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ABSTRACT 

DESIGN AND IMPLEMENTATION OF AN ELECTROMAGNETIC 

TARGET CLASSIFICATION METHOD USING HIGH FREQUENCY 

RESOLUTION TECHNIQUES AND TIME-FREQUENCY 

REPRESENTATIONS  

Poyraz, Salih 

MSc in Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Mustafa SEÇMEN 

May 2015, 64 pages 

 In this thesis, it is aimed to develop a fast and sufficient target classification 

method, which is independent from aspect angle and polarization. By processing the 

scattered radar signals, a method having low decision time and high accuracy rates 

even at high noise levels, are expected. In thesis, it is assumed that a certain number 

of targets to be classified are in resonance scattering region. Besides, it is assumed 

that predetermined and moderate number of reference signals corresponding to 

different angle/polarization cases is available for each target. In the first part of the 

suggested method, by using high resolution techniques such as ESPRIT, Min-Norm, 

MUSIC, some feature vectors are obtained in real frequency domain. However, the 

proposed method requires the vectors as the number of reference signals for each 

target and here the problem is that a serious increament of decision time. For this 

reason, in the second stage of suggested method, it is aimed to decrease the number of 

feature vectors to one by applying dimension reduction technique or high resolution 

techniques for multiple signals to these vectors. In this way, decision speed can be 

faster and system memory may be used more sufficiently. In the test stage, the 

scattered signal concerning to any angle/polarization case of a target is processed 

with the same high resolution technique and a test vector is formed. Finally, 

classification beetween test vector and feature vectors is done by the help of highest 

correlation coefficients. Thus, a radar target classification method independent from 

angle and polarization as possible under high noise situations is constituted. 
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 In the suggested project, after some comparisons and trials signal processing 

methods are chosen for best effort as ESPRIT and principal component analysis 

(PCA). 

 In second stage of study, for the given method, essential optimum late-time 

intervals of the scattered signals are determined by using time-frequency 

representations. The time instants, independent from targets positions, are applied 

which are belong to maximum and mean power values in time-frequency 

distributions. Then, the feature vectors are formed for each target by using the given 

time-frequency distributions over these selected late-time regions at several different 

reference aspects and they are eventually used for the classification in test stage. In 

this thesis, two different strategies are created as “target-specific” and “signal-

specific” late-time intervals. The lossless dielectric spheres are used for the 

simulations. The performances of designed strategies as well as other similar methods 

in the literature are compared for various well-known time-frequency representations.  

Keywords: Radar target classification, resonance scattering region, high resolution 

techniques, dimension reduction  

 

 

 

 

 

 

 

 

 



 

 

v 

 

ÖZET 

YÜKSEK ÇÖZÜNÜRLÜK VE ZAMAN-FREKANS DAĞILIM 

TEKNİKLERİNİ KULLANAN BİR ELEKTROMANYETİK HEDEF 

SINIFLANDIRMA YÖNTEMİNİN TASARIMI VE 

GERÇEKLEŞTİRİLMESİ 

Salih POYRAZ 

Yüksek Lisans Elektrik-Elektronik Mühendisliği Bölümü 

Tez Danışmanı: Doç. Dr. Mustafa SEÇMEN  

Mayıs 2015, 64 sayfa 

Bu çalışmada temel amaç hedeflerden saçılan geniş bantlı radar sinyallerinin 

işlenmesiyle, hızlı ve yeteri kadar açı ve polarizasyondan bağımsız bir hedef 

sınıflandırma yönteminin geliştirilmesidir. Aynı zamanda mümkün olduğunca 

geliştirilen yöntemin düşük karar verme süresine ve yüksek gürültü seviyelerinde bile 

başarılı doğruluk oranlarına sahip olması hedeflenmektedir. Önerilen yöntemlerde 

sınıflandırılması planlanan belli sayıda hedefin rezonans bölgesinde olduğu 

öngörülmektedir. Çalışmada her hedef için önceden seçilmiş ve makul sayıda farklı 

referans açı/polarizasyon durumuna ait zaman saçılım sinyallerinin elde edildiği 

varsayılmaktadır. Yöntemin öznitelik çıkarma kısmında herbir hedefin öznitelik 

vektörlerinin çıkarılması için ESPRIT, MUSIC ya da Min-Norm gibi yüksek 

çözünürlük teknikleri kullanılmıştır. Bu aşamada her referans sinyali için bir vektör 

elde edilir. Bu durum test aşamasında karar verme süresinin ciddi oranda artışına 

neden olacaktır. Bu yüzden öznitelik çıkarımının ikinci aşamasında bu vektörlere 

boyut azaltma tekniği ya da çoklu sinyaller için yüksek çözünürlük tekniği 

uygulanarak herbir hedefe ait öznitelik vektör sayısının bire indirilmesi 

amaçlanmaktadır. Bunun gerçekleştirilmesi yöntem için depolanan verinin 

azalmasına ve karar verme süresinin düşmesine yardımcı olur. Test aşamasında ise, 

bir test hedefinin herhangi bir açı/polarizasyon durumuna ait saçılım sinyali, aynı 

yüksek çözünürlük tekniği ile işlenecek ve bir test vektörü oluşturulmuştur. 

Sınıflandırma işi test vektörü ile öznitelik vektörleri arasındaki en yüksek ilinti 

katsayısına göre gerçekleştrilir. Bu yüksek gürültü şartlarında bile mümkün 

olduğunca açı ve polarizasyondan bağımsız hızlı bir radar hedef sınıflandırma 

yöntemi gerçekleştirmeyi sağlamaktadır. Önerilen çalışmada vektörler esas olarak 
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ESPRIT ve temel bileşenler analizi (TBA) gibi sinyal işleme teknikleri yardımıyla 

oluşturulmuştur ve literatürdeki benzer çalışmalar daha iyi performans elde edilmiştir. 

Çalışmanın ikinci aşaması ise hedeflerin boyutlarının dalgaboyuna yakın 

olduğu rezonans saçılım bölgesindeki hedeflerin sınıflandırılması amacıyla literatürde 

ve bu çalışmada önerilen Wigner dağılımı tabanlı radar hedef sınıflandırma 

yöntemlerin performanslarının kıyaslanmasını içermektedir. Önerilen yöntemlerde 

hedeflerden saçılan sinyallerin teorisinde kritik olan optimum geç-zaman aralıkları, 

sinyallerin Wigner enerji haritaları kullanılarak tespit edilmiştir. Daha sonra, seçilen 

bu geç-zaman aralıklarında, her hedef için farklı referans açılarına ait sinyallerin 

Wigner dağılımları ve boyut azaltma tekniği olarak temel bileşen analizi kullanılarak 

hedeflerin öznitelik vektörleri elde edilmiştir. Bu vektörler test aşamasında 

sınıflandırma amacıyla kullanılmıştır. Önerilen yöntemler literatürdeki benzer 

yöntemlere göre hedeflerin bulunduğu pozisyondan bağımsız olma ve kutupların sayı 

ve değerlerinin yüksek hassasiyet ile bulunmasına ihtiyaç olmama gibi önemli 

sayılabilecek özelliklere sahiptirler. Çalışmada geometrik olarak basit fakat saçılım 

mekanizması olarak karmaşık hedefler olan kayıpsız yalıtkan küreler ile testler 

yapılmış ve özellikle hedeflere özgü optimum geç-zaman aralıklarına sahip yöntemin 

daha başarılı olduğu bulunmuştur. 

Anahtar sözcükler: radar hedef sınıflandırma; elektromanyetik rezonans saçılım 

bölgesi; Yüksek çözünürlük teknikleri, Boyut azaltma yöntemleri 

 

 

 

 

 



 

 

vii 

 

ACKNOWLEDGEMENTS 

 I would like to thank to my supervisor Assoc. Dr. Mustafa SEÇMEN for his 

contribution, guidance and patience during the thesis. 

 I would also like to thank to family and my fiance İpek İNCEGUR, for their 

patience, encouragement and moral support on my study. 

 I would like to thank, in addition, to other academicians in the Electrical & 

Electronics Engineering Department at Yasar University for their help and supoort on 

my thesis study.  

 

 

 

 

 

 

 

 



 

 

viii 

 

TEXT OF OATH 

  I declare and honestly confirm that my study, titled “Design and 

implementation of an electromagnetic target classification method using High 

Frequency Resolution techniques and Time-Frequency Representations” and 

presented as a Master Thesis, has been written without applying to any assistance 

inconsistent with scientific ethics and traditions, that all sources from which I have 

benefited are listed in the bibliography, and that I have benefited from these sources 

by means of making references. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ix 

 

TABLE OF CONTENTS 

Page 

ABSTRACT ii 

ÖZET v 

ACKNOWLEDGEMENTS viii 

TEXT OF OATH viiii 

TABLE OF CONTENTS ix 

INDEX OF FIGURES xii 

INDEX OF TABLES xiv 

1 INTRODUCTION 1 

1.1 Subject of the Thesis 1 

1.2 Aims and Problem Definition 2 

1.3 Context of the Thesis 2 

1.4 Structure of the Thesis 3 

2 RESONANCE REGION TARGET RECOGNITION METHOD 5 

2.1 Singularity Expansion Method 5 

2.2 Summary of Literature 7 

3 THE PROPOSED RADAR TARGET RECOGNITION WITH HIGH 

RESOLUTION TECHNIQUES 11 



 

 

x 

 

3.1 High Resolution Techniques 11 

3.1.1 MUSIC Algorithm and MUSIC Spectrum Vector 12 

3.1.2 Min-Norm Algorithm and Min-Norm Spectrum Vector 13 

3.1.3 ESPRIT Algorithm and ESPRIT Spectrum Vector 15 

3.2 Dimension Reduction Techniques 17 

3.2.1 Principal Component Analysis (PCA) 17 

3.2.2 Average Value Method 18 

3.2.3 Common Prediction Matrix 19 

3.3 Steps of Radar Target Classification and Flow Chart 20 

4 APPLICATIONS AND RESULTS 24 

5 THE PROPOSED RADAR TARGET RECOGNITION WITH TIME 

FREQUENCY REPRESENTATIONS 32 

5.1 Wigner Ville Transform 32 

5.2 Short Time Fourier Transform STFT) 34 

5.3 Page Distribution 34 

6 APPLICATION AND RESULTS 35 

6.1 Determinaton of Optimum Late-time Starts 35 

6.2 Extraction of Feature Vectors and Test Stage 38 

6.3 Simulations and Results 39 



 

 

xi 

 

7 CONCLUSION AND FUTURE WORK                                                            47                                                           

7.1 Conclusion 47 

7.2 Future Work 48 

REFERENCES 49 

APPENDIX A 53 

APPENDIX B 58 

APPENDIX C 60 

 

      



 

 

xii 

 

INDEX OF FIGURES 

 

Figure 2.1  (a) Scattered electromagnetic signal (b) Linear and time invariant system 

model                                                                                                                                               5 

Figure 3.1 Flow chart for the extraction stage of feature vectors for proposed method

                        22                                                                                                                                                 

Figure 3.2 Flow chart for the test stage of proposed method                                      23 

Figure 4.1 Geometrical structure for the application. (a)  polarization (b) θ 

polarization 24 

Figure 4.2 Time-domain scattered signals for Airbus and Tu-154 airplane targets at  

= 30°. 25 

Figure 4.3 The feature vectors of the airplane targets in the demonstration. 26 

Figure 4.4 Test ESPRIT spectrum vector for the scattered signal of Airbus airplane 

target at  = 30° 28 

Figure 4.5 SNR values against accuracy rates of Min-Norm, MUSIC and FFT for 

planes (targets) 30 

Figure 5.1 A sample signal and Wigner Distribution presentation of signal                33        

Figure 6.1 (a) A sample scattered signal (b) its Wigner-Ville distribution. 37 

Figure 6.2 Normalized power curve of the scattered signal in Fig. 6.1(a) 37 

Figure 6.3 The geometryof dielectric spheres used in application                              40                                   

Figure 6.4 The processed frequency vector of the signal in Fig. 6a 41 



 

 

xiii 

 

