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ABSTRACT 

SMART ANTENNA SYSTEMS FOR NON-COHERENT SOURCE 

GROUPS CONTAINING COHERENT SIGNALS 

AMINU, Ahmad 

MSc. in Electrical and Electronics Engineering  

Supervisor: Asst. Prof. Dr. Mustafa SEÇMEN 

June 2014, 88 pages 

 

This study presents smart antenna systems for unknown non-coherent 
source groups containing coherent signals. All parameters (including the 
frequency of each signal group) of direction-of-arrival (DOA) problem are aimed 
to be extracted in the presence of unknown noncoherent source groups, which are 
consisting of coherent signals. The antenna elements used in the fading analysis 
and application are isotropic, linear and uniformly distributed, and all parameters 
of the complete signal are assumed to be unknown except the number of coherent 
signal in each noncoherent group.  

To obtain the desired parameters (number of noncoherent groups, arrival 
angles, fading coefficients, frequencies), a four-step approach are followed. First, 
the number of noncoherent signal groups is determined by the minimum 
description length (MDL). Then, effective steering vectors are estimated using the 
joint approximate diagonalization of eigenmatrices (JADE) algorithm. In the third 
step, by using these steering vectors some popular high-resolution DOA methods 
such as the modified forward backward linear prediction (MFBLP), estimation of 
signal parameters via rotational invariance techniques (ESPRIT), multiple signal 
classification (MUSIC), and Minimum-norm (Min-norm) algorithms are realized 
to calculate the arrival angle and fading coefficient of each coherent signal. 
Afterwards, a frequency matching is realized to assign the possible frequency to 
each group. 

Root mean square error (RMSE) values for DOAs and fading coefficients 
are computed in a very challenging case having extreme fading coefficients for all 
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the methods used and the corresponding results are compared for different 
scenarios such as different SNR, different number of antenna elements and 
snapshots. Although all the methods resolved the signals correctly, simulation 
results show that JADE based MFBLP has the superior performance. 

The DOAs obtained from the JADE-MFBLP are then processed using 
steepest descent, least mean square (LMS) and normalized LMS adaptive 
beamforming algorithms to steer the main lobe of the radiation pattern to desired 
angles (signals) and the nulls to undesired angles (signals). The simulation results 
also reveal that adaptive beamforming is successfully done by cancelling the 
effects of undesired signals significantly. Finally, the reduction of power in dB for 
the worst case where all undesired signals are out of phase to the desired signal is 
investigated. The simulation results present that in spite of challenging 
environment with strong fading coefficients, the algorithms are able to make a 
successful beamform adaptively such that the power reduction is observed as 5.80 
dB, 1.04dB and 2.86 dB at most for SD, LMS and NLMS respectively. 

 

Keywords: adaptive beamforming, direction of arrival (DOA), estimation 
of signal parameters via rotational invariance techniques (ESPRIT), fading, joint 
approximate diagonalization of eigenmatrices (JADE), least mean square (LMS) 
algorithm, minimum description length (MDL), minimum-norm (Min-norm), 
modified forward backward linear prediction (MFBL), multiple signal 
classification (MUSIC) 
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ÖZET 

Bu çalışma, uyumlu sinyaller içeren bilinmeyen uyumlu olmayan kaynak 
grupları için akıllı anten sistemlerini sunmaktadır. Geliş yönü probleminin tüm 
parametreleri (her sinyal grubunun frekansını içeren) uyumlu sinyallerden oluşan 
bilinmeyen uyumlu olmayan kaynak grupları varlığında ayıklanması 
amaçlanmıştır. Sönümleme analizinde kullanılan anten elemanları izotropiktir, 
doğrusal ve düzgün dağılımlıdır ve sinyalin tüm parametreleri her uyumlu 
olmayan gruptaki uyumlu sinyal sayısı dışında bilinmiyor varsayılmıştır. 

İstenilen parametreleri (uyumlu olmayan grup sayısı, geliş açısı, zayıflama 
katsayıları, frekanslar) elde etmek için dört aşamalı yaklaşım izlenmiştir. İlk 
olarak, uyumlu olmayan sinyal gruplarının sayısı minimum tanımlama uzunluğu 
ile belirlenmiştir. Sonra, öz ortak yaklaşık köşegenleştirme algoritması 
kullanılarak etkili yönelimvektörleri kestirilmiştir. Üçüncü aşamada ise bu 
yönelim vektörleri; modifiye edilmiş ileri geri lineer tahmin (MFBLP), rotasyonel 
değişmezlik tekniği ile  sinyal parametrelerinin kestirimi (ESPRIT), çoklu sinyal 
sınıflandırma (MUSIC), temel çoklu sinyal sınıflandırma (root-MUSIC) ve 
minimum norm (Min-norm) algoritmaları gibi bazı yüksek çözünürlükte DOA 
metodları kullanılarak  açı ve her uyumlu sinyalin zayıflama katsayısının 
hesaplama işlemi gerçekleştirilmiştir. Ardından her gruba frekans atamak için 
frekans eşleştirme yapılmıştır. 

  Her metod kullanılarak DOA’lar için  ortalama hata kareleri toplamı kökü 
(RMSE) ve zayıflama katsayıları için bağıl RMSE değerleri farklı senaryolarda 
hesaplandı ve karşılaştırma yapıldı. Tüm metodlar sinyali doğru çözümlemesine 
rağmen simülasyon sonuçları JADE tabanlı MFBLP yönetmin en iyi performansa 
sahip olduğunu gösterdi. 

Jade-MFBLP’den elde edilen DOA’lar, radyasyon paterninin ana lobunu 
istenilen açıya yönlendirmek için ve istenmeyen açılarda sıfıra denk gelmesi 
içindik iniş, en küçük karesel ortalama (LMS) ve normalize LMS adaptif hüzme 
şekillendirme algoritmaları kullanılarak işleme konuldu. Simülasyon sonuçları, 
adaptif hüzme şekillendirici yönteminin istenmeyen sinyal etkilerini yok etmede 
başarılı olduğunu gösterdi. Son olarak, tüm istenmeyen sinyallerin istenen sinyale 
göre faz dışında kalması en kötü durum olarak kabul edildi ve bu durumda 
sinyaldeki düşüş dB cinsinden incelendi. Simülasyon sonuçları,  güçlü zayıflama 
katsayılı zorlu çevre şartlarına rağmen, algoritmaların adaptif olarak başarılı 
hüzme yapabildiğini gösterdi. Örneğin M=12 ve M=500 enstantenesinde  LMS, 
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NLMS  ve dik iniş algoritmaları ile alınan güç azalma sonuçları sırasıyla 1.04 dB, 
2.86dB ve 5.80dB olduğu gözlemlendi. 

Anahtar Kelimeler: adaptif hüzme şekillendirme, varış açısı, rotasyonel 
değişmezlik tekniği yöntemiyle sinyal parametrelerinin kestirimi, zayıflama, 
özmatrislerin birleşik yakın köşegenleştirilmesi, en küçük karesel ortamala 
algoritması, minimum tanımlayıcı uzunluk, minimum norm, modifiye edilmiş ileri 
geri lineer tahmin, çoklu sinyal sınıflandırma, normalize en küçük karesel 
ortalama algoritması, temel çoklu sinyal sınıflandırma 
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1.  INTRODUCTION 

1.1  Background of the Study 

Wireless Communication is growing with a very rapid rate for several years. 
The progress in radio technology enables new and improved services. Current 
wireless services include transmission of voice, fax and low-speed data. More 
bandwidth consuming interactive multimedia services like video-on demand and 
internet access are supported. 

Wireless systems that enable higher data rates and higher capacities have 
become the need of the present time (Khumane et al., 2011). At the same time, 
operators want to support more users per base station in order to reduce overall 
network cost and make the services affordable to subscribers. Wireless networks 
must provide these services in a wide range of environments, dense urban, 
suburban, and rural areas. Because the available broadcast spectrum is limited, 
attempts to increase traffic within a fixed bandwidth create more interference in 
the system and degrade the signal quality (Tsoulos, 1999). 

The solution to this problem is “SMART ANTENNA”. Today's modern 
wireless mobile communications depend on adaptive "smart" antennas to provide 
maximum range and clarity. With the recent explosive growth of wireless 
applications, smart antenna technology has achieved widespread commercial and 
military applications (Tsoulos et al., 1995) 

Any smart antenna system merges an antenna array and a signal processing 
unit to combine the incident signals on the array adaptively through weight 
adjustment. The signal processing consists of direction of arrival (DOA) 
estimation and adaptive beamforming part. Various methods for DOA estimation 
and beamforming are available, which differ in accuracy, computational 
complexity and convergence speed. The appropriate algorithm for DOA 
estimation or beamforming may differ from one application to another. DOA 
estimation is an important problem in array signal processing. Angle estimation 
may be used for source localization or source tracking by determining the desired 
signal location or may be exploited to reduce the unwanted effects of noise and 
interference. Therefore, DOA estimation, Angle of Arrival (AOA) or Time of 
Arrival (TOA) estimation is applicable in various fields such as radar, sonar, 
navigation, geophysics, wireless communications and so on (Balanis, 2005), 
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(Chen et al., 2010). In adaptive array antennas or smart antenna systems, DOA 
estimation algorithms provide information about the system environment for an 
efficient beamforming or providing location-based services such as emergency 
services. Therefore, great researches have been accomplished about DOA 
estimation during recent years, including different methods, different signal and 
system conditions, different array geometries and applications (Okamoto, 2002), 
(Balanis, 2005).  

The studies described above and traditional theory of DOA estimation are 
based on the sources (or signals) which are uncorrelated (noncoherent) to each 
other. These noncoherent signals can be considered as multiple users or 
frequencies in the wireless communication applications. The estimation of DOA 
angles for these types of signals are relatively easier and classical DOA estimation 
can be safely applied for this purpose. Then, the beamforming algorithms can be 
carried out to get maximum signal from one user and minimum signals from other 
users which can be treated as interference signals. However, since the frequencies 
of different users are different due to noncoherent behaviours of the signals, the 
effective cancellation of undesired signals (users) can be realized by putting 
suitable narrow passband filters even beamforming techniques are not used. On 
the other hand, more difficult and challenging scenario is observed when the 
desired and undesired signals are coherent (correlated) such as multipath signals. 
Multipath or fading signals are time-shifted replicas of the original desired signals 
(usually coming from different incident angles than that of original desired 
signal); so their frequencies are same as the desired signals. Therefore, they could 
not be annihilated by using filter approach. These multipath signals have very 
adverse effects such as total cancellation of the desired signal. Therefore, the 
reducing the effect of multipath signals of the same user is much more important 
than the decreasing the signal levels of other users (different frequencies). The 
difficulty in DOA estimation under multipath propagation is that since the desired 
and undesired fading signals are coherent, the classical DOA estimation 
algorithms cannot be directly used, and more intelligent methods should be used. 

