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ABSTRACT 

ESTIMATING MISSING BRDF MEASUREMENTS  

WITH COMPRESSED SAMPLING METHOD  

SEYLAN, Nurcan 

PhD in Computer Engineering 

Supervisor: Prof. Dr. Mehmet Cudi OKUR  

September 2015, 84 pages 

 Compressed Sampling is an emerging method of reconstructing data that have 

large size and/or contain missing, noisy or irregular values using a small set of data. 

This method uses sparsity of data and realizes reconstruction process very efficiently. 

After a few samplings of data, it uses an optimization algorithm for reconstruction. 

This method has been used in areas like signal processing, image/video processing 

and medical imaging intensively. 

 Bidirectional Reflectance Distribution Function (BRDF) data is used to 

describe different reflectance properties of real world materials. In this work, the 

reconstruction process of large sized and sparse structured BRDF data is realized 

using compressed sampling method. This method also reconstructs missing, irregular 

or noisy values in BRDF data effectively. Furthermore in this work, using two of 

existing BRDF models, BRDF data are created and reconstructed successfully using 

compressed sampling method. 

 

 Keywords: Compressed Sampling, Compressive Sensing, Bidirectional 

Reflectance Distribution Function, BRDF data, data reconstruction  
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ÖZET 

KAYIP BRDF ÖLÇÜMLERİNİN SIKIŞTIRMALI ÖRNEKLEME 

 YÖNTEMİYLE TAHMİN EDİLMESİ  

  

Nurcan SEYLAN 

Doktora Tezi, Bilgisayar Mühendisliği Bölümü 

Tez Danışmanı: Prof. Dr. Mehmet Cudi OKUR  

Eylül 2015, 84 sayfa 

 Sıkıştırmalı Örnekleme, büyük miktarlardaki ve/veya kayıp, gürültülü veya 

geçersiz değerler içeren verinin küçük bir kısmını kullanarak bu veriyi yeniden 

oluşturmayı sağlayan yeni bir metottur. Bu metot, verinin seyrek (sparse) olmasını 

kullanır ve çok etkin bir yeniden oluşturma işlemi gerçekleştirir. Verinin az sayıdaki 

örneklemelerinden sonra bir eniyileme algoritması kullanılarak veri yeniden elde 

edilir. Bu yöntem şimdiye kadar sinyal işleme, resim/video işleme, tıbbi görüntüleme 

gibi alanlarda yoğun olarak kullanılmıştır.  

 Çift Yönlü Yansıma Dağılım Fonksiyonu (BRDF) verisi, gerçek materyallerin 

farklı yansıma özelliklerini tanımlamak için kullanılır. Bu çalışmada, sıkıştırmalı 

örnekleme yöntemi kullanılarak, büyük boyutlu ve seyrek yapıdaki BRDF verisinin 

yeniden oluşturulması işlemi gerçekleştirilmiştir. Ayrıca bu yöntemle bu verinin 

içerdiği kayıp, geçersiz, gürültülü değerler etkili bir şekilde yeniden 

oluşturulabilmektedir. Bunun dışında mevcut BRDF modellerinden ikisi kullanılarak 

BRDF verisi oluşturulmuş ve sıkıştırmalı örnekleme yöntemiyle başarılı bir şekilde 

yeniden oluşturulmuştur. 

 

Anahtar sözcükler: Sıkıştırmalı Örnekleme, Çift Yönlü Yansıma Dağılım 

Fonksiyonu, BRDF verisi, veriyi yeniden oluşturma 
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1 INTRODUCTION 

 Real world materials have different reflection properties. Bidirectional 

Reflectance Distribution Function (BRDF) that is defined in terms of incoming and 

outgoing light directions is commonly used to describe reflectance properties of real 

world materials. Physically based analytic reflectance models or empirical analytic 

reflectance models have been proposed for approximating the BRDF.  

 An alternative approach for modeling surface reflection is to directly measure 

values of the BRDF for different incoming and outgoing angles and then fit the 

selected analytic model to the measured data by using appropriate optimization 

techniques. There are some drawbacks to this measure-and-fit approach. The choice 

of the error function which the optimization process uses is very important. Also, 

since most BRDF models are non-linear, the optimization phase used in the fitting 

process relies excessively on the initial guess for the model parameters. In some cases 

measurements for which incident or outgoing angles greater than 80 degrees are 

ignored. Measurements corresponding to these grazing angles are in general 

unreliable since they contain much more noisy, missing or irregular values. Also 

sufficient amount of BRDF data are difficult to obtain and low sampling rates make 

the BRDF fitting inadequate and the result is excessively dependent on the choice of 

the model.  

 The third approach for modeling surface reflectance is to obtain dense 

measurements of reflectance and use these measurements directly as a BRDF. This 

method preserves the elaborateness of the reflectance function that is lost in a data-

fitting approach. The classical device for measuring BRDF is the gonio-reflectometer, 

which consists of a photometer and light source that are moved around a surface 

sample under computer control. Such devices measure only a radiance value at a time 

and this work makes this process very time-consuming. Also an important difficulty 

about the BRDF data is its large size. The method of using BRDF measurements 

becomes more expensive if the reflectance for all materials in a scene needs to be 

measured. On the other hand, the BRDF data obtained in this way is generally noisy 

and contains some missing values due to some difficulties in measuring BRDF 

especially near grazing angles (Rusinkiewicz, 1997). BRDF measuring systems also 
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suffer from occlusion problems because of using cameras, projectors and mirrors. In 

such cases, obtaining all BRDFs over a full hemisphere may not be possible and 

measurements taken at certain angles may be very noisy and cannot be used for 

rendering. The main advantage of this method is that it produces realistic images, 

since acquired BRDFs come from real measured data (Matusik, 2003).  

 Even if the raw data are correct and complete, its size is considerably large to 

store and process. An alternative approach is to compress the measured BRDF data 

using some compression techniques. These techniques are based on using basis 

functions (like splines, wavelets, spherical harmonics and Zernike polynomials), 

dimension reduction techniques (like Principal Component Analysis, Independent 

Component Analysis and Cluster Analysis) and matrix factorization (like Non-

negative Matrix Factorization and Tensor Products) (Seylan et al. 2013). However 

none of these techniques can represent noisy, missing or irregular measurements 

completely. Therefore measurements that have problems need to be preprocessed.  

 In this work, a new technique called Compressed Sampling is proposed to use 

for reconstructing noisy BRDF data with some missing measurements. This 

technique also provides an efficient way of compressing the BRDF data. It is proven 

that even with noisy measurements and compressible (but not very sparse) signals, 

compressed sensing works quite well (Candès et al. 2006). It has been applied to 

problems in areas like compressive imaging, video processing, medical imaging, 

computer vision and wireless channel mapping. 

 The theory of Compressed Sampling states that if a signal is sparse in a 

transform domain, then under certain conditions it can be reconstructed exactly from 

a small set of linear measurements using some tractable optimization algorithms. 

These measurements are random samplings of BRDF data. An l1-norm optimization 

algorithm is used for optimization. 

 In this work, the compressed sampling technique is applied on isotropic BRDF 

data which is assumed to have some missing measurements. For this purpose, three 

dimensional data of various materials are divided into sub-sample blocks. Two of 

dimensions are for incoming and outgoing direction angles with surface normal and 

one dimension is for azimuth difference angle. Random samples are generated from 
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these sub-samples at a predefined sampling ratio with point sampling based on using 

a permutation matrix. A permutation matrix is an m x n binary matrix that has 

maximum one entry of 1 (one) in each row and each column and 0s elsewhere, ones 

corresponding to the measurements to be considered. This matrix is used to represent 

a specific permutation of m elements and, when used to multiply a vector, can 

produce that permutation in a column vector. The permutation matrix is modified to 

discard the missing or noisy measurements from the generated samples. Finally, the 

resulting random samples are used to reconstruct the BRDF data running the 

compressed sampling technique.  

 To investigate the effect of the sampling ratio on the visual quality of the 

reconstructed images, random samples with different ratios are generated for 

randomly selected 40 different isotropic materials. These materials are chosen to 

reflect the diffuse, glossy and specular properties of reflection. PSNR (Peak-Signal-

to-Noise-Ratio) values between original and reconstructed images are used for visual 

quality comparison. 5% ratio is readily sufficient for diffuse and glossy materials on 

the average; but for specular materials, even 10% ratio is not sufficient. The reason of 

this situation is some data sets has more irregular values as a result of certain 

measurement errors and these irregular values cause lighting artifacts. To correct this 

situation, log transformation of the BRDF measurements is used. After reconstruction 

the log transformation is reversed. 

 Using log transformation, it is interesting to see that images with a visually 

acceptable quality and PSNR values could be obtained by sampling only 2.5% of the 

measurements for diffuse and glossy materials. Especially for diffuse materials even 

1% sampling ratio has successful results and for specular materials 5% sampling ratio 

is sufficient generally. 

 These results demonstrate the power of the compressed sampling approach 

when dealing with BRDF data having missing measurements. Compressed sampling 

approach produces visually acceptable quality and sufficient PSNR values for all 

material types by sampling only 5% of the original data. 

 In the field of computer graphics, surface reflectance has been approximated 

frequently with analytic reflectance models. These BRDF models produce 
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approximations of reflectance of real materials. In this work, Ward and Cook-

Torrance BRDF models that are extensively used are selected and BRDF data for 

various materials are constructed using these models respectively. 

 For 40 materials that are selected previously, using their Ward and Cook-

Torrance parameters respectively, BRDF values are calculated separately and then 

using low sampling ratios of each data, BRDF data are reconstructed for each 

material. Using Ward model data, 2.5% sampling ratio produces visually acceptable 

quality and high PSNR values for approximately all materials. Using Cook-Torrance 

model data, 5% sampling ratio produces visually acceptable quality and high PSNR 

values for most materials and similar results are obtained with 10% sampling ratio for 

the others. 

