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OZET

KAFES IMPLICATION (CIKARIM) CEBIRLERINDE TUREVLER

ALTINDAG, Onciil

Yiiksek Lisans Tezi , Matematik Boliimii

Tez Damismani : Yrd. Dog. Dr. Sule AYAR OZBAL

Bu tez esas olarak ii¢ boliimden olusmaktadir. ilk boliimde kafes implication
(cikarim) cebirleri ile ilgili 6nbilgiler ve ilgili 6zellikler verilmistir.

Ikinci béliimde, kafes implication (¢ikarim) cebirlerinde tiirev ve f-tiirev tanimi
verilmis ve ilgili 6zellikleri listelenmistir.

Uciincii béliimde, kafes implication (¢ikarim) cebirlerinde simetrik ikili tiirev tanimi
verilmistir. Kafes implication (¢ikarim) cebirlerinde verilen ii¢ doniisiimiin de simetrik ikili
tirev 6zelligini tagidig1 goriilmiistiir.Daha sonra simetrik ikili tlirevin baz1 6énemli 6zellikleri
listelenmis ve 1spatlanmistir. Ayrica, kafes implication (¢ikarim) cebirlerinde simetrik ikili
tirev aracilig1 ile Fix ve Kernel kiimeleri tanimlanmis ve bu kiimelere ait ana ozellikler
calisilmis ve 1spatlanmistir.



ABSTRACT

DERIVATIONS ON LATTICE IMPLICATION ALGEBRA

ALTINDAG, Onciil

MSc. in Mathematics

Supervisor : Assist. Prof. Dr. Sule AYAR OZBAL

June 2015

This thesis consists of three parts. In the first part preliminaries about the lattice
implication algebras and their properties are given.

In the second part, the notions of derivation and f-derivation of lattice implication
algebras are defined and all properties related are listed.

In the third part, the notion of symmetric bi-derivation in lattice implication algebras
is defined. Three examples of maps in lattice implication algebras have been checked to see
that they really have the properties of symmetric bi-derivation in lattice implication algebra.
Then some important properties of these symmetric bi-derivations are listed and proved.
Moreover, the Fix set and the Kernel are defined on lattice implication algebras for the
symmetric bi-derivations and main properties of these sets are studied and proved.
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INTRODUCTION

The concept of lattice implication algebra was proposed by Y. Xu [Y. Xu,1993], in
order to establish an alternative logic knowledge representation. In his paper, Xu combined
lattice and implication algebras and created a new algebraic structure. The lattice implication
algebra so constructed has two main elements: the lattice, defined to describe uncertainities,
and the implication operator designed to describe the way of human’s reasoning. From
another point, we can say that Xu aimed to provide a logical foundation for uncertain
information processing theory, the incomparability in uncertain information in the reasoning
and establised a logical system with truth value in a relatively general lattice.

Meanwhile, “non-classical logic” is the name given to formal systems that differ in a
significiant way from standart logical systems. Several ways exists to do this; like extensions,
deriviations and variations. The aim of these departures is to make it possible to construct
different models of logical consequence and logical truth. The lattice implication algebra; as
mentioned above, is a combination of algebraic lattice and implication algebra. Here, let us
define briefly these two concepts; an algebraic lattice is a poset which is locally and finetely
presentable as a category. Or in other words, it is a complete lattice in which every element is
the supremum of the compact elements below it. An implication algebra is an abstract algebra
containing a nonempty set and a binary operation on this set, called the implication product,
satisfying some defined properties.

Lattice implication algebra, being an important non-classical algebra, has been
studied by many researchers. Y. Xu and K. Y. Qin [Y. Xu and Y. Qin,1992] discussed the
properties of lattice implication H-algebras and gave some equivalent conditions about H
lattice implication algebras. Y. Xu and K. Y. Qin [Y.Xu and Y. Qin, 1993] defined the notion
of filters in a lattice implication algebra and obtained their properties.

