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ABSTRACT 

ARTINIAN WEAKLY SUPPLEMENTED  MODULES 

 
 

ABDULKAREEM, Aram 

MSc in Mathematics 

Supervisor: Prof. Dr. Rafail ALIZADE 

May 2015, 30 pages 

 
 

In this thesis artinian weakly supplemented modules and totally artinian 

weakly supplemented modules are defined and some properties of these modules 

are studied. It is proved that homomorphic image, small cover and finite sum  

of artinin weakly supplemented modules are artinian weakly supplemented, but 

infinite direct sum of artinian weakly supplemented modules need not be artinian 

weakly supplemented. A factor module of totally artinian weakly supplemented 

modules is also totally artinian weakly supplemented. A module is artinian 

weakly supplemented (totally artinian weakly suplemented) if and only if a factor 

of it by a linear compact submodule is artinian weakly supplemented (totally 

artinian weakly suplemented). 

 
 

Keywords:- Supplemented, Weakly supplemented, Artinian weakly sup- 

plemented, totally artinian weakly supplemented. 
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Ö ZET 

ARTİN ZAYIF TÜ MLENEN  MODÜ LLER 

 
ABDULKAREEM, Aram 

Matematik Yü ksek Lisans 

Tez Danışmanı: Prof. Dr. Rafail ALİZADE 

Mayıs 2015, 30 sayfa 

 

Bu tezde Artin zayıf tü mlenen modü ller ve tü mden Artin zayıf tü mlenen 

modü ller tanımlanmış ve bu modü llerin bazı ö zellikleri incelenmiştir. Artin zayıf 

tü mlenen  modü llerin  homomorf  gö rü ntü sü ,  kü çü k  ö rtü leri  ve  sonlu  toplam- 

larının  Artin  zayıf  tü mlenen  modü ller  olduğ u,   fakat  Artin  zayıf  tü mlenen 

modü llerin  sonsuz  toplamının  Artin  zayıf  tü mlenen  modü l  olmayabileceğ i 

kanıtlanmıştır.   Tü mden  Artin  zayıf  tü mlenen  modü llerin  faktö r  modü lleri  de 

tü mden  Artin  zayıf  tü mlenendir.   Bir  modü lü n  Artin  zayıf  tü mlenen  (tü mden 

Artin  zayıf  tü mlenen  modü l)  olması  için  bu  modü lü n  bir  lineer  kompakt  alt- 

modü le gö re faktö r modü lü nü n Artin zayıf tü mlenen modü l (tü mden Artin zayıf 

tü mlenen modü l) olması gerek ve yeterlidir. 

 
 

Anahtar  sö zcü kler:   Tü mlenen,  Zayıf  Tü mlenen,  Artin  Zayıf  Tü mlenen, 

Tü mden Artin Zayıf Tü mlenen. 
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INTRODUCTION 

 
 

Supplement submodules and supplemented modules play an important 

role in the investigation of modules. Different types of supplemented modules 

(weakly supplemented, cofinitely supplemented etc.) are used to study deep 

properties of modules and their submodules. In this thesis we define and study 

artinian weakly supplemented modules, that is modules M whose submodules 

N with M/N artinian have weak supplements. 

The thesis consists of three chapters. In the first chapter we give some 

basic definitions, examples and theorems related to abelian groups, modules, 

small submodules and some specific modules as artinian, hollow, uniserial and 

linear compact. Also it provides the definition of supplement submodule, which 

services us a means to define supplemented, weakly supplemented, totally weak 

supplemented and cofinitely weak supplemented modules and gives some prop- 

erties of these modules. 

In the second chapter we give the definition of artinian weakly supple- 

mented module, and prove that the homomorphic image, small cover, finite direct 

sum and finitely M-generated of artinian weakly supplemented are also artinian 

weakly supplemented. On the other hand we show by example that an infinite 

direct sum of artinian weakly supplemented modules may not be artinian weakly 

supplemented. 

In the third chapter, we define totally artinian weakly supplemented mod- 

ules and prove that every homomorphic image of totally artinian weakly supple- 

mented module is totally artinian weakly supplemented. We give an example 

showing that artinian weakly supplemented modules need not be totally artinian 

weakly supplemented. We also prove that an R-module M is totally artinian 

weakly supplemented (artinian weakly supplemented) if and only if M/K is to- 

tally artinian weakly supplemented ( artinian weakly supplemented ) for a linear 

compact submodule K. 
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CHAPTER 1 
 

 

PRELIMINARIES 

 
In this chapter, we give some basic definitions, examples and theorems 

related to abelian groups, modules and some specific modules as artinian, hollow, 

uniserial and linear compact. Also it gives the definition of supplemented, weakly 

supplemented, totally weak supplemented and cofinitely weak supplemented 

modules with some properties of these modules. 

 
1.1. Abelian Groups 

 
Definition 1.1       A group is a nonempty set G on which a binary operation is defined 

(a, b) → a ∗ b satisfying the following properties: 

Closure:If a and b belong to G, then a ∗ b is also in G; 

Associativity: a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ G; 

Identity: There is an element e in G (which is called a neutral element) such that a ∗ e = 

e ∗ a = a for all a in G; 

Inverse:If a is in G there is an element at in G such that a ∗ at = at ∗ a = e. 
 

A group G is abelian if the binary operation is commutative, i.e., a ∗ b = b ∗ a for all 

a, b in G. We will consider only abelian groups and use additive notation, that is 

the operation will be denoted by + and the inverse element of a by −a. 

Definition 1.2 Let G be a group, and let H be a subset of G. Then H is called a subgroup 

of G if H is itself a group, under the operation induced by G. 

Definition 1.3  Let G be a group, and let a be any element of G.  The set (a) = {x  ∈   

G | x = na  for some  n ∈ Z} is called the cyclic subgroup generated by a.  The group G 

is called a cyclic group if there exists an element a ∈ G such that G = (a). In this case a 

is called a generator of G. 

 

Definition 1.4 Let a be an element of the group G. If there exists a positive integer n 

such that na = e, then a is said to have finite order, and the smallest such positive integer 



3  

is called the order of a, denoted by o(a). If there does not exist a positive integer n such 

that na = e, then a is said to have infinite order. 

 

Definition 1.5 A is called torsion or periodic group, if every element of A is of finite 

order. 

 

For a group A and an integer n > 0, let A[n] = {a ∈ A | na = 0}. Thus g ∈ A[n] if 

and only if o(g)|n. Clearly, A[n] is subgroup of A. 

Definition 1.6 A group A is called n-bounded if it satisfies nG = 0. A group A is 

bounded if it is n-bounded for some n Ç 0. 

 

Definition 1.7 A group D is called divisible if n|a for all a ∈ D and all positive integers 

n. 

 

Thus a group D is divisible if and only if nD = D for every positive n. The groups 

Q, Z(p∞) and Q/Z are examples for divisible groups, but a direct sum of cyclic 

groups is not divisible. 

 
1.2. Module  and submodule 

 
Definition 1.8   Let  R  be  a  ring  with  identity  1,   M  be  an  abelian  group  and      

f : R × M −→ M, ( f (r, m) = rm) be a function where r ∈ R, m  ∈ M.  Then M is 

called a left R-module (or a module in brief ) if the following are satisfied: 

(i) r(m + n) = rm + rn for every r ∈ R and m, n ∈ M. 

(ii) (r + s)m = rm + sm for every r, s ∈ R and m ∈ M. 

(iii) (rs)m = r(sm) for every r, s ∈ R and m ∈ M. 

