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Bu tez esas olarak önsıralamalar, graflar ve dıgraflar gibi bazı başka kavramlarla 
bağlantılı olan Alexandroff Uzaylarını ele alıyor. 

 

Birinci bölüm, bir sonraki bölümde kullanılan, topoloji, sıralama ve minimal açık 
kümeler hakkında bazı temel bilgileri veriyor. 

 

İkinci bölümde, Alexandroff Uzayları minimal açık kümeler kullanılarak 

tanımlanıyor ve önsıralama, kısmı sıralama tanımları ve de esas konuyla 

(Alexandroff Uzayları) ve T0- Alexandroff Uzayları ile bağlantıları veriliyor. Sonra 

iki Alexandroff uzaynın çarpımı, Hausdorff Alexandroff Uzayları gibi bazı yeni 

uzaylar oluşturuluyor ve bölüm dönüşümü, bölüm uzayı ve indirgenemezliğin 

tanımları veriliyor. 

 

Son bölüm graflarla ilgili kavramları tartışıyor ve onları topoloji ve Alexandroff 

Uzayları ile ilişkilendiriyor; digraf ve geçişken digraf tanımları tanıtılıyor ve 

Alexandroff Uzayları ile aralarındaki bağıntı değerlendiriliyor. 
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Abstract 
 

ORDERS, Alexandroff Spaces and Digraphs 
 

Prepared by: Omeed Asaad AZEEZ 
 

MSc in Mathematics 
 

Supervisor: Prof. Dr. Mehmet Terziler 
 

2015 (40 pages) 
 
 
 
 

This thesis mainly deals with Alexandroff spaces which are related to some 
concepts like preorders, graphs and digraphs. 

 

The first chapter gives some basic notions about topology, order and minimal 
open sets, which are used in the next chapter. 

 

In the second chapter, Alexandroff spaces are defined by using minimal open 

sets, and definitions of preorder, partial order as well as their connection with 

the main subject(Alexandroff spaces) and T0-Alexandroff spaces are given. 

 

Then some new spaces such as the product of two Alexandroff spaces and 

Hausdorff Alexandroff spaces are constructed, and the definitions of a quotient 

map and quotient space and irreduicibility are given. 

 

The last chapter discusses notions about graphs and relates them to topology 

and Alexandroff spaces; the definitions of digraph and transitive digraph are 

introduced, and relation between these and Alexandroff spaces is considered. 
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Introduction 
 
 
 
 

Alexandroff Spaces were first introduced in 1937 by P.S. Alexandroff under 

the name “discrete spaces”. The name is now forgotten because the name 

discrete spaces are used for topological spaces in which every subset is open. 
 

Alexandroff showed in [2] that preorders or quasiorders on a set are 

equivalent to the topologies on in which arbitrary intersections of open sets 

are open. In other words, Alexandroff topologies on a set  are in one-to-one 

correspondence with preorders on  .       

Alexandroff topologies have several characterizations. Let ( ) be a 

topological space. Then the following are equivalent:       

(1) Open and closed characterizations:       

 Open set. An arbitrary intersection of open sets in is open.  

 Closed set. An arbitrary union of closed sets in is closed.  

(2) Neighborhood characterization:       

Every point of has a smallest neighborhood.       

(3) Preorder characterizations:        

 Specialization preorder. Given the preorder on  , is the finest 

 topology satisfying if and only if  (* +).    

 Open up-set. There is a preorder   on such that the open sets 

 of  are precisely those that are upward closed.     

 Closed down-set. There is a preorder on such that the closed 

 sets of are precisely those that are downward closed.   

 

In 1980s, Alexandroff spaces were rediscovered when the concept of “finite 

generation” was applied to general topology and the name “finitely generated 

spaces” was adopted for them; actually, these spaces have all the properties of 

finite spaces. A systematic investigation of Alexandroff spaces from the point of 

general topology which had been neglected since the original paper [2] of 

Alexandroff was taken up by Arenas [3]. 
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Inspired by the use of Alexandroff topologies in computer science, digital 

topology, graph theory, applied mathematicians and physicists in the late 1990s 

began investigating the Alexandroff topology corresponding to “causal sets” 
 

(locally finite sets with a partial order) which arise from a preorder defined on 
 

“spacetime” (fundamentally discrete) modeling causality. 
 

In this thesis, we review almost all works done on Alexandroff spaces. In 
chapter 2, we relate preorders on a set to Alexandroff spaces, and partial orders 

to T0 – Alexandroff spaces. Then we construct new Alexandroff spaces from 

given ones, making use of the works from [18], [7], [22] and [3]. 

 

In chapter 3, we study Alexandroff spaces in connection with digraphs. 
Essentially, we state and prove in Theorem 3.3.1 that there is a one-to-one 
 

correspondence between the set of all Alexandroff topologies and the set of 
 

all transitive digraphs on a set (not necessarily finite). 

 

Finally, defining the “converse” of digraph we state and prove Theorem 3.3.5 
concerning the “closed topology” induced by an Alexandroff topology. 
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Chapter 1 
 

Basic Definitions, Concepts and Results 
 
 
 
 

In this chapter, we introduce basic definitions and concepts to make easier the 
reading of the thesis. 
 
 

 

1.1 Topological Spaces 
 
 

There are several equivalent definitions of a topology. Among them we can 

mention neighborhoods definition whose axiomatization is due to 

F.Hausdorff, Kuratowski closure definition, open sets definition, and using de 
 

Morgan’s laws closed sets definition. The most commonly used is that in 

term of open sets though the most intuitive is that in the terms of 

neighborhoods. These concepts can be found in any text book on topology, 

for example, see [11] and [19]. 
 

Definition 1.1.1 A topological space is a set together with a collection of 
 

subsets of , called open sets, satisfying the following axioms: 
 

T1. The empty set and itself are open. 
 

T2. Any union of open sets is open. 
 

T3. The intersection of any finite number of open sets is open. 
 

The collection is also called a topology on . 
 

Examples 1.1.2 
 

(a) The trivial (indiscrete) topology consists of . 

 

(b) Given a set is called the discrete topology on . 
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(c) The Sierpinski space (or the connected two-point set) is a finite 

topological space with two points, only one of which is closed. It is the 

smallest example of a topological space which is neither trivial nor 
 

discrete. More precisely, a Sierpinski space is a topological space S 
whose underlying set is and open sets are 

 

 

(d) Given an infinite set , a cofinite topology on is a topology in which the 

open sets are the empty set and the sets whose complements are finite. 
 
 
 
 

 

Note that the trivial topology is the coarsest topology and the discrete topology 
is the finest topology on a set. 
 
 

 

Definition 1.1.3 Let be a topological space. 
 