 Last of all, in this study, very successful results have been obtained using 

Compressed Sampling technique with low sampling ratio of measured BRDF data 

and also BRDF data generated from reflectance models.  

 The rest of the thesis is organized as follows: In Chapter 2, the theory of 

Compressed Sampling is described in detail and recent developments and some 

applications of this technique are outlined. 

 In the third chapter, the BRDF properties, analytic reflectance models, BRDF 

measurements and problems about these measurements are explained. 

 In chapter 4, Compressed Sampling application on BRDF data and the 

corresponding results are explained. 

 In chapter 5, results based on applying Compressed Sampling technique on the 

BRDF data generated from two different analytic reflectance models are presented.  

 Chapter 6 is devoted for discussion of results and conclusion. 
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2 COMPRESSED SAMPLING 

2.1 Data Acquisition Using Conventional Method 

 The origin of Compressed Sampling begins in 1949, with Claude E. Shannon, 

the developer of information theory. Shannon proved that a signal with N hertz 

maximum frequency can be excellently reconstructed by sampling the signal at 

intervals of 1/2N seconds (Mackenzie, 2009). In other words, it is specified that to 

beware losing information when capturing a signal, it must be sampled at least two 

times more than the signal bandwidth. Using this rate, results too many samples, 

making compression an obligation prior to storage and transmission (Baraniuk, 

2007).  

 As a result, within data acquisition process, generally large amounts of data are 

collected to be discarded at the compression stage. A high-resolution data array is 

acquired, the complete set of transform coefficients are computed, the largest 

coefficients are encoded and all the others are discarded. This process of large 

amount of data acquisition followed by compression is considerably wasteful (Candès 

& Wakin, 2008). 

 If no information about the signal or image trying to reconstruct is available, 

then Shannon’s theorem limits the resolution that must be acquired. But if the signal 

or image is sparse or compressible, then Shannon’s limit is not an obligation. 

 For instance, photographs are not sparse relative to the standard basis; because 

they have many nonzero values (i.e., non-black pixels). However, according to JPEG 

compression, photographs are sparse with respect to a different basis. 

 One of the compression procedure examples is to represent the image as a sum 

of wavelets. The coefficients of wavelet of an image is plotted in figure 2.1, large 

coefficients identifies a considerable contribution to the image (such as an edge or a 

texture). Mostly it is impossible to distinguish the difference between the compressed 

photo and the original photo (Mackenzie, 2009). 
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Figure 2.1 Coefficients of the wavelet of an image (Mackenzie, 2009). 

2.2 Data Acquisition Using Compressed Sampling Method 

 In the Compressed Sampling side, the obtainable resolution is controlled by the 

information content of the signal. A signal with low information content can be 

reconstructed excellently by using a small number of measurements. For instance, 

almost all real-world images have low information content. It is possible to contain 

the content of the image with a small number of identifiers. 

 First of all, Emmanuel Candès, a former student of Donoho, in 2004, while 

working with a team of radiologists on magnetic resonance imaging; and running 

with a “phantom image” (i.e., not a real patient), he had reconstructed the image 

perfectly from undersampled data using Compressed Sampling (Mackenzie, 2009). 

 The theory of Compressed Sampling / Sensing (CS) demonstrates how a 

subsampled signal can be accurately reconstructed through non-linear optimization 

techniques (Sen & Darabi, 2009). For this, CS technique uses the sparsity property of 

the signals. A signal is represented as a vector x, a series of n real numbers. This 

vector is said to be k-sparse, which means that it has at most k nonzero coefficients in 

a specific basis (Mackenzie, 2009). 

 For example, transform coders such as JPEG2000 take advantage of the fact 

that many signals are sparse in a fixed basis, meaning that it can be stored or 

transmitted only a small number of transform coefficients rather than all the signal 

samples (Candès, 2006). 
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2.2.1 Compressible Signals 

 A one-dimensional, discrete signal x can be viewed as an n 1 column vector 

with elements x[i] , i = 1, 2, . . . , n. An image or higher-dimensional data is 

vectorized into a long one-dimensional vector. 

 The signal x is k-sparse if it is a linear combination of only k basis vectors; so, 

only k of the si coefficients in Eq. 2.1 are nonzero and (n − k) are zero. It is 

meaningful for CS if k is much less than n.  

 For this, the vector x can be transformed into another n 1 vector s through an n 

  n orthogonal basis matrix Ψ as  

           x = Ψs                              (2.1) 

s is the n 1 column vector of weighting coefficients. Since Ψ is orthogonal, the 

equation 2.1 can be solved for s as s = Ψ’x where Ψ’ is the transpose of Ψ. If s can be 

estimated from the sample data then x can be reconstructed from the above equation 

(Seylan et al. 2013). The underlying approach provides a non-adaptive technique 

where the entries of the matrix Ψ are fixed. 

 Compressed Sampling directly acquires a compressed signal representation 

without going through the phase of acquiring n samples (Baraniuk, 2007). 

2.2.2 Designing A Measurement Matrix  

 A sample y of the signal x, is a linear function of x, that is,  

       y = Φx                  (2.2) 

 The number of measurements in the sample is arranged to be smaller than the 

signal, therefore Φ is an m x n matrix with m ≪ n and y is an m x 1 vector. According 

to linear algebra, there are infinitely different vectors x such that Φx = y (Mackenzie, 

2009). 
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 However, a key hypothesis of compressed sensing is that the transformed 

version of the signal, s, is k-sparse under some basis Ψ, meaning that it has at most k 

nonzero coefficients in that basis.  

 The measurement process using Eq. 2.1 is as: 

y = Φx = ΦΨs = Θs                       (2.3) 

where Θ = ΦΨ is a general m x n measurement matrix (Sen & Darabi, 2009). 

 The signal reconstruction algorithm must take the m measurements in the vector 

y, the sampling matrix Φ, and the basis matrix Ψ and reconstruct the length-n sparse 

coefficient vector s. An example is shown in figure 2.2. 

 

Figure 2.2 (a) CS measurement process with a random Gaussian matrix Φ and a DCT matrix Ψ. 

The vector s is sparse with k = 4. (b) Reconstruction process with Θ = ΦΨ.  There are four 

columns of matrix Θ and they correspond to nonzero si coefficients; the vector y is a combination 

of these columns (Baraniuk, 2007). 

 If s can be solved by giving the measured y, the inverse transform Ψs can be 

applied to get desired signal x. Unfortunately, traditional techniques for solving for s 

(e.g., inversion, least squares) do not work because Eq. 2.3 is severely undetermined 

since m ≪ n. However, recent improvements in CS have shown that if m ≥ 2k and Θ 

has certain properties (e.g. RIC property, that is explained in Section 2.2.3: Restricted 

Isometry Condition), then Eq. 2.3 can be solved uniquely for s by looking for the 

sparsest s. Therefore, the desired s can be found by solving the following l0-

optimization problem (l0-norm counts the number of non-zero entries): 

   min ||s||0   s.t.   y = Θs                       (2.4) 
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 The solution to this problem is a combinatorial algorithm in which every s with 

||s||0≤ k is checked to find the one that results the measured samples y. This problem 

is NP-complete and is intractable for any applicable signal. Eq. 2.3 can be solved by 

replacing the l0 with an l1-norm (l1-norm of x: ∑|xi|): 

min ||s||1    s.t.    y = Θs                       (2.5) 

l1-norm is used in (2.5) because sparse signals have small l1-norms and it is convex 

which makes the optimization problem computationally tractable. As long as the 

number of samples m = O(k log n) and the matrix Θ meets the RIC property, the l1-

optimization of Eq. 2.5 will solve correctly for s (Sen & Darabi, 2009).  

 l1-norm optimization tends to concentrate the energy of the signals onto a few 

nonzero entries of s as opposed to the least squares which tends to spread the energy 

around. 

 Unfortunately, l2-minimization (l2-norm is Euclidean norm: |x|) cannot find a k-

sparse solution, returning instead a non-sparse s with many nonzero elements. (See 

Section 2.2.4: The Geometry of l1 Optimization) 

2.2.3 Restricted Isometry Condition (RIC) 

 y = Θs cannot be solved for s with any arbitrary Θ if m ≪ n, even if m ≥ 2k. 

However, within the compressed sensing framework if matrix Θ meets the Restricted 

Isometry Condition (RIC): 

 (1 − ε)||v||2  ≤  ||Θv||2  ≤  (1 + ε)||v||2                        (2.6) 

where ε  (0, 1) for all z-sparse vectors v. A measurement matrix is valid for CS if 

every possible set of z columns of Θ forms an approximate orthogonal set. For this, 

the sampling matrix Φ must be as incoherent to the compression basis Ψ as possible. 

The coherency measures the largest correlation between any two elements. If Φ and 

Ψ contain correlated elements, it means that the coherency is large. Random matrices 

are substantially incoherent with any basis matrix Ψ. Examples of matrices that have 

been proven to meet incoherency include Gaussian matrices (sampled from a normal 
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distribution), Bernoulli matrices (sampled from a Bernoulli distribution), and partial 

Fourier matrices (randomly selected Fourier basis functions) (Sen & Darabi, 2009). 

Gaussian matrix provides that k-sparse signals of length n can be reconstructed using 

only m x 1 vector y where m ≥ ck log(n/k) < n and c is a small constant random 

number. 

 In figure 2.3: if it cannot be known where the important values are, sampling 

the transform coefficients in (a) directly will be a useless effort, because most of the 

time values that are very close to zero are seen. If instead global combinations of the 

transform coefficients are taken, an effect achieved by using incoherent φk as 

illustrated in (b), a little bit of information about the sparse coefficient sequence is 

picked up with each measurement. The Eq. 2.3 then finds the locations of important 

transform coefficients and their values (Romberg, 2008). 

 

Figure 2.3 (a) A very sparse vector. If this vector is sampled directly with no knowledge, values 

that are very close to zero are obtained. (b) Examples of random, incoherent test vectors φk . 

