

YAŞAR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MASTER THESIS

AN ENSEMBLE OF DIFFERENTIAL EVOLUTION

ALGORITHMS FOR REAL-PARAMETER

OPTIMIZATION AND ITS APPLICATION TO

MULTIDIMENSIONAL KNAPSACK PROBLEM

 Mert PALDRAK

 Thesis Advisor: Prof. Dr. M. Fatih TAŞGETİREN

Department of Industrial Engineering

 Presentation Date: 20.01.2016

Bornova-İZMİR

2016

iii

To my mother, Nalan

iv

ABSTRACT

AN ENSEMBLE OF DIFFERENTIAL EVOLUTION ALGORITHM

FOR REAL-PARAMETER OPTIMIZATION AND ITS APPLICATION

TO MULTIDIMENSIONAL KNAPSACK PROBLEM

PALDRAK, Mert

M.Sc in Industrial Engineering

Supervisor: Prof. Dr. M. Fatih TAŞGETİREN

January 2016, 86 pages

 This thesis examines the recent real-parameter optimization methods through

constrained single objective test functions. Inspired from this experience, it also

presents the applicability of such methods to Multidimensional Knapsack Problem

known as one of the most difficult discrete problems.

 In the first part of this study, benchmark functions presented in CEC 2006 have

been taken into consideration to solve. These benchmark problems are multi-

dimensioned and constrained real-parameter optimization problems with non-linear

objective functions. Hence, it is quite difficult to solve them without using heuristic

and metaheuristic approaches. In order to obtain optimal solutions, proposed

algorithm (EDE-VNS) has been applied to these test functions and competitive

results have been collected to compare with the best performing algorithms from the

literature. The performance of DE algorithm depends on the mutation strategies,

crossover operators and control parameters selected. As a result, an EDE-VNS

algorithm that is possible to employ multiple mutation operators and control

parameters in its VNS loops is proposed so as to be able further enhance the quality

of the solution. By means of ensemble of variable mutation strategies in VNS loops,

the performance of DE algorithm is affected so positively that most of benchmark

functions could be optimally solved with zero standard deviations. In order to show

the power of ensemble of mutation strategies, these test functions have also been

solved by using all mutation strategies alone. It has been concluded that when using

individual mutation strategies one by one, all of them fail to find the optimal

solutions for test functions whereas when applying ensemble of these mutation

strategies, algorithm could find optimal solutions easily by means of different

properties of mutation strategies. Moreover, this algorithm was run for both 240,000

v

and 500,000 function evolutions. It is overly clear that EDE-VNS algorithm requires

more function evolutions to find more optimal solutions with zero standard

deviations. In addition, a diversification procedure which is based on the inversion of

the target individual and the injection of some good dimensional values from

promising areas in the population is also applied by using tournament selection with

size 2. In order to take advantage of infeasible solutions in the evolved population,

some constraint handling methods are also utilized to further improve the solution.

The computational results show that the simple EDE-VNS algorithm was very

competitive to the some of the best performing algorithms from the literature.

 In the second part of this thesis, the 0-1 multidimensional knapsack problem

which has a great range of applications in real-life problems is considered to be

solved by proposed EDE-VNS algorithm. In the literature, most of the heuristic

methods applied to multidimensional knapsack problem use and check and repair

operator to improve solutions. Unlike the studies appearing in literature, some

sophisticated constraint handling methods in order to enrich the population diversity

are used. Differential evolution algorithm with variable neighbourhood search

employing ensemble of mutation strategies to generate the trial population is

proposed. Since the proposed DE-VNS algorithm in fact works on a continuous

domain, the real-values of the chromosomes are converted to 0-1 binary values by

using S-shaped and V-shaped transfer functions. The effects of these transfer

functions are tested by using them one by one in each mutation strategies of

ensemble. So as to qualify the solutions, a binary swap local search algorithm is

combined with proposed EDE-VNS algorithm and the proposed algorithm is tested

on a benchmark instances from the OR-library.

 This thesis consists of 6 chapters which include all of these subjects

Keywords: Differential Evolution, Real Parameter Optimization, Variable

Neighbourhood Search, Constraint Handling, Multidimensional Knapsack Problem,

vi

ÖZET

GERÇEK PARAMETRE OPTİMİZASYONU İÇİN TOPLU

DİFERANSİYEL EVRİM ALGORİTMASI VE ÇOK BUYUTLU

SIRT ÇANTASI PROBLEMİNE UYGULANMASI

Mert PALDRAK

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Danışmanı: Prof. Dr. M. Fatih TAŞGETİREN

Ocak 2016, 86 sayfa

 Bu tez, kısıtlanmış tek amaçlı test fonksiyonları aracılığı ile son dönemlerdeki

gerçek parametre optimizasyon metotlarını incelenmiştir. Bu deneyimden

esinlenerek, bu tür yöntemlerin aynı zamanda en zor ayrık problemlerden birisi olarak

bilinen çok boyutlu sırt çantası problemine uygulanabilirliğini de ortaya koymuştur.

