwise

()

In the formulation, objective tries to minimize total assignment cost, first
constraint provides not to excess the resource capacity of each agent and second

constraint provides that each task can be assigned to only one agent.

In our problem generalized assignment problem (GAP) is used, but with a

small differences. The tasks can be thought as a production orders and agents can



be thought as a machine groups. In our problem capacities of the machine groups

are unlimited, so we do not need to use b; and a;; in our formulation.

3.2 UNRELATED PARALLEL MACHINES

In the parallel machine scheduling problem there are n independent jobs and
m parallel machines. The jobs are processed on the parallel machines. Each job
can be processed by only one machine while, a machine can process only one job
at a time. If a job starts to be processed on a machine it has to be continued until
completion. The set N of n jobs can be shown as j = 1,2, ...,n and the set M of m
jobs can be shown as i = 1,2, ..., m. The processing time of each job is known,
finite and denoted as p;. For the uniform parallel machine case, in each machine,
the processing speed is different for the same job, and it is denoted as s;.
Therefore, the processing time of a job j on machine i can be derived as p;; =
p;/s;. Most generally, processing time of each job depends on the machine where
it is processed and this referred to as the unrelated parallel machine scheduling
problem. The data used for this problem is n,m and the matrix of the processing
times p;;. In parallel machine scheduling problems the commonly studied
objective is to minimize the maximum completion time C,,,,.. For the a/B/y
secheduling problems classification scheme is proposed initially by (Graham,

Lawler, Lenstra, & Rinnooy, 1979).

The R//Cyq Problem is an assignment problem, because the processing
orders of the jobs assigned to a machine do not alter the maximum completion
time at that machine. There are m™ possible solutions to the problem after all
possible assignments. Therefore, the R//C,,4, Problem is shown to be NP-hard by
(Garey & Johnson, 1979). Also, the two machine version P2//C,,4, 1S Shown as
NP-hard by (Lenstra, Rinnooy, & Brucker, 1977). In addition, no polynomial time
algorithm exists for the general R//C,,4, Problem with a better worst case ratio
approximation than 3/2 unless P = NP, according to (Lenstra, J. K.; Shmoys, D.
B.; Tardos, E., 1990). The Mixed Integer Linear Programming (MILP)

formulation for the R//C,pqx 1S Shown below:

min Cpyqx (6)



m

i=1

n
zpijxij < Cnax VIEM, €)
j=1
x;j €{0,1} VjEN, Vi € M. (9)

In the formulation, the first constraint provides that one job can be
processed by only one machine. Second constraint provides that the total
processing times of assigned jobs on their machines must be smaller than the
maximum completion time, for each machine. The decision variable x;; is a

binary variable;

(10)

v = {1, if job jis assigned to machine i
U 10, otherwise

In our work, unrelated parallel machine scheduling can be applied for the
machine groups. In each machine group we have identical parallel machines
which have the same speed. However, Each machine group have different
processing speeds. Their speed is decreasing respectively for automatic, semi-

automatic, and manual machine groups.

In order to solve our problem bi-level optimization method is used and our
formulation includes both assignment and scheduling parts of the problem. The

formulation of the problem is explained detailed in the following sections.

In the project, for the solution of the problem under consideration, a novel
algorithm with a combination of several heuristic methods was used. For the jobs,
which are assigned in the first phase, variable neighborhood search algorithm
(VNS), genetic algorithm (GA) and discrete artificial bee algorithm (DABC)
which consists of shift and swap operations are applied and the current solution is

tried to improve. In the second phase, for the scheduling part of the jobs variable



neighborhood search algorithm (VNS) which consists of insert and swap
operations is applied.

The remaining paper is organized as follows. Chapter 3 introduces the
problem definition whereas Chapter 4 introduces the proposed algorithms;
discrete artificial bee algorithm, genetic algorithm and variable neighborhood
search algorithm. Chapter 5 discusses the computational results over benchmark
problems in total of both objectives — makespan and total weighted tardiness.

Finally, Chapter 6 summarizes the concluding remarks.
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CHAPTER 3

PROBLEM DEFINITION

The problem will be handled by considering two stages: Assignment of the
jobs to the machine groups and then Scheduling of the partial jobs in each
machine group having identical parallel machines. In order to solve problem, a
variable neighborhood search (VNS) algorithm embedded in generalized
assignment problem (GAP) will be developed. The algorithm has two phases.
First phase, the production orders (jobs) will assigned to machine groups. Second
phase, the partial jobs in each machine group will be scheduled by using a

variable neighborhood search (VNS) algorithm with list scheduling approach.

Both assignment and scheduling parts included in the model formulation as

follows:

3.1 PROBLEM FORMULATION

The aim of the problem is to assign job to the machine groups and then
schedule the jobs which are assigned. While designing the problem the objective
is to minimize the maximum completion time and total weighted tardiness. First

of all, all the parameters are defined:

Jj, k = Production orders (jobs) j,k = 0,1, ...,n

g = Machine groups g = 1,2,3

i = Parallel machines in machine group g
i=1..9forg=1
i=1..9forg=2
i=1..4forg=3

m = Total number of parallel machines
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G = Total number of machine groups

p;g = Processing time of job j in machine group g
W; = Weight of job j

D; = Due date of job j

C; = Completion time of job j

Tardiness can be computed as follows:

T; = max{O, C; — Dj}

Decision variables are defined as follows:

J9t 710, otherwise
1, if job j is the first job to be processed at the i"
Xjogi = machine in g*" machine group
0, otherwise
1, if both jobs j and k are assigned to the it
Xiai = machine in gt machine group and j is prcessed
Jjkgi =

just before k
0, otherwise

Proposed model of our problem is given below:

n

Min (makespan and TWT) = a(Cpgy) + (1 — @) Z(T]W])

j=1

Subject to:

G m
Z Z Yigi =1 Vj (heristek makinede, tek makine grubunda)

g=1li=1

(11)

_ {1, If job j is assigned to i*" machine in g*" machine group

(12)
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C; 2 Djg *X0jgi VGl (13)

n G m
Xojgi T Z Z Z jkgi = ' vj (15)
k=1g=1i=1

In the model, objective function tries to minimize maximum completion
time and total weighted tardiness. The Equation (12) is first constraint provides
that each job can be processed by only one machine in one machine group.
Equation (13) is the second constraint means that if a job is the first job at a
machine in machine groups then its completion time must be greater than or equal
to it processing time of assigned machine group. Equation (14) is the third
constraint means that if a job comes after the other jobs at a machine in each
machine group, its completion time must be greater than or equal to total of its
processing time in assigned machine group and the completion time of the
previous job. Equation (15) is the last constraint states that a job at a machine i in

a machine group g can only be a first job or an intermediate job.