(iv) 1.m = m for every m ∈ M. 

 

Definition 1.9 A subset N of an R-module M is called a submodule if N itself is a 

module with respect to the same operations. Notation: N ≤ M. 

Definition 1.10 Let M be an R-module and N be a submodule of M. The set of cosets 

M/N = {x + N | x ∈ M} is a module relative to the addition and scalar multiplication 

defined by (x + N) + (y + N) = (x + y) + N, r(x + N) = rx + N. The resulting module 

M/N is called a factor module of M by N. 
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f¯ 

Lemma 1.1  (Modular Law) Let K, N, L be submodules of M and N ⊆ K then 

K ∩ (N + L) = N + K ∩ L. 

Proof    (⊆) Let k ∈ K ∩ (N + L).  Then k can be represented as k = n + l for some 

n ∈ N, l ∈ L. Since N ⊆ K, n ∈ K we have l = k − n ∈ K + N ⊆ K + K = K. Hence 

l ∈ K ∩ L and k = n + l ∈ N + K ∩ L. 

(⊇) Obvious. □ 

 

1.3. Isomorphism 
 

Definition 1.11 If M and N are two modules, then a function f : M −→ N is a 

homomorphism in case for all r, s ∈ R and all x, y ∈ M 

f (rx + sy) = r f (x) + s f (y) 
 

If N = M, then the homomorphism f is called  endomorphism. 
 

Definition 1.12 A homomorphism  f  : M −→ N is called an epimorphism if it is onto. 

It is called a monomorphism if it is one-to-one . 

Definition 1.13   Kernel of  f :   Ker f  =  {m  ∈ M  |  f (m)  =  0} ⊆ M.   Image of     f : 

Im f = { f (m) | m ∈ M} ⊆ N. 

So it can be easily verified that f is an epimorphism if and only if Im f = N, 

and f is an monomorphism if and only if Ker f  = 0. 

Definition 1.14 A homomorphism f is called an isomorphism if it is both an epimor- 

phism and a monomorphism (i.e. it is a bijection). 

Theorem 1.1   Factorization Theorem 

Let  f  :  M  −→  N  be a homomorphism of R-module.  If U  is a submodule of M with   

U ≤ Ker f , then there is a unique homomorphism f¯ : M/U −→ N with f = g f̄ , i.e. the 

following diagram is commutative: 
 

f 

M ,¸,¸
¸, N 

g 
1x 

M/U 

Moreover, Im f  = Im f¯ and Ker f¯ = Ker f /U. 
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∈ 

Theorem 1.2   Fundamental Homomorphism Theorem 

Let M and N be left R-modules and f : M −→ N be a homomorphism,  then 

M/ Ker f ÷ Im f. 

 

If f is an epimorphism, then M/ Ker f ÷ N. 

 

Theorem 1.3   Second Isomorphism Theorem 

If N and K are submodules of M, then 
 

(N + K)/K ÷ N/(N ∩ K). 
 

Theorem 1.4   Third Isomorphism Theorem 

If K ≤ N ≤ M, then 

(M/K)/(N/K) ÷ M/N. 

 
Definition 1.15  An R-module M is called finitely generated if there exist elements  

m1, m2, . . . , mr ∈ M so that each m ∈ M can be written as 

m = a1m1 + a2m2 + . . . + armr 

 

for some a1, a2, . . . , ar ∈ R. The elements m1, m2, . . . , mr are called generators of M. 
 

One important property should be pointed out immediately: Any factor 

of a finitely generated module is also finitely generated. Indeed, if m1, . . . , mr 

generate M then the cosets m1 + N, . . . , mr + N generate the factor module M/N for 

every N ≤ M. 

Definition 1.16  Let M be an R-module and {Ni  | i ∈ I} be a set of submodules of M.  

M = 
L 

Ni  is called internal direct sum (or direct sum) if the following conditions hold: 
i  I 

1. M = 
, 

Ni 
i∈I 

2. For every j ∈ I, Nj ∩ 
, 

Ni = 0 
iÇj 

Then M = 
L 

Ni is also said to be a decomposition of M. 
i∈I 

Definition 1.17 Let M be an R-module. A submodule A is called direct summand of M 

if M = A ⊕ B for some submodule B ⊆ M. 

Definition 1.18 Let M be an R-module. Then an R-module N is called (finitely) M- 

generated if it is a homomorphic image of a (finite) direct sum of copies of M. 
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Definition 1.19   A sequence 
 

fn+1 fn 

. . . −→ Mn+1 −→ Mn −→ Mn−1 −→ . . . 

 
 

of modules {Mn}n∈Z  and homomorphisms { fn}n∈Z  is exact if Im fn+1  =  Ker fn  for each   

n ∈ Z. 

f 

A sequence 0  −→  A  −→  B of R-modules is exact if and only if  f  is  one- 
g 

to-one, and a sequence B −→ C −→ 0 is exact if and only if g is onto.      An exact 

sequence of the form 
f g 

0 −→ A −→ B −→ C −→ 0 

is said a short exact sequence. In this case, f is a monomorphism and g is an 

epimorphism, so Im f ÷ A and C ÷ B/ Im f . Thus we can assume that A ≤ B and 

say C ÷ B/A. 

 
1.4. Small Submodule and Radical 

 
Definition 1.20 Let M be an R-module. A submodule K of M is small (superfluous) in 

M if for all proper submodules L of M, L + K Ç M holds. Small submodule is denoted by 

K « M. 

Definition 1.21 An epimorphism f : M −→ N is called small if Ker f « M. In this  

case a module M is called a small cover of a module N with small epimorphism f . 

 

Lemma 1.2   (Wisbauer, 1991) Let M, N and L be R-module. Then: 

1. An epimorphism f : M −→ N is small if and only if every homomorphism g : L −→ M 

with epimorphism f g is epimorphism. 

2. If f : M −→ N ;g : N −→ L are two epimorphism, then g ◦ f is small if and only if f 

and g are small, i.e. Ker(g ◦ f ) « M if and only if Ker f « M and Ker g « N 

Definition 1.22 Let M be an R-module. A submodule N of M is called a minimal 

(simple) if N Ç 0 and there is no proper non-zero submodule of N, that if 0 ≤ N ≤ M 

then either N = 0 or N = M. N is called a maximal submodule of M if N is proper and 

there exists no other proper submodule K of M such that N Ç K, that if N ≤ K ≤ M then 

either K = N or K = M. 



7  

Definition 1.23 Let (Tα)α∈A be an indexed set of simple (minimal) submodules of M. If 

M is the direct sum of this set, then 
 

M = 
L 

Tα 

A 

is a semisimple decomposition of M. A module M is called semisimple in case it has a 

semisimple decomposition. 

 

Theorem 1.5  For an R-module M, the following statements are equivalent: 

(a) M is semisimple; 

(b) M is generated by simple modules; 

(c) M is the sum of some set of simple modules; 

(d) M is the sum of its minimal (simple) submodules; 

(e) Every submodule of M is a direct summand. 

 

Definition 1.24 Let M be an R-module. The radical of M is the sum of all small 

submodules of M, equivalently intersection of all maximal submodules of M. The radical 

of M is denoted by Rad(M). 

 

Lemma 1.3 Let M be an R-module and K ⊆ L and Li (1 ≤ i ≤ n) be submodules of M 

for some positive integer n. Then the following hold: 

1. L « M if and only if L + N Ç M for any proper submodule N of M. 

2. Let L « M, then any submodule of L is also small in M. 

3. L « M if and only if K « M and L/K « M/K. 

4. L1 + L2 + · · · + Ln « M if and only if Li « M (1 ≤ i ≤ n). 

5. If Mt is an R-module and ϕ : M −→ Mt is a homomorphism, then ϕ(L) « Mt 

whenever L « M. 