 Bu çalışmanın ilk bölümünde, CEC 2006’da ortaya konulan kıyaslama

problemleri çözülmek üzere ele alınmıştır. Bu kıyaslama problemleri doğrusal

olmayan amaç fonksiyonlarına sahip, çok boyutlu ve kısıtlanmış gerçek parametreli

optimizasyon problemleridir. Bundan dolayı, sezgisel ve meta sezgisel yaklaşımları

kullanmadan bu problemleri çözmek oldukça zordur. En iyi çözümler elde etmek için,

önerilen algoritma (EDE-VNS) bu test fonksiyonlarına uygulanmıştır ve literatürdeki

en iyi performansı gösteren algoritmalar ile karşılaştırılmış, rekabetçi sonuçlar elde

edilmiştir. DE algoritmasının performansı çoğunlukla mutasyon stratejilerine,

çaprazlama operatörlerine ve seçilmiş kontrol parametrelerine bağlıdır. Sonuç olarak,

birden fazla mutasyon operatörleri ve kontrol parametrelerini kendi VNS döngüleri

içerisinde bulundurabilen bir EDE-VNS algoritması çözümün kalitesini arttırabilmek

amacıyla geliştirilmiştir. VNS döngüleri içindeki değişken mutasyon stratejilerinin

toplu halde çalışmaları sayesinde, DE algoritmasının performansı o kadar olumlu

etkilenmiştir ki çoğu kıyaslama problemleri sıfır standart sapma ile optimal olarak

çözülmüştür. Mutasyon stratejilerinin toplu halde çalışmalarını etkisi göstermek için,

bu test fonksiyonları bütün mutasyon stratejileri teker teker kullanılarak da

çözülmüştür. Bireysel mutasyon stratejileri teker teker kullanıldığında, hepsi test

fonksiyonlarında optimum çözümler bulma konusunda başarısız olduğu, oysaki bu

mutasyon stratejileri toplu halde uygulandığında algoritma mutasyon stratejilerinin

farklı özellikleri sayesinde optimal sonuçları kolaylıkla bulabildiği sonucuna

vii

varılmıştır. Bunun üzerine, bu algoritma aynı zamanda 240,000 ve 500,000 fonksiyon

değerlendirilmesi ile çalıştırılmıştır. . Bu apaçık ortadadır ki, EDE-VNS algoritması

ile daha çok optimal çözümler bulmak, daha fazla fonksiyon değerlendirilmesine

ihtiyaç duyulmaktadır. Buna ek olarak, hedef bireylerin evrimini ve popülasyon

içinde umut vadeden alanlardan alınan bazı iyi boyutlu değenlerin enjeksiyonunu

temel alan çeşitlendirme yöntemi de, iki boyutlu turnuva seçilim yöntemi kullanılarak

uygulanmıştır. Gelişmiş popülasyon içerisindeki uygun olmayan çözümlerden

faydalanabilmek için, çözümü daha da geliştirmek amacıyla bazı kısıtlama işleme

kuralları kullanılmıştır. Hesaplanan sonuçlar göstermektedir ki basit bir EDE-VNS

algoritması literatürdeki bazı en iyi performansı gösteren algoritmalarla oldukça

rekabetçidir.

 Bu tezin ikinci bölümünde, gerçek hayat problemlerinde geniş ölçüde

uygulamaları olan 0-1 çok boyutlu sırt çantası probleminin, önerilen EDE-VNS

algoritması ile çözülebileceği öngörülmüştür. Literatürde, çok boyutlu sırt çantası

problemine uygulanan sezgisel yöntemlerin birçoğu, çözümleri geliştirmek için

kontrol ve onarım operatörlerini kullanmıştır. Literatürde ortaya çıkan çalışmaların

aksine, popülasyon çeşitliliğini zenginleştirmek için bazı gelişmiş kısıtlama işleme

yöntemleri kullanılmıştır. Çeşitli toplu mutasyon stratejilerini kullanan değişken

komşu aramalı diferansiyel evrim algoritması, deneme popülasyonunu oluşturmak

için ortaya atılmıştır. Aslında önerilen bu EDE-VNS algoritması sürekli alanda

çalıştığı için, gerçek değer kromozomları S-şeklindeki ve V-şeklindeki transfer

fonksiyonlar kullanılarak 0-1 ikili değerlerine dönüştürülmüştür. Çözümleri

geliştirmek için, EDE-VNS algoritmasıyla ikili takas yerel arama algoritması

birleştirilmiş, önerilen algoritma OR-kütüphanesinden alınan karşılaştırma örnekleri

üzerinde test edilmiştir.

 Bu tez, yukarıda bahsedilen konuları içeren 5 üniteden oluşmaktadır.

Keywords: Diferansiyel Evrim Algoritması, Gerçek Parametre Optimizasyonu,

Değişken Komşu Arama, Kısıtlama İşleme, Çok Boyutlu Sırt Çantası Problemi

viii

ACKNOWLEDGEMENTS

 Immeasurable appreciation and deepest gratitude for the help and support are

extended to the following persons who are in one way or another have contributed in

making this thesis possible to complete.

 First of all, I am thankful to my supervisor, Prof. Dr. M. Fatih Taşgetiren, for

his support, advices, guidance, valuable and important comments, suggestions and

provisions that helped me to complete this thesis successfully. He was more than a

supervisor and adviser to me. He did his best to support and lead me at each step of

this study in spite of all difficulties and challenges he faced during this thesis.

Without his guidance and persistent help, it would have been impossible for me to

complete this thesis.

 I would like to sincerely thank my teacher, Dr. Efthimia Staiou, for her time

and effort in checking this manuscript, and for giving enough time to correct this

manuscript and help me complete this thesis.

 I gratefully acknowledge the contributions of my colleagues, Bahar Taşar,

Cemre Çubukçuoğlu and Sinem Özkan. I would like to thank them for their sincere

collaboration, encouraging and supporting me as I am conducting this research.

 I want to express my gratitude and sincere thanks to my close friends, Fulya

Çabuk, Kibare Atik, Ozan Karakaya, Muhammet Değermenci, Ali Rıza Evren

and Zeynep Bilgiç for their being so continuously supportive.

 I specially thank my friends, Özkan İşleyen, Sinan Bilir and Ufuk Delihasan

in engineering department for encouraging me in carrying out this thesis and taking

their times to help me complete this manuscript.

 Lastly, I am sincerely thankful to my parents. I would like to thank to my

mother, Nalan Paldrak, my father, Mehmet Paldrak, my brother, Berk Paldrak for

their persistent supports, encouragements and helps.