With these intelligent methods, smart antennas combining DOA estimation 
under coherent signal environment and corresponding beamforming can improve 
the system performance by helping the channel modelling and suppression 
undesirable signals like multipath fading and co-channel interference (Varade et 
al., 2009). 
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1.2 Scope of the Thesis 

By regarding to the difficulties explained above for the smart antenna 
systems for signals with multipath effect, the scope of this thesis is limited to 
simulation of different DOA and fading coefficients estimation algorithms in 
multipath propagation, frequency matching and adaptive beamforming with a 
view to implement smart antenna system for wireless and mobile communication 
systems. For this purpose, several DOA estimation algorithms such as ESPRIT, 
MUSIC, root-MUSIC Min-norm and MFBLP in conjunction with JADE are 
realized to estimate the DOAs of different coherent signals (multipath 
environment) and then steepest descent, LMS and NLMS beamforming 
algorithms are used to adjust the complex weights and to generate an optimized 
radiation pattern with mainlobes and nulls in the direction of desired and 
undesired signals, respectively. 

1.3 Aim of the Study 

 This study aimed at implementing Smart Antenna System especially for 
high frequency and non-coherent source groups each having coherent signals. The 
excitation coefficients of the antenna array elements are going to be optimized to 
maximize the main lobes toward the signal-of-interest (SOI) angles and nulls 
toward the signal-not-of-interest (SNOI) angles. For this purpose several 
direction-of-arrival algorithms and beam forming algorithms are realized to obtain 
a sufficient method even under noisy signal conditions. The study also aimed at 
estimating and correctly matching different frequencies to different non-coherent 
source groups and this will be the main contribution of this thesis to the literature 
of direction of arrival (DOA) estimation.  

1.4 Methodology of the Study 

 In the first stage of the thesis, minimum description length (MDL) is used 
to determine the number of non-coherent source groups and then, joint 
approximate diagonalization of eigenmatrices (JADE) algorithm is used to 
estimate the generalized steering vectors.DOA parameters such as angles of 
arrival and fading coefficients are estimated by using several high resolution 
methods such as ESPRIT, MUSIC, ROOT-MUSIC, MFBLP and Min-norm and 
their results are compared. Frequency matching to non-coherent signal groups is 
also done in this stage. 
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The second stage involves using steepest descent, LMS and normalized 
LMS algorithms for beam forming to steer the main lobes of the array toward the 
signals-of interest (SOI) and nulls to the signals-not-of-interest (SNOI). 

1.5 Thesis Outline 

 The report of the thesis is outline as follows. Chapter 2 contains the 
background knowledge of antenna and antenna systems, types of antenna, smart 
antenna systems and its types, advantages and disadvantages. 

In chapter 3, the signal model, DOAs and fading coefficients estimation 
algorithms are discussed. The concept of frequency or group matching is also 
introduced in this chapter. 

Chapter 4 includes the simulation results for DOA and fading coefficients, 
frequency/group matching result as well as comparative analysis results of 
different types of DOA and fading coefficients estimation algorithms. 

The adaptive beamforming algorithms such as steepest descent, least mean 
square (LMS) and normalized LMS are discussed in chapter 5.   

Chapter 6 discusses the simulation results of steepest descent, LMS and 
NLMS, in addition to the effect of changing the number of antenna elements and 
spacing between elements on the beamforming and on the mean square error. 
Finally, the effect of step-size on the beamforming and on the convergence speed 
of the two beamforming algorithms was investigated also in this chapter. 

Conclusions and suggestion for future works are given in chapter 7.  
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2.  THE OVERVIEW OF SMART ANTENNA SYSTEMS 

In this chapter, the concept of antenna, direction of arrival and smart 
antenna systems are presented to give an insight and better understanding of the 
contents of the thesis.  

2.1  Antenna 

An antenna (or aerial) is a transducer designed to transmit or receive 
electromagnetic waves. In other words, antennas convert electromagnetic waves 
into electrical currents and vice versa. Antennas are used in systems such as radio 
and television broadcasting, point-to-point radio communication, wireless LAN, 
radar, and space exploration. Antennas are most commonly employed in air or 
outer space, but can also be operated under water or even through soil and rock at 
certain frequencies for short distances (Okamoto, 2006). 

Physically, an antenna is simply an arrangement of one or more conductors, 
usually called elements. In transmission, an alternating current is created in the 
elements by applying a voltage at the antenna terminals, causing the elements to 
radiate an electromagnetic field. In reception, the inverse occurs such that an 
electromagnetic field from another source induces an alternating current in the 
elements and a corresponding voltage at the antenna's terminals. Some receiving 
antennas (such as parabolic types) incorporate shaped reflective surfaces to collect 
EM waves from free space and direct or focus them onto the actual conductive 
elements. 

There are two fundamental types of antenna directional patterns, which, 
with reference to a specific three dimensional (usually horizontal or vertical) plane 
are either: 

 Omni-directional (radiates equally in all directions), such as a vertical rod. 
 Directional (radiates more in one direction than in the other).  

2.1.1 Omni directional Antenna 

Omni-directional usually refers to all horizontal directions with reception 
above and below the antenna being reduced in favour of better reception (and thus 
range) near the horizon. 
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Since the early days of wireless communications, there has been the simple 
dipole antenna, which radiates and receives equally well in all directions. To find 
its users, this single-element design broadcasts omnidirectionally in a pattern 
resembling ripples radiating outward in a pool of water as shown in Fig. 2.1 
below. While adequate for simple RF environments where no specific knowledge 
of the users' whereabouts is available, this unfocused approach scatters signals, 
reaching desired users with only a small percentage of the overall energy sent out 
into the environment. 

 
Figure 2.1: Omni-directional Antenna pattern (Balanis, 2005) 

 

With this limitation, omnidirectional strategies attempt to overcome 
environmental challenges by simply boosting the power level of the signals 
broadcast. In a setting of numerous users (and interferers), this makes a bad 
situation worse in that the signals that miss the intended user become interference 
for those in the same or adjoining cells. 

In uplink applications (user to base station), Omni directional antennas offer 
no preferential gain for the signals of served users. In other words, users have to 
shout over competing signal energy. Also, this single-element approach cannot 
selectively reject signals interfering with those of served users and has no spatial 
multipath mitigation or equalization capabilities. 
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Omni directional strategies directly and adversely impact spectral 
efficiency, limiting frequency reuse. These limitations force system designers and 
network planners to devise increasingly sophisticated and costly remedies. In 
recent years, the limitations of broadcast antenna technology on the quality, 
capacity, and coverage of wireless systems have prompted an evolution in the 
fundamental design and role of the antenna in a wireless system. 

2.1.2 Directional Antenna 

A "directional" antenna usually refers to one focusing a narrow beam in a 
single specific direction as shown in Fig. 2.2 below. A single antenna can also be 
constructed to have certain fixed preferential transmission and reception 
directions. As an alternative to the brute force method of adding new transmitter 
sites, many conventional antenna towers today split, or sectorized cells. A 360° 
area is often split into three 120° subdivisions, each of which is covered by a 
slightly less broadcast method of transmission. 

All else being equal, sector antennas provide increased gain over a restricted 
range of azimuths as compared to an omnidirectional antenna. This is commonly 
referred to as antenna element gain and should not be confused with the 
processing gains associated with smart antenna systems. 

 

Figure 2.2: Directional Antenna Pattern (Jain, 2011) 

While sectorized antennas multiply the use of channels, they do not 
overcome the major disadvantages of standard omnidirectional antenna broadcast 
such as co-channel interference. 
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All antennas radiate some energy in all directions in free space but careful 
construction results in substantial transmission of energy in a preferred direction 
and negligible energy radiated in other directions. 

Smart antenna systems normally use more than one antenna elements; 
consequently, even if the antenna elements are omnidirectional, the overall array 
structure is directional. The main aim of the smart antenna systems is to direct the 
mainbeam of the radiation pattern of the array towards the desired signal and put 
nulls at the angles of undesired ones in the radiation pattern. The traditional 
phased antenna array technology (Balanis, 2005) can direct the main beam of the 
radiation pattern of the array to the desired signal’s angle of arrival once DOA 
angle of the desired signal is estimated. However, it does not care about the 
positioning of nulls at the undesired signals’ DOA angles. Therefore, it is not 
evaluated as a smart antenna system. On the other hand, some null insertion 
antenna methods such as Schelkunoff polynomial method (Balanis, 2005) can 
successfully put nulls at the DOA angles of undesired signals in the radiation 
pattern. Nevertheless, they have no abilities to maximize the level of desired 
signal such that the main beam of the array is usually not directed to the DOA of 
desired angle, and even DOA of desired signal may corresponds to the null in the 
pattern.    

2.2  Smart Antennas 

The smart antenna systems can be understood better when its working 
principles are compared with human body (Balanis, 2005). Figure 2.3 below 
depicts the human analogy as well as the electrical equivalent of smart antenna 
systems. 

 

(a) Human analogy 
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`  
(b) Electrical equivalent 

Figure 2.3 Smart Antenna Analogy (a) Human analogy (Balanis, 2005); (b) Electrical equivalent 

Therefore, to give an insight into how a smart-antenna system works, let us 
imagine two persons carrying on a conversation inside a dark room (Balanis, 2005) 

[refer to Figure 2.3(a)]. The listener among the two persons is capable of 
determining the location of the speaker as he moves about the room because the 
voice of the speaker arrives at each acoustic sensor, the ear, at a different time. 
The human signal processor, the brain, computes the direction of the speaker from 
the time differences or delays of the voice received by the two ears. Afterward, 
the brain adds the strength of the signals from each ear so as to focus on the sound 
of the computed direction. Furthermore, if additional speakers join in the 
conversation, the brain can tune out unwanted interferers and concentrate on one 
conversation at a time (Balanis, 2005). Conversely, the listener can respond back to 
the same direction of the desired speaker by orienting the transmitter (mouth) 
toward the speaker. 

Electrical smart-antenna systems work the same way using two antennas 
instead of the two ears and a digital signal processor instead of a brain(Balanis, 

2005) [refer to Figure 2.3(b)]. Therefore, after the digital signal processor measures 
the time delays from each antenna element, it computes the direction of arrival 
(DOA) of the signal-of-interest (SOI), and then it adjusts the excitations (gains 
and phases of the signals) to produce a radiation pattern that focuses on the SOI 
while, ideally, tuning out any signal-not-of interest (SNOI) (Balanis, 2005). 
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Contrary to the name smart antennas consist of more than an antenna. A 
smart antenna is an antenna system, which dynamically reacts to its environment 
to provide better signals and frequency usage for wireless communications. There 
are a variety of smart antennas which utilize different methods to provide 
improvements in various wireless applications.  