The first part in the objective function tries to maximize the machine
utilization and the second part tries to minimize the total weighted tardiness and
this minimization provides customer satisfaction. To solve the problem described
above, we propose single variable neighborhood search algorithm (VNS) and
populated based algorithms such as a discrete artificial bee colony algorithm and
genetic algorithm. Their details are given in subsequent sections.
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CHAPTER 4
ALGORITHMS

4.1 Traditional Discrete Artificial Bee Colony (ABC) Algorithm

In the ABC model, the colony consists of three groups of bees: employed
bees, onlookers and scouts (Karaboga, 2005). In the model, there is only one food
source for each artificial employed bee so each solution in the population is
assumed to be food source. The number of solutions in the population is equal to
the number of food sources and represented by D-dimensional real-valued vector.
ABC algorithm is stated to be an iterative process (Karaboga, 2005), (Karaboga,
D.; Basturk, B., 2007), (Karaboga, D.; Basturk, B., 2008), (Karaboga, D., 2009),
(Karaboga, D.; Akay, B., 2009), (Karabulut & Tasgetiren, 2009). The outline of
the ABC algorithm is given below:

Initial food sources of the basic ABC algorithm are randomly created

according to the range of the boundaries as follows:

xij = x" + (x —xM) x 7 (16)

In the equation, NP represents the number of food sources so i = 1,..., NP;
D represents the number of decision variables so j = 1,..,D; and r represents a
uniform random number between 0 and 1. In the initial population a counter value
0 is used for each food source, i.e. count; = 0 . After generating the initial
population, search process is applied for the solutions in the population. This
process includes three groups such as the employed bees, the onlooker bees and
the scout bees. For the each group, there is a cycle goes over again until a

maximum cycle number (MCN) is achieved.

In the employed bee phase, we generate the neighboring food source

according to the equation below:
vij = xij + By (x5 — xi5) (17)

In the equation j is an integer value between 1 and D, and is chosen
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randomly. k € {1,.., NP} is a food source which is different than the food source
x;, and is also chosen randomly from the population. @;; is a uniform random
number which is generated in the range [—1,1]. By changing only a parameter
value of x;, a new food source v; is generated. Provided that, this changed
parameter value does not fit the boundaries, the random one is kept in the memory

which is generated according to (8).

If the v; fits the boundaries, then its fitness value is obtained according to

the equation below:

1/1+f) iffi=0 (18)

fitness; = {1 +abs(f,) if f, <0

This equation is defined for the minimization problem. In the equation,
objective function value of the new food source v; is represented by f;. After that,
the fitness values of the previous food source x; and the new food source v; are
compared in order to select the better one in a greedy manner. If an improvement
occurs for the x;, the counter count; is kept as 0, else it is increased to 1. For all

the employed bees in the population, same process goes over again.

In the onlooker bee phase, the roulette wheel selection is used and for the

each food source a probability is generated as follows:

__ fitness; (19)

Pi = NP Fitness;

A uniform random number r, which is generated in the range “0-17, is
assigned to each food source x;. Provided that r is smaller than the probability p;,
a neighboring food source is generated according to (8). The same greedy
selection is applied to the solutions. If an improvement occurs for the x;, the
counter count; is kept as 0, else it is increased to 1. For all the onlooker bees in

the population, same process goes over again.

In the scout bee phase, the sources abandoned are determined according to

the counter of each solution. Determination is done through the comparison
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between the value of the counter count; and the control parameter “limit”.
Having greater count; than the “limit” means that the food source x; is
abandoned. In order to provide diversification for the ABC algorithm, abandoned

x; is forgotten and the new one is generated instead by using (8).

In order to apply ABC algorithm for both discrete and continuous decision
variables of the ELSP, some unique modifications are proposed. Because, the
original structure of the ABC algorithm can be applied for the real-parameter
optimization problems and it is impossible to apply it for discrete/combinatorial

problems. These required unique modifications are explained below.

4.1.1 Discrete ABC

In the discrete version, we still follow the basic framework of the original
one as follows:
1. Initialize the population.
Employed bee phase to exploit the food sources.
Onlooker bee phase to search for new food sources.
Scout bee phase to search for new food sources.
Keep the best food source found so far.

© 0k~ w N

If a termination criterion has not been satisfied, go to step 2; otherwise

stop the procedure and report the best food source found so far.

4.1.2 Solution Representation

We employ a unique solution representation inspired by the Generalized
Assignment Problem (Fisher & Jaikumar, 1981), (Yagiura, Yamaguchi, & Ibaraki,
1998), (Yagiura, M.; lbaraki, T.; Glover, F., 2004), (Yagiura, M.; lbaraki, T.;
Glover, F., 2006). For example, For 15 production orders and 3 machines groups,

the solution representation is given in Figure 1:

j (1|2 |3 (4|5 |6 (7 |8 |9 |10 (11 |12 |13 |14 |15
x (3 2 (2 |1 |1 {3 |1 |3 |3 |1 pl 1 3 i 2
p; (2 |3 |4 (%9 |7 |1 (10]2 |3 |8 5 9 1 4 6
d; (3 |8 |6 |15(11 |2 (15|3 |5 |12 |8 15 |2 6 9
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Figure 3. Example of Solution Representation

In Figure 1, x; = 1 represents the manual machine group, x, = 2 represents
the semi-automatic machine group and x; = 3 represents the fully automatic
machine group. Due dates are computed as d; = p; X k where due date tightness

factor is taken as k = 2.

4.1.3 Initial Population

In the DABC algorithm, the initial population is established randomly in the
range “1-3”. For each food source in population, one strategy amongst three is
assigned to each food source randomly. These strategies generating new food

sources will be explained later on.

In order to show the assignment part small example is given below. In the

following example, we show how the solution representation works.

i [t J2 0131456 [7 8 o [0 [11 [12 [13 [14 |15
x, 322t {ft3r 331 |2 1 [3 |2 |2
p (2[5 [4 o7 [t Jwfz3]s [5 Jo [t [4 e
d |3 [8 |6 [1s[unf2 [15[3 |5 [12 |8 |15 |2 |6 |9

Partial set of jobs, m; = {4,5,7,10,12}, m, = {2,3,11,14,15}, n; = {1,6,8,9,13}.

