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ABSTRACT 
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In the first section of this thesis, an introduction about Mathematics, 

Laplace transformation, and Differential Equation is given. In the second 

chapter, there is basic information about the Laplace transform and inverse 

Laplace transform. In the third chapter, inspected articles about Laplace 

transform, their comparison and results are given. In the fourth chapter, 

Applications of Laplace transformation are given. 

 

Keywords: Laplace transform, Differential Equation, inverse Laplace 

transform 
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ÖZET 
 
 

 

LAPLACE DÖNÜŞÜMÜNÜN DİFERANSİYEL 
 

DENKLEMLERE UYGULANMASI VE 
 

UYGULAMALARI 
 
 
 

 

DERELİ, Seçil 
 
 

Yüksek Lisans Tezi, Matematik Bölümü 
 

Tez Danışmanı: Yard. Doç. Dr. Refet POLAT 
 

Haziran 2015, 68 sayfa 
 
 
 
 

 

Bu tezin ilk bölümünde Matematik, Laplace dönüşümü ve diferansiyel 

denklem hakkında bir giriş verilmiştir. İkinci bölümde Laplace dönüşümü ve 

ters Laplace dönüşümü hakkında temel bilgiler vardır. Üçüncü bölümde 

Laplace dönüşümü ile alakalı incelenen makaleler, karşılaştırmaları ve 

sonuçları verilmiştir. Dördüncü bölümde ise Laplace dönüşümünün 

uygulamaları verilmiştir. 

 

Anahtar Kelimeler: Laplace dönüşümü, Diferansiyel Denklem, ters Laplace 

dönüşümü 
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1. INTRODUCTION 
 

 

Mathematics is all around the world, also effective object. People tried to 

understand environment since civilizations have occurred. It was necessary to 

apply mathematics to improve daily life. It means not only does it every 

process and patterns has that occurred in the world, but also a good 

understanding of it will help in people’s life. 

 

During the history, most civilizations had great effects on advance 

mathematics. The ancient Egyptians, Sumerians and Chinese had found writing 

numbers and could perform calculations. In ancient Egypt, they had solved 

different kind of problems to build pyramids. Egyptian arithmetic also found 

on continuing groups of ten, was relatively simple. 

 

Moreover, around 10 to 11 thousand years ago, the people of 

Mesopotamia used clay tokens to indicate amounts of grain, oil, etc. for trade. 

In order to calculate, scribes would use clay tokens that indicated different 

amounts, and abacus-like operations of combining and trading (Rudman, 

2007). Also with Flood of Nile River forced people to develop mathematics. 

 

The most ancient mathematical texts available are Plimpton 322 

(Babylonian mathematics 1900 BC) (Friberg, 1981), the Rhind Mathematical 

Papyrus (Egyptian mathematics 2000-1800 BC) (Neugebauer, 1969) and the 

Moscow Mathematical Papyrus (Egyptian mathematics 1890 BC). All of these 

ancient texts refer the assumed Pythagorean Theorem, which seems to be the 

most ancient and widespread mathematical development after basic arithmetic 

and geometry. 

 

So the theorem of Pythagorean is considered to be the origin of the 

mathematics and geometry. And it is obvious that Pythagorean Theorem had 

been used for engineering. It is used to construct better buildings. In 

consideration of ancient people we do the similar thing at the same time. We 

apply theorems to mathematics for the best technology. 
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Theories are the essential in mathematics. Most of the theorems help 

people to simplify and utilize many sciences that use mathematics like 

engineering, physics, chemistry, and economics etc. As Pythagorean, Laplace 

is an important theorem in modern mathematics. So many physical processes in 

nature are described by differential and integral equation with initial conditions 

or boundary conditions. Integral transforms not only helped in developing the 

theory of such equations but also provided methods to solve these equations. 

 

Actually commonly called “modern” mathematics is not really so modern as 

one might suppose. Big part of it was in fact developed more than fifty years ago. 

What makes it different is that only in the last generation has it had a serious effect 

on the undergraduate teaching of mathematics in universities, and only in the last 

several years has its impact on school mathematics begun to be felt. Some such 

time-lag is natural and inevitable; new mathematics is usually created as a research 

tool, and as long as it is nothing more there is no compelling reason to seek the 

simplest way of expounding it or to re-examine more elementary mathematics in 

its light (Smithies, 1963). 

 

From the early days of the calculus subject of differential equations has 

been an area of great theoretical research and practical applications, and it 

continues to be so in our day. This much stated several questions naturally 

arise. Just what is a differential equation and what does it signify? Where and 

how do differential equations originate and of what use are they? Confronted 

with a differential equation, what does one do with it, how does one do it, and 

what are the results of such activity? These questions indicate three major 

aspects of the subject: theory, method, and application. In following paragraphs 

it is going to be introduced to the reader to the basic aspects of the subject and 

at the same time give a brief survey of the three aspects just mentioned. In the 

fourth chapter, we shall find answers to the general questions raised above, 

answers that will become more and more meaningful as we proceed with the 

study of differential equations in the following chapters (Ross, 2004). 

 

There are ordinary and partial differential equations in this study for 

Laplace transform. A partial differential equation is an equation involving an 
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unknown function of two or more variables and certain of its partial derivatives 

(Evans, 1997). Ordinary and partial differential equations describe the way 

certain quantities vary with time, such as the current in an electrical circuit, the 

oscillations of a vibrating membrane, or the flow of heat through an insulated 

conductor. These equations are generally coupled with initial conditions that 

describe the state of the system at time t = 0. A very powerful technique for 

solving these problems is that of the Laplace transform, which literally 

transforms the original differential equation into an elementary algebraic 

expression. This latter can then simply be transformed once again, into the 

solution of the original problem. This technique is known as the “Laplace 

transform method” (Schiff, 1999). 

 

One of the most important integral transforms is the Laplace transform. 

This well-known integral transform was first used by Laplace in 1812 when he 

was working on probability theory. Since that time many works have been 

devoted to the study of the properties of the Laplace transform and its various 

applications in many fields of science. Bateman in 1910 used the modern 

Laplace transform followed by Bemotien in 1920. This transform gained a 

more modern approach. In 1920 when doeth applied this transform on 

differential integro-differential equation. Since most of the physical evolve in 

time in semi finite or infinite domains, Laplace transform conspired with 

Fourier transform has shown a strong analytical method to solve partial 

differential equations obtained when dealing with their processes. But the one 

variable Laplace transform is not capable of solving this equations alone 

(Basheer, 2015) 

 

In mathematics Laplace Equation is a second order or partial differential 

equation named after Pierre-Simon Laplace who was among the most 

influential scientists in history (Gillispie, 2000) and who first studied its 

properties (Evans, 1997). Pierre-Simon, marquis de Laplace (23 March 1749 – 

5 March 1827) was an influential French scholar whose work was also pivotal 

to the development of mathematics, statistics, physics, and astronomy.(Stigler, 

1986) 
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In this study, application of Laplace Theorem to differential equations is 

going to be discussed. First thing about that are differential equations. The 

subject of differential equations constitutes a large and very important branch 

of modern mathematics. So a short information about modern mathematics is 

involved in. And then basic information about differential equations are given. 

 

In the next chapter we lay down the foundations of the theory and the 

basic properties of the Laplace transform. 
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2. BASIC DEFINITION OF LAPLACE AND INVERSE 
 

LAPLACE TRANSFORMATION 
 

 

Firstly, the definition of Laplace transformation is defined as follows; 
“Suppose>0 that is a real or complex-valued function of the (time) variable and is a real or complex 

parameter”. We define the  
Laplace transform of as 

 

∞ 
     

F(s)= ℒ   ( )�= �  −      ( )  

0  
 
 

( ) (2.1) 
= lim � 

−     

  →∞ 

    

0 

    

     
whenever the limit exist (as a finite number). When it does, the integral (2.1) is said to converge. If 

the limit does not exist, integral isℒsaid() to diverge and there is no Laplace transform defined for . 
The notation will also be used to denote the Laplace transform of, and the integral is the ordinary 
Riemann (improper) integral. 
 

 

 The parameter  belongs to some domain on the real line or in the 

complex plane. We 

will choose s appropriately so as to ensure the convergence 

       
 >          

of the Laplace integral (2.1). In a mathematical and technical sense, the domain 

of  is quite important. However, in a practical sense, when differential 
will always use the notat ion  =  +  .     

equations are solved, domain of s is routinely ignored. When s is complex, we 

1999).  
=  ( ) 

 
ℒ 

is  the Laplace 

 
( ) = ℒ   ( )� 

 

 The symbol   transformation,  which  acts  on 

functions  and generates a new function,  (Schiff, 
 
 
 

 

Some examples of Laplace transform are given below. 
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Example 2.1 
 

 

In mathematics, this example is useful to transform differential equations. 

All the examples below are subject of mathematics. In this project, applications 

of Laplace transform in engineering problems are going to be examined by 

using examples. 

If ( ) ≡ 1 for ≥ 0, then 
( ) ∞ 

ℒ    � = �  −    1 

0 

= lim � −    � �   →∞ −   0 

= lim � −     + 1� 

  →∞ −   

= 1 

provided of course that s > 0 (if s is real). Thus we have 

ℒ(1) 

1 

(  > 0). 
= 

(Schiff, 1999) 
 

 

Some basic specifications of Laplace transformation are given below. 
 

 

2.1 Basic Specifications of Laplace Transformation 
 

 

Basic specifications and differences of Laplace transformation are given 

in this chapter. Because, they will be used in following examples or 

applications. 
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
If  ( ) =for  ≥ 0(constant) 

  

 ℒ   ( )� = �∞   −        =  �∞  −      
 0     0   

 −   ∞ −   ∞  

 =  � −  
�

0 = −  
�

 1 �0  

 
= − 

 
(0 − 

   

  1) =   

         

  ℒ{ } =   


If ( ) =    for   ≥ 0 

 
(constant) 

  

 ℒ{   } = �∞  −     = �∞  −(  −  )  
 0     0 

−(  −  )  ∞  −(  −  )   ∞ 1 

 = 
�

−(  −  )
�

0 = −  −  
� 1 �0 

 1   

(0 − 

1   

 =
 
−

  − 
1) =

  −   
 ℒ{ 

 

} = −   

    
1 

  

Two Laplace transforms are briefly summarized above. More detailed 

information is given in Table 2.1 Other examples about the subject are given in 

the following. 
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2.2 Laplace Transforms of Some Elementary Functions 
 

 

Laplace transformation has so many specific functions. Only the 

functions which are going to be used in examples or applications are given in 

table below. 