Figure 6.5 Feature vectors of “signal-specific” strategy.                                           42 

Figure 6.6 Feature vectors of “target-specific” strategy.                                   42 

Figure 6.7 Illustrations of values in suggested methods (Table 6.1) and (Turhan 

Sayan, 2007)                                                                                                                45                                                                                                                               

 

 



 

 

xiv 

 

INDEX OF TABLES 

 

Table 4.1 The Dimensions of the  Airplane Targets in Meters 24 

Table 4.2 Identification rates for differenr L values                                                    27 

Table 4.3 The Correct Identification Rates of The Application  wıth PCA and Other 

Dimension Reduction Techniques 29 

Table 4.4 Performance comparisons between High Resolution Techniques   31 

Table 6.1 The accuracy rates of the application with noise free signals for both 

methods and several TFRs (%) 43 

Table 6.2 The accuracy rates in percentage with noisy signals for both strategies of 

several TFRs and mentioned in (Turhan Sayan, 2005) 44 



1 

 

1 INTRODUCTION 

1.1 Subject of the Thesis 

 Radar target recognition and classification is an important topic because it has 

wide usage areas such as military applications, medical applications, security 

systems. In this kind of applications; methods generally use the scattered signals to 

recognize and clasify the features of targets. These feature vectors can be related with 

size, shape or type of material directly or indirectly. As the result of studies in the 

recent years, many applications try to define some other informations (location, 

speed, etc.) beside defining the presence of the target. Type of the target should be 

defined with high accuracy in many applications. In this sense, electromagnetic target 

classificiation is an important and complex problem. The main purpose in radar target 

classification methods is to clasify the target by the help of comparison between 

target features and test target features. These features are extracted from scattered 

signals coming from the target. But feature vectors are highly dependent on the aspect 

angle, polarization and freqeuncy so suggested method should be independent from 

these parameters as possible. However, noise also can reduce the accuracy rates in the 

classification stage. Other important parameter is runtime for the methods such that 

decision time should be fast enough in the classification stage for real time 

applications.  

 According to the wavelength of incoming signal, an electromagnetic target has 

3 different scattering region (Rayleigh, resonance and optical). The methods used in 

modeling of target detection and classification problems of electromagnetic scattering 

signals, show the fundamental differences according to different frequency regions. 

In case of where the target size is close to wavelength, if the scattered signals are 

obtained with wide-band radar, the measured signals can be used for target 

classification. The late-time intervals based on singularity expansion method consist 

of the summation of the detected numerous oscillating damped sinusoidals in 

complex poles. The electromagnetic signals that relatively less sensitive to the 

incidence angle are examined in the framework of several linear system models and 

processed by signal processing techniques and the resulting target specific attributes 

are available to use in the target classifier design. To benefit from these attributes 

dependencies on angle and polarization and sensitivity on noise should be low as 

possible.  
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1.2 Aims and Problem Definition 

 The aim of this project is to develop a resonance region target recognition and 

classification method which has low dependency on angle and polarization, less 

sensitive to noise level, with high accuracy rates and low decision time. The method 

developed in the thesis are based on the use of high resolution techniques and 

dimension reduction technique. MUSIC, Min-Norm and ESPRIT are well-known 

methods and frequently used in many applications (Dogan and Mendel, 1993; 

Georgiou, 2000; Burrows, 2004; Lobos, 2006; Gokalp, 2010). However, few studies 

are observed in literature for target classification problems in resonance region except 

some studies  (Secmen, 2008; Secmen and Turhan-Sayan, 2009; Vasalos, 2011a; 

Vasalos, 2011b). Although, especially the study of (Secmen, 2008) has shown 

positive signs for the use of classification of high resolution techniques, mentioned 

methods only used the MUSIC algorithm and relatively long decision time is 

observed. To overcome this problem, a radar target classification method is aimed to 

develop that give higher accuracy rates and shorter decision time in the thesis. For 

this purpose, a comparative study is made that include the comparative results of 

other high resolution techniques. During the studies, ESPRIT spectrum vector used as 

a new concept in literature for target recognition/classification and aimed to 

contribute to the literature.  

Also time frequency representations are examined with two different explained 

methods as “signal specific” and “target specific” methods. This study is compared 

with the other studies by using the same parameters to get fair comparison. In 

proposed method, it is aimed to have better accuracy rates from the study of (Turhan 

Sayan, 2005). During the study some signal processing methods are tried such as 

STFT, Page, Wigner Ville, SPWV, PPG and Wigner method is found as the best 

method which gives higher accuracy rates and results.  

1.3 Context of the Thesis 

 A detailed literature search will be given that including the studies are done 

recently. The details of the materials and methods used in the thesis will be explained. 

For example high resolution techniques such as MUSIC, Min-Norm and ESPRIT, 

dimension reduction techniques PCA, Average Value Method and Common 

Prediction Matrix and time frequency representations such as PAGE, STFT (short 
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time Fourier transform and Wigner Ville methods. Also materials and methods will 

be mentioned while obtaining scattered signals and steps and flowchart will be 

presented for radar target classification. Applications and result are also demonstrated 

with graphs and tables for time frequency representations and high frequency 

techniques with details and also necessary formulations, analytical/simulation 

scattering datas and measurement results will be also shown. These studies based on 

TFR’s and high resolution techniques are compared with the other similar studies 

from the literature. All results and graphical datas are presented and the work planned 

for the future will be discussed briefly. 

1.4 Structure of the Thesis 

 The method of this thesis is based on the radar target classification in the 

resonance region. As well as literature review of target classification and recognition 

worldwide.  

 There are not many studies on radar target classification in resonance region. In 

the thesis, related studies from literature are examined and same parameters are used 

for fairy comparison such as dimension of planes or dielectric spheres.  

In Chapter 2, singularity expansion method (SEM) and literature examination 

have been presented with details. 

In Chapter 3, the proposed radar target recognition with high resolution 

techniques were shown and MUSIC, Min-Norm, ESPRIT methods derscribes as high 

reolution techniques and PCA (Principal Component Analysis), Average Value 

Method and Common Prediction Matrix were shown as dimension reduction 

methods. Then in Chapter 4, application and results are demonstrated with figures, 

tables and simulations for applications of the proposed method.  

Chapter 5 presented radar target recognition with time frequency 

representations. PAGE, STFT and Wigner-Ville methods were examined detaily. 

Especially proposed method focused on the Wigner-Ville method because of giving 

best performance. Then in Chapter 6, application and results are demonstrated with 

graphs, tables and simulations for these proposed method.  
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Chapter 7 includes the conclusion part and the future work for the proposed 

methods of “the proposed radar target recognition with high resolution techniques” 

and “the proposed radar target recognition with time frequency representations”. 
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2 RESONANCE REGION TARGET RECOGNITION METHOD 

 An electromagnetic target has three different scattering regions when target size 

(d) is compared to operating wavelength (Rayleigh, resonance and optical). If the 

operating wavelength is much smaller than targets size (d>>λ), means that the 

scattering region is optical region, where radar systems generally operate at this 

region. If the target’s size is defined as 0.1λ < d < 10λ, the target is in resonance 

region, where creeping waves are very effective (Barton, 2005). Electromagnetic 

target recognition is important issue that includes security systems, biomedical 

applications and military applications such as land-mine detection. In the thesis, it is 

mainly aimed to develop a target classification method suitable for this resonance 

scattering region as in the mentioned applications, where targets dimensions are close 

to the wavelength of the incident electromagnetic signal of the application. In this 

region, scattering theory can be modeled with SEM (Singularity Expansion Method 

(Baum C. E., 1991) 

2.1 Singularity Expansion Method 

In target classification problems, a target can be modeled with a linear-time 

invariant system as shown in the Figure 2.1. where the dimension of target close to 

wavelength in scattering resonance region. Investigation of this model in resonance 

region was firstly made with singularity expansion method which is offered by C.E. 

Baum. 

 

Figure 2.1  (a) Scattered electromagnetic signal (b) Linear and time invariant system model 

 According to singularıty expansion method, for a target in scattering resonance 

region, system function is shown below which is dependent on angle and 

polarization; 
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Here, Ω shows dependency on angle and polarization, A(s, Ω) shows an entire 

function which has no pole, sn = -αn ± j 2πfn describes system poles and Rn(s, Ω) 

points the residue of nth pole.  The equation given in the Laplace domain, is specified 

in the time domain as shown below 

         , , exp cos 2n n n n

n

h t a t b t f t                   (2.2) 

 According to equation, the late-time intervals of the signals are the 

superposition of damped sinusoidals resonating at target’s complex pole frequencies, 

Also those pole frequencies are called complex resonance frequencies. The most 

important property of these poles is that they are independent from polarization and 

aspect angle, and only related to shape of target, dimensions and material properties. 

This property provides characterization and classification of targets and system poles. 

In other words, if the system poles of target are known completely, target 

classification can be done correctly. 

 In equation, a(t, Ω) is a function of the force-response and only stays during the 

time interval (called as early time interval) of passing through of the incident wave 

over target. It means that a(t, Ω) function is a time-limited function. After early time 

interval ended only infinite summation part remains in the late time interval. In this 

part sine terms which are damping relatively rapid, fall to quite small noise level. On 

the remain part, sine terms of poles are obtained which damps slowly. These 

dominant terms and dominant poles related with sine terms are quiet important for 

target classification problems. Generally amplitudes of sine terms bn(Ω), depends on 

angle and polarization so a dominant pole in case of certain angle/polarization 

situation may not behave as dominant because of small amplitude. 

 There are several methods to obtain some knowledge for transient scattered 

electromagnetic field in the late time period. The simplest way to calculate the 

transient response is to characterize the target by its impulse response first, and then 

to convolve this response with the incident waveform. In other words, all special 
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properties of a particular target can be understood from the study of its impulse 

response. A common method to compute the impulse response has been based upon 

Fourier Transform (FT) technique, e.g., (Moffatt, 1969). The problem with that 

approach is that slow convergence of the Fourier spectrum usually requires the 

inclusion of a large number of frequencies in numerical computation of impulse 

responses. The singularity expansion method (SEM) (Baum, 1978) expresses the 

transient response of a target in terms of its spectral-domain singularities, which 

normally exhibit a decaying behavior in the time domain. (C.I. Chuang, D. P. 

Nyquist, K.M. Chen, and B. C. Drachman, 1985), (Baum, 1978). Therefore SEM 

series usually converge faster, especially in the late-time period, and consequently 

require relatively few terms.  

2.2  Summary of Literature  

 In this part of the study, publications which use the high resolution and 

dimension reduction technique that are related with radar target classfication and 

recognition are examined. While examining publications, this study focussed on 

resonance scattering region (where the dimension of the target close to wavelength). 

Optical region methods (where the dimension of the target bigger than wavelength) 

are ignored for this study, which should have to use many reference signals. The 

current publications in the literature can be summarized as follows: 

In the study of Lee and his collegues (Lee, 2008; Huang and Lee, 2010a; 

Huang and Lee, 2010b), Principal Component Analysis and Independent Component 

Analysis are implemented succesfully and also results are given for noisy signals too. 

However, the size of the targets used in this study were selected quite different from 

each other (three target with size of L, 2L, 3L). Mentioned studies are explained for 

special occasions as where reference signals number equal to test signals number. On 

the other hand, when using independent components in radar target classification 

problems, created covariance matrix should be examined for deciding eigenvalue 

numbers. More importantly, number of reference signals becomes equal to the 

number of test signals in quite exceptional circumstances for these types of problems. 