We assume that there are two parallel machines in each machine groups. So
these partial job sets will be scheduled on parallel machine by using a list-
scheduling approach as follows:

M2

M1

9 17 26

Figure 4. Manual Machines
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3 11

M2
4 9
M1 2 14 15
5 g9 15
Figure 5. Semi-automatic Machines
& 8 13

M2

1 3 4q
M1 1 g

2 5

Figure 6. Automatic Machines
4.1.4 Neighborhood Structures

As the neighborhood structures, we employ shift and swap moves in the

DABC algorithm as shown below:

N;(x) = shift(x)
N, (x) = swap(x)

A shift move means that a randomly selected machine group is changed to
another machine group. A swap move means that two machine groups are
exchanged in the solution. Following example illustrates shift and swap moves in

the solution s:

N,y (x) = shift(x)

j |11 (213 |4 |5 |6 (7 |8 (92 |10 (11 |12 |13 |14 |15

x |3 (22 |10 |1 |3 |1 (3|3 (1 (2 |1 |3 |2 |2
x (3|12 (2 (3 |1 (3|1 |3 |53 |1 (2 |3 |3 |2 |2
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Figure 7. Shift Machine Groups

Partial set of jobs, m; = {5,7,10}, =, = {2,3,11,14,15, n3 = {1,4,6,8,9,12,13}.

Nz (x) = swap(x)

1 (2 |3 |4 |5 |6 (7 |8 (9 (10 |11 |12 (13 |14 (15

x; (3 (2 (2|2 (1 (3|1 |3 311 (2 |1 |§ |2 |2
x; (3 (2 (2|3 (1 (3|1 |33 ]1 (2 |3 |1 |2 |2

Figure 8. Swap Machine Groups

Partial set of jobs, m; = {5,7,10,13}, m, = {2,3,11,14,15}, m3 = {1,4,6,8,9,12}

4.1.5 Employed Bee Phase

In the employed bee phase, new food sources are obtained through some
strategies around the neighborhood of the current position. We employ three types
of neighborhood structures. These structures are based on shift and swap
operators. S, Using these strategies denoted as S, , new food sources in the

neighborhood are obtained for the employed bees as follows::

Si Applying one shift, one swap move to the solution x;.
Sy Applying two shift, two swap moves to the solution x;.
Ss: Applying three shift, three swap moves to the solution x;.

In each strategy, it is possible to have different performances, so in the
population, for each individual (food source), Neighboring food source is obtained

by the strategy assigned to each individual.

After obtaining a neighboring food source, we apply a variable
neighborhood search algorithm (VNS) (Mladenovic & Hansen, 1997) to the new
food source to further enhance the solution quality. For the selection, a new

source will always be accepted if it is better than the current food source.
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4.1.6 Onlooker Bee Phase

In the onlooker bee phase, a food source x is determined by the tournament
selection of size 2. In the tournament selection, two food sources are randomly
chosen from the population, and the better one is chosen according to their fitness
values. Then, similar to the employed bee phase, corresponding strategy is applied
to the food source selected. After applying the corresponding strategy, the VNS

algorithm is applied to the food sources.

4.1.7 Scout Bee Phase

In the scout bee phase, a tournament selection with the size of 2 is again
used to discard the worse of two randomly selected food sources that have been
picked out from the population. Then, the scout obtains a food source by the

strategy assigned to it.

4.1.8 Variable Neighborhood Search

The following VNS local search described in (Tasgetiren, Liang, Sevkli, &
Gencyilmaz, 2007) is employed in both the employed bee and onlooker bee
phases. The aim is to further improve the objective function on the partial job sets.
Sequentially, the VNS local search is applied to each partial job set. As the
neighborhood structures, single insert or swap move is applied to the permutation
in the each partial job set. The VNS local search is given in Figure 7.

VNSListScheduling(m; and n; € x)

dmax = 2
fori=1tog

m; ven; € (x)

Endfor

fori=1to g{
d=1
do{



20

my = Ng(m) % Ny (1;) = Insert(m;)

if f(my) < f(m) then % Na(1;) = Swap(m;)
=
d=1

else
d=d+1

while (d < day)
}Endfor
Return f(x) € (f(n}) fori=1,..,9)

Figure 9. Referenced Local Search

Computational Procedure of DABC Algorithm

Procedure ABC

Step 1. Set parameters NP and Sy,

Step 2. Establish initial population randomly

Step 3. Assign a strategy to each food source in the

population randomly

Step 4. Evaluate population and find xp.s
Step 5. Repeat the following for each employed bee
x;(Employed Bee Phase)

a. Generate anew food source by startegy
Xnew = Si(x;)

b. Xpew = Apply VNS ListScheduling (x,e.,)

C.o if f(tnew) < f(x1), Xi = Xpew

d. if f(xnew) < f(Xpest)) Xpest = Xnew

Step 6. Repeat the following for each onlooker bee x;,

(Onlooker Bee Phase)

a. Selecta food source by tournament
selection xy =  TSpest of two (xx € NP)

b. Generate a new food source by startegy k
Xnew = Si(xi)

C. Xpew = Apply VNS ListScheduling (x,e.,)
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d. if f(xnew) < f(Xk), Xk = Xpew
e. if f(xnew) < f(xbest)’ Xpest = Xnew

Step 7. Repeat the following for each scout bee x;
(Scout Bee Phase)

a. Select a food source by tournament selection
X = TSworst of two (xx € NP)

b. Generate a new food source by startegy k

Xnew = Sk(xx)
C. Xpew = Apply VNS ListScheduling (x,e.,)
d. Xk = Xnpew

if f(xnew) < f(xbest)f Xpest = Xnew

f. If the stopping criterion is not met, got to

Step 5, else stop and return xpeq;

Figure 10. Outline of the ABC algorithm

4.2 GENETIC ALGORITHM

Genetic algorithms (GA) are a part of parallel search heuristics originated
by the biological process of natural selection and evolution (Ruiz & Maroto,
2005). In GA optimization, solutions are coded into chromosomes in order to
construct a population being evolved through generations. At each generation, we
use crossover operator, which is a process of taking more than one parent
solutions and producing a child solution from them. Then, mutation and
perturbation occurs for some of the individuals. After that, they are gathered to
select new individuals for next generation. This procedure is repeated until the

stopping criterion is satisfied.