 

Laplace transformation is helpful to get fast and easily approachable 

results in problems with differential equations. It shortens the solution time. 

Therefore there are numerous applications of the numerical Laplace transform 

in wave propagation, structural dynamics, viscoelasticy, heat conduction, fluid 

dynamics and other areas of applied mechanics. (Narayanan and Beskos, 1982) 
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( ) ℒ{  ( )} =  ( ) 

     

 
 

 ! 

> 0 
1    +1 

 
= 0,1,2,3 … ! = 1.2.3.4 … 

   

2  
− 

3 
sin 2 +  2 

4 
cos 2 +  2 

5 
sinh 2 −  2 

6 
cosh 2 −  2 

Table 2.1 Laplace transforms of some elementary functions (Spiegel, 1965) 



10 
 

 

2.3 Some Important Properties of Laplace Transformation 
 

 

Theorem below is for sufficient conditions for existence of Laplace 

transforms. 

0 ≦  ≦  (Spiegel,  for  >  , then its Laplace transform 

 Theorem 2.1 If F(t) is sectionally continuous in every fini e interval 
( ) exist for all  >     

  and of exponential order  

    1965). 
 

 

Properties of Laplace transform in theorems and their examples are given 

accordingly in the list below. In the following list of theorems we assume, 

unless otherwise stated, that all functions satisfy the conditions of Theorem 2.1 

so that their Laplace transform exist. 

 

2.3.1  Linearity property 
 

 

In this regard the first property which is going to be discussed is linearity 

property. This property is as below.  
2( ) 

  
 ( )and   ( ) 

 
functions with Laplace    1( )     

Theorem 2.2 If 1 and 2 are any constant while 1 2 are 
    

 transform  and  respectively, then  

ℒ{ 1  1( ) +  2  2( )} =  1ℒ{ 1( )} +  2ℒ{  2( )} =  1 1( ) +  2 2( ) 
 

The result is easily extended to more than two functions (Spiegel, 1965). 
 

 

Example 2.2 
 

 

Three examples of linearity property are given below and also it is 

discussed how to apply this property in the last example. 
 

ℒ{4 2 − 3 2 + 5 −  } = 4ℒ{ 2} − 3ℒ{ 2 } + 5ℒ{ −  } = 4 �2!
3� − 3 � 2 + 

4� + 5 � +1 1 � 



     

8 

11  

5 

    

      3     

  

ℒ 

  =  3 − 2 + 4 
+

  + 1    

Laplace  

, which transforms 

( ) 

into 

( ) 

, is often called the The symbol     

 transformation operator. Because of the property of  expressed in 

this theorem, we say that 

 

is a linear operator or that it 

has the linearity 

ℒ 

 ℒ  

property (Spiegel, 1965).          

Example 2.3 
ℒ{ 3 − 8  + 1} = ℒ{ 3} − ℒ{8 } + ℒ{1} 

= 3!
4 − 8 

1
2 + 

1  
2.3.2 First translation or shifting property 

 

 

Second property which is going to be discussed is first translation or 

shifting property. This property is as below. 

 
 
 
 

 

Theorem 2.3 If 
 
 
 
 
 
 
 
 
 

 

Example 2.4 
 

 

Since 
 
 
 
 

we have 

ℒ{  ( )} =  ( ), then 
ℒ{ ( )} = (  − ).  

(Spiegel, 1965) 

ℒ{ 3} = 3!
4 , 

 

ℒ{ 

5   3 
3! 6 

5)4.   } = (  − 5)4 

= (  − 
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Example 2.5      

Since  

ℒ{   2 } = 

 
 

, 

   

we have  2 + 4 

ℒ{ 

−   + 1 

= 

+ 1 

 2 } = (  + 1)2 + 4 2 + 2  + 5. 

2.3.3  Second translation or shifting property 
 

 

Third property which is going to be discussed is second translation or 

shifting property. This property is as below. 

Theorem 2.4 If 

ℒ{  ( )} =  ( ) 

and 

( ) = � 0 < 

    (  −  )   >  , then 

  ℒ{  ( )} = −      ( ).  
(Spiegel, 1965)          

Example 2.6  

{ 3} = 3!
4 = 64 , 

  

Since    
    

 

 

 

  

the Laplace transform of the function     

  

( ) = � 

(  − 2)3   > 2   

    0 < 2   

is equal to 
  6 −2      

   

4 

. 
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2.3.4  Change of scale property 
 

 

Fourth property which is going to be discussed is change of scale 

property. This property is as below. 
Theorem 2.5 If ℒ{  ( )} = ( ), then 

ℒ{  ( )} = 1 � �. 

 
(Spiegel, 1965) 

 

 

Example 2.7 
 

 

Since 

ℒ{ } = 1 2 + 1  
we have 

1 1 
 

3 

ℒ{   3 } = 3 
� 
�3�2 + 1 � =  2 + 9. 

(Spiegel, 1965) 
 

 

Example 2.8 
ℒ{4 2   + 3 cosh 4 } = 4ℒ{ 2  } + 3ℒ{cosh 4 } 

= 4 
1 

+ 3 
 4 3 

− 2 2 − 16 
=

  − 2 +
  2 − 16 

   7 2 − 6  − 64  

  

= (  − 2)( 2 − 16) 
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(Stroud, 2003) 
 

 

2.4 Laplace Transformation of Derivatives 
 

 

This property is the most commonly used property in engineering. It is 

particularly important for this study. 

 

Using the property of derivatives, we would like to propose the Laplace 

transform of Euler-Cauchy equation, and find the solution of Euler-Cauchy 

equation represented by differential operator using Laplace transform (Kim, 

2013). 

 

In the application chapter of this study this property will be the first step 

to start. This property is as below. 
Theorem 2.6 If ℒ{  ( )} = ( ), then 

ℒ   (  )( )� = ( ) −    −1  (0) −    −2  ′(0) − ⋯ − (  −2)(0) − (  −1)(0) 

 ( ), ( ), … 

  −1 

( )         0 ≦  ≦   

If   ′      are  continuous for  and  of 
(Spiegel, 1965).  >       ( )     0 ≦  ≦  

        

while 
    

is sectionally continuous for 
  

exponential order for         

     This is the general theorem for Laplace transformation of 

derivatives. Some theorem is going to be derived below by this theorem.  

Theorem 2.7 If ℒ{  ( )} =  ( ), then     

 
( ) 

    ℒ{  ′( )} =   ( ) −  (0)   
> 

while        0 ≦  ≦     
  ′( )   

is continuous for 

     0 ≦  ≦      

if          and of exponential order for  

  is sectionally continuous for    (Spiegel, 1965).   
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Example 2.9        

then ( ) =    3  ,     

If         

 

ℒ{  ( )} =  2 

      

and we have + 9 

� − 1 = − 

  

9  
ℒ{  ′( )} = ℒ{−3   3 } =   � 

 2  

 

2 

   + 9   + 9 

This method is useful in finding Laplace transforms without integration 

(Spiegel, 1965). 

but 
Theorem 2.8 If in Theorem 2.7,  ( ) fails to be continuous at= 0 

exis t but is  not equal to  (0), lim  ( ) =  (0+)  

       →0   

     which may or may not exist, then 

   
ℒ{  ′( )} =   ( ) −  (0 +). 

        (Spiegel, 1965) 

then 
Theorem 2.9 If in Theorem 2.7,  ( ) fails to be continuous at=  , 

 ℒ{  ′( )} =   ( ) −  (0) −  −    {  (  +) −  (  −)}. 

discontinuity, ( +) −. (  −) 

is sometimes called  the  jump  at  the  Where     

   For  more than  one discontinuity,  appropriate 

modifications 
can be made 

(Spiegel, 1965). 
 

=   

Theorem 2.10 If ℒ{  ( )} = ( ), then 
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( ) 

 ℒ{  ′′( )} =  2  ( ) −   (0) −  ′(0) 

     ′( )  0 ≦  ≦  
 >     ℎ         ′′(  )  

are continuous for 
 0 ≦  ≦  . 

 If  and     and of exponential order 

for     is sectionally continuous for   

equation  
( ) 

and 

  ′( ) 

have discontinuities, appropriate modification of this  If    
 

can be made as in Theorem 2-8 and 2-9 (Spiegel, 1965). 
 
 
 
 
 

 

Example 2.10 
 

 

Determine the Laplace transform of the Laguerre polynomials, defined 
 

by 

  
 

−   
),   = 0,1,2, … 

ℒ ( ) =  !    (     

Let  ( ) =    −  . Then 
     !  �. 

ℒ{  ( )} = ℒ �   

 (  )      
1 

 
 

First, we find by Theorem 2.6, and subsequently the 

theorem coupled with multiplication by   theorem,  

ℒ    

(  ) 

� = 

  
! 

   ℒ( ) = (  + 1)   +1. 

It follows that   

1 

     

(  − 1) 

 

ℒ{  ( )} = ℒ �   

  (  ) 

� = 
(   (   !    +1 

 

first translation 
 
 
 
 
 
 
 
 
 
 
 

 

) > 1), 

again by the first translation theorem. 
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2.5 Laplace Transformation of Integrals 
 

 

Not only can the Laplace transform be differentiated, but it can be 
 

integrated as well (Schiff, 1999).         