Lee and Kim introduced in [Sang Deok Lee and Kyung Ho Kim, 2013] the notion
of derivation in lattice implication algebra and considered its properties. Then Yon and Kim
introduced in [Yong Ho Yon and Kyung Ho Kim, 2013] the notion of f-derivation in lattice
implication algebra similarly.

In this paper we introduced the notion of symmetric bi-derivation in lattice
implication algebra. We gave the properties of a symmetric bi-derivation D in lattice
implication algebra, and also the properties of its trace. We also defined the fixed set and the
Kernel of the map, and showed that every filter in the lattice implication L is D-invariant for
D being a symmetric bi-derivation.

viii



1. Preliminaries

In this part, in order to facilitate the readability of the thesis some basic definitions
and properties of lattice implication algebras that are used in proofs are given to en-
sure ease of application. This is done in conjunction with references they received.

Definition 1.1. A [attice implication algebra is an algebra (L; A,V,/ —,0, 1) of type
(2,2,1,2,0,0) where (L,A,V,0,1) is a bounded lattice, ” 7 7 is an order-reversing
involution and ” — 7 is a binary operation, satisfying the following axioms for all
x,y,z € L (Xu, 1993):

)z =y —2)=y—(z—2).
(12) 2 — z = 1.

1Bz —y=y —a .

M) z—y=y—sz=1l=z=y.
15) (z = y) 2y=(y > z) >z
(L) (zVy) = z=(x = 2) Ay — 2)

(L2) (zAy) = z=(z— 2)V(y = 2).

Definition 1.2. If L satisfies conditions (I1)-(I5), we say that L is a quasi lattice
implication algebra. A lattice implication algebra L is called lattice H implication
algebra if it satisfies  Vy V ((x Ay) — 2z) =1 for all x,y,z € L.

Remark 1.3. We can define a partial ordering ”<” on a lattice implication algebra
L by x <y if and only if x — y = 1.

Properties 1.4. In a lattice implication algebra L, the following hold [Y. Xu, 1993]:
UH0—z=11sax=zandx—1=1.
(U2)z -y <(y—2z2) — (x— 2).

(U3) z <yimpliesy > 2<zx—zand z 5>z <z —y.

1



(U4) 2’ =2 — 0.

(Us) xVy=(x—y)—v.

(U6) ((y = z) =) =z Ay =((x = y) =)

(UN) z<(x—y) —v.

In a lattice H implication algebra L , the following hold:
(U8) x — (z — y) =2 —v.

U9) x— (y—2)=(r—=y) — (z— 2).

Definition 1.5. A non-empty subset F' of a lattice implication algebra L is called a
filter of L if it satisfies:

(F1) 1 e F,

(F2) z € Fand z — y € F imply y € F, for all z,y € L.

2. Derivations and f-Derivations of Lattice Implication
Algebras

2.1. Derivations of Lattice Implication Algebras.

Lee and Kim defined first the derivations of lattice implication algebras in their
paper "On Derivations of Lattice Implication Algebras” in 2013.

Definition 2.1. Let L be a lattice implication algebra. A map d : L — L is a
derivation of L if

dlz —y) = (z = d(y)) vV (d(z) = y)
for all z,y € L

Here is an example given by Lee and Kim;

Example 2.1. Let L :={0,a,b,¢,1}. Define the partial order on L as 0 < a < b <
c <1, and define

ANy :=min{x,y}, zVy = max{z,y}



forallz,y € L and 71 7 and 7 — 7 as follows:

x |2 — 10 a b c 1
01 01 1111
al c alb 1 1 1 1
b|b bla b 1 1 1
cla cla b ¢ 11
110 110 a b ¢ 1

Then (L; A, V1 —,0,1) is a lattice implication algebra. Define a map d : L — L
will be defined as :

1, ifr=c1
PR LR

a, ifx=0,

¢, ifr=2>b

It is easy to check that d is a derivation of lattice implication algebra L.