However, in the proposed GA, we take each individual and another
individual with the tournament selection of size 2 to mate them. By using them,
we generate an offspring with PTL crossover operator (Pan, Tasgetiren, & Liang,
2008). To consistent with the DABC algorithm, we compare the offspring with
the ith individual, we replace the ith individual if better. This procedure is
repeated until the stopping criterion is achieved. The following computational

procedure explains the components of the proposed GA:
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Step 1. Set the population size NP,
Step 2. Initialize the population randomly:
Step 3. Fori = 1,2, ..., NP, repeat the following sub-steps:
a. For the individualx;, select a mate x;, from the population by the tournament
selection with size 2.
b. Produce a new offspring y; by recombining them with PTL crossover
c. Mutate y; with a mutation probability.
d. Evaluate the new offspringy;and apply VNS ListScheduling to y;.
e. Ify; is better than x;, let x; = y; and update best so far solution xg.
Step 4. If the termination criterion is reached, return the best solution found so far

xg; otherwise go to Step 3.

4.3 VARIABLE NEIGHBORHOOD SEACH

Variable neighborhood search (VNS) is a common approach to enhance the
solution quality with systematic changes of neighborhood within a local search. It
is proposed by (Mladenovic & Hansen, 1997). The algorithm involves iterative
exploration of larger and larger neighborhoods for a given local optima until there

is an improvement, after which time the search is repeated.

VNS local search is employed in DABC and GA algorithms as it is
explained in the previous sections. Besides the populated algorithms, it is also
used to improve the single solution. In order to apply VNS to the single solution,
the replication length is adjusted according to the populated ones. The aim is to
further improve the objective function on the partial job sets. Sequentially, the
VNS local search is applied to each partial job set. As the neighborhood
structures, single insert or swap move is applied to the permutation in the each
partial job set. Since VNS used in DABC and GA algorithms, we called these
algorithms as DABC_VNS and GA_VNS in order to distinguish them from VNS,

in the following sections.
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CHAPTER 5

COMPUTATIONAL RESULTS

The DABC_VNS, GA VNS and VNS algorithms were coded in Visual
C++ and run on an Intel® Core™ i5-3360M CPU 2.80 GHz PC with 8 GB
memory, 64 bit operating system. We generated our own benchmarks as follows:
For automatic machines group, the processing times are generated between 5 and
11, for semi-automatic machines groups, processing times are generated between
11 and 16, for manual machines groups, processing times are generated between
16 and 21. In each machine group we have different number of parallel machines.
For automatic machine group, the number of parallel machines is 9, for semi-
automatic machine group, the number of parallel machines is also 9 and for
manual machine group, the number of parallel machines is 4. These parallel
machines numbers are taken according to the data gathered from DYO Paint
Company. We devised 10 instances for 100 jobs, 200 jobs, 300 jobs, 400 jobs and
500 jobs. Since the objective function is bi-objective, we give a weight a to the
first part of the objective function whereas 1 — a is given to the second part.
Results are generated for different a values,
a=1{0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0}.

For each instance, we carried out 5 replications and we provide the average
(Avg), minimum (Min), maximum (Max), standard deviation (Std) and central
processing unit time (Cpu) of five runs. Also, the average of each instances are
taken for each number of job. We fixed the population size at 10 for both
algorithms. The computational results for three different algorithms
(DABC_VNS, GA VNS, and VNS) are given in tables below. Nonparametric

Mann-Whitney Test is applied and the results are given for the different a values.
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Table 1. Run Results for Each Algorithms with a=0

a=0

DABC_VNS

GA_VNS

VNS

Jobs

Min Max Avg Std Cpu

Min Max Avg Std Cpu

Min Max Avg Std  Cpu

100

200,

300

400

500

1000,20 122500 1066,10 94,11 58,60
671790 851300 734990 746,90 203,70
18140,80 23709,80 20191,00 2291,88 424,72
36440,10 46052,50 40506,00 389514 727,15

60698,10 75276,50 66787,60 5846,81 1102,01

1017,10 134660 112550 142,98 9645
7377,80 956290 8298,00 900,02 324,52
20989,20 25387,60 2294540 1889,15 690,07
4297310 48198,00 45425,30 2205,12 1160,36

71631,90 78261,60 74589,50 2777,84 1806,59

100800 101890 101040 4,92 30,08,
6402,60 6630,20 6464,70 100,78 114,97
16839,50 17668,00 17058,80 364,04 250,99
32278,30 35270,60 33140,60 1284,09 407,93

53361,20 58462,20 54782,30 214950 635,43

Mann-Whitney Test and CI (a = 0):

DABC_VNS; GA_VNS

N Median
DABC_VNS 5 18141
GA VNS 5 20989

Point estimate for ETA1-ETA2 is -2848
96,3 Percent Cl for ETA1-ETA2 is (-53491;39709)

W

=250

Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,6761

DABC_VNS; VNS

N Median
DABC_VNS 5 18141
VNS 5 16840

Point estimate for ETA1-ETA2 is 1301
96,3 Percent Cl for ETA1-ETA2 is (-35221;43859)

W

=290

Test of ETAL1 = ETA2 vs ETAL not = ETA2 is significant at 0,8345

GA_VNS; VNS

N Median
GA VNS 5 20989
VNS 5 16840

Point estimate for ETA1-ETAZ2 is 4150
96,3 Percent Cl for ETA1-ETA2 is (-32372;54792)

W

=30,0

Test of ETA1 = ETA2 vs ETAL not = ETAZ2 is significant at 0,6761

Figure 11. Mann-Whitey Test Results for o = 0
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Table 2. Run Results for Each Algorithms with a=0,1
a=0,1
DABC_VNS GA_VNS VNS
Jobs| Min Max Avg Std Cpu Min Max Avg Std Cpu Min Max Avg Std Cpu
100| 916,10 1060,10 95570 6245 59,59| 939,90 131290 105990 15965 96,27| 90430 91650 906,90 543 3395
200 6042,80 790450 671840 76095 207,83| 6743,70 852750 750090 76514 330,33 586440 597090 5894,00 4651 11501
300| 16519,10 2139590 18386,20 1959,25 433,94 18899,40 23154,30 20691,80 172554 683,64|15301,80 15896,00 1545350 254,38 239,02

