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ABSTRACT 

APPLICATIONS OF ORDINARY DIFFERENTIAL EQUATIONS 

NİSA, Melis Buse 
Master Thesis in Mathematics                                                                                       

Supervisor: Assist. Prof. Dr. Refet POLAT  
June, 2014 

 

 This thesis includes the analytical and  numerical methods for solving first 
order ordinary differential equations. Starting with  historical information about 
differential equations, we present the concepts for differential equations. In this 
thesis, we study the types of seperable, homogeneous, exact, linear and some special 
equations as anaytical methods. On the other hand, we aim the numerial methods that 
are called Euler, Improved Euler, Second-Order Runge-Kutta and Fourth-Order 
Runge-Kutta Methods. After meeting the methods, we present the mathematical 
models for the applications of first-order ordinary differential equations. Developing 
the mathematical models, we introduce the problems for first-order ordinary 
differential equations. These problems classify in different kind of areas such as 
engineering, chemistry, physics, economics and sociology in order. We start with 
mechanical problems. Secondly mixture problems follow up after the mechanical 
problems. We present cooling and warming problems and later on financial problems. 
Finally we introduce growth and decay problems. We discuss three problems for each 
areas and these problems are solved both analytically and numerically. In numerical 
solutions, we get the approximations for each problem. Therefore we focus on 
choosing the better numerical approximations between the given numerical methods. 
Since the approximation depends on the step size, we deal with different step size. 
Finally, we compare the approximations. 

 This thesis consists of 5 chapters which include all of these subjects  

Keywords: Application, Runge-Kutta, Heun, Euler, first-order, analytical, numerical  
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ÖZET 

ADİ DİFERANSİYEL DENKLEMLERİN UYGULAMALARI 

Melis Buse NİSA 
Yüksek Lisans Tezi, Matematik Bölümü 

Tez Danışmanı: Yrd. Doç. Dr. Refet POLAT 
 

Haziran, 2014 

 Bu tez birinci mertebeden adi diferansiyel denklemler için analitik ve nümerik 
çözüm yöntemlerini içerir. Diferansiyel denklemler hakkında tarihsel bilgilerle 
başlayarak, diferansiyel denklemlerin temel kavramlarını tanıtır. Bu çalışmada 
analitik yöntemler adına değişkenlerine ayrılabilen, homojen, tam, doğrusal ve özel 
denklem tiplerinden bahsediyoruz. Öte yandan nümerik yöntem olarak, Euler, 
Geliştirilmiş Euler, İkinci Mertebeden Runge-Kutta ve Dördüncü Mertebeden Runge-
Kutta Yöntemlerini çalışıyoruz. Yöntemleri tanıttıktan sonra uygulamaların 
matematiksel modellerini tanıtıyoruz. Modellemeleri geliştirdikten sonra birinci 
mertebeden adi diferansiyel denklemlerin problemlerini sunuyoruz. Bu problemler 
mühendislik, kimya, fizik, ekonomi ve sosyoloji gibi çeşitli alanlardan seçilerek 
sınıflandırıldı. Mekanik problemlerden başlayıp ikinci olarak karışım problemlerini 
sunuyoruz. Isınma- soğuma problemlerini, finans problemleri takip ediyor. Son 
olarak büyüme ve çürüme problemlerini sunuyoruz. Her alanda üç problem 
çalışıyoruz ve problemleri analitik ve nümerik olarak çözüyoruz. Nümerik çözümler 
için nümerik yakınsamalar elde ediyoruz. Böylece verilen nümerik yöntemler 
arasından daha iyi yakınsayanını belirlemeye odaklanıyoruz. Yakınsama adım 
büyüklüğüyle ilişkili olduğundan, farklı adım büyüklükleriyle çalışıyoruz. Son olarak 
yakınsamaları kıyaslıyoruz. 

 Bu tez tüm bu konuları içeren 5 bölümden oluşmaktadır. 

Anahtar sözcükler: Uygulama, Runge-Kutta, Heun, Euler, birinci mertebe, analitik, 
nümerik 
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1 INTRODUCTION 

 Mathematics is an useful subject. In society, it has applications in lots of areas 
such as engineering, chemistry, physics, sociology, economics and many other 
disciplines. 

 A famous mathematician once said that the complete appreciation of 
mathematics requires an element of poetry, and it is true that the mathematics can 
offer the same sort of inspiration. The poet sees the essence behind the daily 
experience, the universe in agrain of sand, and the mathematicians sees the law 
working behind the parachute and the pendelum, the suspension bridge and the 
rolling motion of a wheel. The law is hidden in differential equations which is a 
branch of mathematics. The subject of differential equations constitutes a large and 
very important branch of modern mathematics. In word, an equation includes 
unknown functions and its derivatives is called differential equation. We will give 
another definition of differential equations in following section. Without knowing 
something about differential equations and methods of solving them it is difficult to 
appreciate the history of this important branch of mathematics. Further the 
development of differential equations is intimately interwoven with the general 
development of mathematics and can not be seperated from it. Nevertheless to 
provide some historical perspective, we indicate here some of the major trends in the 
history of the subject and identify the most prominent early contributors (Pickles, 
2010). 

 Isaac Newton (1642-1727) did relatively work in differential equations as such 
his development of the calculus and elucidation of the basic principles of mechanics 
provided a basis for the application in the eighteenth century, most notably by Euler. 
Newton classified first order differential equations according to three forms         
dy/dx = f (x), dy/dx = f (y), and dy/dx = f (x, y) (Boyce and Diprima, 2001).                                                     

 Gottfried Leibniz (1646-1716) was mainly self-taught in mathematics since his 
interest in the subject developed when he was in his twenties. Leibniz arrived at the 
fundamental results of calculus independently, although a little later than Newton, 
Leibniz was very concious of the power of good mathematical notation and was 
responsible for the notation  dy/dx for the derivative and for the integral sign. He 
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discovered the methods of seperation of variables in 1691, the reduction of 
homogeneous equations to seperable ones in 1691, and the procedure for solving first 
order linear equations  (Boyce and Diprima, 2001).     
  

 The brother Jacob (1654-1705) and Johann (1667-1748) Bernoulli did much to 
develop methods of solving differential equations and to extend the range of their 
applications. With the aid of calculus, they solved number of problems in mechanics 
by formulating them as differential equations (Boyce and Diprima, 2001). 

 From the early days of the calculus the subject has been an area of great 
theoretical research and practical applications, and it continues to be so in our day. 
This much stated, several questions naturally arise. Just what is a differential equation 
and what does it signify? Where and how do differential equations originate and of 
what use are they? Confronted with a differential equation, what does one do with it, 
how does one do it, and what are the results of such activity? These questions indicate 
three major aspects of the subject: theory, method and application (Ross, 2004). 

 Let us now consider briefly where, and how, such equations actually originate. 
In this way we shall obtain some indication of the great variety of subjects to which 
theory and methods of differential equations  may be applied (Ross, 2004).  

 Differential equations occur in connection with numerous problems that are 
encountered in the various branches of science and engineering. We indicate a few 
such problems, which could easily extended to fill many pages. The problem of 
determining the motion of a projectile rocket, satellite, planet, charge of current in an 
electric circuit, the vibrations of a wire or a membrane, conduction of heat in a rod or 
a slab, and curves that have certain geometrical properties; the study of the rate of 
decomposition of a radioactive substance or the rate of growth of a population, 
reactions of chemicals and in economics (Ross, 2004).     

 The mathematical formulation of such problems give rise to differential 
equations. But it is not possible many time to get the exact solution for all of these 
problems analytically. Getting the exact solution for those types of all problems can 
be a challenge (Ross, 2004). 
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  The numerical method is a solution technique that provides accurate 
approximation for the problem. The differential equations that resist solution by 
analytically led to the investigation of numerical methods for the problem. Therefore 
we need numerical methods for at least approximating the solution. Differential 
equations provide a rather more difficult problem. The basic method is to divide 
continuous time into discrete intervals, and to estimate the state of the system at the 
start of each interval. Thus the approximate solution changes through a series of 
steps. The crudest method for calculating the steps is to multiply the step length by 
the derivative at the start of the interval. This method is called                            
Euler’s method (Boyce and Diprima, 2001). 

 The greatest mathematician of the eighteenth century Leonhard Euler (1707-
1783) was a student of Bernoulli. His interests ranged over all areas of mathematics 
and many fields of application. Of particular interest is his formulation of problems in 
mechanics. Lagrange said of Euler’s work in mechanics “The first great work in 
which analysis is applied to the science of movement.” Among other things Euler 
identified the condition for exactness of first order differential equations developed 
the theory of integrating factors, and gave the general solution of homogeneous linear 
equations with constant.  (Boyce and Diprima, 2001).     

 In the nineteenth century interest turned more toward the investigation of 
theoretical questions of existence and uniqueness and to the development of less 
elementary methods such as those based on powerseries expansions  (Boyce and 
Diprima, 2001).         

  In addition to Euler’s method, Heun’s method which is known also the 
modified Euler’s method is a numerical approximation method for solving ordinary 
differential equations. This method is named by Karl Heun (1859-1929)  (Boyce 
and Diprima, 2001). 

 By 1900 fairly effective numerical integration methods had been devised, but 
their implementation was severely restricted by the need to execute the computations 
by hand or with very primitive computing equipment. In the last 60 years the 
development of increasingly powerful and versatile computers has vastly enlarged the 
range of problems that can be investigated effectively by numerical methods. Within 
the past few years these two trends have come together. Computers, and especially 
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computer graphics, have given a new impetus to the study of systems of nonlinear 
differential equations. Unexpected phenomena such as strange attractors, chaos, and 
fractals, have been discovered, are being intensively studied, and are leading to 
important new insights in a variety of applications (Boyce and Diprima, 2001). 

  More sophisticated techniques are presented by two German mathematicians 
Carl Runge (1856-1927) publishes the first Runge-Kutta method in performing the 
Runge-Kutta types of integration. Fourth order Runge-Kutta method that is described 
by Martin Kutta (1867-1944)  is both commonly used and sufficiently accurate for 
most applications. It is always worth treating numerical solutions to differential 
equations with caution. Errors in calculating them may accumulate. Here, we will 
have the choose of numerical techniques such as Euler’s method, Heun’s Method, 
Second-Order Runge-Kutta and Fourth-Order Runge-Kutta (Roberts, 2010). 

 The study of differential equations in the twenty-first century remains a fertile 
source and fascinating and important unsolved problems. Finding and interpreting the 
solutions of these differential equations is therefore a central part of applied 
mathematics, and a thorough understanding of differential equations is essential for 
any applied mathematicians. (Roberts, 2010).      

 This study contains the basic concepts of differential equations such as 
definitions and classifications. In order to get familiar with the solution methods, both 
analytical and numerical methods are presented. Later on, the applications of ordinary 
differential equations and their numerical and analytical solutions are given. Here in 
this study, our first concern is approximating the solution and determining the best 
method for the given each problems in the light of given foregoing. 
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2 BASIC CONCEPTS IN DIFFERENTIAL EQUATIONS 

Definition 2.1: An equation containing the derivatives of one or more dependent 
variables, with respect to one or more independent variables, is said to be a 
differential equation (Zill and Cullen, 2005). 

 Some examples of differential equations are given below 

ݕ݀
ݔ݀ =        ݕݔ

ݕ݀
ݔ݀ +

ݕ݀
ݖ݀ = ݁ ௫ 

Differential equations are classified according to the specified properties that are 
given below 

    2.1 Classifications of Differential Equations 

        2.1.1 Classification by Type 

        Definition 2.1.1.1: If an equation contains only ordinary derivatives of one or 
more dependent variables with respect to a single independent variable it is said to be 
an ordinary differential equation (Zill and Cullen, 2005). 

        Some examples of  ordinary differential equations are given below 

ݕ݀
ݔ݀

+ ݕ5 = ݁௫        
ݕ݀
ݐ݀

+
ݔ݀
ݐ݀

= ݔ2 +  ݕ

        Definition 2.1.1.2: An equation involving partial derivatives of one or more 
dependent variables of two or more independent variables is called a partial 
differential equation (Zill and Cullen, 2005). 

Some examples of partial differential equations 

2 2

2 2 0u u
y x
 

 
 

     
2 2

2 2 2u u u
x t t
  

 
  

 

        2.1.2 Classification by  Order and Degree 

        Definition 2.1.2.1: The order of a differential equation is the order of the highest 
derivative in the equation (Zill and Cullen, 2005). 
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        Some examples of differential equations with different orders are given below 

''' 2 '' ' siny y y x      order: 3 

2
3

2( ) lny dy x
x dx


 


   order: 2 

        Definition 2.1.2.2: The degree of a differential equation is given by the 
exponent that is raised the highest derivative that occurs in the equation (Ross,  
2004). 

       Some examples of differential equations with different orders and degrees are 
given below 

ݕଶݔ − ݕ ᇱݔ = 0                                  order: 1 degree: 1 

2
4

2 3 ( ) 3 0d y dyx y
dx dx

               order: 2 degree: 1 

ଷ(′′ݕ) + ହ(′ݕ) − ݕ4 = ݔ4 + 1          order: 2 degree: 3 

        2.1.3 Classification by Linearity  

        Definition 2.1.3.1: An  n-th order ordinary differential equation 
,ݔ)ܨ ,ݕ ݕ ᇱ, … ((௡)ݕ = 0 is said to be linear if F is linear in ݕ, ,ᇱݕ …  This means an .(௡)ݕ
n-th order ordinary differential equation is linear when  ݔ)ܨ, ,ݕ ,ᇱݕ … ((௡)ݕ = 0 is 

ܽ௡(ݔ)ݕ௡ + ܽ௡ିଵ(ݔ)ݕ௡ିଵ+...+ܽଵ(ݔ)ݕᇱ + ܽ଴(ݔ)ݕ − (ݔ)݃ = 0 or 

ܽ௡(ݔ) ௗ೙௬
ௗ௫೙ + ܽ௡ିଵ(ݔ) ௗ೙షభ௬

ௗ௫೙షభ +...+ܽଵ(ݔ) ௗ௬
ௗ௫

+ ܽ଴(ݔ)ݕ =  (2.1.3.1)                            (ݔ)݃

        Two important special cases of (2.1.3.1) are linear first order and linear second 
order. But here we will only consider linear first order ordinary differential   
equations (Zill and Cullen, 2005). 

        In other words, in a differential equation if every dependent variables and the 
degree of every derivatives with any order is one and the dependent variables itself 
and the derivatives do not lie as multiplication then the equation is called linear 
differential equation (Ross, 2004).        
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        Definition 2.1.3.2: A nonlinear ordinary differential equation is simply one that 
is not linear (Ross, 2004). 

        Some examples of linear and nonlinear differential equations are given below 

( ) 4 0y x dx xdy     linear  

'' 2 ' 0y y y           linear  

(1 ) ' 2 xy y y e                nonlinear  

2

2 sin 0y y
x


 


             nonlinear  

ௗమ௬
ௗ௫మ + 3(ௗ௬

ௗ௫
)ଶ + ݕ = 0            linear 

        2.1.4 Classification by Type of Coefficients 

        Definition 2.1.4.1: A linear differential equation has constant coefficients if the 
coefficients of , ', '', ...y y y  are all constants (Ross, 2004).     

        Definition 2.1.4.2: A linear differential equation  has variable coefficients if the
, ', '', ...y y y   are multiplied by any variable (Ross, 2004).     

        Some examples of differential equations with constant and variable coefficients 
are given below 

'' ' 0y y y      with constant coefficients 

2'' 2 'xy x y y x     with variable coefficients 

        2.1.5 Classification by Homogeneity 

        Definition 2.1.5.1: For the linear differential equation  

        ܽ௡(ݔ) ௗ೙௬
ௗ௫೙ + ܽ௡ିଵ(ݔ) ௗ೙షభ௬

ௗ௫೙షభ +...+ܽଵ(ݔ) ௗ௬
ௗ௫

+ ܽ଴(ݔ)ݕ =  then the 0=(ݔ)݃  if   (ݔ)݃
equation is called homogeneous (Bronson and Costa, 2006).   
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        Definition 2.1.5.2: If a differential equation is not homogeneous then it is 
nonhomogeneous (Bronson and Costa, 2006).      