The concept of using multiple antennas and innovative signal processing to 
serve cells more intelligently has existed for many years. In fact, varying degrees 
of relatively costly smart antenna systems have already been applied in defence 
systems. Until recent years, cost barriers have prevented their use in commercial 
systems (Balanis, 2005). The advent of powerful low-cost digital signal processors 
(DSPs) and general-purpose processors, as well as innovative software-based 
signal-processing techniques (algorithms) have made intelligent antennas practical 
for cellular communications systems (Balanis, 2005).  

Figure 2.4: A Sample Smart Antenna System (Moghaddam, 2012) 

Today, when spectrally efficient solutions are increasingly a business 
imperative, these systems are providing greater coverage area for each cell site, 
higher rejection of interference, and substantial capacity improvements. Figure 2.4 
above shows the general block diagram of a sample smart antenna system.  
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2.3 Types of Smart Antenna 

The two major categories of smart antennas regarding the choices in 
transmit strategy are Adaptive and Switch beam. 

2.3.1  Adaptive Array 

Adaptive antennas which consist of an infinite number of patterns (scenario-
based) that are adjusted in real time represents the most advanced smart antenna 
approach to date (Tsoulos et al., 1995).Using variety of available signal 
processing algorithms, the adaptive system takes advantage of its ability to 
effectively locate and track various types of signals to dynamically minimize 
interference and maximize intended signal reception as shown in Figure2.5 below.  

 

Figure 2.5: Adaptive Array System, Representative Depiction of a Main Lobes Extending Toward 

desired Users (Balanis, 2005) 

2.3.2  Switched Beam 

Switched beam antenna systems which consist of finite number of fixed, 
predefined patterns or combining strategies (sectors) form multiple fixed beams as 
shown in Figure 2.6 below, with heightened sensitivity in a particular direction. 
These antenna systems detect signal strength, choose from one of several 
predetermined, fixed beams, and switch from one beam to another as the mobile 
moves throughout the sector (Khumane et al., 2011).  
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Figure 2.6: Switched beam system (Balanis, 2005) 

Instead of shaping the directional antenna pattern with the metallic 
properties and physical design of a single element (like a sectorized antenna), 
switched beam systems combine the outputs of multiple antennas in such a way as 
to form finely sectorized (directional) beams with more spatial selectivity than can 
be achieved with conventional approaches.  

The task of transmitting in a spatially selective manner is the major basis for 
differentiating between switched beam and adaptive array systems. As described 
above, switched beam systems communicate with users by changing between 
preset directional patterns, largely on the basis of signal strength. In comparison, 
adaptive arrays attempt to understand the RF environment more comprehensively 
and transmit more selectively. Both systems attempt to increase gain according to 
the location of the user, however, only the adaptive system provides optimal gain 
while simultaneously identifying, tracking, and minimizing interfering signals. 

2.4  WorkingPrinciples of Smart AntennaSystems 

Adaptive array and switched beam systems enable a base station to 
customize the beams they generate for each remote user effectively by means of 
internal feedback control. Generally speaking, each of the two approaches forms a 
main lobe toward individual users and attempts to reject interference or noise 
from outside of the main lobe. 
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2.4.1  Listening to the Cell (Uplink Processing) 

It is assumed here that a smart antenna is only employed at the base station 
and not at the handset or subscriber unit. Such remote radio terminals transmit 
using omnidirectional antennas, leaving it to the base station to separate the 
desired signals from interference selectively. Typically, the received signal from 
the spatially distributed antenna elements is multiplied by a weight, a complex 
adjustment of amplitude and a phase. These signals are combined to yield the 
array output. An adaptive algorithm controls the weights according to predefined 
objectives. For a switched beam system, this may be primarily maximum gain; for 
an adaptive array system, other factors may receive equal consideration. These 
dynamic calculations enable the system to change its radiation pattern for 
optimized signal reception. 

2.4.2  Speaking to the Users (Downlink Processing) 

The type of downlink processing used depends on whether the 
communication system uses time division duplex (TDD), which transmits and 
receives on the same frequency (e.g., PHS and DECT) or frequency division 
duplex (FDD), which uses separate frequencies for transmit and receiving (e.g., 
GSM). In most FDD systems, the uplink and downlink fading and other 
propagation characteristics may be considered independent, whereas in TDD 
systems the uplink and downlink channels can be considered reciprocal. Hence, in 
TDD systems uplink channel information may be used to achieve spatially 
selective transmission. In FDD systems, the uplink channel information cannot be 
used directly and other types of downlink processing must be considered. 

2.5  Advantages and Disadvantages of Smart Antennas 

2.5.1  Advantages 

 Increased Number of Users 

Due to the targeted nature of smart antennas, frequencies can be reused 
allowing an increased number of users. More users on the same frequency space 
means that the network provider has lower operating costs in terms of purchasing 
frequency space. 
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 Increased Range 

As the smart antenna focuses gain on the communicating device, the range 
of operation increases. This allows the area serviced by a smart antenna to 
increase. This can provide a cost saving to network providers as they will not 
require as many antennas/base stations to provide coverage. 

 Geographic Information 

As smart antennas use ‘targeted’ signals the direction in which the antenna 
is transmitting and the gain required to communicate with a device can be used to 
determine the location of a device relatively accurately. This allows network 
providers to offer new services to devices. Some services include, guiding 
emergency services to locations, location based games and locality information.  

 Security 

Smart antennas naturally provide increased security, as the signals are not 
radiated in all directions as in a traditional omni-directional antenna. This means 
that if someone wished to intercept transmissions they would need to be at the 
same location or between the two communicating devices. 

 Reduced Interference 

Interference which is usually caused by transmissions which radiate in all 
directions is less likely to occur due to the directionality introduced by the smart 
antenna. This aids both the ability to reuse frequencies and achieve greater range.  

 Increased bandwidth 

The bandwidth available increases form the reuse of frequencies and also in 
adaptive arrays as they can utilize the many paths which a signal may follow to 
reach a device. 
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2.5.2  Disadvantages 

 Complex 

One of the disadvantages of smart antennas is that, they are far more 
complicated than traditional antennas. This means that faults or problems are 
more likely to occur and harder to be diagnosed. 

 More Expensive 

As smart antennas are extremely complex, utilizing the latest in processing 
technology they are far more expensive than traditional antennas. However, this 
cost must be weighed against the cost of frequency space. 

 Larger Size 

Due to the antenna arrays which are utilized by smart antenna systems, they 
are much larger in size than traditional systems. This can be a problem in a social 
context as antennas can be seen as ugly or unsightly. 
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3. SIGNAL MODEL AND THE STEPS OF PROPOSED 
METHOD FOR DOA ESTIMATION 

In this chapter, the data model for the overall signal on the antenna elements 
and problem geometry will be given. The steps of the DOA estimation part of the 
study are discussed in detail by including DOA estimation algorithms, fading 
coefficients estimation and frequency matching for noncoherent source groups 
containing coherent signals. The similar methods in literature, which use same 
signal model, are also described in the chapter, and their drawbacks are going to 
be explained. 

3.1 Array Model for Noncoherent Source Groups Containing 
Coherent Signals 

 In the array model of the problem, it is assumed that there are N 
narrowband signals arriving to the array in the directions {θ1, θ2, θ3, . . . ,θN}. In 
order to simplify the problem under consideration, a uniform linear array (ULA) 
shown in Figure 3.1 below is assumed with inter-element spacing d of half 
wavelength of the narrowband signal frequency. In the mentioned figure, only one 
plane wave being incident in the direction θ is depicted for simplicity such that 
total of N plane waves actually exists in the system. M antenna elements in the 
array of Figure 3.1 have identical isotropic responses, and “the reference point” of 
the system is taken as the leftmost antenna element in the array. 

 

Figure 3.1: Uniform Linear Array with M Antenna Elements Where a Sample Plane Wave 

Impinges upon the Array at the Direction of Arrival of θ. 
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In the model, K different RF or down converted IF frequencies {ω1, 
ω2,…,ωK} are used to denote the number of different users in wireless 
communication. At each frequency (group), there are L coherent signals (assumed 
to be known) where K×L is equal to N. All parameters of the complete signal are 
assumed to be unknown except the number of coherent signal in each noncoherent 
group. 

Data received at antenna elements can be described by an M × 1 vector as: 

      1,..., sk k k k N  X As n
 (3.1) 

where Ns is the number of snapshots and A is the array steering matrix which 
is described for uniform linear array as: 

     1 2 Na a a     A 
 (3.2) 

 
 2 1 sin2 sin
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    




 
 

(3.3) 

 where d and λ are antenna inter-element spacing and signal wavelength, 
respectively. In equation (3.1), s is a vector of signals including the fading 
coefficients of the signals such that 

  1 2
1 1 1s L N

Tj k j k j k j kKk e e e e
   

      
 

 
(3.4) 

 whereρ1,…,ρN are complex fading coefficients of the signals. Here, the signals 
and correspondent fading coefficients from n = 1,…,L  belongs to first group 
(frequency), and the fading coefficients from n = N-L+1,…, N belongs to signals 
in last group. The n in (3.1) is a vector of additive white Gaussian noise. It is 
assumed that the entries of s(k) and n(k) are zero mean processes and the entries 
of n(k) are independent with each other and signals. 
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Researchers in the area of signal processing have been working for decades 
to try to resolve highly correlated signals, which are resulted due to multipath and 
fading phenomena as described above. Coherent signals cause covariance matrix 
to be singular with rank loss and zero determinant which means the signals cannot 
be directly resolved using second order statistics base subspace methods. Several 
other techniques were developed to take care of coherency problems such as 
maximum likelihood (Stoica et al., 1996), spatial smoothing (Pillai, 1989) and 
matrix pencil (MP) (Yilmazer et al., 2006). Maximum likelihood is 
computationally intensive, spatial smoothing requires more sensors for pre-
processing and matrix pencil (MP) requires high signal to noise ratio (SNR). 
Other methods include fourth order cumulants (FOC) such as steering vectors 
DOA (Yuen et al., 1997) which first estimates the steering vectors and then it 
utilizes MFBLP to estimates DOA using the estimated vectors. This method 
requires large number of snapshots. At present, JADE algorithm (Cardoso et al., 
1993) has been successfully applied to DOA applications that it allows estimating 
the array response vectors without having a prior knowledge of the array 
manifold.  

