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ABSTRACT 

 

CARDIAC ARRHYTMIA ANALYSIS OF ECG USING HIGHER 

ORDER SPECTRA 

Ibrahim ABDULLAHI Karaye 

Msc. Electrical and Electronics Engineering 

Supervisor: Ass. Prof. Dr. Nalan Özkurt 

June 2014 

In developed countries every year hundred thousands of people die as a result 

of cardiac attack. The ECG is a biosignal which contains the most important 

information of diseases affecting the heart. Heart rate variability (HRV) 

analysis is an important instrument used to detect the ability of the heart to 

respond to normal regulatory impulses that affect its rhythm. Computer based 

algorithm for analysis of cardiac states is very reliable and efficient tool in 

diagnostics and management of arrhythmias. 

The theory of nonlinear dynamic system provides some new methods to handle 

complex system. Like many biosignals, ECG signals are nonlinear in nature, 

Higher order spectral analysis (HOS) is known to be a very good tool for the 

analysis of nonlinear systems and produce a good noise immunity. Thus in this 

thesis, HOS analysis of HRV signals of normal heart rate, right bundle branch 

block, paced beat, left bundle branch block and atrial premature beats have 

been studied in order to reveal the complex dynamics of electrocardiography 

(ECG) signals using the tools of nonlinear systems theory. Some of the general 

characteristics for each of these classes in the bispectrum and bicoherence plot 

for visual observation have been presented.  For the extraction of the R-R 

intervals, well known Pan-Tompkins algorithm has been used and three higher 

order statistical parameters of skewness, kurtosis and variance from these 

intervals have been computed. These features with statistical parameters fed 

into artificial neural network classifier (ANN) and obtained an average 

accuracy of 94.9%. The highest ten peaks of the cross-section of bicoherence 
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amplitude with their corresponding frequencies were then extracted as another 

set of features and fed to ANN and obtained an average accuracy of 92%. 

Finally, principal component analysis (PCA) has been applied to bicoherence 

peaks and the reduced features are fed to k nearest neighbors (KNN) search 

algorithm for classification. An average accuracy of 98.3% which gives a 

better result compared to the one using ANN with more features has been 

obtained. 

Keywords: Arrhythmias, Higher order spectra, ECG, ANN, PCA, HRV and 

nonlinear system.  
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ÖZET 

 

YÜKSEK DERECELİ İZGE TEKNİKLERİ İLE EKG İŞARETLERİNİN 

RİTM BOZUKLUĞU ANALİZİ 

Ibrahim ABDULLAHI Karaye 

Elektrik ve Elektronik Mühendisliği Yüksek Lisans 

Danışman: Yard.Doç. Dr. Nalan Özkurt 

Haziran 2014 

Gelişmiş ülkelerde her yıl binlerce insan kalp krizi sonucu hayatını 

kaybetmektedir. EKG kalbi etkileyen birçok hastalık ile ilgili en önemli 

bilgileri içeren bir biyosinyaldir. Kalp hızı değişkenliği (KHD) analizi kalbin 

ritmini etkileyen normal düzenleyici dürtülere karşı tepkisini inceleyen önemli 

bir araçtır. Ritm bozukluklarının tanı ve kontrolünde kalp işaretlerini inceleyen  

bilgisayar tabanlı yöntemler oldukça güvenilir ve verimli araçlar olarak 

karşımıza çıkmaktadır. 

Doğrusal olmayan dinamik sistemler teorisinde karmaşık sistemlerin analizi 

için birçok yeni yöntem bulunmaktadır. Birçok biyosinyal gibi EKG işareti de 

doğrusal değildir ve yüksek dereceli izge analizi (YDİA) yöntemlerinin 

doğrusal olmayan sistemlerin analizinde çok iyi bir yöntem olduğu ve 

gürültüye karşı dayanıklılığının da yüksek olduğu bilinmektedir. Bu nedenle, 

bu tezde normal, sağ dal bloğu, kalp pilli, sol dal bloğu ve atriyal prematüre 

atım KHD işaretlerinin karmaşık dinamiklerinin açıklanabilmesi için doğrusal 

olmayan sistem teorisi araçlarından YDİA yöntemleriyle analizi üzerine 

çalışılmıştır. Bu sınıfların ikiz izge ve ikiz eşfaz çizimlerindeki genel 

karakteristikleri görsel karşılaştırma için sunulmuştur. R-R aralıklarının 

belirlenmesi için Pan-Tompkins algoritması kullanılmış, bu özniteliklerin 

yüksek dereceli istatistiksel parametreleri olan çarpıklık, basıklık ve 

varyansları hesaplanmıştır. Bu öznitelikler yapay sinir ağı ile sınıflandırılmış 

ve %94.9 ortalama doğruluk oranı elde edilmiştir. İkiz eşfaz eğrilerinin 

kesitlerinin en büyük on tepesinin genlik ve frekanslarından elde edilen 
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özniteliklerin yapay sinir ağlarıyla sınıflandırılmasının ardından ise %92 

ortalama doğruluk elde edilmiştir.  Son olarak ikiz eşfaz tepeleri özniteliklerine 

temel bileşen analizi yapılarak veri boyutu azaltılmış ve k-en yakın komşuluk 

algoritması ile sınıflandırılmıştır. Bu sınıflandırıcı %98.3 doğrulukla yapay 

sinir ağlarına göre daha iyi bir başarım sağlamıştır. 

Anahtar Kelimeler: Ritm bozuklukları, yüksek dereceli izge, EKG, yapay sinir 

ağları, temel bileşen analizi, KHD ve doğrusal olmayan sistemler 
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CHAPTER 1 

 INTRODUCTION 

 

Computer technology has an important role in structuring biological systems. 

The explosive growth of high performance computing techniques in recent 

years, with regard to the development of good and accurate models of 

biological systems, has contributed significantly to new approaches of 

fundamental problems of modeling linear and nonlinear behaviors of biological 

systems. 

 A complex system like cardiovascular system cannot be linear in nature and 

by considering it as a nonlinear system, can lead to better understanding of the 

system dynamics. Recent studies have also stressed the importance of 

nonlinear techniques to study HRV in issues related to both health and 

diseases.  

 

The progress made in the field using measures of chaos has attracted the 

scientific community to apply these tools in studying physiological systems, 

and ECG is no exception. 

 

A great deal of attention has been focused recently on the extraction of 

dynamical information from chaotic time series (Broomhead et al, 1986; Simm 

et al, 1987; Denker et al, 1986). Chaos is the state in which a nonlinear 

dynamical system exhibits bounded motion, with exponential sensitivity to 

initial conditions, in that initially neighboring state of a chaotic system diverges 

exponentially as the system evolves forward in time (Guckenheimer et al, 

1983). 

 

Recently, the nonlinear techniques have been used to analyze physiological 

signals: heart rate, nerve activity, renal blood flow, arterial pressure, EEG and 

respiratory signals (Kannathal et al, 2004; Acharya et al, 2004; Garrat et al, 

2003; Yuru et al, 2004). To investigate the time-varying spectral characteristics 
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of the underlying process, most of the methods often begin by computing the 

time variation of the common statistical properties of the process (Roberto et 

al, 1995; Kaplan, 1999; Laurent et al, 1998).  However, these methods all 

assume that piecewise first-order or second-order stationarity is satisfied for 

each segment of the observation after segmentation.   

 

In practice, many medical signals show significant nonlinear and non-Gaussian 

characteristics, such as the presence of nonlinear effects of phase coupling 

among the signal frequency component (Shan et al, 2000; Ning, 1993; Ning et 

al, 1990; Husur et al, 1997). The methods based on lower order statistics or 

spectral analysis fail to deal with the nonlinearity and non-Gaussianity of the 

processes, but higher-order spectral techniques (HOS) allow us to effectively 

process these signals to obtain their higher order statistics.  

 

For many decades correlation and power spectrum have been primary tools for 

digital signal processing applications in the biomedical field. The information 

contained in the power spectrum is essentially that of the autocorrelation 

sequence, which is sufficient for complete statistical descriptions of Gaussian 

signals of known means.  

 

However, there are practical situations where one needs to look beyond 

autocorrelation of a signal to extract information regarding deviation from 

Gaussianity and the presence of phase relations. Higher order spectral 

techniques, also known as polyspectra, are spectral representations of higher 

order statistics, i.e. moments and cumulants of third order and beyond. HOS 

can detect deviation from linearity, stationarity and non Gaussianity from the 

signal. Most of the biomedical signals are non-linear, non-stationary and non-

Gaussian in nature and therefore it can be advantageous to analyze them with 

HOS compared to the use of second order correlations and power spectra.  

 

 

HOS have been applied to many applications such as in oceanography 

(Hasselman et al, 1963), 1D pattern recognition (Chadran et al, 1991b; Chadran 
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et al, 1991a), chaotic signal characterization (Chadran et al, 1993b), array 

signal processing (El-Jaroudi et al, 1994), telecommunication (El-Khamy et  al, 

1995), ultrasound image processing (Abeyratne et  al, 1997), detection of 

mines from sonar images (Chadran et  al, 2002), study of machine faults (Jang 

et al, 2004), speaker verification (Chadran et al, 2004), recognition of viruses 

from electron microscopic images (Ong et al, 2005), termite detection (La Rosa 

et al, 2007), analysis of bio signals like the ECG (Khadra et al. 2005) and 

identification of cardiac ischemia (Rama et al. 2012). Rama Valupadasu in his 

work has identified the difference between cardiac ischemia and the normal 

heart rate beat. In which he found the higher order statistical parameters of the 

normal and compare it with the ischemic patient, and conclude that the phase 

correlation of a normal person is low while that of ischemic person is high. 