        Some examples of homogeneous and nonhomogeneous differential equations are 
given below 

'' 2 ' 0y y y     homogeneous 

2 xdy x y x e
dx

      nonhomogeneous 

    2.2 Nature of Solutions 

    Definition 2.2.1: A function ݕ =  is a solution of a differential equation if the (ݔ)݂
equation is satisfied when y and its derivatives are replaced by ݂(ݔ) and its 
derivatives (Ross, 2004).         

    Definition 2.2.2: A general solution to an n-th order differential equation is a 
solution in which the value of the constant, c in the solution, may vary (Ross, 2004). 

    Definition 2.2.3: Let ݂ be a real function defined for all ݔ in a real interval ܫ and 
having n-th derivative for all  ݔ ∈  The function ݂  is called an explicit solution of .ܫ
differential equation (Ross, 2004).        

,ݔ)ܨ     ,ݕ ௗ௬
ௗ௫

, ௗమ௬
ௗ௫మ , … , ௗ೙௬

ௗ௫೙) = 0                                        (2.2.3.1) 

    if ݔ)ܨ, ,(ݔ)݂ ,(ݔ)′݂ … , ݂௡(ݔ)) = 0 is defined for all ݔ ∈  and ܫ

     if ݔ)ܨ, ,(ݔ)݂ ,(ݔ)′݂ … , ݂௡(ݔ)) = 0 for all ݔ ∈   .ܫ

    That is, the substitution of ݂(ݔ) and its various derivatives, respectively (2.2.3.1) 
reduces to (2.2.3.1) an identity on ܫ (Ross, 2004). 

    Definition 2.2.4: A relation ݃(ݔ, (ݕ = 0 is called an implicit solution of (2.2.3.1) if 
this relation defines at least one real function ݂ of the variable ݔ on an interval ܫ such 
that this function is an explicit solution of (2.2.3.1) on this interval (Ross, 2004).   

    An example of an explicit solution and implicit solution  is given below 
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Example 2.2.4.1: Consider the function ݂ defined for all real ݔ by 

(ݔ)݂                                                 = 2 sin ݔ + 3 cos  (2.2.4.1)                                      ݔ

is an explicit solution of the differential equation 

   ௗమ௬
ௗ௫మ + ݕ = 0                                             (2.2.4.2) 

for all real ݔ. Observing that    

(ݔ)′݂ = ݔݏ݋2ܿ − ݂  and ݔ݊݅ݏ3 ᇱᇱ(ݔ) = ݔ݊݅ݏ2− −  .ݔݏ݋3ܿ

    Substituting into the differential equation,  

ݔ݊݅ݏ2−) − (ݔݏ݋3ܿ + (2 sin ݔ + 3 cos (ݔ = 0 which holds for all real ݔ. 

    Thus 2.2.4.1 is an explicit solution of (2.2.4.2) 

    Example 2.2.4.2: The relation ݔଶ + ଶݕ − 25 = 0 (2.2.4.3) is an implicit solution 
of the differential equation  

ݕ ௗ௬
ௗ௫

+ ݔ = 0                                        (2.2.4.4) 

on the interval ܫ defined by −5 < ݔ < 5. For the relation (2.2.4.3) defines two real 
functions 

ଵ݂(ݔ) = √25 − (ݔ)ଶ and ଶ݂ݔ = −√25 − ݔ ଶ respectively for all realݔ ∈  and both of ܫ
these two functions are explicit solutions of the differential equation (2.2.4.4). 

    Choosing ݂ ଵ(ݔ) = √25 − ଶ and calculating ݂ᇱݔ
ଵ(ݔ) = ି௫

√ଶହି௫మ  

for all real ݔ ∈ and ݂ᇱ (ݔ)Substituting ଵ݂ .ܫ
ଵ(ݔ) into (2.2.4.4), we obtain the identity  

ݔ + (√25 − ଶ)( ି௫ݔ
√ଶହି௫మ) = 0 or ݔ − ݔ = 0 

which holds for all real ݔ ∈  is an explicit solution of (ݔ)Thus the function  ଵ݂ . ܫ
(2.2.4.4) on interval ܫ (Ross, 2004).        
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    Definition 2.2.5: On some interval ܫ containing 0x  the problem is given as         

1( , , ',..., )
n

n
n

d y f x y y y
dx

     subject to   1
0 0 0 1 0 1( ) , '( ) ,..., ( )n

ny x y y x y y x y
    

where 0 1 1, ,..., ny y y   are arbitrarily specified real constants, is called an initial value 
problem. The value 0x , 1

0 0 0 1 0 1( ) , '( ) ,..., ( )n
ny x y y x y y x y
    are called inital 

conditions (Zill and Cullen 2005).   

    In other words, if all of the associated supplementary conditions relate to one ݔ 
value, the problem is called initial value problem. If the conditions relate to two 
different ݔ values, the problem is called boundary value problem (Ross, 2004). 

    An example of inital value problem is given below 

    Example 2.2.5.1: Consider a solution for  ݕ′ = (1)ݕ at ݔ2 = 4. 

Integrating both sides, we get 

ݕ =  ,ଶ+cݔ

where c is an arbitrary constant.Applying the initial condition we obtain ܿ = 3. 
Therefore 

ݕ =  ,ଶ+3ݔ

satisfies the requirements for the initial value problem (Ross, 2004).   

    Example 2.2.5.2: Consider a solution for ௗమ௬
ௗ௫మ + ݕ = 0  at  

(0)ݕ = 1 and (2/ߨ)ݕ = 5. 

    In this example we seek for a solution at two different x values, therefore it is a 
boundary value problem. 

    Since the given differential equation is a second order linear ordinary differential 
equation and the roots of the auxiliary equation are complex numbers.The general 
solution of the differential equation is  

(ݔ)ݕ = ݁ఈ௫(ܿଵܿݔߚݏ݋ + ܿଶݔߚ݊݅ݏ)  
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    Applying the boundary conditions,  

(ݔ)ݕ = ݔ݊݅ݏ5 +  ݔݏ݋3ܿ

 satisfies the requirements for the boundary value problem (Ross,  2004).   
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3 ANALYTICAL AND NUMERICAL METHODS FOR SOLVING 
FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS 

    The methods for solving first order ordinary differential equations can be 
categorized into two main title called analytical and numerical methods. Previously 
analytical methods were a major method for solving differential equations. These are 
the methods where we can get the exact solution. In order to write down solutions, we 
can use our knowledge of calculus, algebra and other mathematical fields,. Analytical 
methods are generally useful to work for simple models , however they are not 
enough for complex mathematical expressions that can not be solved by hand. It takes 
too much time to get the exact solution and sometimes it is not possible to reach to a 
solution.  

    Therefore, numerical methods are discovered. Numerical methods are the name of 
the methods that we get the solutions using algorithms.These methods help us to get 
the approximate solutions for the mathematical models, even though it is 
complicated. Any complex mathematical model can be solved by using computer 
programmes and can be executed. By using numerical methods the approximations 
can be nearly exact. 

    3.1 Analytical Methods for Solving First Order Ordinary Differential 
Equations 

    Analytical solutions are sometimes called closed-form solution or explicit solution. 
An equation is said to be a closed-form solution if it solves a given problem in terms 
of functions and mathematical operations from a given generally accepted set. These 
solutions are  obtained by analytical methods (Edwards and Penney, 1996). 
     

    Here, numerous analytical methods are presented. There are several methods for 
solving ordinary differential equations. The exact results can be obtained by definite 
procedures with the aid of the calculus.       

    In this section, the methods are given for solving first order differential equations. 
The most general first order differential equation can be written as 

( , )dy f x y
dx

                                              (3.1.1) 

    There is no general formula for the solution to (3.1.1) but there are several 
classification in order to solve it. First, the equation is classified and then it can be 
solved.  
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Here are the numerous methods that are used for first order differential equations. 
(Edwards and Penney, 1996).         

3.1.1 Seperable Differential Equations  

        The first-order differential equation ( , )dy H x y
dx

  is called seperable provided 

that ( , )H x y  can be written as the product of a function of x and a function of y. 

( ) ( )dy g x h y
dx

 
( )
( )

g x
f y

 where 
1( )
( )

h y
f y

 . In this case the variables x and y can be 

separated-isolated on opposite sides of an equation-by writing informally the 
equation. 

( ) ( )f y dy g x dx  

which we understand to be concise notation for the differential equation 

( ) ( )dyf y g x
dx

  

        It is easy to solve this special type of differential equation simply by integrating 
both sides with respect to x : 

( ( )) ( )dyf y x dx g x dx C
dx

    

equivalently, 

( ) ( )f y dy g x dx C    

        All that is required is that the antiderivatives. 

( ) ( )F y f y dy   and ( ) ( )G x g x dx   can be found. 

        After doing the integrations the implicit solution that can be solved for an 
explicit solution is found (Edwards and Penney, 1996).    
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        Remark: If the dependent and independent variables are in the case of addition 
or subtraction, then the equation is not seperable (Ross, 2004). 

        The example of seperable equations is given below 

        Example 3.1.1.1: Solve the initial value problem 6dy xy
dx

   where (0) 7y   

        Solution 3.1.1.1: Informally, we divide both sides of the differential equation by 
y and multiply each side by dx  to get 

6dy xdx
y
  ,      (0) 7y   

        Hence  

6dy xdx
y
    

2ln 3y x C    

        It is seen from the initial condition (0) 7y   that ( )y x  is positive near 0x  , so 
we may delete the absolute value symbols: 

2ln 3y x C    

and hence   

2 2 23 3 3( ) x C x C xy x e e e Ae       

where CA e . The condition (0) 7y   yields 7A  , so desired solution is
23( ) 7 xy x e  (Edwards and Penney, 1996).      

   

        3.1.2 Homogeneous Differential Equations: 

        If the right-side of the equations ( , )dy f x y
dx

 can be expressed as a function of 

the ratio y
x

 only, then the equation is said to be homogeneous. Such equations can 
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always be transformed into separable equations by a change of the dependent 

variable. It means ( , )dy f x y
dx

  is homogeneous 

 if ( , ) ( )yf x y g
x

  or ( , ) ( )yf x y h
x

  (Ross, 2004). 

        Suppose that   ௗ௬
ௗ௫

= ܨ ቀ௬
௫
ቁ  then let   ௬

௫
ݕ then ,ߠ=  =   .ߠݔ

        Taking the derivation with respect to ݔ , 

ݕ݀
ݔ݀ = ߠ + ݔ

ߠ݀
ݔ݀ =  (ߠ)ܨ

        Therefore 

(ߠ)ܨ − ߠ = ݔ 
ߠ݀
 ݔ݀

        It is seen that the equation can be reduced to seperable. 

ߠ݀
(ߠ)ܨ − ߠ =

ݔ݀
ݔ  

        Remark: A dictionary definition of "homogeneous" is "of a similar kind or 
nature." Consider a differential equation of the form 

n n p q r sdyAx y Bx y Cx y
dx

    

whose polynomial coefficient functions are "homogeneous" in the sense that each of 
their terms has the same total degree, m n p q r s K       (Boyce and Diprima 
2001). 

        The example of homogeneous equations is given below 

        Example:3.1.2.1: Solve the differential equation that is 2 2( ) 2 0x y dx xydy    
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 Solution 3.1.2.1:  

2 2 2 2

( )
2 2 2

dy x y x y
dx xy xy xy


         then   

1 ( )
2

dy x y
dx y x

    

        If it is written in terms of y
x

 ,  and getting   1 1( )
2

dy y
ydx x
x

    

        Now the equation can be written as   

21 ( )1 ( )
2

y
dy x

ydx
x


   

        If  y
x

 ,  then  the differentiation becomes  dy d x
dx dx


   

       Substituting into the the equation  
21 1( )

2
d x
dx
 




    

        Therefore,  2 0
1( )

2

dx d
x





 



  

       After some manipulations, 

2

2 0
1 3

dx d
x

 


 


 

        Using substitution y
x

  

        Seperating the variables,  the solution is  
21 1ln ln 1 3 ln

3 3
yx c
x

    
 

. (Trench, 

2001). 

        3.1.3 Equations Reducible to Homogeneous 

        The general form of an equation reducible to homogeneous is given as 
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1 1 1 2 2 2( ) ( ) 0a X bY c dX a X b Y c dY      . 

        Since  1 1 2 2( * * ) ( * * ) 0a X b Y dX a X b Y dY    is homogeneous equation, 
solving  

1 1 1a X bY c   and  2 2 2a X b Y c   gives the shifting condition ( , )h k , 

X x h  ,  Y y k   and  dY dy , dX dx   where 1 1

2 2

a b
a b

 (Bronson and Costa 

2006).   

       The example of an equation reducible to homogeneous is given below 

       Example 3.1.3.1: Solve the equation ( 2 1) (4 3 6) 0X Y dX X Y dY      . 

       Solution 3.1.3.1: The equation is not homogeneous. Therefore we need to reduce 
the equation into homogeneous equation. 

         For  2 1X Y   and  4 3 6X Y  , we get 3X  and 2Y  . 

         Choosing the shifting as (3,2)  

3X x      2Y y   

        Since dY dy  and dX dx  we can write  

( 3 2( 2) 1) (4( 3) 3( 2) 6) 0x y dx x y dy          . 

        Simplifying the equation we get the homogeneous equation 

( 2 ) (4 3 ) 0x y dx x y dy    . 

        Setting y
x

  , then y x . 

        Taking the derivations dy dx xd   . 

        Replacing the equation we get 
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( 2 ) [4 3 ][ ] 0x x dx x x dx xd         and 

2[ 2 4 3 ) [4 3 ] 0x x x x dx x x xd           

        After some operations 

2 2(1 2 3 ) (4 3 ) 0x dx x d         

        Dividing by x , we get 

2(1 2 3 ) (4 3 )dx x d        . 

        Now it is seen that the equation is seperable 

2

4 3 0
1 2 3

dx d
x




 


 
   . 

        Integrating both sides we get 

21ln ln 3 2 1 ln
2

y yx c
x x

     
 

 

        Substituting y
x

 , we get 

21ln ln 3 2 1 ln
2

y yx c
x x

     
 

(Bronson and Costa, 2006) 

        3.1.4 Exact Differential Equations 

        The general form for first order  ordinary differential equation is given below 

( , ) ( , ) 0M x y dx N x y dy                                                 (3.1.4.1) 

if there exists ( , )F x y , which F M
x




 and 
F N
y




         (3.1.4.2) 

then (3.1.4.1) is called exact differential equation (Bronson. and Costa 2006).  
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        Theorem 3.1.4.1:  If  ,, , y xM N M N  are continuous  t   , y    

interval y xM N  and then (3.1.4.1) is exact differential equation. It means that there 

exist  ( , )F x y  which satisfy (3.1.4.2)  (Bronson and Costa 2006).    

        Firstly, for any function ( )g y , the function ( , ) ( , ) ( )F x y M x y dx g y   

satisfies the condition F M
x




 . We plan to choose ( )g y so that  

( , ) '( )FN M x y dx g y
y y

 
 

 
   

 
                              (3.1.4.3) 

        Therefore 

'( ) ( , )g y N M x y dx
y



                                          (3.1.4.4) 

        So it is indeed found the desired function ( )g y by integrating the equation 
(3.1.4.4). Substituting this result in equation (3.1.4.3) to obtain 

( , ) ( , ) ( , ) ( , )F x y M x y dx N x y M x y dx dy
y



 
   

 
    

as the desired function with xF M and yF N  (Bronson and Costa 2006).   

        Remark: The equation 
M N
y x

 
 

  is a necessary condition that the differential 

equation be ( , ) ( , ) 0M x y dx N x y dy  be exact. (Edwards and Penney, 1996).    

        The example of exact equations is given below 

        Example 3.1.4.1: Solve the differential equation 

3 2 2(6 ) (4 3 3 ) 0xy y dx y x xy dy      

        Solution 3.1.4.1: Let 3( , ) 6M x y xy y   and  2 2( , ) 4 3 3N x y y x xy   . The 
given equation is exact because  
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26 3M x y
y


 


= N
x



 

        Integrating ( , )F M x y
x





with respect to x ,we get  

3 2 3( , ) (6 ) 3 ( )F x y xy y dx x y xy g y      

        Then  taking the derivation  with respect to y and set 
F
y




( , )N x y . This yields  

2 2 2 23 3 '( ) 4 3 3F x xy g y y x xy
y


     


 

        And it follows that '( ) 4g y y . Hence 2
1( ) 2g y y C  . 