Although all the methods/algorithms above are somehow successful in the 

estimation of arrival angles and fading coefficients even under the case of 

noncoherent source groups each including superposition of coherent signals, they 

do not care about the frequency estimation of the signals. In other words, the 

frequency matching (which frequency belongs to which signal group) is not 

considered by these methods. However, the frequency matching is crucial in 

multi-user applications such as mobile communication where each frequency can 

be assigned to a user. The multi-beam generated by the antenna elements can be 

considered as the beamforming for each signal group (each frequency) in smart 

antenna systems. Therefore, even the proper excitation coefficients for the antenna 

elements are determined for each group, the corresponding carrier (or IF) 

frequency should be also found, and it can be done only with a proper frequency 

matching.   

In the next section the steps of the proposed method are going to be explained 

in detail. 
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3.2 Minimum Description Length (MDL) Algorithm  
 

In the first step, the number of noncoherent signal groups, in other words, 

number of frequencies (K), is determined by using minimum description length 

(MDL) under the additive white Gaussian noise. MDL is a classical method (Wax 

et al., 1985), which uses the covariance matrix of X(k) in (3.1) and minimizes the 

function (3.6) by using the eigenvalues of this covariance matrix. MDL criterion 

is summarized in two steps (Wax et al., 1985) as follows: 

 Form the array covariance matrix  

ܴ = {(ݐ)ுࢄ(ݐ)ࢄ}ܧ
 

(3.4) 

The number of groups is determined as the value of ݇ ∈  that MDL is{ܯ…0,1,2}
minimized.  

ܮܦܯ = ܯ)− − ݇) ௦ܰ log ቆ
∏ ఒ೔

భ
ಾషೖಾ

೔సೖశభ
భ

ಾషೖ
∑ ఒ೔ಾ
೔సೖశభ

ቇ + ଵ
ଶ
ܯ2) − ݃݋݈(݇ ௦ܰ (3.6) 

where	ߣଵ > ଶߣ > …ଷߣ >  .ெ are eigenvalues of the covariance matrixߣ

3.3 Steering Vector Estimation Using JADE Algorithm 

In the second step of the proposed method, JADE algorithm is realized to 

get the generalized steering vectors (Cardoso et al., 1993). There are K steering 

vectors, whose number of elements is equal to that of antenna elements (M). 

These vectors include the arrival angle and fading coefficient information. It is 

summarized as follows (Tufts et al., 1982).  

 Compute whitening matrix W. Whitening process can be expressed as  

 Z WX t
 (3.7) 

 Form fourth order cumulants of  Z t  

 Jointly diagonalize the set  , , 1, 2,3,Zr ZrM r K   by a unitary matrix U

that  eigenpairs ,Zr ZrM corresponds to the K largest eigenvalues.  
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 Estimate the array response matrix 

†A W U  (3.8) 

Where ܹற is Moore-Penrose inverse of whitening matrix. 

3.4 DOA Estimation Algorithms 

In the third step of the method, after K many steering vectors are collected, 

each vector is processed with a selected high-resolution DOA estimation 

technique to extract the DOA angles of each group. However, most of these 

techniques are parametric methods, which need to the number of coherent signals 

in each group (L) assumed to be known in the analysis and simulations.  

 These high-resolution DOA estimation algorithms include, multiple signal 

classification (MUSIC), root-MUSIC, Minimum norm, estimation of signal 

parameters via rotational invariance technique (ESPRIT) and modified forward 

backward linear prediction (MFBLP).   

3.4.1 MUltiple SIgnal Classification (MUSIC) Algorithm 

Multiple signal classification (MUSIC) was developed by Schmidt 
(Schmidt, 1986). In this method, the spatial covariance matrix is decomposed into 
signal and noise subspace and then the expression in (3.9) search all the available 
steering vectors and determine those that are orthogonal to the noise subspace. 
The output power spectrum of MUSIC is defined in (3.9) below as (Nwalozie et 
al., 2013):  

     
1

MUSIC H H
n n

P
a Q Q a


 


 (3.9) 

Where Qn is the noise subspace and (.)H is the conjugate transpose. From (3.9) if θ 

corresponds to one of the DOAs then   na Q  and the denominator becomes 

identically zero, therefore, the output will have peak value, hence the direction of 

arrival.  
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3.4.2 Minimum norm Algorithm 

This method was proposed by kumaresan and Tufts (Kumaresan et al., 

1983) and it is applicable to linear arrays. The general expression for this method 

is to search for the locations of the peaks in the spectrum: 

   
1

Min norm H H H
n n n n

P
a Q Q YQ Q a  

 (3.10) 

where Y =ppT and p is the first column of M x M  identity matrix. Y is used 

in the expression to ensure that the matrix dimensions match. Min-norm could be 

regarded as improvement to MUSIC since the denominator of the expression 

looks like the square of that of MUSIC, hence all values near zero serve to boost 

the power output to a higher level.  

3.4.3 Root-MUSIC Algorithm 

Root-MUSIC algorithm for DOA estimation which was proposed by Barabell 

(Barabell, 1983) and can only be used for linear arrays. The method performs 

better than spectral MUSIC especially at low signal to noise ratio (Barabell, 1983) 

and it involves expressing the array steering vectors in polynomial form by 

evaluatingatݖ = ݁௝ఏ . If the eigendecomposition corresponds to the true spectral 

matrix, then MUSIC spectrum ெܲ௎ௌூ஼(ߠ)becomes equivalent to the polynomial 

on the unit circle and peaks in the MUSIC spectrum exist as roots of polynomial 

that lie close to the unit circle (Rao et al., 1989), (Cheng, 2005). That is: 

௥ܲ௢௢௧ିெ௎ௌூ஼(z)|z=e
jθ= ெܲ௎ௌூ஼(ߠ) (3.11) 

Ideally, in the absence of noise, the poles will lie exactly on the unit circle at the 

locations determined by DOA. Ultimately, the polynomial is calculated and then 

the J roots that are inside the unit circle are selected. A pole of polynomial: 

௭ୀ௭೜|(ݖ)ܦ = หݖ௤ห = ห݁௝ ୟ୰୥(௭೜)ห  (3.12) 
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will result in a peak in the MUSIC spectrum at: 

ߠ = sinିଵ൛(ߣ ⁄(௤ݖ)	arg(݀ߨ2 ൟ  (3.13) 

3.4.4 Estimation of Signal Parameters via Rotational Invariance 

Technique (ESPRIT) Algorithm 

ESPRIT was proposed by Roy and Kailath (Roy et al., 1986) and it is 

considered to be one of the most popular signal subspace based DOA estimation 

algorithm. This algorithm is more robust with respect to array imperfections than 

MUSIC (Khan et al., 2008). Computation complexity and storage requirements 

are lower than MUSIC as it does not involve extensive search throughout all 

possible steering vectors, but explores the rotational invariance property in the 

signal subspace created by two subarrays derived from original array with a 

translation invariance structure. It consists of three primary steps as follows (Chen 

et al., 2010): 

 Signal subspace estimation 

 Solution of the invariance equation and 

 DOA estimation 

After computing eigenvalues of the invariance equation, λ, the angle of arrival can 
be determined using: 

ߠ = sinିଵ ቀୟ୰୥	(ఒ)
ଶగௗ

ቁ  (3.14) 

3.4.5 Modified Forward Backward Linear Prediction (MFBLP) 
Algorithm 

MFBLP is a high-resolution DOA estimation method proposed by Tufts and 

kumaresan (Tufts et al., 1982) which is suitable for short data lengths. The steps 

for carrying out this algorithm are summarized (Yuen et al., 1997) as follows:   

 For each M x 1 steering vector ොܽestimated using some blind algorithm, 

form the matrix 2(M - L) x L matrix 
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and the 2(M-L) x 1 vector 
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  (3.16) 

 

Where ොܽ is the vector in the estimated steering vector ࢇෝ, M is the number of 

sensors and L must be chosen to satisfy the inequality: 

ܩ ≤ ܮ ≤ ܯ − ீ
ଶ
   (3.17) 

 

 Take the singular value decomposition of Q as: 

ܳ =  ு   (3.18)ܸ߉ܷ

 
 Then set L – G smallest singular values on the diagonal of ߉ to 0 and call 

it matrix Σ. The dimension of Σ is the same as that of	߉. 
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 Compute g as follows: 

ࢍ = [݃ଵ݃ଶ݃ଷ…݃௅]T=  (3.19)   ࢎࡴࢁ#ࢳࢂ−

 

Then determine roots of the polynomial 

(ݖ)ܪ = 1 + ݃ଵିݖଵ + ݃ଶିݖଶ +	…+ ݃௅ିݖ௅   (3.20) 

 

Where the coefficients {݃ଵ݃ଶ݃ଷ…݃௅} are the elements of the vector ࢍ. 

 The Gzeros of (ݖ)ܪ that lie on the unit circle, that is the zeros with 

magnitude 1, determines the unknown frequencies ωk in (3.21), from 

which the DOA’s angles can be computed. 

2 sin k
k

fd
c

 
     

(3.21) 

 

3.5 Fading Coefficient Estimation 

 
After the realization of high-resolution techniques, the DOA angles (θ) in each 

group are calculated. Then, the fading coefficients belonging to each signal 

(actually belonging to each DOA angle) can be acquired by the procedure 

described in (Zhang et al., 2008), where the strongest coefficient in each group is 

normalized to unity. Mathematically, the fading coefficients for kth frequency, ρk, 

can be expressed as: 
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(3.22) 

Where u = [1 0 … 0]1×L, † is the Moore-Penrose inverse operator, ak is the kth 

column (steering vector) of the estimated array response matrix in JADE 

algorithm and Ak is defined as: 

       1 1 1 2 kLk L k L   
   kA a a a  

 
(3.23) 

 

3.6 Frequency Matching 
 

 In the final step, the frequency matching of the noncoherent groups are 
made. Actually, the frequencies {ω1, ω2,…, ωK} can be easily found by taking 
total signal on any antenna element and processing this signal with the high-
resolution technique used in third step. However, the calculated frequencies may 
not be ordered properly with the estimation steering vectors in step 2 and DOA 
angles in step 3. For example, the frequency of ω1 may correspond to the third 
group in terms of steering vectors and DOA angles. For this purpose, a procedure 
is developed to make a proper matching between estimated frequencies and signal 
group.  