 

The use of non-linear features motivated by higher order spectra (HOS) has 

been reported to be a promising approach to analyze the non-linear 

characteristics of the bio signals. Thus, in this work, the applications of Higher 

order spectral (HOS) for ECG signals have been discussed.  

 

 

1.1 Motivation 

Electrocardiography (ECG) has a basic role in cardiology since it consists of 

effective simple non-invasive low cost procedure for the diagnosis of cardiac 

disorders that have high epidemiological incidence and a very relevant for their 

impact on patient life and social cost. Cardiac rhythm disturbances are 

considered to lead to life threatening conditions. Thus the detection of 

abnormalities in intensive care patients is very essential and critical. 

 

Recently, a lot of researches have been done for automating the abnormality 

detection applying various engineering methods and non-conventional 

techniques, especially in the scenario of continues monitoring of ECG in 

intensive care units (ICU’s). Computer and automatic analysis of ECG and 

abnormality detection is very helpful, as it will be an aid to the cardiologist in 
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the absence of the doctor. It will also help the doctor to diagnose and prescribe 

faster in case of emergency conditions. 

 

Designing a low cost, high performance, simple to use and portable devices for 

ECG offering a diagnostic feature seems to be a global pursuit. Such 

equipment should embed and integrate several techniques of data analysis such 

as signal processing, pattern recognition and detection, decision support and 

human computer interactions. Thus computerized methods are to be used for 

detection and classification of abnormalities.   

 

Therefore, in this study, a cardiac arrhythmia analysis method which may be 

used for a wearable ECG analysis system has been proposed by using higher 

order statistical methods.    

 

1.2 Objectives and Contributions 

The present work is to perform nonlinear time series analysis on ECG and use 

of classification techniques such as neural networks, k-neighbors etc. to 

classify and model the signals. The milestones achieved in this work are 

 To establish an appropriate and relevant set of HOS features to detect various 

cardiac abnormalities from the ECG signals. 

 To use different classifiers for classification of the ECG for the abnormalities 

based on the features chosen. 

 To propose unique HOS plots for different cardiac arrhythmias and normal that 

could aid visual interpretation. 

The contributions derived from this work are summarized below: 

 A new set of features based on HOS and statistics were used for the different 

cardiac arrhythmias. 

 Evaluation of features extracted using HOS analysis techniques for detection of 

cardiac abnormalities. 
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1.3 Outline of Thesis 

The outline of this report is as follows: 

Chapter 1 gives the background of what the thesis intended to achieve and 

some literature reviews about the methods used in the arrhythmia 

classification. 

 Chapter 2 gives brief explanations of the physiological anatomy of the heart 

and the arrhythmias used in this work. 

Chapter 3 gives the general discussion about the ECG signal; its leads, 

acquisitions, steps in its analysis and QRS detection technique used in the 

thesis. 

Chapter 4 describes the higher order spectral technique, its estimation, the 

statistical features, bispectrum and bicoherence plots. 

Chapter 5 describes the results obtained from this work and compares it with 

other similar works. 

Chapter 6 gives the summary, conclusion and the future works. 
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CHAPTER 2 

 PHYSIOLOGICAL BACKGROUND 

 

In order to understand the function of the heart and heart diseases well, basic 

knowledge of the functional anatomy of the heart is necessary. In this chapter, 

a general overview of the heart circulatory system, the conduction system of 

the heart, the heart rate variability concept, heart problems, and the brief 

information about the four arrhythmias used in this study with their related 

literature will be given. 

2.1 The Circulatory System 

The circulatory system carries nourishment and oxygen (O2) to, and waste and 

carbon dioxide (CO2) from, the tissues and organs of the body. The system can 

be considered as a closed loop hydraulic system (Webster, 1998). 

2.1.1 Elementary Circulatory System 

The simplified form of the human circulatory system is shown in Fig. 2.1. The 

heart can be considered as a pump to move blood through vessels called 

arteries and veins. Blood is carried away from the heart in arteries and is 

brought back to the heart in veins.  
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                                        Fig 2.1.The circulatory system of the heart (Webster, 1998) 

When blood is circulated through the body, it carries O2 and nutrients to the 

organs and tissues and returns carrying CO2 to be excreted through the lungs 

and various waste products to be excreted through the kidneys. The 

deoxygenated blood is returned to the right side of the heart via the venous 

system. 

                    2.2 The Heart 

The rate at which the heart beats in the absence of neurohumoral (nerve 

chemical) influences is referred to as the intrinsic heart rate. In heart transplant 

patients, the SA node - and hence the heart as a unit - cycles close to an 

intrinsic rate of 90-95 beats per minute (bpm). However, in a normal healthy 

individual, the beating of the heart is modulated to a slower rate by the 

influence of extrinsic nervous influence on the SA and AV nodes by the 

autonomic nervous system (ANS). Other factors such as temperature change 

and tissue stretch may also influence the discharge frequency of the SA node 

although autonomic control is the principal controller (Cooper, Lei, Cheng, & 

Kohl, 2000). In addition, during atria pacing autonomic neural activity 
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associated with respiration and blood pressure appears to dynamically 

modulate AV conduction with respiratory effects predominating at low heart 

rates and blood pressure effects at high heart rates (Warner & Loeb, 1986). The 

quantity of blood pumped by the heart (cardiac output) may be considered as 

the product of heart rate and stroke volume. Therefore, cardiac activity is 

related to both regulation of pacemaker activity and myocardial performance, 

with heart rate being regulated mainly by the ANS. However, baroreceptor, 

chemoreceptor, pulmonary inflation, atrial receptor (Bainbridge) and 

ventricular receptor reflexes can also regulate heart rate (Berne & Levy, 1997). 

Figure 2.2 below, shows the basic structure of the heart and the direction of 

flows of blood as well as the connected blood vessels. There are four valves in 

the human heart. The valves between the right atrium and the right ventricle are 

known as the tricuspid valve. It gets its name from the fact that it is formed of 

three cusp-shaped flaps of tissue arranged so that they will shut off and block 

passages of blood in the reverse direction(from ventricles back to atrium). The 

second valve which is between the right ventricle and the pulmonary artery is 

named for its shape: Semilunar (half moon) valve. It prevents reverse flow 

(regurgitation) of blood from the pulmonary artery to the right ventricle. Then, 

blood returning to the heart from the lungs must pass through the left atrium 

and the mitral valve (also known as a bicuspid valve for its shape) to the left 

ventricle. The last valve is the aortic-valve. Its shape is similar to the 

pulmonary valve and prevents regurgitation of blood from the aorta back to the 

left ventricle (Webster, 1998). 
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                                      Fig 2.2 The direction of blood flow in the heart (Webster, 1998) 

The heart serves as a pump because of its ability to contract under electrical 

stimulus. When an electrical triggering signal is received, the heart will 

contract, starting in the atria, which undergo a shallow, ripple-like contracting 

motion. A fraction of a second later, the ventricles also begin to contract, from 

the bottom up, in a motion that resembles wringing out a dishrag or sponge. 

The ventricular contraction is known as systole and the ventricular relaxation is 

known as diastole.     

2.2.1 Electroconduction System of the Heart  

The conduction system of the heart (Fig. 2.3) consists of the sinoatrial (SA) 

node, bundle of His, atrioventricular (AV) node, the bundle branches, and 

Purkinje fibers. 
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                                      Figure 2.3 Conduction system of the heart (Webster, 1993). 

The SA node serves as a pacemaker for the heart, and it provides the trigger 

signal. It is a small bundle of cells located on the rear wall of the right atrium, 

just below the point where superior vena cava is attached. The SA node fires 

electrical impulses through the bioelectric mechanism. It is capable of self-

excitation (firing on its own).  

When the SA node discharges a pulse, the electrical current spreads across the 

atria, causing them to contract. Blood in the atria is forced by the contraction 

through the valves to the ventricles.  

There is a band of specialized tissue between the SA node and the AV node, 

however, in which the velocity of propagation is faster than it is in atrial tissue. 

This internal conduction pathway carries the signal to the ventricles. 

It would not be desirable for the ventricles to contract in response to an action 

potential before the atria are empty of their contents. A delay is needed, 

therefore, to prevent such an occurrence; this is the function of the AV node. 

The action potential will reach the AV node 30 to 50 ms after the SA node 
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discharges, but another 110 ms will pass before the pulse is transmitted from 

the AV node. The AV node operates like a delay line to retard the advance of 

the action potential along the internal electro conduction system toward the 

ventricles.  

Conduction into the bundle branches is rapid, consuming only another 60 ms to 

reach the furthest Purkinje fibers. The muscle cells of the ventricles are 

actually excited by the Purkinje fibers. The action potential travels along these 

fibers at a much faster rate, on the order of 2 to 4 m/s. The fibers are arranged 

in two bundles, one branch to the left and one to the right.  