        Therefore, a general solution of the differential equation is defined implicitly by 
the equation  

 2 3 23 2x y xy y C   (Bronson and Costa, 2006)                                                                                        

        3.1.5 Equations Reducible to Exact 

        If  y xM N then the equation is not exact. If the equation is not exact, it is 
necessary to construct a new function ( )f x or  ( )g y  in order to get the integrating 
factor ( , )x y . Finding the integrating factor in two different ways are given below 

( )

M N
y x f x

N

 


    and then  ( , )x y
( )f x dx

e   or 

( )

M N
y x g y

M

 
    and then  ( , )x y

( )
( )

g y dy
g y e

   

        By multiplying the differential equation by integrating factor the differential 
equation is reduced to exact differential equation (Bronson and Costa 2006).  
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        The example of non-exact equations is given below 

        Example 3.1.5.1: Solve the differential equation 

2 2(2 ) ( ) 0x y dx x y x dy     

        Solution 3.1.5.1: Calculating that  1yM   2 1xN xy  . Therefore y xM N  
which means the differential equation is not exact. 

2

1 2 1 2(1 ) 2
( 1)

M N
xy xyy x

N x y x x xy x

 


       
 

( )f x  

       Now, the integrating factor ( , )x y  can be found by using ( )f x  

2
( ) 2ln 2( , )

dxf x dx xxx y e e e x
       

        Multiplying both sides by 2x ,  

2 2 2 2(2 ) ( ) 0x x y dx x x y x dy     , 

and organizing the equation, 

2

1(2 ) ( ) 0y dx y dy
x x

     

        Realizing that the differential equation is exact. 

2 2

1 1
y xM N

x x
    

        Now, we observe that the differential equation is reduced to exact form. 

        According to exact differential equation procedure 

2( , ) (2 )yf x y dx
x

   
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        Integrating the equation 

1 1'( , ) 2 ( ) '( )yF x y x y y y
x x x

          . 

        Therefore            2

'( )

( )
2

y y
yy c







 
      

        The general form of the equation is found as  

2

( , ) 2
2

y yF x y x c
x

     (Trench, 2001). 

        3.1.6 First Order Linear Differential Equations 

        In Section (3.1.1) it was seen how to solve a separable differential equation by 
integrating after multiplying both sides by an appropriate factor. For instance, to 
solve the equation. 

                                                        2dy xy
dx

                                                     (3.1.6.1) 

        Multiplying both sides by the factor 
1
y

 to get  

1 2dy x
y dx

                                                    (3.1.6.2) 

        Because each side of the equation in (3.1.6.2) is recognizable as a derivative 
(with respect to the independent variable x), all that remains are two simple 
integrations, which yield 2ln y x C  . For this reason, the function ( ) 1/y y  is 
called an integrating factor for  the original equation in (3.1.6.1) 

        An integrating factor for a differential equation is a function ( , )x y  such that 
the multiplication of each side of the differential equation by ( , )x y  yields an 
equation in which each side is recognizable as a derivative. With the aid of the 
appropriate integrating factor, there is a standard technique for solving the linear first-
order equation. 
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( ) ( )dy P x y Q x
dx

                                         (3.1.6.3) 

on an interval on which the coefficient functions. ( )P x  and ( )Q x are continuous. 
Multiplying each side of in equation (3.1.6.3) by the integrating factor. 

( )
( )

P x dx
x e   

       The result is 

( ) ( ) ( )
( ) ( )

P x dx P x dx P x dxdye P x e y Q x e
dx

                                       (3.1.6.4) 

Because 

[ ( ) ] ( )xD P x dx P x  

       The left-hand side is the derivative of the product 
( )

( )
P x dx

y x e  so equation 
(3.1.6.4) is equivalent to  

( ) ( )[ ( ) ] ( )P x dx P x dx
xD y x e Q x e   

       Integration of both sides of this equation gives 

( ) ( )( ) ( ( ) )P x dx P x dxy x e Q x e dx C    

       Finally, solving for y, we obtain the general solution of the linear first-order 
equation in 

        
( ) ( )( ) [ ( ( ) ) ]P x dx P x dxy x e Q x e dx C      (Edwards and Penney, 1996).   

       The example of first order linear equations is given below   

       Example 3.1.6.1: Solve the inital value problem 

/ 311
8

xdy y e
dx

           (0) 1y    

        Solution 3.1.6.1: Here, ( ) 1P x    and / 311( )
8

xQ x e  so the integrating factor is 

( 1)( ) dx xx e e
    
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        Multiplication of both sides of the given equation by xe  yields 

4 /311
8

x x xdye e y e
dx

     

 which is recognized as  4 / 311
8

x xd e y e
dx

   

        Hence integration with respect to x gives 

4 /3 4 /311 33
8 32

x x xe y e dx e C       

and multiplication by xe  gives the general solution 

/333( )
32

x xy x Ce e   

        Substitution of 0x  and 1y   now gives 1
32

C   so the desired solution is 

/3 /31 33 1( ) ( 33 )
32 32 32

x x x xy x e e e e     (Edwards and Penney, 1996).  

        3.1.7 Special Types of Differential Equations 

        We now consider a special type of equation that can be reduced to a linear 
equation after appropriate substitution. 

         3.1.7.1 Bernoulli Equations 

         A first order ordinary differential equation of the form 

                                            ( ) ( ) ndy p x y g x y
dx

            (3.1.7.1) 

is called a Bernoulli equation. 

        If 0n  ,  then Bernoulli equation is actually a linear equation or 1n  , then 
Bernoulli equation is seperable. However if 0n  or 1n  , we must proceed in a 
different manner.  



 
 

25 
 

        Suppose that 0n  or 1n  . Then we need to use the transformation 1 nv y  .  

        We first multiply (3.1.7.1) by ny , therefore we express the equation as 

1 ( ) ( )n ndyy y p x g x
dx

                                (3.1.7.2) 

         If we let 1 nv y  , then 

(1 ) ndv dyn y
dx dx

   

         Substituting the variables, (3.1.6.2) transforms to 

1 ( ) ( )
1

dv p x v g x
n dx

 


 

equivalently, 

(1 ) ( ) (1 ) ( )dv n p x v n g x
dx

     

        Letting  1( ) (1 ) ( )p x n p x   and 1( ) (1 ) ( )g x n g x   

        The equation may be written as 

1 1( ) ( )dv p x v g x
dx

   

which is linear in v  (Ross, 2004).        

        The example of Bernoulli Equation is given below 

        Example 3.1.7.1.1: Solve 3dy y xy
dx

  . 

        Solution 3.1.7.1.1: This problem is a Bernoulli differential equation where 3n 
. 
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        We first multiply the equation by 3y . Therefore we obtain 

3 2dyy y x
dx

   . 

       Substituting 1 nv y  1 3 2y y   , and differentiating  32dv dyy
dx dx

  . 

       Preceeding the differential equation reduces to the linear equation as 

1
2

dv v x
dx

    

        Writing the equation in the standard form 

2 2dv v x
dx

                                            (3.1.7.1.1) 

        The integrating factor is 

( ) 2 2p x dx dx xe e e
     

        Multiplying (3.1.7.1.1) by 2 xe , 

2 2 22 2x x xdve e v xe
dx

      

        Integrating, we find 

2 21 (2 1)
2

x xe v e x c     

       Simplifying the equation we find  

 

where c  is an arbitrary constant.  

21
2

xv x ce  
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        Replacing 2

1v
y

 , we get 

2
2

1 1
2

xx ce
y

    (Ross,  2004) 

        3.1.7.2 Riccati Equation 

        Suppose that ( )P x , ( )Q x  and ( )R x  are continuous functions. 

2( ) ( ) ( )dy P x y Q x y R x
dx

    

is the general form of Riccati equation. 

        The general solution for this equation can not be found by directly, but if they 
give one or more special solution we can find the general solution. 

        If  1( )y y x  is the special solution for Riccati diffential equation, then the 
general solution; 

( ) ( )y z x y x   

where z is the dependent and x  is the independent variable then the equation can be 
reduced to Bernoulli equation, or,  

1
1( )
( )

y y x
u x

   

 where u  is the dependent and x  is the independent variable then the equation can be 
reduced to linear equation (Bronson and Costa 2006).     

Example 3.1.7.2.1: Given Riccati equation  

2( ) ( )dy P x y y R x
dx

    for two special solution 1y x  and 2 1y x  . 

        Find ( )P x , ( )Q x , ( )R x  and solution of the equation. 
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       Solution 3.1.7.2.1: Since  

1y x ,  then 1dy dx  or 1 1dy
dx

 .  

        Therefore 

2( ) ( ) ( )dy P x y Q x y R x
dx

    

21 ( ) ( )P x x x R x    (3.1.6.2.1) 

2 1y x  , then 2dy dx  or 2 1dy
dx

 .  

        Therefore, 

21 ( )( 1) ( 1) ( )P x x x R x                                        (3.1.7.2.2) 

        Solving the equations (3.1.7.2.1) and (3.1.7.2.2) together , we have 

( ) 2 1P x x   and 2( ) 1R x x x    

        Therefore, 

2 2(2 1) 1dy x y y x x
dx

                                        (3.1.7.2.3) 

         Since 1y x , then y z x   and taking the derivation ' ' 1y z  . 

       Substituting into the (3.1.7.2.3), 

2 2' 1 (2 1).( ) ( ) 1z x z x z x x x          

       After some operations we have, 

If  2'z z z   then 2dz z z
dx

  , 

        Multiplying by 2z ,   
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2 1' 1z z z    

        Substituting now , 1z v   then  2' 'v z z  , we obtain 

' 1v v    or ' 1v v   . 

        Here, we realize that the equation is linear differential equation. Applying the 
linear differential equation procedures we have 

   [ .( 1) ]dx dxv e e dx    

        After some manipulations 

( )x xv e e c    

        Replacing with z , 

1 ( )x xe e c
z

    

        Since z y x  ,  

1 ( )x xe e c
y x

  


 (Bronson and Costa 2006). 

         3.1.7.3 Clairout Equation 

' ( ')y xy f y   

is the general form of Clairout equation. The general solution for this equation is 

( )y cx f c  . 

         If we substitute 'y p  into the equation, 

( )y xp f p   

        First derivation of x  can be obtained as 

' '( )dp dpy p x f p
dx dx

    

        Substituting again 'y p , 
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'( )dp dpp p x f p
dx dx

    

equivalently, 

0 ' ' '( )xp p f p   

         Therefore 

'( '( )) 0p x f p   

         Here, we obtain ' 0p   or '( ) 0x f p   

         If ' 0p  , then 'y c  and ( )y xc f c   is the general solution. 

         If  '( ) 0x f p  , then p can be solved as a function of x  and ( )y xp f p   is 
singular solution (Bronson and Costa 2006).      

        Example 3.1.7.3.1: Find the singular and general solution of the problem  

2' ' ( ')y xy y y   . 

        Solution 3.1.7.3.1: Here we realize that the equation is Clairaut equation. 

        Substituting 'y p ,  

2y xp p p    

and the derivation is 

' ' ' 2 'y p xp p pp     

        Substituting again 'y p  

' ' 2 'p p xp p pp     

        Therefore 

'( 1 2 ) 0p x p    
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        Here we have ' 0p   or 1 2 0x p    

        For ' 0p  , p c  then 2y cx x c    is the general solution. 

        For 1 2 0x p   , then 2y xp p p   .  

        Using 2 1x p  , 2y xp p p    is reduced to 2(2 1)y p p p p    . 

        Simplifying the equation, we obtain 2y p .  

        Therefore 21( )
2

xy 
 ,  

equivalently 24 ( 1 )y x   is the singular solution (Bronson and Costa 2006).      

3.2  Numerical Methods for Ordinary Differential Equations 

    In Section (3.1), we examined to solve first order ordinary differential equations 
analytically. As an alternative to analytical methods, we can consider the use of 
numerical methods. Because sometimes a solution of a differential equation may not 
be able to getit analytically. Numerical methods are techniques by which 
mathematical problems are formulated so that they can be solved with hand. The role 
of numerical methods in mathematical models has increased efficiently with the 
development of fast and efficient computers. Using any computer programming 
language, a numerical method can be reduced to a numerical algorithm which is a set 
of rules for solving a problem in finite number of steps. The numerical algorithms can 
be easily implemented to any mathematical models. Therefore we conclude this 
chapter with a method by which we can solve the differential equations numerically. 
We are going to mention about the well-known and basic numerical methods such as 
Euler, Heun and second order Runge-Kutta(RK2) and fourth order Runge-
Kutta(RK4). 

    3.2.1 Euler’s Method (Tangent Line Method) 

    It is the exception rather than the rule when a differential equation of the general 
form 

( , )dy f x y
dx

  
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can be solved exactly and explicitly by elementary methods. For example, consider 
the simple equation 

2xdy e
dx

                                                (3.2.1.1) 

    A solution of equation (3.2.1.1 ) is simply an antiderivative of  
2xe . But it is 

known that every antiderivative of 
2

( ) xf x e is a nonelementary function. function-
one that cannot be expressed as a finite combination of the familiar functions of 
elementary calculus. Hence no particular solution of equation (3.2.1.1) is finitely 
expressible in terms of elementary functions. To find a simple explicit formula for a 
solution of (3.2.1.1 ) is doomed to failure. As a possible alternative, an old-fashioned 
computer plotter can be programmed to draw a solution curve that starts to the inital 
point 0 0( , )x y and attempts to thread its way through the slope field of a given 
differential equation ' ( , )y f x y .The procedure the plotter carries out can be 
described as follows (Edwards and Penney, 1996).     
     

• The plotter pen starts at the initial point 0 0( , )x y  and moves a tiny distance along the 
slope segment though 0 0( , )x y . This takes it to the point 1 1( , )x y . 

•At 1 1( , )x y the pen changes direction, and now moves a tiny distance along the slope 
segment through this new starting point 1 1( , )x y . This takes it to the next starting point

2 2( , )x y . 

•At 2 2( , )x y the pen changes direction again, and now moves a tiny distance along the 
slope segment through. 2 2( , )x y This takes it to the next starting point 3 3( , )x y
(Edwards and Penney, 1996).  

  

Figure 3.2.1.1: The first fewsteps in approximating a solution curve 
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    Leonhard Euler--the great 18th-century mathematician for whom so many 
mathematical concepts, formulas, methods, and results are named did not have a 
computer plotter, and his idea was to do all this numerically rather than graphically.  

    In order to approximate the solution of the initial value problem 

( , )dy f x y
dx

 0 0( )y x y                                 (3.2.1.2) 

    First, choosing a fixed (horizontal) step size h to use in making each step from one 
point to the next. Suppose that it is started at the initial point 0 0( , )x y and after n  
steps have reached the point ( , )n nx y .Then the step from ( , )n nx y to the next point

1 1( , )n nx y   is illustrated in Figure (3.2.1.2). 

 

Figure 3.2.1.2: The step from ( , )n nx y  to 1 1( , )n nx y   

    The slope of the direction segment through ( , )n nx y  is ( , )n nm f x y . Hence a 
horizontal change of h from nx to 1nx   corresponds to a vertical change of

. . ( , )n nm h h f x y  from ny  to 1ny  . 

    Therefore the coordinates of the new point  1 1( , )n nx y  are given in terms of the old 
coordinates by 

1n nx x h       1 ( , )n n n ny y hf x y                                  (3.2.1.3) 

    Given the initial value problem in (3.2.1.2), Euler's method with step size h
consists of starting with the initial point 0 0( , )x y and applying the formulas 

1 0x x h     1 0 0 0. ( , )y y h f x y   
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2 1x x h    2 1 1 1. ( , )y y h f x y   

3 2x x h    3 2 2 2. ( , )y y h f x y   
 .                . 
 .                . 
 .                . 

to calculate successive points 1 1( , )x y , 2 2( , )x y , 3 3( , )x y ,…on an approximate 
solution curve.(Edwards and Penney, 1996).       

    Example 3.2.1.1: Apply Euler's method to approximate the solution of the initial 
value problem 

1
5

dy x y
dx

          (0) 3y    

(a) first with step size 1h  on the interval [0,5] , 

(b) then with step size 0.2h  on the interval [0,1] . 