6. If L is a direct summand of M, then K « L if and only if K « M. 

Proof     1.  (⇒) Suppose that L + N = M, then by definition of small   submodule 

N = M. 

(⇐) Assume that L + N = M but by assumption this is true just for the case N = M. 

2. Let K ≤ L and K + X = M. Then we get L + X = M. Since L « M, it 

follows that X = M and this implies K « M. 

3. (⇒) Let K + N = M for some N ≤ M. Since K ≤ L we have L + N = M. 

Thus N = M since L « M. Hence K « M. 
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Let L/K + T/K = M/K for some T ≤ M containing K. Then L + T = M. Since L « M 

we have T = M and this implies that T/K = M/K. Thus L/K « M/K. 

(⇐) Let L + N = M for some submodule N of M. Thus L/K + (N + K)/K = M/K. 

Since L/K « M/K, (N + K)/K = M/K⇒ N + K = M. Since K « M, N = M. Hence 

L « M. 

4. (⇒) Let Li +N = M for some submodule N of M. For i Ç j ( j = 1, 2, . . . , n), 

L1 + L2 + · · · + Li + · · · + Ln + N = M. By hypothesis, L1 + L2 + · · · + Ln  « M, so N = M 

then 
,

jÇi L j  + N = M, therefore Li  « M. 

(⇐) Let each Li  « M and L1+L2+· · ·+Ln+N = M. Since L1  « M, L2+· · ·+Ln+N = M. 

Then since L2 « M, L3 + · · · + Ln + N = M. Continuing in this way we get N = M, 

therefore L1 + L2 + · · · + Ln « M. 

5. Let ϕ(L) + N = Mt for some submodules N ⊆ Mt and L ⊆ M. M = 

ϕ−1(Mt) = ϕ−1(ϕ(L) + N) = ϕ−1(ϕ(L)) + ϕ−1(N) = (L + Ker ϕ) + ϕ−1(N) = L + ϕ−1(N). 

Since L « M, ϕ−1(N) = M. Mt = ϕ(L) + N ⊆ ϕ(M) + N = ϕ(ϕ−1(N)) + N ⊆ N, so 

Mt = N. Hence ϕ(L) « Mt. 

6. (⇒) Let K + T = M for some submodule T of M. Then (K + T) ∩ L = L. 

By Modular Law, K + (T ∩ L) = L. Since K « L, T ∩ L = L ⇒ L ⊆ T. Since K ⊆ L, 

K ⊆ T, i.e. M = K + T = T ⇒ M = T ⇒ K « M. 

(⇐) Let K « M. Suppose L is a direct summand of M. There exists a submodule 

N of M such that L + N = M and L ∩ N = 0. Let K + T = L for some submodule T 

of L. M = L + N = K + T + N. Since K « M, T + N = M. Then by Modular Law 

L = (T + N) ∩ L = T + N ∩ L. Since N ∩ L = 0, L = T, therefore K « L. □ 

 
1.5. Artinian Modules 

 

Definition 1.25 An R-module M is called artinian if every non-empty set of submodules 

has a minimal element. 

 

Theorem 1.6 (Kasch, 1982)Let M be an R-module and A be a submodule of M. The 

following properties are equivalent: 

1. M is artinian. 

2. A and M/A are artinian. 

3. Every descending chain A1 ⊃ A2 ⊃ A3 ⊃ · · · of submodules of M satisfy descending 
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chain condition, i.e. every descending chain of submodules of M is stationary. 

4. Every factor module of M is finitely cogenerated. 

5. In every set {Ai | i ∈ I} Ç ∅ of submodules Ai ⊂ M there is a finite subset {Ai | i ∈ I0} 

(i.e. finite I0  ⊂ I) with 
 

T 
Ai = 

T 
Ai. 

i∈I i∈I0 
 

Example 1.1 1. A module with only finitely many submodules is artinian. In particular, 

finite abelian groups are artinian over Z. 

2. Finite dimensional vector spaces V are artinian, as every submodule is a subspace with 

dimension less that or equal to dim(V). However, infinite dimensional vector spaces are 

not artinian. For, suppose V is infinite dimensional vector space over the field K with 

basis B. Let ui ∈ B for all i ∈ N be distinct elements in B. Define Un = (un, un+1, . . .) as 

a subspace of V . Then U1 Ç U2 Ç · · · is an infinite descending chain of subspaces. 

3. ZZ is not artinian. 

Z Ç (2) Ç (4) Ç (8) Ç · · · 

is a non-stationary descending chain of Z-submodules of  Z. 

 
Corollary 1.1 Every non-zero artinian module contains a (simple) minimal submodule. 

Proof Let M be a non-zero artinian R-module.  Let F  be a family of all proper 

submodules of M.  Then (0) ∈ F  ⇒ F  Ç ∅.  Then F has a minimal element,  say, 

N. Clearly N is a minimal submodule of M. □ 

 
Corollary 1.2   Sum of finitely many artinian modules is artinian. 

Proof Let M1, M2  ,  . . . ,  Mn  be artinian modules over the same ring R.       Let 
,n 

i=1 Mi.  Proof is by induction on n.  For n  =    1, there is nothing to prove. 

Suppose the result holds for m < n.  Now M = 
,n−1 Mi  + Mn.  Let N  = 

,n−1 Mi. 
 

Then by induction hypothesis N is artinian. Now 

i=1 i=1 

 

M N + Mn Mn 

N 
= 

N 
÷ 

N ∩ M 
 

is artinian. As M/N and N are artinian, by Theorem 1.6, we get M is artinian. □ 

M = 

n 
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Note that this implies that the direct sum of finitely many artinian modules 

is artinian. However, this does not hold for an infinite direct sum. 

 
1.6. Hollow,  Uniserial and Linearly compact  Modules 

 
Definition 1.26 Let M be an R-module. If every proper submodule of M is small in M, 

then M is called a hollow module. 

 

Proposition 1.1  (Clark et al., 2006) For M the following are equivalent: 

1. M is hollow. 

2. Every non-zero factor module of M is indecomposable. 
f g 

3. For any non-zero modules K and N and any morphisms K −→ M −→ N, if  f ◦ g   is 

surjective, then both  f and g are surjective. 

 
Note that factor module of hollow modules are again hollow. 

 
Definition 1.27 A module is called local if it has a largest proper submodule. Equiv- 

alently, a module is local if and only if it is cyclic, non-zero, and has a unique maximal 

proper submodule. 

 

Definition 1.28 Let M be an R-module. M is called uniserial if its submodules are 

linearly ordered by inclusion. 

 

Definition 1.29  A submodule K of a nonzero module M is said to large or essential   

(K Ð M) if K ∩ L Ç 0 for every nonzero submodule L ≤ M. If all nonzero submodules of 

M are large in M, then M is called uniform. 

 

The following proposition gives some characterizations of uniserial mod- 

ule. 

 

Proposition 1.2 (Clark et al., 2006) Let M be an R-module. The following are equiva- 

lent: 

(a) M is uniserial; 

(b) Every factor module of M is uniform; 

(c) Every factor module of M has zero or simple socle; 

(d) Every submodule of M is hollow; 
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(e) Every finitely generated submodule of M is local; 

(f) Every submodule of M has at most one maximal submodule. 
 