(i) It is a T0 – space or Kolmogorov space if for every pair of distinct points 
 

of , at least one of them has an open neighborhood not containing the 
other. 

 

The intuitive meaning of this condition is that the points of are topologically 
 

distinguishable, that is, for any in , there is an open set which contains 
 

one of these points and not the other. 
 

(ii) It is T1 –space or a Fréchet space, if for every pair of distinct points of 

each has a neighborhood not containing the other. 
 

(iii) It is a T2 –space or a Hausdorff space, or a separated space, if for every 
 

pair of distinct points and , there exist a neighborhood of and a 
neighborhood of y such that and are disjoint. 
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Proposition 1.1.4 Let be a topological space. Then the following conditions are 
equivalent: 
 

(a) is a T1 –space. 

(b) is a T0 –space. 
 

(c) The singleton is closed set. 

(d) Every subset of is the intersection of all open sets containing it. 
 

(e) Every finite set is closed.  
(f) Every finite set is open. 

 

 

Proposition 1.1.5 
 

Let be a topological space. Then the following conditions are equivalent: 
 

(a) is a T2 –space. 
 

(b) Any singleton is equal to the intersection of all closed neighborhoods 
 

of  . (A closed neighborhood of is a closed set that contains an open set 

containing  .)  

(c) The diagonal is closed as a subset of the product space 
 
 
 
 

 

Examples and Counterexamples 1.1.6 
 

1. Nearly all topological spaces considered in mathematics are T0; in particular, 

T1 and T2 are T0 – space. 

2. The trivial topology is not a T0 –space; no points are distinguishable.  
3. Sierpinski space is a simple example of a topology that is T0 but not T1. 

 
4. The cofinite topology on an infinite set is a simple example of a topology 

that is T1 but not T2. (That’s the case, because no two open sets of the 
cofinite topology are distinct!).  

5. All metric spaces are T2 –space. 
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Definition 1.1.7 Let be a topological space. A collection of subsets of 
 

is said to form a basis for the space if the following two conditions are met: 
 

B1. The union of all elements of   is the whole space  . 

B2. Any finite intersection of elements from   is itself a union of the members 
 

of . 
 
 

 

Examples 1.1.8 
 

1. For any topological space, the collection of all open sets is a basis. (That’s 

because any open subset of a topological space can be expressed as a union 

of size one). 
 
2. For a discrete space, the collection of singletons forms a basis (since every 

open subset of a discrete topological space is a union of singletons).  
3. A basis for the usual topology on Euclidean space is the open balls.  
4. The familyis a basis for the indiscrete topology on 

 
 

 

Definition 1.1.9 Let be a topological space. A subcollection   of  is said 

to be a subbase or subbasis of if satisfies one of the two following 

equivalent conditions:    

S1.   generates  , that is, is the smallest topology containing 
 

S2. The collection of open sets consisting of all finite intersections of elements 

of together with and the empty set, forms a basis for . (This means that every 

non-empty proper open set in can be written as a union of finite intersections 

of elements of .) 
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Examples 1.1.10   

1.  The usual topolog  on the real nu  bers   has a subbase consisting of all 

semi-infinite open intervals either of the form , where 

and   are real numbers. Together, these generate the usual topology, 

since, for , the intersections generate 
 

the usual topology. 
 

2. A second subbase is formed by taking the subfamily where and are 
rational. 

 

1.2 Orders and topology 
 

In the 1937, P.Alexandroff showed in [2] that quasiorders or preorders 

on a set X are equivalent to the topologies on X which are closed under 

arbitrary intersections. Then, being an Alexandroff space restricts the type of 

topological spaces we are studying in general. So in order for an Alexandroff 

space to be useful, we must find mathematical interesting examples of its 

applications. Clearly, any discrete space is an Alexandroff space. Also a discrete 

space is Hausdorff Alexandroff space and vice versa. Furthermore, if is 

Hausdorff, then the associated quasiorder is equality. What is new is that non-

Hausdorff topological spaces are finding numerous applications today in the 

areas of computer science, (see [16], [1]). 
 

Definition 1.2.1 Let be any non-empty set and let  be a binary relation on  . 

Then     

(i) is a quasiorder (or a preorder) on if it is reflexive and transitive. 

(ii) is a partial order on  if it is antisymmetric and quasiorder on 

(iii) is a total (or linear) order on if is a partial order and for any two 

 elements in   either or that is, any two elements are 
 

comparable with respect to . 
 

(iv) is the discrete order on if 
 

(v) is an equivalence relation on , if it is symmetric and quasiorder. 
 
 
 
 
 
 
 
 
 
 

5 



 
 

 

From now on we shall denote  by  , and call to be a partially ordered or 

quasiordered set, or even a poset or a qoset for simplicity. 

Definition 1.2.2 Let be a poset or qoset and let be a subset of  . Then 
 

(i) is a down-set (or a decreasing set, or order ideal) if, whenever 
 

and , we have . 
 

(ii) is an up-set (or an increasing set, order filter) if, whenever 
 

and , we have . 

 

Note that some authors use the terms decreasing hole for down-set and 
increasing hole for up-set. 

 

Thus we may define the following: 
 

and , 
 

and 
 

Down-sets (up-sets) of the form are called principal and denoted also 
 

by 
 

Proposition 1.2.3 Let be a poset or a qoset. Then 
 

1. is the smallest down-set containing . 
2. is down-set if and only if ⊠ 

 

Lemma 1.2.4 
 

Let be a poset and 

are equivalent: 

1. . 

2. . 

3. . 

 

be a down-set of . Then the following assertions 
 
 

 
⊠ 

 

More on order ideals can be found, for example, in [9]. 
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Here we recall the following well-known definition and fact. 

 

Definition 1.2.5 Given a non-empty set X, let be a subcollection of the subsets of 
. If 
 

(i) for any , 
 

(ii) , 
 

(iii) ,   

then is called a partition of  ; the members of are called equivalence 

classes or blocks.    

If is a partition of and   is a partial order on , then is called a 

partially ordered partition, or a popartition of  .   
 
 

 

Example 1.2.6 Let be the partition of real line . Order 
 

by 
 

if and only if 
 

where is the usual order on 
 

since is a total order on , 

 

. Then is a popartition of . In fact, is a totally 
ordered partition of . 

 
 

 

Theorem 1.2.7 

 

There is a natural correspondence between an equivalence relation on a set and 
a partition of 

 

As it is pointed out in [21], there is a correspondence between a quasiorder on a 
set and a popartition of . 

 

Proposition 1.2.8 There is a correspondence between a quasiorder on a set and 
a popartition of . 
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Proof First, suppose that   is a quasiorder on . Define a relation on X by 

  if and only if and  .   