 

2.3 Heart Problems 

The physician uses the ECG and other tests to determine the gross condition of 

the heart. Although a complete discussion of heart problems is beyond the 

scope of this work, some of the more common problems are discussed below in 

generalized terms.  

The heart is a muscle and must be per-fused with blood to keep it healthy. 

Blood is supplied to the heart through the coronary arteries that branch off 

from the aorta just before it joins the heart. If an artery bringing blood to the 

heart becomes partially or totally blocked off, the area of the heart served by 

that vessel will suffer damage from the loss of the blood flow. That area of the 

heart is said to be infarcted and is dysfunctional. This type of damage is 

referred to as a myocardial infarction, another term for heart attack. 

Another class of heart problem is cardiac arrhythmias. These are abnormal 

heartbeat rhythms and may be seen as ECG changes. Conditions under this 

classification include extremes in heart rate, premature contractions, heart 

block, and fibrillation.  

The human heart rate varies normally over a range of 60-110 beats/min (bpm). 

Rates, faster than this, are called tachycardia. Various authorities list slightly 

different figures as the threshold for defined tachycardia, but most list 120 

bpm, with the range being 110 to 130 bpm.  



12 

 

The opposite condition, when a heart rate is too slow, is called bradycardia, and 

again different sources list slightly different thresholds, but all are within the 

40- to 60-beats/min range.  

 

2.3.1 Normal Heart ECG 

A normal heart beat is said to occur when a P wave exist for every QRS 

complex and each P wave is the same distance from the QRS complex-less 

than 0.20 seconds,  all QRS complexes are the same size and shape and point 

in the same direction. Each QRS is the same distance from the T waves and the 

QRS, the duration is 0.10seconds or less. Heart rate will be varying in the 

range of 60-100 beats/minutes and is rhythmic. 

2.3.2 Right Bundle Branch Block (RBBB) 

Bundle branch block is a condition in which there's a delay or obstruction 

along the pathway that electrical impulses travel to make your heart beat. The 

delay or blockage may occur on the pathway that sends electrical impulses to 

the left or the right side of your heart. When the activation of the right 

ventricle is delayed, which causes the right ventricle to contract later than 

the left ventricle then is referred to right bundle block. A RBBB has the 

following wave form characteristics: 

 A complete RBBB has a QRS of 0.12sec or more  

 It has a prolonged right ventricular activation time or QR interval of 

0.03sec or more in V1-V2 

 The delayed right ventricular activation produces a secondary R wave (R’) 

in the right precordial leads (V1-3) and a wide, slurred S wave in the 

lateral leads  

 Delayed activation of the right ventricle also gives rise to secondary 

repolarization abnormalities, with ST depression and T wave inversion in 

the right precordial leads.  

http://en.wikipedia.org/wiki/Left_ventricle
http://en.wikipedia.org/wiki/Left_ventricle
http://en.wikipedia.org/wiki/Right_ventricle
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 If the QRS duration is between 0.10sec and 0.11sec then it is incomplete 

RBBB 

 

2.3.3 Left Bundle Branch Block (LBBB) 

In this condition, activation of the left ventricle is delayed, which causes the 

left ventricle to contract later than the right ventricle. It has the following 

characteristics: 

 A complete LBBB has a QRS of greater than 0.12sec  

 Normally the septum is activated from left to right, producing small Q waves 

in the lateral leads.  

 As the ventricles are activated sequentially (right, then left) rather than 

simultaneously, this produces a broad or notched (‘M’-shaped) R wave in the 

lateral leads.  

 

2.3.4 The Paced Beat 

This is an artificial beat from a device called pacemaker. A pacemaker is a 

treatment for dangerously slow start beats, without treatment, a slow heart beat 

can lead to weakness, confusion, dizziness, fainting, shortness of breath and 

death. Slow heart beat can be the result of metabolic abnormalities or occur as 

a result of blocked arteries to the heart conduction system. This conduction can 

often be treated and a normal heart beat can resume. Slow heart beat can also 

be a side effect to a certain medications in which case discontinuation of the 

medicine or a reduction in dose may correct the problem. The paced beat has 

the following features: 

 A Normal pacemaker rhythm can result in absent pacing activity, irregular 

pacing and absence of pacing spikes. 

 Ventricular pacing spikes follow each P wave, most easily seen in V3-V6 
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 Tiny pacing spikes are also visible in I, aVR and V1.  

 There is presumably an underlying complete heart block or high –grade 2nd 

degree AV block, as the native P waves do not capture the ventricles. 

  

2.3.5 The Atrial Premature Beat (APB) 

Premature contractions occur when an area of the heart becomes irritable 

enough to produce a spurious action potential at a time between normal beats. 

The action potential spreads across the myocardium in much the same manner 

as the regular discharge. Beats occurring at improper times are called ectopic 

beats. If it results in atrial contraction, then it is an atrial premature contraction 

(APC), and if in the ventricle, a ventricular premature contraction (VPC), and 

both the two can be referred to as atria premature beats. It has the following 

characteristics: 

 They are premature 

 They are ectopic 

 They are narrow complexes 

 There is a compensatory pause after the PAC  

 An abnormal (non-sinus) P wave is followed by a QRS complex.  
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CHAPTER 3 

ECG PREPROCESSING TECHNIQUES 

3.1 General Overview 

Over the past four decades, analysis of electrocardiogram (ECG) has been one 

of the major research interests in biomedical signal processing. One reason for 

this is the growth in the cardiac health care activities all over the world, and the 

other is the rapid advance in digital computer technology. Computers in 

medical care essentially mimic the clinician in the detection of disease states 

from bio-signals. Computers also prove to be a more reliable replacement of 

clinician in applications involving routine and tiresome work, such as patient 

monitoring in intensive coronary care unit (ICCU) or processing of large 

amount of information as in (Holter,1961). Quantitative assessment and 

diagnostic results is very helpful in clinical therapy, as subjective 

interpretations are prone to a wide range of inconsistencies and inaccuracies. 

Thus, in areas heavily dependent upon quantitative assessment, accuracy and 

speed, computer based analysis is very useful in diagnostics. The advances 

made in the fields of electrocardiography, sonography, imaging, laser 

technology and many others have given a new dimension to health care in the 

20th century and have a bigger role to play in the coming years. 

 

3.2 Electrocardiography 

The electrocardiogram deals with the electrical activity of the heart. The action 

potential generated in the SA node stimulates the muscles fibers of the 

myocardium, causing them to contract. When the muscles are in contraction, it 

is shorter, and the volume of the ventricular chamber is less, so blood is 

squeezed out. The contraction of so many muscles cells at one time creates a 

mass electrical signal that can be detected by placing sensors at the limb 

extremities of the subject. This electrical discharge can be mathematically 

plotted as a function of time, and the resultant waveform is referred to as the 

electrocardiogram (ECG). 
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Figure 3.1 below shows ECG waveform of a healthy individual. 

 

 

Figure 3.1 ECG waveform of a healthy individual (J. Malmivauo et al; 1995) 

3.2.1 Leads 

The ECG is recorded on electrocardiographic leads. The term “lead” refers to a 

measurement configuration of electrodes. Three bipolar limb leads of the 

frontal plane are connected between limbs (Fig. 3.2). Taking lead I as an 

example, the negative terminal electrode is connected to the right arm (RA) 

and the positive terminal electrode to the left arm (LA). These three limb leads 

constitute Einthoven’s triangle. If any two of the three electrocardiographic 

leads are known, the third one can be determined mathematically from the first 

two (Einthoven’s law). The other three unipolar frontal leads are aVR (on the 

right arm), aVL (on the left arm) and aVF (on the foot), which are usually 

called augmented unipolar leads, measuring the potential difference on a limb 
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with respect to a reference point formed by the two resistors between the 

electrodes on the other two limbs (Fig. 3.2). 

 

 

Fig.3.2 Directions of standard limb lead vectors (J. Malmivuo et al, 1995) 

 

Fig.3.3 (a), (b), (c) Connections of electrodes for the augmented limb leads, (d) Vector 
diagram showing the       directions of limb lead vectors in the frontal plane (J. Malmivuo 
et al; 1995) 

The six precordial leads, VI-V6, are unipolar and measure the cardiac vector 

projection on the horizontal plane (Fig. 3.3). These precordial leads are 

measured with respect to the Wilson’s central terminal, which is formed by a 
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three-resistor network in Fig. 3.3, yielding an average of right and left arms and 

left leg. 