Definition 1.30 Let M be an R-module. M is called linearly compact if for every family 

of cosets {xi + Mi}6, xi ∈ M, and submodules Mi ⊂ M (with M/Mi finitely cogenerated) 

such that the intersection of any finitely many of these cosets is not empty,  then also    
T 

(xi + Mi) Ç ∅. 

 

The following lemma gives some properties of linearly compact modules. 

 
Lemma 1.4   (Wisbauer, 1991) Let N be a submodule of the R-module M. 

1. Assume N to be linearly compact and Mi∈6  to be an inverse family of submodules  of 

M. Then 

N + ∩6Mi  = ∩6(N + Mi) 

2. M is linearly compact if and only if N and M/N are linearly compact. 

 
 

1.7. Supplement  and  Supplemented Modules 

 

Definition 1.31 Let U be a submodule of the R-module M. A submodule V of M is 

called a supplement or addition complement of U in M if V is a minimal element in the 

set of submodules L ⊂ M with U + L = M. 

Remark 1.1   Zero submodule is a trivial supplement of every module. 

 

Lemma 1.5 V is a supplement of U in M if and only if U + V = M and U ∩ V « V. 

Proof (⇒) Let V be a supplement of U in M such that M = U + V. Suppose 

(U ∩ V) + X = V for some X ⊆ V, then M = U + V = U + (U ∩ V) + X = U + X. By 

minimality of V, X = V. Thus U ∩ V « V. 

(⇐) Let M = U + V and U ∩ V  « V.  Suppose M  = U + Y for some Y  ⊆ V. 

V = M ∩ V = (U + Y) ∩ V = (U ∩ V) + Y by Modular Law. Then Y = V since  

U ∩ V « V. Hence V is a supplement of U in M. □ 
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The following propositions gives some properties of supplement. 

 
Proposition 1.3 (Wisbauer, 1991) Let U, V submodules of R-module M. Assume V to 

be a supplement of U in M. Then: 

1. If W + V = M for some W ⊂ U, then V is a supplement of W also. 

2. If M is finitely generated, then V is also finitely generated. 

3. If U is a maximal submodule of M, then V is cyclic and U ∩ V = Rad(V) is a (the 

unique) maximal submodule of V. 

4. If K « M then, V is a supplement of U + K. 

5. If K « M, then V ∩ K « V and Rad(V) = V ∩ Rad(M). 

6. If Rad(M) « M, then U is contained in a maximal submodule of M. 

7. If L ⊆ U, V + L/L is a supplement of U/L in M/L. 

8. If Rad(M) « M or Rad(M) ⊆ U and p : M −→ M/ Rad(M) is canonical epimor- 

phism, then M/ Rad(M) = p(U) ⊕ p(V). 

Definition 1.32 If for every V ⊂ M with U + V = M there is a supplement Vt of U 

such that Vt ⊆ V, then it is said that U has ample supplements in M. 

 

Lemma 1.6   (Wisbauer, 1991) Let U be a linearly compact submodule of an   R-module 

M. Then U has ample supplements in M. 

Proof    Let U, V  ⊆ M such that U is linearly compact and M  = U + V.  Define    

Γ = {V ⊆ V | U + V = M}. Γ Ç 0 since V ∈ Γ.  Take a chain {Vλ} in Γ.  It is an  

inverse family of submodules Vλ  since {Vλ} is a chain.  
T 

Vλ  is a lower bound for 

{Vλ}. U + (
T 

Vλ) = 
T

(U + Vλ) = M by the property of linearly compact module. 

Thus 
T 

Vλ  ∈ Γ.  By Zorn’s Lemma there is a minimal element K in Γ such that  

M = U + K so K is a supplement of U and K ⊆ V. Hence U has ample supplements 

in M. □ 

 
Definition 1.33 Let M be an R-module. If every submodule of M has a supplement, M 

is called a supplemented module. 

 

Clearly semisimple modules are supplemented. Every artinian module is 

supplemented. Really, if U is a submodule of M then there is a submodule V of 

M such that U + V = M.  Suppose there is a submodule V0  of V with U + V0  = M, 
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U + V1 = M and V1 ⊂ V0 · · · continuing in this way we have a descending chain 

of submodules V ≥ V0 ≥ V1 ≥ · · · ≥ Vn · · · But since M is artinian, this sequence is 

finite. Denote the module at the end by Vn. Therefore Vn  is a supplement of U in 

M. Note that hollow module is supplemented since every proper submodule is 

small. Since local module is hollow, a local module is supplemented. 

The following proposition gives some properties of supplemented   mod- 

ules. 

 

Proposition 1.4   (Wisbauer, 1991) For an R-module M, the following properties hold: 

(i) Let U and V be submodules of M such that U is supplemented and U + V has a 

supplement in M. Then V has a supplement in M. 

(ii) If M = M1 + M2 with M1 and M2 are supplemented modules, then M is also 

supplemented. 

(iii) If M is supplemented, then 

(a) Every finitely M-generated module is supplemented. 

(b) M/ Rad(M) is semisimple . 

 

Proposition 1.5 (Top, 2007)Let R be a ring and M be an R module with N ⊆ M. If in 

the exact sequence 

0 −→ N −→ M −→ M/N −→ 0 

N, M/N are supplemented and N has a supplement in every H with N ⊆ H ⊆ M, then 

M is supplemented. 

 

Definition 1.34 A submodule N of an R-module M is called cofinite if the factor module 

M/N is finitely generated. 

Definition 1.35 An R-module M is called cofinitely supplemented if every cofinite 

submodule of M has a supplement in M. 

Clearly supplemented modules are cofinitely supplemented. Moreover, 

the class of cofinitely supplemented is closed under homomorphic image and 

any direct sum by (Alizade et al., 2001). Let M be any module, then Loc(M) will 

denote the sum of all local submodules of M and Co f (M) the sum of all cofinitely 

supplemented submodules of M. The following Theorem give a characterization 

of cofinitely supplemented module. 
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Loc(M) 

Co f (M) 

Theorem 1.7 (Alizade et al., 2001) Let R be any ring. The following statements are 

equivalent for an R-module M. 

1. M is cofinitely supplemented. 

2. Every maximal submodule of M has a supplement in M. 

3. The module    M      does not contain a maximal submodule. 

4. The module    M       does not contain a maximal submodule. 

 
1.8. Weakly  Supplemented Modules 

 

Definition 1.36 Let M be an R-module and U, V submodule of M. Then V is called a 

weak supplement of U in M, if U + V = M and U ∩ V « M. 

Definition 1.37 Let M be an R-module. M is called a weakly supplemented module if 

every submodule of M has a weak supplement in M. 

Example 1.2 Supplemented, artinian, semisimple, linearly compact, uniserial and hol- 

low modules are weakly supplemented modules. 

Lemma 1.7   (Alizade and Bü yü kaşık, 2003) If  f  :  M  → N is a homomorphism and a 

submodule L containing Ker f is a weak supplement in M, then f (L) is a weak supplement 

in f (M). 

Proof If L is a weak supplement of K in M then f (M) = f (L + K) =  f (L) + f (K) 

and since L ∩ K « M, we have f (L ∩ K) « f (M) by Lemma 1.3(5). As K ⊇ Ker f , 

f (L) ∩ f (K) = f (L ∩ K). So f (L) is a weak supplement of f (K) in f (M). □ 

Proposition 1.6   (Alizade and Bü yü kaşık, 2003) If K is a weak supplement of N in a 

module M and T « M, then K is weak supplement of N + T in M as well. 