Clearly,  is an equivalence relation on . Thus there is a corresponding 

partition of  , by Theorem 1.2.7. Let be that partition. The elements of   are 

equivalence classes of the form     , put 

  if and only if there exist  with . 

Now is a partial order on the equivalence classes of   . Hence any quasiorder 

on  generates a popartition of  .      

Conversely, if is a popartion of , then define the relation on  by 

  if and only if  .    

Clearly, is a quasiorder. Thus, from any popartition of we can obtain a 

quasiorder on and vice – versa. This completes the proof. ⊠  

 

In 1937, Alexandroff [2] noted another occurrence of quasiorder in terms of 

topological concepts. Quasiorders on a finite set are identical to the topologies 

on that set! 

 

A topology on a set is called principal topology if arbitrary intersections of open 

sets are open sets. Quasioreders on an arbitrary set are identical to the principal 

topologies on that set! (See [5].) 
 

Let be a topological space. The specialization order on is 

defined by      

 if and only if ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅   
    

where 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
 denotes the closure of in  . This definition means that every open 

neighborhood of 
contains  .   ⊠ 
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Proposition 1.2.9 The specialization order is quasiorder on  .   

Proof  Since for each we have  ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅, it follows that , i.e. is 
reflexive.         

Now let and for  . Then ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ and ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ imply 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ , hence ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅, so . Thus is transitive.  ⊠   

Now if is a quasiorder on  , then the set of all down-sets of is a principal 

topology on   , called specialization topology associated with . Since the 

complement of down-sets in a qoset  are up-sets, the closure of a set 

relative to the specialization topology is the smallest up-set of that 

contains . More on principal topologies can be found, for example, in [10]. 
 

Principal topologies are called Alexandroff discrete topologies or A – topologies 

in [11]. A – topologies are precisely the topology in which every point has a 

minimal neighborhood, as we show in chapter 2. 
 

We shall mainly be concerned with T0 – Alexandroff spaces. Thus, the 

specialization topology associated with quasiorder is T0 if and only if is anti- 

symmetric, i.e. if and only if is a partial order; indeed, whenever is such a 

topology, then   is T0 if and only if for every pair , either or 

, that is, either or .   
 

The following is obvious. 
 
 

 

Proposition 1.2.10 Let be a topological space. Then 
 

(a) If it is an Alexandroff space, then the only T1 – topology on is the 
 

discrete topology. 

(b) If it is a finite T0 – space, then there is such that is closed. ⊠ 
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As it is pointed out in [8], at least for finite case we can relate quasiorders and 
partial orders on a set to the topologies on . 
 

Given a set we shall denote by 
 

: the set of quasiorders on , 
 

the set of partial orders on , 
 

T the set of topologies on , 
 

T0 the set of T0 - topologies on 
 
 

 

Theorem 1.2.11 Let  be a finite set with  elements. Then   

(a) There is a one - to - one correspondence between and T . 

(b) There is a one - to - one correspondence between and T0 . 
 
 

 

Proof    

(a) Suppose that is a quasiorder on . Define a topology on which has a 

basis of open sets of the form for . This is 

indeed a basis, since . Thus, there 
 

corresponds a topology to such given quasiorder . 
 

Conversely, assume that is a given topology on . Then define a 
 

relation  on  by:   

if and only If , where . 

Clearly, the relation is quasiorder on . Thus, from a topology on we 
 

obtain a quasiorder on . 
 

(b) Using the correspondence in (a), it suffices to show that a partial order on 

corresponds to a T0 –space and vice - versa. 
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Let   be a partial order on and with . Then either 

and  are incomparable or , or .   

Case 1:  and incomparable. Then and .  

Case 2: . Then and .   

Case 3: . Then and .   
 

Thus in all cases we have T0 –space. 
 

 Conversely, suppose that a T0 – topology is given on , and let  

with and . Then   belongs to every open set containing and 

belongs  to  every  open  set  containing .  Therefore ,  hence is 

antisymmetric, that is, is a partial order. ⊠   
 

Remark 1.2.12 

 

1. The proof of Theorem 1.2.11 is not valid for finite sets, because two 

correspondences in (a) might no longer be inverses of each other: 

arbitrary intersections of open sets are not open, in general. 
 

2. For an infinite set , the above correspondence holds only for Alexandroff 
spaces on . 

 

3. In connection to this theorem, Proposition 1.2.10 says that the only poset 

(finite or infinite) corresponding to T1 – space is the antichain and that 
every finite poset has a maximal element! 

 

Example 1.2.13 (Illustrating Theorem 1.2.11(b)) 
 

Let and , , . This poset has the 

following diagram:      

b  c    

a  d    
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From this poset, we have the corresponding T0 – Alexandroff space 

{   }     

with the minimal basis  {  }.   

Now, let’s revers the process: Consider T0 – Alexandroff space , where 

{      }.  

Then we will find the specialization order on  :     

   if and only if ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅.  

It is easily found that ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ 
 , ̅̅̅̅̅̅̅̅̅̅̅̅

̅̅̅̅ , ̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅   and ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ . 

Thus we have        

, , , .     

The corresponding poset on has the diagram b  c 

        

    a  d 
 
 
 
 
 

 

Definition 1.2.14 A topological space  is called a locally Sierpinski space, if every 

point has a neighborhood homeomorphic to a Sierpinski space.  

This means that for , there exists  , , called 

Sierpinski set, such that the relative topology on  is a copy of Sierpinski 

topology.      

 

Note that Sierpinski sets are open and together with isolated points, 
they form a basis for open subsets of . 
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The following can be found in [6]. 
 

Example 1.2.15 A locally Sierpinski space is T0 – Alexandroff space. 

 

Example 1.2.16 If is a locally Sierpinski space and is a discrete space, then is a 
locally Sierpinski space. 

 
 

 

1.3 Minimal open sets 

 

When we shall study Alexandroff spaces in Chapter 2, we shall need minimal 
open sets. This section is dealing with those sets. For details, see [20]. 
 

Let be a topological space. 
 

Definition 1.3.1 
 

A nonempty subset of is said to be a minimal open set if any open set 
 

contained in is the empty set or itself. 
 

Proposition 1.3.2 
 

(a) Let be a minimal open set and be an open set. Then or 
 

. 
 

(b) Two minimal open sets are either disjoint or coincide. 
 

Proof 
 

(a) Assume, to the contrary, that 
 

Since is minimal and by Definition 1.3.1, we must have 
 

, hence . 
 

(b) Given two minimal open sets and , if , then by (a) we 
have and , so . ⊠ 
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Proposition 1.3.3 Let be a minimal open set and . Then for any 
 

neighborhood of . 