With each inner product of a vector from (b) a little bit of information about (a) is get each time 

(Romberg, 2008). 

 The randomness of the sampling matrix Φ is also useful for two purposes. First, 

it provides the set of conditions under which l1-minimization is equivalent to l0-

minimization. Secondly, it provides that the set of measurement vectors (the rows of 

Φ) are as dissimilar to the basis vectors (the columns of Ψ) as possible (Mackenzie, 

2009). 
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2.2.4 The Geometry of l1 Optimization  

 In figure 2.4, the geometric illustration for l1 is seen. (a) illustrates the l1 ball of 

a certain radius. It is anisotropic; it is pointy along the axes. (b) diagrams the l1 

recovery program: the point labeled α0 is a “sparse” vector (only one of its 

components are nonzero) of which one measurement is made; the line labeled H is 

the set of all α that share the same measurement value. 

 For equation 2.5, the point on this line with minimum l1 norm is picked out. To 

visualize how equation 2.5 accomplishes this, an l1 ball of tiny radius is taken and is 

expanded gradually until it bumps into H. This first point of intersection is the vector 

that solves equation 2.5. Both of the anisotropy of the l1 ball and the flat space H 

result this intersection occurring at one of the points, exactly where sparse signals are 

located. 

 If the l1 norm is replaced with the l2 norm, figure 2.4 (c) replaces the diamond-

shaped l1 ball with the spherical and perfectly isotropic l2 ball. It is seen that the point 

of first intersection of H and the expanding l2 ball is not sparse (Romberg, 2008). 

 

Figure 2.4 (a) l1 ball of radius r; the ball contains all α such that |α(1)| + |α(2)| ≤ r. (b) Solving the 

l1 minimization problem allows to reconstruct a sparse α0 from y = Φα0, as the anisotropy of the 

l1 ball favors sparse vectors. (c) Minimizing the l2 norm does not recover α0, since the l2 ball is 

isotropic, the l2 minimization α*l2 will in general not be sparse at all (Romberg, 2008). 
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2.3 Recent Developments of CS 

  Donoho, Candès, Tao and Romberg studied on CS firstly announcing similar 

results during 2004-2006 (Candès, 2006; Donoho, 2004; Candès et al. 2006). Since 

then, there have been many advances in terms of theory and practice. 

 Candès, Romberg, and Tao proved that even with noisy measurements and 

compressible (but not very sparse) signals, compressed sensing works quite well. The 

error in the reconstructed signal is not much bigger than the error in the 

measurements, and the error with using the l1-minimizer is not much bigger than the 

error already revealed by the l0-minimizer. In other words, the l1-minimizer 

accurately recovers the largest components of the signal. 

 Mathematicians have been working on new algorithms that run faster than the 

standard linear programming methods that solve the l1-minimization problem. Instead 

of getting the largest k coefficients all at once, these coefficients are found iteratively: 

first the largest nonzero coefficient, then the second largest nonzero coefficient, and 

so on (Mackenzie, 2009). The first such algorithm, called Orthogonal Matching 

Pursuit (OMP), has a weaker guarantee of exact recovery compared to l1-

minimization (Tropp & Gilbert, 2007). However, there is now a variety of OMP, such 

as Regularized OMP (ROMP) which recovers multiple coefficients in each iteration; 

thus accelerates the algorithm and successfully combines the accuracy of l1-

minimization with the speed of OMP (Needell & Vershynin, 2007). 

2.4 Applications of CS 

 Since Compressed Sensing had begun a few years ago, it has been applied to 

problems in compressive imaging, video processing, medical imaging and wireless 

channel mapping. It is also used in the computer vision and graphics applications to 

solve problems in face recognition and light transport acquisition (Sen & Darabi, 

2009). 

 Academicians in different fields are developing practical applications of 

compressed sensing. Baraniuk and Kelly’s single-pixel camera which is built in 2006, 

uses an array of micro-mirrors to acquire a random sample of the incoming light 
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(Figure 2.5) (Baraniuk, 2007). Each mirror can be tilted in one of two directions, 

either to reflect the light toward the sensor or far away from it. Thus the light that the 

sensor receives is a weighted average of many distinct pixels, all combined into as 

one pixel. By taking k.log(n/k) measurements as snapshots, with a different random 

selection of pixels each time, the single-pixel camera is able to acquire a considerably 

recognizable picture (Mackenzie, 2009). 

 

Figure 2.5 The structure of the single-pixel camera. The “DMD” is the grid of micro-mirrors 

that reflect some parts of the incoming light beam toward the sensor randomly. Other parts of 

the image that are not reflected (the black squares) are diverted away. Each measurement made 

by the photodiode is a random combination of a great number of pixels (Mackenzie, 2009).  

 Sen and Darabi’s framework measures a subset of the pixels in the photograph 

and uses compressed sensing algorithms to reconstruct the entire image from this 

data. In this work, ROMP technique is used. Initially, the Fourier basis is used 

because the Fourier basis is incoherent with the point-sampling basis Φ (wavelets are 

not). This works well for artificially-sparsified images and is able to produce almost 

perfect reconstructions. However, when working with real images that are not 

sparsified, the algorithm fails, performing worse than bilinear interpolation. To 

overcome this problem an algorithm that performs considerably better than bilinear 

interpolation is developed. For this, a wavelet basis is used for compression, which 

offers increased sparsity. But, wavelets are not incoherent with point-samples. To 

reduce the coherence between Φ and Ψ, measurement process is changed to include 

an invertible filtering process before sampling (Sen & Darabi, 2009). 

 Ivan Lee’s work investigates the performance of weighted compressive video 

sensing, which brings the function of predicted frames and bi-directional predicted 
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frames in traditional video codecs to compressive video sensing. A masking disk 

simplifies coding of region-of-interest which can be managed both at the encoder and 

the decoder. Due to similarities between adjacent video frames, measurements can be 

reused to develop the reconstructed video quality. Instead of applying interpolation 

techniques, measurement in CS-domain is used at the decoder (Lee, 2011). 

 

 In another work, a new digital image/video camera that directly acquires 

random projections of signals without first acquiring the whole pixels/voxels is used. 

The camera employs a digital micromirror array to perform linear projections of an 

image onto random binary patterns. This significantly reduces the computation time 

and cost that is required intensively for video acquisition/encoding. 

 The camera takes streaming measurements of a video signal that can be 

recovered using CS techniques designed for either 2-D frame-by-frame reconstruction 

or joint 3-D reconstruction. 

 

Figure 2.6 (a) Frame 32 of a 64-frame video sequence (64x64 images of a disk moving, thereby 

262,144 3-D voxels). (b) CS frame-by-frame reconstruction by obtaining 20,000 total 2-D random 

projections. (c) Full 3-D video reconstruction by obtaining 20,000 3-D random projections (using 

CS and 3-D wavelets). (d) Result of using 3-D wavelets (Wakin et al. 2006). 

 It is seen in Figure 2.6 that 3-D reconstruction significantly outperforms 2-D 

frame-by-frame reconstruction, since a 3-D video wavelet transform is sparser than a 

union of 2-D image wavelet transforms (Wakin et al. 2006). 

 

 Compressed sensing has been used by medical imaging applications; also the 

theory is directly inspired by a problem in magnetic resonance imaging. MRI 
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scanners have conventionally been limited to imaging static structures over a short 

period of time, and the patient has been told to hold his or her breath. But, by treating 

the image as a sparse signal in space and time now, MRI scanners have overcome 

these limitations and produce images like a beating heart. Figure 2.7 shows how a CS 

reconstruction algorithm can provide a sharp image of the arteries in a patient’s leg 

even with 20 times less data than a conventional angiogram (Mackenzie, 2009). 

 

Figure 2.7 Images belonging to an angiogram. From bottom to top, the angiogram is increasingly 

undersampled by larger ratios. With a Shannon-Nyquist sampling strategy, the image degrades 

as the ratio of undersampling increases. With compressed sensing, the image remains very sharp 

even at 20-fold undersampling (Mackenzie, 2009). 
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 Kirolos et al. designed an analog-to-information converter (AIC) based on CS, 

which is used to sample signal at an information rate that is much lower than Nyquist 

rate (Kirolos et al. 2006). 

 In Lv and Wu’s CS based ultrasound imaging work, it is shown that the echo 

signal in time domain has a sparse representation and constructs basis functions based 

on waveforms. Also, it is utilized that AIC framework achieves sampling the echo 

signal with a low sampling rate and reconstructing the echo signal based on basis 

functions. Only 30% of data is used to implement ultrasound imaging without 

reducing the quality of image. The sampling rate of the raw data is 12 MHz normally, 

but the sampling rate 4 MHz is used in this method. The maximal error in amplitude 

is only about 2%. 

 

Figure 2.8 (a) The raw echo signal with sampling rate 12 MHz  (b) The reconstructed signal with 

sampling rate 4 MHz (Lv and Wu, 2012). 

 

 Functional MRI (fMRI) has been considerably accepted as a standard tool to 

learn the function of brain. However, because of the limited resolution of MR 

scanning, researchers have experienced difficulties in various studies which usually 

require higher resolution. 

 In Jung and Ye’s work, a new high spatio-temporal resolution fMRI technique 

based on compressed sensing theory is proposed. Functional MRI (fMRI) is a 
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technique to detect activated area in the brain by measuring the change of blood 

oxygen level-dependent (BOLD) contrast. However, since the change of BOLD 

signal is very small compared to full MR signal, scanning process must be quickly to 

prevent noisy signal due to subject motion or tissue pulsation. 

 The main contribution of this work is to apply compressed sensing based 

algorithm called k-t FOCUSS (Jung and Ye, 2009) to fMRI. To implement 

accelerated fMRI, 2-fold and 4-fold down sampled data are used and then the results 

are reconstructed by k-t FOCUSS. Thus high temporal resolution can be achieved 

through accelerated acquisition. 