.  
ℒ{  ( )} =  ( ) 

   the 
( ) 

  

Theorem 2.11 If 
  

, then the division of 
 

by 
 

   

with respect to 
 

between 
 

limits 0 and corresponding to integration of   
 
 

 

To prove this theorem, we have from the definition of the Laplace 

transform the following equation: 

ℒ ��  ( )    � = �∞  −     ��  ( )    � 

 0  0 0  

By making the following substitutions 

=  −     = �  ( )   , 

 0   

= −  −    / 
=  ( )   , 

  

and integrating by parts, we obtain    

�∞  −      ( )   . ℒ �  ( )   = − −     �  ( )    � ∞ + 1 

0  0 0 0 

By substitution of the limits, the first term on the right side of this 

equation is zero, and we arrive at the result   

ℒ �  ( )   = 1 �∞  −      ( )   = 1  ( ) 

0  0   

which agrees with the statement of the theorem (Thomson, 1960). 

As a result; 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Example 2.11 
 

 

Since 
 
 
 
 

we have 

 

18 

=  ( ). 
ℒ ��  ( )    � 

0  

(Spiegel, 1965) 
 

 

2 

, ℒ{   2 } =  2 + 4 

ℒ �� 2      � = ( 22+ 4) 

 
0  

as can be verified directly (Spiegel, 1965). 

2.5.1  Multiplication by 
Theorem 2.12 If ℒ{  ( )} = ( ), then 

ℒ{ ( )} = (−1) ( ) = (−1) (  )( ) 
 

(Spiegel, 1965) 
 

 

Example 2.12         

Since 

ℒ{ 

2   

} = 

 
1 

, 

  

    

we have  − 2   

 
ℒ{  2  } = − 

� 

1 � = 1 
2 

     
− 2 

 
(  − 2) 
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  ℒ{ 
2 

 

2   
} =  

2 

� 

1 
 � =  

2 
   

    

 

2   

(  − 3) 

3  

           − 2   (Spiegel, 1965) 

2.5.2  Division by 

            

             

Theorem 2.13 If ℒ{  ( )} =  ( ), then         

   
ℒ � ( )� = �∞  ( ) 

     

provided 
                      
     

lim  
    

. 

       
                 

      
  →0  ( ) 

exists         

                       (Spiegel, 1965) 

Example 2.13        

2 
1    

and 
  

 
  

we have Since 

ℒ{    } = 

   

lim = 1, 
  + 1         

  

 

      

∞ 

  

 

  →0  

−1 

(1⁄  ) 

  

 
ℒ � � = � 

  
= tan 

  

 

 

 

 

2 

+ 1 

    

                    

(Spiegel, 1965) 
 

 

2.6 Inverse Laplace Transformation 
 

 

In mathematics we use inverse Laplace transformation generally to get 

differential equations from the exponential functions that we examine. In this 

chapter inverse Laplace transformation is going to discussed. 
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2.6.1  Definition of Inverse Laplace Transform 
 

 

In order to apply the Laplace transform to physical problems, it is 

necessary to invoke the inverse transform (Schiff, 1999). This procedure, 

together with the shifting theorem, is often sufficient for the determination of 
then     is called an inverse Laplace   ( )  ( )  ℒ{  ( ) =  ( )   

the inverse transformation (Thomson, 1960).        
 ( )   −1       −1    

is 

 

, if , 

 

  If the Laplace transform of a function      

transformation  ℒ  { ( )}    ℒ  transform of  (s) and we write  
                 

symbolically F(t)=   where    is called the inverse Laplace  

  
 

  operator (Spiegel, 1965).         
      

 

can be expressed as the Bromwich contour integral   Also the function 

over   given by         

1 �  +∞  ( ) 

 

      ( ) = ℒ−1{  }( ) =  

                2   −∞      has a                     

where  is equal to any number such that the location of all singularities of  

  real part less than  (Zecchin et al., 2012)       

  Example 2.14                  

  Since    
ℒ{ 

−3   

} =  + 3 
      

we can write          

         ℒ     1        
         

−1 

� + 3� =  

−3   

     

            
1 

       
 

2.6.2  Uniqueness of Inverse Laplace transforms 

follows ℒ{  ( )} =  ( )  ℒ{  ( ) +   ( )} = 

Since the Laplace transform of a null function 

( ) 
that, if  then also e  

that we can have two different functions with 

transform. 

 

is( zero,). it is clear 
From this it the same 

Laplace 
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Example 2.15     

The two different functions; 

0 = 1 1( ) = 
3   

and  2 
 ( ) = �  −3   ≠ 1 

have the same Laplace transform, which is [1/(  + 3)].  
If we allow null function, we see that the inverse Laplace transform is 

unique. It is unique, however, if we disallow null function (which do not in 

general arise in cases of physical interest).This result is indicated in 

   ( ) 

2.14 (Lerch's  theorem)  If  we restrict ourselves  to  Theorem 
0 ≦  ≦    −1  

are  sectionally 

>  

every finite  interval functions   
ℒ 

which continuous  in 
 ( )     { ( )} =  ( ),   

, then inverse Laplace transform     and of exponential order for  

of  , i.e.     is unique. We shall always assume such 

uniqueness unless otherwise stated (Spiegel, 1965).   
 

 

2.7 Partial Fractions 
 

 

The method of partial fractions is a technique for decomposing functions 

like Y(s) above so that the inverse transform can be determined in a 

straightforward manner. 
 

In many applications of the Laplace (transform) it becomes necessary to find the 
inverse of a particular transform, . Typically it is a function that is not immediately 
recognizable as the Laplace transform of some elementary function, such as 

  1   

 ( ) = (  − 2)(  − 3),  

 real), where the goal is to 

region 

Ω(e.g.,   ( ) >  ). 

Just as in calculus (for for s confined to some   
 

integrate such a function, the procedure required 

here is to decompose the function into partial fractions. 
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In the preceding example, we can decompose ( )into the sum of two 
fractional expressions: 

     1       

that is,   
(  − 2)(  − 3) =  − 2 +  − 3 

   
    

1 =  (  − 3) +  (  − 2). 

 

(2.1)       

are equal for all 
 

in Ω , except  
[1 and  (  − 3) +  (  − 2)] 

 
polynomials are 

      

= 2= 3, the 

that Since (2.1) equates two polynomials 
    

       possibly for    two 
 identically equal for all values of . This follows from the fact 

that two polynomials of degree 
 

that are equal at more than 
 

points are 

identically equal.          

Thus, if  = 2,   = −1, and if  = 3,   = 1, so that    

     1   1 1    

 
( ) = (  − 2)(  − 3) = −  − 2 +  − 3 . 

   
Finally, 

( ) = ℒ−1{ ( )} = ℒ−1  − −1 2� + ℒ−1 � −1 3� 

= −  2   + 3  .  
(Schiff, 1999) 

 

 

2.7.1  Partial Fraction Decompositions 
 

 

We will be concerned with quotient of two polynomials, namely a 

rational function 
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( ) = (( )) , 

have no common  ( )  ( )  ( )  ( )  ( ) 

where the degree of  is greater than degree of  , and  and  

 factors. Then  can be expressed as a finite sum of partial 
 

fractions.  
 For each linear factor of the form + of ( ), there corresponds a 

partial fraction of the form

 
constant 

+  , 

 For each repeated linear factor of the form ( + ) , there corresponds 
a partial fraction of the form.

1 2     

+  + (   +  )2 + ⋯ + (   +  ) ,1 ,  2 , … ,   constants. 

 For every quadratic factor of the form 2 + + , therecorresponds a 
partial fraction of the form

+ 

,  constants. 

     

2 ++  , 

( 
2 

+   +  ) 
,    For every repeated quadratic factor of the form 

there corresponds a partial fraction of the form   

1  +  1 2  +  2   +    

2 ++  + (  2 +   +  )2 + ⋯ + (  2 +   +  ) ,  

1,  2 
, … ,   ,1 

,  2, … ,   constants. 
    

The object is to determine the constants once the polynomial 

be achieved 

has been represented by partial fraction decomposition. This can ( )/  ( ) 

by several different methods (Schiff, 1999). 
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Example 2.16 

1 

    

  

   

         

Or  
(  − 2)(  − 3) =  − 2 +  − 3 

   
 

1 =  (  − 3) +  (  − 2) 

   

     
as we have already seen. Since this is a polynomial identity valid for all  , we 
equations 0 =   +     1 = −3  − 2  .  

sign. may equate the coefficients of like powers of on each side of the equals 

Thus, for , 

= −1,    = 1 

 

 

Solving these two ; and for  0 ,   

 simultaneously,      as before (Schiff, 1999).   
 

 

2.8 Some Inverse Laplace Transform 
 

 

The following results follow at once from corresponding entries 
 

 

Example 2.17             

Find         

1 

     

     −1        

Write      
� 2 + 6  + 13�. 

    
  

1 

 

= 

 

1 2 

 

= 1 

  

2 

 

 
2 

 (  + + 4   
2 

 
+ 6  + 13  

 
3) 2 (  + 3)2 + 2 

ℒ−1 � 
2 

1 � = ℒ−1 
�  

2 
 2 

� = 1 −3   sin 2 

   + 6  + 13     (  + 3)2 + 2  2  

(Ross, 2004) 
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Example 2.18 
 

 

Find 

     

ℒ 

−1    
+ 1 

         

Write       
� 2(  − 1)� . 

       
   

+ 1 

    

  

  

 

      

      

= 

  

, 

     

or   
2(  − 1) 

  
+  2 +  − 1 

     
  

+ 1 =   (  − 1) +  (  − 1) +   2, 

    

= 1  .  = 2     
          

. Setting 
   

0 =   + 

 

; setting which is an identity for all values of    
1 

gives  
1 

 
= −2  −1+ 1     −1  1 −1  −1 , and so 

gives 

 

. Equating the 

 
coefficient  of 

 
gives  

   

         2= 0   = −1  

 Whence                     

  
ℒ  � 2(  − 1)� = −2ℒ  � � − ℒ  � 2� + 2ℒ  � − 1� 

Example 2.19  
= −2 −  + 2  . 

       

Find         

2 2 

         

   

ℒ 

−1               

    
�( 2 + 1)(  − 1)2� .       