 

 

Fig.3.4 (a) Positions of precordial leads on the chest wall, (b) Directions of precordial 
lead vectors in the    transverse plane (J. Malmivauo et al; 1995) 

In order to use the surface ECG to diagnose abnormalities, it is important to 

know the normal characteristics of the ECG. A sample of a normal 12 lead 

ECG (10 s strip, paper speed 25 mm/s) is demonstrated in Fig. 3.2. For a 

normal ECG, typical P wave duration is less than 0.11 s (equivalent to 2.75 

mm measured on the above figure), and the morphology does not include any 

notches or peaks. The P wave is normally positive in leads I, II, aVF, V4 and 

V6, and negative in aVR. It can be positive, negative, or biphasic in all other 

leads. The QRS complex duration is normally less than 0.12 s, and the 

morphology differs in different leads. In some leads there exist downward 

deflections of Q and S waves, and a large upward deflection of R wave in 

between as shown in Fig. 3.3. The normal morphology of the T wave is 

rounded and asymmetrical. It is positive in leads I, II, V3 and V6, and negative 

in aVR. The polarity may vary in leads III, V1 and V2. Typically the P-R 

interval is 0.18-0.2s, and R-R interval is 0.6-1.0s (Yanowitz, 2006).  
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                                      Figure 3.5 Example of 12-lead ECG record (J. Malmivauo et al; 1995) 

3.2.2 Data Acquisition 

The source of ECG’s signal in this thesis is obtained from the MIT-BIH 

Arrhythmia database, which is a set of over 4000 long term Holter recordings 

were obtained from in patients. The database contains 23 records (numbered 

from 100 to 124 inclusive with some numbers missing) chosen at random from 

this set, and 25 records (numbered from 200 to 234 inclusive, again with some 

numbers missing) selected from the set to include a variety of rare but 

clinically important phenomena that would not be well-represented by a small 

sample of Holter recordings. Each of the 48 records is slightly over 30 minutes 

long. 

Records in the second group were chosen to include complex ventricular, 

junctional, and supraventricular arrhythmia and conduction abnormalities. 

Several of these records were selected because of the rhythm, QRS 

morphology variation, or signal quality might be expected to present 

significant difficulty to arrhythmia detector; these records have gained 

considerable notoriety among database users. The subject was 25 men aged 32 

to 89 years, and 22 women aged 23 to 89 years (Mark, 1992). In this work we 

used ECG records of 100,101,102,111,118 and 232 from the database.   
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3.2.3 Steps in ECG Analysis 

The major steps in the analysis of ECG signals are: 

 Noise elimination from ECG using noise filtering techniques. 

 Cardiac cycle detection by detecting QRS complex. 

 Detection of significant characteristics point in ECG signal. 

 Formulation of characteristics features set. 

Noise filter removes and reduces the noise components from various sources 

in the ECG signal. 

Cardiac cycle detection involves detecting the QRS complex peak 

corresponding to each beat. QRS complex detection algorithm (Pan,et, al, 

1985). 

ECG characteristics point detection involves determining of significant 

points in the ECG for feature extraction; it includes the detection of QRS 

complex onset and offset, ST segment and T peak detections. 

Feature set formulation includes formulation and selection of characteristics 

features such that they significantly relate to the abnormalities. Additional 

features are extracted by performing complexity analysis on the signal. 

 

3.3 Signal Pre-processing 

Signal processing can be defined as the manipulation of a signal for the 

purpose of extracting information from the signal or producing an alternative 

representation of the signal. There are numerous specific motivations for signal 

processing, but many fall into following three categories. First is to remove 

unwanted signal components that are corrupting the signal of interest. Second 

is to extract information by rendering it in a more obvious or more useful form 

and third is to predict future values of the signal in order to anticipate the 

behavior of its source. 
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This thesis, at signal pre-processing step is focused on noise removal and after 

this step processing of the signal will continue with QRS detection and feature 

extraction steps. ECG beat detection systems have to be designed in a way that 

they are capable of working in a noisy hospital environment. ECG signal is 

normally corrupted with different types of noise. 

 

To obtain useful information from raw signals, they are first processed to 

remove the noise. Although our system will not be working on real time patient 

recorded signals, the ECG data that got from MIT-BIH database may also 

contain some noise (Figure 3.6) so we also have to pre-process the signal and 

remove the noise. 

 

 

 

 

 

 

 

 

 

                                        Figure 3.6: A Section of noisy ECG Records Obtained from MIT-BIH Database 

 

The ECG consists of three basic waves, P, QRS and T. These waves 

correspond to the field induced by specific electrical phenomena on the cardiac 

surface, namely the atrial depolarization (P wave), the ventricular 

depolarization (QRS complex) and the ventricular re-polarization (T wave). 

The ECG does not look the same in all leads of the standard 12 leads system 

used in clinical practice. The polarity and the shape of the ECG constituents’ 

waves are different depending on the lead that is used. 
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In a normal cardiac cycle, the P wave occurs first, followed by the QRS 

complex and then the T wave .The sections of the ECG between the waves and 

complexes are called segments. The ECG is characterized by three segments 

namely; the PR segment, The ST segment and the TP segment. The 

characteristics time period in the ECG are the PR interval, the RT interval and 

the R-R interval. 

Usually ECG signals are contaminated by various kind of noise. Various types 

of noise that are contaminating the ECG signals are discussed below: 

 Power line interference: This noise consists of 60/50 Hz pickup and harmonics 

that can be modeled as sinusoids and combination of sinusoids. According to 

Friensel et al (Friensel et al; 1990), the frequency content of this kind of noise 

is 60/50 Hz with harmonics and the amplitude is 50% of peak-to-peak ECG 

amplitude. 

 Electrode contact noise: This is a transient interference caused by loss of 

contact between the electrode and the skin, which can be permanent or 

intermittent. The switching action can result in large artifacts since the ECG 

signal is usually capacitive coupled to the system. This type of noise can be 

modeled as a randomly occurring rapid baseline transition that decays 

exponentially to the baseline and has a superimposed 60Hz component. 

According to Friensel et al (Friensel et al; 1990), the duration of the noise 

signal is 1sec and the amplitude is the maximum recorded output with the 

frequency of 60Hz. 

 Motion artifact: This is transient baseline changes in the electrode skin 

impedances with electrode motion. The shape of the baseline disturbance 

caused by the motion artifacts can be assumed to be biphasic signal resembling 

one cycle of a sine wave. The peak amplitude and duration of the artifacts are 

variables. The duration of this kind of signal is 100-500ms with amplitude of 

500% peak-to-peak ECG amplitude. 

 Muscle contraction: This noise caused artifact millivolt level potentials to be 

generated. They can be assumed to be transient bursts of zero mean, bond 
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limited Gaussian noise. The variance of the distribution may be estimated from 

the variation and duration of the bursts. The standard deviation of this kind of 

noise is about 10% of the peak-to-peak ECG amplitude, with duration of 50ms 

and the frequency content being DC and up to 10 KHz. 

 Baseline wander: This noise causes problems in the detection of ECG peaks. 

For example, due to the wander, the T peak could be higher than R peak, and it 

is detected as an R instead. Low frequency wander of the ECG signal can be 

caused by respiration or movement of patients. The drift of the base line with 

respiration can be represented as a sinusoidal component and the frequency of 

the respiration added to the ECG signal. The variation could be reproduced by 

amplitude modulation of the ECG by the sinusoidal component that is added to 

the base line. The amplitude is 15% of the peak-to-peak ECG amplitude and 

the base line variations is 15% of ECG amplitude at 0.15 to 0.3 Hz. The noise 

artifacts should be removed from ECG before extracting the characteristics 

features. Noise removal is accomplished by passing the cardiovascular signal 

through a filter whose cut off frequency is a function of the noise frequency.  

3.4 Noise Filtering Technique 

To remove unwanted noise from raw ECG signals four levels of filtering is 

applied to ECG records; DC component removing, 10 point moving average 

(low pass) filter, derivative based (high pass) filter and a comb filter. 

3.4.1 Removing DC Components in ECG Signal 

As it can be clearly seen from Figure 3.6, ECG signals taken from MIT-BIH 

database contain baseline (sections of ECG where there is no electrical activity 

of heart) amplitudes higher than zero. In this step by subtracting the mean of 

the signal from itself, the unwanted dc component is removed and the signal 

baseline amplitude is pulled back to level zero. 

 ECGSignal=ECGSignal-mean(ECGSignal)              (3.1) 
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3.4.2 Removing Low Frequency and High Frequency Noise 

ECG data used for the system contains low and high frequency noise 

components that may be caused by the sources explained in the previous pages. 

Before the design of the software both frequency domain and time domain 

filters were tested for noise removal. It is observed that time domain filters 

provide better noise removal on the signals obtained from MIT-BIH database 

than frequency domain filters (Butterworth filters in our case). Because of this 

and since most of the noise present in the database is random noise, time 

domain filters were chosen to filter unwanted high and low frequency noise. 

To remove high frequency random noise, mostly caused by patients muscle 

contractions during recording, from the ECG signals a 10 point moving 

average (low pass) filter (Figure 3.7) which passes low frequencies but 

attenuates high frequencies chosen and the signals are filtered by using matlab 

filter function. 

                                 B=(1/10)*ones(1,10) A=1; 

                        

                             ECGSignal=filter(B,A,ECGSignal)   (3.2) 
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                                     Figure 3.7: Low Pass Filter 

 

After the removal of high frequency noise from the signal next step is to 

remove low frequency noise components. This low frequency noise shows 

itself as baseline wandering that is caused mostly by the respiration of the 

patient. To remove this low frequency noise, a derivative based (high pass) 

filter (Figure 3.8) that passes high frequencies but attenuates low frequencies 

used. 