    Solution 3.2.1.1: (a) With 0 0x  , 0 3y   , 1( , )
5

f x y x y  and 1h  the iterative 

formula in (3.2.1.2) yields the approximate values 

1 0 0 0
1[ ]
5

y y h x y   = 1( 3) (1)(0 ( 3) 3.6
5

       

        2 1 1 1
1 1[ ] ( 3.6) (1)(1 ( 3.6) 3.32
5 5

y y h x y                     

                3 2 2 2
1 1[ ] ( 3.32) (1)(2 ( 3.32) 1.984
5 5

y y h x y                 

                   4 3 3 3
1 1[ ] ( 1.984) (1)(3 ( 1.984) 0.6192
5 5

y y h x y            

                  5 4 4 4
1 1[ ] (0.6192) (1)(4 (0.6192) 4.7430
5 5

y y h x y            
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at the points 1 1x  , 2 2x  , 3 3x  , 4 4x  , 5 5x  . Note how the result of each 
calculation feeds into the next one. The resulting table of approximate values is 

x  0  1 2  3 4  5 

.Approx y  3  3.6  3.32  1.984  0.6192  4.7430  

Figure:3.2.1.3: The table of approximations with Euler’s method when  1h   

 (b) Starting a fresh with 0 0x  , 0 3y   , 1( , )
5

f x y x y   the approximate values 

are 

1 0 0 0
1 1[ ] ( 3) (0.2)[0 ( 3)] 3.12
5 5

y y h x y           

               2 1 1 1
1 1[ ] ( 3.12) (0.2)(0.2 ( 3.12) 3.205
5 5

y y h x y           

                     3 2 2 2
1 1[ ] ( 3.205) (0.2)(0.4 ( 3.205) 3.253
5 5

y y h x y           

                    4 3 3 3
1 1[ ] ( 3.253) (0.2)(0.6 ( 3.253) 3.263
5 5

y y h x y           

                    5 4 4 4
1 1[ ] ( 3.263) (0.2)(0.8 ( 3.263) 3.234
5 5

y y h x y           

At the points 1 0.2x  , 2 0.4x  , 3 0.6x  , 4 0.8x   and 5 1x  . 

x  0  0.2  0.4  0.6  0.8  1 

.Approx y  3  3.12  3.205  3.253  3.263  3.234  

Figure 3.2.1.4: The table of approximation when 0.2h   

    Figure 3.2.1.5 shows the graph of this approximation, together with the graphs of 
the Euler approximations obtained with step sizes 0.2h  and 0.05, as well as the 
graph of the exact solution. 
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/5( ) 5 25xy x e x    

    It is that decreasing the step size increases the accuracy, but with any single 
approximation, the accuracy decreases with distance from the initial point. 

 

Figure 3.2.1.5: Graphs of Euler approximations with step sizes 1h   and 0.2h   

    High accuracy with Euler's method usually requires a very small step size and 
hence a larger number of steps than can reasonably be carried out by hand(Edwards 
and Penney, 1996).  

    3.2.2 The Improved Euler Method (Heun’s Method) 

    Euler's method is rather unsymmetrical. It uses the predicted slope ( , )n nk f x y  of 
the graph of the solution at the left-hand endpoint of the interval  [ , ]n nx x h  as if it 
were the actual slope of the solution over that entire interval. Attention is now to a 
way in which increased accuracy can easily be obtained; it is known as the improved 
Euler method (Edwards and Penney, 2006). 

    Given the initial value problem 

( , )dy f x y
dx

 , 0 0( )y x y  

suppose that after carrying out n  steps with step size h  we have computed the 
approximation 
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ny  to the actual value ( )ny x of the solution at 0nx x nh  . Euler method can be used 
to obtain a first estimate-which we now call 1nu   rather than 1ny  of the value of the 
solution at. 1n nx x h   . Thus 

1 1. ( , ) .n n n n nu y h f x y y h k      

    Now that 1 1( )n nu y x   has been computed, taking  

2 1 1( , )n nk f x u   

as a second estimate of the slope of the solution curve ( )y y x at 1nx x  . 

    Of course, the approximate slope 1 ( , )n nk f x y at 1nx x   has already been 
calculated. Why not average these two slopes to obtain a more accurate estimate of 
the average slope of the solution curve over the entire subinterval 1[ ]n nx x  ? This 
idea is the essence of the improved Euler method. Figure 3.2.2.1 shows the geometry 
behind this method (Edwards and Penney, 1996).     
     

 
Figure 3.2.2.1: The Improved Euler Method geometrically 

    Remark: A predictor–corrector method is an algorithm that proceeds in two steps. 
The improved Euler method is one of a class of numerical techniques known as 
predictor-corrector methods. First a predictor 1nu   of the next y value is computed; 
then it is used to correct itself. Thus the improved Euler method with step size h  
consists of using the  

predictor 
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1 . ( )n n n nu y h f x y     

and  the corrector 

1 1 1
1. [ ( , ) ( , )]
2n n n n n ny y h f x y f x u      

    Iteratively to calculate succesive approximations 1 2 3, ,y y y  …to the true values 

1 2 3( ), ( ), ( )y x y x y x … of the exact solution  ( )y y x  at the points 1 2 3, ,x x x  … 
respectively. 

    In other words, firstly, the prediction step calculates a rough approximation of the 
desired quantity. Second, the corrector step refines the initial approximation by using 
another means  (Edwards and Penney, 1996).     
     

    Example 3.2.2.1: Apply Improved Euler’s method to the initial value problem 

dy x y
dx

  , (0) 1y   

with exact solution ( ) 2 1xy x e x   . 

    Solution 3.2.2.1: The predictor-corrector formulas for the improved Euler method  
are 

                                                       1 .( )n n n nu y h x y     

1 1 1
1. [( ) ( )]
2n n n n n ny y h x y x u        

with step size 0.1h   we calculate 

1 1 (0.1)(0 1) 1.1u      

1 1 (0.05)[(0 1) (0.1 1.1)] 1.11y        

2 1.11 (0.1)(0.1 1.11) 1.231u      
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2 1.11 (0.05)[(0.1 1.11) (0.2 1.231)] 1.24205y        

and so forth. The table in Figure 3.2.2.2 compares the results obtained using the 
improved Euler method with those obtained previously using the "unimproved" Euler 
method. When the same step size 0.1h   is used, the error in the Euler 
approximation to (1)y is 7.25% but the error in the improved Euler approximation is 
only 0.24% . (Edwards and Penney, 1996) 

 
x 

Euler Method 
0.1h   

Values of y  

The Improved 
Euler Method 

0.1h   

Values of y  

 
Actual y  

0.1 1.1000 1.1100 1.1103 

0.2 1.2200 1.2421 1.2428 

0.3 1.3620 1.3985 1.3997 

0.4 1.5282 1.5818 1.5836 

0.5 1.7210 1.7949 1.7974 

0.6 1.9431 2.0409 2.0442 

0.7 2.1974 2.3231 2.3275 

0.8 2.4872 2.6456 2.6511 

0.9 2.8159 3.0124 3.0192 

1.0 3.1875 3.4282 3.4366 

Figure 3.2.2.2: Euler and improved Euler approximations  
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Figure 3.2.2.3: The graph of the example with Improved Euler Method when 0.1h   

 

 

Figure 3.2.2.4: The graph of the example with Euler Method when 0.1h   
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3.2.3 Runge-Kutta Methods  

    Fundamentally, all Runge-Kutta methods are generalizations of the basic Euler 
formula (3.2.1.3) in that the slope function f  is replaced by a weighted average of 
slopes over the interval . 1n nx x x    That is, 

1 1 1 2 2( ... )n n m my y h w k w k w k                              (3.2.3.1) 

    Here the weights iw , 1, 2,...,i m  are constants that generally satisfy 

1 2( ... ) 1mw w w     and each ik , 1, 2,...,i m , is the function f  evaluated at a 
selected point ( , )x y  for which 1n nx x x   . It is seen that the ik  are defined 
recursively. The number m is called the order of the method. Observe that by taking 

1m  , 1 1w   and 1 ( , )n nk f x y and getting the familiar Euler Formula 

1 . ( , )n n n ny y h f x y   .Hence Euler’s method is said to be a first-order Runge-Kutta 
method  (Zill and Cullen, 2005).        

    In general Runge-Kutta method gives more accurate result than Euler’s method at 
the same step length. However, Runge-Kutta method is more difficult to use.  
Because Runge-Kutta methods requires more computation than Euler’s method. 
There are several Runge-Kutta methods but here we will give two of them that is 
mostly used. 

        3.2.3.1 Second-Order Runge-Kutta Method 

        To further illustrate (3.2.3.1) we consider now a second-order Runge-Kutta 
procedure. This consists of finding constants or parameters 1w , 2w ,  and   so that 
the Formula 

1 1 1 2 2( )n ny y h w k w k                                (3.2.3.1.1) 

where 

1 ( , )n nk f x y  

2 1( , )n nk f x h y hk     

        So, how do we find the unknowns 1 2, , ,w w   . 
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       For purpose, it suffices to say that this can be done whenever the constants 
satisfy  

1 2 1w w      2
1
2

w        2
1
2

w                                                       

       Since we have 3 equations and 4 unknowns, we can assume the value of one of 
the  unknowns. The other three will then be determined from the three equations. 
Generally the value of 2,w is chosen to evaluate the other three constants. The three 

values generally used for 2w  are 1 2,1,
2 3

 and known as Heun’s Method, the midpoint 

method and Ralston’s method   (Zill and Cullen, 2005).     

       Remark:  The choice 2
1
2

w  1
1
2

w   1   and 1   and so (3.2.3.1.1) becomes 

1 1 2( )
2n n
hy y k k     where 1 ( , )n nk f x y  and 2 1( , )n nk f x h y hk   . It gives us 

the explanation behind Heun’s method (Zill and Cullen, 2005).  

        Example 3.2.3.1.1: Apply a Second-Order Runge-Kutta Method to the equation 
below and find (3)y  with 1.5h  , 0 0x  , 0 5y  . 

3 0.4xdy e y
dx

   

        Solution 3.2.3.1.1: Here in this example, 

0
1 0 0( , ) (0,5) 3 0.4(5) 1k f x y f e      

2 0 0 1
1 1 1 1( , ) (0 (1.5),5 (1)(1.5)) (0.25,5.25)
2 2 2 2

k f x h y k h f f      

0.253 0.4(5.25) 0.08829e     

1 0 2 5 ( 0.8829)(1.5) 3.676 (1.5)y y k h y        since 1 0x x h  0 1.5 1.5    

        Therefore, 1 1.5x   and 1 3.676y  . 

1.5
1 1 1( , ) (1.5,3.676) 3 0.4(3.676) 0.8009k f x y f e       
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2 1 1 1
1 1 1 1( , , ) (1.5 (1.5),3.676 ( 0.8009)(1.5))
2 2 2 2

k f x h y k h f     

2.25(2.25,3.075) 3 0.4(3.075) 0.9131f e      

2 1 2 3.676 ( 0.9138)(1.5) 2.304) (3)y y k h y        since 

2 1 (1.5 1.5) 3x x h      

        In conclusion, (3) 2.304y  . 

 
x 

The Improved 
Euler Method 

1.5h   
Values of y  

Standard Runge-
Kutta order2 
Values of y 

 
Actual y  

0 5 5 5 

1.5 4.3020 3.676 4.372465 

3 2.8080 2.8089 2.763006 

Figure 3.2.3.1.1: The table of approximation with Improved Euler and Standard Runge-Kutta 

        In this example the Improved Euler Method gives better approximation because 
as a second order Runge-Kutta method we have chosen the midpoint method         
(Zill and Cullen, 2005). 

       3.2.3.2 Fourth-Order Runge-Kutta Method 

       More often used is fourth-order Runge-Kutta procedure consists of finding 
parameters so that the formula 

1 1 1 2 2 3 3 4 4( )n ny y h w k w k w k w k       

1 ( , )n nk f x y  

2 1 1 1( , )n nk f x h y hk     

3 2 2 1 3 2( , )n nk f x h y hk hk       

4 3 4 1 5 2 6 3( , )n nk f x h y hk hk hk         
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       The most commonly used set of values for the parameters yields the following 
result: 

1 1 2 3 4( 2 2 )
6n n
hy y k k k k       

      1 ( , )n nk f x y  

      2 1
1 1( , )
2 2n nk f x h y hk                                     (3.2.3.2.1) 

            3 2
1 1( , )
2 2n nk f x h y hk    

            4 3( , )n nk f x h y hk    

       While other fourth-order formulas are easily derived, the algorithm summarized 
in (3.2.3.2.1) is so widely used and recognized as a valuable computational tool it is 
often referred to as the fourth-order Runge-Kutta method or the classical Runge-Kutta 
method (Zill and Cullen, 2005). 

       Example 3.2.3.2.1: Use the Runge-Kutta method with 0.1h  to obtain an 
approximation  to  (1.5)y for the solution of ' 2y xy , (1) 1y  . 

       Solution 3.2.3.2.1: For the sake of illustration let us compute the case when 0n 
. From (3.2.3.2.1) we find 

 1 0 0 0 0( , ) 2 2k f x y x y    

2 0 0
1 1( (0.1), (0.1)2)
2 2

k f x y   0 0
1 12( (0.1))( (0.2)) 2.31
2 2

x y     

3 0 0 0 0
1 1 1 1( (0.1), (0.1)2.31) 2(( (0.1))( (0.231)) 2.34255
2 2 2 2

k f x y x y        

4 0 0 0 0( 0.1, (0.1)2.34255) 2( 0.1)( 0.234255) 2.715361k f x y x y        

 and therefore 
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1 0 1 2 3 4
0.1 0.1( 2 2 ) 1 (2 2(2.31) 2(2.34255) 2.715361) 1.23367435
6 6

y y k k k k          

 

nx  ny  Actual Value 

1.00 1.0000 1.0000 

1.10 1.2337 1.2337 

1.20 1.5527 1.5527 

1.30. 1.9937 1.9937 

1.40 2.6116 2.6117 

1.50 3.4902 3.4904 

Figure 3.2.3.2.1: The table of RK4 approximation with 0.1h   

        The remaining calculations are summarized in Figure 3.2.3.2.1, whose entries 
are rounded to four decimal places. 

nx  Euler Improved 
Euler 

Runge-
Kutta 

(order 4) 

Actual 
Value 

1.00 1.0000 1.0000 1.0000 1.0000 

1.10 1.2000 1.2320 1.2337 1.2337 

1.20 1.4640 1.5479 1.5527 1.5527 

1.30. 1.8154 1.9832 1.9937 1.9937 

1.40 2.2874 2.5908 2.6116 2.6117 

1.50 2.9278 3.4509 3.4902 3.4904 

Figure 3.2.3.2.2: The table of the comparison of the given numerical methods with 0.1h       

        In Section 3.2, we presented the numerical methods. We started with one of the 
fundamental methods that is Euler. As an alternative method, we introduced 
Improved Euler Method. Runge-Kutta’s methods are also important for soving 
ordinary differential equations. Therefore we mentioned not only two order Runge-
Kutta but also fourth order of this method. Meeting each numerical solution, we 
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concluded one example in order to get familiar with the method. Moreover for some 
examples, we compared the results on different methods (Zill and Cullen, 2005). 

   3.3 Errors in Numerical Approximations 

   In this section, we will explain the errors and the types of errors occcurs in 
numerical approximation. 

   The use of a numerical procedure, on an initial value problem raises a number of 
questions that must be answered before the approximate numerical solution can be 
accepted as satisfactory. One of these is the question of convergence. That is, as the 
step size h  tends to zero, do the values of the numerical approximation 1 2, ,... ,...ny y y
approach the corresponding values of the actual solution? If we assume that the 
answer is affirmative, there remains the important practical question of how rapidly 
the numerical approximation converges to the solution. In other words, how small a 
step size is needed in order to guarantee a given level of accuracy? We want to use a 
step size that is small enough to ensure the required accuracy, but not too small. An 
unnecessarily small step size slows down the calculations and in some cases may 
even cause a loss of accuracy (Boyce and Diprima, 2001). 

   There are three fundamental sources of error in approximating the solution of an 
initial value problem numerically. 

 The formula, or algorithm, used in the calculations is an approximate one. For 
instance, the Euler formula uses straight-line approximations to the actual 
solution. 

 Except for the first step, the input data used in the calculations are only 
approximations to the actual values of the solution at the specified points. 