Because the purpose is to decide with a small number of reference signals as possible 

about test signals as many as possible. In this sense, the above-mentioned 

shortcomings have been observed in these studies and the results should be examined 

again for the targets which dimensions are close to each other.  
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Lui and his colleagues, used quite known E-pulse method as a biomedical 

application to detect hip prosthesis under the skin and also successful results achieved 

for noisy signals (Lui, 2009; Lui, 2010; Lui and Shuley, 2010). But these studies also 

could not produce a solution to the main problem of E-pulse method and also any 

performance test or the results table for noisy signals is not included. To mention 

briefly the problems of E-pulse method, target poles are used while generating 

discriminative / recognizer pulses. However, the generated pulses, and thus target 

recognition performance is highly dependent on the number and value of the target 

poles (especially the pole with highest correlation coefficient) (Lui and Shuley, 

2008). In the processing of finding target poles and numbers "generalized-pencil-of-

matrix" (GPOF) or "Matrix pencil" the matrix is performed and magnitudes of the 

eigenvalues are examined (Sarkar and Pereira, 1995). But especially this method can 

give inconsistent results for noisy signals because of being very close to each other 

for eigenvalues. Moreover, in case of failure to identify target pole (due to low 

amplitude), even for a noiseless signal, generated pulses can rather vary. The studies 

mentioned previously do not include a solution for these problems. 

Zhang and his colleagues created a genetic algorithm and found the target 

poles with certain accuracy rate. This method were tested for a security system 

application (hidden weapons) (Zhang, 2007; Zhang, 2011). In these tests, although 

pole values of concealed weapons were obtained with sufficient accuracy, it was not 

mentioned that poles were used for target classification/recognition purpose. Also 

optimization tools such as genetic algorithm may take a long time so undesirably this 

event may cause an significant increase on the decision time. This problem is 

mentioned in these studies but a solution about duration and improvement for target 

poles extraction time is not discussed. 

Harmer and his colleagues, performed some studies to distinguish non-

hazardous substances and ammo such as guns (Harmer, 2010a; Harmer, 2010b). But 

in these studies, target poles of various substances are extracted by using GPOF and 

results are given in the table. In this sense, these studies could not generate a solution 

about finding poles with GPOF mentioned above and could not demonstrate how 

much poles values changed with noisy signals.  

Makal and his colleagues, have developed a method that uses wavelet 

transform and artificial neural network to distinguish cylindrical targets on the 
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infinite ground plane. Application of this method is given with noise analysis (Makal, 

2008a; Makal, 2008b). However, for a proper training, especially when artificial 

neural networks used in target recognition applications many reference signals are 

required and it may not always be possible. Also, as a general problem of neural 

networks, whole educational process should be done from beginning in the case of 

adding a new target to database (even adding a new reference signal). Despite these 

disadvantages of the proposed methods, if wavelet coefficients of the signals are 

easily obtained, this method can be thought as an alternative way. 

In the study of Chen and Shuley, PCA dimension reduction technique is 

successfully appllied to noiseless reference time scattering signals to find target poles 

(Chen and Shuley, 2008). But GPOF is used for target pole extraction again and the 

method could not be successful for noisy signals. However this study and also studies 

such as (Lee, 2008); (Huang, 2010a and Lee, 2010b), gave a supportive contribution 

for using dimension reduction techniques in this project.  

 E. Rothwell and his colleagues offered a frequency domain approach to the E-

pulse radar target discrimination scheme. This approach is shown to allow easier 

interpretation of E-pulse convolutions via the E-pulse spectrum, and leads to a 

simplified calculation of pulse basis function amplitudes in the E-pulse expansion. 

Experimental evidence obtained using aircraft models verify the single-mode 

discrimination scheme, as well as the aspect-independent nature of the E-pulse 

technique. This leads to an integrated technique for target discrimination combining 

the E-pulse with single mode extraction waveforms.  

As seen from literature generated studies have focused on finding target poles 

for noiseless signals. However, it is known that target poles are highly dependent on 

noise so noise test and results should be provided for studies examined above. In 

addition, although the target poles are extracted directly for noiseless signals, any 

information was not mentioned about how this knowledge can be used.  The pulses 

generated in E-pulse method are very sensitive to pole values because of that pulses 

and classification performance quite change and the results of this state should be 

given for comparison with other methods. 
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As a result, it is thought that suggested methods and thesis outcomes can give a 

new contribution to high resolution and dimension reduction techniques in the target 

classification literature. 
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3 THE PROPOSED TARGET RECOGNITION WITH HIGH 

RESOLUTION TECHNIQUES 

 In this section, it is explained a development of a fast and sufficiently aspect-

independent identification method with the processing of wideband scattered signals 

from radar targets. There are several methods which are explained in this section as 

ESPRIT, MUSIC and Min-Norm. However for the given method, ESPRIT 

(estimation of signal parameters by rotational invariance techniques) is mainly used 

for the classification stage of targets in resonance region. By using this technique, 

multiple reference vectors are reduced to one vector for each target with principal 

component analysis (PCA), and finally calculated vector is accepted as feature vector 

for the given target. Besides other dimension reduction techniques such as ‘Average 

value method’ and ‘Common prediction matrix’ are explained, however PCA 

technique is chosen for this suggested method since it gives best accuracy rates. The 

correlation coefficients of ESPRIT vectors between test signal and feature vector are 

compared for the classification phase and the one having highest correlation is 

assigned as the decision for the target.  

3.1 High Resolution Techniques 

 When Fourier transform (FT) is applied to signal, local maxima are observed 

at about fi values in radar cross section or scattered electric field figures. However, 

since FT has low resolution, high-resolution techniques such as MUSIC, ESPRIT are 

usually used, instead (Zhang, 2008; Gokalp, 2010; Lobos, 2010; Vasalos, 2011a; 

Vasalos, 2011b). These techniques are commonly used in direction-of-arrival and 

target detection applications. But when these techniques are used for finding pole 

values directly, they cause incorrect results in terms of real part of the pole at the high 

SNR values. So instead of finding pole values directly, these techniques aim to find 

classifiers as vectors, matrices etc. that contains indirect effects of pole values. In this 

part, to create a substructure about how to find damped sinusoidal signal parameters 

and vectors for the classification part will be explained with details for the ESPRIT 

(prediction of signal parameters), MUSIC and Min Norm methods. 
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3.1.1  Music Algorithm and Music Spectrum Vector 

 Late-time interval is given as shown in the following equation for noisy signal 

in the discrete time; 

2

1

( ) ( ) ( ) exp( )cos(2 ) ( ), 1,..,

L

i i i i

i

y n x n w n b n t f n t w n n N



           (3.1) 

where w (n) is the noisy signal, L is the total number of damped exponentials and Δt 

is sampling period. Then covariance matrix of the discrete-time signal shown in (3.1) 

is estimated as follows: 

 T1
( ) ( ), ( ) ( ) ( 1)yyR Y Y Y

N

n m

n n n y n y n m
N



                                       (3.2) 

In this equation T symbolized the transpose operator and m is the MUSIC parameter 

and selected as N/2 for the best performance. Here matrix is separated into three 

different matices by using Singular Value Decomposition (SVD) with following 

equation.  

HR UDV                                                     (3.8) 

In this expression, U and V are the unitary matrices for R matrix, and matrix D is the 

matrix whose diagonal elements contain the eigenvalues of matrix R. When these 

eigenvalues are put in order from highest to lowest as λ1≥…≥ λL ≥ λL+1 ≥…≥ λm+1; vi 

belongs to the eigenvector of ith eigenvalue. In this way, vi vectors which are belong 

to eigenvalues λ1≥…≥ λL for i = 1,...,L cover the signal subspace, vi vectors which are 

belong to eigenvalues λL+1 ≥…≥ λm+1 for i = L+1,...,m+1 cover the noise subspace. 

Then using covariance matrix in frequency domain, MUSIC spectrum vector is 

calculate in this way; 

1 2( ) ( ) ( )MUSICP sP f P f P f                         (3.3) 
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P f
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 




                                                    (3.4) 

 
T

( ) 1 exp( 2 ) exp 2 ( 1)e f j f t j f m t                            (3.5) 

where s is the number of sample frequency number and vk is the kth right eigenvector 

of Ryy matrix when singular value decomposition (SVD) is applied. MUSIC spectrum 

vector in equation (3.3) give the peak values on the fi frequencies if the signal is in 

the form of summation of noiseless undamped sinusoidal waves and otherwise 

MUSIC spectrum vector gives approximate peak values on the fi frequencies if the 

signal is in the form of summation of sine waves with decreasing amplitudes as 

shown in the equation (3.1). 

3.1.2  Min-Norm Algorithm and Min-Norm Spectrum Vector 

 If we want to express the expression in equation (3) in other way in the discrete 

time region; 

1

( ) ( ), 0, ,i

L
s n t

i

i

y n c e w n n N




                                               (3.6) 

 The signal in equation (3.6) is not stable and operates in the complex frequency 

region instead of real frequency region so instead of using covariance matrix 

calculated in Min-Norm method, alternatively a prediction matrix can be used that 

dimensions are (N-m+1) x (m+1) as given below; 

 

(0) (1) ( )

(1) (2) ( 1)

( ) ( 1) ( )

R

y y y m

y y y m

y N m y N m y N

 
 


 
 
 

                                        (3.7) 

where m is Min-norm parameter and for the best performance, m is chosen as N / 2. 

Singularity Expansion Method is used to find eigenvectors which is demonstrated 

previously. 
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 Eigenvectors, which cover the noise subspace are expressed as follows;  

 L+1 m+1

1

β
G v v

G

 
   

 
                                               (3.9) 

where β vector is the first row vector of the G matrix. In Min-Norm method, instead 

of using all vectors in G matrix, only one vector is used similarly as expressed in 

MUSIC algorithm. By this way a significant computational reduction is obtained. 

This vector is pointed out as indicated in equation (3.10); 

2

1

1

g
G β β

H

 
  
                                                                        (3.10) 

where || ∙ || and H are respectively the norm and Hermitian operators. As a last step, 

target poles belong to a target reference signal are calculated as the roots of the 

following equation.  

  0a gH s 
                                                                          (3.11) 

 
2

2

1

1

T
s t s t ms t

s t s t ms t

e e e
s

e e e

     

     

 
 


 
 

a

                                           (3.12) 

 The neglected denominator part of the equation (3.12) for undamped sinusoidal 

waves has been replaced by the proposed method as a critical modification for 

damped sine signals. Similar to MUSIC algorithm, by using equation (3.10) Min-

Norm vector is given as follows in frequency domain;  

     1 2

1 1 1
T T T

sf f f

 
 
 
 

F
g e g e g e

                                                  (3.13) 

where T symbolized the operator of transpose function, s is the number of frequency 

samples as f1 , f2 ,..., fs and e(f) is as expressed in equation (3.5). According to 
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orthogonality principle in Min-norm method, gTe(f) has minima values at f = fi  

frequencies because of that the vector in the equation (3.13) should give peak values 

at approximately fi frequencies. 

3.1.3  ESPRIT Algorithm and ESPRIT Spectrum Vector 

 ESPRIT method uses the formula (3.1) and creates a prediction matrice as 

shown in the formula (3.2). Then subspace vectors are created by using singularity 

expansion method. Eigenvectors of signal subspace are summed as given in the 

matrice shown below equation for i = 1, ..., L 

1 Le e   S . . .
                                         (3.14) 

 According to the ESPRIT method, by using given matrix, two auxiliary 

matrices can be defined as; 

m m   1 ×S I 0 S
                                              (3.15) 

  m m   2 ×S 0 I S
                                              (3.16) 

where Imxm is the unit matrix, which has the size of m×m. 0 vector is an m-element 

column vector, whose element values are all zero. According to ESPRIT algorithm, 

the arguments of eigenvalues of ψ matrix given in equation below, are complex si 

values of the given target. 

2 1S S ψ
                                                     (3.17) 

 This Ψ matrix is calculated as follows using the least squares estimation: 

1
1 1 1 2( )H Hψ S S S S

                                       (3.18) 

 ESPRIT method is more preferable technique when it is compared to other 

methods because usually ESPRIT has less sensitivity to noise. After pole extraction, 

equation is shown that uses pole informations in case of creating ESPRIT spectrum 

vector; 
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/2
* 1
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( ) det( ) ( )( )I ψ

L
L L
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i
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 



         
     (3.19) 

where exp( )i iz s t  . Then, by giving ai values of given equation above in a vectorial 

form as aesp = [1  a1  . . . aL-1   aL], the ESPRIT spectrum function for this sample 

signal is defined by 

 

1
( )

esp

P f
f


a e

                                                      (3.20) 

 1 11esp L La a aa
                                           (3.21) 

  2 21
T

j f t j fL tf e e     
 

e
                                   (3.22) 

Finally, ESPRIT spectrum vector is obtained by taking samples from the 

function in (3.20) at the desired discrete frequency points. It should be noted that 

since F(z) has zeros at  2i ii
j f ts t

iz e e
   

  , this ESPRIT vector has local maxima at 

about f = fi values, which are specific to the target. Those signals are not stable 

because of being damped sine waves and in this sense instead of defining as power 

spectrum, can be defined as amplitude spectrum (Stoica and Moses, 2005). Similarly 

to radar cross section area, this function also should give local maxima values at f = fi. 