 

Proof Assume, to the contrary, containing . 
Thus, and a minimal open set. ⊠ 

 

. By hypothesis is an open set This 
contradicts the fact that is 

 

Proposition 1.3.4 Let be a minimal open set.     

Then     for .   

Proof First, we have     , by  

Proposition 1.3.3. But, as is an open neighborhood of , we have   

    . Hence we get    

    . ⊠    

Proposition 1.3.5 Let be a minimal open set and let . Then  

or  for any neighborhood   of  .     

Proof This follows from Proposition 1.3.2.   ⊠     

Corollary 1.3.6 Let be a minimal open set and .   

Let     . Then  or . 

Proof Put    . If , for any open 

neighborhood   of , then    . 

Therefore , otherwise there exists an open neighborhood   of such 

that  then we have ⊠    

Proposition 1.3.7 Let  be any nonempty finite set. Then there exists at least 

one finite minimal open set  such that .    

Proof If is a minimal set, we may have . So assume that is not a 

minimal open set. Then there exists a finite open set   such that  . 
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If is a minimal open set, we may set . If is not a minimal open set, 

there exists a finite open set such that  . Containing this 

process, we obtain a sequence of open sets   
 
 

 

But was finite, so this process repeats only finitely. Hence, eventually, we get a 
 

minimal open set for some positive integer , and proof is complete. 
⊠ 

 

Definition 1.3.8 

 

A topological space is said to be a locally finite space, if each of its elements is 
contained in a finite open set. 
 

Proposition 1.3.9 Let be a locally finite space and a nonempty open set. 

Then there exists at least a finite minimal open set such that .  

Proof Since is nonempty, it contains an element  . is locally finite by 

hypothesis, hence there is a finite open set such that . Because 

 and is finite, it follows that we have a minimal open set such 

that   by Proposition 1.3.7.  ⊠    

Corollary 1.3.10 Let be a collection of nonempty sets and be a 

nonempty finite open set. Then is a finite open set.  ⊠ 

Corollary 1.3.11 Any locally finite space is an Alexandroff space. ⊠  
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Chapter 2 
 

ALEXANDROFF SPACES 
 
 
 
 

As we mentioned in Chapter 1, Alexandroff spaces were introduced by 

P.S.Alexandroff (see [2]) under the name discrete spaces as topological spaces in 

which arbitrary intersections of open sets are open. Discrete spaces today are 

those special Alexandroff spaces in which every point is isolated; hence every set 

is open and closed. Accordingly, finite spaces and locally finite spaces (those in 

which each point has a finite open neighborhood) are clearly Alexandroff spaces. 

 

In this chapter, we discuss the basic properties of Alexandroff spaces. Then 
we relate preorders (quasiorder) on a set to Alexandroff spaces, and partial 

orders to T0 – Alexandroff spaces. Finally, we show how to construct new 

Alexandroff spaces from given ones. To do this, we mainly make use of [14] as 
well as [18], [7], [22], and [3]. 
 

2.1 Topological properties of Alexandroff spaces 

 

In this section, we study spaces that have topologies with a stronger 

condition, namely, arbitrary intersections of open sets are open. This condition is 

a big restriction, since important spaces such as Euclidean spaces do not satisfy 

this property. Thus, for an Alexandroff space to be a mathematically interesting, 

it is crucial that it possesses properties that are not necessarily shared by a 

standard topological space. 

 

Definition 2.1.1 Let be a topological space. Then is called an Alexandroff space, 
or sometimes A - space, if arbitrary intersections of open sets are open. 
 

An immediate consequence of this definition is the following. 
 

Proposition 2.1.2 Any discrete topological space is an Alexandroff space. 
 

Proof This is obvious, since in a discrete space any subset is open. 
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The following result is also clear. 
 

Proposition 2.1.3 A metric space   is an Alexandroff space if and only if   has 

the discrete topology.   

Proof Suppose that is an Alexandroff space and let . Then the open balls 

( 
 

) are open in , where  is a natural number. Since is Alexandroff, any  

intersection of  ( 
  

) is open, so ( 
 

) is open. But by the property 
   

of the metric, ( 
 

) . Thus, we have shown that one – point sets,  

singletons, are open. Hence  has the discrete topology. 

Conversely, if has the discrete topology, then it is Alexandroff by 

Proposition 2.1.2. ⊠      

 

Definition 2.1.1 is not too useful for proving theorems about Alexandroff 
spaces. We will use a different, yet equivalent definition in terms of minimal 
 

open neighborhoods. Recall that in a topological space , a neighborhood of a 

point is a set containing an open subset which contains  .  

Theorem 2.1.4 is an Alexandroff space if and only if each point in has a 

minimal open neighborhood.      

Proof Suppose that is an Alexandroff space and let be any element in  . 

Let      . Take  for 

 . Then is an open neighborhood of  , because is Alexandroff. 

On the other hand, by its definition is a minimal open neighborhood of  . 

 Conversely, assume that each has a minimal open neighborhood 

. We prove that is Alexandroff space. Let , where is open 

in   for each . If , then is open and we are done. If , then   has 

at least one element; so for , we have for all  . Hence, 

 for all because  is the minimal open neighborhood of  . 
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Thus, we have . This means that open set 
around each of its points. Therefore, 

 
 

 
is an open set, since it contains an is Alexandroff. ⊠ 

 

We denote by the set of all open neighborhoods of . Thus 
 

, that is, is the minimum element of ordered by 
 

inclusion. 
 

Remark 2.1.5 Let be a topological space and let be a subset of . Then 
 

the closure of is defined by the set 
̅̅̅̅ . 

 

When , we will denote simply by . 
 

Note that for every , we have 
 

. 
 

The following fact gathers some easy properties of Alexandroff spaces (see [19]). 
 

Fact If is an Alexandroff space, then for all and we have: 

(1)  .  

(2)  .  

(3) .   

 

Also we recall that a basis for a topology is minimal if it does not contain any 
basis as a subfamily. 
 

Theorem 2.1.6 (see [5]). Let be an Alexandroff space. Then the basis 

 is the unique minimal basis for  .  

Proof Fact (1) states that is a basis for  . We now prove that   is the unique 

minimal basis of  . So let  be any basis of  . We show that . 

For , we have  for some , by hypothesis that is a 

basis. Thus, there exists  such that ; consequently, by 
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Fact (2). Since , we have . So we have proved that 

 for every and hence . That shows the minimality of  , 

since every subbase is in fact equal to  . That proves also that   is the 

unique minimal basis, because , and so is not minimal, for 

every basis ⊠    
 

We now construct some examples of Alexandroff spaces (see [14]). 
 

Example 2.1.7 Take and  , where is the set of 

real numbers and is the set of integers. Then   is an Alexandroff space with 

  where  . Note that for any two minimal open 

neighborhoods  , we have that and are disjoint. 