Proof   Let f  : M → (M/N) ⊕ (M/K) be defined by f (m) = (m + N, m + K) and 

g : (M/N) ⊕ (M/K) → (M/(N + T)) ⊕ (M/K) be defined by g(m + N, mt + K) = 

(m+N +T, mt +K). Then f is an epimorphism as M = N +K and Ker f = N ∩ K « M 

as K is a weak supplement of N in M. So f  is a small epimorphism.  Now  

Ker g  = (N + T)/N ⊕ 0 and (N + T)/N  = σ(T)  « (M/N) since T  « M,   where 

σ : M → M/N is the canonical epimorphism. Therefore g is a small epimorphism. 

By Lemma 1.2(1) , f g is a small epimorphism, i.e. (N + T) ∩ K = Ker( f g) « M. 

Clearly (N + T) + K = M, so K is a weak supplement of N + T in M. □ 
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Lemma 1.8   (Alizade and Bü yü kaşık, 2003) If  f  : M → N is a small epimorphism, then 

a submodule L of M is a weak supplement in M if and only if f (L) is a weak supplement 

in N. 

Proof    If L is a weak supplement of K in M then by Proposition 1.6, L + Ker f    

is also a weak supplement of K and by Lemma 1.7, f (L) = f (L + Ker f ) is a weak 

supplement in N.  Now let  f (L) be a weak supplement of a submodule T of N, i. 

e. N = f (L) + T and f (L) ∩ T « N. Then M = L + f −1(T). It follows from the proof 

of Corollary 9.1.5 in (Kasch) that the inverse image of a small submodule of N is 

small in M. So L ∩ f −1(T) ≤ f −1( f (L) ∩ T) « N. Thus f −1(T) is a weak supplement 

of L. □ 

 
Proposition 1.7 (Clark et al., 2006) The class of weakly supplemented modules is closed 

under homomorphic images, finite direct sums and small covers. 

 

Example 1.3    Q/Z is a weakly supplemented Z-module. 

Firstly write M := Q/Z = 
L 

Mp as the direct sum of its (prime) p-components Mp := 
p 

Zp∞ . Every submodule N of M is of the form N = 
L 

Np where Np = N ∩ Mp ⊆ Mp are 

the p-components of N. Since Mp is hollow, either Np = Mp or Np « Mp. Thus N « M 

if and only if Np  Ç Mp  for all p.  If N is not small in M, set Λ = {p | Np  Ç    Mp} and 

L := 
L 

Mp. Then N + L = M and N ∩ L = 
L 

Np « M. Hence L is a weak supplement 
p∈Λ 

of N in M. 
p∈Λ 

 

Example 1.4   Q is a weakly supplemented Z-module. 

Since Q is a small cover of the weakly supplemented module Q/Z, by Proposition 1.7  Q 

is also weakly supplemented module. 

 
Definition 1.38 An R-module M is called cofinitely weak supplemented module if every 

cofinite submodule has (is) a weak supplement. 

 

Clearly cofinitely supplemented modules and weakly supplemented mod- 

ules are cofinitely weak supplemented. Obviously any finitely generated modules 

is weakly supplemented if and only if it is cofinitely weak supplemented. In addi- 

tion, by (Alizada and Bü yü kaşık, 2003) the class of cofinitely weak supplemented 

modules is closed under homomorphic image, direct sums, and small covers.The 
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following theorem give a characterization of cofinitely weak supplemented mod- 

ule. 

 

Theorem 1.8   (Alizade and Bü yü kaşık, 2003) For a module M the following statements 

are equivalent. 

1. M is a cofinitely weak supplemented module, 

2. Every maximal submodule of M has a weak supplement, 

3. M/cws(M) has no maximal submodules, where cws(M) is the sum of all weak supple- 

ments of maximal submodules of M. 

 
1.9. Totally  Weakly  Supplemented Modules 

 
Definition 1.39 An R-module M is said to be totally weakly supplemented if every 

submodule of M is weakly supplemented. 

 

Example 1.5 Artinian, linearly compact, uniserial and semisimple modules are totally 

weakly supplemented modules. 

 

Lemma 1.9 Every factor module of totally weak supplemented module is totally weak 

supplemented. 

Proof Let M be a totally weak supplemented module and N/K be a submodule 

of M/K for some submodule N which contains K. Since M is totally weak sup- 

plemented N is weakly supplemented. Hence N/K is weakly supplemented as a 

factor module of weakly supplemented module. Therefore M/K is totally weak 

supplemented module. □ 

Totally weak supplemented modules are weakly supplemented but con- 

verse does not hold in general. The Z-module Q is weakly supplemented. Sup- 

pose that Z is weakly supplemented. Take any integer n > 1. Then nZ has a 

weak supplement mZ in Z, that is nZ + mZ = Z and [n, m]Z = nZ ∩ mZ « Z. 

Take any prime integer p that does not divide [n, m]. Then [n, m]Z + pZ = Z, so 

[n, m]Z is not small in Z. Contradiction, so the submodule Z of Q is not weakly 

supplemented, therefore Q is not totally weak supplemented. 
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CHAPTER 2 

 
ARTINIAN  WEAKLY  SUPPLEMENTED MODULES 

 
In this chapter, we define artinian weakly supplemented module, and 

prove that the class of artinian weakly supplemented modules is closed under 

homomorphic image, small cover, finite direct sum and finitely M-generated. Also 

we prove by example that an infinite direct sum of artinian weakly supplemented 

modules may not be artinian weakly supplemented. In addition we give theorem 

such as example to show that artinian weakly supplemented module will not be 

weakly supplemented in general. 

 

Definition 2.1 Let M be an R-module. A module M is said to be artinian weakly 

supplemented module if for every submodule N of M where M/N is artinian N has a weak 

supplement in M. 

 

Example 2.1 Supplemented, artinian, semisimple, linearly compact, uniserial and hol- 

low modules are artinian weakly supplemented modules. 

 

Proposition 2.1 Every factor module of an artinian weakly supplemented module is 

artinian weakly supplemented. 

Proof Let M be an artinian weakly supplemented module and N be a submodule 

of M. Suppose that L/N ≤ M/N where N ≤ L ≤ M and (M/N)/(L/N) is artinian. 

Note that M/L ÷ (M/N)/(L/N), by third isomorphism theorem, so M/L is artinian. 

Since M is artinian weakly supplemented, L has a weak supplement K in M, i.e. 

M = L + K and L ∩ K « M. It follows that 

M/N = (L + K)/N = L/N + (K + N)/N 

 

Since L ∩ K « M and by Lemma 1.3(5) 

 

L/N ∩ (K + N)/N = (L ∩ (K + N))/N = (N + (K ∩ L))/N « M/N 

 

Therefore M/N is artinian weakly supplemented. □ 
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Corollary 2.1 A homomorphic image of an artinian weakly supplemented is artinian 

weakly supplemented. 

Proposition 2.2 A small cover of an artinian weakly supplemented module is artinian 

weakly supplemented module. 

Proof    Let N be an artinian weakly supplemented module and  f  : M −→ N be  

a small epimorphism. Let L be submodule of M such that M/L is artinian. By 

factor theorem we have the epimorphism g : M/L −→ N/ f (L), therefore N/ f (L) is 

artinian and since N is artinian weakly supplemented, f (L) has weak supplement 

in N. By Lemma 1.8, L also has a weak supplement in M. Thus M is artinian 

weakly supplemented. □ 

 

Corollary 2.2 Let N « M and M/N be artinian weakly supplemented. Then M is 

artinian weakly supplemented. 