400

500

32441,90 4037550 35886,90 3166,65 730,14

53967,30 67117,70 59532,40 519048 112524

37961,10 43288,60 40149,90 2158,85 1160,89

64563,10 70654,00 67293,30 2538,63 1779,56

2914510 31216,80 2970450 877,87 413,80

48159,10 52159,20 49291,40 1692,03 644,52

Mann-Whitney Test and Cl(a = 0, 1):

DABC_VNS; GA_VNS

N Median
DABC_VNS 5 16519
GA VNS 5 18899

Point estimate for ETA1-ETAZ2 is -2380
96,3 Percent Cl for ETA1-ETAZ2 is (-48044;35068)
W =25,0

Test of ETA1 =ETA2 vs ETAL not = ETA2 is significant at 0,6761

DABC_VNS; VNS

N Median
DABC_VNS 5 16519
VNS 5 15302

Point estimate for ETA1-ETA2 is 1217
96,3 Percent Cl for ETA1-ETA2 is (-31640;38666)
W =300

Test of ETA1 = ETA2 vs ETAL not = ETAZ2 is significant at 0,6761

GA_VNS; VNS

N Median
GA VNS 5 18899
VNS 5 15302

Point estimate for ETA1-ETAZ2 is 3598
96,3 Percent Cl for ETA1-ETA2 is (-29260;49261)
W =30,0

Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,6761

Figure 12. Mann-Whitey Test Results for a = 0,1
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300

400

500

14496,20 19202,80 16365,00 1904,92 476,95

28718,10 36117,90 31681,80 300798 751,75

48697,20 6024640 53509,40 460525 112125

17182,90 2052340 18524,70 1380,19 687,28,
34468,30 38410,70 36280,30 1629,25 115840

57153,50 63302,60 59776,40 2506,41 183337

Table 3. Run Results for Each Algorithms with 0=0,2
a=0,2
DABC_VNS GA_VNS VNS
Jobs| Min Max Avg Std Cpu Min Max Avg Std Cpu Min Max Avg Std Cpu
100| 831,10 101550 88760 76,71 6058 847,40 117200 95270 137,10 97,10| 82210 83410 824,80 546 30,93
200 545290 709330 602930 680,83 23595 617030 769690 6711,80 646,07 32540 522990 533830 525280 4852 11111

13711,90 14266,40 1384580 240,30 241,61
26043,60 27800,30 26527,00 73497 418,72

42661,40 46311,60 43784,10 1520,29 653,53

Mann-Whitney Test and Cl(a = 0, 2):

DABC_VNS; GA_VNS

N Median
DABC_VNS 5 14496
GA VNS 5 17183

Point estimate for ETAL-ETAZ2 is -2687

96,3 Percent Cl for ETA1-ETA2 is (-42657;31514)

W =250

Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,6761

DABC_VNS; VNS

N Median
DABC_VNS 5 14496
VNS 5 13712

Point estimate for ETAL-ETAZ2 is 784

96,3 Percent Cl for ETA1-ETA2 is (-28165;34985)

W =30,0

Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,6761

GA_VNS; VNS

N Median
GA VNS 5 17183
VNS 5 13712

Point estimate for ETA1-ETAZ2 is 3471

96,3 Percent Cl for ETAL-ETA2 is (-25479;43441)

W =30,0

Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,6761

Figure 13. Mann-Whitey Test Results for a = 0,2
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300

400

500

12837,80 16580,50 14354,90 1486,34 432,50

25566,40 32250,20 28428,60 268741 740,31

42562,00 5192390 4649350 3739,78 113264

14969,30 17859,10 1626840 117493 720,17
30081,40 33760,00 31762,80 152495 1177,26

48675,20 5494350 51632,10 2540,89 1806,78

Table 4. Run Results for Each Algorithms with 0=0,3
a=03
DABC_VNS GA_VNS VNS
Jobs| Min Max Avg Std Cpu Min Max Avg Std Cpu Min Max Avg Std Cpu
100| 74650 908,70 79440 66,72 6860| 762,70 101450 84440 10717 9894| 73980 75430 743,00 647 32,06
200 479730 633030 531990 62837 228,74| 547780 695150 6120,00 606,31 34572 4606,00 473660 4637,70 57,74 11455

12005,20 12582,80 12154,70 248,89 248,12

22762,20 24381,30 23179,40 690,86 43144,

37471,90 41073,70 38494,40 1508,77 655,09

DABC_VNS; GA_VNS

N Median
DABC_VNS 5 12838
GA VNS 5 14969

DABC_VNS; VNS

N Median
DABC_VNS 5 12838
VNS 5 12005

GA_VNS; VNS

N Median
GA VNS 5 14969
VNS 5 12005

Mann-Whitney Test and Cl(a = 0, 3):

Point estimate for ETAL-ETA2 is -2131

96,3 Percent Cl for ETA1-ETA2 is (-35837;27593)
W =250
Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,6761

Point estimate for ETA1-ETAZ2 is 833

96,3 Percent Cl for ETA1-ETAZ2 is (-24634;30557)
W =30,0
Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,6761

Point estimate for ETA1-ETAZ2 is 2964

96,3 Percent Cl for ETA1-ETA2 is (-22503;36670)
W =30,0
Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,6761

Figure 14. Mann-Whitey Test Results for a = 0,3
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300

400

500

11171,10 1444130 1244930 131032 452,52

21731,30 27522,80 24157,10 232544 759,71

37060,10 45178,00 40483,80 327311 119434

12907,10 1561940 14081,20 1131,72 717,76
26001,90 29204,00 27536,10 132054 1269,81

43910,50 4717950 45431,60 1336,93 1837,01

Table 5. Run Results for Each Algorithms with 0=0,4
a=04
DABC_VNS GA_VNS VNS
Jobs| Min Max Avg Std Cpu Min Max Avg Std Cpu Min Max Avg Std Cpu
100 661,30 80490 70550 5987 6217 67730 92630 76270 10251 9625 657,10 67340 661,60 714 3188
200 414620 547890 460990 54045 214,71| 460890 602290 515570 59541 330,74 402040 4097,80 403930 34,09 11647