Mert PALDRAK

İzmir, 2015

ix

TEXT OF OATH

 I declare and honestly confirm that my study, titled “An Ensemble of

Differential Evolution Algorithm for Real-Parameter Optimization and Its

Application to Multidimensional Knapsack Problem” and presented as a Master’s

Thesis, has been written without applying to any assistance inconsistent with

scientific ethics and traditions, that all sources from which I have benefited are listed

in the bibliography, and that I have benefited from these sources by means of making

references.

x

TABLE OF CONTENTS

Page

ABSTRACT iv

ÖZET vi

ACKNOWLEDGEMENTS viii

TEXT OF OATH ix

TABLE OF CONTENTS x

INDEX OF FIGURES xiii

INDEX OF TABLES xiv

INDEX OF SYMBOLS AND ABBREVIATIONS xv

1 INTRODUCTION 1

1.1 Subject of the Thesis 1

1.2 Aims of the Research 2

1.3 Context of the Thesis 3

1.4 Methodology 3

2 DIFFERENTIAL EVOLUTION ALGORITHM 5

2.1 Introduction to Differential Evolution Algorithm 5

2.2 Steps of DE Algorithm 8

xi

 Initialization of Target Population 9 2.2.1

 Mutation with Difference Vector 10 2.2.2

 Crossover 10 2.2.3

 Selection 12 2.2.4

2.3 Self-Adaptive Differential Evolution 12

2.4 JADE 14

 DE/current-to-pbest 15 2.4.1

 Self-Adaptation of Parameters 15 2.4.2

 Explaining JADE Algorithm Setting 17 2.4.3

2.5 Ensemble Differential Evolution 18

2.6 Opposition-Based Differential Evolution 20

2.7 Ensemble DE with VNS 22

 Generating Initial Population 26 2.7.1

 Generation of Trial Population 27 2.7.2

 Selection 28 2.7.3

3 CONSTRAINED REAL PARAMETER OPTIMIZATION 30

3.1 Benchmark Problems 32

3.2 Constraint Handling Methods 33

xii

 Superiority of Feasible Solution 33 3.2.1

 The Adaptive Penalty Function 34 3.2.2

 𝝐 – Constraint (EC) 35 3.2.3

 Stochastic Ranking 36 3.2.4

3.3 Ensemble of Constraint Handling 36

3.4 Computational Results of Constrained RPO 38

4 APPLICATIONS ON MULTIDIMENSIONAL KNAPSACK PROBLEM 44

4.1 Solution Methodology for MKP 45

4.2 Solution Representation 46

4.3 Families of Transfer Functions 48

4.4 Binary Swap Local Search 50

4.5 Computational Results 52

5 CONCLUSIONS & FUTURE WORK 59

REFERENCES 61

CURRICULUM VITEA 71

APPENDIX 1 CEC 2006 BENCHMARKS 72

xiii

INDEX OF FIGURES

Figure 2.1 Steps of DE Algorithm 9

Figure 2.2 Self-Adapting: Encoding Aspect 14

Figure 2.3 Outline of EDE Algorithm 19

Figure 2.4 𝑉𝑁𝑆1 Algorithm 23

Figure 2.5 𝑉𝑁𝑆2 Algorithm 25

Figure 2.6 𝑉𝑁𝑆3 Algorithm 25

Figure 2.7 𝑉𝑁𝑆4 Algorithm 26

Figure 2.8 Injection Procedure 28

Figure 2.9 Outline of 𝐸𝐷𝐸 − 𝑉𝑁𝑆 Algorithm 28

Figure 3.10 Stochastic Ranking 36

Figure 4.11 Solution Representation 47

Figure 4.12 Outline of BSWAP Local Search 50

Figure 4.13 Outline of 𝐸𝐷𝐸 − 𝑉𝑁𝑆 Algorithm 51

xiv

INDEX OF TABLES

Table 1 Details of CEC 2006 Benchmark Problems……………………………...…32

Table 2 Computational Result of EDE-VNS, GA-MPC, APF-GA, MDE, ECHT-EP2

for CEC 2006 Test Problems…………………………………………….………….40

Table 3 Feasibility Rates of Benchmark Problems for EDE and Each Mutation

Strategy………………………………………………………………………………43

Table 4 Transfer Functions……………………………………………………..…....49

Table 5 Details of Sento and Weing Instances………………………………………53

Table 6 Computational Results of Sento and Weing Instances……………………...53

Table 7 Details of Weish Instances………………………………………………….54

Table 8 Computational Results of Weish…………………….……………………...55

Table 9 Details of HP and PB Instances……………………………………………..57

Table 10 Computational Results of HP and PB Instances …………………………..58

xv

INDEX OF SYMBOLS AND ABBREVIATIONS

Symbols Explanations

 x


 Average violation of number of constraints

 Tolerance value for equality constraints

Ct Control generation

𝑥𝑖𝑗
𝑔

 𝑖𝑡ℎ target individual at generation 𝑔

𝑣𝑖𝑗
𝑔

 𝑖𝑡ℎ mutant individual at generation 𝑔

𝑢𝑖𝑗
𝑔

 𝑖𝑡ℎ trial individual at generation 𝑔

𝑓(𝑥) Fitness value of solution (x)

𝐹𝑖 Mutation scale factor

NP Number of Population

𝐶𝑅𝑖 Crossover probability

𝐾𝐹 Value randomly chosen within the range [0,1]