 

Corollary 2.3 Suppose that M is an R-module with RadM « M and M/RadM is 

artinian weakly supplemented. Then M is artinian weakly supplemented. 

 

Lemma 2.1 Let N and L be submodules of R-module M with artinian weakly supple- 

mented L and artinian M/N. If N + L has a weak supplement in M, then N also has a 

weak supplement in M. 

Proof     Let K be a weak supplement of N + L in M, i.e. 
 

M = K + N + L and K ∩ (N + L) « M 
 

By 2ed and 3rd isomorphism theorem 
 

L 
÷ 

L ∩ (N + K) 

L + N + K 

N + K 

M 
= 

N + K 

M/N 
÷ 

(N + K)/N 

The last module is a factor of artinian module, hence L/(L ∩ (N + K) is artinian. 

Since L is artinian weakly supplemented, then L ∩ (N + K) has a weak supplement 

H in L, i.e. 

 

 

 

Now 

L = H + [L ∩ (N + K)] and 

H ∩ L ∩ (N + K) = H ∩ (N + K) « L 

 

M = K + N + L = K + N + H + L ∩ (N + K) = N + (H + K) 
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i=1 

and  
N ∩ (H + K) ≤ [H ∩ (N + K)] + [K ∩ (N + H)] 

≤ [H ∩ (N + K)] + [K ∩ (N + L)] « M 
 

Therefore H + K is a weak supplement for N in M. □ 

 
Proposition 2.3 Let M = M1+M2, where M1 and M2 are artinian weakly supplemented, 

then M is artinian weakly supplemented. 

Proof Let N be a submodule of M such that M/N  is artinian. Then  M  = 

N + M1  + M2. Note that 
M 

M2 + N 

M/N 
÷ 

(M2 + N)/N 

Thus M/(M2 +N) is artinian. Since 0 (zero) submodule is a trivial weak supplement 

of N + M1 + M2 and M1 is artinian weakly supplemented, thus N + M2 has a weak 

supplement in M by Lemma 2.1. Since M2 + N has a weak supplement and M2 is 

artinian weakly supplemented again by Lemma 2.1 N has a weak supplement in 

M. □ 

 
Corollary 2.4 Every finite direct sum of artinian weakly supplemented modules is ar- 

tinian weakly supplemented. 

 

Proposition 2.4 Let M be an R-module. If M is an artinian weakly supplemented, then 

every finitely M-generated module is artinian weakly supplemented. 

Proof Let N be a finitely M-generated module. Then there exists an epimor- 

phism f : Mn  −→ N for some positive integer n. 

n 

Mn  = 
M 

Mi , Mi = M 
i=1 

 

Since M is artinian weak supplemented, by Corollary 2.4, Mn is artinian weakly 

supplemented and by Corollary 2.1 , N is artinian weakly supplemented. □ 

 

Lemma 2.2  Let p be a prime integer, A = ⊕∞ (ai) where o(ai) = pi and B « A. Then B 

is bounded. 

Proof Suppose that B is unbounded. As a subgroup of the direct sum of cyclic 

groups B is also a direct sum of cyclic groups: B = ⊕(bi) Each (bi) can be embeded 
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i=1 

i 

i=1 

i i 

into Zp∞ by bi ›→ ci. Then there is a homomorphism f : B → Zp∞ with f (bi) = ci. 

Since B is unbounded, f is an epimorphism. Zp∞ is injective, hence f can be 

extended to g : A → Zp∞ .  Since g(B) =  f (B) = Im f  = Zp∞ , 

A = g−1(Zp∞ ) = g−1(g(B)) = B +  kerg 

 

So we have got a contradiction with B « A. □ 

The following example shows that an infinite direct sum of artinian weakly 

supplemented modules need not be artinian weakly supplemented. 

 

Example 2.2 Let p be a prime integer and A = ⊕∞ (ai) where o(ai) = pi. Each (ai) is a 

hollow, so is supplemented, therefore artinian weakly supplemented. We will prove that 

A is not artinian weakly supplemented. 

Proof Suppose  that  A  is  artinian   weakly  supplemented. Each  (ai) can 

be  embeded  into  Zp∞    by  ai       ›→  ci. Therefore  there  is  a  homomorphism 

f  : A → Zp∞ with f (ai) = ci 

Clearly f is an epimorphism. Let K = ker f . Since A/K ÷ Zp∞ is artinian, K has a 

weak supplement L in A, that is K + L = A and K ∩ L « A. 

f (L) = f (K + L) = f (A) = Zp∞ 

 

therefore L is unbounded. By Lemma 2.2 K ∩ L is bounded, that is pn(K ∩ L) = 0 for 

some n ∈ Z+. Then K ∩ L ≤ L[pn], therefore there is an epimorphism L/(K ∩ L) −→ 

L/L[pn]. But 

L/(K ∩ L) ÷ (L + K)/K = A/K ÷ Zp∞ 

so L/L[pn] is divisible. L ≤ A = ⊕∞ (ai), therefore L is also a direct sum of cyclic p-

groups; L = ⊕(ci) with o(ci) = pmi . Then 

L[pn] = ⊕(ci)[p
n] = ⊕m >n(p

mi−nci) 

 

therefore  
L/L[pn] ÷ ⊕m >n(ci)/(p

mi−nci) ÷ ⊕m >n(di) 
 

where o(di) = pmi−n. So L/L[pn] is reduced. Then L/L[pn] = 0, that is L = L[pn] is 

bounded. Contradiction. So A is not artinian weakly supplemented. □ 
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The following theorem gives an example of an artinian weakly supple- 

mented Z-module that is not weakly supplemented. 

Theorem 2.1 Q(N) is an artinian weakly supplemented Z-module, that is not weakly 

supplemented. 

Proof Let M = Q(N)  and K ≤ M such that M/K is artinian.  Then there is a finite 

set J such that M = K + Q(J). Since J is finite and Q is weakly supplemented, then 

Q(J) is weakly supplemented. Let L be a weak supplement of K ∩ Q(J) in Q(J). Then 

L + K ∩ Q(J) = Q(J) and L ∩ K ∩ Q(J) = K ∩ L « Q(J)
 

 

We get 

and 

 
M = K + Q(J) = K + L + K ∩ Q(J) = K + L 

 
K ∩ L « Q(J) ≤ M 

Hence L is a weak supplement of K in M, therefore M is artinian weakly supple- 

mented. 

Now, suppose that Q(N)  is weakly supplemented.  Let Z(N)  ≤ Q(N).  Then 

Q(N)/Z(N) ÷ (Q/Z)(N) 

 

is weakly supplemented, because factor modules of weakly supplemented are 

weakly supplemented. Q(N)/Z(N) is divisible and torsion. It has a direct summand 

isomorphic  to  (Zp∞ )(N).    We  claim  that  (Zp∞ )(N)   is  not  weakly  supplemented; 
i=1 i (N) 

Suppose the contrary.  Let X = ⊕∞  (ai), |ai| = p .  Then X ≤   (Zp∞ ) .  So it has a 

weak supplement, say A.  Then X + A = (Zp∞ )(N)  and X ∩ A « (Zp∞ )(N). Since 

X ∩ A is small and torsion, it is bounded, that is pn(X ∩ A) = 0 for some n ∈ Z+. 