B=(1/1.0025)*[1 -1]; 

A=[1 -0.995]; 

ECGSignal=filter(B,A,ECGSignal)                                               (3.3) 

 

                                                         Figure 3.8: High Pass Filter 
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3.4.3 Removing 60Hz Power Line Interference 

Power line interference is a noise caused by the electricity current flowing in 

wires and power lines. Power line interference that is present in our ECG 

signals consists of 60Hz pickup and harmonics. Since frequency of 60Hz 

overlaps with our ECG signal frequency range we have to suppress only 60Hz 

frequency components and its harmonics without disturbing the frequencies 

around. To achieve this, comb filter (Figure 3.9) is used and 60Hz power line 

interference with its harmonics is removed from the ECG signals. Comb filter 

is a band-stop filter which attenuates a certain band of frequencies and their 

harmonics. 

B=conv([1 1],[0.6310 -0.2149 0.1512 -0.1288 0.1227 -0.1288 0.1512 -0.2149 

0.6310]); 

A=1; 

ECGSignal=filter (B,A,ECGSignal)      (3.4)                                                                              

 

 

                                                       Figure 3.9 Comb. Filter                      

 

All of the above steps are applied to all training and testing ECG record and 

filtered ECG signals (Figure 4.0.) are obtained ready for the next QRS 

detection step. 
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                                                Figure 4.0: Sample filtered ECG signal after preprocessing 

 

3.5 QRS Detection 

As mentioned before in previous chapter, the QRS complex is the most striking 

waveform within the ECG. Since it reflects the electrical activity within the 

heart during the ventricular contraction, the time of its occurrence as well as its 

shape provide much information about the current state of the heart. Due to its 

characteristic shape it serves as an entry point for classification scheme of 

cardiac cycle. In that sense, QRS detection provides the fundamentals for 

almost all automated ECG analysis algorithm. To supporting this, previous 

researchers (Ozbay Y. And Karlik B., 2001) proved that taking samples as 

feature values in the intervals of R-R are very effective in representing the 

class of those ECG waves (one cardiac cycle) cardiac condition. Apart from 

this, since the 5 ECG class records, each representing a different cardiac 

condition, used for training and testing in this thesis are 1 minute long (each 

containing 60-90 ECG waveform), in order to separate each waveform (we 

need to do this because cardiologist classify cardiac conditions by looking at 

single ECG waveforms (cardiac cycles), not by looking at whole record) and 
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find how many waveforms each record contain, therefore, we also need to 

detect the QRS complexes. 

There are many different QRS detection techniques but this thesis is focused on 

well known and acceptable QRS detection using Pan-Tompkins algorithm (Pan 

J and Tompkins WJ., 1985). Pan and Tompkins proposed a real-time QRS 

detection algorithm based on analysis of the slope, amplitude and width of 

QRS complexes. The algorithm includes a series of methods that perform 

derivative, squaring, integration, adaptive threshold and search procedures. 

 

3.5.1 Derivative Operator 

The derivative procedure suppresses the low-frequency components of the P 

and T waves, and provides a large gain to the high-frequency components 

arising from the high slopes of the QRS complex. Derivative operation is 

implemented in Matlab by using diff function which finds the differences 

between the adjacent values in the signal. 

                           Derivative=diff(ECGSignal)                                        (3.5) 

 

3.5.2 Squaring Operation 

The squaring operation makes the result positive and emphasizes large 

differences resulting from QRS complexes; the small differences arising from 

P and T waves are suppressed. QRS complex is further enhanced. Squaring 

operation is implemented simply by multiplying the signal by itself in Matlab. 

                           Squaring=derivative.*derivative                                  (3.6) 

3.5.3 Integration 

The output of a derivative based operation may contain multiple peaks within 

the duration of a single QRS complex. A moving window integrator is applied 

to perform smoothing of the output of the preceding operations so that multiple 

peaks are avoided. This step is performed in Matlab by using medfilt1 function 

and a window width of 54 is found to be suitable for sampling frequency 

360Hz. 
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Window = ones[1,54]; Integration= 

medfilt1(filter(window,1,squaring),10);                                                (3.7)                                      

 

3.5.4 Thresholding 

Maximum value of the signal that had passed from above steps is taken and 

multiplied by a threshold percentage value. This is done because the output of 

preceding operations may contain noise peaks. These noise peaks do not have 

as large amplitude as R peaks but if we take all the peaks present in the output 

of above steps as R peaks then noise peaks will also be classified as R peaks 

(QRS complexes). So by taking a certain percentage of the highest peak 

amplitude as a threshold we avoid this. Different values for threshold 

percentage were tested and value 0.2 found to be suitable for removing noise 

peaks in our signals. This threshold value is used for searching R peak in 

search procedures. 

Maxvalue = max (integration) 

threshold=maxvalue*0.2                                                                   (3.8)                                                                                          

 

3.5.5 Search Procedures for QRS (Location of R Peaks) 

In the last step of QRS detection, regions of the output signal, of the preceding 

steps, that is above the threshold value is found. Starting and ending locations 

of each region is recorded. Then each specific region is again searched on the 

original ECG signal for a maximum value which represents the exact R peak of 

that wave. Locations of all R peaks are then recorded and the QRS searching 

algorithm is finalized (Figure 4.1). 

position_region=integration>threshold 

left=find(diff([0 position_region])==1) 

right=find(diff([position_region 0])==-1) 

for i=1:length(left) 

[maxvalue(i) maxlocation(i)]=max(ECGSignal(left(i):right(i))) 
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end                                                                                                                                            

                                                   Figure 4.1: ECG signal with R peaks detected 
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CHAPTER 4 

HIGHER ORDER SPECTRA TECHNIQUES 

 

4.1 Introduction 

Higher order spectra (HOS) techniques were first applied to real signal 

processing problems in 1970s, and since then they have continued to expand 

into different fields such as plasma physics, optics, speech and biomedicine. 

The estimation of power spectrum of discrete-time deterministic or stochastic 

signals is one of the most fundamental and useful tools in digital signal 

processing. The use of power spectrum spreads across radar, sonar, 

communications, speech, biomedical, geophysical and other data processing 

systems. In power spectral estimation, the signal under consideration is 

processed in such a way that the distribution of power among its frequency 

components is estimated. As such, phase relations between frequency 

components are suppressed. The information contained in the power spectrum 

is essentially that which is present in the autocorrelation sequence; and is 

sufficient to describe a Gaussian signal completely. HOS offers some unique 

features that make it more advantageous for use in some applications. Some of 

the motivations behind the use of higher order spectra in signal processing are 

as in (Chua.2010) are as follows: 

i. HOS of non-Gaussian linear processes contains both amplitude and phase 

information. They have been used for time-series modeling, and identification 

of non-minimum phase and non causal systems. These applications include 

signal reconstruction from speckle images, seismic de-convolution and channel 

equalization. 

ii. The HOS of Gaussian signal is statistically zero. Thus, HOS can be used to 

measure non-Gaussianity and to separate additive mixtures of independent 

non-Gaussian signal and Gaussian noise. This feature can be exploited to detect 
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and classify non Gaussian signals and provide high noise immunity in 

application where the signal source is corrupted with Gaussian noise. 

iii. A general non-linear system can be modeled using Nth-order Volterra 

processor (Schetza, 1980). HOS is able to detect and characterized the non-

linear properties of mechanism which generate time-series via phase relations 

of their harmonic components. 

iv. HOS are translation invariant because linear phase terms are cancelled in the 

products of Fourier coefficient that define them. Functions that can serve as 

feature for pattern recognition can be defined from higher order spectra that 

satisfy other desirable invariance properties such as scaling, amplification and 

rotation invariance. 

 

4 .2 Higher Order Spectra 

Higher order spectra are defined to be spectral representation of higher order 

cumulants of a random process. 

In this section, we introduce the definitions, some properties and computation 

of higher-order statistics, i.e., moments and cumulants, and their corresponding 

higher-order spectra. 

4.2.1 Moments 

 A random variable is a quantity whose values are random and to which a 

probability distribution is assigned. Formally, a random variable is measurable 

function from a sample space to the measurable space of possible values of the 

variable. 

As the term implies, the moment generating function should be able to generate 

all moments. For any random variable x, the moment generating function can 

be defined as the expectation of the transformation,                    

           

                  (4.1)  
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Moments can be obtained from the coefficients of the Taylor’s series 

expansion of the moment generating function about the origin, t=0 
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From the right hand side of equation 4.2, the first derivative gives the first 

order moment ; 

 

   
      

  
 

Substituting the           
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Where E is expected operator 

The second derivative gives the second-order moment 
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Similarly, the derivative of the third order moment is  

 

                   (4.5) 

 

And so on. Therefore we can write the moment generating function as  

 

          E[     
  

  
   

  

  
       

 

=1+t     
  

  
      

  

  
          



34 

 

 

=1+   +
  

  
   

  

  
         (4.6) 

 

The first order moment is the mean (        of the data series, x(k), which 

provides a measure of the location or the center of gravity of the probability 

density function (PDF) for an ergodic signal. The second order moment is the 

variance of the data series and gives the spread of the PDF, while the third-

order moment provides a measure of the skewness of the distribution and the 

fourth-order moment provide a measure of the flatness of the distribution. 