We have 



        

2 2 
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( 2 = 

+   

+ 

     

or       
+ 1)(  − 1)2 

2 
+ 1 +  − 1 (  − 1)2, 

   
    

2 2 = (   +  )(  − 1)2 +  ( 2 + 1)(  − 1) +  ( 2 + 1) 

 

      

Settings  = 1 gives   = 1. Also setting  = 0 gives 0 =   −  +  , or  

         −1 =   −   .            

  Equating coefficients of  3 and  , respectively,         

          0 =   +            

= 1 
      

0 =   − 2  +  . 
           

           = −1.            

  These last two equation simply     Then from the first equation,  
   

; finally, the second equation 
shows     Therefore,     

    = 0.      

1 

    

1 

 

ℒ 
−1  

� 

 
2 
 

2 2 
 2� = −ℒ 

−1 

� 2 
  � + ℒ 

−1  
� 

  � + ℒ 
−1 

� 

2� 
  

( + 1)(  − 1) 

 
+ 1 

  
− 1 

 
(  − 1)                  

= − cos + + .  
(Schiff, 1999) 
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1 
 

 

 

 

 

 

2 

 

 

 

 

 

 

ℒ−1{ ( )} = ( ) 
 

 

 

 

 

= 0,1,2,3 … 

sin 
3 
cos 
4 
sinh  

5 
cosh 

6 
 

 

Table 2.2 Table of 

inverse Laplace 

transforms (Spiegel, 

1965) 

 

2 −  2 

 

2 −  2 

 

2 +  2 

 

2 +  2 

 

( ) 

! 

  +1 

! = 1.2.3.4 … 

− 
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2.9 Some Important Properties of Inverse Laplace Transforms 
 

 

In the following list we have indicated various important properties 

inverse Laplace transforms. Note the analogy of Properties 2.8 with the 

corresponding properties. 

 

2.9.1 Linearity property     

Theorem 2.15 

1 ( )  2( )   
and 

 
are  If  and 

2 

are any constant while 

1( ) 2( ) Laplace transform of   1and   respectively, then   
ℒ−1{ 1 1( ) + 2 2( )} = 1ℒ−1{ 1( )} + 2ℒ−1{ 2( )} = 1 1( ) + 

2 2( )  
The result is easily extended to more than two functions (Spiegel, 1965). 

 

Example 2.20   

4 

  

3 

  

5 

    

ℒ 
−1  + +  2 

    
 � − 2 2 + 16 + 4� 

� 
2 1 

� 
= 4ℒ−1 

� 
1 � + 3ℒ−1 � 2  � + 5ℒ−1 

   − 2    + 16   + 4  
   = 4 

2   

+ 3 cos 4  + 2 sin 2     

        5     
Because of this property we can say that ℒ−1 is a linear operator or that  

it has the linearity property. 
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2.9.2  First translation or shifting property 
Theorem 2.16 If ℒ−1{ ( )} = ( ), then 

ℒ−1{ (  −  )} = ( )  
(Spiegel, 1965) 

 
 
 

 

Example 2.21            

Since   

ℒ 

−1 

� 2 

1 
 

1 
 

, 

   

        

we have    + 4� = 2 sin 2    

ℒ 

−1 

� 2 

1 
  

ℒ 

−1 1 
 

1 

 

 

sin 2  
− 2  + 5� = 

 

�(  − 1)2 + 4� = 2 

 
2.9.3  Second translation or shifting property 

Theorem 2.17 If 
ℒ −1{ ( )} =  ( ), then 

> 

ℒ 

−1 

{ 

 (  −  ) 

  ( )} = � 0 < 

(Spiegel, 1965) 
 
 
 

 

Example 2.22 

Since ℒ−1 � 2 1+ 1� = sin , we have 



 

    ⁄3 

30 

if   >  /3 

 

−1 
sin(  −  ⁄3) 

 

ℒ  � 

2 

+ 1� = � 0 

 

. 
 if   < 3 

2.9.4  Change of scale property 
Theorem 2.18 If ℒ−1{ ( )} = ( ), then 

ℒ−1{ ( )} = 1 � � 

 
(Spiegel, 1965) 

Example 2.23  

ℒ−1 � 

 

 

 

� = cos 4 , we have Since 2  
    + 16  

1 

ℒ 

−1 2 
  

1    4 

 �2 2 + 16� = 2 cos 2 = 2 cos 2 

as is verified directly. 
 

 

2.10 Inverse Laplace Transform of Derivatives 
 

 

Laplace transform of derivatives is examined. Now inverse Laplace  
transform of derivatives is going to be examined in the same way. 

ℒ−1{ ( )} = ( ), then 
 

ℒ−1{ ( )} = ℒ−1 � ( )� = 

(−1) ( ) 

 
(Spiegel, 1965) 

 

T
h
e
o
r
e
m
 
2
.
1
9
 
I
f 
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Example 2.24    

� 

2 
1 � = − 

 
2 

22 , we have 
ℒ−1 �  2 1 � = sin  and   

Since  

 

 

 

  

+ 1 

   

( + 1)   
+ 1 

       

    −1      
2 

  

or   ℒ    − ( 2 + 1)2 � = −   sin 

     −1         1  

   ℒ   � 
( 2 + 1)2 � = 2 sin  . 

2.11 Inverse Laplace Transform of Integrals 
Theorem 2.20 If ℒ−1{ ( )} = ( ), then 

ℒ−1{ ( )} = ℒ−1 � ( )� = (−1) ( ) 

ℒ−1 �  2 1 � = sin  and  � 2 1  � = −  2 22 , we 

Since  

 

 

 
+ 1 

   

( + 1) 
   + 1      

    

ℒ 

−1 

 − 

 2  

� = −   sin 
or      ( 2 + 1)2 

      −1       1  

    
ℒ 

  � 

( 2 + 1)2 � = 2 sin . 

 
 
 

 

have 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(Spiegel, 1965) 

2.11.1 Multiplication by s  
Theorem 2.21 If ℒ−1{ ( )} = ( )and then (0) = 0, then 
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ℒ−1{ ( )} = ′( )  

Thus multiplication by has the effect of differentiating ( ). If (0) ≠ 0, 

then 

ℒ−1{ ( ) − (0)} = ′( ) 
or 

ℒ−1{ ( )} = ′( ) + (0) ( ) 
where  ( ) is the Dirac delta function or unit impulse function. 

 
 

(Spiegel, 1965) 
 

 Theorem 2.22 If  ℒ−1{ ( )} =  ( ) , then  

        
ℒ−1 � ( )� = �  ( ) 

 

( ) 

 

0 

 

 

     0  

from to .  by  (or multiplication by 1/ ) has effect of integrating 

 Thus division       

             (Spiegel, 1965) 

 Example 2.25 Since   

1 1 

 

        

ℒ 

−1 

� 2 

 

 we have      
+ 4� = 

2 sin 2 , 
 

     

1 

 

1 1 

 

   

ℒ 

−1   

(1 − cos 2 )      

� ( 2 + 4)� = �0 2 sin 2= 4 

 

2.11.2 Division by 
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Generalizations to ℒ−1{ ( )/ }, = 2,3, …, are possible 

2.12  Convolution Theorem 
 

 

Clarkson and Pritchard (1992) had used the advantage of convolution 

theorem of Laplace transform. With MACSYMA program they applied inverse 

Laplace transform without carrying out any integration. This is a significant 

advantage for MACSYMA since recursive inverse Laplace transforms are 

much more readily computed by symbolic algebra than are repeated 

integrations. 

 

In our study, another important procedure in connection with the use of 

tables of transforms is that furnished by the so-called convolution theorem 

which we shall state below. We first define the convolution of two functions 
 

and . 
 

 

  Definition 

 

     

finite Let  and be two functions that are piecewise continuous on every 
    

 ∗      

and of exponential order. The function denoted   closed interval by 

by 

 

and defined 

   

 0 ≤  ≤   

(2.2) 
    ( ) ∗  ( ) = �  ( )  (  − ) 

       0    

  is called the convolution of the functions of  and  . 
  Let us change the variable of integration of integration in equation (2.2) 

by means of the substitution =  −  , We have  

   ( ) ∗  ( ) = �  ( )  (  − ) = − �0  (  −  )  ( ) 

       0   

∗  ( ). 
       = �  ( ) (  −  )   =  ( ) 

       0    
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  Thus we have shown that 

∗  =   ∗ 

    

  is 0 ≤  ≤   

 

 

 

    
    

and 
       

  Suppose that both are piecewise continuous on every finite closed 

interval  and         0 ≤  ≤ 
∗        (  +  )      

 
     of exponential order 

 
 . Then it can be shown that 

  

also piecewise 
     

finite closed interval 
 

   continuous on every  
ℒ {  ∗  } exist for  >     

, where 

 

is any positive number. Thus  and of exponantial order     
 

(Ross, 2004). 
 

 

Example 2.26 

ℒ−1 � ( 21+ 1)� 

 
Find using the convolution. 
 

 

 Solution: 

1/ ( ^2 + 1) 

 

( )  ( ), 

 

( ) = 1/ and 
( ). 

   
 

= 1/( 2 + 1).  ( ) = ℒ−1{1⁄  } = 1, 
 

( ) = ℒ−1{1/( 2 + 

 

We  write 
      

as  product 
  

where 
  

1)}  = sin          

and 
   

              

  
ℒ−1 � 

( 

2
1 

 
� =  ( ) ∗  ( ) = � 1 ∙ sin(  − )   , 

  

and   
+ 1) 

   
0 

    
 

ℒ−1 � 

  

21 

 

� =  ( ) ∗  ( ) = � sin  ∙ 1   . 

  

  

( 1) 

  

    +    0    

The second of these two integrals is slightly simpler. Evaluating it, we 
 

have 



ℒ−1 � ( 21+ 1)� = 1 − cos 
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3. ARTICLES ABOUT LAPLACE TRANSFORM 
 

 

Three articles of Laplace transformation in different disciplines are 

inspected and they have been formed a basis for the study. 