Lee And Kim listed and proved in ["On Derivations of Lattice Implication Alge-
bras”,2013] the following properties about derivations on lattice implication algebras.
In what follows L is a lattice implication algebra and d is a derivation of L unless
otherwise specified.

Proposition 2.2. Let d be a derivation of L, then d(1) = 1.
Proposition 2.3. d(x) = d(z) V x and as a result x < d(x) for all x € L

Proposition 2.4. Let f be an expansive map on L i.e., x < f(x) for all x € L.
Then f(z) =y <z — f(y) for allz,y € L

Theorem 2.5. Let d be a map on L. Then the following identities are equivalent:

i) d is a deriwation of L.
i) d(xr — y) =x — d(y) for all x,y € L

Proposition 2.6. Ifdy,ds,ds, ....,d, are derivations of L, then diodsodso....od,, is a
deriwation of L

Definition 2.7. Let d be a derivation of the lattice implication algebra L. We can
define a set Fizy(L) by

Fizy(L) :={z € L|d(x) = x} for all x € L.
Moreover if x € Fizg( L) then (dodod....d)(z) = .
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Proposition 2.8. Let L is a lattice implication algebra and d is a derivation of L,
then we have the following properties about the fixed set:

(i))Ifre L andy € Fixg( L) thenx —y € Fizg( L ).
(i) If y € Fizg( L) then xVy € Fizg( L) for all x € L.

Proposition 2.9. Ifx <y and x € Fizy( L) theny € Fizg( L ).

Proposition 2.10. If x <y implies d(x) < d(y) for all x,y € L, then d is called an
1sotone deriwation. In addition, if d is an endomorphism, d is an isotone derivation.

Proposition 2.11. The derivation d : L — L defines on the lattice implication
algebra L is an identity map if it satisfies © — d(y) = d(z) = y for all z,y € L.

Theorem 2.12. The derivation d of the lattice implication algebra L is one to one
if and only if d is an identity derivation.

Theorem 2.13. The map d, : L — L , defined for all x € L as d,(x) = a — x for
a € L where L is a lattice implication algebra is a derivation of L for each x € L.

Proposition 2.14. For every a € L, the simple deriwation d, defined above is an
endomorphism if L is a lattice H implication algebra.

Definition 2.15. For L a lattice implication algebra and a derivation d of it , one
can define a Kerd by Kerd = {x € L|d(z) = 1}.

Proposition 2.16. If d is an endomorphism on L, then Kerd is a filter of L.
Proposition 2.17. Ify € Kerd, then x Vy € Kerd for all x € L.
Proposition 2.18. If x <y and x € Kerd, then y € Kerd.

Proposition 2.19. Ify € Kerd, then we have x — y € Kerd for all x € L.

Definition 2.20. Let L be a lattice implication algebra. A non-empty subset F' of
L is said to be d-invariant if d(F') C F where d(F) = {d(z)|z € F}

Theorem 2.21. Every filter F' of the lattice implication algebra L is d-invariant.



2.2. f-Derivations of Lattice Implication Algebras

After Lee and Kim; Yon and Kim then defined the f- derivations of lattice
implication algebras in their paper in 2013 ”On f-Derivations of Lattice Implication
Algebras”.

Definition 2.22. Let L be a lattice implication algebra. A map d : L — L is a
derivation of L if

d(x —y) = (z —d(y) V (d(z) = y)
for all z,y € L.

In addition let f be a map between the implication algebras L, and L, defined as
an implication homomorphism , that is, f(x — y) = f(z) — f(y) Vz,y € L.