𝜇𝐶𝑅 Mean Crossover

𝜇𝐹 Mean Mutation Scale Factor

𝑆𝐶𝑅 Successful Crossover

𝐿(.) Lehmer Mean

xvi

𝑇(𝑥) Transfer Function

n Number of Items

m Number of Constraints

𝑐𝑖𝑗 Units of Profit

𝑎𝑖𝑗 Units of Resource

𝑏𝑖 Capacity

Abbreviations Explanations

GA Genetic Algorithm

ES Evolution Strategy

DE Differential Evolution

PSO Particle Swarm Optimization

EP Evolutionary Programming

QN Quasi Newton

SA Simulated Annealing

TS Tabu Search

GP Genetic Programming

CEC Congress on Evolutionary Computation

10-D 10 Dimensional

xvii

30-D 30 Dimensional

jDE Self-Adaptive Differential Evolution

JADE Self-Adaptive Differential Evolution

SADE Self-Adaptive Differential Evolution

FADE Fuzzy Adaptive Differential Evolution

EDE Ensemble Differential Evolution

OBL Opposition Based Learning

OP Opposite Population

GOBL Global Opposition Based Learning

VNS Variable Neighbourhood Search

CRS Controlled Random Search

EDE-VNS Ensemble Differential Evolution with Variable Neighbourhood

Search

NP Non Polynomial

CMA-ES Covariance Matrix Adaptation Evolution Strategy

APF-GA Adaptive Penalty Formulation with Genetic Algorithm

SF Superiority of Feasible Solutions

LI Linear Inequity

NI Nonlinear Inequity

xviii

LE Linear Equity

NE Nonlinear Equity

NFT Adaptive Penalty Function

SR Stochastic Ranking

CH Constraint Handling

ECHT Ensemble of Constraint Handling

ISR Improved Stochastic Ranking

RPO Real Parameter Optimization

MDE Modified Differential Evolution

ECHT-EP2 Ensemble of Constraint Handling Techniques

NFL No Free Lunch

ICEO International Contest on Evolutionary Optimization

MKP Multidimensional Knapsack Problem

SACRO Self-Adaptive Check and Repair

bFOA2 Binary Fruit Fly Algorithm

HEDA2 Hybrid EDA-based Algorithm

BPSO Binary Particle Swarm Optimization

BSWAP Operator-Based Swap Local Search

1

1 INTRODUCTION

1.1 Subject of the Thesis

 The subject of thesis consists of the solution algorithms for optimization

problems used for finding the best solution from all possible feasible solutions. An

optimization problem is either minimizes or maximizes a function of decision

variables under the hard and soft constraints. Optimization problems are divided into

two categories according to types of their decision variables. An optimization

problem with discrete variables is called combinatorial optimization problem,

whereas an optimization problem with continuous variables is called continuous

optimization problems. If these so-called decision variables contain real parameters,

the problem is called real parameter optimization. One of the earliest application

areas of evolutionary algorithms is real parameter optimization. The evolutionary

algorithms applied so far to solve real parameter problems can be summarized as:

real-parameter GAs, evolution strategies (ES), differential evolution (DE), particle

swarm optimization (PSO), evolutionary programming (EP), classical methods such

as quasi-Newton method (QN), hybrid evolutionary-classical methods, other non-

evolutionary methods such as simulated annealing (SA), tabu search (TS) are some of

most the well-known algorithms applied to solve real parameter problems. It is

possible to find out the further improved versions of these algorithms mentioned

above. Lately, different types of optimization problems used for solving real-

parameter optimization problem have arisen among the evolutionary computation

committees or conferences as well as journals. Many different algorithms, developed

for solving problems in CEC 2006 Special Session on Constrained Real-Parameter

Optimization yielded favourable solutions.

 The biggest reason of developing heuristic and metaheuristic algorithms to

solve these problems is that they are too hard and complicated problems for solving

by using exact techniques. These algorithms also involve some important ones such

as ε-Constrained Differential Evolution with Gradient-Based Mutation and Feasible

Elites (Takamaha T. & Sakai S., 2006), Dynamic Multi-Swarm Particle Swarm

Optimizer with a Novel Constraint-Handling Mechanism (Liang J.J. & Suganthan P.

N., 2006), Self-adaptive Differential Evolution Algorithm (Huang V. L., 2006), A

Multi-Populated Differential Evolution Algorithm (Tasgetiren M. F. & Suganthan P.

N., 2006). In those studies, optimization techniques are applied to the problems of

2

many field of science including standard test problems (Sphere function, Rosenbrock

function or Schwefel function) and various engineering problems.

 Moreover, the main focus of the study revolves around the application of an

evolutionary algorithm to one of the most popular optimization problem called

multidimensional knapsack problem with very important applications in financial and

industrial areas such as investment decision, budget control, project choice, resources

assignments and goods loading. This problem is a generalization of the standardize 0-

1 knapsack problem and known as one of the most difficult discrete optimization

problems in the literature. It is probable to find the family of the knapsack problem in

different areas of study. Members of the knapsack problem family are 0-1 knapsack

problem, bounded knapsack problem, multiple choice knapsack problem and multiple

or multidimensional knapsack problem. These problems require a subset of some

given items to be chosen such that corresponding profit sum is maximized without

exceeding the capacity of the knapsack or knapsacks. All of these members belong to

the family of NP-hard problems. In spite of being NP-hard problems, many large

instances of knapsack problems can be solved in seconds. This is because of several

years of research having proposed many solution methodologies including exact as

well as heuristic and metaheuristic algorithms. Heuristic algorithms involve simulated

annealing (Liu et al, 2006), genetic algorithm (Thiel & Voss, 1994), ant colony

optimization (Zhao & Zhang, 2006), differential evolution (Peng et al., 2008),

immune algorithm (Lei et al., 2000) and particle swarm optimization (Ye et al.,

2006). In recent, some of powerful heuristic algorithms such as fruit fly optimization

(Wang et al., 2013) and differential evolution with variable neighbourhood search

(Taşgetiren et al., 20015) could further improve the solutions for knapsack problem in

literature. The proposed heuristic algorithm (EDE-VNS) employing different

mutation strategies in their VNS loops is tested on benchmark instances from the OR-

library and results are compared with other heuristic algorithms in the literature.

1.2 Aims of the Research

 Based on the previously given statements, the main goal of this thesis is to

make use of the power of real-parameter optimization methods in constrained single

objective test functions taken from literature. Based on this experience, the further

goal of the thesis is to introduce its application to multidimensional knapsack

problem by using differential evolution algorithm.