Example 2.1.8 (An Alexandroff space on )   

Take and let { ̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅

 }. Here ̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅

 is the closed ball 

with center 0 and radius , and 
̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅

 

. For 
̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅

 

is a minimal  | | 

set in containing . Then is a basis for an Alexandroff topology  . 
 
 

 

2.2 Alexandroff spaces, Quasiorder and partial orders 
 

In this section, we relate Alexandroff spaces to quasiordered sets, and T0 – 

Alexandroff spaces to partially ordered sets. We first give two definitions. 
 
 

 

Definition 2.2.1 Let and be quasiordered (or partially ordered) 

sets. A map is order – preserving if implies . 
 
 

 

Definition 2.2.2 Let and   be topological spaces. A function is 

continuous if is open in for each open  in  .  
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Proposition 2.2.3 An Alexandroff space  admits a quasiordered structure 

 .       

Proof For every , let   . Then is open, since 

is Alexandroff. Now define the relation on  by   

  if and only if  .   

Since  , for each , we have , so is reflexive. Let  

and , then  and  imply ; so , 

showing that is transitive. Thus, to each Alexandroff space there 

corresponds a quasiordered structure .    

 

Now we show that there corresponds an Alexandroff space to a given 
quasiordered set. 
 

Proposition 2.2.4 Let be a quasiordered set and define  

. Then     

(a) The family forms a basis on  .   

(b) The topology  generated by that basis is Alexandroff.   

Proof (a) Clearly since . Now if , i.e. and 

, then and . Thus, we have  and 

 , hence is basis.   

(b) For every collection  of open sets, let Then for any 

, we have for all . This implies that for all , that 

is, we have . Thus . Hence , 

showing that  is Alexandroff. ⊠   

In the context of quasiordered sets, we can give another proof of 

Theorem 2.1.6.     

Proposition 2.2.5 Let be an Alexandroff space. Then for every , we 

have     
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In other words, is the smallest open set containing . In this case, 

  is called the minimal basis for  .     

Proof For every , containing , write , where  are 

basic sets. Then there exists such that , i.e. . The 

transitivity tells us that . Also clearly we have  . 

Hence   ⊠      
 

Now we connect T0 – Alexandroff spaces and posets. 
 

Proposition 2.2.6 Let be a nonempty set. Then is a poset if and only if 

the corresponding topology  on is T0.    

Proof We have  and if and only if and , 

so . By Proposition 2.2.4, and are the smallest open 

sets containing and , respectively. Thus, is T0 if and only if is a poset. 
⊠ 

 

We put things together to obtain the following conclusion. 
 

Theorem 2.2.7 For a set , the Alexandroff space topologies on   are in 1 -1 

correspondence with the quasiorders on . The topology  on corresponding 

to   is T0 if and only if the relation is a partial order on  . ⊠  

Given an Alexandroff space , will denote the unique minimal basis. 

The following concern T0 – Alexandroff spaces.    

Lemma 2.2.8 If is T0  – Alexandroff space, then , which 

associates  to every , is a bijection.    

Proof Note that the definition   gives surjectivity of . Now, 

suppose  . Then we have, for every  since 

and  are minimum in  and . Hence, ̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅
 and ̅̅̅̅̅̅̅̅̅̅̅̅

̅̅̅̅
, 

and so by the fact that is T0.     
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Theorem 2.2.9 Let and be two T0  – Alexandroff spaces. The 
 

following assertions are equivalent: 
 

(a) and are homeomorphic. 
 

(b) There exists an order – isomorphism (with respect to inclusion) between 
and . 

 

The proof of this theorem can be found in [19]. 
 

Apart from these correspondences, we have the following relation between 
Alexandroff spaces. 
 

Proposition 2.2.10 Let  and be Alexandroff spaces, i.e. quasiordered sets. 

Then a function  is continuous if and only if it is order – preserving. 

Proof Let be continuous and suppose that . Then and we 

have  ( ) since is continuous. Thus, , 

which means that  , so  is order – preserving.  

Conversely, let  be an open set in . If , then . If 

 , then and thus   by hypothesis, which implies that 

 , so that  . Therefore,  is the union of 

these and hence is open.  ⊠    
 

2.3 New Alexandroff Spaces From Old Spaces 

 

In this section, we will construct new Alexandroff spaces from given ones. For 
more details, see [23], for example. 
 

Theorem 2.3.1 If and are Alexandroff spaces, then product space is 
 

also an Alexandroff space, with , where and 
 

, respectively. 
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Proof         

The space  has a basis      . 

Let  . Then is in . We claim that  is the 

minimal open set in   containing . To see this, if   , then  

and , so and . Therefore,    . 

Thus,  is minimal. To show is Alexandroff with this basis , 

take any  and let be any open set in  containing 

. Then  where  . But  must be in 

for at least one  , which means that    . 

Hence,  is a minimal open set containing  . Thus, as is 

arbitrary, we have shown that each point of has a minimal open set, 

in other words, is Alexandroff and   . ⊠  
 
 

 

The following can be proved by using induction on and applying Theorem 

2.3.1.       

Corollary 2.3.2 If  are Alexandroff spaces, then so is   

. Furthermore,    , where  

  .     

Definition 2.3.3 Let be a topological space and let be a subset of . Then 

the collection  defines a topology on  , called the induced 

topology; is called a subspace of .    

Theorem 2.3.4 If is a subspace of the Alexandroff space , then is 

an Alexandroff space, and  , where .   

Proof Let and suppose that   is an open neighborhood of in  . Then by 

the definition we have where is open in . Since is Alexandroff, 

this means that  , so that  . Hence is an 

Alexandroff space with . ⊠    
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Remark 2.3.5 Given a nonempty set , we can introduce three mutually 

equivalent but slightly different viewpoints of quotient sets.   

1. The quotient set ⁄ , associated to a surjective function  onto a 

 nonempty set , is defined to be ⁄ .   

2. The quotient set ⁄ , associated to an equivalence relation on , is the 

 set  of equivalence classes  ⁄ where 

  .         

3. The quotient space ⁄ , associated to a partition  of  , is 

 defined as ⁄  .       
 
 
 
 

We use these remarks to define quotient spaces. 
 

Definition 2.3.6 Let be a topological space, any nonempty set, and let 
 

be surjective function. Then 
(a) The quotient topology ⁄ on , induced by and , is defined by 

⁄  

and is called the quotient space. 
 