If f is an implication endomorphism of L, the map d : L — L is a f-derivation of
L if it satisfies the identity

dx —y) = (f(z) = d(y)) V (d(z) = f(y)) for all z,y € L
Here is an example given by Yon and Kim;

Example 2.2. Let L := {0,a,b,1} be a bounded lattice, let us define for all x,y € L
and 71 7 and 7 — 7 as follows:

x| —>‘O a b 1
01 0|1 1 11
alb alb 1 b1
b| a bla a 1 1
110 110 a b 1

If we define a map f: L — L by

_J0, ifz=0a
f(x)_{L ifz=0b1

d(x) = b, z.fx:O,a
1, ifx=>b1

It is easy to check that d is an f-derivation of lattice implication algebra L. Notice
that d is not a derivation of L since d(b — 0) do not satisfy the equality defined above
for the map d to be a derivation.
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Yon and Kim listed and proved in their paper published in 2013 ”"On f-Derivations
of Lattice Implication Algebras” the following properties about f-derivations of
lattice implication algebras. In what follows L is a lattice implication algebra and d
is a f-derivation of L unless otherwise specified.

Proposition 2.23. Let d be a f-derivation of L then d(1) = 1.

Proposition 2.24. d(z) = d(x) V f(x) and as a result we have;

i) f(x) <d(zx) for allz € L
i) F(2) v fly) < dx) v d(y) for all 2,y € L

Theorem 2.25. Let d be a f-derivation on L. Then,
dlx = y) = f(z) = d(y) for allz,y € L

Proposition 2.26. Let d be an f-derivation of L, if it satisfies d(z — y) = d(x) —
f(y) for all x,y € L then d(z) = f(x) and moreover d = f.

Definition 2.27. If z < y implies d(z) < d(y) for all x,y € L, then d is called
isotone f-derivation.

Proposition 2.28. If d is an isotone f-derivation, then d(x) V d(y) < d(x V y) for
all z,y € L

Definition 2.29. Let d be a f-derivation of the lattice implication algebra L. We
can define a set Fizy(L) by

Fizy(L) :={z € L|d(z) = f(x)} for all x € L.
Clearly 1 € Fizq(L).

Proposition 2.30. Let L be a lattice implication algebra and d be an f-derivation of
L, then we have the following properties about the fixed set:

(i))Ifre L andy € Fixg( L) thenx —y € Fizg( L ).
(1)) If y € Fizg( L) then xVy € Fizg( L) for all x € L.

Proposition 2.31. Ifx <y and x € Fizy( L ) theny € Fizy( L ).
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Definition 2.32. For L a lattice implication algebra and an f-derivation d of it, one
can define a Kerd by Kerd = {z € L|d(x) = 1}.

Proposition 2.33. If d is an endomorphism of L then Kerd is a filter of L.

Proposition 2.34. Iy € Kerd then x VvV y € Kerd for all x € L.

Proposition 2.35. If x <y and x € Kerd then y € Kerd.

Proposition 2.36. Ify € Kerd then we have x — y € Kerd for all x € L.

Definition 2.37. Let L be a lattice implication algebra. A nonempty subset F' of
L is called a normal filter ifit 1 € Fand x € L and y € F imply v -y € F

Proposition 2.38. As a result of the above definitions we can state that the sets
Fizq( L) and Kerd are normal filters of L.

3. The Symmetric Bi-Derivation of Lattice Implication
Algebras

Definition 3.1. Let L be a lattice implication algebra. A mapping D(.,.) :
L x L — L is called symmetric if the equality D(z,y) = D(y, x) holds for all z,y € L

The following definition introduces the notion of symmetric bi-derivation for lattice
implication algebras.