3

1.3 Context of the Thesis

 This thesis content is based on real-parameter optimization techniques and its

applicability to the various real life problems. Lately, since most of the optimization

problems are too complicated to solve by means of traditional methods, different

evolutionary algorithms have been being developed. In addition to this, differential

evolution algorithm has become one of the most powerful evolutionary algorithms to

solve optimization problems. Therefore, in this thesis, a variant of differential

evaluation algorithm named EDE-VNS is considered to solve constrained-real

parameter optimization problems. In order to test how much well the proposed

algorithm is working, CEC 2006 benchmark instances are taken into consideration.

Since these benchmark instances include various real-life problems in such

disciplines as engineering, logistics, energy systems, scheduling, finance and so on,

dealing with these problems by proposed algorithm also shows how suitable to apply

EDE-VNS algorithm to real life-problems. The optimal solutions of the benchmark

instances obtained by using proposed algorithm and comparisons with other best

performing algorithms in the literature are provided in tables.

 To extend the application of the proposed algorithm to real-life problems, this

thesis also covers multidimensional knapsack problem in detail. Instead of traditional

methods in the literature, it is aimed to solve this NP-hard problem by using proposed

EDE-VNS algorithm with the help of constraint handling techniques. As the real-

parameter optimization problems run the algorithms in a continuous domain, some

types of transfer functions are utilized to convert real values to binary 0-1 variables.

In order to demonstrate the effect of algorithm on knapsack problem, benchmark

instances varying in size on OR-library are used. The optimal solutions obtained and

necessary comparisons with previously developed algorithms are provided in tables.

According to these comparisons, it is concluded that this proposed algorithm is

competitive to best performing algorithms from literature to solve a real-life problem.

1.4 Methodology

 The method of this thesis is based firstly on the problem definitions of

CEC’2006 competition for constrained single objective real-parameter numerical

optimization. In “CEC’ 2006 Constrained Single Objective Real-Parameter

Optimization Special Session” some heuristic algorithms are competing through the

4

test functions including engineering problems presented in advance. In literature, it is

possible to find the articles of researchers who have been trying to find the best

solutions with zero standard deviations. So as to achieve the optimal solutions, the

results are obtained from Ensemble Differential Evolution Algorithm with Variable

Neighborhood Search (EDE-VNS) was compared with best performing algorithms in

the literature. With the proposed EDE-VNS algorithm, such constraint handling

techniques as ∈-constraints, self-adaptive penalty function and superiority of feasible

solution are used in order that possible important information carried by infeasible

solutions can be used. Moreover, to demonstrate the effect of number of function

evaluations on ensemble mutation strategies in differential evolution algorithm, the

proposed algorithm was run for both 240,000 and 500,000 function evaluations. In

order to further improve the solutions, Opposition Based Learning (OBL) and

diversification methods are utilized for diversifying the initial and target populations

respectively. After algorithm comparison for all benchmarks, this proposed algorithm

is applied to multidimensional knapsack problem. Since it is a NP-hard problem

aiming to maximize the profit under certain capacity constraints with 0-1 binary

values, the dimensions of each chromosome of proposed algorithm is changed to

binary numbers by using transfer functions. For better qualification of solutions,

binary swap local search is applied to the best solution at each generation. Instead of

using check and repair operators in literature, constraint handling methods are

involved in the problem within a predetermined threshold. Finally, the computational

results of the instances from OR-library demonstrate the efficiency of the algorithm

in solving benchmark instances and its superiority to the best performing algorithm

from the literature.

 All in all, constrained Real-Parameter Optimization part of this study aims to

test the performance of EDE-VNS Algorithm through CEC 2006 benchmarks by

comparing to the best performing algorithms from the literature. According to results

obtained, proposed EDE-VNS algorithm is competitive with the best performing

algorithms. As an application of proposed algorithm, one of the most important real

life problems, multidimensional knapsack problem is dealt with. This problem is

handled in order to show how applicable and usable the evolutionary algorithms are

to solve real life problems.

.

5

2 DIFFERENTIAL EVOLUTION ALGORITHM

2.1 Introduction to Differential Evolution Algorithm

 Differential Evolution (DE) Algorithm was firstly introduced by Storn & Price

(1995) as an efficient and powerful population-based heuristic search technique in

order to minimize the objective function of optimization problems over nonlinear and

non-differentiable continuous space. The optimization problems solved by differential

evolution algorithm arise from many scientific and engineering fields. Moreover, DE

has been successfully applied to optimization problems in such fields as mechanical

engineering, communication and pattern recognition.

 One of the recent studies conducted by Das& Suganthan(2011) has clearly

explained the history of DE and its success in details. It is known that DE is one of

the most powerful stochastic real-parameter optimization algorithms used currently.

DE operates through similar computational steps like a standard evolutionary

algorithm (EA). Nonetheless, unlike traditional evolutionary algorithms, DE variants

perturb the current population members with the differences of randomly selected and

distinct population members (Das&Suganthan 2011).