 

4.2.2 Cumulants 

 These are another set of statistical measure that can be used instead of 

moments because of their excellent noise suppressing properties. The cumulant 

generating function is defined as the logarithm of the moment generating 

function. That is for a random variable x the cumulant generating function is 

 

                     (4.7) 

 

Just as moments are derived from the Taylor’s series expansion of the moment 

generating function, cumulant can also be derived. But one can easily calculate 

cumulants as certain nonlinear combination of moments. The second, third and 

fourth-order cumulants are given (Nikias et al, 1993b). 
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                    (4.8) 

 

 

If the signal x(k) is zero mean  then the second and third-order cumulants are 

identical to second and third order moments respectively. If the process has 

non- zero mean, then the mean may be subtracted from its self and this is often 

the practice with estimation from finite records. However, to generate the 

fourth-order cumulant we need to have the knowledge of the fourth-order and 

second-order moments. i.e 

 

  
              

              
        

         

 

   
       

           
       

                        (4.9) 

 

 

In practice, because of the unique linear property of the second characteristic 

function working with cumulants and cumulant spectra instead of moments is 

more common and preferable in the case of stochastic signals. 

However, it is noteworthy that estimates of cumulants are obtained in practice 

after computing estimates of moment from time domain samples using their 

relationship. Besides, higher order spectra are often estimated directly in the 

spectral domain as expected values of higher order period gram. In cases where 

HOS are estimated in spectral domain, cumulants may not be calculated. 

Cumulant spectra can be obtained from moment spectra in the spectral domain 

through similar relationships (Billinger et al, 1967; Nikias et al, 1987; 

Chandran et al, 1994). 

Cumulants of the first three orders at zero lag are the well known parameters, 

variance, skewness and kurtosis used to describe probability density functions. 

 

By putting          into the equations above, we obtain; 

 

  
            

                                    (4.10) 
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                                      (4.11) 

 

  
              

      
                                      (4.12) 

 

The above three equations gives the variance, skewness and kurtosis measures 

in terms of cumulants at zero lags. 

 

Some of the properties of cumulants that any nth-order cumulants satisfy are 

i. Cumulants of scaled quantities are equal to the product of all the scale factors 

times the cumulants of the unscaled quantities. 

ii. Cumulants are symmetric in their arguments. i.e 

iii. Cumulants are additive in their arguments i.e. cumulants of sums of cumulant 

iv. Cumulants are blind to additive constant 

 

4.2.3 Bispectrum 

The method used for estimating the second-order spectrum or power spectrum 

can easily be extended to obtaining frequency domain counterparts of higher 

order cumulants. Hence the bispectrum is the frequency domain representation 

of the third-order cumulant. It ıs defined as 

                                                            (4.13) 

The above equation shows that the bispectrum is a complex quantity having 

both magnitude and phase. It can be plotted against two independent frequency 

variables f1 and f2, in a three dimensional plot.  

 

4.2.4 Bicoherence 

The bispectral estimates of bispectrum are asymptotically unbiased and the 

variance of the estimator depends on the second-order spectral properties 

(Hinich et.al, 1982). 

Since the estimates depends on signal energies in the bifrequency, the variance 

of the estimate will be higher at a frequency where the energy is high and 
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lower where the energy is low. This causes a serious problem in the estimation. 

This unsatisfactory property can be resolved in so many ways. One of which is 

the normalization. Hence, bicoherence is the normalization of the bispectrum to 

get a new measure whose variance is independent of the signal energy. 

 

4.3 Estimation of Higher Order Spectra 

In practice, even if the underlying process is random and continuous, digital 

computations require discrete or sampled data and the data available are of 

finite length. Just like the power spectra, there are two main approaches that 

can be used to estimate higher order spectra (Nikias et al, 1993b): the 

conventional non-parametric method (or “Fourier type”) and the parametric 

approach. In this research we use the non-parametric approach.  In this 

approach, the Matlab based higher order spectral analysis tool box (HOSA) 

which consist of various functions to estimate HOS both in parametric and 

non-parametric methods, as well as some utility functions for various test and 

measurement was used for computing both the amplitude and their 

corresponding frequencies. 

The main estimation parameters that need to be chosen for bispectral analysis 

are the same parameters as required for second-order spectral analysis.  

Examples include the choice of window function, data length, data segment 

length, length of Fourier transform, and overlapping or non-overlapping 

windows (Fackrell, 1996). The above mention parameters were chosen as 

follows; 

Choice of window function: In spectral analysis, the use of a window function 

is very common. The main reason for using a window is to solve the problem 

of spectral leakage that occurs between neighboring frequencies channels of a 

peak. Spectral leakage is the term used to describe the loss of power at a given 

frequency to other frequency bins in the DFT. Spectral leakage can be 

visualized from the spread of the frequency components. Each frequency 

component of a signal should contribute only to one single frequency of the 
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Fourier transform called a FFT bin, but spectral leakage causes the energy to be 

spread to the neighboring frequencies. The window function controls the 

spreading. The contribution from any real frequency component to a given FFT 

bin is weighted by the amplitude of the window function’s frequency spectrum 

centered at the FFT bin.  

 

The performances of three window functions have been compared in Fackrell 

(1996) and it has been shown that the Hamming window was the most 

successful among them to best resolve the peak. The Hanning window 

Stand next to the Hamming window in terms of peak resolution. Hence we 

choose the Hanning window because it is the default window in the HOSA tool 

box. 

 

Choice of data length and segment length: It is well known that bispectral 

estimates generally have higher variance than power spectral estimates for a 

given data length. The data length that is sufficient for reliable power spectrum 

estimation may not be sufficient for good bispectral estimation. Elgar and Guza 

(1988) reported empirical results for mean and variance of bicoherence 

estimates. Hinich (1982) suggested that if no frequency domain smoothing is 

used, the data should be segmented in a way such that the number of segments 

of data should be at least as large as the DFT size, i.e. K ≥ M. However, this 

may not be achievable and therefore it may be impractical to implement 

bicoherence in real-life applications. The bottom line is that the number of data 

segments used in the bicoherence should be sufficient to have asymptotically 

unbiased and consistent estimation as well as to keep a good frequency 

resolution. In practical bispectral analysis, the length of data required depends 

on signal-to-noise ratio. 

 

Choice of Fourier transform length: In choosing the Fourier transform 

length, we need to consider how the bicoherence peak changes with SNR and 

segment length. When the SNR is very high, the bicoherence will be close to 

unity, but when it decreases, the bicoherence value also decreases. The size of 

the peak of the bicoherence is dependent on the segment length, because as the 
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FFT size increases a better frequency resolution is obtained. Therefore it is 

desirable to have the FFT as large as possible. However, this requirement 

conflicts with the requirement of having a large number of data segments, to 

obtain reliable estimate. It also increases the computational load as shown in 

figure 4.1 and 4.2 below .The FFT length is usually chosen to be the same as 

each segment length. In order to increase the number of data segment for a 

better estimate, a certain amount of overlapping of data segments (e.g 50% or 

less) can be allowed for data sets having short length.  

 

 

 

 

 

 

                                              Figure 4.1   3-D bicoherence plot with an FFT of 2048 
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                                          Figure 4.2 3-D bicoherence plot with an FFT of 512 

 

 

4.5 Statistical Variables 

In this thesis, the higher order statistical parameters used as features are the 

skewness, kurtosis and variance. A brief explanation of each one of them is 

given below: 

Skewness: is the third mean and is a measure of the asymmetry of the 

processes. For symmetric distribution skewness is identically zero. 

Kurtosis: is the fourth moment about the mean and is related to the degree of 

flatness of a distribution near its center. For Gaussian distribution, the value of 

kurtosis is 3. The values of more than 3 are indicating that the probability 

density function (PDF) is more peaked around its center than a Gaussian 

distribution. 

Variance:  is the measure of the spread of the data from the mean.  
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4.6 Classifiers 

4.6.1 Artificial Neural Network 

One of the classifiers used in this analysis is the artificial neural network 

(ANN), which is biologically inspired network that are useful in application 

areas such as pattern recognition, classification etc. The decision making 

process of the ANN is holistic, based on the features of input patterns. 

Typically, multilayer feed forward neural network can be trained as non-linear 

classifier using generalized back propagation algorithm (BPA) (Haykin et,al. 

1995). The BPA is a supervised learning algorithm, in which a mean square 

error function is defined, and the learning process aims to reduce the overall 

system error to a minimum. The connection weights are randomly assigned at 

the beginning and progressively modified to reduce the overall system error. 

The weight updating starts with the output layer and progressing backward. 

For effective training, it is desirable that the training data set be uniformly 

spread throughout the class domains. The available data can be used iteratively, 

until the error function is reduced to a minimum. 

The ANN used for classification in this work is shown in Fig. 4.6. The input 

layer is determined based on the features used at a particular classification, but 

we fixed the hidden layer at 20 for the training and testing of all features with 

an output layer of 5. i.e from [1 0 0 0 0 ] to [0 0 0 0 1].    The advantage of the 

ANN classifier using the proposed features is its simplicity and ease of 

implementation. 

 

      Fig.4.3 The feedforward neural network 
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4.6.2 K-Nearest Neighborhood Search 

The knn search technique and knn-based algorithm are widely used as 

benchmark learning rules. The relative simplicity of the knn search technique 

makes it easy to compare the results from other classification to knn result. 

They have been used in various areas such as bioinformatics, image processing 

and compression among others. Given a set of data X of n points and a distance 

function D, k-nearest neighborhood (KNN) search allows you to find the k 

closest points in X to a query point or set of points. 