Definition 3.2. Let L be a lattice implication algebra and let D(.,.) : L x L — L
be a symmetric mapping. We call D a symmetric bi-derivation of L if it satisfies

D(x — y,z) = (x — D(y,2)) V (D(x,2) = y) for all x,y,z € L.
It is clear that a symmetric bi-derivation of L also satisfies

D(z,y — 2) = (D(x,y) = 2) V (y = D(z,2)) for all z,y,z € L.
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Example 3.1. Let L :={0,a,b,1} be a set with the Cayley table;

x| a —>‘0a b 1
01 01 1 1 1
alb alb 1 11
bla bla b 11
110 110 a b1

For any x € L we have ¥’ = x — 0 and the operations \V and N on L are defined
as:xVy=(x—vy) —wyandazANy= (' =) —=vy). Then (L;\,V,1 —,0,1)
is a lattice implication algebra. The mapping D(.,.) : L x L — L will be defined by
D(z,y) =2 — (y — a) for every x,y € L, i.e.,
a, ifr=0andy=0,
D(z,y)=<0b, if(xr=aandy=0) or(x =0 andy = a),
1, otherwise

Then we can see that D is a symmetric bi-derivation of L.

Example 3.2. Let L :={0,a,b,1} be a set with the Cayley table;

x| —>‘Oa b 1
01 01 1 1 1
alb alb 1 11
bl a bla b 11
110 110 a b1

For any x € L we have x' = x — 0 and the operations V and A on L are defined as
caVy=(x—y) syandzANy= (' =) —y). Then (L;A,V,1 —,0,1) is a
lattice implication algebra. The mapping D(.,.) : L x L — L will be defined as :

z, ify=0,
Y, fo:Oa

D =
() b, ifr=aandy=a,

1, otherwise

It is easy to check that D is a symmetric bi-derivation of L.

Example 3.3. Let (B;A,V, ',0,1) be a Boolean algebra. If we define
r—y=12Vy

for every x,y € B, then (B;A\,V, ', —,0,1) is a lattice implication algebra.
For a fized element a in B, if we define a map D : B x B — B by

D(z,y)=xzVyVa

for every x,y € B, then D is a symmetric bi-derivation of B.
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Definition 3.3. Let L be a lattice implication algebra and let D(.,.) : L x L — L be
a symmetric mapping. A mapping d : L — L defined for all x € L by d(z) = D(z, x)
is called the trace of D.

Proposition 3.4. Let L be a lattice implication algebra and d be the trace of sym-
metric bi-derivation D of L. Then the followings hold:

i) D(1,z) =1 for all x € L.

ii) d(1) =
Proof. i) Let z,y € L. Then we have
D(l,z) = D(z — 1,x)
=(x — D(1,2)) V(D(z,z) — 1)
=(x—D(,x))v1i=1
Therefore we get D(1,z) = 1.

ii) It is clear from i).
U

Proposition 3.5. Let L be a lattice implication algebra and d be the trace of sym-
metric bi-derivation D of L. Then the followings hold:

i) D(x,y) = D(x,y) Vx for all z,y € L

i) d(x) = d(z) V x for all x € L.
Proof. 1) Let x,y € L. Then we have
D(z,y) = D(1 = =z,y)
— (15 D(z,) v (D(1,y) = 2)
=D(z,y) V(1 —x)
= D(x,y)Vx

So we have D(z,y) = D(z,y) Vx
Also, we can get © < D(x,y) for all x,y € L.

ii)Let z € L. Then we have

d(x) = D(x, )
=D(1 — x,x)
=Dl v (100

= d(x) v

We proved d(z) = d(z) V x and as above we can obtain z < d(z) forall x € L. O
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Proposition 3.6. Let L be a lattice implication algebra and d be the trace of sym-
metric bi-derivation D of L. Then
diz) 2 y<z—y<x—dy) foralz,ye L.

Proof. Let L be a lattice implication algebra and d be the trace of symmetric bi-
derivation D of L.
From Proposition 3.3(ii) we have x < d(x) and y < d(y).