 Also, Karhunen-Loeve transform (KLT) along temporal direction in k-t 

FOCUSS is used in this work and it outperforms other implementations in fMRI 

applications due to its adaptiveness of temporal variation. Unlike the Fourier 

transform, KL transform is a data dependent transform. The KLT is the optimal 

energy compaction transform and that most of the energy is compacted in a small 

number of coefficients, which is an ideal property for CS. k-t FOCUSS using KLT 

shows the best accuracy and better performance in both accelerations. 
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Figure 2.9 Activated brain areas for various methods and acceleration ratio. (SW: Sliding 

Window, ME/MC: Motion Estimation/Compensation) (Jung and Ye, 2009). 

 

 A media hash is a content-based representation of a digital multimedia signal. 

In Kang et al.’s work, the property of dimensionality reduction inherent in CS is used 

for image hash design. CS based hash size can be small and this method is 

computationally secure. 

 A robust and secure image hashing scheme via CS and visual information 

fidelity (VIF) exploits low-complexity hash extraction, it means that the hash can be 

simultaneously extracted while acquiring an image using the CS single-pixel imaging 

camera and short hash length, by means of coming from the highly sparse signal 

dimensionality reduction capability of CS. 

 An image quality assessment, called visual information fidelity (VIF), ranged 

from 0 to 1, is used. To quantify the visual quality of a distorted image, this is an 

image information measure that quantifies the information presented in its original 

version and how much of this information can be extracted from the distorted image. 

VIF models images in the wavelet domain which has been shown to be translation 

and rotation invariant. 

 For hash extraction, given an m×n sampling matrix Φ, controlled by a secret 

key S, x is randomly projected to a measurement vector with size M. For a received 

image x’ to be authenticated, the same hash extraction process with the same key is 

applied. To compare two image hash vectors also the MSE between them is 

calculated besides VIF. 
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Figure 2.10 Hashing schema (Kang et al. 2009). 

 

 Some applications of compressed sensing are completely outside the area of 

imaging. One example is “analog to digital conversion,” a fundamental subject of 

wireless communications. For instance, the CDMA (Code Division Multiple Access) 

cell phone takes a voice message, which contains sound frequencies up to 4096 hertz, 

and spreads it out with hundreds of thousands of hertz. The signal is sparse because it 

contains only the information that is compressed using 4096 hertz. So a detector that 

uses compressed sensing can recover the signal more rapidly than a detector based on 

Shannon’s theorem (Mackenzie, 2009). 
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3 BRDF (Bidirectional Reflectance Distribution Function) 

 Real world materials have different reflection properties. Exact representation 

of the distribution of light reflected from the surface of a material has long been 

studied in computer graphics. Bidirectional Reflectance Distribution Function 

(BRDF) that is defined in terms of incoming and outgoing light directions is 

commonly used to describe such reflectance properties. BRDF is a function of four 

parameters: two parameters are for incoming light direction, two other parameters are 

for outgoing light direction.  

 

Figure 3.1 Four angles to describe a BRDF (Matusik et al. 2003). 

 a) Isotropic BRDFs 

 Isotropic BRDFs are used for materials for which rotations around surface 

normal makes no difference for BRDF reflectance values. In this case BRDF can be 

written as a function of three parameters. The parameters Φi and Φo can be replaced 

by one parameter Φdiff = (Φi – Φo). 

 b) Anisotropic BRDFs 

 Anisotropic surfaces cannot be modeled using isotropic BRDFs. Brushed or 

burnished metals, hair or some fabrics are examples of anisotropic surfaces. 

Anisotropic surfaces have microgeometry with oriented elements. An observer 

usually doesn’t see the microstructure, but instead see its effect on the reflected light.  
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3.1 Properties of BRDFs 

 a) Non-negativity 

 All values of a BRDF must be non-negative. In other words, they can be any 

value in the interval (0, ∞). 

 b) Energy Conservation 

 The amount of energy that is received by the surface from some specific 

direction must be greater than the sum of the energy emitted by the surface to all 

possible directions. 

 c) Reciprocity 

 The surface reflectance should be independent of the direction of the light flow; 

it means that if the light direction is reversed the value of the BRDF should be the 

same. 

3.2 Analytic reflectance models 

 Physically based analytic reflectance models or empirical analytic reflectance 

models generate the BRDFs used in computer graphics and computer vision. These 

BRDF models are only approximations of reflectance of real world materials. Also, 

most analytic reflectance models are successful for only particular subclasses of 

materials. These models have improved over the years to become more complex, 

consisting of more underlying physics (Matusik, 2003).  

 The well-known, simple and former reflectance model which shows the effects 

of specular reflection is the Phong model. For specular surfaces, this model assumes 

that incoming light tries to leave the surface on the direction of perfect reflection. 

Blinn developes a model that relies on the Phong model and since it uses the halfway 

direction it provides faster computation.  
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 The Fresnel effect (increase in specularity at grazing angles) and the microscale 

geometry of a surface are necessary properties for BRDF modeling. Cook and 

Torrance, Torrance and Sparrow and Ashikhmin et al. have presented BRDF models 

based on surfaces made up of small planar microfacets. The Cook-Torrance and 

Torrance-Sparrow models are physically-based models. Only Ashikhmin et al. is an 

empirical model. These models have masking and self-shadowing effects. A 

comprehensive and computationally expensive model was developed by He et al., 

also Oren and Nayar presented a diffuse model to simulate rough and diffuse 

surfaces.  

 As opposed to the physically-based BRDF models, empirical models do not 

consider the physical basis of the light-material interaction. Ward developes an 

empirical model  that has most important reflection concepts. His model adapts the 

basics of physical laws (like energy conservation and reciprocity) and it is relatively 

simple than most analytical reflectance models (Ward, 1992).  

3.3 Fitting BRDF Data to Analytical Models 

 An alternative to analytic reflectance models is to directly measure values of the 

BRDF for different incoming and outgoing angles and then fit the measured data to a 

selected analytic model using various optimization techniques. There are some 

drawbacks to this measure-and-fit approach. First, measured values of the BRDF are 

usually not equal to the values of the analytic model. The measure-and-fit process is 

often operated by assuming that there is noise in the measurement process and that 

the fitting process filters out this noise. Second, the choice of the error function which 

the optimization process uses is very important. For example, error function based on 

the Euclidean distance is poor since it tends to overemphasize the specular peaks and 

ignore the off-specular reflection. Finally, there is no guarantee that the optimization 

process will do the best. Since most BRDF models are non-linear, the optimization 

phase used in the fitting process relies excessively on the initial guess for the model 

parameters. The quality of the initial guess can have an outstanding effect on the final 

parameter values of the model (Matusik, 2003).  
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3.4 BRDF Measurement 

 The third approach for reflectance modeling is to obtain dense measurements of 

reflectance and use these measurements directly as a BRDF. This method preserves 

the elaborateness of the reflectance function that is lost in a data-fitting approach. The 

classical device for measuring a BRDF is the gonio-reflectometer, which consists of a 

photometer and light source that are moved around a surface sample under computer 

control. Such devices measure a single radiance value at a time and this work makes 

this process very time-consuming. There have been attempts to make this acquisition 

process more productive by measuring many BRDF samples at once. This can be 

realized by using a digital camera and mirrors or spherical samples of the material. 

The method of using tabulated BRDFs becomes more expensive if the reflectance for 

all materials in a scene needs to be measured and stored. Also, since it is not a 

parameterized reflectance model, any change to the material property forces to 

finding a real material and acquiring its reflectance. The main advantage of these 

methods is they produce very realistic results, since acquired BRDFs come from real 

measured data (Matusik, 2003).  

 One of the most well-known BRDF database is the MERL MIT database. Data 

in the MERL MIT database have been acquired by Matusik et al. An image from 

Matusik et al.’s measurement system can be seen in Figure 3.2 The MERL MIT 

database consists of 100 different isotropic BRDF measurements (using 90 * 90 * 

180 = 1 458 000 measurements for each material) (Kurt, 2014). Materials in this 

library contain metals, paints, fabrics, minerals, synthetics, organic materials, and 

others. A data-driven approach is introduced for BRDF modeling. It 

interpolates/extrapolates new BRDFs from the sample BRDF data. With this 

approach, the produced BRDFs look very realistic since they are based on the 

measured BRDFs. Furthermore, a set of intuitive parameters are provided to allow 

users to change the properties of the output BRDF (Matusik et al. 2003).  
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 Dana et al. develop a system to measure BRDFs. Using a digital camera, a 

robot arm, and a light source, they obtain approximately 200 reflectance 

measurements with varying incident and reflected angles for each material sample. 

The data for about 61 materials is available as the CUReT database (Figure 3.4). It 

has a relatively sparsely sampled BRDF.  

Figure 3.3 Pictures of the 100 acquired 

materials from Matusik BRDF Database 

(Matusik et al., 2003). 

Figure 3.2 BRDF Measurement system of 

Matusik et al. The system is placed in a 

completely isolated room painted in black matte 

(Matusik et al., 2003). 
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Figure 3.4 CUReT dataset (2007). 61 materials are used in BRDF measurements. 

 One of the first methods to accelerate the measurement process is found by 

Ward. His measurement device consists of a hemispherical mirror and a CCD camera 

with a fisheye lens. The most important advantage of his system is that the CCD 

camera can take multiple, simultaneous BRDF measurements. Each photosite of the 

imaging sensor includes a separate BRDF value. Measurement of BRDFs is carried 
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out by moving the light source and material over all incident angles. But, 

measurement of BRDF values near grazing angles is very difficult; so very specular 

BRDFs cannot be measured correctly.  

 Marschner et al. set up another known BRDF measurement system. The optical 

mirrors used by Ward and Dana to collect rays from different directions are replaced 

by two cameras, a light source, and a test sample. (Figure 3.5) Each point on the 

surface with a different surface normal represented a different BRDF measurement 

value. This system uses a spherical sample of isotropic material. A fixed camera took 

images of the sample under illumination with a rotating light source. The system, 

although set up for only isotropic BRDF measurements, it is fast and robust. Lu et al. 

use a similar imaging device with a cylindrical sample to measure the anisotropic 

BRDF of velvet (Matusik, 2003).  