10404,10 10683,60 10466,80 12356 244,36
19618,70 2107540 20022,80 619,25 417,49

32033,90 35193,50 32877,40 134537 646,06

Mann-Whitney Test and Cl(a = 0, 4):

DABC_VNS; GA_VNS

N Median
DABC_VNS 5 11171
GA VNS 5 12907

Point estimate for ETA1-ETA2 is -1736

96,3 Percent Cl for ETA1-ETA2 is (-32739;24153)

W =250

Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,6761

DABC_VNS; VNS

N Median
DABC_VNS 5 11171
VNS 5 10404

Point estimate for ETA1-ETAZ2 is 767

96,3 Percent Cl for ETA1-ETA2 is (-20863;26656)

W =30,0

Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,6761

GA_VNS; VNS

N Median
GA VNS 5 12907
VNS 5 10404

Point estimate for ETA1-ETAZ2 is 2503

96,3 Percent Cl for ETA1-ETA2 is (-19127;33507)

W =30,0

Test of ETA1 = ETA2 vs ETAL not = ETAZ is significant at 0,6761

Figure 15. Mann-Whitey Test Results for a = 0,4
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300

400

500

9380,70 12188,10 10519,50 1139,34 420,61

18302,30 23086,50 20306,70 1906,69 719,32

30994,70 38144,20 34060,50 2871,37 118557

10771,60 13014,80 1172430 940,51 694,73
21503,40 24252,10 22840,40 113655 1186,21

35755,00 39614,00 37387,30 1538,86 1812,71

Table 6. Run Results for Each Algorithms with 0=0,5
a=05
DABC_VNS GA_VNS VNS
Jobs| Min Max Avg Std Cpu Min Max Avg Std Cpu Min Max Avg Std Cpu
100| 58310 709,70 61860 5358 5858 59460 76310 63980 7258 9581 58600 592,10 587,20 2,68 3097
200 353640 461820 3910,30 43953 20050| 3951,00 508190 439760 462,92 328,09 341590 3508,70 3439,80 4097 108,69

8669,60 923320 8813,70 241,97 23568

16414,40 17754,80 16820,20 58841 418,17

26758,40 29625,00 2765580 1194,20 637,38

DABC_VNS; GA_VNS

N Median
DABC_VNS 5 9381
GA VNS 5 10772

DABC_VNS; VNS

N Median
DABC_VNS 5 9380,7
VNS 5 8669,6

GA_VNS; VNS

N Median
GA VNS 5 10772
VNS 5 8670

Mann-Whitney Test and Cl(a = 0, 5):

Point estimate for ETAL-ETA2 is -1391

96,3 Percent Cl for ETA1-ETA2 is (-26374;20223)
W =250
Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,6761

Point estimate for ETA1-ETA2 is 711,1

96,3 Percent Cl for ETAL-ETA2 is (-17377,7;22324,9)
W =290
Test of ETAL1 = ETA2 vs ETAL not = ETA2 is significant at 0,8345

Point estimate for ETAL-ETAZ2 is 2102

96,3 Percent Cl for ETA1-ETA2 is (-15987;27086)
W =30,0
Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,6761

Figure 16. Mann-Whitey Test Results for a = 0,5
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300,

400

500

7609,80 977580 845160 879,95 477,16
14884,40 18923,00 16588,60 1641,86 813,70

24635,20 30569,10 27078,70 2384,81 1125,00

8948,00 10539,80 9641,10 676,98 74745
17406,70 19854,40 18439,30 1004,39 1277,79

29643,00 31522,90 30290,60 76250 189314

Table 7. Run Results for Each Algorithms with 0=0,6
a=06
DABC_VNS GA_VNS VNS
Jobs| Min Max Avg Std Cpu Min Max Avg Std Cpu Min Max Avg Std  Cpu
100[ 499,70 60250 530,80 4253 6444 51060 68260 57350 7378 104,30 49790 50440 49930 287 3057
200 2870,70 373720 317190 356,04 220,96 315380 416580 348940 42215 35755 279230 286320 281140 3141 111,33

6976,30 7407,90 7097,40 182,26 239,51
13164,30 14246,10 13481,80 471,70 412,85

21959,70 23875,60 22426,20 830,27 637,18

DABC_VNS; GA_VNS

N Median
DABC_VNS 5 7609,8
GA VNS 5 8948,0

DABC_VNS; VNS

N Median
DABC_VNS 5 7609,8
VNS 5 6976,3

GA_VNS; VNS

N Median
GA VNS 5 8948,0
VNS 5 6976,3

Mann-Whitney Test and Cl(a = 0, 6):

Point estimate for ETAL-ETAZ2 is -1338,2

96,3 Percent Cl for ETA1-ETA2 is (-22033,2;15687,1)
W =250
Test of ETA1 =ETA2 vs ETAL not = ETAZ is significant at 0,6761

Point estimate for ETAL-ETAZ2 is 633,5

96,3 Percent Cl for ETA1-ETA2 is (-14349,8;17658,9)
W =30,0
Test of ETA1 = ETA2 vs ETAL not = ETAZ2 is significant at 0,6761

Point estimate for ETA1-ETA2 is 1971,7

96,3 Percent Cl for ETA1-ETA2 is (-13011,8;22666,7)
W =30,0
Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,6761

Figure 17. Mann-Whitey Test Results for a = 0,6
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Table 8. Run Results for Each Algorithms with 0=0,7

a=07

DABC_VNS

GA_VNS

VNS

Jobs

Min Max Avg Std Cpu

Min Max Avg Std Cpu

Min Max Avg Std  Cpu

100

200

300

400

500

42130 52330 45080 4251 6754

224530 2887,10 248310 264,60 22230
583550 767090 654130 73504 466,08
11255,70 1419530 12460,80 1186,71 72392

1874540 23133,90 20559,50 175152 112524

42660 561,20 47330 5651 10258

248200 318390 276950 291,11 34053
6892,70 8147,30 7390,30 521,17 74158
13330,90 14884,40 13999,50 642,58 115257

21982,20 24100,50 2287540 888,76 1767,12

41280 42380 41510 495 3099
216820 222910 218440 27,00 110,00
537640 5617,90 5439,80 107,24 236,19
10175,10 10991,00 10382,20 348,80 410,10