 The computer used for the calculations has finite precision; in other words, at 
each stage only a finite number of digits can be retained. 

   Let us temporarily assume that our computer can execute all computations exactly; 
that is, it can retain infinitely many digits (if necessary) at each step. Then the 
difference nE  between the solution ( )y t of the initial value problem and its 
numerical approximation ny  at the point nt t  is given by ( )n n nE t y   The error 
En is known as the global truncation error. It arises entirely from the first two error 
sources listed above by applying an approximate formula to approximate data (Boyce 
and Diprima 2001). 

   However, in reality it is carried out the computations using finite precision 
arithmetic, which means that we can keep only a finite number of digits at each step. 
This leads to a round-off error nR  defined by n n nR y Y   where nY is the value 
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actually computed   from the given numerical method. The absolute value of the total 
error in computing ( )nt  is given by  

( ) ( )n n n n n nt Y t y y Y       

    Making use of the triangle inequality, we obtain  

( )n n n nt y y Y    n nE R   

    Thus the total error is bounded by the sum of the absolute values of the global 
truncation and round-off errors. It is possible to obtain useful estimates of the global 
truncation error. The round-off error is more difficult to analyze, since it depends on 
the type of computer used, the sequence in which the computations are carried out, 
the method of rounding off, and so forth. 

    It is often useful to consider separately the part of the global truncation error that is 
due only to the use of an approximate formula.We can do this by assuming at the nth 
step that the input data are accurate, that ( )n ny t This error is known as the local 
truncation error  (Boyce and Diprima, 2001).       

    Remark: An important consideration in using numerical methods to approximate 
the solution of an initial value problem is the stability of the method. Simply stated, a 
numerical method is stable if small changes in the initial condition result in only 
small changes in the computed solution. A numerical method is said to be unstable if 
it is not stable. The reason that stability considerations are important is that in each 
step after the first step of a numerical technique (Boyce and Diprima, 2001).  

    We are essentially starting over again with a new initial-value problem, where the 
initial condition is the approximate solution value computed in the preceding step. 
Because of the presence of round-off error, this value will almost certainly vary at 
least slightly from the true value of the solution. Besides round-off error, another 
common source of error occurs in the initial condition itself; in physical applications 
the data are often obtained by imprecise measurements (Zill and Cullen, 2005). 
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4 APPLICATIONS OF FIRST-ORDER ORDINARY DIFFERENTIAL 
EQUATIONS 

    In this section we will consider the applications of first order ordinary differential 
equations. We will look for the solutions both anaytically and numerically. For the 
analytical solution, we will use the given analytical methods in Section 3.1 and for 
the numerical solution we will discuss the given methods in Section 3.2. In given 
examples we can get both analytical and numerical solution. However our concern is 
getting the best numerical method for each problem. Therefore, we will calculate not 
only the searching values but also spesific values for understanding the behaviour of 
the solution for each problem. 

    The solutions of the problems will give us to make comparisons between the 
methods. We will mention familiar mathematical models for first order ordinary 
differential equations. We will classify the applications in different kind of areas. 
Firstly, we will present the applications of mechanical problems which is a branch of 
engineering. These problems are based on Newton’s Second Law. In these problems, 
we will deal with the acting force on a body or an object. Secondly, we will discuss a 
branch of chemistry called mixture problems. In mixture problems, there will be 
substance and we will add or subtract the substance at the specified rate. Then we will 
mention about cooling and warming problems related to physics. This mathematical 
model build according to Newton’s Cooling Law. In these problems, we will observe 
the temperature of an object whether it is cooling or warming. After the dealing with 
cooling and warming problems, the financial problems that are branch of economics 
follow up. These problems are related to saving money and annual interest. This 
section ends up with the growth and decay problems. These problems are part of 
sociology. In these problems, we will mention logistic equation and bacterial 
populations. 

    Before starting the models, we should recognize the units. In applications there are 
three main sets of units in use for length, mass, force, and time: In unit systems, CGS 
inclıuding centimeter(cm), dyne(d) and gram(g); MKS including meter(m), newton 
(N) and kilogram(kg);  British System including foot(ft), pound(lb), and slug(sl)   
(Trench, 2001). 

        4.1 Mechanical Problems 

       Before the applications in mechanics, let us remember some basic principles of 
the subject. The momentum of a body  is defined to the product of the mass and the 
velocity. The velocity v  and the momentum mv  are vector quantities (Ross, 2004). 

       The time rate of change of momentum of a body is proportional to the resultant 
force acting on the body and is in the direction of this resultant force according to 
Newton’s Second Law (Ross,2004). 
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      In mathematical language, the basic law of mechanics is given below 

( )d mv KF
dt

  

 where m  is the mass of a body , v  is the velocity, F  is the resultant force acting 
upon it and K  is a constant of proportionality. 

        If the m is considered constant, this reduces to 

dvm KF
dt

     or      Fa K
m

       or     F kma  

where 1k
K

 and /a dv dt  is the acceleration of  the body.  

Obviously, the simplest system of the form for which 1k  . Then the system is 
reduced to F ma . The instantaneous velocity of a body is the time rate of change of 

x , dxv
dt

  and the instantaneous acceleration is the time rate of change of v . Note 

that x , v  and a  are vector quantities. 

Let us now apply Newton’s second law to a freely falling body. If the mass of body is 
m  and the weight of the body is w  then the only force acting on the body is its 
weight and the acceleration is the gravity. Therefore F ma  reduces to w mg
.According to Newton’s Second Law is F ma , where acting forces on body

1 2F F F  , let 
wm
g

  and taking 32g  (Ross,  2004).      

       Remark: g  is the acceleration due to gravity at Earth’s surface. This quantity 
has been determined experimentally. Approximate values of g are  

g = 980 cm/s2 (CGS) 

g = 9.8 m/s2 (MKS) 

g = 32 ft/s2 (British) 

       Example 4.1.1: A skydiver equipped with parachute and other essential 
equipment falls from rest toward the earth. The total weight of  the man plus the 
equipment is 160 lb. Before the parachute opens, the air resistance (in pounds) is 
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numerically equal to 1
2

v , where v  is the velocity (in feet per second). The parachute 

opens 5 secs after the fall begins. Find the velocity of the skydriver when parachute 
opens  (Ross,  2004).         
   

      Analytical Solution 4.1.1: Since Newton’s Second Law is F ma , where acting 

forces on body 1 2F F F  , let 
wm
g

  and take 32g  . Since air resistance and 

weight are in different direction, we obtain  

15 160
2

dv v
dt

                                             (4.1.1) 

       Note that the skydriver was initally at rest 0v  when 0t   so (0) 0v  . 

       After the parachute  opens, is formulated as 

255 160
8

dv v
dt

   and 1(5)v v                        (4.1.2) 

       Seperating variables on (4.1.1)  we obtain   

1
320 10

dv dt
v

 


 

after the integration it yields  

0
1ln( 320)

10
v t c     

which is simply equal to 

/10320 tv ce   

which is valid for 0 5t   

        Applying the initial condition to (4.1.3) we get 

/10320(1 )tv e   
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       In particular when  5t   we obtain  

1/2
1 320(1 ) 125.91018v e   ft/sec 

which is the velocity when parachute opens (Ross, 2004).     

       Numerical Solution 4.1.1: In this problem, we get the analytical solution above. 
Now, we need to approximate the solution numerically. Therefore we need to execute 
all the given methods and decide which one approximates better. 

       Here, we choose step size 1h   an calculate to 5 decimal places. Since we try to 
find the fifth second, let us divide into 5 intervals. 

nt  Euler 

(h=1) 

Heun 

(h=1) 

Runge-
Kutta 
order 2 

(h=1) 

Runge-
Kutta 
order 4 

(h=1) 

exactv  

1 32 30.4 30.4 30.452 30.45203 

2 60.8 57.912 57.912 58.00611 58.00616 

3 86.72 82.81036 82.81036 82.93810 82.93817 

4 110.048 105.34337 105.34337 105.49750 105.49759 

5 131.0432 125.73575 125.73575 125.91010 125.91019 

Figure 4.1.1.1: The table of approximation of Example 4.1.1 

       After calculating the approximation, it is seen that the closer approximation is 
obtained by RK4 but anyway we should make the error analysis. 
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nt  Euler 

(errror 
max.) 

Heun 

(error 
max) 

Runge-Kutta 
order 2 

(error max) 

Runge-Kutta 
order 4 

(error max) 

1 1.54797 0.05203 0.05203 0.00003 

2 2.79384 0.09416 0.09416 0.00005 

3 3.78183 0.12781 0.12781 0.00007 

4 4.55041 0.15420 0.15420 0.00009 

5 5.13301 0.17444 0.17444 0.00009 

Figure 4.1.1.2: The table of error analysis of Example 4.1.1 

        The tables are shown that Euler,Heun and RK2 is far from the exact solution.The 
percent error is 4.07672% for Euler. On the other hand Heun and RK2 have 
0.13854%, which means they give the same error for 5 decimal places. RK4 gives the 
best approximation for this example. Even though the error increased with the 
increasement of the point, the approximation is better comparing with the other 
methods. Because the percentage error is 0.00007%. for RK 4. 

       Example 4.1.2: An object weighing 48 lb is released from rest at the top of a 
plane metal slide that is inclined 30° to the horizontal. Air resistance in numerically 
equal to one-half the velocity and the coefficient of friction is one-quarter. What is 
the velocity of the object 2 sec after it is released? (Ross, 2004)     

       Analytical Solution 4.1.2: The line of motion is along the slide. We choose the 
origin at the top and the positive x direction down the slide. If we temporarily neglect 
the friction and air resistance, the forces acting upon the object A are its weight and 
and the normal force N exerted by the slide which acts in an upward direction 
perpendicular to the slide. 

       The componenents of the weight parallel and perpendicular to the slide have 
magnitude 

48sin30 24   and 48cos30 24 3  
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        The components perpendicular to the slide are in equilibrium and hence the 
normal force N has magnitude 24 3 . 

       The component on the weight paralel to the plane since this force acts downward 
it is 1 24F   

       2F , the frictional force having numerical value 1 24 3
4

. Since this force acts 

upward direction along the side we have 2 6 3F   . 

       The air resistance that is on negative direction has numerical value 3F  1
2

v  

        If we apply Newton’s second law, 1 2 3
124 6 3
2

F F F F v       and 

48
32

wm
g

  . 

       Thus we have the differential equation 

3 124 6 3
2 2

dv v
dt

    

       Since the object is released from rest, the initial condition is (0) 0v  . The 

differential equation is seperable.  

       Seperating the variables we have 

348 12 3
dv dt

v


 
 

        Integrating and simplifying we find  

3
148 12 3

t

v c e


    
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       The initial condition gives 1 48 12 3c   . 

         Thus we obtain 3(48 12 3)(1 )
t

v e


   . 

         Letting 2t  , we have 

2
3(2) (48 12 3)(1 ) 10.2v e


    ft/sec  (Ross,  2004) 

       Numerical Solution 4.1.2: In this example the point that we want to reach is the 
time 2secs. We divide into four parts in order to show the numerical values until 
2secs. 

nt  Euler 

(h=0.1) 

Heun 

(h=0.1) 

Runge-
Kutta 

order 2 

(h=0.1) 

Runge-
Kutta 

order 4 

(h=0.1) 

exactv  

0.5 4.24342 4.17733 4.17733 4.17806 4.18146 

1 7.82520 7.71347 7.71347 7.71471 7.72099 

1.5 10.84852 10.70685 10.70685 10.70842 10.71714 

2 13.40047 13.24077 13.24077 13.24254 13.25332 

Figure 4.1.2.1: The table of approximations for Example 4.1.2 

        Figure 4.1.2.1 shows that even though h=0.1 , Euler is still maximized the error 
with 1.11029%.  Heun and RK2 give the same approximation with 0.09469% and 
finally we have 0.081338% for RK4. 

 

nt  Euler 

(errror 

Heun 

(error max) 

Runge-
Kutta 

Runge-
Kutta 
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max.) order 2 

(error max) 

order 4 

(error max) 

0.5 0.06196 0.00413 0.00413 0.00340 

1 0.10421 0.00751 0.00751 0.00628 

1.5 0.13138 0.01029 0.01029 0.00871 

2 0.14715 0.01325 0.01325 0.01078 

Figure 4.1.2.2: The table of error analysis for Example 4.1.2 

        Therefore according to Figure 4.1.2.2, the error is minimized in RK4 and 
maximized in Euler method. Moreover we observe that when the points are increased, 
the error is increased for each method.  

       Example 4.1.3: A body weighing 8 lb falls from rest toward the earth from a 
great height. As it falls, air resistance act upon it, and we shall assume that this 
resistence (in pounds) is numerically equal to 2v , where v  is the velocity (in feet per 
second). Find the velocity and distance fallen at time t  seconds. Determine the 
distance at 5t   (Ross,  2004).        

       Analytical Solution 4.1.3: Let 1F  be the weight, 8 lb , acting downward so that it 
is positive where 2F  is 2v  and acting upward.  

       Using Newton’s Second Law, F ma  becomes,  

1 2
dvm F F
dt

  . 

       Taking 32g  , 
wm
g

 8 1
32 4

   

       Therefore    1 8 2
4

dv v
dt

        (4.1.2.1) 
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       Since the body is initially at rest, we have the inital condition (0) 0v  . 

(4.1.2.1) is seperable equation we can describe as  

4
8 2

dv dt
v



. 

       By integrating we find     

0
1 ln 8 2 4
2

v t c     

       Applying the initial condition we find 1 8c  . Thus the veloctiy at time t  is given 

as 

84(1 )tv e   

       Now to determine the distance fallen at time t , we can write 

84(1 )tdx e
dt

   

       And noting that (0) 0x  . Integrating the above equation we get 

8
2

14( )
8

tx t e c    

       Since 0x   and 0t  , we find 2
1
2

c   . Hence the distance fallen is given by  

81 14( )
8 8

tx t e    

       At time 5t  , the distance is 19,5x  ft (Ross,  2004).     
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       Numerical Solution 4.1.3: After the analytical solution above, we need to 
execute the methods. The step size is choosen as 0.1h  . We divide into 50 parts but 
in the table we will show only the integers. 

 

nt  

Euler 

(h=0.1) 

Heun 

(h=0.1) 

Runge-
Kutta 

order 2 

(h=0.1) 

Runge-
Kutta 

order 4 

(h=0.1) 

 

exactx  

1 3.27836 3.47379 3.49897 3.50009 3.50017 

2 7.27361 7.47361 7.49897 7.49993 7.5 

3 11.27361 11.47361 11.49880 11.49993 11.5 

4 15.27361 15.47361 15.49880 15.49993 15.5 

5 19.27361 19.47361 19.49880 19.49993 19.5 

Figure 4.1.3.1: The table of approximation of Example 4.1.3 

       Figure 4.1.3.1 shows that Euler’s method is far from the exact solution. Heun and 
RK2 give different approximations. Since RK2 involves different methods in it. 
Midpoint, Ralston and Heun are the examples of those methods. Here we understand 
that another RK2  method which is different than Heun gives better approximation.  

 

nt  

Euler 

(errror max.) 

Heun 

(error max) 

Runge-Kutta 
order 2 

(error max) 

Runge-Kutta 
order 4 

(error max) 

1 0.22631 0.02638 0.00119 0.00007 

2 0.22639 0.02639 0.00119 0.00007 

3 0.22639 0.02639 0.00119 0.00007 

4 0.22639 0.02639 0.00119 0.00007 

5 0.22639 0.02639 0.00119 0.00007 

Figure 4.1.3.2: The table of error analysis of Example 4.1.3 
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        From Figure 4.1.3.2, we understand that the errors are stable on the given points. 
Because we generally get the same approximation in every step for each method. 
Euler, Heun, RK2 and RK4 have the percentage error 1.16097%, 0.13533%, 
0.00615%  and 0.00036% in order. Therefore RK4 gave the best approximation 
according to the table of error analysis. 

       Until now, we observe that Euler, Heun and RK2 approximates slower. Therefore  
we decide to decrease the step size for these methods.  