 

Figure 3.5 BRDF Measurement system of Marschner et al (Marschner et al. 2000). 

3.5 Problems Associated with BRDF Measurements 

 Unfortunately, sufficient amount of BRDF data are difficult to obtain and 

measurements often have low angular resolution. On the other hand, the BRDF data 

obtained in this way is generally noisy and contains some missing values due to some 

difficulties in measuring BRDF near grazing angles (Rusinkiewicz, 1997). BRDF 

measuring systems suffer from occlusion problems because of using cameras, 

projectors and mirrors. In such cases, obtaining all BRDFs over a full hemisphere 

may not be possible and measurements taken at certain angles may be very noisy and 
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cannot be used for rendering. A solution for handling this problem may be ignoring 

the missing or highly noisy measurements and fit an analytical model to the 

remaining part of the data (Ngan et al. 2005).  

 In some other cases the optical elements of the system do not allow 

measurements at certain positions resulting considerable amount of missing data 

(Matusik et al. 2003). Experimental results have shown that approximately 60-70% of 

the measurements taken at grazing angles and 10-15% of the measurements at normal 

angles contain some errors (Lawrence, 2004). Furthermore, Romerio et. al. (2008) 

have mentioned about the existence of lens flare artifacts in BRDF measurements. 

3.6 Reflectance Representations 

 The dense dimensionality of a BRDF, because of the desire to sample it at high 

resolutions, leads to sampling and storage problems. So, many researchers have 

searched for a more appropriate basis for representing BRDFs. As a result, various 

BRDF representations have been developed. Westin et al. proposed spherical 

harmonics to store their BRDF data. Schroeder et al. used spherical wavelets to 

represent a part of the BRDF. Lalonde and Fournier used wavelet decomposition 

process and wavelet coefficient trees to represent BRDFs. The main advantage of 

wavelets is that they allow performing local analysis. Other representations are 

Zernicke polynomials, separable approximations obtained using singular value 

decomposition and non-negative matrix factorization (Matusik, 2003). Empirical 

results have shown that these techniques can provide a correct and compact 

representation of BRDF data but do not offer an efficient importance sampling 

(Lawrence, 2004). 

3.7 An Alternative Data Representation 

 The natural coordinate system (i, o, Φdiff) for isotropic BRDFs requires very 

dense angular sampling for representing specular peaks accurately (Matusik et al. 

2003). Even when getting BRDF data at a dense grid (for example 1° spacing for 

each dimension), desired images cannot be get because of the specular highlights 

become an oval shape, oriented at different directions. 
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 In order to prevent these sampling problems, a different coordinate system, 

introduced by Rusinkiewicz (1997) and illustrated in Figure 3.6 is used. This 

coordinate system is based on the half-angle (half-vector between incoming and 

outgoing directions) concept. The half-angle defines an ideal surface normal for 

which a mirror surface would reflect all of the incoming light in the specified 

outgoing direction. (Matusik, 2003).  

 

Figure 3.6 The standard coordinate system is shown on the left. Rusinkiewicz's coordinate 

system is shown on the right (Matusik et al. 2003). 

 Ngan et al. have validated that BRDF models, which include Fresnel term, can 

represent the measurements at grazing angles and normal incidence angles more 

accurately than other models (Ngan et al. 2005). For example, Ashikhmin-Shirley, 

Cook-Torrance and Kurt BRDF models contain Fresnel terms. So, these BRDF 

models usually give better results than Ward and Ward- Duer BRDF models which 

do not include any Fresnel term (Kurt, 2014).  

 Lawrence et al.’s BRDF representation uses a Non-negative Matrix 

Factorization based algorithm for compression and it’s also appropriate for efficient 

BRDF importance sampling (2004). Öztürk et al.’s (2010) BRDF model is based on 

Rusinkiewicz coordinate system and uses Copula distributions. Bilgili et al.’s (2011) 

factored BRDF representation uses a Tucker-based factorization algorithm to 

represent measured BRDF data and it presents an efficient BRDF importance 

sampling. However, none of these data-driven BRDF representations can use noisy, 

sparse and irregular measurements successfully. So, these improper measurements 
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need to be preprocessed before they can be represented with a data-driven based 

representation (Kurt, 2014). 

 

Figure 3.7 Rendered teapots using BRDFs from Matusik’s database: Nickel, hematite, gold paint 

and pink fabric (Matusik et al. 2003). 

 

Figure 3.8 A visual and PSNR comparisons of some well-known BRDF representations on the 

Princeton scene (Kurt, 2014). 
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Figure 3.9 Based on BRDF modeling, photo-realistic renderings are generated for metallic car 

paint (Rump et al. 2008).  
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4 COMPRESSED SAMPLING AND BRDF DATA 

 In this work, it is showed that the Compressed Sampling technique can be used 

effectively for the data sets having some missing measurements. Also, it provides 

compression for large data sets. The BRDF data obtained is generally noisy and 

contains some missing observations due to some difficulties in measuring BRDF. 

Another major difficulty of using the BRDF data is its large size. These limitations 

prevent the direct use of the measured data (Matusik et al. 2003).   

4.1 Reconstruction of Brdf Values 

 For the first trials, using fabric-pink material with parameters of a BRDF model 

(Blinn-Phong), within 0-2π interval 4000 values were calculated, then by using 30% 

of them, CS reconstruction process was realized. (For sampling matrix random 

permutation matrix and for basis matrix Fourier matrix were used) (norm(Original-

Reconstructed)/norm(Original) = 3.0732e-006)  

 

Figure 4.1 Left: Presentation of calculated BRDF values, Right: After CS reconstruction using 

30% of BRDF values, acquired BRDF values. 

 In another trial, using dark-red-paint material, from its 90*90*180 dimensional 

BRDF data, any 15*15*15 dimensional data was taken, then by using 30% of them, 

CS reconstruction process was realized. (For sampling matrix random permutation 

matrix and for basis matrix Fourier matrix were used) (norm(Org-Rec)/norm(Org) = 

0.0082) 
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 Essentially, the three dimensional data (from MERL database each with size 90 

x 90 x 180) is divided into sub-sample blocks of size 15 x 15 x 15 and then it is 

vectorized into a one-dimensional vector. Random samples are generated from these 

sub-samples at a predefined sampling ratio.  

 A number of sampling methods have been proposed for reconstructing signal 

data (Candès et al. 2006). Unfortunately, these methods cannot be applied on BRDF 

data directly when the vector x contains some missing data points, then the 

corresponding dot product between the rows of the Gaussian matrix Φ and x cannot 

be determined.  

 By Gaussian matrix (for instance): 
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 To overcome this difficulty, it is preferred using a different sampling procedure 

namely point sampling which is based on using a permutation matrix instead of a 

random Gaussian matrix.  

 By Permutation matrix (Point Sampling - for instance): 
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 It is shown that the permutation matrices are coherent with the basis matrices 

which produce highly sparse data like the ones that are based on wavelets (Sen & 

Darabi, 2011). However, Fourier basis matrices are incoherent with permutation 

matrices. So, in this work, an n x n basis matrix Ψ is used whose entries are obtained 

through Fourier transforms.  

 The permutation matrix which consists of zeros and ones are provided by 

generating random numbers from a Bernoulli distribution for a specified probability. 

If a value of vector x is missing or negative, its corresponding column on the 

permutation matrix have all zero values. Thus, the matrix y doesn’t become 

corrupted. 

4.2 Reconstruction of Sampled Real BRDF Data 

 In this work, the non-linear optimization algorithm – SPGL1 (Van den Berg 

and Friedlander, 2011) is used for l1-norm optimization in reconstruction process. 

 To investigate the effect of the sampling ratio on the visual quality of the 

reconstructed images, random samples with ratios 1%, 2.5%, 5%, 10%, 25% and 50% 

are generated from six different materials namely dark-red-paint, green-fabric, blue-

metallic-paint, gold-paint, fruitwood-241, chrome-steel are chosen. These materials 

are chosen to reflect the diffuse, glossy and specular properties of reflection.  

 Peak-Signal-to-Noise-Ratio (PSNR) values between original and reconstructed 

images are calculated for different sampling rates. 

              
  

   
  

(4.3) 

R = 255 for 8-bit data 

MSE = Mean Squared Error 
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Table 4.1 PSNR Results of Reconstruction of BRDF Data of Selected Six Materials 

 1% 2.5% 5% 10% 25% 50% 

Dark-red-paint 42.44 44.64 45.89 46.70 46.91 46.93 

Green-fabric 44.89 48.29 48.85 49.20 49.34 49.34 

Blue-metallic-paint 40.37 45.41 46.75 47.07 47.12 47.13 

Gold-paint 40.51 43.41 44.62 45.24 45.40 45.38 

Fruitwood-241 37.51 39.30 41.87 45.31 46.51 46.64 

Chrome-steel 18.49 18.31 22.62 26.78 35.08 36.63 

 Original and reconstructed images and associated PSNR values for these six 

materials are seen in Appendix-1. 

 As it is seen in Table 4.1, 5% ratio is readily sufficient for diffuse and glossy 

materials on the average; but for specular materials especially for chrome-steel 

material, even 10% ratio is not sufficient. The reason of this situation is chrome-steel 

material’s data has more irregular values and these irregular values cause lighting 

artifacts. This situation can be seen in Figure 4.2. 

 
  Chrome-steel   

(original) 

 
Ratio: 1% 

PSNR: 18.49 dB 

 
Ratio: 2.5% 

PSNR: 18.31 dB 

 
Ratio: 5% 

PSNR: 22.62 dB 

 

 
Ratio: 10% 

PSNR: 26.78 dB 

 
Ratio: 25% 

PSNR: 35.08 dB 

 
Ratio: 50% 

PSNR: 36.63 dB 
Figure 4.2 Results of various sampling ratios for chrome-steel material. Images have lighting 

artifacts even at 10% sampling ratio. 
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 Some data sets contain irregular values as a result of certain measurement 

errors. To correct this situation, log transformation of the BRDF measurements is 

used to preserve the underlying property of BRDF data and straighten the irregular 

data values. After reconstruction the log transformation is reversed. 