16388,80 17992,90 16866,60 682,32 629,50

DABC_VNS; GA_VNS

N Median
DABC_VNS 5 5835,5
GA VNS 5 6892,7

DABC_VNS; VNS

N Median
DABC_VNS 5 5835,5
VNS 5 5376,4

GA_VNS; VNS

N Median
GA VNS 5 6892,7
VNS 5 5376,4

Mann-Whitney Test and Cl(a = 0, 7):

Point estimate for ETA1-ETAZ2 is -1057,2

96,3 Percent Cl for ETA1-ETA2 is (-16146,8;11852,7)
W =250
Test of ETA1 =ETA2 vs ETAL not = ETAZ2 is significant at 0,6761

Point estimate for ETA1-ETAZ2 is 459,1

96,3 Percent Cl for ETA1-ETA2 is (-10553,2;13369,1)
W =30,0
Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,6761

Point estimate for ETA1-ETA2 is 1516,3

96,3 Percent Cl for ETAL1-ETAZ2 is (-9748,5;16605,8)
W =30,0
Test of ETA1 = ETA2 vs ETA1 not = ETAZ is significant at 0,6761

Figure 18. Mann-Whitey Test Results for a = 0,7
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Table 9. Run Results for Each Algorithms with 0=0,8

DABC_VNS

VNS

Jobs

Min Max Avg Std Cpu

Min Max Avg Std  Cpu

Min Max Avg Std  Cpu

100

200

300,

400

500

33470 39880 35320 26,78 60,55

1604,70 208260 177300 19309 21296

4078,80 524850 452370 472,79 44897

783330 971290 862660 758,74 70558

12769,90 15725,70 14005,60 1400560 1096,15

34740 45510 38530 44,92 100,32
176740 2251,10 1986,20 203,76 328,78
4756,00 5644,10 513890 36295 667,93
9279,20 1020500 9660,10 371,90 1271,20

1512750 16572,30 15697,40 580,92 173841

32620 33680 32920 462 3038

154350 156370 1547,60 8,98 109,55
374350 387880 3779,70 58,88 231,48
695230 754350 7132,60 244,89 423,74

11267,30 12442,80 11633,60 498,26 625,71

DABC_VNS; GA_VNS

N Median
DABC_VNS 5 4078,8
GA VNS 5 4756,0

DABC_VNS; VNS

N Median
DABC_VNS 5 4078,8
VNS 5 37435

GA_VNS; VNS

N Median
GA VNS 5 4756,0
VNS 5 37435

Mann-Whitney Test and Cl(a = 0, 8):

Point estimate for ETA1-ETA2 is -677,2

96,3 Percent Cl for ETA1-ETA2 is (-11048,7;8013,9)
W =250
Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,6761

Point estimate for ETA1-ETAZ2 is 335,3

96,3 Percent Cl for ETA1-ETA2 is (-7188,4;9026,5)
W =30,0
Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,6761

Point estimate for ETA1-ETA2 is 1012,5

96,3 Percent Cl for ETAL-ETA2 is (-6604,9;11384,0)
W =30,0
Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,6761

Figure 19. Mann-Whitey Test Results for a = 0,8
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Table 10. Run Results for Each Algorithms with a=0,9

a =09

DABC_VNS

GA_VNS

VNS

Jobs|

Min Max  Avg  Std Cpu

Min Max  Avg  Std Cpu

Min Max Avg Std Cpu

100

200

300

400

500

250,30 304,60 26880 2223 59,66

965,50 1251,70 1070,10 117,25 202,20
227340 2938,20 2540,60 267,37 421,99
4321,30 5377,00 4766,50 422,73 72343

6915,20 8466,90 7584,70 620,10 1142,90

25530 33480 280,70 3368 9507
1088,50 1354,20 119950 110,01 308,85
2701,90 3116,60 2879,70 168,48 594,28
5019,20 5612,40 5322,10 233,62 1054,16

8186,80 8831,20 8452,90 265,56 1654,96

24220 24650 24320 197 2981

920,70 946,20 92620 11,33 105,08
2099,90 2207,90 212750 46,20 222,24
3798,60 4084,90 3880,50 121,20 386,46

6076,20 6585,20 6221,80 217,27 600,92

Mann-Whitney Test and Cl(a = 0,9):

DABC_VNS; GA_VNS

N Median
DABC_VNS 5 2273,4
GA VNS 5 2701,9

Point estimate for ETA1-ETAZ2 is -428,5
96,3 Percent Cl for ETAL-ETA2 is (-5913,6;4213,4)

w

Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,6761

=250

DABC_VNS; VNS

N Median
DABC_VNS 5 2273,4
VNS 5 2099,9

Point estimate for ETA1-ETA2 is 173,5
96,3 Percent Cl for ETA1-ETA2 is (-3802,8;4815,2)

W

Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,6761

=30,0

GA_VNS; VNS

N Median
GA VNS 5 2701,9
VNS 5 2099,9

Point estimate for ETA1-ETAZ2 is 602,0
96,3 Percent Cl for ETAL-ETA2 is (-3543,4;6087,0)
W =30,0

Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,6761

Figure 20. Mann-Whitey Test Results for a = 0,9
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Table 11. Run Results for Each Algorithms with o=1

a=1

DABC_VNS GA_VNS VNS

Jobs| Min  Max Avg Std Cpu [ Min Max Avg Std Cpu [ Min Max Avg Std Cpu

100] 16590 202,60 179,90 1542 40,75 181,00 213,00 193,70 13,30 67,63| 151,20 163,00 153,60 523 22,36

200| 344,30 42250 377,60 32,44 120,28 395,70 436,60 413,30 17,67 192,59| 284,30 328,40 299,00 18,66 67,77

300| 537,50 644,00 583,10 42,84 26348 622,60 663,60 639,10 17,25 370,26 420,90 517,10 451,70 40,26 135,28

400( 740,60 864,70 798,00 49,05 436,75| 857,90 88590 869,30 11,92 621,52( 568,40 721,20 619,70 63,22 224,12

500] 973,00 1085,60 1027,50 45,03 579,37| 1083,90 1105,60 1091,90 9,13 903,04| 717,20 913,20 792,50 77,59 343,77

Mann-Whitney Test and Cl(a = 1):

DABC_VNS; GA_VNS

N Median
DABC_VNS 5 5375
GA VNS 5 622,6

Point estimate for ETAL-ETAZ2 is -85,1

96,3 Percent Cl for ETA1-ETA2 is (-691,9;559,7)