Using (U3); z <y impliessy -z <z — zand z 5z < z — v.
we obtain d(z) -y <z —yand 2z -y <z — d(y).
We can conclude d(z) -y <z —y <x —d(y) for all z,y € L.
U

Proposition 3.7. Let L be a lattice implication algebra and d be the trace of sym-
metric bi-derivation D of L. Then

i)D(d(x) = x,x) =1
ii) d(d(x) = ) =1 =d(x — d(z))

Proof. 1) By using the definition of symmetric bi-derivation D of a lattice implication
algebra and properties of a lattice implication algebras (I12), (U5) and (Ul)we have,

D(d(z) = x,z) = (d(z) = D(x,x)) V (D(d(x),x) — x)

= (d(z) = d(z)) v (D(d(x),z) — )

(1 = (D(d(x),z) = x)) — (D(d(z),x) = x)
= (

1

);
D(d(z), z) = ) = (D(d(x), z) — x)

ii) By using the definition of trace of a symmetric bi-derivation D of a lattice
implication algebra and properties of a lattice implication algebras, we have

d(d(z) = z) = D(d(z) — z,d(x) — z)
= (d(z) = D(z,d(x) — x)) V (D(d(z),d(x) — z) = x)
= (d(z) = ((d(z) = d(z)) V (D(z,d(x)) — x))) V (D(d(z),d(x) = z) = z)
= (d(z) = (L Vv (D(z,d(z)) — x))) vV (D(d(z),d(z) = ) = z)
= (d(z) = 1)) v (D(d(z),d(x) = z) = x)
Vv (D(d(z),d(z) = z) = )

1
1
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This proves the first part d(d(z) — x) = 1.
The second equality is obvious since d(x — d(x)) = d(1) = 1 which was the result
that we obtained at the end of the proof of Proposition 3.3 ii).

Proposition 3.8. Let a symmetric map D : L x L — L be defined by
D(x —y,z) =2 — D(y,z) on L x L.
Then D is a symmetric bi-derivation of L X L.

Proof. For all y € L, D(1,y) = D(D(l,y) — l1,y) = D(1,y) — D(l,y) = 1. It
follows
x— D(z,y) = D(x — z,y) = D(1,y) = 1.
for every x,y € L. Since x < D(x, z) and y < D(y, z), we have
D(z,z) »y<zx—y<z— Dy, z).

Hence D(x — y,2) = x — D(y,z) = (x = D(y,2)) V (D(z,2) = y), and D is a
bi-derivation. O

Proposition 3.9. If D : L x L — L is a symmetric bi-derivation, then D satisfies
D(z —y,z) =z — D(y, 2)

Proof. Let D be a symmetric bi-derivation and z,y,z € L. Since z < D(x, z) and
y < D(y, z), we have

D(z,z) »y<z—y<z— Dy, z).
Hence D(x — y,2) = (x = D(y,2)) V (D(z,2) = y) =z — D(y, 2). O

As a consequence of Propositions 3.6 and 3.7 we can state the following theorem.

Theorem 3.10. A map D : L x L — L is a symmetric bi-derivation if and only if D
is a symmetric map and it satisfies D(x — y,z) = x — D(y, z) for every x,y,z € L.

Proposition 3.11. A map D being a symmetric bi derivation defined on the lattice
implication algebra L satisfies the following:

D(z,y — 2) =y — D(z, 2)
forall z,y,z € L.

Proof. We will make use of the previous theorem 3.8 and the fact that D is symmetric.
D(z,y — z) = D(y — z,x)
=Yy — D(Za fE)
=y — D(z,z)



12

Proposition 3.12. A map D being a symmetric bi derivation defined on the lattice
implication algebra L satisfies the following: D(x,y) = 2’ — (y' — D(0,0)) for every
x,y € L. That is, the value of D is determined by D(0,0).