Table 4.2 PSNR Results of Reconstruction of BRDF Data of The Same Six Materials Using Log 

Transformation 

 1% 2.5% 5% 10% 25% 50% 

Dark-red-paint 45.04 49.54 51.46 52.33 52.48 52.91 

Green-fabric 45.72 50.62 51.83 52.49 52.72 52.76 

Blue-metallic-paint 41.58 47.58 51.71 52.51 52.62 52.64 

Gold-paint 43.01 48.42 51.22 51.90 52.01 52.02 

Fruitwood-241 41.68 44.73 50.26 51.82 52.11 52.15 

Chrome-steel 26.92 35.36 43.20 47.20 48.86 48.99 

 As it is seen in Table 4.2 and Figure 4.3, using Log Transformation provides 

considerably successful results. 

 Original and reconstructed images and associated PSNR values Using Log 

Transformation for these six materials can be seen in Appendix-2. 

 
  Chrome-steel   

(original) 

 
Ratio: 1% 

PSNR: 26.92 dB 

 
Ratio: 2.5% 

PSNR: 35.36 dB 

 
Ratio: 5% 

PSNR: 43.20 dB 

 

 
Ratio: 10% 

PSNR: 47.20 dB 

 
Ratio: 25% 

PSNR: 48.86 dB 

 
Ratio: 50% 

PSNR: 48.99 dB 
Figure 4.3 Results of various sampling ratios for chrome-steel material after using Log 

Transformation. Images don’t have lighting artifacts beginning from 5% sampling ratio. 
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 As it is seen in Table 4.2 and Figure 4.4, only 5% ratio is sufficient for all 

material types and PSNR values are above 40 dB. With log transformation, PSNR 

values are increased obviously. Therefore, log transformation method is used in all 

reconstructions after this. 

 

Figure 4.4 Above 0.05 ratio for all materials have sufficient PSNR values. 

 After all, for randomly selected 24 isotropic materials from MERL database 

using 5% of the BRDF measurements, data are reconstructed. PSNR values are given 

on Table 4.3 for each material.  

Table 4.3 PSNR Results of Reconstruction of Using 5% of BRDF Data of 24 Sample Materials  

 5%  5% 

alum-bronze 46.54 hematite 45.51 

aventurnine 47.52 ipswich-pine-221 50.65 

beige-fabric 51.96 natural-209 49.78 

black-obsidian 42.75 nylon 45.06 

black-oxidized-steel 51.02 pearl-paint 51.51 

black-soft-plastic 52.27 pickled-oak-260 51.58 

blue-rubber 51.34 pink-jasper 48.89 

cherry-235 51.14 polyethylene 46.31 

colonial-maple -223 51.10 pure-rubber 51.95 

delrin 48.63 pvc 48.59 

gray-plastic 48.75 white-acrylic 49.04 

green-acrylic 41.83 yellow-phenolic 49.76 
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 Reconstructed images and difference images (in insets) and associated PSNR 

values for these 24 materials can be seen in Appendix-3. Insets indicate the 

differences between the reconstructed image and the corresponding original image. 

 After these successful PSNR results, to see the 2.5% ratio results for previous 

24 materials and additional randomly selected 10 isotropic materials from MERL 

database, BRDF data are reconstructed and calculated PSNR values are given on 

Table 4.4 for each material.  

Table 4.4 PSNR Results of Reconstruction of Using 2.5% and 5% of BRDF Data of 34 Sample 

Materials 

 
2.5% 5% 

 
2.5% 5% 

alum-bronze  38.68 46.54 pickled-oak-260  48.91 51.58 

aventurnine  38.27 47.53 pink-jasper  41.96 48.89 

black-obsidian  33.17 42.75 polyethylene  42.81 46.31 

black-oxidized-steel  46.94 51.01 pure-rubber  49.61 51.95 

black-soft-plastic  50.34 52.27 pvc  41.63 48.59 

blue-rubber  47.71 51.34 white-acrylic  42.41 49.04 

cherry-235  47.82 51.15 yellow-phenolic  42.91 49.76 

colonial-maple -223  47.38 51.11 alumina-oxide  38.02 44.97 

gray-plastic  42.78 48.77 aluminium  34.69 45.54 

green-acrylic  35.45 41.83 brass  34.80 45.58 

hematite  33.90 45.51 gold-metallic-paint2  39.37 47.75 

delrin  44.62 48.63 green-latex  48.86 51.37 

beige-fabric  49.22 51.96 green-plastic  37.33 47.22 

ipswich-pine-221  46.28 50.66 nickel  37.75 47.09 

natural-209  45.53 49.79 pink-fabric  49.53 51.92 

nylon  41.11 45.06 red-metallic-paint  35.22 46.18 

pearl-paint  47.90 51.50 violet-acrylic  37.79 47.12 
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 Compressive sensing approach produces visually acceptable quality for all 

material types by sampling 5% of the original data. Also, for most of the materials – 

26 in total 40 materials (especially diffuse and glossy materials) only 2.5% has 

sufficient PSNRs (over 40) and consequently adequate visual quality.  

 Original and reconstructed images acquired using 5% and 2.5% reconstruction 

ratios and associated PSNR values for these 34 materials can be seen in Appendix-4. 

 An example using 5% sampling ratio for two materials from MERL database is 

seen in Figure 4.5. 

 

 

Figure 4.5 A sample scene has been rendered using alum-bronze and blue-metallic-paint 

materials. Top: Image based on the original data. Bottom: Image based on the reconstructed 

data using only 5% of the original data (PSNR is 51.63 dB). 
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5 CS AND BRDF DATA OF ANALYTIC REFLECTANCE MODELS  

 In both the fields of computer graphics and computer vision, surface reflectance 

has been approximated frequently with analytic reflectance models. These BRDF 

models produce similarities of reflectance of real materials. Also, most analytic 

reflectance models are usually limited to represent only particular subclasses of 

materials.  

 In this work, Ward and Cook-Torrance BRDF models that are extensively used 

are selected and BRDF data for various materials are constructed using these models 

respectively. 

5.1 Ward Model 

 The Ward model is based on Gaussian distribution. It is simple and can be 

evaluated efficiently. Also it supports energy conservation and reciprocity properties 

of BRDF. The Ward model includes anisotropy, but it does not model Fresnel effects. 

 

 

    

where kd is the diffuse reflectance coefficient; ks is the specular reflectance 

coefficient; α is the standard deviation of surface slope.  

(5.1) 
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5.2 Reconstruction of BRDF Data Obtained by Ward Model 

 For 40 materials that are selected previously, using their Ward parameters, 

BRDF values are calculated and filled in a 90*90*180 matrix. And then using only 

2.5% of each data, BRDF data are reconstructed and calculated PSNR values are 

listed on Table 5.1 for each material. Only for 5 specular materials, PSNR values are 

a little bit low, so for these materials reconstruction process is realized again using 

5% of data, PSNR values are on the same table. 

Table 5.1 PSNR Results of Reconstruction of BRDF Data Obtained by Ward Analytic Model 

 2.5% 5%  2.5% 5% 

alum-bronze 45.85  pickled-oak-260 50.52  

aventurnine 44.41  pink-jasper 48.26  

black-obsidian 45.40  polyethylene 51.50  

black-oxidized-steel 49.71  pure-rubber 51.73  

black-soft-plastic 50.93  pvc 46.80  

blue-rubber 51.38  white-acrylic 49.26  

cherry-235 48.97  yellow-phenolic 47.26  

colonial-maple -223 49.36  alumina-oxide 46.83  

gray-plastic 47.71  aluminium 40.27 47.08 

green-acrylic 45.64  brass 40.55 46.97 

hematite 38.30 45.62 gold-metallic-paint2 46.10  

delrin 51.42  green-latex 52.18  

beige-fabric 52.22  green-plastic 44.44  

ipswich-pine-221 48.28  nickel 38.41 46.65 

natural-209 47.17  pink-fabric 50.84  

nylon 50.74  red-metallic-paint 44.03  

pearl-paint 49.17  violet-acrylic 46.74  

blue-metallic-paint 48.60  chrome-steel 40.63 47.26 

dark-red-paint 51.00  fruitwood-241 47.11  

gold-paint 44.86  green-fabric 52.07  

 Reconstruction using Compressive sensing of BRDF Data obtained by Ward 

Analytic model produces visually acceptable quality and sufficient PSNR values for 
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approximately all material types by sampling only 2.5% of the original data. Also the 

results are better than the reconstructions of Matusik’s Measured BRDF Data. 

 Original and reconstructed images acquired using 5% and 2.5% reconstruction 

ratios and associated PSNR values for these 40 materials can be seen in Appendix-5. 

5.3 Cook-Torrance Model 

 According to the Cook-Torrance model, the surface is composed of tiny, 

perfectly reflective, smooth microfacets oriented at different directions. The facets are 

considered to be V-shaped. This model takes into account an average Fresnel term. 

The orientation of the facets has a distribution. 

 

where kd, ks are diffuse and specular reflectance coefficients; F is the Fresnel factor; 

D is the microfacet distribution function; and G is the geometrical attenuation factor.  

5.4 Reconstruction of BRDF Data Obtained by Cook-Torrance Model 

 For 40 materials that are selected previously, using their Cook-Torrance 

parameters, BRDF values are calculated and filled in a 90*90*180 matrix. And then 

using only 2.5% of each data, BRDF data are reconstructed and calculated PSNR 

values are listed on Table 5.2 for each material. But for most materials, PSNR values 

are low (less than 40), so for all materials, reconstruction process is realized again 

using 5% of data, and then for 9 materials which PSNR values are low again, BRDF 

data is reconstructed using 10% of data and PSNR values are on the same table. 