 The signal data given in (3.1) can be rewritten in terms of frequencies for 
each antenna element as 
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Where αmk is the superposition of fading coefficients times phase delay for 
the mth antenna element and kth frequency. As explained above, both frequencies 
{ω1, ω2,…,ωK} and αmk can be calculated for each antenna element by using 
corresponding antenna element’s data and high-resolution technique. The same α 
values can be estimated as 

mpα̂  by using the estimated fading coefficients and 

DOA angles of pth signal group such that:  

 

 

2 1 sin

1 1

ˆ
p L j d m n

mp n
n p L

e
 

  

 
  

   (3.25) 

 

Here, it is again important to indicate that due to disorder of steering vectors in 

JADE step, the first frequency with αm1 values may not be matched to first group 

with m1α̂  values. Therefore, frequency-group matching is done with a simple 

comparison, which is described below: 
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and  denotes the norm operator. 
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4.  SIMULATIONRESULTS for DOA and FADING 
COEFFICIENTS WITH FREQUENCY MATCHING 

This chapter is devoted to the analysis and comparison of different 
simulations for JA 

DE base DOAs and Fading coefficients estimation algorithms as well as 
frequency matching to evaluate their performances. The estimation algorithms to 
be considered here include ESPRIT, root-MUSIC, MFBLP, Min-norm, and 
MUSIC. The root mean square is used as a metric to compare the performance of 
these algorithms.  

4.1 Simulation of DOA Estimation algorithms 

In all the simulations which are developed in MATLAB environment with, 
M = 12 antenna-element uniform linear array (ULA) with relative inter-element 
spacing of d = λ / 2 is considered, and N = 12 signals impinge on the array. K = 3 
noncoherent groups each containing L = 4 coherent signals are considered. It is 
assumed that there are K = 3 different users in the wireless communication 
application having the carrier frequencies of 2420 MHz, 2425.5 MHz and 2432 
MHz. In the receiver side, a mixer with local oscillator of 2400 MHz and a 
following suitable lowpass filter are used to down-convert these frequencies to 20 
MHz, 25.5 MHz and 32 MHz. By taking the sampling frequency (rate) as 1 GHz 
(or 1 Gsamples/second), which can be easily realized with the current 
oscilloscopes or similar sampling devices, the normalized angular frequencies are 
calculated as ω1 = 0.1256 rad, ω2 = 0.1603 rad, ω3 = 0.2012 rad for this 
simulation. The DOA angles and multipath fading coefficients for each group 
(coherent signals) are given in the table 4.1 below. 

It can be observed from the table 4.1, that there are some angles being very 
close to each other. Again, it can also be observed that there is strong multi-path 
effect for each group that the fading coefficients have magnitudes close to each 
other. In the initial simulations, the number of snapshot is selected as Ns = 2000, 
and T = 50 independent trials are employed at signal-to-noise (SNR) level of 10 
dB. Here, the signal is fixed and independent trials are achieved by just changing 
the additive noise to the signal.  
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Table 4.1: True values of DOAs and fading coefficients for the first, second and 
third groups 

 
Group 

True DOAs 
(deg)  

True Fading 
coeffs.  

First  
Group  

10  1  

20  -0.6426+0.7266j  

28  0.8677+0.0632j  

45  0.7319-0.1639j  

Second Group  

5  1  

25  -0.8262+0.4690j  

35  0.1897-0.8593j  

55  0.2049-0.7630j  

Third Group  

40  1  

60  -0.1681-0.9045j  

15  -0.7293-0.1750j  

30  0.6102+0.1565j  

 

The true arrival angles and mean values of estimated angles as the average 
of 50 trials for root-MUSIC, MFBLP and ESPRIT DOA methods are given in 
Table 4.2 while Fig. 4.1 and 4.2 give the spectrums for Min-norm and MUSIC 
respectively. The mean value of the DOAs is given as: 

  2

1

1 T

n
t

mean k
NT




 
 

(4.1) 

Table 4.2: True arrival angles and mean of estimated DOA angles for Ns=2000, M=12, T=50 trials 

and SNR=10dB case  

True Angles 
(degrees) 

Mean of Estimated Angles with  
High Resolution Methods (degrees) 

Root-MUSIC MFBLP ESPRIT 

10 10.0843 10.0632 9.9997 

20 20.5100 20.1556 20.1997 
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True Angles 
(degrees) 

Mean of Estimated Angles with  
High Resolution Methods (degrees) 

Root-MUSIC MFBLP ESPRIT 

28 27.5114 27.9078 27.8078 

45 45.0938 45.0698 44.9773 

5 4.9969 5.0030 5.0022 

25 24.8704 24.8885 24.9980 

35 34.8160 34.8742 35.0617 

55 55.0399 55.0271 54.9718 

40 39.8429 39.9967 39.9286 

60 59.9566 59.9985 59.8564 

15 15.0480 15.0256 14.9378 

30 29.9608 30.0429 29.9803 
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(b) 

 

 
(c) 

Figure4.1: The estimation of Min-norm spectrum for (a) the first signal group (b) the 
second signal group (c) the third signal group, for 50 Monte-Carlo trials. The high peaks indicate 
the estimated DOAs of the signals. 
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(a) 

 
(b) 
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(c) 

Figure4.2: The estimation of MUSIC spectrum for (a) the first signal group (b) the second 
signal group (c) the third signal group, for 50 Monte-Carlo trials. The high peaks indicate the 
estimated DOAs of the signals. 

When the results in Table 4.1, Fig. 4.1 and 4.2 are analyzed, it can be 
deduced that both methods can be able to separate each non-coherent signal group 
correctly by the help of JADE algorithm, and have very good agreement with true 
angles even for moderate SNR level of 10 dB. While root-MUSIC algorithm has 
the inaccuracy (difference with the true angles) as high as 0.5 degrees, MFBLP and 
ESPRIT algorithms have the differences at most 0.15 and 0.2 degrees respectively, 
Min-norm and MUSIC each has maximum of 0.7 degrees. 

4.2 Performance Comparison of DOAs and Fading Coefficients 

For the accuracy performance, the JADE based DOA estimation methods are 
compared using the classical root mean square error (RMSE) for DOAs and fading 
coefficients given in (4.2) and (4.3) respectively. Figure 4.3, 4.4 and 4.5 show the 
variations of RMSE with SNR, number of array elements and number of snapshots 
respectively. The RMSE in DOA estimation is defined as (Yilmazer et al., 2006): 
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Figure 4.3RMSE for DOA estimation versus different SNR values for root-MUSIC, 

ESPRIT, MFBLP Min-norm and MUSIC algorithms. 

 According to simulation result in Fig. 4.3, RMSE values are found to be 
0.1044, 0.5075, 0.6931, 0.3731 and 0.3302 for MFBLP, ESPRIT, root-MUSIC, 
Min-norm and MUSIC respectively at SNR=10dB. Therefore, it can be seen that 
although the mean (average) value performances of MFBLP, ESPRIT and root-
MUSIC algorithms are close to each other, the variances belonging to Min-norm 
and MUSIC algorithm are significantly high as compared to MFBLP. So, the 
estimated values in Min-norm and MUSIC algorithms deviate (scatter) much more 
from the true values than MFBLP, ESPRIT and root-MUSIC. 

 The RMSE values of the DOA methods simulated for different number of 
antenna elements in the array are also evaluated for 50 trials at SNR level of 10 
dB. The results are shown in Fig. 4.4. When the results in the figure is examined, 
both methods possess similar RMSE values and successful performances up to M 
being as low as 17. However, as the number of antenna array continues to reduce 
more, the RMSE results of the methods begin to differentiate clearly such that 
RMSE value at M = 12 for MFBLP is the lowest. Thus, the method with MFBLP 
again out performs the other methods at the low number of antenna elements in 
the array. It can be also concluded that MFBLP works well without the necessity 
of high number of antenna elements. 
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Figure 4.4RMSE for DOA estimation versus different Number of Array Elements values 

for root-MUSIC, ESPRIT, MFBLP Min-norm and MUSIC algorithms. 

 Another parametric analysis is carried out for the number of snapshots 
(samples) in the signal data. For this purpose, the additional simulations are done 
for Ns values of 500, 1000, 1500, 2000, 2500, and 3000 with fixed parameters of 
M = 12, SNR = 10 dB and T = 50 trials. The corresponding RMSE values are 
given in Fig. 4.5 for all DOA methods considered in this work. It is revealed from 
the results in the figure that the RMSE results of all the methods are almost 
constant and do not show a noticeable change as Ns decreases up to 1500. 
However, as Ns decreases 1000 and below, the effect of number of snapshots 
begins to be observed (in the way of increasing RMSE and consequently 
decreasing the performance). So, for this simulation example, the methods can be 
used at the minimum Ns of 1500 to get sufficient accuracy, and at Ns of 2000 to 
have the best performance. In addition, MFBLP has again better RMSE 
performance at all Ns values as compared to the other methods. 
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Figure 4.5RMSE for DOA estimation versus different Number of snapshots values for root-

MUSIC, ESPRIT, MFBLP Min-norm and MUSIC algorithms. 

As the final comparison of the DOAs and fading coefficients estimation 
methods, the root mean square error (RMSE) for fading coefficients estimation 
are compared for all the algorithms considered. Fig. 4. 6 through 5.8 show the 
variations of RMSE for fading coefficient with SNR, number of array elements 
and snapshots respectively. The RMSE in fading coefficient estimation is defined 
as (Yilmazer et al., 2006): 
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Figure 4.6RMSE for fading coefficients versus different SNR values for root-MUSIC, 

ESPRIT, MFBLP Min-norm and MUSIC algorithms. 

 It can seen from Fig. 4.6 above that all the methods considered deviated 
from the true fading coefficients values except MFBLP with lowest RMSE values 
for all the SNR values considered. MUSIC performance is the worst at lowest SNR 
of 0 dB. 

 
Figure 4.7RMSE for fading coefficients versus different Number of Array Elements values 

for root-MUSIC, ESPRIT, MFBLP Min-norm and MUSIC algorithms. 

 The high performance of MFBLP method is also observed here with less 
RMSE valuefor fading coefficients at 12 elements. Althogh all the methods show good 
performance towards estimating the fading coefficients, root-MUSIC performed 
worfully as the the number of array elements decreases from 20 to 12.    
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Figure 4.8RMSEfor fading coefficients versus different Number of snapshots values for 

root-MUSIC, ESPRIT, MFBLP Min-norm and MUSIC algorithms. 

Lastly, the variation of RMS for fading coefficients with snapshots show a 

very good performace of MFBLP method as in Fig. 4.8. The other methods 

performances behaviour are roughly the same with worst at 1000 snapshots. 

4.3 Comparison of Computation Time 

In this part, computation time of JADE based root-MUSIC, ESPRIT, 
MFBLP, Min-norm, and MUSIC algorithms are compared for a single iteration 
and the results are shown in Table 4.3. These results were obtained in MATLAB 
environment with a HP Personal Computer, which has Intel Core i3-2328M 
processor at 2.2GHz and 4GB (929 usable) Ram. 