 

nt  

Euler 

(h=0.01) 

Heun 

(h=0.01) 

Runge-
Kutta 

order 2 

(h=0.01) 

Runge-
Kutta 

order 4 

(h=0.1) 

 

exactx  

1 3.47991 3.49990 3.49990 3.50009 3.50017 

2 7.47973 7.49973 7.49973 7.49993 7.5 

3 11.47973 11.49973 11.49973 11.49993 11.5 

4 15.47973 15.49973 15.49973 15.49993 15.5 

5 19.47973 19.49973 19.49973 19.49993 19.5 

Figure 4.1.3.3: The table of comparison with different step size h=0.01 

        According to Figure 4.1.3.3, Euler still doesn’t converge as much as RK4 
despite the decreasement of step size. On the other hand , Heun and RK2 converges 
nearly RK4. 

        Fixing the step size of RK4, let us decrease the step size ten times more. We 
have the following numerical approximation 
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nt  

Euler 

(h=0.001) 

Heun 

(h=0.001) 

Runge-
Kutta 

order 2 

(h=0.001) 

Runge-
Kutta 

order 4 

(h=0.1) 

 

exactx  

1 3.49817 3.50017 3.50017 3.50009 3.50017 

2 7.49800 7.5 7.5 7.49993 7.5 

3 11.49800 11.5 11.5 11.49993 11.5 

4 15.49800 15.5 15.5 15.49993 15.5 

5 19.49800 19.5 19.5 19.49993 19.5 

Figure 4.1.3.4: The table of comparison with different step size h=0.001 

        Observations from Figure 4.1.3.4 shows that we have the exact solution for 
Heun and RK2 when h=0.001. Heun and RK2 converges better than RK4 with the 
decreasement of the step size. However, we see that Euler doesn’t converge as RK4. 
RK4 is efficient than Euler more than 100 times. 

       4.2 Mixture Problems 

Letting x  denote the amount of the substance S present at time t , the derivative dx
dt

 

denotes the rate of change of x  with respect to t . If  IN denotes the rate at which S
enters the mixture OUT the rate at which it leaves, we have once at the basic equation 

dx IN OUT
dt

   

       Saltwater solutions with a given concentration is added at a specified rate to a 
tank that initially contains saltwater with a different concentration. To construct a 
tractable mathematical model for mixing problems we assume in our examples that 
the mixture is stirred instantly so that the salt is always uniformly distributed 
throughout the mixture. (Ross,  2004)  
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       Example 4.2.1: A tank initially contains 50gal at pure water. Starting at time 

0t   a brine containing 2lb  of dissolved salt per gallon flows into the tank at the rate 
of 3 / mingal . The mixture is kept uniform by stirring and the well-stirred mixture 

simultaneously flows out of the tank at the same rate. How much salt is in the tank at 
any time 0t  ? How much salt is present at the end of 25min ? (Ross,  2004)  

      Analytical Solution 4.2.1: If we apply the basic equation 

dx IN OUT
dt

   

       The brine flows in at the rate of 3 / mingal  and each gallon contains 2lb  of salt. 

Thus  

(2 / )(3 / min) 6 / minIN lb gal gal lb   

3( / )(3 / min) / min
50 50
x xOUT lb gal gal lb   

       Thus the differential equation for x  as a function of t  is 

36
50

dx x
dt

   

       Since initially there was no salt in the tank , (0) 0x  . 

       The differential equation is both linear and seperable. Seperating the variables 

3
100 50

dx dt
x



 

        Integrating and simplifying we obtain  

3 /50100 tx ce   

        Applying the initial condition 0x   at 0t  , we have 100c   . Thus 
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3 /50100(1 )tx e   

which is the solution of the first part. At the end of 25min  

1.5(25) 100(1 ) 77.68698x e lb    

        After a long time means t  , and we observe that 100x   (Ross,  2004).  

      Numerical Solution 4.2.1: For this saltwater problem, we divided the interval 
into 50 parts but we will only show spesific points in the table in order to discover the 
behaviour of the numerical approximations. 

 

nt  

Euler 

(h=0.5) 

Heun 

(h=0.5) 

Runge-
Kutta 

order 2 

(h=0.5) 

Runge-
Kutta 

order 4 

(h=0.5) 

 

exactx  

5 26.25759 25.91477 25.91477 25.91878 25.91818 

10 45.62057 45.11378 45.11378 45.11884 45.11884 

15 59.89929 59.33742 59.33742 59.34303 59.34303 

20 70.42877 69.87503 69.87503 69.88058 69.88058 

25 78.19346 77.68185 77.68185 77.68698 77.68698 

Figure 4.2.1.1: The table of approximations for Example 4.2.1 

       In this example, Heun and RK2 give the same results. However this time, Euler 
approximates closer to these methods.  Let us make the error analysis table in order to 
identify the efficiency of the methods. 
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nt  

Euler 

(errror max.) 

Heun 

(error max) 

Runge-
Kutta order 

2 

(error max) 

Runge-
Kutta  

order 4 

(error max) 

5 0.31484 0.00341 0.00341 0 

10 0.50173 0.00505 0.00505 0 

15 0.55626 0.00561 0.00561 0 

20 0.54819 0.00555 0.00555 0 

25 0.50648 0.00514 0.00514 0 

Figure 4.2.1.2: The table of error analysis for Example 4.2.1 

       Euler has the percent error 0.65195%, Heun and RK2 have the percent error 
0.00660%. On the other hand, RK4 still have the best approximation having the exact 
value for 5 decimal places. 

       Example 4.2.2: A tank initially contains 40 pounds of salt dissolved in 600 
gallons of water. Starting at 0 0t   water that contains ½ pound of salt per gallon is 
poured into the tank at the rate of 4 / mingal and the mixture is drained from the tank 
at the same rate. Find a differential equation for the quantity ( )x t  of salt in the tank at 
time 0t  , and solve the equation to determine ( )x t  and find lim ( )

t
x t


 (Trench, 

2001). 

       Analytical Solution 4.2.2: To find a differential equation for x , we must use the 
given information to derive an expression for x ’ which is the rate of change of the 
quantity of salt in the tank changes with respect to time. Since the subtraction of the 
rate at which salt enters the tank and the rate by which it leaves is equal to the rate of 
change then we can write 

1( / ).(4 / min) 2 l / min
2

lb gal gal b  
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       Determining the rate out requires a little more thought. We’re removing 4 gallons 
of the mixture per minute, and there are always 600 gallons in the tank; that is, we’re 
removing 1/150 of the mixture per minute. Since the salt is evenly distributed in the 
mixture, we are also removing 1/150 of the salt per minute. Therefore, if there are 

( )x t  pounds of salt in the tank at time t, the rate out at any time t is ( )x t /150. 

Alternatively, we can arrive at this conclusion by arguing that 

OUT=(concentration).(rate of flow out) 

( ) ( ).4
600 150
x t x t

  

        We can now write that 

' 2
150

xx    

which is a first order equation. 

        Since /150te  is a solution of the complementary equation, the solutions of the 
equation are of the form /150tx ue  where /150' 2tu e  , so /150' 2 tu e . Hence 

/150300 tu e c  so 

/150 /150300t tx ue ce     

        Since (0) 40x  , 260c   ;  

/150( ) 300 260 tx t e   

        From the equation we see that lim ( ) 300
t

x t


  for any value of (0)x . This is 

intuitively reasonable, since the incoming solution contains ½ pound of salt per 
gallon and there are always 600 gallons of water in the tank  (Trench, 2001).  

       Numerical Solution 4.2.2: In Example 4.2.2, we searched the limit when t 
. Now, we search the results of numerical methods when t   .  
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nt  

Euler 

(h=10) 

Heun 

(h=10) 

Runge-Kutta 
order 2 

(h=10) 

Runge-Kutta 
order 4 

(h=10) 

 

exactx  

  299.99999 299.99999 299.99999 299.99999 300 

Figure 4.2.2.1: The table of approximations for t    

       We see that every method approximates same when t goes to infinity. Therefore 
the errors for each method will be same. 

 

nt  

Euler 

(errror max.) 

Heun 

(error max) 

Runge-Kutta 
order 2 

(error max) 

Runge-Kutta 
order 4 

(error max) 

  0.00001 0.00001 0.00001 0.00001 

Figure 4.2.2.2: The table of error analysis for t   

        We see that  all the given numerical methods approximate same in 5 decimal 
places. Therefore the error is the same and we have the percentage error that is 
0.00000333% . 

        Example 4.2.3: A large tank initially contains 50gal  of brine in which there is 
dissolved salt per galon flows into the tank at the rate of  5 / mingal . The mixture is 

kept uniform by stirring and the stirred mixture simultaneously flows out at the 
slower rate of 3 / mingal . How much salt is in the tank after 2.5min  (Ross, 2004). 

       Analytical Solution 4.2.3: In order to use the equation  

dx IN OUT
dt

   

we should write IN and OUT. 

(2 / )(5 / min) 10 / minIN lb gal gal lb   
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        Also once again 

( / )(3 / min)OUT Clb gal gal  

where /Clb gal denotes the concentration. But here since the rate of outflow is 

different from that inflow, the concentration is noy quite so simple. 

        At time 0t  , the tank contains 50gal  of brine. Since brine flows in at the 
slower rate of 3 / mingal , there is a net gain 5 3 2 / mingal  of brine in the tank. 
Thus at the end of t  minutes the amount of brine in the tank is 50 2tgal . 

        Hence the concentration at time t  minutes is l /
50 2

x b gal
t

 and so 

3 / min
50 2

xOUT lb
t




 

         Thus the differential equation becomes 

310
50 2

dx x
dt t

 


 

        Since there was initially 10lb  of salt in the tank, we have the initial condition 
(0) 10x  . 

        The differential equation is not seperable but it is linear. Putting it in standard 
form 

3 10
50 2

dx x
dt t

 


 

        We find integrating factor as 

3/23exp (2 50)
2 50

dt t
t

       

         Multiplying through by this, we have 
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3/2 1/2 3/2(2 50) 3(2 50) 10(2 50)dxt t x t
dt

      

or 

3/2 3/2[(2 50) ] 10(2 50)d t x t
dt

    

        Thus 

3/2 5/2(2 50) 2(2 50)t x t c     

or 

3/24( 25)
(2 50)

cx t
t

  


 

        Applying the initial condition 10x  at 0t   we find 

3/210 100
(50)

c
   

or 

3/2(90)(50)c   22500 2   

         Thus the amount of salt at any time 0t   is given by 

3/2

22500 24 100
(2 50)

x t
t

  


 

         At time 2.5t  , we have 

3/2

22500 2(2.5) 4(2.5) 100 31.989424516
(2(2.5) 50)

x    


gal (Ross, 2004).  
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         Numerical Solution 4.2.3: In this mixture problem, we use again 5 decimal 
places and we divided into 10 parts and the numerical values of the points are given 
in Figure 4.2.3.1. 

 

nt  

Euler 

(h=0.5) 

Heun 

(h=0.5) 

Runge-
Kutta 

order 2 

(h=0.5) 

Runge-
Kutta 

order 4 

(h=0.5) 

 

exactx  

0.5 14.7 14.63382 14.63339 14.63404 14.63404 

1 19.26765 19.14165 19.14083 19.14206 19.14206 

1.5 23.71185 23.53275 23.53059 23.53233 23.53233 

2 28.04076 27.81173 27.81026 27.81246 27.81246 

2.5 32.26185 31.98856 31.98682 31.98942 31.98942 

Figure 4.2.3.1: The table of approximations for Example 4.2.3 

        We observe that the error is 0.085163%  for Euler. Heun and RK2 give different 
aprroximations having percentage error 0.002702% and 0.00813% in order when 
RK4 has the exact value.  

 

nt  

Euler 

(errror 
max.) 

Heun 

(error max) 

Runge-
Kutta  

order 2 

(error max) 

Runge-
Kutta  

order 4 

(error max) 

0.5 0.06596 0.00022 0.00065 0 

1 0.12559 0.00041 0.00123 0 

1.5 0.17952 0.00042 0.00174 0 

2 0.22830 0.00073 0.00220 0 

2.5 0.27243 0.00086 0.00260 0 

Figure 4.2.3.2: The table of error analysis for Example 4.2.3 
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        We see RK4 still approximates better than the given methods, however in this 
example we observe that Heun’s and RK2’s approximations are also very close to the 
exact value. Moreover on the searching point Heun approximates better than RK2. 

        Changing the step size, we investigate which method is efficient depending on 
the step size. Fixing the step size of RK4, we change the others’ step size. 

 

nt  

Euler 

(h=0.0005) 

Heun 

(h=0.001) 

Runge-
Kutta 

order 2 

(h=0.001) 

Runge-
Kutta 

order 4 

(h=0.1) 

 

exactx  

0.5 14.63404 14.63404 14.63404 14.63404 14.63404 

1 19.14206 19.14206 19.14206 19.14206 19.14206 

1.5 23.53233 23.53233 23.53233 23.53233 23.53233 

2 27.81246 27.81246 27.81246 27.81246 27.81246 

2.5 31.98942 31.98942 31.98942 31.98942 31.98942 

Figure 4.2.3.3: The comparison table of the different step size h=0.001 

        From Figure 4.2.3.3 we can observe that RK4’s approximation has the exact 
numerical values when h=0.1. On the other hand RK2 and Heun have the same 
approximations to the exact value when h=0.001. Moreover, we choose the step size 
of Euler as h=0.0005 in this question. Then we get very close approximation to the 
exact value with Euler. Also if we decrease the step size of Euler two hundred times 
comparing with RK4, we get the same results with both methods. 

 4.3 Cooling and Warming Problems 

       Newton’s law of cooling states that if an object with temperature ( )T t  at time t  
is in medium with temperature ( )mT t  the rate of change of T  at time t is proportional 
to ( ) ( )mT t T t  thus, T  satisfies a differential equation of the form 
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' ( )mT k T T    

        Here 0k  , since the temperature of the object must decrease if , mT T  or 

increase if  

mT T . We’ll call k  the temperature decay constant of the medium. 

        For simplicity, in this section we’ll assume that the medium is maintained at a 
constant temperature mT  

       This is another example of building a simple mathematical model for a physical 
phenomenon. Like most mathematical models it has its limitations. For example, it’s 
reasonable to assume that the temperature of a room remains approximately constant 
if the cooling object is a cup of coffee, but perhaps not if it’s a huge cauldron of 
molten metal. 

        To solve the differential equation, we rewrite it as  

' mT kT kT   

       Since kte  is a solution of the complementary equation, the solutions of this 
equation are of the form ktT ue , where ' kt

mu e kT   so ' kt
mu kT e . Hence 

' kt
mu T e c   

       Therefore, 

kt kt
mT ue T ce     

       If 0(0)T T , setting 0t   here yields 0 mc T T  , so the solution of the initial 

value problem is obtained as  

                       0( ) kt
m mT T T T e     (Trench, 2001). 
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       Example 4.3.1: A ceramic insulator is baked at 400°C and cooled in a room in 
which the temperature is 25°C. After 4 minutes the temperature of the insulator is 
200°C. What is the temperature after 8 minutes? (Trench, 2001). 

       Analytical Solution 4.3.1: Here 0 400T  and 25mT  , so according to the 

solution of the initial value problem  

25 375 ktT e   

       We determine k  from the stated condition that (4) 200T  ; that is  

4(4) 200 25 375 kT e    

        Hence, 

4 175 7
375 15

ke    

        Taking logarithms and solving for k  yields  

1 7 1 15ln ln
4 15 4 7

k     

        Substituting this into the equation yields  

15ln
4 725 375
t

T e


   

       Therefore the temperature of the insulator after 8 minutes is  

152ln 27 7(8) 25 375 25 375( ) 107
15

T e


     °C (Trench, 2001).   

   
       Numerical Solution 4.3.1: In this example, we deal with the numerical 
approximations of cooling and warming problems. For that reason choosing the step 
size h=0.1 and dividing 80 parts, we can execute the methods. 
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In Figure 4.3.1.1 we only show the some spesific points and the searching points. 

 

nt  

Euler 

(h=0.1) 

Heun 

(h=0.1) 

Runge-
Kutta 

order 2 

(h=0.1) 

Runge-
Kutta 

order 4 

(h=0.1) 

ܶ ௘௫௔௖௧

 

2 280.23352 281.17977 281.17977 281.17378 281.17378 

4 198.71773 200.00820 200.00820 200 200 

6 143.23623 144.55616 144.55616 144.54777 144.54777 

8 105.47427 106.67432 106.67432 106.66668 106.66668 

Figure 4.3.1.1: The table of approximations for Example 4.3.1 

       From Figure 4.3.1.1, it is seen that Heun and RK2 give the same approximations 
and RK4 has the same approximation as the exact. 