 Finally ESPRIT spectrum vector is defined by sampling the R number discrete 

frequencies as given; 

 1 2( ) ( ) ( )P RP f P f P f                                                 (3.23) 

3.2 Dimension Reduction Techniques 

 In feature extraction stage of target classification, usually several reference 

scattering signal is used for each target. After processing this signal with high-

resolution techniques, feature vectors are obtained as number of reference signal for 

each target. Because of that in target classification methods, generally an attempt is 

made to reduce the number of feature vectors to one vector for each target with 
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dimension reduction techniques. Choosing just one vector for each target by 

combining the effects of all reference ESPRIT vectors significantly decreases 

computational time and memory storage.  

3.2.1  Principal Component Analysis 

 Firstly, this method was introduced by Pearson and it is widely used for data 

compression and dimension reduction techniques (Jackson, 1991). The PCA 

dimension reduction technique is used to obtain a feature vector for each target, 

which becomes highly correlated with corresponding K different ESPRIT spectrum 

vectors. By assuming that all reference ESPRIT spectrum vectors of a target are row 

vectors with s-elements (s is the number of frequency samples), the matrix G can be 

defined as; 

,1 ,1 1 1

,2 ,2 1 2

, , 1

( )1

( )1

( )1

ESPRIT ESPRIT S

ESPRIT ESPRIT S

KESPRIT K ESPRIT K S

P mean P G

P mean P G

GP mean P







   
   

    
   
   
    

G                              (3.24) 

where PESPRIT,i for i = 1, 2, …, K is the normalized ESPRIT spectrum  vector of ith 

aspect angle and 11×s is the row vector whose elements are equal to one. Then, the 

matrix of C is defined as the covariance matrix of G in the general form;  

11 12 1

21 22

1 2

K

K K KK

c c c

c c

c c c

 
 
 
 
  
 

C

                                               (3.25) 

where cij defines the covariance between vectors Gi and Gj. The principal component 

row vectors (z1, z2, ..., zK) are calculated  by via C matrix as 

  

 

1

2

1 2

T

K

K

 
 
   
 
 
 

z

z
U G, U u u u

z
                                    (3.26) 
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where u1, u2, ..., uK are normalized column eigenvectors of matrix C corresponding 

to the eigenvalues arranged in non-increasing order as λ1 ≥ λ2≥ … ≥ λK. Eventually, 

the feature vector F for this target is constituted as 

 i

1

 i

1

K

i

i

K

i














z

F

                                                        (3.27) 

which includes the contributions from all principal component vectors. However, if 

the percentage of λ1 in the summation of eigenvalues (λ1 values) is sufficiently large 

(for instance, higher than 90%), the other principal components can be neglected and 

the feature vector F becomes equal to first principal component z1 only. However, the 

contributions of other components should be considered if the percentage of first 

component is inadequate. The mentioned steps so far for the extraction of feature 

vector of a single target are repeated for each known target and a total of M feature 

vectors for M targets are stored to feature database.  

3.2.2  Average Value Method 

This technique can be defined as classic "average value" method. Average 

value method is based on normalizing spectrum vectors for K different reference 

signal of a target and taking the average value at each frequency point. 

1

norm,iP

F

K

i

K





                                                 (3.28) 

 

 
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                                 (3.29) 
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3.2.3  Common Prediction Matrix 

 In the mentioned techniques as ESPRIT, spectrum vector creation process is 

belong to single reference signal and this process should be executed K times for K 

number reference signals for each target. The matrix which is shown below is created 

over again. After that, other steps are applied separately for each time and K number 

spectrum vectors are obtained. Then by using dimension reduction techniques which 

are discussed in previous sections, obtaining a single feature vector from K number 

different vectors are tried. But this situation can cause a significant increase in 

calculation time when there are many reference numbers. So instead of creating new 

matrices over and over again, one single common prediction matrix is created which 

is fused the effects of all reference scattering signals. This matrix equation is defined 

as shown below and the dimensions are K(N-m+1) and (m+1). This method also can 

be thought as dimension reduction technique; 

(0) (1) ( )

(1) (2) ( 1)

( ) ( 1) ( )
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 
 
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 
 

   
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   
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                     (3.31) 

Then applying the other steps described in the high-resolution techniques, 

spectrum vector is calculated. In the matrix shown in the equation (3.31) has m+1 

columns because of this resulting right eigenvector matrix after SVD, has m+1 

columns too. Therefore, there is no need for any modification at the remain part of 

the method. 
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3.3 Steps of Radar Target Classification Method and Flowchart 

 In this part of the thesis, radar target classification steps will be explained. 

Similar to other resonance scattering region methods, in suggested study based on 

Singularity Expansion Method, materials and tehniques are discussed above. Here, 

steps of this suggested method which is the combination of techniques and materials 

may be expressed briefly as follows: 

i)        In the formation of suggested method, it is assumed to be M targets 

each having K scattered signals of different aspect angles, which gives a 

total of K×M reference signals. Lets suppose that scattering datas for this 

case are obtained as time signals. Thus, equation of scattering time signal 

becomes as equation (2). Here K number reference signals from KA 

different signals which gives a total of KA×M reference scattering signals. 

When resonance region scattering property is thought differences between 

reference angles should be at least 10-15 degrees. 

ii)        A late time scattering point is determined for all time scattering 

signals. Defining starting point and late time interval may be done in 

several ways as discussed in some studies (Turhan-Sayan, 2005; Secmen, 

2008) but in suggested method similarly to methods in literature, common 

starting point can be calculated as TL = TP + 2TD. Here, TP  is the width of 

the pulses that sent to the target and easily calculated from frequency 

band, TD  is calculated from TD = Lmax / c (c:speed of light). In this 

equation Lmax is the longest line of biggest target in the target set.  

iii)        After defining common late-time starting point, late time interval is 

determined. At this step, N is selected 64, 128, 256 (time sample) as 

square of 2 in many cases in late time interval to make the code of method 

faster. As related to high resolution techniques m parameter is chosen N/2. 

L parameter which determines the pole numbers for a signal is chosen as 

common for all signals or is calculated different for all signals with 

minimum description length (minimum description length-MDL) method. 

iv)        After selecting all the parameters described above, one of the high 

resolution techniques and one of the dimension reduction techniques are 
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chosen. Target specific feature spectrum vector is extracted by applying 

resolution/dimension reduction combination to the late-time interval 

which is belong to reference signals of a target. This process is applied to 

all targets and spectrum vectors are obtained. Let these feature vectors 

become Fi (i = 1, 2, ..., M). 

v)           Let we assume that a test target, in classification or the testing phase 

which is actually one of the candidates but in test stage we do not know 

which one is. Also it is supposed a scattering signal belong to any angle 

condition. This test scattering signal can be noisy or noiseless in real-life 

applications. Parameters of mentioned above is applied with a high 

resolution technique and test spectrum vector, Ptest, is obtained. Test target 

is one of the known targets so according to Singularity Expansion Method 

the position of the peak frequency in the test spectrum vector should be 

close to the related candidate target peak frequency. With the same 

approach peak frequency must be different from others. Thus it is 

expected that correlation coefficient should be high between ESPRIT 

vector and candidate target and should be low with other targets. For this 

purpose, test vector and feature vectors (Fi (i = 1, 2, ..., M)) are compared 

with a simple correlation coefficient calculation.  

                    (3.32) 

 

 Here .  is norm operator, Fi is the feature vector for candidate target, r(i) is the 

correlation coeffcient between Ptest and Fi vectors. Finally with the equation (3.32), 

test target in the proposed target classificiaton method, is classified as the target that 

gives the highest correlation coefficient rate. Flow charts, steps, extracting feature 

vectors stages and test stages of the proposed radar target classification method 

described so far shown seperately in Fig 3.1 and Fig 3.2, respectively. 
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Figure 3.1 Flow chart for the feature vectors extraction stage for proposed method 
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Figure 3.2 Flow chart for the test stage of proposed method 
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4  APPLICATION AND RESULTS FOR HOGH RESOLUTION 

TECHNIQUES  

  Small-scale airplane targets (Airbus, Boeing 747, Caravelle and Tu-154) 

modeled with thin, straight, conducting wires are used for the suggested method. 

Dimensions and geometrical structure are shown below in Table 4.1. and Figure 4.1. 

Table 4.1 The Dimensions of the Airplane Targets in Meters 

 

Structures 

Airplane Targets 

Airbus Boeing 747 Caravelle Tu-154 

Body (m) 0.5408 0.7066 0.3200 0.4790 

Wing (m) 0.4484 0.5964 0.3440 0.3755 

Tail (m) 0.1626 0.2217 0.1092 0.1340 
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(a)                                                              (b) 

Figure 4.1 Geometrical structure for the application. (a)  polarization (b) θ polarization 

 The backscattered (monostatic) frequency responses of all targets are generated 

by using CST Microwave Studio for a fixed elevation angle θ = 60° and linear 

polarization in Φ direction for both incident and scattered fields as shown in Figure 

4.1(a). Scattered fields are obtained for several azimuth angles at Φ = 0°, 2.5°, 5°, …, 
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87.5°, 90° (a total of 37 azimuth angles). The frequency bandwidth of the responses is 

4–1024 MHz. When the dimensions of the targets are considered, all targets are said 

to be safely in resonance scattering region that the largest dimension, body length of 

Boeing 747 (0.7066 m), is at most 2.4λ for the given frequency bandwidth and 

resolution value of 4 MHz. Time resolution is calculated as 500 ps. The resulting 

frequency responses are converted from frequency domain to time domain by using 

Gaussian window and inverse FFT. As a sample two time domain scattered signals 

are plotted for Airbus and Tu-154 airplanes at  = 30° in Figure 4.2.  
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Figure 4.2 Time-domain scattered signals for Airbus and Tu-154 airplane targets at  = 30°. 

 The reference signals for the construction of feature vectors are selected as time 

responses coming from only 5 aspect angles ( = 5°, 22.5°, 45°, 67.5° and 85°) out of 

37 aspect angles for each target. Next, the late-time portions of these signals are 

considered for the following steps. As explained before, the late-time portion of the 

signals starts after the incident wave has no influence on the target. By using this 

definition, the start time instant can be approximated as Tstart = Tp + 2Td, where Tp is 

the pulse duration (about 1 ns in this application) and Td is the duration for the 

incident wave to fully pass the target (Rothwell, 1994). In this application, for the 

sake of guarantee, Td is selected as its highest value for all signals, which is equal to 
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Td = Dmax/c, where Dmax is the longest linear dimension for all airplane targets and c 

is the speed of light. Dmax corresponds to the diagonal dimension of Boeing 747, 

which has the longest body and wing dimensions among all targets. Therefore, Td is 

approximately evaluated as 3 ns and Tstart is calculated as 7 ns. 

 So time instants for late time signals is chosen as 7 ns and N = 64 time samples. 

Here while getting feature vectors with PCA, ESPRIT parameter is selected m = N / 2 

= 32 and L = 6 for the best accuracy performance. In Figure 4.3 feature vector for 

each target is demonstrated. This step was also repeated for different L values such as 

L= 4 and L=8 except L=6. However, L=6 gives the best performance among these 

values. 
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Figure 4.3 The feature vectors of the airplane targets in the demonstration. 
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Table 4.2 Identification rates for different L values 

L PCA Common 

Prediction Matrix 

Averaging Value 

Method 

4 94.32 94.59 70.94 

6 100 95.27 87.83 

8 94.32 99.32  85.81 

 

 In classification stage of the proposed method is executed with 37 signal × 4 

target = 148 test signals. While attaining test ESPRIT spectrum vectors, same late-

time intervals and parameters (N = 64, m = 32 and L = 6) are used. For this step 

inially noiseless signals are considered. The correlation coefficients are calculated 

with the equation below; 

 T( ) , 1, ,r i i M test i test iP F P F                                  (4.1) 

 Then according to highest correlation coeffcients, comparison between test 

vector and target feature vectors one by one, give us the decision about test target. 