But one of the problem with machine learning is the ‘curse for high 

dimensionality’ when there are too many attributes in the input as in this case, 

many of the machine learning algorithm will be very inefficient or some of 

them will be even non performing. Principal component analysis is a technique 

that can be used to solve this problem without much loss of information in the 

data. PCA selects the attribute that are later dependent on each other and from 

them a smaller subset of independent variable may be derived and still be very 

useful to describe the data characteristics. 

Given a set described by a set of numerical variables                   the 

goal of principal component analysis is to describe this data set with a smaller 

set of new, synthetic variables. These variables will be linear combinations of 

the original variables, and are called PCA. PCA will lead to some loss of 

information.  However, PCA operates in a way that makes this loss minimal. 

The steps of PCA are as follows: 

1. For a given input data                      obtain the mean of the data.  

       . 

2. Compute the covariance matrix;                   
 . 

3. From the covariance matrix, the eigenvectors and eigenvalues are being 

calculated using the characteristics equation;  det (         

4. Project the data to the lower dimension subspace by taking the dot product 

between the given data and principal component (PCs) from the eigenvectors. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

5.0 Method 

The ECG signal was analyzed using different higher order spectra (also known 

as polyspectra) that are spectral representation of higher order moments or 

cumulants of a signal. In particular, this work studied the features related to the 

third order statistics of the signal, namely the bispectrum and bicoherence           

(normalized bispectrum), and then the skewness, kurtosis and variance related 

to these higher order statistics were computed. 

The methods employed in this work are as follows:  

 Feature Extraction and Classification for Statistical Parameters  

 The statistical features have been extracted from each  R-T interval  

 In the normal signal we have 366 samples, in rbbb 373, in paced 357, in lbbb 

337 and 296 in Apb. 

 The total samples been 1729  was used to find the statistical features 

  The higher order statistics parameters of skewness, kurtosis and variance of 

each sample were also computed and used as features. 

  The neural network was fed with 1729x3 for training samples and 640x3 for 

testing samples. 

 Feature Extraction and Classification for HOS  

 Bispectrum and bicoherence functions are calculated for 5 set of arrhythmias 

and 5 waveforms of ECG including several beats to obtain plots in higher 

resolution.    

 The cross-section of the bicoherence spectrum is obtained for those 25 

waveforms.  

 Then the location and magnitudes of 10 most significant peaks are calculated 

as another set of features with 25x20 samples and fed to the network. 
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 After observing that the result is not good enough, the number of samples for 

each disease is increased to 10 which make the size of features to 50x20. 

  Principal component analysis was applied to reduce the features to 35x11 for 

training and 15x11 for testing. 

 Knn-search algorithm was used for classification 

 

5.1 Result using Statistical Parameters 

We compute the higher order statistics parameters of skewness, kurtosis and 

variance at each of the 366 samples in normal, 373 Rbbb, 357 Paced, 337 Lbbb 

and 296 Apb each at the R-T interval to see the effect of the phase information. 

A total of 1729 x3 features were obtained and fed to the neural network for 

training and an average accuracy value of 96.6% was obtained for the 

classification. The neural network was then tested with 640 samples of which 

119 are normal, 140 are Rbbb, 144 paced, 131 lbbb and 106 Apb respectively. 

The tables below show the results of the testing. 

 

Table 5.1 (a) Confusion matrix for testing of statistical features 

Signal Normal Rbbb Paced Lbbb Apb 

Normal 101 0 1 0 0 

Rbbb 0 139 0 1 0 

Paced 1 1 127 32 6 

Lbbb 17 0 16 92 1 

Apb 0 0 0 6 99 
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Table 5.1(b) Table For the correctly and non correctly classified samples 

Signal/parameter TP FP TN FN 

Normal 101 18 520 1 

Rbbb 140 0 499 1 

Paced 127 17 458 39 

Lbbb 92 39 475 34 

Apb 99 7 528 6 

 

Table. 5.1 (c) Performance matrix for the testing of statistical features 

Parameters Normal Rbbb Paced Lbbb Apb  %Ave. 

Sensitivity% 99 99.3 76.5 73 94.3 88.4 

Specificity% 96.7 100 92 93.3 98.9 96.2 

Positive 

pre.% 

84.9 100 88.2 70.2 93.4 87.3 

Accuracy% 97 99.8 91.4 88.6 97.9 94.9 

 

As it can be observed from table 5.1 (c), the statistical features gives an 

acceptable accuracy with relatively low sensitivity of 88.4% and positive 

prediction value of 87.3%. 

5.2 Result using the Peaks of Bicoherence 

Two different classifiers are used to classify the peaks of the bicoherence in 

this section.  

First, the bispectrum and bicoherence were computed using HOSA toolbox 

with the FFT window  size of 512, wind size of 1 which is the same size as the 
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various signals size, segment size of 18 for each of the five signals and 50%  

overlap which is 256 have been used and the corresponding bicoherence values 

were computed. The resulting bispectrum magnitude plots for various types of 

deseases are shown in (figure 5.1(a)-5.5(a)) ,the bicoherence plots are shown in 

(figure5.1(b)-5.5(b)), the bicoherence selected peaks plot (figure5.1(c)-5.5(c)) 

and the 3-D plots are shown in (figure5.1(d)-5.5(d)).  

  

(a)                                                                                       

 

 

 (b) 
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(c) 

 

 

(d) 

Figure 5.1 a. Bispectrum, b. Bicoherence  c. Bicoherence selected peaks and d.3-D 
bicoherence plot for normal beat 

 

For the normal cases, the bispectrum magnitude plot exhibit peaks at lower 

frequencies Fig 5.1(a). The heart rate is varying continuously between 60-80 
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beats per minute (bpm). The bicoherence values appear to be scattered 

throughout the bi-frequency plane in a random manner except for a few peaks 

that are narrow-band. We can observe that the highest peak is at 2.76 with 

average value of 1.732 as in fig 5.1 (c). It is quite possible that the few peak 

values are related to the rate of breathing pattern. The fact that these peaks 

appear in the same vicinity in the number of the other plots supported this 

argument.  However, it can only be verified if there is a corresponding data on 

respiration. If this happened to be true, any nonlinearity in the data from the 

nature of the disease must be considered in comparison with effect of this 

nonlinearity. 

 

  

(a)                    
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                                             (b)                    

 

 

                   (c) 
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(d) 

Figure 5.2 a. Bispectrum, b. Bicoherence  c. Bicoherence selected peaks and d.3-D 
bicoherence plot for rbbb beat 

 

In the case of the Right bundle branch block, most of the peaks in the plots are 

at high frequency. The bicoherence values appear to be congested at the centre 

of the bifrequency plane and are more structured compare to normal.  Fig 

5.2(c) shows clearly how the bicoherence values are located with most of the 

values at lower level, with the average value been at 2.27.  
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                               (a) 

 

 

 

                                  (b) 
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      (c) 

 

 

(d) 

Figure 5.3 a. Bispectrum, b. Bicoherence  c. Bicoherence selected peaks and d.3-D 
bicoherence plot for Paced beat 
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In the paced beat, the bispectrum magnitude plot exhibits peaks at low 

frequency just as in normal beat, because sometimes the A-V node fails to send 

electrical signals rhythmically to the ventricles, which make the heart rate to 

remain low and even lead to complete heart block. The bicoherence plot 

indicates a spreading in the bifrequency plane with more peaks crowded at 

higher frequencies. Fig 5.3(c) shows how the bicoherence values are 

distributed, with the average been 1.98. 

  

    (a) 

 

                                                  (b) 
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(c) 

 

(d) 

Figure 5.4 a. Bispectrum, b. Bicoherence  c. Bicoherence selected peaks and d.3-D 
bicoherence plot for lbbb beat 

 

In the case of the left bundle branch block, the bispectrum shows peaks at 

higher frequencies, since the heart rate variation in Lbbb is high. The 

bicoherence plot indicates more structure than the normal case. Fig 5.4 (c) 
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shows that most of the bicoherence values are at higher frequencies, with the 

average been 2.94. 

 

  

      (a)                                                       

 

 

 (b) 
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(c)                                                                          

 

 

(d) 

Figure 5.5 a. Bispectrum, b. Bicoherence  c. Bicoherence selected peaks and d.3-D 
bicoherence plot for Apb beat 

For the atrial premature beat, since the beats are premature and is very close to 

the normal it exhibit peaks at lower frequencies in the bispectrum. In the 

bicoherence most of the values are scattered also as in normal. Fig. 5.5 (c) 
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shows that the values are more concentrated at the center because of the atrial 

depolarisation, with the average bicoherence value at 2.1 

From fig.5.1 through 5.5 we can see the difference between the normal and 

other arrythmias presented in the plots. The first 10 highest values of the 

bicoherence amplitude against their respective frequencies was used as another 

set of features, a 25x20 set of features was obtained and fed to neural network 

for training and 10x20 was use for testing the network and an average accuracy 

of  92% was obtained. 