Since 
X A (Zp∞ )(N)

 

X ∩ A 
⊕ 

X ∩ A 
÷  

X ∩ A 

is divisible, X/(X ∩ A) is divisible. Then p(X/(X ∩ A)) = X/(X ∩ A). Therefore 

(pX+(X∩A))/(X∩A) = X/(X∩A), so pX+(X∩A) = X. Then pn(pX+(X∩A)) = pnX, 

that is p(pnX) = pnX. It means that pnX is divisible by p. But it is a p-group, so pnX 

is a divisible subgroup of X. Since X is reduced, pnX = 0, that is X is bounded. 

Contradiction. So (Zp∞ )(N) is not weakly supplemented, therefore Q(N) also is not 

weakly supplemented. □ 



22  

Lemma 2.3  Let M be an artinian weakly supplemented module.  For every submod-  

ule N/RadM of M/RadM with (M/RadM)/(N/RadM) artinian, N/RadM is a direct 

summand. 

Proof Note that 
M 

÷ 
M/RadM 

is artinian 
N N/RadM 

Since M is artinian weakly supplemented, then N has a weak supplement K in M, 

i.e. M = N + K and N ∩ K « M. Since M = N + K + RadM we have 
 

M N K + Radm 

RadM  
= 

RadM 
+ 

RadM 
 

Since N ∩ K ≤ RadM, N ∩ (K + RadM) = (N ∩ K) + RadM ≤ RadM. Then from 
 

N K + RadM N ∩ (K + RadM) RadM 

RadM 
∩ 

RadM 
=

 RadM 
= 

RadM 
 

It follows that 
M N K + RadM 

RadM 
= 

RadM 
⊕ 

RadM 

as required. □ 

 
Theorem 2.2 Let 0 −→ L −→ M −→ N −→ 0 be a short exact sequence of R-modules 

L, M, N. If L and N are artinian weakly supplemented and L has a weak supplement in 

M, then M is artinian weakly supplemented. 

Proof Without loss of generality we will assume L ≤ M. Let S be a weak 

supplement of L in M, i.e. L + S = M and L ∩ S « M. Then we have, 

M/(L ∩ S) ÷ L/(L ∩ S) ⊕ S/(L ∩ S) 

 

L/(L∩ S) is artinian weakly supplemented as a factor module of L which is artinian 

weakly supplemented. On the other hand 

 

S/(L ∩ S) ÷ (S + L)/L = M/L ÷ N 

 

is also artinian weakly supplemented. Then M/(L ∩ S) is artinian weakly supple- 

mented module as a sum of artinian weakly supplemented modules. Therefore 

M is an artinian weakly supplemented by Proposition 2.2. □ 
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Proposition 2.5 Let M be an R-module. M is artinian weakly supplemented if and only 

if M/K is artinian weakly supplemented for a linearly compact submodule K of M. 

Proof (⇒) Clear. 

(⇐) Consider the following exact sequence: 
 

0 −→ K −→ M −→ M/K −→ 0. 

 
with K linearly compact and M/K artinian weakly supplemented. Since K is 

linearly compact it is artinian weakly supplemented. By Lemma 1.6, K has an 

ample supplement in M, therefore K has a weak supplement in M. Hence M is 

artinian weakly supplemented by Theorem 2.2. □ 

 
Proposition 2.6 Let M be an R-module. M is artinian weakly supplemented if and only 

if M/U is artinian weakly supplemented for a uniserial submodule U of M. 

Proof (⇒) Clear. 

(⇐) Consider the following short exact sequence: 

 

0 −→ U −→ M −→ M/U −→ 0. 

 
Since U is uniserial, it is hollow by Proposition 1.2 so U artinian weakly supple- 

mented. 

Case 1: If U « M, then M is artinian weakly supplemented by Proposition 2.2. 

Case 2: If U ¢ M, then there is a proper submodule N of M such that U + N = M. 

Since U ∩ N ≤ U and U is hollow, every proper submodule is small in U, i.e. 

U ∩ N « U so U ∩ N « M. Thus U has a weak supplement in M. Hence M is 

artinian weakly supplemented by Theorem 2.2. □ 
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CHAPTER 3 

 
TOTALLY ARTINIAN WEAKLY SUPPLEMENTED 

MODULES 

 
In this final chapter, we introduce the definition of totally artinian weakly 

supplemented modules and prove that every homomorphic image of totally ar- 

tinian weakly supplemented module is totally artinian weakly supplemented. 

We give an example showing that artinian weakly supplemented modules need 

not be totally artinian weakly supplemented. We also prove that an R-module  

M is totally artinian weakly supplemented if and only if M/K is totally artinian 

weakly supplemented for a linear compact submodule K as well as for uniserial 

submodule. 

Definition 3.1 An R-module M is said to be totally artinian weakly supplemented, if 

every submodule of M is artinian weakly supplemented. 

Example 3.1 Artinian, semisimple, linearly compact and uniserial modules are totally 

artinian weakly supplemented modules. 

Lemma 3.1 Every factor module of a totally artinian weakly supplemented module is 

totally artinian weakly supplemented. 

Proof Let M be a totally artinian weakly supplemented module and N/K be a 

submodule of M/K for some submodule N which contains K. Since M is totally 

artinian weakly supplemented, N is artinian weakly supplemented. Hence N/K 

is artinian weakly supplemented as a factor module of artinian weakly supple- 

mented module. Therefore M/K is totally artinian weakly supplemented module. 

□ 

 
Corollary 3.1 Every homomorphic image of a totally artinian weakly supplemented 

module is totally artinian weakly supplemented module. 

Totally artinian weakly supplemented modules are artinian weakly sup- 

plemented but converse does not hold in general.       The Z-module Q is weakly 
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supplemented, so it is artinian weakly supplemented. But Z-module Q is not 

totally artinian weakly supplemented. For this take the submodule Z of Q. We 

must show that Z is not artinian weakly supplemented. Take any integer n > 1. 

Z/nZ is artinian. Suppose that nZ has a weak supplement mZ in Z, that is 

nZ + mZ = Z and [n, m]Z = nZ ∩ mZ « Z. Take any prime integer p that does 

not divide [n, m]. Then [n, m]Z + pZ = Z, so [n, m]Z is not small in Z. Contra- 

diction, so the submodule Z of Q is not artinian weakly supplemented, therefore 

Z-module Q is not totally artinian weakly supplemented. 
 

Proposition 3.1  Let K be a linearly compact submodule of an R-module M.  Then M  

is totally artinian weakly supplemented if and only if M/K is totally atinian weakly 

supplemented. 

Proof     (⇒) Clear. 

(⇐) Let M/K be totally artinian weakly supplemented,where K is linearly compact 

submodule of M. Consider the following exact sequence: 

0 −→ K −→ M −→ M/K −→ 0. 

Take a submodule N of M. 

Case 1: If N ≤ K, then N is artinian weakly supplemented since it is a linearly 

compact submodule. 

Case 2: If N ¢ K, then 

(N + K)/K ÷ N/(N ∩ K). 

Hence we have the following exact sequence: 
 

0 −→ N ∩ K −→ N −→ N/(N ∩ K) −→ 0. 

Since N ∩ K is a submodule of a linearly compact module, N ∩ K is linearly 

compact so it is artinian weakly supplemented. Since M/K is totally artinian 

weakly supplemented and N/(N ∩ K) ÷ (N + K)/K , then N/(N ∩ K) is artinian 

weakly supplemented as isomorphic to a submodule of M/K. Hence N is artinian 

weakly supplemented by Proposition 2.5. □ 

 

Proposition 3.2 Let M be an R-module. M is totally artinian weakly supplemented if 

and only if M/U is totally artinian weakly supplemented for a uniserial submodule U of 

M. 
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Proof     (⇒) Clear. 

(⇐) Consider the following exact sequence: 

0 −→ U −→ M −→ M/U −→ 0. 