Proof. For any z,y € L,
D(z,y) = D(a",y") = D(a’ = 0,y = 0) =2’ — (4 = D(0,0))
d

Proposition 3.13. Let L be a lattice implication algebra where d is the trace of
symmetric bi-derivation D of L. Then

dlx = y) =z = [z — d(y)]
Proof.
dx = y) =Dz =y, = y)
=z — D(y,z = y)
=z — D(z = y,y)
=z — (z = D(y,y))
=z = (z = d(y))
OJ
Furthermore, in a lattice H implication algebra with the additional equality z —
(x = y) =z — y we get
dlx = y) =z — d(y)

Definition 3.14. Let D be a symmetric bi-derivation of the lattice implication
algebra L and d be the trace of D. We can define a set Fizp(L) by

Fizp(L) :={x € L|d(z) =z}

Proposition 3.15. Let d be the trace of the symmetric bi-derivation D of the lattice
implication algebra L, then we have;

(dodod....od)(z) = x
Proof. The proof is obvious by the definition of the trace of D. U

Proposition 3.16. Let D be a symmetric bi-derivation of the lattice H implication
algebra L.

i)ifve Ll ,ye€ Fizp(L) then x —y € Fixp(L).

ii) if y € Fixp(L) then x Vy € Fixp(L) Vo € L.
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Proof. i) Let D be a symmetric bi-derivation of the lattice H implication algebra.
By using Proposition 3.9 and the fact that y € Fizp(L) we have
d(x = y) =z — d(y) = x — y. Therefore, we get  — y € Fizp(L).

ii) Let D be a symmetric bi-derivation of the lattice H implication algebra. By
using Proposition 3.9 and the fact that we have y € Fixp(L) we have

dzVy)=d((x = y) = y)
= (r —=y) —dy)

=(@—=y) >y
Hence d(x V y) = x V y. Therefore, we get x Vy € Fixp(L).

Proposition 3.17. Let D be a symmetric bi-derivation of the lattice H implication
algebra L; for x,y € L

If t <y and x € Fixp(L) theny € Fizp(L).

Proof. We have x,y € L and x <y so that z -y =1 and x € Fizp(L) .

by prop 3.11 x € Fixp(L) implies y V x € Fia:D(L)

dly) = (y = z) =z

So we get d(y) = y and we have proved y € Fizp(L).

Definition 3.18. Let L be a lattice implication algebra. A nonempty subset A of
L is said to be D-invariant if D(A, A) C A where D(A, A) = {D(x,y)|z,y € A}.
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Proposition 3.19. Let D be a symmetric bi-derivation of the lattice implication
algebra L. Then every filter A is D-invariant.

Proof. Let y € D(A, A) then y = D(x, z) for some z,z € A. We have = < D(z, 2)
and z < D(z, z) from Proposition 3.3. So x — D(z,z) =1 and z — D(x, z) = 1.
Since z,z € A and A is a filter we have D(A, A) C A.

U

Definition 3.20. Let D be a symmetric bi-derivation of the lattice implication
algebra L, and let d be the trace of D. We can define KerD;

KerD :={x € L|D(z,z) =d(z) = 1}

Proposition 3.21. Let D be a symmetric bi-derivation of the lattice implication
algebra L, and let d be the trace of D.

Ify e KerD then xVy € KerD Vx € L.

Proof. y € KerD and using the definition of symmetric bi-derivation D of lattice
implication algebra we have

Since
D(y,zVy)=D(Vy,y)

(= y) = y,y)

(x —=y) = D(y,y) V(D —y,y) = y)
(z—=y) = 1) V(D@ —=yy) —y)
V(D(x = y,y) = y)

I
S

I
—_ =~

we have D(y,z Vy) = 1.
Therefore,
dzVy)=D(@VyazVy)
=D((z = y) = y,xVy)
=((z = y) = D(y,zVy)) V(D —y,zVy) —y)

)
1
NS

= )= V(D —y,zVy) =y
=1V (D(x = y,xzVy) =y
=1

Hence, we get the result that isxVy € KerD ,Vx € L
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Definition 3.22. Let L be a lattice implication algebra. Then for a fixed element
a € L let us define a map d, : L — L such that d,(z) = D(z,a) for every z € L.

Theorem 3.23. For each a € L the map d, defined above is a derivation of L.