 

Articles are so limited in the subject of Laplace transformation. There are 

a few articles about Applications of Laplace transform with differential 

equations. The reason of choosing these articles is to create variety of 

applications in Laplace transform. 

 

Lately, articles about this subject are about computer programs. The 

greatest reason of this can be interpreted as the developments in engineering 

and computer applications in last 30 years. 

 

3.1 Numerical Operational Methods for Time-Dependent Linear 

Problems 

 

Narayanan and Beskos’s article is published at International Journal for 

Numerical Methods in Engineering in 1982. A general and systematic 

discussion on the use of the operational method of Laplace transform for 

numerically solving complex time-dependent linear problems is presented in 

this article. The use of operational methods is, sometimes, very much useful to 

”guess” specific theorems in various fields of analysis. Operational method is a 

technique by which problems in analysis, in particular differential equations, 

are transformed into algebraic problems, usually the problem of solving a 

polynomial equation. The most commonly used method is Laplace 

transformation. Since this article compares Fourier and Laplace operational 

methods, this article is helpful for those who looks for the suitable method for 

their research. 

 

Another term in this article is time-dependent linear problem as we know 

from the definition of Laplace transform (See Page: 5) which means an 

equation whose dependent is time. To give an example Laplace transform 



 

 

 Interpolation-collocation methods
 

o  Method of maximum degree of precision (3.1.1)  
 �     = (  ) ∫    �( )       �  

This method establishes a quadrature formula for the 

integral 
( ) 

1    +  ∞  , which has the 
 2       −  ∞   

maximum degree of precision relative to a certain class of 

rational functions. 
 

o  Schapery’s collocation method (3.1.2) 
 

Schapery’s method proposed for linear viscoelastic stress 

analysis for a minimum approximation of error. 
 

o  Multidata method of Cost and Becker (3.1.3) 
 

This is a modification of the Schapery’s method. It aims 

the same with Schapery’s method but the advantage of 

 3
6 

  �( ) = �∞  −      ( ) 0 

where is the Laplace transform parameter and the parameter of the 

function which is being transformed t is time. Since transformation methods are 

generally using for time-dependent problems, complex time-dependent 

problems are given as examples and applications in this study to apply 

transformation method of Laplace. 

This article took place in this study since it has a wide research and some 

applications in subject of Laplace transform. Therefore Narayanan and Beskos 

(1982) listed an almost complete bibliography on the numerical inversion of 

Laplace transform and its applications between the years 1934 and 1976 in their 

article, it is especially important for this study. And also Narayanan and Beskos 

have demonstrated us the generality and advantages of the Laplace 

transformation method against other known methods. 

Narayanan and Beskos (1982) systematically discussed eight existing 

methods of numerical inversion of the Laplace transform with respect to their 

use, range of applicability, accuracy and computational efficiency on the basis 

of some framework vibration problems. These methods are as following: 
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Cost and Becker’s method() is better computation for a better approximation 
of .  

 Methods based on expansion in orthogonal functions
 

o  Method based on expansion in trigonometric functions 
of  on a ( )  

(3.2.1)    
   �( )   

is determined in terms of the values In this method  
 

finite sequence. It is used for trigonometric 
 

functions. 
 

o Method based on expansion in Legendre polynomials 

(3.2.2) 
 

This method is same with the other but it is for 

polynomials. 
 

o Method based on expansion in Laguerre polynomials 

(3.2.3) 
 

This method works for generally exponential harmonic 

functions which includes both trigonometric and 

polynomial terms. 
 

 Methods based on Fourier transform


o Method based on Fast Fourier Transform (3.3.1) 
 

Fast Fourier Transform algorithm of Cooley and Tukey 

is used in this method. According to article an extensive 

treatment of Fast Fourier Transform can be be found in the 

book of Brigham (The Fast Fourier Transform). 
 

o Method based on the sine-cosine transform (3.3.2) 
 

This method is an efficient improvement of the method of 

Dubner and Abate, which is based on the finite Fourier 

cosine transform. 

 

Methods 3.1.2, 3.1.3, 3.2.1 and 3.2.2 work with real data, i.e. with real 

values of the Laplace transform parameter s, while methods 3.1.1, 3.2.3, 3.3.1 

and 3.3.2 work with complex data. This has important implications on the 

acccuracy and efficiency of the methods (Narayanan and Beskos, 1982). 
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They also briefly described other applications of the Laplace transform 

method in conjunction with the finite element method or the boundary integral 

equation method in the areas of earthquake dynamic response of frameworks, 

thermally induced beam vibrations, forced vibrations of cylindrical shells, 

dynamic stress concentrations around holes in plates and viscoelastic stress 

analysis to demonstrate the generality and advantages of the method against 

other known methods. 

 

The difference of this article compared to others is that Narayanan and 

Beskos confronted the operational methods in engineering problems. 

 

According to Narayanan and Beskos, (1982) there are numerous 

applications of the numerical Laplace transform in wave propagation, 

structural dynamics, viscoelasticity, heat conduction, fluid dynamics and other 

areas of applied mechanics. So the applications of Laplace transform are used 

for the same reason with this study. 

 

Finally, applications in applied mechanics which are connected with the 

solution of complex time-dependent, linear problems described by their 

governing equations (usually partial differential equations) as well as their 

initial and boundary conditions (Narayanan and Beskos, 1982). Narayanan and 

Beskos (1982) have accomplished the solution of these problems numerically 

in three steps as follows: 

 

1. Apply Laplace transform with respect to time and reduce the problem 

to a time-dependent one. 

 

2. Formulate and solve the problem in the Laplace domain by any 

numerical method, such as the finite element method , the finite difference 

method or the boundary integral equation method. 

 

3. Numerically invert the transformed solution to obtain the time domain 

solution. 
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In conclusion of this article, use of the numerical Laplace transform for 

time-dependent, large-order linear problems offers a simple, straightforward 

and uniform method of solution by reducing the complexity of the problem 

through the reduction by one of the number of their independent variables, at 

the same time taking care of the initial conditions and easily handling time-

dependent boundary conditions (Narayanan and Beskos, 1982). 

 

This article includes a detailed applications and research about which 

method of Laplace transformation can be used for which kind of problem. So it 

can lead this project when solving problems at applications chapter. 

 

3.2 A Laplace Transform Solution of Schrödinger’s Equation 

Using Symbolic Algebra 

 

Clarkson and Pritchard article is published at International Journal for 

Quantum Chemistry in 1992. Since Schrödinger equation is a time-dependent 

equation it can be transformed with Laplace transformation method. That is 

why this article took place in this project. A general solution to the one-

dimensional time-independent Schrodinger equation is derived using the 

properties of the Laplace transform in this study. 

 

The Schrödinger differential equation   

=   ( ,  ) 

  

 
ℒ{ ( ,  )} = −  ′′( ,  ) +  ( ) ( ,  ) 

  

with T-periodic real-valued potential  assumed here with a  continuous 

bounded function  and 

 

a real 

parameter  is known as  of  Hill  type 

  ( )  involving  the solution  to 

(Khmelnytskaya and              

Schrodinger’s equation in a periodic domain      arise in the 

study of many different 

    including internal  rotations in 

areas of physics, ( ) =   ( + 2 )  

molecules, the kinetics of unimolecular isomerization reactions, and the motion 

of electrons in a metal or in semiconductors. Schrödinger equation is generally 

used for wave funcitons. In these applications, we need to solve for the 

eigenvalues of the equations (Clarkson and Pritchard, 1992) 
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Clarkson and Pritchard (1992) used inverse Laplace transform for the 

solution of eigenvalues of Mathieu’s equation which is 
2 + [ − 2  cos(2 )] = 0. 

 
2 

 

To describe this equation shortly, the Mathieu equation is a special case of a 

linear second order homogeneous differential equation, such as occurs in many 

applications in physics and engineering (Ruby, 1996). They compared 

eigenvalues obtained by Laplace transform method and eigenvalues obtained 

by Hill’s Method. So they found that it can be only transformed accurately with 

Laplace transform. Fourier coefficients are, however, not distinct for this 

equation. 

 

Clarkson and Pritchard (1992) had used the advantage of Laplace 

transform convolution theorem, which is discussed in former chapter of this 

study, with.Macsyma program they applied inverse Laplace transform without 

carrying out any integrations. This is a significant advantage for Macsyma 

since recursive inverse Laplace transforms are much more readily computed by 

symbolic algebra than are repeated integrations. 

 

Macsyma is an interactive symbolic, numerical and graphical 

mathematical problem solving tool. Macsyma offers symbolic and numeric 

manipulation and solution capabilities in algebra, calculus and numerical 

analysis; 2D and 3D report-quality graphics interactive scientific notebooks; 

and a user programming environment. 

 
Although they have derived a closed-form analytical solution for Schrödinger's 

equation, from a practical point of view, the most difficult part remains, and(that) is to 
evaluate the inverse Laplace transform of each term of the series . Under certain 
circumstances, these terms will be amenable to partial fraction decomposition and further 
analytical progress can be made. If this is not the case, they can still use considerations of 
parity to simplify the problem by separating the even and the odd solutions and, thus, 
reducing by 
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half the amount of work that has to be done in taking the inverse Laplace 

transform. 

 

So what is even and odd solutions? 
 

 

3.2.1  Even and Odd Solutions  

If( the→ potential−  ) function ( ) is an even function of with respect to parity 
, then the Hamiltonian will be even, and if the boundary conditions are either even or 
odd, then the eigenfunctions will also be of definite parity, either even or odd. Most 
bound-state problems fall into this category (Clarkson and Pritchard, 1999). 
 
 

In certain boundary conditions function is solved in this article and an 

auxiliary function is defined. The purpose of this auxiliary function  is to 
 

assist Clarkson and Pritchard in carrying out a partial fraction 

decomposition, 

 ( )  
compact, ( ) ( )      

which will greatly ease the process of taking the inverse Laplace transform to 

calculate . Although the explicit definitions of  are not particularly 
 

 

they can be easily defined using recursion (Clarkson and Pritchard, 
 

1999). 
 

 

With partial fractions property, auxiliary function can be transformed by 

inverse Laplace transformation method. 
 