For instance, for a test signal of Airbus airplane at the angle of  = 30°, whose time-

domain signal is given in Fig. 4.4, the resulting test ESPRIT vector is plotted in Fig. 

4.4. Then correlation coefficients are obtained by the help of spectrum vector which 

is shown previously for Airbus, Boeing 747, Caravelle and Tu-154 as 0.9430, 0.2056, 

0.0628 and 0.1819, respectively.  
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Figure 4.4 Test ESPRIT spectrum vector for the scattered signal of Airbus airplane target at  = 

30°. 

 According to figures, after having comparisons and calculations it can be found 

with high accuracy rates that test target is Airbus. When all scattering signals (148 

signals) are considered with the same test approach, the correct identification rate is 

found to be 100 percent for this target set application that all test targets are regularly 

identified.  

 As a secondary test noisy signals are generated and implemented to 

demonstrate noisy performance of suggested method. Zero-mean Gaussian noise is 

used to create noisy signals with signal-to-noise (SNR) levels values of 20, 15, 10, 5, 

0, -2.5 and -5 dB. 100 independent trials for each SNR level are performed to reduce 

the dependency of the results on noisy statistics. The corresponding correct 

identification rates (in percentage) for both noiseless and noisy cases are given in the 

first row of Table 4.3. 
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Table 4.3 The Correct Identification Rates of The Application with PCA and Other Dimension 

Reduction Techniques  

Dimension 

Reduction 

Technique 

SNR (dB) 

∞ 20 15 10 5 0 -2.5 -5 

PCA 100 99.94 99.77 99.5 98.74 96.09 93.6 88.31 

Averaging 99.32 98.94 98.81 97.76 95.37 91.01 88.32 84.01 

CPM  87.83 87.11 86.48 85.35 83.99 81.68 79.44 76.15 

 As shown from these results, the proposed identification method can give 

higher than 88 percent accuracy even for very noisy signal level of SNR = -5 dB, 

which is quite high and satisfactory for target identification applications. To show the 

effectiveness of the PCA technique implemented in the proposed method, the 

simulations of the given application are repeated with some other dimension 

reduction techniques instead of PCA. The realized techniques are the classical 

averaging, which summons all normalized reference ESPRIT spectrum vectors of a 

target and divides the resulting vector by 4, and common prediction matrix (CPM) 

method whose details can be found in (Secmen M., 2012). They are used to obtain the 

related feature vectors from reference vectors, and the tests are performed in a same 

way explained above. The corresponding results are given in Table 4.3 and Figure 

4.5, and PCA technique is shown to be superior at all SNR levels. 
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Figure 4.5 The correct identification rates of the given application with PCA and other 

dimension reduction techniques. 

 In order to compare and show the performances of the different high-resolution 

techniques such as ESPRIT, MUSIC, Min-Norm as well as FFT, a new classifier is 

designed. In this analysis, as being different than the previous configuration, which 

belongs to the configuration in Figure 4.1(a), the configuration in Figure 4.1(b) is 

used. The configuration in Figure 4.1(a) differs from the one in Figure 4.1(b) only in 

terms of the polarization of the incident and scattered waves. Therefore, with this test 

scenario, it is also aimed to observe the independency of the proposed method to the 

polarization changes. In the calculations and simulations of the mentioned scenario, 

all targets, angles, values and parameter values are kept constant with the previous 

scenario (the one with Figure 4.1(a)). Table 4.4 shows the corresponding results 

(accuracy rates) and the performance comparison between ESPRIT, MUSIC, Min-

Norm and FFT algorithms. While getting these accuracy rates, the dimension 

reduction of PCA is used for all algorithms. When the results in Table 4.4 are 

examined, it can be said that ESPRIT possesses the highest correct classification rates 

as compared to other algorithms by giving the percentages of 93.2, 97.8, 98.8, 99, 

99.3, 99.8 for the SNR values 0, 5, 10, 15, 20, 25 dB, respectively. Besides, it can be 
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observed in this scenario that the proposed classification method consisting of 

ESPRIT algorithm and PCA technique has similar (and again satisfactory) accuracy 

rates with the previous case (the one with different polarization). Therefore, it can be 

concluded that the proposed method is highly independent from polarization of the 

scattered signals.  

Table 4.4 Performance comparisons between High Resolution Techniques  

Strategy 

SNR (dB) 

25 20 15 10 5 0 

ESPRIT 99.8 99.3 99 98.8 97.8 93.2 

MUSIC 96.9 97.1 95 87.6 81.3 79.5 

MIN-NORM 98.3 98.1 95 89 86.2 84.9 

FFT 69.7 69.4 69 67.9 66.7 66 

 As being another crucial criterion in target identification applications, the 

decision-time for a test target is also computed. A typical decision takes only 8 ms in 

MATLAB environment with a computer having microprocessor of Intel Core i7, 3.06 

GHz, which is fast enough for real-time applications.    
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5 THE PROPOSED TARGET RECOGNITION WITH TIME 

FREQUENCY REPRESENTATIONS 

 In the literature, some studies such as (Chen and Shuley) and (Turhan Sayan, 

2005) apply TFR’s techniques to classify targets such as dielectric spheres which 

have several poles. Here it is intended to develop these studies and Wigner Ville 

method with “target specific” and “signal specific” strategies are examined for this 

reason. 

 This study aims to have reduction on target’s distance, aspect angle and noise 

dependencies for the target classification method in resonance region. In the given 

method, crucial optimum late-time intervals of the scattered signals are determined by 

using time-frequency representations. The maximum and mean power values are used 

as time instants which are independent from targets position in the time-frequency 

distributions. Then, the feature vectors are formed for each target by using the given 

time-frequency distributions over these selected late-time regions at several different 

reference aspects, and they are eventually used for the classification in test stage. In 

this work, two different strategies are designed; target-specific and signal-specific 

late-time intervals. The simulations are carried out with lossless dielectric spheres 

being challenging targets in terms of scattering mechanism. Also in this stage the 

performances are explained and compared for different popular time-frequency 

representations in the literature as Page, STFT and Wigner-Wille methods. 

5.1 Wigner-Wille Method 

 In this study, Wigner Ville Distribution is employed in order to determine the 

target responses. The reasons of choosing the Wigner Ville Distribution are that WD 

can provide best time and frequency resolution and WD supplies the large number of 

mathematical properties. WVD always preserves the time and frequency shifts and 

respectively corresponds to the signal’s instantaneous power and its spectral energy 

density. The purpose of the energy distributions is to distribute the energy of the 

signal over the two description variables: time and frequency. As the energy is a 

quadratic function of the signal, WVD will be in general quadratic representation. 

The Wigner- Ville energy distribution in terms of the signal, x(t) or its spectrum X(w) 

is defined by; 



 

 

33 

 

2( , ) ( ) x*( )
2 2

j f

xW t f x t t e d  






  

                   (5.1) 

or equivalently by; 

2( , ) X(f ) X*(f )
2 2

j

xW t f e d 






  

                     (5.2) 

A sample signal and Wigner distributions of the sample signal are given in the Figure 

5.1 for εr = 3 and θ=179°.  
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Figure 5.1 A sample signal and Wigner Distribution presentation of signal 



 

 

34 

 

 

5.2 Short Time Fourier Transform 

 The concepts of short-time Fourier analysis and synthesis are fundamental for 

describing any quasi-stationary (slowly time varying) signal such as speech. With the 

advent of the fast Fourier transform, as well as modem digital filtering techniques, 

implementations of signal processing systems based on the short-time Fourier 

transform have become practical and are used in many applications  

 where γ (t’-t) is the chosen window of analysis which is centered at t’=t and 

the superscript “*” denotes complex conjugation (Hlawatsch and Boudreaux-Bartels, 

1992). As implied by this definition, the STFT of a signal may be interpreted as the 

local Fourier transform of the signal around the analysis time t. 

2 '

'

( , ) ( ') *( ' ) 'j ft

x

t

STFT t f x t t t e dt                                     (5.3) 

5.3 Page Distribuiton 

The Page distribution of a given time signal x(t) is defined as 

                                             

(5.4) 

The Page Distribution is also an energetic, shift-invariant, quadratic TFR like the 

Wigner Distribution. Most of the desirable properties satisfied by the WD are also 

satisfied by the PD except for a few of them such as the property of having a finite 

frequency support (Hlawatsch and Boudreaux-Bartels, 1992). 
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6 APPLICATION AND RESULTS FOR TIME-FREQUENCY 

REPRESENTATIONS 

In this part of the thesis, two location-independent strategies having “target-

specific” and “signal-specific” optimum late-time intervals are designed by utilizing 

from time-frequency representations (TFRs) and corresponding energy distribution 

maps of the signals. To obtain the optimum late time starting points, proposed 

methods benefit from critical time-instants having maximum and especially mean 

power values (tmax and tmean). Thus, even the distance of the target changes, these time 

instants almost equally shift, and the method finds the same optimum late-time 

interval. This situation provides being independent from distance of target. After 

having the optimum late-time intervals, one feature vector showing spectral energy 

densities of each target is extracted by using the same energy maps of TFRs over the 

selected optimum late-time intervals. In the test stage, a similar (test) vector of a test 

signal is acquired by using the same TFR/energy distribution and determined late-

time intervals. Eventually, the classification is done relying on the highest correlation 

between test vector and feature vectors of targets. The offered strategies are realized 

with dielectric spheres at different locations.  

6.1 Determination of Optimum Late Time Starts 

 Radar signals have been analyzed in either the time or the frequency domain. 

For analyzing and processing the datas coming from any radar system, generally 

Fourier transform is used. However, in radar systems generally time varying 

frequency values are observed for radar signals. But, Fourier transform analysis is not 

suitable for analyzing non-stationary signals.  

 Recently, while studying on transient scattering of targets, time-frequency 

representations has been used in the resonance region. For instance, the Wigner-Ville 

distribution of a sample scattered signal in Figure 6.1(a) is shown in Figure 6.1(b) 

and time-frequency distribution of x(t) signal is found by using the Wigner transform 

shown in previous equations. 
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Figure 6.1 (a) A sample scattered signal (b) its Wigner-Ville distribution εr=4 θ=179° 
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When (6.1) is applied all frequency values for each time index, instantaneous 

power is obtained and integrating all time values for each frequency gives the energy 

spectral density as in (6.2).  

                                          (6.1)

            

          (6.2) 

The first and most important step in the proposed strategies is to determine the 

optimum late-time start for each signal or target. For this purpose, a normalized 

instantaneous power curve along the time axis is obtained by first adding all values 

along the frequency axis in TFR for each time index and taking the square root with 

following equation; 

          (6.3) 

Then, the critical time instants corresponding to maximum and mean power 

values are found in the normalized curve.  As an example, the normalized power 

curve for the distribution in Figure 6.1(a) is depicted in Fig. 6.2. As shown in the 

figure, time indices of 206 and 669 are tmax and tmean, respectively. 

 

 

 

 

 

 

 

Figure 6.2 Normalized power curve for the scattered signal in Fig. 6.1(a)  
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 In the thesis, tmean is selected as time interval starting point for the “signal 

specific” method. (669th index in Fig 6.2) The reason behind this choice is that the 

effects of forced response and non-dominant poles are sufficiently suppressed until 

tmean after which the power levels of the signal drop below the average, and the effects 

of dominant poles only remain after tmean. However “target specific” method uses 

both tmean and tmax by using the difference between them as (669-206=463 in Fig.). 