Take a submodule N of M. If N ≤ U, then N is artinin weakly supplemented 

because submodules of uniserial modules are uniserial and uniserial modules are 

artinian weakly supplemented. If N ¢ U, then 

(N + U)/U ÷ N/(N ∩ U) 

Hence we have the following exact sequence: 
 

0 −→ N ∩ U −→ N −→ N/(N ∩ U) −→ 0. 

Since N ∩ U is uniserial, it is artinian weakly supplemented and N/(N ∩ U) is 

isomorphic to a submodule of M/U so N/(N∩U) is artinian weakly supplemented. 

Therefore N is artinian weakly supplemented by Proposition 2.6. □ 

In chapter 2, we proved that if M and N are artinian weakly supplemented 

modules, then the module M + N is also artinian weakly supplemented. Clearly 

this implies that any finite direct sum of artinian weakly supplemented is also 

artinian weakly supplemented module. This raises an obvious question: suppose 

that M and N are totally artinian weakly supplemented modules, is then M ⊕ N 

totally artinian weakly supplemented? We begin to deal with this question by 

considering the case when one of M, N is semisimple. 

 

Proposition 3.3 Let M = M1 ⊕ M2 be the direct sum of submodules M1,M2 such that 

M2 is semisimple. Then M is totally artinian weakly supplemented if and only if M1 is 

totally artinian weakly supplemented. 

Proof  The necessity follows from by Corollary 3.1.  Conversely, suppose that  

M1 is totally artinian weakly supplemented. Let N be a submodule of M. Since 

M2 is semisimple, then M2 = (N ∩ M2) ⊕ L for some submodule L of M2. It follows 

that 

 
 

and hance 

M = M1 + M2 = M1 ⊕ [(N ∩ M2) ⊕ L] 

 

N = N ∩ M = N ∩ [M1 ⊕ (N ∩ M2) ⊕ L] 
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by modular law  
N = (N ∩ M2) ⊕ [N ∩ (M1 ⊕ L)] 

 

Now consider the submodule H = N ∩ (M1 ⊕ L) of M1 ⊕ L. Note that H ∩ L = 

N∩(M1⊕L)∩L = N∩L = 0. So H embeds in M1. By hypothesis, H is artinian weakly 

supplemented. Since M2 is semisimple, N ∩ M2 is artinian weakly supplemented. 

Therefore N is artinian weakly supplemented by Proposition 2.3. Thus M is totally 

artinian weakly supplemented. □ 

 
Corollary 3.2 Let M = M1 ⊕ M2 ⊕ M3 be a direct sum of submodules M1,M2 and M3 

such that M2 linearly compact and M3 is semisimple, then M is totally artinian weakly 

supplemented if and only if M1 is totally artinian weakly supplemented. 

Proof    (⇒) Clear by Lemma 3.1. 

(⇐) Suppose that M1  is totally artinian weakly supplemented. Note that 

 

M/M2  = (M1 ⊕ M2 ⊕ M3)/M2  = M1 ⊕ M3 

 

Since M1 is totally artinian weakly supplemented and M3 is semisimple,  then  

M1 ⊕ M3 is totally artinian weakly supplemented by Proposition 2.3. Hence M/M2 

is totally artinian weakly supplemented. Since M2 linearly compact, then M is 

totally artinian weakly supplemented by Proposition 3.1 □ 

 

Definition 3.2   Let M be an R-module.  The annihilator of M is ann(M)  = {r  ∈ R    | 

rm = 0 f or all m ∈ M}. 

 

Lemma 3.2 (Smith, 2000) Let a module M = M1 ⊕ · · · ⊕ Mn be a finite direct sum of 

submodules Mi (1 ≤ i ≤ n), for some n ≥ 2, such that R = ann(Mi) + ann(Mj) for all   

1 ≤ i < j ≤ n. Then 

N = (N ∩ M1) ⊕ · · · ⊕ (N ∩ Mn) 

for every submodule N of M. 

Lemma 3.3 Let R be a noetherian ring and M = M1 ⊕ M2 ⊕ ..... ⊕ Mn be a direct sum 

of totally artinian weakly supplemented submodules Mi(1 ≤ i  ≤ n) for some n  ≥ 2.  

Let R = ann(Mi) + ann(Mj) for all 1 ≤ i < j ≤ n, then M is totally artinian weakly 

supplemented. 
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Proof Let U and V be two submodules of M such that U/V is artinian.   By 

Lemma 3.2 

U = (U ∩ M1) ⊕ (U ∩ M2) ⊕ ....... ⊕ (U ∩ Mn) 
 

and  
V = (V ∩ M1) ⊕ (V ∩ M2) ⊕ ....... ⊕ (V ∩ Mn) 

 

Since U/V ÷ ⊕(U ∩ Mi)/(V ∩ Mi), then for every 1 ≤ i ≤ n,(U ∩ Mi)/(V ∩ Mi) 

is artinian. By assumption, U ∩ Mi is artinian weakly supplemented, then there 

exists a weak supplement Ki of V ∩ Mi in U ∩ Mi. Let K = K1 ⊕ K2 ⊕ ..... ⊕ Kn. Then 

for every 1 ≤ i ≤ n, U ∩ Mi = (V ∩ Mi) + Ki. Now 

U = [(V ∩ M1) + K1] ⊕ [(V ∩ M2) + K2]..... ⊕ [(V ∩ Mn) + Kn] 

 

= [(V ∩ M1) + .... + (V ∩ Mn)] + [K1 + .... + Kn] = V + K 
 

Also,  
V ∩ K = (V ∩ K1) ⊕ .... ⊕ (V ∩ Kn) 

 

Hence by Lemma 1.3 (4), K is a weak supplement of V in U. Therefore U is artinian 

weakly supplemented. □ 
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CONCLUSION 

 
 

In this thesis we define artinian weakly supplemented and totally artinian 

weakly supplemented modules, and we reached some properties of these mod- 

ules. As a result of this study, we have artinian weakly supplemented is closed 

under homomorphic image, small cover and finite sum. Also we obtained that 

artinian weakly supplemented (totally artinian weakly supplemented) can be 

characterized in terms of factor module of them by linear compact submodule. 
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Verlag, Basel). 

Fuchs, L., 1970. Infinite abelian groups. Vol. I., (Pure and Applied Mathematics, Vol. 

36, Academic Press, New York-London). 

Kasch, F., 1982. Modules and Rings, (Academic Press Inc., London). 

Lomp, C., 1999. “On Semilocal Modules and Rings”, Comm. Algebra. Vol. 27, No. 

4, pp. 1921-1935. 

Rudlof, P., 1991. “On The Structure of Couniform and Complemented modules”, 

Journal of Pure and Appl. Algebra. Vol. 74, No. (1-2), pp. 281-305. 

Sharp, R. Y., 2000. Steps in Commutative Algebra, (Chambridge University Press, 
Chambridge). 

Smith, P. F., 2000. “Finitely Generated Supplemented Modules are Amply Sup- 
plemented”, Arab. J. Sci. Eng. Sect. C Theme Issues. Vol. 25, No. 2, pp. 69-
79. 

Top, S., 2007. Totally Weak Supplemented Modules , (M.Sc.thesis, Izmir Institute of 
Technology, The Graduate School of Engineering and Sciences). 

Wisbauer, R., 1991. Foundations of Module and Ring Theory, (Gordon and Breach). 