  

   (4.5) 
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Table 5.2 PSNR Results of Reconstruction of BRDF Data Obtained by Cook-Torrance Analytic 

Model 

 2.5% 5% 10%  2.5% 5% 10% 

alum-bronze 33.53 39.39 43.81 pickled-oak-260 38.93 46.12  

aventurnine 32.37 41.96  pink-jasper 34.58 42.76  

black-

obsidian 

32.17 44.45  polyethylene 39.62 49.04  

black-

oxidized-steel 
32.76 44.46  pure-rubber 38.77 48.64  

black-soft-

plastic 

35.84 47.53  pvc 32.52 37.19 44.46 

blue-rubber 34.83 45.95  white-acrylic 35.55 40.97  

cherry-235 31.16 41.94  yellow-phenolic 34.33 43.80  

colonial-maple 

-223 
31.35 40.68  alumina-oxide 37.93 39.39 42.71 

gray-plastic 32.85 42.75  aluminium 32.85 36.89 45.04 

green-acrylic 33.70 40.10  brass 31.87 34.96 44.74 

hematite 30.54 33.74 45.35 gold-metallic-

paint2 

33.05 42.14  

delrin 34.78 44.47  green-latex 42.29 50.53  

beige-fabric 41.79 50.84  green-plastic 36.98 39.87 44.51 

ipswich-pine-

221 

30.12 41.19  nickel 32.12 38.12 44.98 

natural-209 30.92 40.77  pink-fabric 42.22 49.23  

nylon 35.00 42.16  red-metallic-paint 33.98 42.67  

pearl-paint 36.50 45.96  violet-acrylic 33.25 42.48  

blue-metallic-

paint 
34.51 46.00  chrome-steel 32.10 36.58 45.43 

dark-red-

paint 

38.28 47.41  fruitwood-241 30.46 41.93  

gold-paint 35.53 44.68  green-fabric 36.89 49.39  

 Reconstruction of BRDF Data obtained by Cook-Torrance Analytic model with 

2.5%, for most materials, PSNR values are low. But 5% ratio produces visually 

acceptable quality and sufficient PSNR values for most materials. Only for 9 

materials which PSNR values are low with 5%, BRDF data is reconstructed using 

10% of data. PSNR results are good for these 9 specular materials with 10% ratio.  

 Original and reconstructed images acquired using 2.5%, 5% and 10% 

reconstruction ratios and associated PSNR values for these 40 materials can be seen 

in Appendix-6. 
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6 CONCLUSION 

 In this work, the use of Compressed Sampling technique to realize a procedure 

for processing large BRDF data is analyzed. In data reconstruction, Compressive 

Sampling can be more efficient than traditional sampling when data is sparse. 

Considering the fact that the BRDF data often can be highly sparse, it can be 

reconstructed efficiently using Compressed Sampling technique. It is proved that the 

proposed technique can also be used for the data sets having some missing or 

unreliable measurements. Using BRDF measurements of numerous isotropic 

materials, it is shown that high quality images can be reconstructed and high PSNR 

values can be obtained at very low sampling ratios for both diffuse and glossy 

materials. Similar results also are obtained for the specular materials at slightly higher 

sampling ratios. 

 Also in this work, using Ward and Cook-Torrance BRDF models, BRDF data 

are acquired for various materials using these models respectively. Reconstruction 

using Compressed sampling of BRDF Data obtained by Ward Analytic model 

produces visually acceptable quality and sufficient PSNR values for approximately 

all material types by sampling only 2.5% of the original data. Reconstruction of 

BRDF Data obtained by Cook-Torrance Analytic model with 2.5%, for most 

materials, PSNR values are low. But 5% ratio produces visually acceptable quality 

and sufficient PSNR values for most materials. 

 Modeling and representation of anisotropic data is difficult. Much more data 

acquisition is needed for this case as compared with isotropic materials. The proposed 

approach can be extended to BRDF reconstruction of images for anisotropic materials 

later on. 

 In this thesis work, applications are developed in Matlab application 

development environment and using script language of Matlab. 
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APPENDIX – 1  Original and reconstructed images and associated PSNR values 

for selected six materials 

 
Dark-red-paint 

(original) 

 
Ratio: 1% 

PSNR: 42.44 dB 

 
Ratio: 2.5% 

PSNR: 44.64 dB 

 
Ratio: 5% 

PSNR: 45.89 dB 

 

 
Ratio: 10% 

PSNR: 46.70 dB 

 
Ratio: 25% 

PSNR: 46.91 dB 

 
Ratio: 50% 

PSNR: 46.93 dB 

 

 
Green-fabric 

(original) 

 
Ratio: 1% 

PSNR: 44.89 dB 

 
Ratio: 2.5% 

PSNR: 48.29 dB 

 
Ratio: 5% 

PSNR: 48.85 dB 

 

 
Ratio: 10% 

PSNR: 49.20 dB 

 
Ratio: 25% 

PSNR: 49.34 dB 

 
Ratio: 50% 

PSNR: 49.34 dB 

 

 
Blue-metallic-paint 

(original) 

 
Ratio: 1% 

PSNR: 40.37 dB 

 
Ratio: 2.5% 

PSNR: 45.41 dB 

 
Ratio: 5% 

PSNR: 46.75 dB 
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Ratio: 10% 

PSNR: 47.07 dB 

 
Ratio: 25% 

PSNR: 47.12 dB 

 
Ratio: 50% 

PSNR: 47.13 dB 

 

 
Gold-paint  

(original) 

 
Ratio: 1% 

PSNR: 40.51 dB 

 
Ratio: 2.5% 

PSNR: 43.41 dB 

 
Ratio: 5% 

PSNR: 44.62 dB 

 

 
Ratio: 10% 

PSNR: 45.24 dB 

 
Ratio: 25% 

PSNR: 45.40 dB 

 
Ratio: 50% 

PSNR: 45.38 dB 

 

 
Fruitwood-241  

(original) 

 
Ratio: 1% 

PSNR: 37.51 dB 

 
Ratio: 2.5% 

PSNR: 39.30 dB 

 
Ratio: 5% 

PSNR: 41.87 dB 

 

 
Ratio: 10% 

PSNR: 45.31 dB 

 
Ratio: 25% 

PSNR: 46.51 dB 

 
Ratio: 50% 

PSNR: 46.64 dB 
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  Chrome-steel   

(original) 

 
Ratio: 1% 

PSNR: 18.49 dB 

 
Ratio: 2.5% 

PSNR: 18.31 dB 

 
Ratio: 5% 

PSNR: 22.62 dB 

 

 
Ratio: 10% 

PSNR: 26.78 dB 

 
Ratio: 25% 

PSNR: 35.08 dB 

 
Ratio: 50% 

PSNR: 36.63 dB 
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APPENDIX – 2  Original and reconstructed images and associated PSNR values 

Using LogTransformation for selected six materials 

 
Dark-red-paint 

(original) 

 
Ratio: 1% 

PSNR: 45.04 dB 

 
Ratio: 2.5% 

PSNR: 49.54 dB 

 
Ratio: 5% 

PSNR: 51.46 dB 

 

 
Ratio: 10% 

PSNR: 52.33 dB 

 
Ratio: 25% 

PSNR: 52.48 dB 

 
Ratio: 50% 

PSNR: 52.91 dB 

 

 
Green-fabric 

(original) 

 
Ratio: 1% 

PSNR: 45.72 dB 

 
Ratio: 2.5% 

PSNR: 50.62 dB 

 
Ratio: 5% 

PSNR: 51.83 dB 

 

 
Ratio: 10% 

PSNR: 52.49 dB 

 
Ratio: 25% 

PSNR: 52.72 dB 

 
Ratio: 50% 

PSNR: 52.76 dB 

 

 
Blue-metallic-paint 

(original) 

 
Ratio: 1% 

PSNR: 41.58 dB 

 
Ratio: 2.5% 

PSNR: 47.58 dB 

 
Ratio: 5% 

PSNR: 51.71 dB 
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Ratio: 10% 

PSNR: 52.51 dB 

 
Ratio: 25% 

PSNR: 52.62 dB 

 
Ratio: 50% 

PSNR: 52.64 dB 

 

 
Gold-paint  

(original) 

 
Ratio: 1% 

PSNR: 43.01 dB 

 
Ratio: 2.5% 

PSNR: 48.42 dB 

 
Ratio: 5% 

PSNR: 51.22 dB 

 

 
Ratio: 10% 

PSNR: 51.90 dB 

 
Ratio: 25% 

PSNR: 52.01 dB 

 
Ratio: 50% 

PSNR: 52.02 dB 

 

 
Fruitwood-241  

(original) 

 
Ratio: 1% 

PSNR: 41.68 dB 

 
Ratio: 2.5% 

PSNR: 44.73 dB 

 
Ratio: 5% 

PSNR: 50.26 dB 

 

 
Ratio: 10% 

PSNR: 51.82 dB 

 
Ratio: 25% 

PSNR: 52.11 dB 

 
Ratio: 50% 

PSNR: 52.15 dB 
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  Chrome-steel   

(original) 

 
Ratio: 1% 

PSNR: 26.92 dB 

 
Ratio: 2.5% 

PSNR: 35.36 dB 

 
Ratio: 5% 

PSNR: 43.20 dB 

 

 
Ratio: 10% 

PSNR: 47.20 dB 

 
Ratio: 25% 

PSNR: 48.86 dB 

 
Ratio: 50% 

PSNR: 48.99 dB 
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APPENDIX – 3  Reconstructed images and difference images (in insets) and 

associated PSNR values for selected 24 materials and for 5% sampling ratio 
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48.63 dB 
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41.83 dB 

 
45.51 dB 

 
50.65 dB 

 
49.78 dB 

 
45.06 dB 

 
51.51 dB 

 
51.58 dB 

 
48.90 dB 

 
46.31 dB 
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51.95 dB 

 
48.60 dB 

 