Independency from distances of the targets is an important issue and selection of time 

intervals/starting point in this way provides this necessity. Even the targets are closer 

to or further away the radar system, the difference between tmax and tmean almost 

remains the same.  

6.2 Extraction of Feature Vectors and Test Stage 

In the feature extraction stage, belonging to aspect angles, moderate number of 

time-scattering signals is handled for each target. Afterwards, the critical tmax and tmean 

time instants are found for each reference signal as described in previous section. In 

“signal specific” method, each reference signal determines its late-time start as its 

tmean value. In “target specific” method, the differences of tmax and tmean time instants 

at the reference signals of a target are calculated, and the highest difference value is 

kept for this target (let say 463). Then, the late-time start of each reference signal of 

the target is selected by adding this highest difference to tmax of each reference signal. 

For example, while late-time start is 206+463=669 for the reference signal in Figure 

6.2, it can be 180+463=643 for another reference signal of the same target. This 

procedure is repeated for each target in the classifier. Although tmax is specific to the 

signal, because the added time difference is dependent on the target, the strategy is 

called as “target-specific”.  

 After determination of late time starting points and intervals, a vector in the 

frequency axis showing spectral energy density of each frequency is acquired. This 

can be done by summing energy distribution values of TFRs along time axis over the 

selected late-time interval of the signal. This vector gives peaks nearly at the 

dominant pole frequencies that unique to target (SEM). These vectors also reduced 

into one by using PCA method. (Secmen M. 2011).  Afterwards, this single vector is 

stored as feature vector and this step is repeated for each target.  
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 Energy distribution is extracted for a test signal by using same TFRs in the 

classification stage. Then, tmax and tmean time instants of the signal are found, and the 

late-time start/interval of the signal is determined. The late-time starts from tmean and 

only one test vector is synthesized for test signal for the “signal specific” method. 

Then, comparison of this vector with all feature vectors of the targets is done one by 

one and test target is classified as the target having highest correlation coefficient. 

Firstly, tmax of test signal is calculated in the “target specific” method. Target specific 

method stores the highest time difference for the first target (for example 463) and 

this difference is added to tmax of test signal and late-time start is designated. Then, 

correlation coefficient between this vector and the feature of first target only is 

calculated. These all steps are repeated for the other targets to find the correlations 

and also second test vector is compared only with the feature vector of second target, 

and it continues in this way. The difference between “signal specific” and “target 

specific” methods is that in “target specific” method, there are test vectors as many as 

the number of the targets. However, each test vector is only compared with the 

corresponding feature vector. Finally, according to the highest correlation coefficient, 

classification is done among all calculated coefficients. 

6.3 Simulation and Results 

Lossless dielectric spheres are used to verify validity of suggested methods. 

Lossless dielectric spheres are geometrically simple targets but their scattering 

mechanisms are highly complex and challenging due to creeping (surface) waves and 

internal reflections/scatterings. In the thesis, making a fair comparison with the study 

(Turhan Sayan 2005), which depends on “classifier specific” late-time interval, test 

targets and corresponding parameters are handled the same with it. The problem 

geometry is given in Figure 6.3. Four targets are examined, and their radii and 

dielectric constants are used as a =10 cm and εr = 3, 4, 5 and 6 respectively. Different 

distances of targets for any aspect angles are selected to reduce dependency on 

location. Accordingly, the “r” value in Figure 6.3 (distance of the observation point) 

varies with target/aspect angle combination.  
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Figure 6.3 The dielectric sphere geometry used in application. 

 The scattered fields are generated by using classical Mie series in frequency 

domain with the frequency band of 0-19.2 GHz and 512 equally spaced frequency 

samples. The bistatic aspect angles are selected as θ= 5°, 15°, 30°, 45°, 60°, 75°, 90°, 

105°, 120°, 135°, 150°, 165° and 179° for each target, and time domain scattered 

signals are synthesized by using IFFT and low pass Gaussian window. Consequently, 

a total of 13 ×4= 52 scattered signals for εr = 4 (Target 2) and θ =179°, are formed. 

Five aspect angles (θ = 5°, 45°, 90°, 135°, 179°) among all aspect angles are selected 

as reference aspect angles. The optimum late-time intervals are chosen as two 

successive time intervals with 64 time samples in order to be consistent with the 

study of (Turhan Sayan 2005). For example “signal specific” method and signal in 

Figure 6.4 is combined with Wigner Ville distribution, time intervals can be shown as 

(669-732) and (733-796). Then having summation along time axis over the selected 

late-time intervals, energy spectral density for each signal is extracted. The final 

frequency vector for distribution is shown in Figure 6.4 Here the first 512 frequency 

indices belong to energy spectral densities of the frequencies for the time interval of 

(669-732), and the second 512 frequency indices belong to energy spectral densities 

of the frequencies for the time interval of (733-796). 
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Figure 6.4 The processed frequency vector for the signal in Fig. 6a 

 For both methods of “target specific” and signal specific”, optimum late-time 

intervals/start are extracted. In the classifier, the feature vector for each target is 

obtained with the method of PCA (dimension reduction technique) which is 

explained in previous sections. The feature vectors are demonstrated in Figure 6.5 

and Figure 6.6 for the “signal specific” and “target specific” strategies, respectively. 

In the graphs, peak values represent the natural response frequencies.  
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Figure 6.5 Feature vectors for “signal-specific” strategy. 

 

 
 

 

 

 
 

 

 
 

 

Figure 6.6 Feature vectors for “target-specific” strategy. 

Noiseless situation is considered, and 52 scattered signals are tested. For both 

“target specific” method and “signal specific” method late-time intervals/starts are 

obtained and test frequency vectors are extracted. Same TFR methods are used for 

feature vector extraction stage but different correlation coefficient comparison 

procedure is done for each strategy. For example test frequency vector which is 
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generated by using “signal specific” method in Figure 6.5, and it is correlated with 

the feature vectors in Figure 6.4 one by one, for the signal in Figure 6.2. As the result 

of this comparison correlation coefficients are 0.5325, 0.7251, 0.5902, and 0.6010 for 

Targets 1, 2, 3, and 4, respectively. The with the high accuracy rates, test target is 

classified as Target 2 (the dielectric sphere with εr = 4). On the other hand, in the 

“target specific” method, four different test vectors are synthesized for the same test 

signal. Then, the first test frequency vector is only compared with the feature vector 

of Target 1, and the process continues until the last (fourth) test frequency vector is 

only compared with the feature vector of Target 4. The obtained correlation 

coefficients are obtained as 0.4949, 0.7742, 0.6505, and 0.5992 for the dielectric 

spheres with εr = 3, 4, 5 and 6, respectively.  

 In the following table performances and accuracy rates of some TFR methods 

are demonstrated such as Wigner-Ville (WV), Page (PG) distributions, their pseudo 

versions (SPWV and PPG) and STFT.  

Table 6.1 The accuracy rates of the application with noise free signals for both methods and 

several TFRs (%) 

Strategy 
Time Frequency Representations 

WV PG PWV PPG STFT 

Signal Specific 100 78.85 84.62 86.54 88.46 

Target Specific 100 67.31 92.31 84.61 92.31 

 It is easily understood from the table Wigner Ville distribution gves the higest 

accuraty percentages and also SPWV (pseudo Wigner) and STFT (short time Fourier 

transform) gives the higher than 88 percent for “target specific” method.  

 The performances of “target specific” and “signal specific” methods are also 

examined for noisy signals in the thesis. Methods and TFRs are compared with the 

study of (Turhan Sayan, 2005) for noisy signals, which also uses Wigner-Ville 

distribution and “classifier specific” late-time interval. However, the study of (Turhan 

Sayan, 2005) cannot be directly used for this application because of placing the 

targets at different distances to the receiver where the method in (Turhan Sayan, 



 

 

44 

 

2005) assumes that all targets are on the same distances. For this problem shifting 

time instants in absolute of all signals to a common time instant, can be a solution. 

After that the method of (Turhan Sayan, 2005) can be safely applied. But, it should be 

mentioned that offered methods in thesis do not need this kind of modification. Also 

noisy results for (Turhan Sayan, 2005) are also shown in the Table 4. The noisy 

signals are synthesized by contaminating noise-free signal with white Gaussian noise 

at the SNR levels of 25, 20, 15, 10, 7.5 and 5 dB. To reduce the dependency of the 

results to noise characteristic, 100 trials at each SNR level are realized. So, 

52×100=5200 signals at each SNR level are totally used for testing purpose.  

Table 6.2 The accuracy rates in percentage with noisy signals for both strategies of several TFRs 

and mentioned in (Turhan Sayan, 2005) 

Strategy or 

Method 

SNR (dB) 

∞ 25 20 15 10 7.5 5 

Signal Specific 

(WV) 
100 99 97.1 91.8 85.3 79.6 66 

Target Specific 

(WV) 
100 100 99.7 96 86 80.2 71 

Signal Specific 

(STFT) 
89 89 89.5 77.8 54 45.9 38 

Signal Specific 

(SPWV) 
79 78 78 76.9 73.8 71.1 69 

Target Specific 

(STFT) 
92 91 85.1 74.3 62.9 55.6 48 

Target Specific 

(SPWV) 
88 88 88.4 86.1 82.5 77.1 76 

Classifier Specific 

(Turhan Sayan, 

2005) 

100 100 99.5 94 83.6 75.1 63 

 It is seen that from the table “target specific” method using Wigner Ville 

distribution gives the highest accuracy rates for SNR value higher then 7.5 dB. 

Suggested method gives the rates over 80 percent at the other SNR values and this 

can be regarded as sufficient performance for the classification. For the “signal 

specific” method Wigner Ville distribution with SPWV gives the over 75 percent 

accuracy rate even in 5 dB. “Signal specific” method gives the better results at low 
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SNR values however it gives the low rates at high dB values compared to “target 

specific” and the study (Turhan Sayan, 2005). On the other hand “target specific” 

method and (Turhan Sayan, 2005) are compared with each other they have similar 

values at high noisy levels, but at low SNR values decrease become sharper. In STFT 

method accuracy rates fall down under un-expected percentages so STFT method is 

not a sufficient method to apply. Here the graphical representation of the Table 6.1 is 

given and accuracy rates versus SNR values are shown. 

 

Figure 6.7 Graphical shown of values in suggested methods (Table 6.1) and (Turhan Sayan, 

2007)  

 As seen from the Figure 6.7, “target specific” method gives the best 

performance, even at SNR=5 dB value, this suggested method gives the rate over 70 

percent. “Signal specific” method gives good performances only at low SNR values 

but it is in-sufficient at high SNR values. The reason for this situation is that tmean 

values are found far away from desired at high SNR values and at low SNR values 

tmean values can be taken more reasonable region. Especially the "target-specific" 

method pretends this undesired situation and increaes the accuracy percentages. The 
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“classifier specific” method presented in the study of (Turhan Sayan, 2005) also gives 

enough performances. However these important points should not be ignored. In this 

application, to realize a fair comparison while obtaning scattered signals in  the study 

of (Turhan Sayan, 2005), it is assumed that all targets are  in the same position. This 

hypothesis can be partially applied for real-time applications but the location of test 

targets will be different from reference location. It means that 641th index will be 

coincided with more late or more early time interval. Thus, especially if the targets 

are in different locations, accuracy rates will fall down. On the other hand, suggested 

"signal-specific" and "target-specific" methods select tmax and tmean values as reference 

so it does not effect the performance of these methods.  
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7 CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

In the thesis target recognition with high resolution techniques and time 

frequency representations are explained for different strategies.  

For the first study in the chapter 3, firstly feature vectors are extracted that 

sufficiently aspect independent for each target. Then, using the convenient time 

intervals of reference signals, ESPRIT spectrum vectors are obtained. PCA dimension 

reduction technique is applied to ESPRIT vectors of each target, which are as many 

as the number of reference aspect angles for reducing to the a single ESPRIT feature 

vector.  

In the test stage, the calculated test ESPRIT spectrum vectors are compared with 

feature vectors of the known targets and classification is done due to highest 

correlation coefficient. The suggested method in this chapter has been successfully 

applied to a set of small-scale airplane targets whose dimensions are slightly different 

from one to another. In noise-free situation offered method gives the 100 percent 

accuracy rate. This rate solely drops to about 88 percent at a severely noisy level of 

SNR = -5 dB. It is also understood that PCA technique gives better performances 

compared to other dimension reduction techniques.  