 
Table 4.3: Comparison of Computation Time of JADE based root-MUSIC, ESPRIT, 

MFBLP, Min-norm, and MUSIC algorithms 

 

Root 
MUSIC ESPRIT MFBLP Min-nor MUSIC 

Run Time/Iteration 
(second) 5.088345 5.069575 4.983721 5.585365 5.600133 

 

The results show that MFBLP has the lowest run time followed by ESPRIT 

algorithm while Min-norm took the longest time to produce the required result.  
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4.4 Analysis of Frequency Matching Result 

 The simulation results of frequencies and groups matching are discussed 
here. For this purpose, the steps described in from (3.24) to (3.27) are followed, 
and the corresponding accuracy rates of correct matching are obtained. For 
instance, for the case of Ns = 2000, M = 12, SNR = 10 dB and DOA method of 
ESRPIT, the norms of differences (as described in (3.26)) between the fading 
coefficient vector for the normalized angular frequency of ω3 = 0.2012 rad/s or 
the frequency of 32 MHz (k =3) and the fading coefficient vectors for first, second 
and third groups (p = 1, 2 and 3) are calculated as 0.02966, 8.0079 and 9.1710, 
respectively. Correspondingly, ω3 (or f3) is assigned as the frequency of first 
signal group. Then, the DOA angles in the assigned source group are compared 
with the true angles of the matched frequency. If the difference in root-mean-
square sense is smaller than 5 degrees (i.e. it is lower than 1 degree for the above 
example), the matching is classified as “correct”; otherwise, it is “incorrect” if it is 
higher than 5 degrees. By this outlined approach, the simulations are performed at 
several SNR levels with 50 trials and the given DOA algorithms. The accuracy 
rates of the “correct” matching are depicted in Table 4.4 and Fig. 4.9.   

Table4.4: variation of Number of correct frequency matching (%) with SNR 
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Figure 4.9 Percentages of “correct” matching versus different SNR levels for root-MUSIC, 

ESPRIT and MFBLP algorithms. 

 While MFBLP and ESPRIT algorithms have 100 percent accurate matching 

rates even at the low SNR level of 0 dB, root-MUSIC achieves 100 percent up to 

SNR = 15 dB, and can still give accuracy rate higher than 86 percent at SNR = 0 

dB. Min-norm and MUSIC have the same percentage of 93 percent at 20 dB with 

MUSIC having the least accuracy rate of slightly above 46 percent at 0dB .  
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 5.  BEAMFORMING 
 

Beamforming is the method used to create the radiation pattern of the 
antenna array by adding constructively the phases of the signals in the direction of 
the targets/mobiles desired, and nulling the pattern of the targets/mobiles that are 
undesired/interfering targets. 

By using beamforming algorithms, the weight of antenna arrays can be 
adjusted to form certain amount of adaptive beam to track corresponding users 
automatically and at the same time to minimize interference arising from other 
users by introducing nulls in their directions (Nwalozie et al., 2013). 

5.1 Beamforming Algorithms 
 

Adaptive beamforming algorithms are classified base on the assumptions on 
the desired signals. The first classification considers that part of the signal is 
known through training sequence. This known signal is then compared with what 
is received, and the weights are then adjusted to minimize the Mean Square Error 
(MSE) between the known and the received signals (Poluri et al., 2013). This 
class of beamforming algorithms mitigate multipath fading as well as interference 
since the weights are updated according to the incoming signals. The second class 
uses the knowledge of the incoming signal to identify all angles of arrivals and 
then adjust the complex weights to produce a main lobe towards the signal of 
interest (SOI) and nulls toward signal not of interest (SNOI).   

 
In this thesis, twobeamforming algorithms are considered. They include, 

least mean square (LMS) and normalized least mean square (NLMS). 

5.1.1   Steepest Descent 
The steepest descent method of searching the performance surface has been 

widely used due to its ease of implementation. In this method, all components of 
the complex weight vector are changed in accordance with the direction of the 
negative gradient of the surface at each iteration. Moving in the direction of the 
negative gradient leads toward the minimum as long as the origin lies on one of 
the principal axis of the surface. 

The steps of steepest descent algorithm can be summarized as follows 
(Poularikas et al., 2006).  
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Step-I: Algorithm starts with the initial value assignment w(0), which is 
usually equal to null vector. 

Step-II: Gradient vector  ∇௡((0)ݓ) is computed. 

Step-III: To obtain w(1), −µ∇௡((0)ݓ) is calculated and added to w(0). 

Step-IV: After that go to Step-II and continue the process to find optimum 
coefficients (until ∇௡((0)ݓ)  is equal to zero) 

The method of steepest descent can be expressed in the form of the 
following iterative equation: 

݊)ݓ + 1) = (݊)ݓ + (௡∇−)ߤ
 

(5.1) 

whereߤ is a constant that regulates the step-size, and ∇௡ is the gradient of 
the surface. 

5.1.2 Least Mean Square Algorithm 

The LMS algorithm is the most widely used adaptive beamforming 
algorithm so far because of its low computational complexity and robustness, 
though its main draw back is its requirement for many iterations before 
satisfactory convergence is achieved. The algorithm was derived by Widrow and 
Hoff (Haykin, 1991) in1959. The Least Mean Square (LMS) algorithm uses a 
gradient based method of steepest decent (Kawitar et al., 2005) and it is based on 
the knowledge of the incoming signal. It involves new observations and iteratively 
minimizes linearly the mean square error between the estimated and desired 
signals. The LMS algorithm equation for updating the weights of the beamformer 
is expressed as(Haykin, 1991): 

       *1w n w n e n x n  
 

(5.2) 

Where x(n) and w(n) are the input signal and weight respectively and also μ 
is the step-size parameter which controls the immediate change of the updating 
factor. 

The step-size parameter has significant effect on the LMS algorithm for 
that, if it is very small, the convergence to optimal solution takes longer time 
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while if it is high, the stability of the system is lost. For stability, the following 
condition (Haykin, 1991) must be satisfied: 

m a x

10 


 
 

(5.3) 

Where max  is the maximum eigenvalue of the autocorrelation matrix. 

The error signal is also express as (Schmidt et al., 1986): 

He d w x 
 

(5.4) 

Where d and w are the desired signal and complex weight respectively  

5.1.3 Normalized Least Mean Square Algorithm 

 Normalized Least Mean Square (NLMS) is actually derived from Least 
Mean Square (LMS) algorithm. The need to derive this NLMS algorithm is that 
the input signal power changes in time and due to this change the step-size 
between two adjacent coefficients of the filter will also change and also affect the 
convergence rate. Due to small signal’s power this convergence rate will slow 
down and due to high signal’s power this convergence rate will increase and give 
an error. So to overcome this problem, the step-size parameter is adjusted with 
respect to the input signal power. Therefore the step-size parameter is said to be 
normalized. The step-size for NLMS adaptive beamforming algorithm is given by 
(5.5) below (Haykin, 1991): 

 
  2n

c x n


 
  

(5.5) 

Where β is the normalized step-size with boundary given in (5.6) and c is a 
small positive number that keeps the step-size as minimum as possible when x(n) 
is very small.  

0 2 
 

(5.6) 

Therefore, the weight updating equation for NLMS algorithm can be 
expressed as; 
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   
 

   *
21w n w n e n x n

c x n


  
  

(5.7) 

The problem of gradient noise amplification is avoided in NLMS. For 
instant, when x(n) is too large, the error becomes significant in LMS and   the 
performance degraded, but using NLMS, the error becomes minimal as the input 
signal power increases due to norm term plus the constant c in the denominator of 
the complex weight updating equation. 

 

5.2 The Measure for Performance Evaluation of Beamforming 
Algorithms  

 
After the optimum excitation coefficients of each antenna elements are 

obtained by steepest descent, LMS and NLMS algorithms, the normalized array 
factor (AFn) of the antenna array is calculated. Next, the degradation in desired 
signal power level is evaluated with a new measure of “power down in dB”. In 
this measure, the power difference in dB between maximum available power and 
power with optimized coefficients in the worst case is used. The received power 
in dB for each group can be given as: 

     
1

10 , ,
1

20log
L

d n d i u n i u
i

P dB AF AF   




 
 

(5.8) 

where ρd and AFn(θd) are fading coefficient and normalized array factor at 
DOA of desired signal, respectively; and ρi,u (where |ρi,u| < 1) and AFn(θi,u) for 
i=1,…, L-1 are those of undesired signals. In mobile wireless communication 
systems, although the magnitudes of fading coefficients change slowly, the phase 
terms are very sensitive especially to the relative distances between sources and 
antennas such that the phase value can jump 180 degrees even with a small 
change in the distance. Therefore, the phase terms of undesired signals’ 
contributions in the summation in (5.8) can all be out of phase relative to desired 
signal, which results in reduction at the power level of desired signals. By 
assuming ρd = 1 and AFn(θd)=1, this worst power (Pw) can be expressed as:  
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(5.9) 

Regardingly, for nonzero fading coefficients of undesired signals, the 

theoretical maximum available power can be only achieved when a maximum in 

AF is at the DOA of desired signals (AFn(θd)=1), and minima (nulls) are at the 

DOA of undesired signals (AFn(θi,u)=0). So, according to (5.8), Pmax(dB) becomes 

0 dB, and the power down in dB can be formulated as: 

       max 0down w wP dB P dB P dB P dB   
 

(5.10) 

Here, for instance, 3 dB of Pdown means the loss of half of the power of the 

desired signal, and ∞ dB of Pdown corresponds to no received desired signal. 

As an example, the simulation carried out here has the fading coefficients as 

shown in table 5.1, which were obtained from DOA and fading coefficients 
estimation using MFBLP algorithm in chapter 4.   

Table 5.1: estimated fading coefficients 
First Group Second Group Third Group 

0.7315 - 0.1603*i  0.2036 - 0.7633*i -0.7266 - 0.1796*i 
1.0000  1.0000 0.1625 – 0.9024*i 
0.8635 + 0.0708*i  -0.8157 + 0.4752*i 1.0000  
0.6480 + 0.7153*i  0.1818 - 0.8695*i 0.6072 + 0.1588*i 

 

Here, the fading coefficient of 1 at each group belongs to desired signal and 
other coefficients are for undesired ones. Since the sum of magnitudes of the 
fading coefficients of undesired ones is greater than 1 for each group, by 
considering (5.9) it has a possibility of receiving no desired signal (power down of 
∞ dB) with the random changes of phases when no adaptive beamforming is 
employed.  
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6.  SIMULATIONS and RESULTS for BEAMFORMING 

In this chapter, the simulations for different adaptive beamforming 
algorithms are carried out 

6.1 Adaptive Beamforming Simulation Results 

After successful estimation of DOAs and fading coefficients with different 
DOA estimation algorithms discussed in chapter 3 and 4, the values of the DOAs 
and fading coefficients obtained from the best algorithm, MFBLP, as shown in the 
table 6.1 are used to adaptively optimize the excitation coefficients of the antenna 
array with M = 12, Np = 500 and step-size, µ = 0.0014 for LMS and steepest 
descent and β=0.42 for NLMS. 