Table 5.2(a) Confusion matrix for the testing of features derived from the 

peaks of bicoherence 

Signal Normal Rbbb Paced Lbbb Apb 

Normal 2 0 0 0 0 

Rbbb 0 2 0 0 0 

Paced 0 0 2 0 0 

Lbbb 0 0 0 0 0 

Apb 0 0 0 2 2 

 

5.2(b) Table For the correctly and non correctly classified samples 

Signal/parameter TP FP TN FN 

Normal 2 0 8 0 

Rbbb 2 0 8 0 

Paced 2 0 8 0 

Lbbb 0 2 8 0 

Apb 2 0 6 2 
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Table 5.2c Performance matrix for the testing of features derived from the 

peaks of bicoherence and classified with ANN 

 

 

5.3 Result with K-Nearest Neighborhood Search  

In applying the knn search to our  peaks set of features, we find out that we 

need more set of features in order to used this algorithm. Hence we developed 

a new set of samples from different signals and made our features for both 

training and testing to be a 50x20 matrix. After applying the principal 

component analysis we reduced the features to 11 from 20 and used 70% of the 

data for training which is 35x11while 30% was used for testing with 15x11 

features. The figure below shows how the knn-neighborhood of the five classes 

which shows that the classes are not discriminated. 

Parameters Normal Rbbb Paced Lbbb Apb  %Ave. 

Sensitivity% 100 100 100 0 50 70 

Specificity% 100 100 100 80 75 91 

Positive 

pre.% 

100 100 100 0 100 80 

Accuracy% 100 100 100 80 80 92 
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                                    Figure 5.6  3-D plot for the principal component analysis showing the k-neighbors 

 

The following performance measures were calculated. 

Table 5.3a Confusion matrix for the testing of features derived from the 

peaks of bicoherence using knn-search 

Signal Normal Rbbb Paced Lbbb Apb 

Normal 3 0 0 0 0 

Rbbb 0 2 0 0 0 

Paced 0 1 3 0 0 

Lbbb 0 0 0 3 0 

Apb 0 0 0 0 3 
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Table 5.3(b) Table For the correctly and non correctly classified samples 

Signal/parameter TP FP TN FN 

Normal 3 0 12 0 

Rbbb 2 1 12 0 

Paced 3 0 11 1 

Lbbb 3 0 12 0 

Apb 3 0 12 0 

 

 

Table. 5.3c Performance matrix for the testing of features derived from 

   the peaks of bicoherence using knn-search 

Parameters Normal Rbbb Paced Lbbb Apb  %Av

erage 

Sensitivity% 100 100 75 100 100 95 

Specificity% 100 93.3 100 100 100 98.7 

Positive pre.% 100 66.7 100 100 100 93.3 

Accuracy% 100 93.3 100 100 100 98.7 
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Fig. 5.3d Comparison of performance matrix parameters for the three  

methods presented. 

Parameters Statistical 

parameters 

Peaks 

using 

ANN 

Peaks using Knn-

search 

Sensitivity% 88.4 70 95 

Specificity% 96.2 91 98.3 

Positive pre.% 94.9 80 93.3 

Accuracy% 94.9 92 98.3 

 

From the three methods presented above in this research, we can observe that 

by using the knn-search methods we obtained a better result with an average 

accuracy of up to 98.3%, using the neural network also gives an appreciable 

result, though the samples are not enough for a general conclusion. Spectral 

analysis classification is very effective in classifying the heart rate signal 

especially the one we developed here using the peaks of the bicoherence. 

 

5.4 Comparison with Other Nonlinear Methods 

A lot of work has been done in trying to classify the heart rate signal with 

higher order spectra and, the summary of their results is given in table 5.4 
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Fig. 5.4 Comparison of between the proposed method and other  

nonlinear approaches 

Authors Method No of classes Accuracy% 

Acharya et. Al 

2003 

Non-linear features-

ANN-fuzzy 

4 95 

Acharya et. Al 

2003a 

Non-linear fuzzy 8 85.36 

Kannathal et. Al Anfis 10 94.09 

Chua et  al SVM 5 85.79 

Acharya et  al AR,MA and ARMA 

modelling 

9 83.38 

Our first method Statistical 

parameters with 

ANN 

5 94.9 

Second method Bicoherence peaks 

using ANN 

5 92 

Third method Bicoherence peaks 

using Knn-search 

5 98.3 

 

 Acharya et al; pioneered this work on HRV classification using non-linear 

parameters such as spectral entropy, Poincare plot geometry and larger 

Lyapunov exponent. In their initial attempt they were able to achieve an 

average accuracy of 95% for four classes (Acharya et al; 2004b). Kannathal et 

al; have improved this work using adaptive neuro-fuzzy interference (ANFIS) 
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classifier and they were able to achieve a better efficiency of 94.09% 

(Kannathel et al; 2006). 

Acharya et al;  again classified cardiac states using modelling technique such 

as Auto regression (AR), moving average(MA) and Auto regression moving 

average (ARMA) into 9 classes (Acharya et al 2008a). They have used the first 

three peaks amplitude and corresponding peak frequencies as the features into 

neural network classifier. They obtained around 83.38% accuracy on HRV 

classification of cardiac conditions. In our methods we used five classes to 

classify another five cardiac condition with features derived from the first ten 

significant peaks amplitude of the bicoherence with their corresponding 

frequencies with two different classifiers and obtained a better result with the 

Knn-search algorithm given the best result with average accuracy of 98.3%, 

sensitivity and specificity of 95% and 98.3% respectively as compared to other 

nonlinear methods.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.0 Conclusions 

The most important steps in ECG diagnosis is to detect and measure different 

waves, which form the entire ECG cycle, to extract efficient features and find a 

suitable structure and algorithm for the best classifier in ECG classification. 

Therefore, the process of diagnosis usually requires meticulous study of the 

signals over a long period of time. This can be reduced considerably if 

computer based algorithms are used to identify, detect, and project the 

abnormalities, in the form of discriminating visual displays. The work of this 

research deals with the analysis, identification and display of ECG for the 

purpose of diagnosing cardiac abnormalities. 

ECG signals are highly variable even among normal healthy persons; but the 

symptoms of disease are clear in its nature of variation. HOS analysis provides 

a visual pattern on the computer screen, which can be of considerable help in 

diagnostics. In this work we have proposed unique bispectrum and bicoherence 

plots for normal and four other cardiac abnormalities and they all varied 

visually. These plots are in some ways easier to interpret than power spectra 

where peak and frequencies of interest must be identified. The medical 

practitioners, who are not familiar with signal processing techniques, can easily 

interpret these plots for diagnosis. HOS plots are also better than time domain 

plots, because they can easily be compared on the screen with a reference and 

lend them better to the use of pseudo-colorings. In our work we have shown 

that HOS can serve to provide some indication that classifiers can be trained 

with their based features to perform automated classification. 

Artificial intelligent tools, such as artificial neural network and knn-

neighborhood search were used to identify the diseases given some certain 

parameters of the input signal. Though, helpful in diagnostics of cardiac 
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abnormalities, the reliability of these classifiers cannot be taken to be 100%, 

their accuracy depend upon on how best the network was trained. 

In this work, an average accuracy of 94.9% have been achieved using the 

statistical features with artificial neural network as classifier and 98.3% using 

the significant peaks amplitude of the bicoherence with their corresponding 

frequencies.   

   

6.1 Summary 

Many aspects of healthcare require the processing and analysis of physiological 

signals such as electrocardiogram (ECG), electroencephalogram (EEG), 

electromayogram (EMG), heart rate variability (HRV) and medical images. 

This may require tasks such as noise reduction, feature extraction/detection, 

pattern analysis/classification, visualization and modeling. Some of the 

inherent characteristics of biomedical signals are non-linearity, non-

stationarity, non-Gaussianity, uncertainty and imprecision. 

Bio-signals are essential non-stationary signals. They often, display a fractal 

like self-similarity. They may contain indicators of current disease, or even 

warnings about impending diseases. The indicators may be present at all times 

or may occur at random-in the scale. However, to (study) and pinpoint 

anomalies in voluminous data collected over several hours is strenuous and 

time consuming.  

Therefore, a robust analytical tool for in depth study and classification of data 

collected over long intervals can be very useful in diagnostics. These HOS 

based nonlinear dynamical techniques are based on chaos theory and have been 

applied to many areas which include the areas of medicine and biology. 

In this study HOS have been used to classify normal heart rate with four other 

diseases using both statistical and peak features of the higher order spectra.  

Although, the data set used for HOSA features is a small set, the higher order 

spectral features, is a promising method for classification of ECG arrhythmias.   
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6.2 Advantages and Disadvantages of the Proposed Method 

Some of the advantages of this method are: 

 ECG signal are nonlinear, non-Gaussian and non-stationary, hence HOS 

method gives the phase information about the signal. 

 HOS method gives us visual aid in interpreting the arrhythmias. 

 HOS methods used in this work achieved a very high accuracy of 98.3% 

compared to other nonlinear algorithm. 

The disadvantage of this method may be an accurate feature extraction for 

HOSA, bicoherence should be at least 1min of the signal sample. 

6.3 Future Directions 

The future direction of higher order spectra research can be in the following: 

 Exploring more channels of the signal, since we only use one signal in this 

work, extending the work to cross-bispectral and cross-bicoherence for ECG at 

different channels 

 Is possible to try and detect the QRS with HOS technique  

 Further investigation of features from HOS is possible 
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APPENDICES 

APPENDIX A: Matlab codes 

 

The comprehensive Matlab code used in this thesis is in the attached DVD for further 

reference. 