(b) A function is called a quotient map if it has the 
 

property that if and only if 
Theorem 2.3.7 If ⁄  is a quotient space of the Alexandroff space  , then  ⁄ 

is an Alexandroff space. 
Proof Let ⁄ be the quotient map. Consider an arbitrary intersection 

of open sets in ⁄ . Then we have 

Since is a quotient map, it follows that is an open set in for each 
 

. Hence is open in because is Alexandroff, and therefore 
is open in ⁄  by the definition of quotient space. ⊠ 
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Example 2.3.8 If 

relation on 

quotient space 

 
 

 

is an Alexandroff space, then we can define an equivalence 
by if and only if . We can then form the 

⁄ , which is an Alexandroff space by Theorem 2.3.7. 

 

Definition 2.3.9 Let 
called irreducible if 
Theorem 2.3.10 ⁄ 

 

be an Alexandroff space and let . Then is 
 

implies . 
 

is a discrete space if and only if is irreducible for 

Proof Suppose that  ⁄ 
is discrete. If is the quotient map, then is 

open in   for each . Then  , because . Now if 

 , then , which means . Therefore, , 

which gives . Now suppose , then . 

So we must have because , hence is irreducible. 

Conversely, assume that is irreducible for all . Let , 

then , so . This gives . Now if , 

then , and since is irreducible we must have . 

Therefore, so that  . Hence, we have  , open 

in  . This means that is open in ⁄ 
and so  ⁄  is discrete. 

⊠ 

 
 
 

For general topological spaces, the spaces that satisfy the Hausdorff 

property are the nicest spaces to study. However, the Hausdorff Alexandroff 

spaces are not very interesting to study as the following theorem shows. 
 

Theorem 2.3.11   is a Hausdorff Alexandroff space if and only if for in  , 

we have  .    

Proof If is Hausdorff, we can find disjoint open sets and   of such that 

and . Then and , so and must be 

disjoint.      
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Conversely, to show that is Hausdorff, we can take and to be 
the disjoint open sets containing and , respectively. ⊠ 

 
 

 

Corollary 2.3.12   is a Hausdorff Alexandroff space if and only if is discrete. 

Proof Suppose that is Hausdorff. Then we claim that . To see this, 

let . Then  , which means that . And 

since , we must have by Theorem 2.3.11. Hence, is open in  , 

so  must be discrete.    

 Conversely, if is discrete, then it is clearly Hausdorff. ⊠ 
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Chapter 3 
 

ALEXANDROFF SPACES AND DIGRAPHS 
 

In the previous chapters; we introduced some basic notions about 

topological spaces and Alexandroff spaces, and we related them with preorders 

(quasiorders) and specialization order. However, for our thesis these are not 

enough, so we will give some more details in this chapter. 

 

In the first part of this chapter we will mention some well-known 

definitions and concepts about graphs; for example see [14], [10] and [4]. In the 

second part and third part, we relate some concepts of general topology and 

Alexandroff spaces with graphs and digraphs as it can be found in [16] and [15]. 
 
 

 

3.1  Some basic notions about graphs   

Definition 3.1.1 A graph is a mathematical structure consisting of two 

finite sets and  . The elements of are called vertices (or nodes), and the 

elements of are called edges. The set of all vertices is denoted by and the 

set of all edges is denoted by . Each edge has a set of one or two vertices 
 

associated to it, which are called its endpoints. An edge is said to join its 
endpoints. 
 

Definition 3.1.2 A vertex joined by an edge to a vertex is said to be a neighbor 

of . The (open) neighborhood of a vertex in a graph denoted , is the 

set of all neighbors of and the (closed) neighborhood of is given by 

 .     

 

Definition 3.1.3 A directed edge (or arc) is an edge, one of whose endpoints is 

designated as the tail and whose other endpoint is designated as the head. An 

arc is said to be directed from its tail to its head. 
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Definition 3.1.4 An edge between two vertices creates a connection in two 

opposite senses at once. Assigning a direction makes one of these senses 

forward and the other backward. In a line drawing, the choice of forward 

direction is indicated by placing an arrow on an edge. 

 

Definition 3.1.5 A directed edge (or arc) is an edge, one of the whose endpoints 
is designated as the tail, and whose other endpoint is designated as the head. 

 

Definition 3.1.6 A directed graph (or digraph) is a graph each of whose edges is 

directed. A graph is simple if it has neither self-loops nor multi-edges. A digraph 

is simple if it has neither self-loops nor multi-edges. 
 

Definition 3.1.7 Adjacent vertices are two vertices that are joined by an edge and 
 

adjacent edges are two edges that have an endpoint in common. If vertex is an 

endpoint of an edge  , then is said to be incident on , and is incident on  . 

Definition 3.1.8 A path is a non-empty graph  of the form  

 and    , where the are all distinct. The 

vertices and are linked by and are called its end vertices or ends; the 

vertices  are the inner vertices of . The number of edges of a path is 

its length, and the path of length is denoted by . A non-empty graph is 

called connected if any two of its points are linked by a path in  .  

Definition 3.1.9 A graph is a subgraph of (with ) if  

and .        
 

3.2  Topological spaces and Alexandroff spaces with graphs 

 

In this part; we will relate some Topological notions and Alexandroff 
spaces with graphs. One can find it in [15]. 
 

Definition 3.2.1 Let be a graph without isolated vertex and let be 

the set of all vertices adjacent to  , where if and only if , for all 

and for all . We have a subbasis  for a 

topology   on , when and it is called graphic topology on G.  
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Proposition 3.2.2 Suppose that is a graph. Then is an 

Alexandroff space.     

Proof We have to prove that arbitrary intersection of members of is open. 

Let . If , then for each . Hence, for each 

 So, . Since is locally finite, and so   are finite sets. If   is 
 

infinite, then is empty. But  is finite, then is the intersection 

of finitely many open sets. Hence, it is open. ⊠   

Definition 3.2.3 Let be a graph. The minimal basis for the topological 

graph is denoted by  where is the smallest open set 

containing  , i.e. it is the intersection of all open sets containing  .  

Proposition 3.2.4 Let be a graph, then and is finite 

for every .     

Proof Since is the smallest open set containing and   is a subbasis for   , 

we have for some subset  of ; this implies that for each 
 

. Therefore . So   . By the definition of , we 

have is finite for every . ⊠      

Corollary 3.2.5 Let  be a graph; for every , ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ if and only 

if . ⊠         

Definition 3.2.6 Let be a topological space. A subset of is clopen, if it is 

both open and closed in  .       

Proposition 3.2.7 Let be an Alexandroff space; if there is a point  such 

that is both maximal and minimal in { }, then is clopen and 

is disconnected.         

Proof We have to show that is closed or equivalently ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅  . Suppose 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅, then there exists such that ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅. So we get  and 
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. By minimality of , we get . So we have and by 

maximality of   , we get . Hence, : ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ , hence, ̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅ 

. ⊠ 

 

 

Definition 3.2.8 A topological space is called graphic, if there is some (locally 
 

finite) graph with vertex set and without isolated vertex such that . 