Table 6.1: Estimated values of DOAs and fading coefficients for the first, 
second and third signal groups obtained using MFBLP algorithm  

Group  Estimated 
DOAs (deg)  

Estimated Fading 
coeffs.  

First Group  10.0632 0.7315 - 0.1603*j  
 20.1556 1.0000 
 27.9078 0.8635 + 0.0708*j  
 45.0698 0.6480 + 0.7153*j  
Second Group 5.0030 0.2036 - 0.7633*j  

 24.8885 1.0000 
 34.8742 -0.8157 + 0.4752*j  
 55.0271 0.1818 - 0.8695*j  

Third Group 39.9967 -0.7266 - 0.1796*j  
 59.9985 -0.1625 - 0.9024*j  
 15.0256 1.0000 

 

The MATLAB simulation results of adaptive beamforming algorithms, 
steepest descent, least mean square (LMS) and normalized least mean square 
(NLMS) discussed in chapter 5 are given in this section and also comparative 
analysis of each algorithm with regard to power reduction in the signal power 
level is carried out. The MATLAB codes in Balanis’ Book (Balanis, 2005) are 
benefitted from and modified for the testing purpose of this research work.   



46 
 

6.1.1 Steepest Descent Algorithm Simulation Result 

The Fig. 6.1 and 6.2 below show the polar and rectangular radiation pattern 
respectively, of the first, second and the third group using steepest descent method 
for adaptive beamforming. 
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(c) 

Figure 6.1 Radiation pattern of the adaptive beamforming using Steepest Descent algorithm 

for (a) the first signal group (b) the second signal group (c) the third signal group  

It is clear from the radiation patterns in Fig. 6.1and 6.2 that, steepest descent 

method produces a lot of sidelobes that have powers just below the main lobe and 

this could be regarded as the source of interference to the main lobe. 
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(b) 

                         (c) 
Figure 6.2, Array factor verses Angle of Arrival for (a) the first signal group (b) the second 

signal group (c) the third signal group using Steepest Descent algorithm 

As shown in Fig. 6.2 above, the method has identified the SOI as 180, 240 

and 150 for the first, second and third signal groups respectively.    
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6.1.2 Least Mean Square Algorithm Simulation Result 

The normalized polar plot of the radiation patterns for the first, second and 

third signal groups with least mean square (LMS) algorithm are given in Fig. 6.3 
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(c) 

Figure 6.3 Radiation pattern of the adaptive beamforming using LMS algorithm for (a) the 

first signal group (b) the second signal group (c) the third signal group  

In Fig. 6.3, it can clearly be seen that the main lobes of the adaptive 

beamforming patterns are directed toward the angles of signal of interest (SOI) in 

all the three groups, which are 200, 250 and 150in the first, second and third 

groups, respectively; while all other angles of the signals or signal not of interest 

(SNOI) are directed toward the nulls.  

The array factor verses angle of arrival for the first, second and third signal 

groups are also shown in Fig. 6.4.  
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                 (c) 

Figure 6.4, Array factor verses Angle of Arrival for (a) the first signal group (b) the second 

signal group (c) the third signal group using LMS algorithm 

6.1.3 Normalized Least Mean Square Algorithm Simulation Result 

The normalized polar plot of the radiation patterns and array factor verses 

angle of arrival for the first, second and third signal groups with normalized least 

mean square error (NLMS) algorithm are given in Fig. 6.5 and 6.6 respectively. 
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(b) 

 
(c) 

Figure 6.5, Radiation pattern of the adaptive beamforming for (a) the first signal group (b) 

the second signal group (c) the third signal group using NLMS algorithm 

 Here also the aim of beamforming is achieved by directing the main lobes 

of the adaptive beamforming patterns toward the angles of signal of interest (SOI) 

in all the three groups, which are 200, 250 and 150in the first, second and third 

groups, respectively; while all other angles of the signals or signal not of interest 

(SNOI) are directed toward the nulls.  
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               (c) 

Figure 6.6, Array factor verses Angle of Arrival for (a) the first signal group (b) the second 

signal group (c) the third signal group using NLMS algorithm 

6.2 Some Factors Affecting Beamformation 

Some of the factors affecting the beamformation in adaptive beamforming 
include, number of array elements and element spacing. The effects of these two 
parameters are discussed in this section.  

6.2.1 Effect of number of array elements on beamformation   

Uniform linear array with element inter spacing of 0.5λ is consider and 500 
iterations are performed. The SOI has an AOA at 150 and SNOI at 400, 600 and 
300. Fig. 6.7 shows this effect on LMS algorithm while Fig. 6.8 shows the effect 
on NLMS algorithm for 12 and 20 array elements. 
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(a) 

 
(b) 

Fig. 6.7: Impact of number of number of elements on radiation pattern for (a) M=12, (b) M=20, 

using LMS algorithm. 
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(a) 

 
(b) 

Fig. 6.8: Impact of number of number of elements on radiation pattern for (a) M=12, (b) M=20, 

using NLMS algorithm. 

The following observation can be made with regard to Fig. 6.7 and 6.8. 

The width of the main lobe decreases as the number of array elements is 
increased; in other words, it becomes narrower. This is crucial for the applications 
of smart antennas when a single narrow beam is required to track a mobile or 
cluster of mobiles. 
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The number of sidelobes increases. In addition, the level of the first and 
subsequent sidelobes decreases compared with the main lobe. Sidelobes represent 
power radiated or received in potentially unwanted directions. So in a wireless 
communications system, sidelobes will contribute to the level of interference 
spread in the cell or sector by a transmitter as well as the level of interference seen 
by a receiver when antenna arrays are used. 

The number of nulls in the pattern increases. In interference cancellation 
applications, the directions of these nulls as well as the null depths have to be 
optimized. 

6.2.2 Effect of elements inter-spacing on beam formation 

The element inter-spacing d also has a significant impact on the shape of the 
radiation pattern. The simulation carried out with this regard considers 500 
iterations for 12 array elements. The spacing between elements is increased from 
0.5λ to λ in Fig. 6.9 and Fig. 6.10 for both LMS and NLMS respectively. 
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(b) 

Fig. 6.9: Impact of element spacing on radiation pattern for (a) d=0.5λ and (b) d=λ, using LMS 

algorithm. 
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                                                     (b) 

Fig. 6.10: Impact of element spacing on radiation pattern for (a) d=0.5λ and (b) d=λ, using NLMS 

algorithm. 

Figure 6.9 (a) and 6.10 (a) show the polar radiation pattern of a broadside 
12-elementarray with element spacing of d = λ/2. It can be seen that for this 
element separation, aside from a few sidelobes, there is one main lobe directed 
toward 15° in each case. When the spacing is increased to d = λ, the radiation 
patterns become as shown in Fig. 6.9 (b) and 6.10 (b) for LMS and NLMS 
respectively. The appearance of the grating lobe in the Figures not only have 
wasted power but also caused more interference to the mainlobe. In practice, the 
optimum element spacing for beamforming and adaptive interference cancellation 
applications is d = λ/2. 

6.3 Comparison of Steepest Descent, LMS and Normalized LMS in 
terms of Signal Power Reduction and Computation Time 

The table 6.1 and 6.2 respectively gives the comparison of steepest descent 
(SD), least mean square (LMS) and normalized LMS algorithms in terms of 
power level reduction and run time for the case M=12 and Np=500.  

  

-30-30 -20-20 -10-10 00
90

60

30

0

30

60

90
dB



61 
 

Table 6.1: Comparison of Steepest descent, LMS and NLMS algorithms in terms of Signal Power 
Reduction (dB). 
Group First Group Second Group Third Group 
Trial 1st 

trial 
2nd 
trial 

3rd 
trial 

1st 
trial 

2nd 
trial 

3rd 
trial 

1st 
trial 

2nd 
trial 

3rd 
trial 

S D 
 

5.64 5.80 5.25 5.12 5.27 5.57 1.71 2.01 3.16 

LMS 0.53 0.85 0.98 0.34 0.30 0.35 0.64 
 

1.03 1.01 

NLMS 1.79 2.86 1.52 0.82 1.12 1.75 1.99 1.85 1.60 
 

 

It can be seen from table 6.1 that, LMS has minimum power reduction in 
each trial with 1.03 dB at most. Steepest descent has much power reduction of at 
least 1.71dB and maximum of 5.8 dB while NLMS has maximum and minimum 
power reduction of 1.79 dB and 0.82 dB respectively. 

Table 6.2: Comparison of Steepest descent, LMS and NLMS algorithms in terms of computation 
time (sec) 
Group First Group Second Group Third Group 
Trial 1st 

trial 
2nd 
trial 

3rd 
trial 

1st 
trial 

2nd 
trial 

3rd 
trial 

1st 
trial 

2nd 
trial 

3rd 
trial 

S D 
 

4.18 4.05 3.96 3.96 4.00 3.98 4.13 3.99 3.97 

LMS 3.25 3.05 3.26 3.12 3.27 3.35 3.10 
 

3.17 3.42 

NLMS 2.93 2.99 2.97 2.98 3.03 3.06 3.06 3.07 3.00 
 

 

The steepest descent method as can be seen from table 6.2 took the longest 
time to perform the required task in all the trials, followed by least mean square 
method and NLMS has least run time among the three algorithms compared.  
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7.  CONCLUSIONS and FUTURE WORK 

7.1 Conclusions 
In this thesis, the implementation of smart antenna system for unknown 

non-coherent source groups containing coherent signals is carried out in 
MATLAB. The combination of JADE/high-resolution DOA algorithms are 
realized to estimate the direction of arrivals (DOA) of the incident signals on the 
antenna elements. Here, MDL criterion is used to determine the number of 
noncoherent source groups under white Gaussian noise, JADE algorithm is 
utilized to estimate the steering vectors. Then, DOA algorithm such as MUSIC, 
Min-norm, root-MUSIC, ESPRIT and MFBLP used in this thesis is applied to 
each steering vectors to estimate DOAs. The concept of correct matching between 
the multiple frequencies and noncoherent source groups is also developed in this 
study. In order to evaluate the performances of proposed combined algorithm 
along with new frequency matching approach and also compare the numerical 
results with different well-known DOA algorithms, several simulations are run in 
a challenging environment having severe multipath effects with very high fading 
coefficients and close arrival angles. The simulations are carried out to show the 
performances of the above mentioned algorithms in the step of DOA estimation 
after JADE process. The sensitivities of the algorithms to several parameters 
(SNR, number of antenna elements, snapshots) and the effects of these parameters 
on the results are also examined. The results show that MFBLP algorithm 
combined with JADE gives better performance at almost all different scenarios. It 
is observed that MFBLP has calculated RMSE values below 0.5 degrees for the 
different parameter conditions of either SNR = 0 dB or antenna element number 
of 10 or number of snapshot of 500. Besides, the simulations also show the 
effectiveness of the proposed frequency matching approach, which brings 100 
percent accuracy rate of the “correct” matching for MFBLP and ESPRIT 
algorithms even at the low SNR level of 0 dB. 