 

nt  

Euler 

(errror 
max.) 

Heun 

(error max) 

Runge-Kutta 
order 2 

(error max) 

Runge-Kutta 
order 4 

(error max) 

2 0.94026 0.00599 0.00599 0 

4 1.28227 0.00820 0.00820 0 

6 1.31154 0.00839 0.00839 0 

8 1.19241 0.00764 0.00764 0 

Figure 4.3.1.2: The table of error analysis for Example 4.3.1 

       Getting the table of error analysis and  calculating the percent error, we have that 
Euler has the percentage error 1.11788% when Heun and RK2 have 0.00716%. On 
the other hand RK4 presents the exact value. 
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        Example 4.3.2: When a cake is removed from an oven, its temperature is 
measured at 300° F. Three minutes later its temperature is 200° F. How long will it 
take for the cake to cool off to a room temperature of 70° F? (Zill and Cullen, 2005). 

Analytical Solution 4.3.2: From the given informations, we can identify that 70mT   
and (0) 300T  . The differential equation can be modelled as 

( 70)dT k T
dt

   

and determine the value of k so that (3) 200T  . 

        The differential equation both linear and seperable. If we seperate variables 

( 70)
dT kdt

T



 

yields 

1ln 70T kt c    

and so  270 ktT c e  . When 0t   and 300T  , 

2300 70 c   gives 2 230c  . 

        Therefore 300 70 230 kte   

        Finally, the measurement (3) 200T  leads to 3 13
23

ke   or, 1 13ln
3 23

k  =-0.19018. 

Thus 0.19018300 70 230 te   

       We note that the solution actually furnishes no finite solution to T(t) =70, since 
lim ( ) 70
t

T t


  
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        Yet we intuitively expect the cake to reach room temperature after a reasonably 
long period of time. How long is “long”? Of course, we should not be disturbed by 
the fact that the model does not quite live up to our physical intuition. But Figure 
4.3.2.1 and 4.3.2.2 clearly show that the cake will be approximately at room 
temperature in about one-half hour (Zill and Cullen, 2005). 

 

Figure 4.3.2.1: The table of the temperature of the cake changing with the time 

 

Figure 4.3.2.2: The graph of the changing the temperature of the cake with the time 

        Numerical Solution 4.3.2: For the example 4.3.2, we show the change of the 
temperature with time on Figure 4.3.2.1 and Figure 4.3.2.2. Now, we need to execute 
the numerical approximations for a cake problem. Therefore choosing the step size 
h=0.1, considering the points on Figure 4.3.2.1 and 4.3.2.2 and we will calculate 
when the temperature reaches to approximately 70° F. 
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nt  

Euler 

(h=0.1) 

Heun 

(h=0.1) 

Runge-
Kutta 

order 2 

(h=0.1) 

Runge-
Kutta 

order 4 

(h=0.1) 

ܶ ௘௫௔௖௧

 

20.1 74.84838 75.03138 75.03138 75.03021 75.03021 

21.3 73.85061 74.00480 74.00480 74.00381 74.00381 

22.8 72.88699 73.01090 73.01090 73.01011 73.01011 

24.9 71.92897 72.01957 72.01957 72.01899 72.01899 

28.6 70.94795 70.99926 70.99926 70.99893 70.99893 

32.3 70.46585 70.49443 70.49443 70.49424 70.49424 

Figure 4.3.2.3: The table of approximations for Example 4.3.2 

         In the numerical solution of this problem, we see that we can not reach to the 
specified temperature but we approximates it about half an hour. 

 

nt  

Euler 

(errror 
max.) 

Heun  

(error max) 

Runge-
Kutta 

 order 2 

(error max) 

Runge-
Kutta  

order 4 

(error max) 

20.1 0.18183 0.00117 0.00117 0 

21.3 0.15320 0.00099 0.00099 0 

22.8 0.12312 0.00079 0.00079 0 

24.9 0.09002 0.00058 0.00058 0 

28.6 0.05098 0.00033 0.00033 0 

32.3 0.02839 0.00019 0.00019 0 

Figure 4.3.2.4: The table of error analysis for Example 4.3.2 
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        At the spesified point 32.3, we have the percentage error 0.04028% for Euler; 
0.00026% for RK2. Heun and RK2 give the same approximation. From Figure 
4.3.2.3 and 4.3.2.4, it is seen that RK4 gives the better approximation comparing with 
the other methods. 

        Now our aim is to get closer to the given temperature more. Choosing the same 
step size we extend the time interval and we get the results as below. 

 

nt  

Euler 

(h=0.1) 

Heun 

(h=0.1) 

Runge-Kutta 
order 2 

(h=0.1) 

Runge-Kutta 
order 4 

(h=0.1) 

ܶ ௘௫௔௖௧

 

199.90 70.000000000 

00037 

70.000000000 

00037 

70.000000000 

00037 

70.000000000 

00037 

70 

Figure 4.3.2.5: The table of approximations for Example 4.3.2 

        We observe that we can not reach to the given temperature. We still 
approximates. 

 

nt  

Euler 

(errror max.) 

Heun 

(error max) 

Runge-Kutta 
order 2 

(error max) 

Runge-Kutta 
order 4 

(error max) 

199.90 3.6948222 

25e-13 

3.6948222 

25e-13 

3.6948222 

25e-13 

3.6948222 

25e-13 

Figure 4.3.2.6: The table of error analysis for Example 4.3.2 

       It is seen that after 199.90 minutes, we have approximately 70 for each method 
but not exactly. 

        Example 4.3.3: A metal bar at a temperature of 100 F  is placed in a room at a 
constant temperature of 0 F . If  after  20 minutes the temperature of the bar is 50 F
. Find the time it will take the bar to reach a temperature of 25 F  and the 
temperature of the bar after 10 minutes (Bronson and Costa 2006).   
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       Analytical Solution 4.3.3: Here from the given information 0mT  ; the medium 

here is the room which is being held at a constant temperature of 0 F . 

        Thus we have 

0dT kT
dt

   whose solution is ktT ce  

       Since 100T   at 0t  , it follows that (0)100 kce  or 100c  . 

       Substituting this value into the equation, we have 

100 ktT e  

        At 20t  , we are given that 50T  ; hence substituting the values 

2050 100 ke  

from which 1 50 1ln ( 0.693) 0.035
20 100 2

k        

     Substituting k  into the equation, we obtain the temperature of the bar at any time t  

0.035100 tT e  

       We require t  when 25T  .  

      Therefore , 

0.03525 100 te  

or 
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10.035 ln
4

t   

       Solving the equation we find that 39.6 mint  . 

       We require T  when 10t  . Substituting 10t   into the equation and then 
solving for T , we find that  

0.035(10)100 100(0.705) 70.5T e F     (Bronson and Costa 2006).  

       Numerical Solution 4.3.3: In 4.3.3, we need to reach to the temperature 70 F  
and it is seen from the analytical solution , when 10t   it can reach approximately to 
70 F . Choosing h=0.1, according to the numerical methods,the table can be shown 
below at some specified points. 

 

nt  

Euler 

(h=0.1) 

Heun 

(h=0.1) 

Runge-
Kutta 

order 2 

(h=0.1) 

Runge-
Kutta 

order 4 

(h=0.1) 

 

exactT  

2.5 91.60783 91.62190 91.62190 91.62189 91.62189 

5 83.91994 83.94573 83.94573 83.94570 83.94570 

7.5 76.87723 76.91268 76.91268 76.91264 76.91264 

10 70.42556 70.46886 70.46886 70.46881 70.46881 

Figure 4.3.3.1: The table of approximations for Example 4.3.3 

        It is seen that Heun and RK2 give the same results. Euler is still maximized the 
error. We have the exact value with RK4 

 

nt  

Euler 

(errror 
max.) 

Heun 

(error max) 

Runge-Kutta 
order 2 

(error max) 

Runge-Kutta 
order 4 

(error max) 
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2.5 0.01406 0.00001 0.00001 0 

5 0.02576 0.00003 0.00003 0 

7.5 0.03541 0.00005 0.00005 0 

10 0.04325 0.00005 0.00005 0 

Figure 4.3.3.2: The table of error analysis for Example 4.3.3 

       According to the Figure 4.3.3.2 and Figure 4.3.3.1 we have the same 
approximations for Heun and RK2 methods at the searching point. Therefore we have 
the percentage error 0.00007165% for RK2 and Heun and 0.06184% for Euler’s 
method.  

 

nt  

Euler 

(h=0.001) 

Heun 

(h=0.001) 

Runge-
Kutta 

order 2 

(h=0.001) 

Runge-
Kutta 

order 4 

(h=0.1) 

 

exactT  

2.5 91.62175 91.62189 91.62189 91.62189 91.62189 

5 83.94545 83.94570 83.94570 83.94570 83.94570 

7.5 76.91229 76.91263 76.91263 76.91263 76.91263 

10 70.48838 70.46881 70.46881 70.46881 70.46881 

Figure 4.3.3.3: The table of approximation with different step size h=0.001 

         According to Figure 4.3.3.3, we have the exact value with Heun, RK2,RK4 and 
nearly exact with Euler. If the step size decreases 100 times for Heun and RK2, we 
have the exact value. However we still don’t have the exact numerical value with 
Euler in spite of the step size. 

       4.4 Financial Problems 
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       In financial problems, we will consider the rate problem for the money that is 
deposited in a bank. 

       Suppose that a sum of money is deposited in a bank or money fund that pays 
interest at an annual rate r. The value S(t) of the investment at any time t depends on 
the frequency with which interest is compounded as well as on the interest rate. 
Financial institutions have various policies concerning compounding: some 
compound monthly, some weekly, some even daily. If we assume that compounding 
takes place continuously, then we can set up an initial value problem that describes 
the growth of the investment. 

       The rate of change of the value of the investment is dS
dt

 and this quantity is equal 

to the rate at which interest accrues, which is the interest rate r times the current value 
of the investment S(t). Thus 

dS rS
dt

  

is the differential equation that governs the process. Suppose that we also know the 
value of the investment at some particular time, 

        Then the solution of the initial value problem gives the balance S(t) in the 
account at any time t. This initial value problem is readily solved, since the 
differential equation  is both linear and separable. Consequently, by solving 
equations, we find that  

0( ) rtS t S e  

let us suppose that there may be deposits or withdrawals in addition to the accrual of 
interest, dividends, or capital gains. If we assume that the deposits or withdrawals 
take place at a constant rate k, 

dS rS k
dt

   
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where k is positive for deposits and negative for withdrawals. 

       The differential equation is linear with the integrating factor rte , so its general 
solution is 

( ) ( / )rtS t ce k r   

where cis an arbitrary constant. To satisfy the initial condition, we must choos
0 ( / )c S k r  Thus the solution of the initial value problem  

     0( ) ( / )( 1)rt rtS t S e k r e    (Boyce and Diprima, 2001)

    

        Example 4.4.1: If $150 is deposited in a bank that pays 15 %
2

 annual interest 

compounded continuously. The value of account after t  years is 

0.055( ) 150 tS t e  

        What is the value of the account  after 10t  years? (Boyce and Diprima, 2001). 

        Analytical Solution 4.4.1: Note that it’s necessary to write the interest rate as 
decimal; thus 0.055  . If we substitute 10t   then we have 

0.55(10) 150 $259.98795S e   (Boyce and Diprima 2001). 

 Numerical Solution 4.4.2: The interest rate is analytically found after 10 years.  
Using numerical methods, we divide into 100 parts and some spesific points are  
shown below. 
 
 

 

nt  

Euler 

(h=0.1) 

Heun 

(h=0.1) 

Runge-
Kutta  

order 2 

(h=0.1) 

Runge-
Kutta  

order 4 

(h=0.1) 

 

exactS  

2 167.39125 167.44162 167.44162 167.44171 167.44171 
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4 186.79888 186.91130 186.91130 186.91151 186.91151 

6 208.45665 208.64487 208.64487 208.64522 208.64522 

8 232.62546 232.90557 232.90557 232.90608 232.90608 

10 259.59645 259.98723 259.98723 259.98795 259.98795 

Figure 4.4.1.1: The table of approximations for Example 4.4.1 

        Here, we realize that RK4 again approximates to the exact value. Euler 
approximates further than the other methods. RK2 and Heun give the same results. 

 

nt  

Euler 

(errror max.) 

Heun 

(error max) 

Runge-Kutta 
order 2 

(error max) 

Runge-Kutta 
order 4 

(error max) 

2 0.05046 0.00009 0.00009 0 

4 0.11263 0.00021 0.00021 0 

6 0.18857 0.00035 0.00035 0 

8 0.28062 0.00051 0.00051 0 

10 0.39150 0.00072 0.00072 0 

Figure 4.4.1.2 The table of error analysis for Example 4.4.1 

        Since we have the suitable step size, we get better approximations for each 
method. We have 0.15058% for Euler. On the other hand, we have 0.00028% for 
Heun and RK2 and we get the exact solution with RK4. 

        Example 4.4.2: A person places $5000 in an account that accrues interest 
compounded continuously. Assuming no additional deposits or withdrawals how 
much will be in the account after seven years if the interest rate is a constant 8.5 
percent for the first four years and a constant for the last three years? (Trench, 2001) 
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       Analytical Solution: Let ( )S t denote the balance in the account at any time t  
.Initially, (0) 5000S   for the first four years 0.085k  . Therefore 

0.085 0dS S
dt

   

        Its solution is  

0.085( ) tS t ce  for 0 4t  . 

        At 0t  , (0) 5000S  which when substituted into the equation yields  

0.085(0)5000 ce c   

       Therefore 

0.085( ) 5000 tS t e  

       Substituting 4t   into the equation, we find the balance after four years to be 

0.085(4)(4) 5000 5000(1.404948) $7024.74S e    

       This amount also represents the beginning balance for the last three-year period. 

       Over the last three years, the interest rate is 9.25 percent and the equation 
becomes  

0.095 0dS S
dt

   

       Its solution is  

0.0925( ) tS t ce  

       At 4t  , (4) 7024.74S  , which when substituted into the equation yields  
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0.0925(4)7024.74 (1.447735)ce c   

or 

4852.23c   

and the equation becomes  

0.0925( ) 4852.23 tS t e  

       Substituting 7t   into the equation we find the balance after seven years to be 

0.0925(7)(7) 4852.23 4852.23(1.910758) $9271.44S e   (Trench, 2001).   

       Numerical Solution 4.4.2: In this example, we show the balance after 7 years, 
dividing into 70 parts. In this question we only show the point that we want to search 
for. 

 

nt  

Euler 

(h=0.1) 

Heun 

(h=0.1) 

Runge-
Kutta 

 order 2 

(h=0.1) 

Runge-
Kutta order 

4 

(h=0.1) 

 

exactS  

7 9259.61644 9271.39890 9271.39890 9271.43533 

 

9271.43709 

Figure 4.4.2.1: The table of approximations for Example 4.4.2 

We see that we have closer approximation with RK4. Heun and RK2 give the same 
results while Euler is further. 

 

nt  

Euler 

(errror max.) 

Heun  

(error max) 

Runge-Kutta 
order 2 

(error max) 

Runge-Kutta 
order 4 

(error max) 
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7 11.82065 0.03819 0.03819 0.00176 

Figure 4.4.2.2: The table of error analysis for Example 4.4.2 

       The percentage error that we have 1.11788% for Euler, 0.00716% for Heun and 
RK2 and 0.00000013%  for RK4.. 

       Example 4.4.3: Suppose that one opens an individual retirement account  at age 
25 and makes annual investments of $2000 thereafter in a continuous manner. 
Assuming a rate of return of 8%, what will be the balance in individual retirement 
account at age 65? (Trench, 2001) 

       Analytical Solution 4.4.3: The information about the problem gives us  0 0S  , 

r = 0.08, and k = $2000 and the question asks to determine S(40). Therefore from the 
solution of the initial value problem, we have   

0.08 2000dS S
dt

   

        Using the solution of initial value problem we have 

0.082000( ) 0 ( 1)
0.08

tS t e    

        If we use 40t  ,  

3.2(40) 25000( 1) $588313.25493S e    (Trench, 2001). 