Finally, if Clarkson and Pritchard can obtain the inverse() Laplace transform of the 
function to give them the approximation to , they can arrive at the general solution for 
Schrödinger equation (Clarkson and Pritchard, 1999). 
 

 

In this article Clarkson and Pritchard have presented a Laplace transform 

method of solution of Schrödinger's equation that can be applied to any 

potential that can be expressed as a finite Fourier series. Unlike Neumann 

series solutions that recast the equation as an integral equation, this method 

requires no recursive integration of a kernel and relies instead on properties of 
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the inverse Laplace transform convolution theorem. In a special case where the 

absolute value of the poles of the transformed potential was distinct, then a 

complete closed-form solution was obtained. In other cases, the symbolic and 

algebraic manipulation package Macsyma showed itself to be capable of 

carrying out the required inverse Laplace transforms. 

 

The results of this method were compared with the results obtained by a 

comparable analytical method in this article which is Hill's method. The 

Laplace transform method was found to be simpler and more accurate than 

Hill's method in the article of Clarkson and Pritchard, with the six terms of the 

Hill's expansion necessary to reach the accuracy of three terms of the Laplace 

transform method. Also, unlike Hill's method, the Laplace transform method 

can be used to solve for the eigenfunctions, as well as the eigenvalues 

(Clarkson and Pritchard, 1999). 

 

Likely the article of Clarkson and Pritchard, in this study Laplace 

transformation method has been used at applications for engineering. We all 

know an engineer’s duty is to improve people’s life quality by using natural 

sources. This study can be used for engineering students to learn solving 

complex time dependent problems. 

 

3.3 Inverse Laplace Transform for Transient-State Fluid Line 

Network Simulation 

 

Zecchin et al.’s article is published at Journal of Engineering Mechanics 

in 2012. This paper presents a study combining the new Laplace-domain 

input/output (I/O) model derived from the network admittance matrix with the 

Fourier series expansion numerical inverse Laplace transform to serve as a 

time-domain simulation model. A series of theorems are presented 

demonstrating the stability of the I/O model, which is important for the 

construction of the numerical inverse Laplace transform method. 

 

Finally, an article which is also about engineering problems is going to 

be inspected in this chapter. 2 articles are chosen to define the advantages of 
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Laplace transformation method compared to others. It is discussed that in the 

first chapter Laplace transform is a powerful method which can be used in 

partial differential equations vary with time. And also with Laplace transform, 

complex differential equations can be solved by transforming them into simple 

equations. Zecchin et al. (2012) transformed some partial differential 

equations, which is about fluid line that has been developed by Bernoulli, with 

Laplace transform and used them to get better results with respect to stability, 

accuracy and computational efficiency. 

 Firstly I would like to cite theorems of this article;   

∈ Λ 
[ (  , Λ),  ]         

 Theorem 3.3.1. The network admittance matrix  for the network 
  

is strictly passive if the link admittance 

matrices for each  

       

are strictly passive.   

∈ Λ 

   

 

Theorem 3.3.2. For a given network 

    

    , the I/O transfer matrix 
 

is stable if all the admittance matrices 

for all links    are strictly passive. 

  [ (  , Λ),  ]     

Applications of these theorems are discussed below. 
 

 

Theorem 3.3.1 is conditional on the strict passivity of the link admittance 

functions. This was demonstrated in former study of Zecchin to be conditional 

on the strict passivity of the resistive and compliance functions  and  . For all 

physically realizable models, 

 

and 

 

are strictly passive as 

they do not create 

  

   

energy (Zecchin et al., 2012).      

In brief, focus of this article has been on the use of the linear Laplace-

domain network model from previous research of Zecchin as an alternative 

time-domain hydraulic simulator by way of the numerical inverse Laplace 

transform. But they also compared numerical inverse Laplace transform with 

method of characteristics (a technique for solving hyperbolic partial 

differential equations) for a range of networks and pipeline functions. Zecchin 

et al. used numerical inverse Laplace Transform for pipeline systems. 
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So what is numerical inverse Laplace transform? 

= ℒ{ }   

the 

  

transformable function f with Laplace transform  Given Laplace 

   , the function  can be expressed as the Bromwich contour integral 
    

over  given by 

( ) = ℒ−1{  }( ) = � 1 
� �  +∞ ( ) 

  

        

  =     2   −∞    
part 

 

any number such that the location of all singularities of has a real where    

 less than . For the application of interest here, the Laplace-domain 

function for the 
th

 output is given by 
Θ ( ) 

   

   =  ( ) =   ( ) �Ψ ( )�    

where    th row of  . From Theorem 3.3.2, it is known that all elemental 
   

functions of are stable.      
 

 

After expressing the fundamentals of this article, let’s examine the part 

about Laplace transformation in this article. Inverse Laplace transformation is 

not so important for our study but as we see from this article, inverse Laplace 

transformation has an important place in solutions of engineering problems. So 

it was necessary to inspect this paper in our study. 

 

Much of the research literature has focused on the use of discrete partial 

differential equation solvers; however, there has been significant interest on the 

development of time-domain models based on the inverse Laplace transform of 

the Laplace-domain solutions of the fluid line equations (Zecchin et al., 2012). 

 

What Zecchin et al. did is like basic Laplace transformation. To give an 

example; 

 

The Laplace-domain expression of the I/O transfer function is given by 



Ψ ( ) 
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Θ ( ) 

(3.3.1) 
�Θ ( ) � =  ( ) �Ψ ( )� 

where = × I/O network transfer matrix.  
And what is that I/O model? 

 

 

By the convolution theorem (2.12) of the inverse Laplace transform, the 

time-domain Input/Output model representation of equation (3.3.1) is given by 

�Ψ ( )� = � ℎ(  − ) �Θ ( )� 

Θ ( ) 0 Ψ ( ) 

where the lowercase symbols are the time-domain counterparts of their Laplace 

Transforms. 

 

The primary interest within this article is the suitability of the linear 

numerical inverse Laplace transform approach for the time-domain simulation 

of pipeline networks were composed of both linear and nonlinear pipes. The 

important issues pertaining to the suitability of the numerical inverse Laplace 

transform method are (1) the accuracy of the method to approximate the true 

dynamics and (2) the relative computational efficiency of the method with 

respect to alternative simulation approaches. To undertake this analysis, many 

numerical experiments were undertaken comparing the proposed numerical 

inverse Laplace transform method combining many equations in the article 

with the commonly used method of characteristics approach (Zecchin et al., 

2012). Within the experiments, 20 different case studies were considered that 

composed of four different networks with five different pipeline models. These 

and the adopted parameter settings for the numerical inverse Laplace transform 

are outlined in the article. 

 

The approach presented here is entirely novel in that it couples the 

Laplace-domain I/O model from previous work of Zecchin et al. in a 

computationally efficient way with the Fourier series expansion numerical 

inverse Laplace transform from Abate and Whitt (1995). Heuristics from the 
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previous work of Zecchin et al. were successfully used in the application of the 

numerical inverse Laplace transform to 20 different case studies in this article 

(four different networks in five different pipe types). The focus of the studies 

as on the accuracy and computational efficiency of the proposed numerical 

inverse Laplace transform. 

 

For the cases considered, the numerical inverse Laplace transform was 

found to provide accurate approximations for all case studies, even networks 

with nonlinear pipe types. The accuracy was observed to be greater for the 

more highly dissipative networks. For large networks, numerical inverse 

Laplace transform was found to be computationally efficient compared with 

the method of characteristics. This relative efficiency was observed to be 

especially true for the case studies with more complex pipe types involving 

convolution operations, as these operations exert little additional computational 

time on the numerical inverse Laplace transform. In addition to the 

computational efficiency, the numerical inverse Laplace transform possesses 

the desirable property that it correctly captures wave propagation delays 

without the need for fine computational grids. As such, the numerical inverse 

Laplace transform represents a worthy alternative approach for modeling 

networks, particularly in cases where a limited number of measurement points 

are of interest, and the networks involve pipes with greatly varying propagation 

delays. 

 

In the fourth chapter there are some examples about engineering 

problems that includes Laplace transform. 

 

3.4 Comparison and Results 
 

 

Laplace transform is an integral transform method which is particularly 

useful in solving linear ordinary differential equations. The subject of 

differential equations possesses a large and important area of application. In 

this project engineering part of it had been discussed. There are so many 

applications of Laplace transformation in engineering problems in the articles 

above. By applying Laplace transform to linear ordinary differential equations 



47 
 

 

in essential engineering problems, they transform into simple algebraic 

problems. As you see from the articles, Laplace is just a method for 

transformation, it is a tool. Nevertheless it is necessary for solving complex 

time-dependent differential equations in engineering. 

 

It finds very wide applications in various areas of physics, structural 

engineering, mechanical engineering, electrical engineering, control 

engineering, optics, mathematics and signal processing. 3 articles about 

Laplace transform that is applied to differential equations are given above. 

Zecchin et al. used that method for modeling fluid line network simulation, 

Clarkson and Pritchard used Laplace transformation for mathematic 

applications, and Narayanan and Beskos discussed the applications of this 

method in various areas in their study. 

 

By inspecting all these articles, these implications can be made for 

Laplace transform; 

 

 Results with Laplace transformation is more accurate than Fourier 

series in engineering applications


 Laplace transform can be used for either designing engineering 

systems or examining designed systems for development


 Laplace transformation is compatible for computer programs. 

That makes it applicable for this century, so we will see Laplace 

transformation also in the future

 

To understand this method in detail, information and applications of 

Laplace transformation method are given in next chapter. 
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4. APPLICATIONS AT DIFFERENTIAL EQUATIONS WITH 
 

LAPLACE TRANSFORMS 
 

 

Problems involving ordinary differential equations can be solved directly 

by an elementary knowledge of the Laplace transformation, whereas problems 

leading to partial differential equations require some knowledge of the complex 

variable theory for thorough understanding. The study of the complex variable 

basis of the Laplace transform method is strongly urged, since it offers a more 

general approach covering cases for which the elementary method is frequently 

inadequate (Thomson, 1960). 