Proposition 3.2.9 Let  be a finite topological space and let be the 

smallest open set containing for every   . If for every , or 

 then is graphic.       

Proof We construct a graph  as follows   , 

for any . For every , let and be the smallest set containing 

in and the set of all adjacent vertices to in , respectively. We have to prove 

that [by Definition 3.2.8]. Let , we have {  } 

for every . Therefore, if and only if if and only if 

   {   }. Suppose that  . Hence, 

 , otherwise; and so   which is a contradiction. 

Therefore, but  implies that   which is a contradiction. So 

 .          

Conversely, if  then . So if  for some , then 

 and so  . This implies that and so . 

Therefore,   . ⊠     

Definition 3.2.10 Let be an Alexandroff topological space and be the 

smallest open set containing for every   . Then   is dense in if and 

only if for every .       

 In particular,   . Since is a non-empty open set in 

 , we have . Let   , then .   
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Theorem 3.2.11 Let be an Alexandroff topological space, 
 

and . Then 
 

1)  If is minimal dense subset in 
 

function such that 

 

then there exists a surjective 
for every . In particular, 

 

       .        

2) Conversely; if   is a function such that    for every 

 , then  is a minimal dense subset in   . Specially, if 

 and are minimal dense subsets in , then we have | | | |, 

 where | | denotes the cardinality of  .        

Proof               

1)  By minimality of elements of , the intersection of every pair of distinct 

 elements of is empty. Our claim is that has a single element for 

 each . Since ̅̅̅̅ , there exists some   , so   and 

 by minimality of , we have . Assume, to the contrary that 

   . Then   . Therefore,  ̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅
. Hence, 

 ̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅

 which contradicts the minimality of . Let be a single 
  

 element of  , for every  . Suppose that  ; we will show 

 that , which implies   and this will prove that is 

 surjective. Assume, to the contrary, ; so there exists  such 

 that . If  , then by above claim and so 

   . Therefore, ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ implies that ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ for every  . 

 Thus, ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅

 which is a contradiction.        
2) For every , there exists an element such that   and 

 . Therefore,   and so is dense in . Now, 

 suppose that ̅̅̅̅ and  . Let  and    . Then 

 there exists  such that ( ) . On one hand,    

 implies that    and on the other hand, we have  ( ) 

  which implies   and so  ( ) , which is a 

 contradiction. Now, if is a minimal dense subset in  , then there 
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exists a surjective function such that , for every 

by (1). Hence,   must be injective because if (  ) for 

some , then and so by their minimality. 

Therefore, |  | | | is constant. ⊠  
 
 

 

3.3 Alexandroff spaces with directed graph (digraph) 

 

Given a set (not necessarily finite), let and 

transitive digraphs and the set of all Alexandroff 

respectively. 

 
 
 
 
 

 

denote the set of 
all topologies on , 

 

 We will prove that each transitive digraph   determines 

a unique topology  on , and conversely. It can be found in [16]. 

Theorem 3.3.1 There is a one - to - one correspondence between and   . 

Proof Given we associate with a digraph  as follows. The 

vertex set of is and its edge set is defined by: for any two and in 

, will be adjacent to if and only if  belongs to every open set 

containing .  Clearly,    is transitive and uniquely 

determined by the topology  .        

 Conversely, let be any element of . Now the family of down-sets 

  forms a base for a topology on , where   

  , here represents edge  in  . We claim that is a 

member of   .           

 Let be a family of open sets and ⋂ . We want to show 

that  for each . Let . If  , then for each  . 

Suppose . Since  and being basic set,   , we get 

 for some . Further, as is transitive,  and  

implies that , hence, we have  . Thus,  for each  . 
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Hence, for each , the open set , which contains  , is a subset of   . 

This proves that is open. Therefore, we have that . 

Now, by the construction of  , it follows that is unique. So we have 

the following configurations:   
 
 
 

 

or 
 
 

 

We complete the proof by showing that the digraph coincides or is the 

same as the digraph induced by the topology ; this means that we 

have indeed a one – to – one correspondence between and   .  

Let be given and take . Since is transitive, if , 

then . In other words,  belongs to whenever belongs . Since 

the family  is a base for , it follows that  belongs to every 

open set containing . This implies that is an edge in , i.e. 

.        

For the converse, suppose that . Then  belongs to 

because   belongs to every open set containing  . Hence,  and this 

proves that  , in other word, .  ⊠   

 

Remark 3.3.2 By definition, a digraph has no loops! A relation is reflexive if 

every vertex has a loop. Obviously, it makes no difference in the number of 

transitive relations whether every point (vertex) has a loop or no point does. 

Hence we have 

 

Corollary 3.3.3 On a set (not necessarily finite), there are the same number 
of transitive relations and Alexandroff topologies. 
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In view of Theorem 3.3.1, every transitive digraph on a set induces 

a unique A - topology on  , we denote it by ; conversely, every A – 

topology on induced a unique transitive digraph on , we denote it by 

.              

Definition 3.3.4 The “converse” digraph of a digraph is the digraph 

having the same vertex set as that of such that for any two  , is 

adjacent to in if and only if is adjacent to in . Clearly, if is 

transitive, then is transitive.           

It is evident that for an A – topology on , the family consisting of all 

closed sets of also forms a topology on which is an A – topology. Call 

this topology on the closed topology induced by  .      

Theorem 3.3.5 Let be a transitive digraph and be its converse. 

Then              

1)  The transitive digraph on induced by the topology  is ; that is, 

( ) , and           

2)  The topology on induced by  is the closed topology  ; that is 

   .           

Proof We prove only (1); (2) can be proved on similar lines. Consider  

. Then is in and hence is in every open set in the topology  

containing . This implies that belongs to every closed set in  (i.e., an 

open set in  )  containing . Indeed, suppose   where is a 

closed set in and . Then , the complement of , is open in 

, and , which is not true. This proves that every edge in 

is an edge in  . Similarly, one can show that every edge in   

is an edge in . Thus, we have    . ⊠      

Definition 3.3.6 Let   and   be two digraphs. A 

function  is said to be a homomorphism if and only if for   

with  , implies   .      
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Theorem 3.3.7 Let and be two transitive digraphs and  be a 

function. Then is homomorphism if and only if it is continuous from the 

topological space (  ) into (  ).     

Proof CN . Suppose is a homomorphism of into . As we have seen 

in Theorem 3.3.1, the family of sets   forms a base for 

, where       , . To prove that is 

continuous, it is sufficient to show that, for every and for every 

  ,   .         

Let   . Let  . If  , then  . 