The DOAs obtained by the JADE-MFBLP algorithm are processed using 
Steepest Descent, LMS and NLMS adaptive beamforming algorithms. Although 
all the three methods have successfully steered mainlobes of the adaptive 
beamforming patterns to the signal of interest and the nulls to the signals not of 
interest in each non coherent group, steepest descent method has poor resolution 
and produced several sidelobes with high amplitude. The signal power reduction 
of 1.04 dB, 2.86 dB and 5.80 dB for LMS, NLMS and steepest descent 
respectively, are observed at M=12 and snapshots, Np=500. 



63 
 

As a conclusion, the algorithm as the combination of JADE and MFBLP 
attached with the developed frequency matching and LMS beamforming 
algorithm has been decided to be reasonable choice for the smart antenna 
application in the presence of unknown number of noncoherent source groups 
consisting of coherent signals. 

7.2 Future Work 
 The entire study contains only simulation results of smart antenna 

implementation for unknown non-coherent source groups containing coherent 
signals. It is recommended here that the hardware be produced to actualize the 
study.   

 Also the number of coherent signals in each group is assumed to be known 
unlike the number of non-coherent source groups. Therefore, it is suggested that 
this number be regarded as unknown and determined using well known signal 
detection algorithms such as minimum description length (MDL) and Akaike 
Information Theoretic Criterion (AIC) and so on, in future work. 
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APPENDIX : A SAMPLE MATLAB CODES FOR DOA 
ESTIMATION AND FREQUENCY MATCHING USING ESPRIT 
ALGORITHM 

close all 
clear all 
N=2000; 
  
% The coefficients of the signals 
  
a(1)=1; a(2)=-0.6426+i*0.7266; a(3)=0.8677+i*0.0632; a(4)=0.7319-
i*0.1639; 
a(5)=1; a(6)=-0.8262+i*0.4690; a(7)=0.1897-i*0.8593; a(8)=0.2049-
i*0.7630; 
a(9)=1; a(10)=-0.1681-i*0.9045; a(11)=-0.7293-i*0.1750; 
a(12)=0.6102+i*0.1565; 
  
%True Angle of arrivals 
  
b(1)=10; b(2)=20; b(3)=28; b(4)=45; 
b(5)=5; b(6)=25; b(7)=35; b(8)=55; 
b(9)=40; b(10)= 60; b(11)= 15; b(12)= 30; 
b=b*pi/180; 
  
%%%%% The formation of received signals X %%%%%%%%%%% 
% M = Number of Antenna Elements 
% N = Number of iterations 
% d = Elements spacing 
d=0.5; 
L=4; G=12; 
temp77=0; 
temp11=0; 
thet=zeros(1,12); 
tic 
for iter=1:1 
    for M=1:12 
        temp=0; 
        for k=1:L 
            temp1=abs(a(k))*exp(j*(2*pi*20e6*(0:N)*1e-
9+angle(a(k)) - 2* (M-1)*pi*d*sin(b(k)) )); %first group of the 
%signals 
            temp=temp+temp1; 
        end 
        aef1check=temp; 
         
        temp=0; 
        for k=L+1:2*L 
            temp1=abs(a(k))*exp(j*(2*pi*25.5e6*(0:N)*1e-
9+angle(a(k)) - 2*(M-1)*pi*d*sin(b(k)))); %second group of the 
%signals 
            temp=temp+temp1; 
        end 
        aef2check=temp; 
         
        temp=0; 
        for k=G-L+1:G 
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            temp1=abs(a(k))*exp(j*(2*pi*32e6*(0:N)*1e-
9+angle(a(k)) - 2* (M-1)*pi*d*sin(b(k))));  %third group of the 
%signals 
            temp=temp+temp1; 
        end 
        aef3check=temp; 
         
        X_noiseless(M,:)=aef1check+aef2check+aef3check; %noiseless 
%signal 
         
        %%%adding noise with complex awgn (AWGN) 
        X(M,:)=awgn(X_noiseless(M,:),10); 
             
         
    end     
   
    R=(X*X')/(N+1);    % compute spatial coveriance matrix 
     
    [U,D,V]=svd(R);     % compute eigendecomposition of coveriance 
%matrix   
    e=diag(D); 
     
    for k = 0 : M-1 
        la = e(k+1:M); 
        lam=la.^(1/(M-k)); 
        MDL(k+1)= - (M-k)* (N+1) * log10 ( prod (lam)/ ( 
sum(e(k+1:M)) / (M-k) )  ) +0.5*k*(2*M-k)*log10((N+1)); % source 
%detection using MDL 
         
    end 
     
    [min1,index]=min(MDL); 
    index_MDL=index-1; 
     
       
    [A,S]=jade(X-mean(X,2)*ones(1,N+1),index_MDL);  % steering 
%vectors estimation using JADE algorithm 
     
    % Estimate DOAs using Esprit algorithm 
        m=M/2; 
     
    w2=[1 0 0 0]; 
    for column=1:index_MDL 
        y=A(:,column); 
        R3=zeros(m,m); 
         
        for ii = m : M, 
            R3=R3+y(ii:-1:ii-m+1)*y(ii:-1:ii-m+1)'/N; 
        end 
         
                 
        % get the eigendecomposition of R3; use svd because it 
%sorts eigenvalues 
        [U4,D4,V4]=svd(R3); 
        S1=U4(:,1:4); 
         
        phi1 = S1(1:m-1,:)\S1(2:m,:); 
        abs(eig(phi1)); 
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        w1=angle(eig(phi1)); 
        doa1(:,column)=(asin(w1/d/pi/2)*180/pi);     
         
        % Fading coefficient estimation 
         
        A_fading=exp(-j*pi*(0:(M-1))'*sind(doa1(:,column))');    
         
        rho_k1=pinv(A_fading)*y/(w2*pinv(A_fading)*y); 
        [max1,index2]=max(rho_k1); 
        rho_k(:,column)=rho_k1/rho_k1(index2); 
         
    end 
    rho_k; 
    rho_k2(:,iter)=rho_k(:); 
    doa1; 
 doa2(:,iter)=doa1(:); 
     
    % compute root mean square error(RMSE) for fading coefficients  
     
    for kk=1:12 
        [min7,index7]=min(abs(rho_k(kk)-a(:))); 
        thet(index7)=thet(index7)+rho_k(kk); 
        temp77=temp77+(min7)^2; 
         
         
    end 
     
    % compute root mean square error (RMSE)for DOAs 
    for kk=1:12 
        [min3,index5]=min(abs(doa1(kk)-b(:)*180/pi)); 
        thet(index5)=thet(index5)+doa1(kk); 
        temp11=temp11+min3^2; 
         
    end 
     
    
    % Frequency estimation part 
    N2=500; 
    for kl=1:M 
        y51=X(kl,1:N2).'; 
        N1=length(y51); 
        m6=200; 
        n=index_MDL; 
        % compute the sample covariance matrix 
        R56=zeros(m6,m6); 
        for ii = m6 : N1, 
            R56=R56+y51(ii:-1:ii-m6+1)*y51(ii:-1:ii-m6+1)'/N1; 
        end 
         
         
         
        % get the eigendecomposition of R;  
        [U56,D56,V56]=svd(R56); 
        S56=U56(:,1:n); 
         
        phi = S56(1:m6-1,:)\S56(2:m6,:); 
         
        w=sort(-angle(eig(phi))); 
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        freq=w*1e9/(2*pi)'; 
         
        asdf=exp(j.*(0:N2-1)'*w'); 
        match=(pinv(asdf)*X(kl,1:N2).'); 
         
        match_full(:,kl)=match; 
         
        if kl==1 
            match1=match; 
        end 
        X1(:,kl)=match(1)*exp(j*w(1)*(0:N2-1)); 
        X2(:,kl)=match(2)*exp(j*w(2)*(0:N2-1)); 
        X3(:,kl)=match(3)*exp(j*w(3)*(0:N2-1)); 
    end 
     
     
    % Frequency (Group) Matching 
     
     
    mer(1,:)=((exp(j.*- 2.* (0:M-
1)'*(pi.*d.*sind(doa1(:,1))')))*rho_k(:,1)).'; 
    mer(2,:)=((exp(j.*- 2.* (0:M-
1)'*(pi.*d.*sind(doa1(:,2))')))*rho_k(:,2)).'; 
    mer(3,:)=((exp(j.*- 2.* (0:M-
1)'*(pi.*d.*sind(doa1(:,3))')))*rho_k(:,3)).'; 
    table=0; 
    for uu=1:3  %%% frequency 
        for vv=1:3  %%%% group 
            table(uu,vv)=norm(match_full(uu,:)-mer(vv,:)); 
        end 
         
    end 
    table; 
    [asdf,col_index]=min(min(table)); 
    [asdf,row_index(col_index)]=min(min(table')); 
    table(:,col_index)=1000;table(row_index(col_index),:)=1000; 
     
    [asdf,col_index]=min(min(table)); 
    %vdgfdgd 
    [asdf,row_index(col_index)]=min(min(table')); 
    table(:,col_index)=1000;table(row_index(col_index),:)=1000; 
     
    [asdf,col_index]=min(min(table)); 
    [asdf,row_index(col_index)]=min(min(table')); 
     
  
      
     
    for kkk=1:index_MDL 
         
        hhh(kkk,iter)= norm(sort(b(4*(row_index(kkk)-
1)+1:4*row_index(kkk))*180/pi)-(sort(doa1(:,kkk)')))/sqrt(4); 
         
    end 
     
end 
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doa1; 
rho_k; 
  
 
% std with real doas 
  
  
z=0; 
for kk=1:12 
z=z+abs((rho_k(kk)))^2; 
  
end 
  
sd_error77=sqrt(temp77/(iter*(z)));  %RMSE for fading coefficients 
  
sd_error=sqrt(temp11/(iter*12));   %RMSE for DOAs with real values 
  
%std with mean values 
me=thet/iter; 
temp123=0; 
for iter1=1:iter 
    for kk=1:12 
        [min123,index1]=min(abs(doa2(kk,iter1)-me(:))); 
         
        temp123=temp123+min123^2; 
    end 
end 
  
sd_error1=sqrt(temp123/(iter*12)); %RMSE for DOAs with mean values 
 
% Number of correct frequency matching  
number_correct_matching=length(find(hhh<5))*100/(iter*index_MDL);  
  
  
toc 
 

 