 The DE algorithm (Price & Storn, 1995-1996-1997) has become an important

and competitive algorithm to evolutionary algorithms more than a decade ago. After

the publication of first article written on DE by R. Storn and K. Price, DE algorithm

was demonstrated as the best evolutionary algorithm in order to solve real-valued test

function in the 1
st

ICEO (International Contest on Evolutionary Optimization) and

then turned to be the one of the best among the competing algorithms at 2
nd

 ICEO in

2007. In two different journal articles, Price (1997), Storn and Price (1997) have

introduced the algorithm in details which is followed by immediately in quick

succession. In 2005, CEC competition on real parameter optimization, on 10-D

problems classical DE secured 2
nd

 rank and a self-adaptive DE variant called SaDe

(Quin, Suganthan, 2005) secured 3
rd

 rank although they performed poorly over 30-D

problems. Even though some variants of ES gave much better results than classical

and self-adaptive DE, later on many improved such variants of DE as opposition-

based DE (ODE) (Rahnamayan et al, 2008), DE with global and local

neighbourhoods (Das et al., 2009) and (Zhang & Sanderson, 2009) were being

proposed between the years 2006 and 2009. On the other hands, it became necessary

6

to determine how well these variants of DE can compete against the restart CMA-ES

and other real parameter optimizers over the standard numerical benchmarks. It is

also interesting to notify that the some variants of DE algorithm continued securing

front ranks in the subsequent CEC competitions (Suganthan, 2012) like CEC 2006

competition on constrained real parameter optimization (first rank), CEC 2007

competition on multi objective optimization (second rank), CEC 2008 competition on

large scale optimization (third rank). A very recent study conducted by Neri and

Tirronen focuses on the variants of DE for single-objective optimization problems, as

well as compared them on some set of benchmark problems. Based on the review

studies, it is conducted that DE-variants are as effective as original DE to solve the

complex optimization problems.

 In DE community, the individual trial solutions are called parameter vectors or

genomes. In DE, there exist many trial vector generation strategies in which some of

them might be powerful and suitable to solve a particular problem. However, DE

employs difference of parameter vectors to find the objective function landscape.

Because of this, DE algorithm owes a lot to its ancestors namely- the Nelder-Mead

algorithm (Nelder & Mead, 1965) and controlled random search (CRS) algorithm

(Price, 1977) which is based on the difference vectors to perturb the current trial

solutions.

 Compared to the other evolutionary algorithms, DE algorithm has following

advantages:

 DE algorithm has much more simple and straightforward code

structure to implement. It enables users to practically solve

optimization by means of its simple implementation. Main body of the

algorithm takes from four to five lines to code in and programming

language. Even though such algorithms as PSO is also quite easy to

code, the performance of DE and its variants is largely better than the

PSO variants over a wide range of optimization problems. (Das et al,

2009), (Rahnamayan et al, 2008), (Vesterstrom & Thomson, 2004)

 As indicated by recent studies conducted by (Das et al, 2009),

(Rahnamayan et al, 2008) and (Zhang & Sanderson), DE demonstrates

7

much better performance in comparison with several others like G3

with PCX, MA-S2, ALEP, CPSO-H, and so on of current interest on a

wide variety of problems that include unimodal, bimodal, separable,

non-separable and so on. In spite of the fact that strong EAs like the

restart CMA-ES was able to beat DE at CEC 2005 competition, on

non-separable objective functions, the total performance of DE in

terms of accuracy robustness and convergence speed makes DE more

suitable to apply to various real-world optimization problems in which

finding an appropriate solution takes too much time.

 Another advantage of DE algorithm is the fact that it requires few

number of control parameters. Three crucial control parameters

involved in DE, i.e., population size NP, scaling factor F, and

crossover rate CR, may significantly affect the optimization

performance of DE. Liu & Lampien (2002) has reported that the

effectiveness, efficiency and robustness of the DE algorithm are very

sensitive to the setting of its control parameters. The best settings for

the control parameters depend on the function and requirements for

consumption of time and accuracy. The effects of these parameters on

the performance of algorithm have been being studied well. When

only a simple rule of scaling factor F and cross over CR is altered, the

performance and robustness of algorithm is significantly improved

without imposing any important computational burden as presented in

Brest et al. (2006), Qin et al. (2009), Zhang and Sanderson (2009).

 Furthermore, DE is better to handle the large scale and expensive

optimization problems owing to its feature that the space complexity

of DE is less than the other competitive real parameter optimizers as

mentioned in the article of Hansen & Ostermeier (2001).

 On the other hands, like all other metaheuristic methods, DE has got some

drawbacks that should be considered for the discussion of future research directions

with DE. Some of the current publications made by Rahnamayan et al. (2008)

8

indicates that DE faces up with some important difficulties in solving such functions

that are not linearly separable and can be outperformed by CMA-ES. As mentioned

by Sutton et al.(2007), on some functions, DE is more dependent on its differential

mutation procedure, which, unlike its recombination strategy with (CR<1), is

rationally invariant. Sutton et al. (2007) also surmises that this mutation strategy lacks

enough selection pressure as appointing target and donor vectors to have satisfying

power on non-separable functions. The authors of the article also present a rank-based

parent selection scheme so as to impose bias on the selection step, in order that DE

can learn distribution information from elite individuals selected from population and

can thus sample the local topology of the fitness landscape better. Nonetheless, they

concluded that much more research is necessary in this realm to deduce that DE is

sufficiently robust against the strong interdependency of the search variables. In

another articled written by Langdon & Poli (2007) made an attempt in order to evolve

certain fitness landscapes with GP to show the advantages and disadvantages of a few

population-based metaheuristics like PSO, DE, and CMA-ES. Authors highlighted

that some problem landscapes might deceive DE such that it will get stuck in local

optima most of the time. The same authors also pointed out that DE may sometimes

show limited ability to move its population large distances across the search space

when a limited portion of the population is clustered together. The work done by

Langdon & Poli (2007) indicated that some landscape in which DE is outperformed

by CMA-ES and a non-random gradient search based on Newton-Raphson’s method.

The most effective DE-variants improved so far should be investigated with the

problem evolution methodology of Langdon & Poli in order to identify some specific

weak points over different function surfaces.

2.2 Steps of DE Algorithm

 DE is a simple real parameter optimization algorithm. In a real parameter

optimization problem, all of decision numbers must be real numbers. To describe it

well, the DE/rand/1/bin scheme of Storn and Price (1995) was used. This scheme has

been applied to a variety of problems that can be found in Corne et al. (1999),

Lampinen (2011), Babu and Onwubolu (2004), Price et al. (2005) and Chakraborty

(2008) and Das and Suganthan (2011). A simple cycle of stages worked through by

DE is presented in Figure 2.1.