Suppose now that   . Then as  and is a homomorphism, 

  . Since    , it follows that either  or 

 . Now,   implies  as  and is 

transitive. In both cases,  . Thus,  . This proves that 

  , for all    .       

CS . Assume that  is continuous from (  ) into (  ). 

Choose  with    , and  . Let be an open set in 

 containing . By the continuity of  ,  is open, further it 

contains . Hence it should contain the point as , i.e.  . 

Thus, whenever an open set in  contains , it also contains . 

This implies that    . This proves that is homomorphism. ⊠ 

Corollary 3.3.8 Let  and  be two transitive digraphs with the same 

vertex set . Then   is a subgraph of if and only if is stronger than 

.              

Proof CN . Suppose that  is a subgraph of . Then the identity map 

 is homomorphism from into . By Theorem 3.3.7, it follows that 

is a continuous function of (  ) onto (  ). Hence is 

stronger than .           
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CS . Assume that is stronger than . Then as the identity map 

from ( ) onto ( ) is continuous, by Theorem 3.3.7, it is a 

homomorphism of   into . Further, as it is one – to – one, it follows that 

is a subgraph of   . ⊠  
 

Finally, we can state the following obvious result: 
 

Corollary 3.3.9 Let and be two transitive digraphs. is isomorphic to 

if and only if the topological space ( ) is homomorphic to 

( ).  ⊠       

Example 3.3.9 Let  and {   }. Then we can 

determine associated with   as follows: Vertex set is . Find its edge 

set .         

.  since belongs to every open sets and containing  . 

.  By the same argument and . The other edges can be found 

similarly. Thus, we get the following transitive digraph , uniquely 

determined by the given :      
         

          

          
         
 
 

 

Conversely, let and consider the graph (transitive)  : 
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Determine the topology , uniquely determined by . For this we must first 
 

find . , , , 
 

, . Then is the 
 

topology associated with . 
{ }. 
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Conclusion 
 

T0 – Alexandroff spaces can be investigated in terms of general 

topological concepts such as connected, locally path-connected, regular, 

separable, first countable, second countable, compact, para-compact spaces. 

Such an approach is given in [3]. 

 

Alexandroff spaces can also be considered as Functional Alexandroff 

Spaces and dynamical systems (see, for example, F.A.Z. Shirazi and N. 

Golistani, Functional Alexandroff Spaces, Hacettepe Journal of Mathematics 

and Statistics, Vol. 40 (4), (2011), 515-522). 
 

Alexandroff spaces are also studied as a class of T0 – A – spaces 

called upper bounded. This class contains the class of Artinian A – spaces 

(see, for example, H. Mahdi, On Upper Bounded T0 – Alexandroff Spaces, 

Int.J. Contemp. Math. Sciences, Vol.9, 2014, no.81, 361-374). 

 

Recently, as extensions of Alexandroff Spaces, Bi – Alexandroff 

Spaces are studied in connection with regular bitopological spaces (see, for 

example, Matutu, P., Bi – Alexandroff Spaces, Quaestiones Mathematicae, 

Vol. 30, Number 1, March 2007, pp. 57-65(g)). 

 

Lastly, intensive development and research have been conducted in 

the field of Alexandroff Spaces in graph theory, and in particular in digital 

topology. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

38 



 
 

 

References 

 

1) Adams, C., Franzosa, R., Introduction to Topology Pure and Applied, 
Pearson Education Inc, 2008.  

2) Alexandroff, P., Diskrete Räume, Mat.Sb.(N.S.) 2 (1937) 501-518. 
 
3) Arenas, F.G., Alexandroff Spaces, Acta Math. Univ. Comenianae, Vol. 

Lxviii, 1 (1991), pp. 17-25.  
4) J.A.Bondy and U.S.R.Mutry, Graph Theory with Applications. 
 
5) Bretto, A., Faisant,A., and Vallée, T., Compatible topologies on graphs. An 

application to graph isomorphism problem complexity, Theoretical 

Computer Science 362 (2006) 255-272. 
 
6) Carter, S., Decarvalho, J.C., Locally Sierpinski quotients, Universitade 

Coimbra, Preprint Number 03-04 (2000).  
7) Chan, H.Y., Xu,Z., Finite Spaces, Handouts, 2012. 
 
8) Christofides, D., Raptis, E., Partial Orders and Topologies on Finite Sets, 

online, 2004. 
 
9) Davey, B.A., Priestley, H.A., Introduction to Lattices and Order, Second 

Edition, Cambridge University Press, 2002.  
10) R.Diestel, Graph Theory. 4th edition, Graduate Text in Mathematics, 

Springer-verlag.2010.  
11) Dugundji, J. Topology, Boston: Allyn and Balon 1996.  
12) The ABC of Order and Topology. Erne’, M. Category Theory all work, 

H.Herligh H, E. Poost Heldermann Verlag, Berlin (1991). PP. 57-83. 
 
13) Erne, M. and Stege,K., Counting Finite posets and topologies, Order; 

8(1991) 247-265.  
14) J.L.Gross, J.Yellen. Graph Theory and Its Applications, Second Edition. 
 
15) S.M.J.Amiri, A.Jafarzadeh and H.Khatibzadeh. An Alexandroff Topology on 

Graphs. Bulletin of the Iranian Mathematical Society. Vol.39, No.4(2013). 

pp.647-662. 
 
16) Kong, T.Y. Koppermana, R.U., and Meyer, P.R., A topological approach to 

digital topology, American Math. Monthly, (1997) 910-917. 
 
 
 
 
 
 
 
 
 

 

39 



 
 

 

17) C.Marijuàn. Finite Topologies and Digraphs, Proycciones Journal of 

Mathematics. Vol.29. No3, pp. 291-307 (2010). 

18) May, J.P., Finite topological spaces, Notes for Reu, 2010. 
 
19) Mendelson, B. Introduction to Topology, third edition 1990, Dover Boow 

mathematics. 
 
20) Nakaoka F., Oda N., Some applications of minimal set, IJMMS, 27: 8(2001) 

471-476, Hindawi Publishing Corp. 
 
21) Richmond T.A., Quasiorders, Principal Topologies, and Partially Ordered 

Partitions, Internat. J. Math. & Math. Sci. Vol. 21, No. 2 (1998), pp.221-

234. 
 
22) Rose, D., Scible, G., and Walsh,D., Alexandroff Spaces, Journal of 

Advanced Studies in Topology, Vol.3, No.1 (2012) 31-43. 
 
23) Speer, T., A short study of Alexandroff spaces, Department of 

Mathematics, New York University, July 2007. 
 
24) Steinor, A.K., The Lattice of Topologies; Structure and Complementation, 

Trans. An. Math. Soc., 122(1996) 379-398. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

40 