In the other  study presented in chapter 5, in offered both “signal specific” and 

“target specific” methods, it is utilized from a time-frequency representation (mainly 

in Wigner-Ville in this study) in the determination of optimum late time commence 

instant/late-time interval and extraction of feature vectors. In suggested methods, the 

determined late-time intervals are highly insensitive to distance of the target, and the 

extracted feature vectors include aspect-independent frequency information which are 

unique to target. Both “signal specific” and “target specific” methods are simulated 

with dielectric spheres which are located at different positions and obtained result are 

compared for the several different TFRs and similar methods in the literature. 

According to simulation and comparison results, combination of Wigner Ville 

method and “target specific” strategy give best performances among all similar 

methods. 
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7.2 Future Work 

 The future work will be about usage of wavelets for target recognition and 

classification with time-frequency representation techniques (TFR’s). Results of 

wavelet applications will be examined and comparisons with other methods in the 

literature will be obtained.   
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APPENDIX A 

SAMPLE CODE OF CLASSIFICATION OF A SAMPLE TARGET 

(PLANE 1) WITH HIGH RESOLUTION TECHNIQUES 

clear 

close all 

N=65; 

m=33; 

L=6; 

f= 0:1/512:0.5; 

signal = 37; 

plane_1 = [3 10 19 28 35]; 

plane_2 = plane_1 + signal; 

plane_3 = plane_2 + signal; 

plane_4 = plane_3 + signal; 

load xnorm_eski.mat 

xnorm(3,:); 

xnorm(10,:); 

xnorm(19,:); 

xnorm(28,:); 

xnorm(35,:);  

hh = hankel(xnorm(plane_1(1),:)); 

R=hh(1:33,1:33);  

 [U,D,V] = svd(R); 

I=eye(m-1);  

O=zeros(m-1,1);  

I1=[I,O];  

I2=[O,I]; 

S1=I1*U(:,1:L);  

S2=I2*U(:,1:L);  

Psi=inv(S1'*S1)*S1'*S2;  

zi=eig(Psi); 

a=poly(zi); 

for c=1:257    

 e_f(:,c)=exp(-j*2*pi*f(c)*(0:L)).'; 

end  

P_f_1=1./abs(a*e_f).^2; 

S_1(1,:) = P_f_1./norm(P_f_1); 

xlabel('Frequnecy(Hz)'); 

ylabel('Amplitude'); 

grid  

hh = hankel(xnorm(plane_1(2),:)); 

R=hh(1:33,1:33);  

[U,D,V] = svd(R); 



 

 

54 

 

I=eye(m-1);  

O=zeros(m-1,1);  

I1=[I,O];  

I2=[O,I]; 

S1=I1*U(:,1:L);  

S2=I2*U(:,1:L);  

Psi=inv(S1'*S1)*S1'*S2;  

zi=eig(Psi); 

a=poly(zi); 

 for c=1:257   

 e_f(:,c)=exp(-j*2*pi*f(c)*(0:L)).'; 

end  

P_f_2=1./abs(a*e_f).^2; 

S_1(2,:) = P_f_2./norm(P_f_2); 

xlabel('Frequnecy(Hz)'); 

ylabel('Amplitude'); 

grid 

hh = hankel(xnorm(plane_1(3),:)); 

R=hh(1:33,1:33);  

 [U,D,V] = svd(R); 

I=eye(m-1);  

O=zeros(m-1,1);  

I1=[I,O];  

I2=[O,I]; 

S1=I1*U(:,1:L);  

S2=I2*U(:,1:L);  

Psi=inv(S1'*S1)*S1'*S2;  

zi=eig(Psi); 

a=poly(zi); 

for c=1:257     

 e_f(:,c)=exp(-j*2*pi*f(c)*(0:L)).'; 

end    

P_f_3=1./abs(a*e_f).^2; 

S_1(3,:) = P_f_3./norm(P_f_3); 

xlabel('Frequnecy(Hz)'); 

ylabel('Amplitude'); 

grid 

hh = hankel(xnorm(plane_1(4),:)); 

R=hh(1:33,1:33);  

 [U,D,V] = svd(R); 

I=eye(m-1);  

O=zeros(m-1,1);  

I1=[I,O];  

I2=[O,I]; 

S1=I1*U(:,1:L);  

S2=I2*U(:,1:L);  

Psi=inv(S1'*S1)*S1'*S2;  
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zi=eig(Psi); 

a=poly(zi); 

for c=1:257     

 e_f(:,c)=exp(-j*2*pi*f(c)*(0:L)).';  

 end  

P_f_4=1./abs(a*e_f).^2; 

S_1(4,:) = P_f_4./norm(P_f_4); 

xlabel('Frequnecy(Hz)'); 

ylabel('Amplitude'); 

grid 

hh = hankel(xnorm(plane_1(5),:)); 

R=hh(1:33,1:33);  

 [U,D,V] = svd(R); 

I=eye(m-1);  

O=zeros(m-1,1);  

I1=[I,O];  

I2=[O,I]; 

S1=I1*U(:,1:L);  

S2=I2*U(:,1:L);  

Psi=inv(S1'*S1)*S1'*S2;  

zi=eig(Psi); 

a=poly(zi); 

for c=1:257    

 e_f(:,c)=exp(-j*2*pi*f(c)*(0:L)).'; 

end  

P_f_5=1./abs(a*e_f).^2; 

S_1(5,:) = P_f_5./norm(P_f_5); 

xlabel('Frequnecy(Hz)'); 

ylabel('Amplitude'); 

grid 

PLANE1 = sum(S_1); 

[U,D,V]=svd(cov(S_1(1:5,:)')); 

    D1=diag(D); 

    absurd=mean(S_1(1:5,:),2)*ones(1,257); 

    as=S_1(1:5,:)-absurd; 

    pc=V'*as; 

yer1=D1(1)*pc(1,:)/sum(D1)+D1(2)*pc(2,:)/sum(D1)+D1(3)*pc(3,:)/sum(D1); 

    yer1=-yer1./norm(yer1); 

    save yer1.mat yer1 

plot(f,yer1,'m'); 

hold 

plot(f,PLANE1/norm(PLANE1)-mean(PLANE1/norm(PLANE1))); 

plot(f,sum(as)/norm(sum(as)),'k'); 

xlabel('Frequnecy(Hz)'); 

ylabel('Amplitude'); 

grid 
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%% TEST STAGE %% 

clear  

N=65; 

m=33; 

L=6; 

f= 0:1/512:0.5; 

load yer1.mat 

load yer2.mat 

load yer3.mat 

load yer4.mat 

load xnorm_eski.mat 

PLANE1_L4=yer1; 

PLANE2_L4=yer2; 

PLANE3_L4=yer3; 

PLANE4_L4=yer4; 

dogru_sayisi = 0; 

tic 

for iter=1:1 

    for i = 1:148; 

        clear z R y1 

        noise=noisecg(length(xnorm(i,:))); 

        realnoise=real(noise); 

        realnoise=realnoise-mean(realnoise); 

        y1(:,1)=sigmerge(xnorm(i,:)',realnoise,1000); 

        z=mean(y1,2); 

        hh = hankel(z); 

        R=hh(1:33,1:33); 

        [U,D,V] = svd(R); 

        I=eye(m-1); 

        O=zeros(m-1,1); 

        I1=[I,O]; 

        I2=[O,I]; 

        S1=I1*U(:,1:L); 

        S2=I2*U(:,1:L); 

        Psi=inv(S1'*S1)*S1'*S2; 

        zi=eig(Psi); 

        a=poly(zi); 

        for c=1:257 

            e_f(:,c)=exp(-j*2*pi*f(c)*(0:L)).'; 

        end 

        t = 0:10:100; 

        P_f=1./abs(a*e_f).^2; 

        plane_n = P_f./norm(P_f); 

        plot(((1024*f)/0.5),plane_n); 

        variable1 = corrcoef(plane_n,PLANE1_L4); 
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        uyum1 = variable1 (1,2); 

        variable2 = corrcoef(plane_n,PLANE2_L4); 

        uyum2 = variable2 (1,2); 

        variable3 = corrcoef(plane_n,PLANE3_L4); 

        uyum3 = variable3 (1,2); 

         variable4 = corrcoef(plane_n,PLANE4_L4); 

        uyum4 = variable4 (1,2); 

        uyumlar(i,:)=[uyum1 uyum2 uyum3 uyum4]; 

        [maximumlar,index]=max(uyumlar(i,:)); 

        ucak(i)=index; 

    end 

    for i=1:37 

        if ucak(i) == 1 

            dogru_sayisi = dogru_sayisi+1; 

        end 

    end 

    for i=38:74 

        if ucak(i) == 2 

            dogru_sayisi = dogru_sayisi+1; 

         end 

    end 

    for i=75:111 

        if ucak(i) == 3 

            dogru_sayisi = dogru_sayisi+1; 

        end 

    end 

    for i=112:148 

        if ucak(i) == 4 

            dogru_sayisi = dogru_sayisi+1; 

        end 

    end 

end 

toc  

yuzde_dogruluk = dogru_sayisi*100/(148*iter) 
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APPENDIX B 

SAMPLE CODE FOR “SIGNAL SPECIFIC” METHOD 

clear all 

close all 

warning('off','MATLAB:dispatcher:InexactCaseMatch') 

% 52 different signals are applied for the method  

notgt=4; 

no_angle=13; 

tgtltd = notgt*no_angle; 

   t_reference_angle =[f1; f4; f7; f10; f13; f14; f17; f20; f23; f26; 

    f27; f30; f33; f36 ;f39 ;f40 ;f43 ;f46 ;f49 ;f52];       

     for jj=1:size(t_reference_angle,1) 

        y=t_reference_angle(jj,:); 

        wi=real(tfrwv(y.')); 

        TFRp=(abs(wi)+wi)/2; 

        wigner(1:512,:)=TFRp(1:512,:); 

        wig_column = sqrt(sum(wigner)); 

        [a,max_energy_index] = max(wig_column); 

        max11(jj) = max_energy_index; 

         [c,d]=find((wig_column(max_energy_index:end-

128)>0.85*mean(wig_column)) & (wig_column(max_energy_index:end-

128)<1.15*mean(wig_column))); 

        max22(jj)=d(end)+max_energy_index-1; 

                 temp1 = wigner(:,max22(jj):max22(jj)+63); 

                 temp2 = wigner(:,max22(jj)+64:max22(jj)+127);           

            late1 = sum(temp1')/64; 

            late2 = sum(temp2')/64; 

            test_vector(:,jj) = [late1 late2]; 

     end 

    for i = 1:4 

            X = test_vector(:,((i-1)*5 + 1):(i*5)); 

             [PC, SCORE, LATENT, TSQUARE] = PRINCOMP(X);  

             lambda1(:,i) = LATENT; 

             PCA(:,i) = SCORE(:,1); 

     end      

     fark = max(max22-max11); 

     for q =50:5:50 

         yanlis = 0; 

         dogru = 0; 

         for deneme = 1:1 

             for jj = 1:tgtltd 

     

                 temp1 = 0; temp2 = 0; y1=0; 
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                 y = ALL(jj,:); 

                 noise = noisecg(length(y)); realnoise = real(noise); 

                 realnoise = realnoise-mean(realnoise); 

                 y1 = sigmerge(y',realnoise,q); 

                 wi = real(tfrwv(y1)); 

                 TFRp = (abs(wi)+wi)/2; 

                 wigner(1:512,:) = TFRp(1:512,:); 

                 wig_column = sqrt(sum(wigner)); 

                 [a,max_energy_index] = max(wig_column); 

                 max1(jj) = max_energy_index; 