W =250

Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,6761

DABC_VNS; VNS

N Median
DABC_VNS 5 5375
VNS 5 420,9

Point estimate for ETA1-ETA2 is 116,6

96,3 Percent Cl for ETA1-ETA2 is (-372,9;589,3)

W=31,0

Test of ETAL1 = ETA2 vs ETAL not = ETA2 is significant at 0,5309

GA_VNS; VNS

N Median
GA VNS 5 622,6
VNS 5 420,9

Point estimate for ETA1-ETAZ2 is 201,7

96,3 Percent Cl for ETA1-ETA2 is (-321,5;706,8)

W =320

Test of ETAL = ETA2 vs ETAL not = ETAZ is significant at p = 0,4034

Figure 21. Mann-Whitey Test Results for o = 1
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Non-parametric statistical test of null hypothesis named Mann-Whitney test
is applied to compare the results of the three different algorithms. Mann-Whitney
test can be performed to 2 sample rank test of the equality of two population
medians in order to calculate the corresponding point estimate and confidence

interval. There are some assumptions for the Mann-Whitney test such as:

Data are independent random samples from two populations.
Random samples have the same shape and the responses are ordinal.

Data is supposed to have a random distribution.

The results are obtained from Mann-Whitney test with confidence level
0.95. Hypothesis test is established according to the medians of the results to see
if the algorithms are equal or not. Our data is assumed to be normally distributed
with confidence interval 0.95, so in order to make comment about the results, we
should consider the p value. If it is smaller than 0.05, we can state that the

algorithms are not equal, otherwise they are equal.

In Mann-Whitney test, the parameters can be calculated as follows:

N: The number of observations

Point Estimate: The median of all possible pairwise differences between

the two samples

W (number of positive differences) + 0.5*(number of differences that equal
0) + 0.5%(n;(n, + 1))

n, = number of observations in the first sample

p value: is based on the test statistic for W.

The test statistic Z, is a normal approximation using the mean and variance
of W.

Mean of W = 0.5*(n,(n,+n,+ 1))
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Variance of W = n;*n,*(n,+n,+1)/12

The p-value for Ha: Etal not= Eta2 is 2*(1 - CDF(2)).

Adjusted ties: not to reject the null hypothesis at the 5% significance level.

As seen in the tables 1 to 11, all the p values are greater than 0.05, so all

three algorithms are assumed to be equal. However, in the tables, average value of

10 instances is given for each job groups (100 jobs, 200 jobs, 300 jobs, 400 jobs

and 500 jobs). If a single group is analyzed i.e. 100 jobs with 10 instances, the test

results will be meaningful, as shown below:

Table 12

Run Results for Each Algorithms with 100 jobs, 10 instances, and 0=0,9

a =09

VNS

DABC_VNS

GA_VNS

Jobs

Ins

Min

Max

Avg

Std

Min

Max Avg

Std

Min

Max

Avg

Std

100

10

245,00
241,00
240,00
236,00
240,00
241,00
250,00
244,00
243,00

242,00

258,00
243,00
245,00
240,00
240,00
241,00
255,00
244,00
251,00

248,00

250,00
241,00
241,00
236,00
240,00
241,00
251,00
244,00
245,00

243,00

6,08
1,00
2,24
2,00
0,00
0,00
2,24
0,00
3,46

2,69

248,00
260,00
248,00
250,00
237,00
257,00
253,00
243,00
257,00

250,00

371,00 289,00
280,00 267,00
302,00 265,00
277,00 258,00
263,00 244,00
331,00 283,00
296,00 266,00
305,00 270,00
310,00 271,00

311,00 275,00

52,21

7,68
22,69
10,98
1154
29,72
17,74
23,69
22,33

23,76

255,00
244,00
251,00
240,00
262,00
253,00
264,00
266,00
252,00

266,00

501,00
310,00
322,00
275,00
273,00
334,00
315,00
358,00
304,00

356,00

330,00
265,00
269,00
253,00
265,00
285,00
289,00
286,00
273,00

292,00

10385
27,27
30,07
1447

5,00
30,46
21,32
40,14

28,12

36,10
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Mann-Whitney Test and Cl(a = 0,9):

DABC_VNS; GA_VNS

N Median
DABC_VNS 10 250,00
GA VNS 10 254,00

Point estimate for ETA1-ETA2 is -5,00

95,5 Percent Cl for ETA1-ETA2 is (-14,00;4,00)

W =86,5

Test of ETAL = ETA2 vs ETA1 not = ETAZ2 is significant at 0,1736

Figure 22. Mann-Whitney Test Result for DABC_VNS and GA_VNS

DABC_VNS; VNS

N Median
DABC_VNS 10 250,00
VNS 10 241,50

Point estimate for ETA1-ETAZ2 is 8,00

95,5 Percent Cl for ETA1-ETA2 is (3,00;14,00)

W =139,5

Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,0102
The test is significant at 0,0099 (adjusted for ties)

Figure 23. Mann-Whitney Test Result for DABC_VNS and VNS

VNS; GA VNS

N Median
VNS 10 241,50
GA VNS 10 254,00

Point estimate for ETA1-ETA2 is -12,50

95,5 Percent Cl for ETA1-ETA2 is (-22,00;-6,00)

W =655

Test of ETA1 = ETA2 vs ETAL not = ETA2 is significant at 0,0032
The test is significant at 0,0031 (adjusted for ties)

Figure 24. Mann-Whitney Test Result for VNS and GA_VNS

As seen in the table and the results, VNS algorithm outperforms the
GA_VNS and DABC_VNS, their p values are 0.0031 and 0.0099 respectively.
However, still we can assume that GA_VNS and DABC_VNS algorithms are
equal, because of having greater p value (0.1736) than 0.05.
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CHAPTER 6

CONCLUSION

In this paper, we presented a DABC_VNS and GA_VNS to solve a problem
from the real-life. We developed DBAC_VNS and GA_VNS algorithms to assign
the filling production orders to machine groups, and then schedule them on each
identical parallel machine groups. We also presented a unique solution
representation inspired from general assignment problem. In addition, we
developed a novel VNS local search to further improve the solution quality. We
also devised benchmark instances to test the performance of the algorithms
proposed. The computational results show that the VNS algorithm slightly
outperforms the GA_VNS and DABC_VNS on set of benchmark problems we

generated.

As a future work, we will apply these algorithms to real-life data from DYO

painting company in order to develop a decision support system for them.
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