49.04 dB 

 
49.76 dB 
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APPENDIX – 4 Original and reconstructed images acquired using 5% and 

2.5% reconstruction ratios and associated PSNR values for 34 materials 

 
alum-bronze_org 

 
Ratio: 2.5% PSNR=38.68 

 
Ratio: 5% PSNR=46.54 
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Ratio: 2.5% PSNR=38.02 

 
Ratio: 5% PSNR=44.97 

 
aluminium_org 

 
Ratio: 2.5% PSNR=34.69 

 
Ratio: 5% PSNR=45.54 

 
aventurnine_org 

 
Ratio: 2.5% PSNR=38.27 

 
Ratio: 5% PSNR=47.53 
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beige-fabric_org 

 
Ratio: 2.5% PSNR=49.22 

 
Ratio: 5% PSNR=51.96 

 
black-obsidian_org 

 
Ratio: 2.5% PSNR=33.17 

 
Ratio: 5% PSNR=42.75 

 
black-oxidized-steel_org 

 
Ratio: 2.5% PSNR=46.94 

 
Ratio: 5% PSNR=51.01 

 
black-soft-plastic_org 

 
Ratio: 2.5% PSNR=50.34 

 
Ratio: 5% PSNR=52.27 



 

 

59 

 

 
blue-rubber_org 

 
Ratio: 2.5% PSNR=47.71 

 
Ratio: 5% PSNR=51.34 

 
brass_org 

 
Ratio: 2.5% PSNR=34.80 

 
Ratio: 5% PSNR=45.58 

 
cherry-235_org 

 
Ratio: 2.5% PSNR=47.82 

 
Ratio: 5% PSNR=51.15 

 
colonial-maple-223_org 

 
Ratio: 2.5% PSNR=47.38 

 
Ratio: 5% PSNR=51.11 
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delrin_org 

 
Ratio: 2.5% PSNR=44.62 

 
Ratio: 5% PSNR=48.63 

 
gold-metallic-paint2_org 

 
Ratio: 2.5% PSNR=39.37 

 
Ratio: 5% PSNR=47.75 

 
gray-plastic_org 

 
Ratio: 2.5% PSNR=42.78 

 
Ratio: 5% PSNR=48.77 

 
green-acrylic_org 

 
Ratio: 2.5% PSNR=35.45 

 
Ratio: 5% PSNR=41.83 
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green-latex_org 

 
Ratio: 2.5% PSNR=48.86 

 
Ratio: 5% PSNR=51.37 

 
green-plastic_org 

 
Ratio: 2.5% PSNR=37.33 

 
Ratio: 5% PSNR=47.22 

 
hematite_org 

 
Ratio: 2.5% PSNR=33.90 

 
Ratio: 5% PSNR=45.51 

 
ipswich-pine-221_org 

 
Ratio: 2.5% PSNR=46.28 

 
Ratio: 5% PSNR=50.66 
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natural-209_org 

 
Ratio: 2.5% PSNR=45.53 

 
Ratio: 5% PSNR=49.79 

 
nickel_org 

 
Ratio: 2.5% PSNR=37.75 

 
Ratio: 5% PSNR=47.09 

 
nylon_org 

 
Ratio: 2.5% PSNR=41.11 

 
Ratio: 5% PSNR=45.06 

 
pearl-paint_org 

 
Ratio: 2.5% PSNR=47.90 

 
Ratio: 5% PSNR=51.50 
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pickled-oak-260_org 

 
Ratio: 2.5% PSNR=48.91 

 
Ratio: 5% PSNR=51.58 

 
pink-fabric_org 

 
Ratio: 2.5% PSNR=49.53 

 
Ratio: 5% PSNR=51.92 

 
pink-jasper_org 

 
Ratio: 2.5% PSNR=41.96 

 
Ratio: 5% PSNR=48.89 

 
polyethylene_org 

 
Ratio: 2.5% PSNR=42.81 

 
Ratio: 5% PSNR=46.31 
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pure-rubber_org 

 
Ratio: 2.5% PSNR=49.61 

 
Ratio: 5% PSNR=51.95 

 
pvc_org 

 
Ratio: 2.5% PSNR=41.63 

 
Ratio: 5% PSNR=48.59 

 
red-metallic-paint_org 

 
Ratio: 2.5% PSNR=35.22 

 
Ratio: 5% PSNR=46.18 

 
violet-acrylic_org 

 
Ratio: 2.5% PSNR=37.79 

 
Ratio: 5% PSNR=47.12 
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white-acrylic_org 

 
Ratio: 2.5% PSNR=42.41 

 
Ratio: 5% PSNR=49.04 

 
yellow-phenolic_org 

 
Ratio: 2.5% PSNR=42.91 

 
Ratio: 5% PSNR=49.76 
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APPENDIX – 5  Results of Reconstruction of BRDF Data Obtained by Ward 

Model 
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Ratio: 2.5% PSNR=40.27 

 
Ratio: 5% PSNR=47.08 
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Ratio: 2.5% PSNR=44.41 
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beige-fabric_org 

 
Ratio: 2.5% PSNR=52.22 

 

 

 
black-obsidian_org 

 
Ratio: 2.5% PSNR=45.40 

 

 

 
black-oxidized-steel_org 

 
Ratio: 2.5% PSNR=49.71 

 

 

 
black-soft-plastic_org 

 
Ratio: 2.5% PSNR=50.93 
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blue-rubber_org 

 
Ratio: 2.5% PSNR=51.38 

 

 

 
brass_org 

 
Ratio: 2.5% PSNR=40.55 

 
Ratio: 5% PSNR=46.97 

 
cherry-235_org 

 
Ratio: 2.5% PSNR=48.97 

 

 

 
colonial-maple-223_org 

 
Ratio: 2.5% PSNR=49.36 
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delrin_org 

 
Ratio: 2.5% PSNR=51.42 

 

 

 
gold-metallic-paint2_org 

 
Ratio: 2.5% PSNR=46.10 

 

 

 
gray-plastic_org 

 
Ratio: 2.5% PSNR=47.71 

 

 

 
green-acrylic_org 

 
Ratio: 2.5% PSNR=45.64 
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green-latex_org 

 
Ratio: 2.5% PSNR=52.18 

 

 

 
green-plastic_org 

 
Ratio: 2.5% PSNR=44.44 

 

 

 
hematite_org 

 
Ratio: 2.5% PSNR=38.30 

 
Ratio: 5% PSNR=45.62 

 
ipswich-pine-221_org 

 
Ratio: 2.5% PSNR=48.28 
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natural-209_org 

 
Ratio: 2.5% PSNR=47.17 

 

 

 
nickel_org 

 
Ratio: 2.5% PSNR=38.41 

 
Ratio: 5% PSNR=46.65 

 
nylon_org 

 
Ratio: 2.5% PSNR=50.74 

 

 

 
pearl-paint_org 

 
Ratio: 2.5% PSNR=49.17 
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pickled-oak-260_org 

 
Ratio: 2.5% PSNR=50.52 

 

 

 
pink-fabric_org 

 
Ratio: 2.5% PSNR=50.84 

 

 

 
pink-jasper_org 

 
Ratio: 2.5% PSNR=48.26 

 

 

 
polyethylene_org 

 
Ratio: 2.5% PSNR=51.50 
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pure-rubber_org 

 
Ratio: 2.5% PSNR=51.73 

 

 

 
pvc_org 

 
Ratio: 2.5% PSNR=46.80 

 

 

 
red-metallic-paint_org 

 
Ratio: 2.5% PSNR=44.03 

 

 
violet-acrylic_org 

 
Ratio: 2.5% PSNR=46.74 
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white-acrylic_org 

 
Ratio: 2.5% PSNR=49.26 

 

 

 
yellow-phenolic_org 

 
Ratio: 2.5% PSNR=47.26 

 

 

 
blue-metallic-paint_org 

 
Ratio: 2.5% PSNR=48.60 

 

 
chrome-steel_org 

 

 
Ratio: 2.5% PSNR=40.63 

 
Ratio: 5% PSNR=47.26 
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dark-red-paint_org 

 
Ratio: 2.5% PSNR=51.00 

 

 
fruitwood-241_org 

 
Ratio: 2.5% PSNR=47.11 

 

 
gold-paint_org 

 
Ratio: 2.5% PSNR=44.86 

 

 
green-fabric_org 

 
Ratio: 2.5% PSNR=52.07 
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APPENDIX – 6  Results of Reconstruction of BRDF Data Obtained by Cook-

Torrance Model 
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black-obsidian_org 
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cherry-235_org 

 
Ratio: 2.5% 

PSNR=31.16 
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PSNR=41.94 

 

 
colonial-maple-

223_org 
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delrin_org 

 
Ratio: 2.5% 

PSNR=34.78 

 
Ratio: 5% 

PSNR=44.47 

 

 
gold-metallic-
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green-acrylic_org 
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green-plastic_org 
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hematite_org 
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PSNR=30.54 
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PSNR=45.35 
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natural-209_org 

 
Ratio: 2.5% 

PSNR=30.92 
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PSNR=40.77 
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nylon_org 

 
Ratio: 2.5% 

PSNR=35.00 

 
Ratio: 5% 

PSNR=42.16 
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pink-fabric_org 

 
Ratio: 2.5% 

PSNR=42.22 

 
Ratio: 5% 

PSNR=49.23 
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Ratio: 2.5% 
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pvc_org 
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red-metallic-

paint_org 
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PSNR=42.67 

 

 
violet-acrylic_org 

 
Ratio: 2.5% 

PSNR=33.25 

 
Ratio: 5% 

PSNR=42.48 

 

 
white-acrylic_org 

 
Ratio: 2.5% 

PSNR=35.55 

 
Ratio: 5% 

PSNR=40.97 

 

 
yellow-phenolic_org 

 
Ratio: 2.5% 

PSNR=34.33 

 
Ratio: 5% 

PSNR=43.80 
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chrome-steel_org 
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