[c,d]=find((wig_column(max_energy_index:end-128)>0.85*mean(wig_column)) & 

(wig_column(max_energy_index:end-128)<1.15*mean(wig_column)));            

                 max2(jj)=d(end)+max_energy_index-1;              

                 temp1 = wigner(:,max2(jj):max2(jj)+63); 

                 temp2 = wigner(:,max2(jj)+64:max2(jj)+127);    

                 late1 = sum(temp1')/64; 

                 late2 = sum(temp2')/64; 

                 test_vector1(:,jj) = [late1 late2]; 

             end 

                 for kf1 = 1:tgtltd 

                     for t = 1:notgt     

                         dummy3 = PCA(:,t); 

                         res = corrcoef(test_vector1(:,kf1),dummy3); 

                         result(t) = res(1,2);     

                     end 

                     sumresult(kf1,:) = result; 

                 end; 

                 for trg = 1:notgt 

                     alim = (trg-1)*no_angle+1; 

                     ulim = trg*no_angle; 

                      

                     for rr = alim:ulim     

                         [ymax,II] = max(sumresult(rr,:)); 

                         if II ~= trg 

                             yanlis = yanlis+1; 

                         end 

                         if II == trg 

                             dogru = dogru+1;   

                         end 

                     end 

                 end 

             end 

             dogru 

             yanlis 

             RD = 100*dogru/(tgtltd*deneme) 

         end 

         toc 
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APPENDIX C 

SAMPLE CODE FOR “TARGET SPECIFIC” METHOD 

clear all 

close all 

warning('off','MATLAB:dispatcher:InexactCaseMatch') 

% 52 sifferent signals are applied for the method  

notgt = 4; 

no_angle = 13; 

tgtltd = notgt*no_angle; 

t_reference_angle = [f1; f4; f7; f10; f13; f14; f17; f20; f23; f26; 

                    f27; f30; f33; f36 ;f39 ;f40 ;f43 ;f46 ;f49 ;f52]; 

 for jj = 1:5      

    y = t_reference_angle(jj,:); 

    wi = real(tfrwv(y.')); 

    TFRp = (abs(wi)+wi)/2; 

    wigner(1:512,:)=TFRp(1:512,:); 

    wig_column = sqrt(sum((wigner)));     

    [a,max_energy_index] = max(wig_column); 

    max1(jj) = max_energy_index; 

    [b,half_max_energy_index] = min(abs(wig_column(max_energy_index:end)-

mean(wig_column)));   

    [c,d]=find((wig_column(max_energy_index:end-128)>0.8*mean(wig_column)) & 

(wig_column(max_energy_index:end-128)<1.2*mean(wig_column))); 

    max2(jj)=d(end)+max_energy_index-1;     

end 

for z = 6:10    

    y2 = t_reference_angle(z,:); 

    wi = real(tfrwv(y2.')); 

    TFRp = (abs(wi)+wi)/2; 

    wigner(1:512,:) = TFRp(1:512,:); 

    wig_column = sqrt(sum((wigner))); 

    [a,max_energy_index] = max(wig_column); 

    max3(z-5) = max_energy_index; 

    [c,d]=find((wig_column(max_energy_index:end-128)>0.8*mean(wig_column)) & 

(wig_column(max_energy_index:end-128)<1.2*mean(wig_column))); 

    max4(z-5)=d(end)+max_energy_index-1; 

end  

for t = 11:15 

    y3 = t_reference_angle(t,:); 

    wi = real(tfrwv(y3.')); 

    TFRp = (abs(wi)+wi)/2; 

    wigner(1:512,:) = TFRp(1:512,:); 

    wig_column = sqrt(sum((wigner)));    
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    [a,max_energy_index] = max(wig_column); 

    max5(t-10) = max_energy_index; 

    [c,d]=find((wig_column(max_energy_index:end-128)>0.8*mean(wig_column)) & 

(wig_column(max_energy_index:end-128)<1.2*mean(wig_column))); 

    max6(t-10)=d(end)+max_energy_index-1;   

end 

for r = 16:20 

    y4 = t_reference_angle(r,:); 

    wi = real(tfrwv(y4.')); 

    TFRp = (abs(wi)+wi)/2; 

    wigner(1:512,:)=TFRp(1:512,:); 

    wig_column = sqrt(sum((wigner))); 

    [a,max_energy_index] = max(wig_column); 

    max7(r-15) = max_energy_index; 

    [c,d]=find((wig_column(max_energy_index:end-128)>0.95*mean(wig_column)) 

& (wig_column(max_energy_index:end-128)<1.05*mean(wig_column))); 

    max8(r-15)=d(end)+max_energy_index-1;    

end 

max_total = [max2-max1; max4-max3; max6-max5; max8-max7]'; 

avg_max = round(max(max_total)) 

for jj = 1:5 

    temp1 = 0; 

    temp2 = 0; 

    y = t_reference_angle(jj,:); 

    wi = real(tfrwv(y.')); 

    TFRp = (abs(wi)+wi)/2; 

    wigner(1:512,:)=TFRp(1:512,:); 

    wig_column = sqrt(sum((wigner))); 

    [a,max_energy_index] = max(wig_column); 

   avg_max1(1)=avg_max(1)+max_energy_index; 

    temp1 = wigner(:,avg_max1(1):avg_max1(1)+63); 

    temp2 = wigner(:,avg_max1(1)+64:avg_max1(1)+127); 

    late1 = sum(temp1')/64; 

    late2 = sum(temp2')/64; 

    ref_vector1(:,jj) = [late1 late2]; 

end 

for z = 6:10 

    temp3 = 0; 

    temp4 = 0; 

    y2 = t_reference_angle(z,:); 

    wi = real(tfrwv(y2.')); 

    TFRp = (abs(wi)+wi)/2; 

    wigner(1:512,:)=TFRp(1:512,:); 

     wig_column = sqrt(sum((wigner))); 

    [a,max_energy_index] = max(wig_column); 

   avg_max1(2)=avg_max(2)+max_energy_index; 

    temp3 = wigner(:,avg_max1(2):avg_max1(2)+63); 
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    temp4 = wigner(:,avg_max1(2)+64:avg_max1(2)+127); 

    late3 = sum(temp3')/64; 

    late4 = sum(temp4')/64; 

    ref_vector2(:,z-5) = [late3 late4]; 

end 

for t = 11:15 

    temp5 = 0; 

    temp6 = 0; 

    y3 = t_reference_angle(t,:); 

    wi = real(tfrwv(y3.')); 

    TFRp = (abs(wi)+wi)/2; 

    wigner(1:512,:)=TFRp(1:512,:); 

   wig_column = sqrt(sum((wigner))); 

   [a,max_energy_index] = max(wig_column); 

   avg_max1(3)=avg_max(3)+max_energy_index;     

    temp5 = wigner(:,avg_max1(3):avg_max1(3)+63); 

    temp6 = wigner(:,avg_max1(3)+64:avg_max1(3)+127); 

    late5 = sum(temp5')/64; 

    late6 = sum(temp6')/64; 

    ref_vector3(:,t-10) = [late5 late6]; 

end 

for r = 16:20 

    temp7 = 0; 

    temp8 = 0; 

    y4 = t_reference_angle(r,:); 

    wi = real(tfrwv(y4.')); 

    TFRp = (abs(wi)+wi)/2; 

    wigner(1:512,:)=TFRp(1:512,:); 

     wig_column = sqrt(sum((wigner))); 

    [a,max_energy_index] = max(wig_column); 

   avg_max1(4)=avg_max(4)+max_energy_index; 

    temp7 = wigner(:,avg_max1(4):avg_max1(4)+63); 

    temp8 = wigner(:,avg_max1(4)+64:avg_max1(4)+127); 

    late7 = sum(temp7')/64; 

    late8 = sum(temp8')/64; 

    ref_vector4(:,r-15) = [late7 late8]; 

end 

for iii = 1 

    X_1 = ref_vector1(:,((iii-1)*5 + 1):(iii*5)); 

    [PC, SCORE, LATENT, TSQUARE] = PRINCOMP(X_1); 

    lambda1(:,iii) = LATENT; 

    PCA1(:,iii) = SCORE(:,1); 

    X_2 = ref_vector2(:,((iii-1)*5 + 1):(iii*5)); 

    [PC, SCORE, LATENT, TSQUARE] = PRINCOMP(X_2); 

    lambda1(:,iii) = LATENT; 

    PCA2(:,iii) = SCORE(:,1); 

    X_3 = ref_vector3(:,((iii-1)*5 + 1):(iii*5)); 
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    [PC, SCORE, LATENT, TSQUARE] = PRINCOMP(X_3); 

    lambda1(:,iii) = LATENT; 

    PCA3(:,iii) = SCORE(:,1); 

    X_4 = ref_vector4(:,((iii-1)*5 + 1):(iii*5)); 

    [PC, SCORE, LATENT, TSQUARE] = PRINCOMP(X_4); 

    lambda1(:,iii) = LATENT; 

    PCA4(:,iii) = SCORE(:,1); 

end 

tic 

     for q = 50:5:50 

         temp1=0; temp2=0; temp3=0; temp4=0;  

         temp5=0; temp6=0; temp7=0; temp8=0; 

         yanlis = 0; 

         dogru = 0; 

         for deneme = 1:1 

             for jj = 1:tgtltd         

                 y2=ALL(jj,:); 

                 wi=real(tfrwv(y2')); 

                 TFRp = (abs(wi)+wi)/2; 

                 wigner(1:512,:) = TFRp(1:512,:); 

                  wig_column = sqrt(sum((wigner))); 

    [a,max_energy_index] = max(wig_column); 

   avg_max2(1)=avg_max(1)+max_energy_index; 

   avg_max2(2)=avg_max(2)+max_energy_index; 

   avg_max2(3)=avg_max(3)+max_energy_index; 

   avg_max2(4)=avg_max(4)+max_energy_index; 

    temp1 = wigner(:,avg_max2(1):avg_max2(1)+63); 

    temp2 = wigner(:,avg_max2(1)+64:avg_max2(1)+127); 

                late1 = sum(temp1')/64; 

                late2 = sum(temp2')/64; 

                test_vector1(:,jj) = [late1 late2]; 

                temp3 = wigner(:,avg_max2(2):avg_max2(2)+63); 

                temp4 = wigner(:,avg_max2(2)+64:avg_max2(2)+127); 

                late3 = sum(temp3')/64; 

                late4 = sum(temp4')/64; 

                test_vector2(:,jj) = [late3 late4]; 

                temp5 = wigner(:,avg_max2(3):avg_max2(3)+63); 

                temp6 = wigner(:,avg_max2(3)+64:avg_max2(3)+127); 

                late5 = sum(temp5')/64; 

                late6 = sum(temp6')/64; 

                test_vector3(:,jj) = [late5 late6]; 

                temp7 = wigner(:,avg_max2(4):avg_max2(4)+63); 

                temp8 = wigner(:,avg_max2(4)+64:avg_max2(4)+127); 

                late7 = sum(temp7')/64; 

                late8 = sum(temp8')/64; 

                test_vector4(:,jj) = [late7 late8];      

             end 
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             for kf1 = 1:tgtltd             

                         res= corrcoef(test_vector1(:,kf1),PCA1); 

                         result(kf1,1) = res(1,2); 

                         res1= corrcoef(test_vector2(:,kf1),PCA2); 

                         result(kf1,2) = res1(1,2); 

                         res2= corrcoef(test_vector3(:,kf1),PCA3); 

                         result(kf1,3) = res2(1,2); 

                         res3= corrcoef(test_vector4(:,kf1),PCA4); 

                         result(kf1,4) = res3(1,2);                                                       

                 end;   

                 sumresult= result; 

                 for trg = 1:notgt 

                     alim = (trg-1)*no_angle+1; 

                     ulim = trg*no_angle;   

                     for rr = alim:ulim 

                         [ymax,II] = max(sumresult(rr,:));   

                         if II ~= trg 

                             yanlis = yanlis+1; 

                         end 

                         if II == trg 

                             dogru = dogru+1;   

                         end 

                     end 

                 end 

             end 

             dogru 

             yanlis       

             RD(q/5+2) = 100*dogru/(tgtltd*deneme) 

         end 

         toc 

figure, 

plot(q, RD ,'r*-') 

grid on 