9

Figure 2.1. Steps of DE algorithm

 Initialization of Target Population 2.2.1

 In DE algorithm, global optimal point is searched over a D-dimensional real

parameter space ℜ𝐷. It starts with a randomly initiated population with size NP

(number of parents) having a D-dimensional real-values parameter vectors. Each

vector, known as genome/chromosome carries an alternative solution to the

multidimensional optimization problem. Subsequent generations in DE are denoted

by 𝐺 = 0,1, … , 𝐺𝑚𝑎𝑥.As the parameter vectors are likely to alter over different

generations, it may be adapted to following notations in order to represent ith vector

of the population at any generation:

𝑋𝑖
𝐺⃗⃗⃗⃗ ⃗ = [𝑥𝑖1

𝐺 , 𝑥𝑖2
𝐺 , 𝑥𝑖3

𝐺 , ……… , 𝑥𝑖𝐷
𝐺] (1)

 For each parameter of the problem, there might be a certain range within which

the value of the parameter should be restricted, because parameters are related to

physical components or measurements that own natural bounds. Each vector is

obtained randomly and uniformly within the search space constrained by the

predefined minimum and maximum bounds:[𝑥𝑖𝑗
𝑚𝑖𝑛, 𝑥𝑖𝑗

𝑚𝑎𝑥]. Therefore, the

initialization of 𝑗𝑡ℎ component of 𝑖𝑡ℎ vector can be defined as:

𝑥𝑖𝑗
0 = 𝑥𝑖𝑗

𝑚𝑖𝑛 + 𝑟 × (𝑥𝑖𝑗
𝑚𝑎𝑥 − 𝑥𝑖𝑗

𝑚𝑖𝑛) (2)

where 𝑥𝑖𝑗
0 is the 𝑖𝑡ℎ target individual at generation 𝑔 = 0; and 𝑟 is a uniform random

number in the range [0,1].

10

 Mutation with Difference Vector 2.2.2

 As a biological term, mutation is defined as a sudden change in the gene

characteristics of a chromosome. In the context of the evolutionary paradigm,

mutation is seen as a change or perturbation with a random element selected.

Mutation is a way to create new solutions. However, it consists in random changing

value of parameters in the context of GAs and EAs. In DE literature, base vectors are

mutated with scaled population-derived difference vectors and this method is

believed to be one of the main strength of DE (Storn & Price, 1997).These

differences tend to adapt to the natural scaling of the problem as generations continue

passing. Therefore, DE differs from the other evolutionary based algorithms because

it requires only the specification of a single relative scale factor F for all variables.

 By the definition of Das & Sughantan (2011), a parent vector from the current

generation is called target vector, a mutant vector gained through the differential

mutation operation is known as donor vector and finally an offspring generated by

recombination of the donor with the target vector is called trial vector.

 So as to obtain mutant individuals, the weighted difference of two individuals

from target population is added to a third individual randomly chosen from

population.

𝑣𝑖𝑗
𝑔

= 𝑥𝑎𝑗
𝑔−1

+ 𝐹 × (𝑥𝑏𝑗
𝑔−1

− 𝑥𝑐𝑗
𝑔−1

) (3)

where 𝑎, 𝑏, 𝑐 are three randomly chosen individuals from the target population such

that (𝑎 ≠ 𝑏 ≠ 𝑐 ≠ 𝑖 ∈ (1, . . , 𝑁𝑃)) and 𝑗 = 1, . . , 𝐷. 𝐹 > 0 is a mutation scale factor

influencing the differential variation between two individuals.

 Crossover 2.2.3

 Whereas Genetic Algorithm always recombine two vectors to generate two

separate trial vectors with one-point crossover, DE algorithm is managed to crossover

to produce one single trial vector. Crossover is used to enhance the potential variety

of the population, and comes into play after creating the donor vector through vector

mutation. The donor vector exchanges its components with the target vector 𝑋𝑖
𝐺⃗⃗⃗⃗ ⃗ under

crossover operation in order to generate 𝑈𝑖
𝐺⃗⃗ ⃗⃗ ⃗ = [𝑢𝑖1

𝐺 , 𝑢𝑖2
𝐺 , 𝑢𝑖3

𝐺 , …… . , 𝑢𝑖𝐷
𝐺]. 𝑁-point

11

crossover is one of the most well-known crossover techniques for real coded GAs. In

this technique, the offspring vector is divided into (𝑛 + 1) parts such that parameters

in contiguous parts are obtained by different parent vectors.

 Price et al. (2005) notifies that the DE family of algorithms may use two

different crossover methods−exponential (or two-point modulo) and binomial (or

uniform). By the definition of Das & Sughantan (2011), in exponential crossover, an

integer number n is selected randomly among the numbers [1, 𝐷]. This integer

number is considered as a starting point in target vector, from where the crossover of

components with the donor vector begins. Another integer L denoting the number of

components the donor vector which contributes to the target vector is selected from

the interval[1, 𝐷]. After choosing n and L, the trial vector is acquired as:

𝑢𝑖𝑗
𝑔

= 𝑣𝑖𝑗
𝑔
 𝑓𝑜𝑟 𝑗 = 〈𝑛〉𝐷 〈𝑛 + 1〉𝐷 , …… . , 〈𝑛 + 𝐿 − 1〉𝐷

 𝑥𝑖𝑗
𝑔
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑗 ∈ [1, 𝐷] (4)

where the angular brackets 〈. 〉𝐷 denote the modulo function with modulus D. The

integer L is taken from [1, 𝐷]according to following pseudo-code:

𝐿 = 0; 𝐷𝑂

{
𝐿 = 𝐿 + 1

} 𝑊𝐻𝐼𝐿𝐸 ((𝑟𝑎𝑛𝑑(0,1) ≤ 𝐶𝑅)𝐴𝑁𝐷 (𝐿 ≤ 𝐷))

where “CR” is known as crossover rate and appears as a control parameter of DE just

like F. CR is defined by users in the range [0,1], and 𝑟𝑖𝑗
𝑔

 is a uniform random number

in the range [0,1].