 

The method of Laplace transformation offers a powerful technique for 

the fields of applied mathematics. The class of functions that can be treated is 

extensive and includes those involved in many physical problems. In contrast 

to the classical method, which requires the general solution to be fitted to the 

initial or boundary conditions, these conditions are automatically incorporated 

in the Laplace transform solution for any arbitrary or prescribed excitation. 

Solutions for impulsive types of excitation and excitation of arbitrary nature 

can be concisely written in the Laplace transform notation. In fact, the method 

of Laplace transformation provides a great deal of insight into the nature of the 

solution, prior to its final completion (Thomson, 1960). 

 

Schiff (1999) produced a general procedure for the Laplace transform 

method for solving ordinary differential equations can be summarized by the 

following steps. 

 

(i) Take the Laplace transform of both sides of the equation. This 
 

 results in what is called the transformed equation. 

(ii) Obtain an equation  , where 

( ) 

is an algebraic 
 

expression in the 

variable  .   = ℒ−1{  ( )}  

(iii)  ℒ( ) =  ( )   . 

 Apply the inverse      
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In this study, Laplace transformation method is applied at differential 

equations. We can use differential equations for mathematics and engineering 

problems. They both examined in this chapter. 

 
 
 
 

 

4.1 Application at Differential Equations 
 

 

In this chapter some problems which include differential equations are 

given and their solutions are given below them to show how Laplace transform 

can be applied at differential equations. 

 

The derivative theorem in the form of Theorem 2.6 opens up the 

possibility of utilizing the Laplace transform as a tool for solving ordinary 

differential equations. Numerous applications of the Laplace transform to 

ordinary differential equations will be found in ensuing sections (Schiff, 1999). 

 

The Laplace transform is useful in solving linear ordinary differential 

equations with constant coefficients. For example, suppose that we wish to 

solve the second order linear differential equation 
2 + + = ( ) (4.1) 

 
2 

or   

′′ +′ +=  ( ) (4.1) 
   

where  and  are constants, subject to the initial or boundary conditions 

   
(0) =  , ′(0) = (4.2) 

where  and are given constants, On taking the Laplace transform of 
      

determination of ℒ{  ( )} = ( ). The required solution is then obtained by 



50 
 
finding the inverse Laplace transform of y(s). The method is easily extended 
to higher order differential equations in problems below (Spiegel, 1965). 

 

In following questions applications of Laplace transform is going to be 

varied. Not only for mathematical questions but also basic engineering 

problems which can be solved by differential equations. 

 

Example 4.1 
′ − 3 = 2   subject to (0) = 1 

we have 
ℒ{  } = , ℒ{  ′} = −  (0) 

    ℒ{  ′} − 3ℒ{  } = ℒ{ 2  }    

    
−  (0) − 3  = 

1    

    − 2    

     
[  − 3] = 

1 

+ 1 
   

     − 2    

    

= 

 1  1    

ℒ    (  − 2)(  − 3) 
+

  − 3 
� − 3� 

−1 

{ } = ℒ 

−1 

�(  − 2)(  − 3)� + ℒ  

−1 
     1    1 

= ℒ 
−1  

1 
  −1 1 

 −1 1 

 � − 2� − ℒ  � − 3� + ℒ   � − 3� 

        
=  2   
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Example 4.2 

′′ + =  , (0) = 1,   ′(0) = −2  
Taking the Laplace transform of both sides of the differential equation 

and using the given conditions, 

 

we have, 
ℒ{  } =  , ℒ{  ′′} =  2   − (0) −   ′(0) 

       ℒ{ "} + ℒ {  } = ℒ{ },   

      2  −(0) −  ′(0) +   = 12  

       
2  −  + 2 +  = 12 

  

      
= ℒ{  } = 

   1  − 2  

      2( 2 + 1) +  2 + 1  

       1     3    

      

1 

=  2 + 2 + 1 
−

  2 + 1   

  = ℒ 
−1  −  2 

 3     
   � 2 +  2 + 1  + 1� =  + cos  − 3 sin 

3 sin . Then  =  + cos,  − 3sin , ,   = 1 − sin  − 3 cos  ,    = − cos  + 

4.2 

 +   = (0) = 1   ′(0) = − 2   

′′ Check  
′′ 

     ′     
            and the function obtained is 
             

the required solution (Spiegel, 1965).        

Example 4.3         

′(0) = 5   
′′ − 3  ′ + 2  = 4 2  ,  (0) = −3, 

Solution 4.3: 
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ℒ{  ′′} − 3ℒ{  ′} + 2ℒ{  } = 4ℒ{ 2  } 

2 
      

′ 
(0)} − 3{   −  (0)} + 2  =  

4 
 

{  −   (0) − − 2  

   2 
+ 3  − 5} − 3{   + 3} + 2  = 

4     
   { − 2    

    ( 
2       4      

      − 3  + 2)  + 3  − 14 =  − 2     

         4    14 − 3     

   = ( 2 − 3  + 2)(2 − ) +
  2 − 3  + 2    

        
= 

−3 2 + 20  − 24        

        (  − 1)(  − 2)2        

        −7 4   4        

Thus 
       

=  − 1 + − 2 + (  − 2)2 
      

  

� − 1 +  − 2 + (  − 2)2� = −7 

 

+ 4 

  

+ 4 

 

= ℒ 

−1  2   2    
−7 

  
4 

 
4 

      
which can be verified as the solution (Spiegel, 1965). 

Example 4.4 Find the Laplace transform of  ( ) = [cos(3 )]2 

Using the trigonometric identity 

cos 
2 
 

1 
(1 + cos(6t)) 

  (3 ) = 2 

  2  
1 

  
ℒ{cos   (3 )} = 2  + 2( 2 + 36) 

Example 4.5 Find the Laplace transform of  ( ) = sin(2 ) cos(2 ) 
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Using the trigonometric identity 

1 

 

sin(2 ) cos(2 ) = 
 

2 sin 4 

ℒ{sin(2 ) cos(2 )} = 
4  

2( 2 + 16)  

2   

=  2 + 16   

Example 4.6 Solve the initial-value problem 

′ − 2  =  5  , (0) = 3 

Step 1. Taking the Laplace transform of both sides of the differential 

equation, we have   

ℒ{  ′} − 2ℒ{  } = ℒ{ 5  } 
since 

ℒ{  ′} = −  (0) 
differential equation becomes this, 

− 3 − 2 = 1 − 5  

4.2 Applications in Engineering Problems 
 

 

During the past decade, the numerical operational methods of Fourier and 

Laplace transforms have been successfully applied to a variety of linear, time-

dependent applied mechanics problems (Narayanan and Beskos, 1982). In this 

chapter it is going to be examined that how we apply Laplace transform 

method to engineering problems. 
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Now that we have introduced the Laplace transform, let us see what we 

can do with it. Please keep in mind that with the Laplace transform we actually 

have one of the most powerful mathematical tools for analysis, synthesis, and 

design. Being able to look at circuits and systems in the -domain can help us to 

understand how our circuits and systems really function. In this chapter firstly 

we will take an in-depth look at how easy it is to work with circuits in the -

domain. And then we will examine physical systems. Actually that is a 

wonderful thing about the physical universe in which we live; the same 

differential equations can be used to describe any linear circuit, heat 

conduction, system, or process. The key is the term linear (Alexander and 

Sadiku, 2009). 

 

So let this section describe the applications of Laplace transforms in the 

areas of science and engineering. 

 

Many engineering systems described by differential equation via Laplace 

transformation (Hsiao, 2014). In this chapter we will examine the applications 

of Laplace transform at differential equations in engineering problems starting 

with the applications at electrical circuits. After that, applications of Laplace 

transform at other branches are given by examples to improve variety of 

applications. 

 

Laplace transform’s application at Electrical Circuits is going to be 
 

examined in following. According to Alexander and Sadiku, (2009) The 

Laplace transform is an integral transformation of a function  from the 

time domain into the complex frequency domain, giving 

 So in this part 

 .  ( )  

of  this  study  Laplace  transform  is  going  to  be  ( )    

transformation. As examined below it is so easy to solve complex boundary-

value problems with Laplace transformation. 
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: inductance (constant) 
 
 

 

: resistance (constant) : 

capacitance (constant) : 

current 

 
 
 

 

Figure 4.1 RCL circuit (From Schiff, 1999) 

respectively, where Kirchoff’s voltage (  /  )  (1/  ) ∫  I(τ) dτ  
In the (RCL) circuit in Figure 4.1, the voltage drops across the inductor, 

resistor, and capacitor are given by  , , and     
( ) 

, 
that is,     

law states that the sum of the0 

   

      voltage 

drops across the individual components equals the impressed voltage,  , 

  
+   + 1 �  (  )   =  ( ). 

    
(4.1) 

    0          

(4.1) as ( ) = ∫0  ( ) 

(the charge of the condenser), we can write Setting   

  2    

=  ( ) 

     

(4.2) 

since =   �   . This 

2 + 
 

+ 

     

will be the basis of some of the electrical circuit 

problems throughout the sequel (Schiff, 1999). 
 

 

As introduced above it is easy to apply Laplace transform at engineering 

problems such as electrical circuits. 

 

At first, engineering problems with ordinary differential equations are 

going to be solved. Secondly, boundary-value problems involving partial 

differential equations will be examined in this chapter. Now let’s see other 

applications of Laplace transform. 
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4.2.1  Ordinary Differential Equations 
 

 

 Example 4.7 Application to Beams 

0 A beam (see Figure 4.2) 
=    

which is hinged at its ends  
   uniform load 

and  carries a  = 0 

per unit length. Find the 

deflection at any point. 