Proof. For a fixed element a € L let us define a map d, : L — L such that d,(z) =
D(z,a) for every z € L.

do(z) = D(z,a)

do(x = y) = D(x — y,a)

= (z = D(y,a)) N (D(z,a) = y)
= (z = do(y)) A (do(z) = 9)

So d, is a derivation of L. So we can say that for each element a € L the map d,
defined above is a derivation of L.

O

Proposition 3.24. Let D be a symmetric bi-derivation of the lattice implication
algebra L. Then D(xVy,z) = D(z,z)V D(y,2) and D(x ANy,z) = D(z,z) A D(y, 2)
for every x,y,z € L.

Proof. Let x,y,z € L. Then we have
D(xVy,z)=D"Vy' 2)
=D((='Ay), 2)
=D((z'Ny') —0,2)
= (' Ny') — D(0,z2)
= (¢ = D(0,2)) V (v — D(0, 2))
=D(x' —0,2) VD —0,2)
= D(2",2) v D(y", 2)
= D(z,2)V D(y, 2)

We can prove the case of meet in the similar way. U

Proposition 3.25. Let D be a symmetric bi-derivation of the lattice implication al-
gebra L. D is monotone, That is if 11 < x9 and y; < yo, then D(x1,y1) < D(x2,92),
for every x1,x9,y1,y2 € L.

Proof. D(x1V z9,y1) = D(x1,y1) V D(x2, ;) from Proposition 3.24
since 21 < x5 we have 21 V 29 = 29
D(z2,91) = D(z1,91) V D(22,%1)
D(z1,11) < D(x2,71) (%)
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D(yy V y2,22) = D(y1,x2) V D(ya, x2) from Proposition 3.24
since 11 < yo we have y; V yo = 1

D(x2,y1) = D(z2,51) V D(22, y2)

D(z2,y1) < D(z2,92) (* )

We get D(x1,y1) < D(x2,y2) by taking (*) and (* *) together.
U

Proposition 3.26. Let D be a symmetric bi-derivation of the lattice implication
algebra L. Then

D(x',x) = D(z,2") =1 for every x € L
Proof.
D(z',2) = D(z — 0,2) =2 — D(0,z) =z — D(x,0) = D(x — z,0) = D(1,0) = 1
U

Proposition 3.27. Let D be a symmetric bi-derivation of the lattice tmplication
algebra L.

D(y,z) =1 for every z,y € L with ' <y
Proof. We know that 2/ < y implies 2’ Vy = y.

D(y,z) = D(2' Vy,z) = D(2',2) V D(y,z) =1V D(y,z) = 1

CONCLUSION

The aim of this work was to study maps on lattice implication algebras and more
specifically the derivations and f-derivations defined on implication algebras. Then
this work aims to define a new type of derivation in lattice implication algebras,
the notion of symmetric bi-derivations in this algebraic structure. First of all in the
first part, some basic definitions needed for the readability of the work are given
about the lattice implication algebras. Then in the second part, the notions of
derivation and f-derivation in lattice implication algebras; introduced respectively
by Lee and Kim [Sang Deok Lee and Kyung Ho Kim, 2013] and Yon and Kim [Yong
Ho Yon and Kyung Ho Kim, 2013]are observed. Main properties of these maps
are listed in this part. In the third part, the notion of symmetric bi-derivation of
lattice implication algebras is defined; examples satisfying its properties are listed.
Then some theorems and propositions that these symmetric bi-derivations satisfied
in other algebraic structures like B-algebras [Ayar and Firat] and in lattices [Ceven,
2009] are proved for lattice implication algebras. Moreover, the properties of the
symmetric bi-derivation D in lattice implication algebra, and also the properties of
its trace are given;also are defined the fixed set and the Kernel of the map. The next
step of this work can be some more detailed studies about other types of derivations
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in lattice implication algebras, generalized derivations can be for example studied in
this algebraic structure.
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