       Numerical Solution 4.4.3: After solving the problem analytically, let us now 
execute the given numerical methods. We deal with the money at age 65. Now the 
person is at age 25. Therefore 40 parts are enough for approximations which means 
h=1. 
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nt  

Euler 

(h=1) 

Heun 

(h=1) 

Runge-Kutta 
order 2 

(h=1) 

Runge-Kutta 
order 4 

(h=1) 

 

exactS  

35 28973.12493 30593.82070 30593.82070 30638.50900 30638.52321 

45 91523.92860 98626.91601 98626.91601 98825.74734 98825.81061 

55 226566.42223 249915.70410 249915.70410 250579.19831 250579.40952 

65 518113.03742 586344.57448 586344.57448 588312.62819 588313.25493 

Figure 4.4.3.1: The table of approximations for Example 4.4.3 

       According to the approximations of numerical methods we have the percentage 
error 11.93246% for Euler, 0.33463% for Heun and RK2  and 0.00011% for RK4. 

 

nt  

Euler 

(errror max.) 

Heun 

(error max) 

Runge-Kutta 
order 2 

(error max) 

Runge-Kutta 
order 4 

(error max) 

35 1665.39828 44.70251 44.70251 0.014214 

45 7301.88201 198.89460 198.89460 0.06327 

55 24012.98729 663.70541 663.70541 0.21120 

65 70200.21751 1968.68044 1968.68044 0.62673 

Figure 4.4.3.2: The table of error analysis for Example 4.4.3 

From Figure 4.4.3.1 and 4..4.3.2 we have the closest approximation with RK4. Euler 
has great error comparing with other methods. We observe that the step size is not 
enough small to get accurate approximation. Therefore we decrease the step size. 
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nt  

Euler 

(h=0.01) 

Heun 

(h=0.01) 

Runge-Kutta 
order 2 

(h=0.01) 

Runge-Kutta 
order 4 

(h=0.01) 

 

exactS  

35 30620.73122 30638.51847 30638.51847 30638.52321 30638.52321 

45 98746.62966 98825.78949 98825.78949 98825.81061 98825.81061 

55 250315.12111 250579.33901 250579.33901 250579.40952 250579.40952 

65 587529.13408 588313.04571 588313.04571 588313.25493 588313.25493 

Figure 4.4.3.3: The table of approximation with different step size h=0.01 

        From Figure 4.4.3.3 we conclude that for this example, the step size should be 
chosen h=0.01 for RK4. Because we get the exact value with RK4. However as we 
expect, this step size is still not enough for other methods. We should decrease the 
step size more. 

       4.5  Growth and Decay Problems 

      In certain problems, there can be lots of models. Population growth, nuclei decay, 
bacterial growth or decay  are some of these situations. One of the most common 
mathematical models for a physical process is the exponential model. 

      The rate at which a quantity changes is a known function of the amount present 
and/or the time and it is desired to find quantity itself. If x  denotes the amount of the 

quantity present at time t , then dx
dt

 denotes the rate at which the quantity changes. 

      Let x  be the amount of present after t  years. Since that is proportional to the 
amount present we have  

dx kx
dt

  

where k is a constant of proportionality (Ross, 2004).     



 
 

87 
 

       The solution of this differential equation can be obtained as  ( ) ktx t Ce . If the 
initial value  0 0( )x t x  then the solution for the initial value problem is 0( )

0
k t tx x e  . 

We say that a quantity satisfies this equation grows exponentially if  0k  or decays 
exponentially if 0k   (Ross, 2004).   

      Example 4.5.1: A radioactive substance has a half-life of 1620 years. If its mass 
is now 4grams, how much will be left 810 years from now? (Trench, 2001).  

      Remark: The half-life   of a radioactive material is defined to be the time 
required for half of its mass to decay; that is if 0 0( )x t x , then  

0
0( )

2
xx t    

      Since the radioactive materials decays at a rate prportional to the mass of the 
material present 0k  . Therefore the initial value problem can be modelled as 

0( )
0

k t tx x e   

       If 0t t   is equivalent to 0
0 2

k xx e    then 1
2

ke   . 

       Taking logarithms yields  

1ln ln 2
2

k     

       So the half-life is 1 ln 2
k

  . 

      The half-life is independent of 0t  and 0x , since it is determined by the properties 

of material, not by the amount of the material present at any particular time. (Trench, 
2001) 

      Analytical Solution 4.5.1: From the given information, we can say that 0 0t   
and 0 4x  . Therefore the solution of the initial value problem can be reduced to 
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4 ktx e  

where we determine k  from with 1620   years 

ln 2 ln 2
1620

k
r

   

      Substituting this into the equation we have 

( ln 2)/16204 tx e  

      Therefore the mass after 810 years will be  

(810ln 2)/1620 ( n2)/2(810) 4 4 3.44106lx e e    g  (Trench, 2001).                                                  

       Numerical Solution 4.5.1: The numerical approximations of  mass for a 
radioactive substance are given below. Here we choose h=10. 

 

nt  

Euler 

(h=10) 

Heun 

(h=10) 

Runge-Kutta  

order 2 

(h=10) 

Runge-Kutta  

order 4 

(h=10) 

 

exactx  

250 3.81427 3.81444 3.81444 3.81444 3.81444 

500 3.63716 3.63749 3.63749 3.63749 3.63749 

750 3.46828 3.46875 3.46875 3.46875 3.46875 

810 3.42893 3.42943 3.42943 3.42943 3.42943 

Figure 4.5.1.1: The table of approximations for Example 4.5.1 

      According to Figure 4.5.1.1, although the step size is chosen as h=10, we get 
closer approximations for each method as expected. Heun, RK2 and RK4 give the 
same results. They have the exact value but Euler is the only one method that has 
different approximations with 0.01458% percentage error. 
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nt  

Euler 

(errror max.) 

Heun 

(error max) 

Runge-Kutta 
order 2 

(error max) 

Runge-Kutta 
order 4 

(error max) 

250 0.00017 0 0 0 

500 0.00033 0 0 0 

750 0.00047 0 0 0 

810 0.0005 0 0 0 

Figure 4.5.1.2: The table of error analysis for Example 4.5.2 

   Even though Euler can not get the exact value in this problem. We note that percent 
error is very small for Euler. 

      Example 4.5.2: The population x  of a certain city satisfies the logistic law 

2
8

1 1
100 (10)

dx x x
dt

   

where time t  is measuredin years. Given that the population of this city is 100000  in 
1980. Determine what will the population be in 2000? Assuming the differential 
equation 1980t  , how large will the population ultimately be? (Ross,  2004)  

      Analytical Solution 4.5.2: We must solve the seperable equation according to the 
initial condition (1980) 100000x  .  

       Seperating the variables we have 

2 8 2(10) (10)
dx dt

x x  


 

       Using partial fractions, this becomes 
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6

6
1 (10)100

1 (10)
dx dt

x x





 
   

 

       Integrating and assuming 60 (10)x  , we obtain 

6
1100 ln ln 1 (10)x x t c        

and hence  

26

1ln
1 (10) 100

x t c
x

 
   

 

       Thus we find  

/100
61 (10)

tx ce
x 


 

       Solving this for x , we finally obtain  

/100

6 /1001 (10)

t

t

cex
ce


 

       Now applying the initial condition, we have 

19.8
5

6 19.8(10)
1 (10)

ce
ce


 

       From which we  obtain 

5 6

19.8 5 6 19.8

(10) (10)
[1 (10) (10) ] 9

c
e e 


 

        Substituting c  into the equation we have 

6

19.8 /100

(10)
1 9 tx

e 

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        This gives the population x  as a function of time for 1980t  . 

        If we let 2000t  , we obtain 

6

0.2

(10) 119.495
1 9

x
e 


 

       The other question asks how large the population ultimately be, assuming the 
differential equation applies for all 1980t  , we find  

6
6

19.8 /100

(10)lim lim (10) 1000000
1 9 tt t

x
e  

  


 (Ross, 2004).     

Numerical Solution 4.5.2: Now, we will calculate the numerical values for the 
population problem that is given above assuming that h=1. 

 

nt  

Euler 

(h=1) 

Heun 

(h=1) 

Runge-Kutta 
order 2 

(h=1) 

Runge-Kutta 
order 4 

(h=1) 

 

exactx  

5 104572.32943 104590.80466 104590.81174 104590.86083 104590.86083 

10 109328.54923 109366.75445 109366.76947 109366.87039 109366.87039 

15 114273.72962 114332.94346 114332.96736 114333.12284 114333.12284 

20 119412.86479 119494.38520 119494.41898 119494.63171 119494.63171 

Figure 4.5.2.1: The table of approximations for Example 4.5.2 

        We still see that Heun and RK2 give the same results for 5 decimal places. Also 
in Figure 4.2.1.1, we see that RK4 give the same results as in the exact value. The 
percentage error 0.06843% for Euler, 0.00021% for Heun and RK2. 

 

nt  

Euler 

(errror max.) 

Heun 

(error max) 

Runge-Kutta 
order 2 

Runge-Kutta 
order 4 



 
 

92 
 

(error max) (error max) 

5 18.5314 0.05617 0.04909 0 

10 38.32116 0.11594 0.10092 0 

15 59.39322 0.17938 0.15548 0 

20 81.76692 0.24651 0.21273 0 

Figure 4.5.2.2: The table of error analysis for Example 4.5.2 

      Figure 4.5.2.2 shows that RK4 gives the exact solution for 5 decimal places. It 
means the best method for this example is RK4. 

      The other part of the question asks how the population ultimately be. Therefore 
we need to approximate to infinity. Executing all the given methods we have a table 
as below 

 

nt  

Euler 

(h=1) 

Heun 

(h=1) 

Runge-Kutta 
order 2 

(h=1) 

Runge-Kutta 
order 4 

(h=1) 

 

exactx  

  999999.99999 999999.99999 999999.99999 999999.99999 1000000 

Figure 4.5.2.3: The table of approximations when t   

       We see that each method approximates the same for 5 decimal places when 
t  .Their percentage error is same and numerically equal to 9.99995972e-10%. 

       Example 4.5.3: Suppose that ( ) ktP t Ce  is the population of a colony of bacteria 

at time t  that the population at time 0t   (hours,h) was 1000 , and that the 
population doubled after 1 h. What is the predicted number of bacteria at time 1.5
(Edwards and Penney, 1996).   
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       Analytical Solution 4.5.3: We know that the time rate of change of a population 
( )P t  can be modelled as  

dP kP
dt

  

        Addititional information gives us  

0(0) 1000P Ce C    and (1) 2000 kP Ce   

        It follows that 1000C  and 2ke   so ln 2 0.693147k   . With this value of k  
the differential equation is  

(ln 2) (0.693147)dP P P
dt

   

       Substitution of ln 2k   and 1000C  yields the solution 

(ln2)( ) 1000. 1000.2t tP t e   

       We can use this solution to predict future populations of bacteria colonfy. (1.5)P  

is one of these prediction that can be found as 

                                    3/2(1.5) 1000.2 2828.42712P   (Edwards and Penney, 1996). 

         Numerical Solution 4.5.3: In this example, choosing h=0.5, we calculate the 
numerical approximations and show these approximations for three spesific points. 

 

nt  

Euler 

(h=0.5) 

Heun 

(h=0.5) 

Runge-Kutta  

order 2 

(h=0.5) 

Runge-Kutta  

order 4 

(h=0.5) 

 

exactP  

0.5 1346.5735 1406.63009 1406.63009 1414.16924 1414.21356 

1 1813.26019 1978.60822 1978.60823 1999.87463 2000 

1.5 2441.68812 2783.16988 2783.16988 2828.16118 2828.42712 

Figure 4.5.3.1: The table of numerical approximations for Example 4.5.3 
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        From Figure 4.5.3.1, we note that RK2 and Heun have the same approximations 
there are big differences on approximations of  Euler, Heun and RK4.   

 

nt  

Euler 

(errror max.) 

Heun 

(error max) 

Runge-Kutta 
order 2 

(error max) 

Runge-Kutta 
order 4 

(error max) 

0.5 67.64006 7.58346 7.58346 0.04432 

1 186.73980 21.39177 21.39177 0.12537 

1.5 386.73900 45.25724 45.25724 0.26594 

Figure 4.5.3.2: The table of error analysis for Example 4.5.3 

        Figure 4.5.3.2 shows that we have the percentage error 13.67329% for Euler 
which means it is really far from the exact solution, however the percentage error is 
1.60009% for Heun and RK2 and 0.00940% for RK4 

         Now, we change the step size except for RK4 and assume that h=0.01.  

 

nt  

Euler 

(h=0.01) 

Heun 

(h=0.01) 

Runge-
Kutta  

order 2 

(h=0.01) 

Runge-
Kutta 

order 4 

(h=0.5) 

 

exactP  

0.5 1412.52360 1414.20953 1414.20953 1414.16924 1414.21356 

1 1995.22291 1999.98860 1999.98860 1999.87463 2000 

1.5 2818.29945 2828.40293 2828.40293 2828.16118 2828.42712 

Figure 4.5.3.3: The table of comparison with different step size h=0.01 

        According to Figure 4.5.3.3 Euler with h=0.01 still does not converge as RK4. 
However RK2 and Heun approximately converges as RK4. 
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nt  

Euler 

(h=0.001) 

Heun 

(h=0.001) 

Runge-
Kutta  

order 2 

(h=0.001) 

Runge-
Kutta 

 order 4 

(h=0.1) 

 

exactP  

0.5 1414.04366 1414.21340 1414.21340 1414.21335 1414.21356 

1 1999.51947 1999.99953 1999.99953 1999.99939 2000 

1.5 2827.40782 2828.42612 2828.42612 2828.42582 2828.42712 

Figure 4.5.3.4: The table of comparison with different step size h=0.001 

        From Figure 4.5.3.4, we observe that Heun and RK2 give better approximation 
than RK4 for the specified step size however Euler is still not closer as much as the 
others. 

        The examples end up here. Until now, we got some results and we also made 
comparisons between the methods. In the following section, we will mention these 
conclusions and comparisons. 
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5 CONCLUSION 

 In this section, we will evaluate the results of the fourth section. In the 
examples of Section 4, we solved the application of first order ordinary differential 
equations analytically and numerically by the given methods in Section 3.1 and 
Section 3.2. The solutions help us to make comparison between methods. These 
comparisons give us the evaluations below. 

 In numerical results, we observe that the error depends on the step size. 
Decreasing the step size and increasing the step numbers give more accurate 
approximation. 

 Euler’s Method is deficient comparing with the other methods, when the step 
size is large. In some cases, we reached to the error 13% with Euler. Therefore if 
Euler method will be chosen,  then the step size would decrease as much as possible. 
In the example that we have most step numbers, we get the error 0.04% with Euler 
but we should remember that increasement of the step number causes more and more 
execution time.  

 Heun and Second-Order Runge-Kutta Method usually give the same results. 
This is an expectation considering that Heun is an example of Second-Order Runge-
Kutta Method. However in some cases their results are different. It is related to the 
chose of a Second-Order Runge-Kutta method. Heun is an example of Second-Order 
Runge-Kutta Method but it is not the best one. Therefore if another Second-Order 
Runge-Kutta method different than Heun give more accurate solution, we used that 
one. 

  In some problems, we approximated to infinity. In these situations, all 
methods with same step size give the same results and same error but the execution 
time can differ. 

 Fourth-Order Runge-Kutta is the most efficient one considering the step size 
and correspondingly execution time. We get very close approximation in 7 problems 
Moreover, we get the exact value in 8 problems. We get the error 0.08% at most.  
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 According to approximations with different step size, we observed that Fourth-
Order Runge-Kutta generally needs a hundred times less step size than Heun and 
Second-Order Runge-Kutta. On the other hand, Euler generally needs more than one 
hundred step size in order to catch the Fourth-Order Runge-Kutta Method 
approximation. 

 In conclusion, our main aim is to make comparison between numerical 
methods. While making this comparison we discover that step size is an important 
factor in order to get efficient the numerical approximation to the problem. Changing 
the step size, we evaluate the results. This results shows that decreasing the step size 
provides to get better approximation for each method. We also observe that the order 
is very important for numerical approximations. Therefore Fourth-Order Runge-Kutta 
method give the best approximation for the applications of first-order ordinary 
differential equations. Finally, we can conclude that the more we increase the order, 
the more we get accurate approximation. 
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