 
 
 

Figure 4.2 Beam (From Spiegel, 1965) 
 
 
 

 

The differential equation and boundary conditions are  

     40   
0 < < 1 

     
(4.3) 

(0) 

  4 =        

= 0, ′′(0) = 0, ( ) = 0,  ′′( ) = 0 (4.4) 

Taking  Laplace 

    =  ( ) = ℒ{  ( )} ,  

of 

 

(4.3), we  have  if transforms   of both   sides  

 

4 

− 

3 

(0) − 

2  ′ 

(0) − 

′′ 

(0) − 

′′′  0 

       (0) = 

′(0) =  1,    ′′′(0) =  2,  we find   

in (4.4) and the unknown conditions Using the first two  conditions 

           1 

+ 

2 

+ 

0       

Then inverting,      
=  2 

4 5       
     

2  3 

 

0 4 

   

2 3 0 4 

( ) =  1  + 

 

=  1  + 
3! 

 

+ 
4! 

 
6 

 

+ 
24 
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From the last conditions in (4.4), we find 

0 

    

 

1 

0 3        

 
= 24  ,   2 = − 2     

Thus the required deflection is     

0 

    

0 3 

− 2 

3 

+ 

4 

) = 

2 

+   − 

2 

) ( ) = 24   (    24( −  )(   

(Spiegel, 1965) 
 

 

And also according to Narayanan and Beskos, (1982) there are numerous 

applications of the numerical Laplace transform in wave propagation, 

structural dynamics, viscoelasticity, heat conduction, fluid dynamics and other 

areas of applied mechanics. 

 

Laplace transform method can be used to solve for the eigenfunctions, as 

well as the eigenvalues (Clarkson et al., 1992) which are the the components of 

exponential-harmonic functions. Exponential-harmonic functions are essential 

for engineering problems below. 

 

4.2.2  Boundary-Value Problems 
 

 

Various problems in science and engineering, when formulated 

mathematically, lead to partial differential equations involving one or more 

unknown functions together with certain prescribed conditions on the functions 

which arise from the physical situation (Spiegel, 1965). 

 

The conditions are called boundary conditions. The problem of finding 

solutions to the equations which satisfy the boundary conditions is called a 

boundary-value problem (Spiegel, 1965). 

 

Applications of Laplace transform in solution of boundary-value 

problems are examined below. 
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Laplace transform can be applied in a solution of a boundary value 
 

problem with   

  −1 

 

 

  

     

+  0  =  ( ) 

 

  ( )+    −1 ( )     −1 + ⋯ +  1  

differential equation and   

, 

 

…   ,    −1 (0) =    −1 

 

  
(0) =  0 ,′(0) =  1 

  
boundary values are given.  

(  − 1) 

  

≥ 0 and ℒ{ ( )} =  ( )  ( )    

For 

  

, if 

 

and 

   

derivatives are continuos for 

 

For 

  

, if 

 

and 

   

derivatives are continuos for 

 

 

is exponential 
…    −1 

( ) 
is found. So ℒ{  ( can)} be found by calculating the derivatives that is found and 

writing with in the differential equation. With 

( ) = ℒ−1{  ( )}  

transform, solution of differential equation is found (Yaşar, 2005). 
 

 

Let’s see with some examples. 

Example 4.8 Suppose that the current in an electrical circuit satisfies 
+ = 0 

     
, 

 

where , , 0, and are constants. Find = ( ) for > 0 if (0) = 0. Taking the 

Laplace transform, 

 

ℒ � � = ( ) −   −1 0 
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0 

     

      

ℒ( ) +   ℒ( ) =  

     

that is,      
2 +  2, 

    
                

0 

      

                 

+  2). 

     

      
ℒ( ) = (   +  )( 2 

     
Considering partial fractions                

       0  �          

 

 
+ 

 

            

+  2) = 

 

+ 

 

ℒ( ) = (  +  � )( 2 +  � 
2 

+ 2, 
 

we find that 
=  2 2+  2 , 

    
=  2 2 +  2 , = 2  2+  2 

 
      

   0           −  0    0 , 

and so 

0 

          

0  

     

0   ω 

  

( ) =  2  2 
 

−  +  2   2 sin− 2 2 cos ωt. 

 

2 

+ 

   

 

2 

+ 

2 

+ 
              ω 

(Schiff, 1999) 
                    

 

    

Example 4.9 Suppose that the current in the electrical circuit depicted 

in Figure 4.2 satisfies    

  
+ 1 

            

       �  ( )  τ = E,      
             0            

where  ,  ; and  are positive constants, (0) = 0. Then    

        

    ℒ( ) + 

ℒ( )      

         =  ,      

implying 



  

2 
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ℒ( ) = 
 

= 
  2    . 

  
+ 1 
 

( 

 
+ 1 
  

       �  

         )  

Thus,  

( ) = � √    1  . 

 

(Schiff, 1999) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.3 Electrical circuit (From Schiff, 1999) 
 
 
 
 

 

Example 4.10 Heat Conduction 
 
 
 
 
 

 
> 0 

A semi-infinite solid  at 

   > 0 

temperature zero. At time  , a 

constant temperature 0  = 0 is 
applied=0 and maintained at the face  

. Find the temperature at any 

 

Figure 4.4 Semi-infinite solid (From Spiegel, 1965) 
point of the solid at any later time > 0.  

To solve this(, example) one dimensional heat conduction equation must be known. Here is the temperature in a solid 
at position at time . The 
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/ 

 

assumed    
is equal to 

 
constant   , called the diffusivity,  where the thermal 

conductivity  , the specific heat and the density (mass per unit volume)  are 

 constant. The amount of heat per unit area per unit time conducted 

across a plane is given by( , ) 
(Spiegel, 1965).  

 

The boundary-value problem 

( , ) at any point and any time 

 2  

 =2 

(0, 
( , 0) = 0, 

 

for the determination of the temperature is 
 

> 0, > 0 
) = 0, |  ( , )| < 

 

where the last condition expresses the requirement that the temperature is 

bounded for all  and . Taking Laplace transforms, we find  

 2 

or 

2  

(4.5)  −  ( , 0) =2 2 −   = 0 

where 

(0,  ) = ℒ{  (0, )} = 

0  

(4.6) 
 

 

  

and  =  ( ,  ) is required to be bounded. 
   

 Solving (4.5), we find 

−  /   +  2 
−  / 

 

 ( ,  ) =  1  

Then we choose 1 = 0 so that  is bounded as  → ∞, and we have 
 

( ,  ) =  2  −  / 

From (4.6) we have  2 = 0/ , so that 
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( ,  ) = 0 −  / 

 

We find 

( , ) =  0erfc � 
 

� =  0 �1 − 2 � /2√   −  2     �. 

 
2√ 

 
√ 

0 (Spiegel,1965) 
     

 

 

Example 4.11 

Work Example 4.10 if at = 0 the temperature applied is given by ( ), > 0.  
The boundary-value problem in this case is the same as in the preceding 

problem except that the  boundary  condition      0 is replaced by 
 

. Then if the Laplace transform of 
  

is  
 

, we find from 

(4.3) of Example 4.7 that 
     

and so 
  

(0, )  = 
 

         

( ) 

 

( ) (0, ) =  ( )   2 =  ( )          
                

Now since 
    ( ,  ) =  ( ) −  /      
          

 

         

 

ℒ 

−1 

�   

−  / 

� = 

   −3/2 

 

−  2/4       

    2√        

Hence by the convolution theorem,   

−2
3  −4    

2 (  −  ) 

 

 
( , ) = � 

     
     0 2√  

−  2 

�   − 
2 

2� 

 

    
=  2 �∞ 

    
     √ /2√       4    

on letting = 2/4 . 
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    (Spiegel,1965) 

Example 4.12 The Vibrating String   

0 =. 0  

is initially at rest on the 

 

An infinitely long string having one end at  
sin   , > 0  transverse displacement given by 

axis. The end   undergoes a periodic  = 0   

Find the displacement of any point on the string at any 
 

time. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5 Infinitely long string (From Spiegel, 1965)   

 

 

time ,  ( , ) 

is the transverse displacement of the string at any point at any If    

then the boundary-value problem is      

   2 

= 
2 2   

> 0, > 0 
   

( , 0) = 0, 

2  2   

|  ( , )| < 
( , 0) = 0, (0, ) =  0 sin   , 

where the last condition specifies that the displacement is bounded.   

Taking Laplace transforms, we find, if  ( ,  ) = ℒ{  ( , )},   

 

2 

−   ( , 0) −  ( , 0) = 
2 2 22 

= 0 
  

  2 or 2 
−

  2   

     0 

( ,  ) is bounded. 

  

(4.7)    (0, ) =  2 +  2 ,   

The general solution of the differential equation is 
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( ,  ) =  1    /  +  2 −    / 

   

 From the condition on boundedness, we must have 1 = 0. Then   

   ( ,  ) =  2  −    /     

 
From the first condition in (4.7),  2 

 
=  0  /( 2 +  2). Then 

  
   ( ,  ) =  2 +  2  

−    / 

   

   0       

and so  
0 sin  (  − ) >  / .   

 =  / ( ,  ) = �0       <  /   

 This means physically that a point  of the string stays at rest until the 
= 0          /    

time 

  

. Thereafter it undergoes 

motion identical wi th that of the end  

            

  but lags behind it in time by the amount  . The constant  is the 

speed with which the wave travels (Spiegel, 1965).     
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5. CONCLUSION 
 

 

Many physical processes in nature envolve with time in semi-infinite or 

infinite domains. Since these processes are described by both ordinary and 

partial differential equations, solving such equations is of great importance. 

Since the Laplace transforms transform a differential equation to an algebraic 

one, Laplace transform is considered to be a strong tool for solving partial 

differential equations that appear in various fields of science and engineering. 

Besides, the Laplace transforms method is considered to be the easiest methods 

used to solve such equations because unlike the other methods used less and 

uncomplicated calculations are needed. 

 

In conclusion, our main aim is to explain Laplace methods and indicate 

its calculation and solution on most widely-used area on mathematics and 

engineering. In this thesis, it is explained and exemplified that Laplace is one 

of the useful theorems while solving problems related to differential equations. 

 

This thesis can be considered as a survey on Laplace transform that 

probably will be a reference for scientists working on mathematics and other 

sciences directly related to the mathematics like engineering, physics, 

chemistry and economics etc. 
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