 On the other hand, in this thesis, binomial crossover is applied to each variable

when a randomly generated number between 0 and 1 is less than or equal to CR

value. In this case, the number of parameters obtained from the donor has

approximately binomial distribution. Trial individuals are gained by recombination of

mutant individuals with its corresponding target individuals. The scheme can be

outlined as:

12

𝑢𝑖𝑗
𝑔

= {
𝑣𝑖𝑗

𝑔
𝑖𝑓 𝑟𝑖𝑗

𝑔
≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝐷𝑗

𝑥𝑖𝑗
𝑔−1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

where the index 𝐷𝑗 is a randomly chosen dimension (𝑗 = 1, . . , 𝐷). It assures that at

least one parameter of the trial individual 𝑢𝑖𝑗
𝑔

 will be different from the target

individual 𝑥𝑖𝑗
𝑔−1

.

 As generating trial individuals, parameter values might violate search ranger. In

order to avoid this, parameter values that violate the search range are randomly and

uniformly re-generated by using following formula:

 𝑥𝑖𝑗
𝑔

= 𝑥𝑖𝑗
𝑚𝑖𝑛 + 𝑟 × (𝑥𝑖𝑗

𝑚𝑎𝑥 − 𝑥𝑖𝑗
𝑚𝑖𝑛) (6)

 Selection 2.2.4

 In order to have constant number of population size as generations pass, the

next step of the algorithm is selection. Selection is applied to determine whether the

target of the trial vector survives to the next generation, i.e., at 𝑔 = 𝑔 + 1. For the

next generation, selection is based on the survival of the fittest among trial and target

individuals such that:

𝑥𝑖
𝑔

= {
𝑢𝑖

𝑔
𝑖𝑓 𝑓(𝑢𝑖

𝑔
) ≤ 𝑓(𝑥𝑖

𝑔−1
)

𝑥𝑖
𝑔−1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7)

 The objective function is supposed to be minimized. Based on the equation

above, if the fitness value of new trial vector yields an equal or lower value of the

function, it replaces the corresponding target individual in the next generation, other

else the target is held in the population. As a conclusion, the population either gets

better or remains the same in fitness status, but never gets worse.

2.3 Self-Adaptive Differential Evolution

 Selection of the control parameters of DE is an important issue because it is

quite possible to reach at different conclusions even if only one of them is changed.

13

The existence of different variants of DE has already been mentioned in previous

chapter. In this study, the DE scheme presented by Storn et al. (1995) and Das et al.

(2005) was applied to problems which can be grouped by using notation as

DE/rand/1/bin strategy.

 In the article of Janez, the version of self-adaptive DE is compared with the

classical DE algorithm and the FADE algorithm conducted by Liu & Lampinen

(2005). For comparison, some benchmark optimization problems from literature were

tested by all algorithms. As a result of this comparison, it is deduced that “DE

algorithm with self-adaptive control parameters setting is quite better or at least

comparable to the standard DE algorithm and evolutionary algorithms from literature

considering the quality of the solutions found with”. Their proposed algorithm

yielded better results than the FADE algorithm.

 The fuzzy adaptive differential evaluation algorithm (FADE) is a new variant of

DE using fuzzy logic controllers in order to adapt the control parameters, scaling

factor 𝐹𝑖 and crossover rate 𝐶𝑅𝑖 for mutation and crossover operations. Like other

proposed adaptive DE algorithms, the population size is assumed to be constant in

advance and kept fixed through whole evolution process of FADE. When fuzzy logic

controlled approach is tested with a set of 10 benchmark problems, it is concluded

that FADE yields better results than the classical DE in high dimensional problems.

 In the DE algorithm above, a novel self-adapting parameter scheme improved

by Brest et al. (2006) was used, known as jDE. It uses self-adapting mechanism on

the control parameters F and CR. Brest et al. used the self-adaptive control

mechanism of “rand/1/bin”. This strategy is mostly used in practice such as Storn et

al. (1997), Gamperle et al.(2002), Liu and Lampien (2002), Sun et al. (2004).

 In the article of Brest et. al. (2006), a self-adaptive control mechanism was used

for changing the control parameters F and CR when the program is run. The third

control parameter NP did not alter during the run. Each individual in population was

extended with parameter values. The control parameters having been adjusted by

means of evaluations are F and CR. Both of them were applied in individual levels.

The better values of these encoded control parameters direct to better individuals that,

in turn, are more probable to survive and produce offspring, hence propagate these

better parameter values.

14

𝑋 1
𝑔

 𝐹1
𝑔

 𝐶𝑅1
𝑔

𝑋 2
𝑔

 𝐹2
𝑔

 𝐶𝑅2
𝑔

 …. …. …..

𝑋 𝑁𝑃
𝑔

 𝐹𝑁𝑃
𝑔

 𝐶𝑅𝑁𝑃
𝑔

 Figure 2.2. Self-Adapting: Encoding Aspect

 It is very effective and converges much faster than the traditional DE,

especially when the dimensionality of the problem is very high and important and so-

called problem is complicated. In jDE, each individual is given its own 𝐹𝑖 and 𝐶𝑅𝑖

values. Initially, they are assigned to 𝐶𝑅𝑖 = 0,5 and 𝐹𝑖 = 0,9 and new control

parameters are calculated as follows:

𝐹𝑖
𝑔

= {
𝐹𝑙 + 𝑟1. 𝐹𝑢 𝑖𝑓 𝑟2 < 𝜏1

𝐹𝑖
𝑔−1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (8)

𝐶𝑅𝑖
𝑔

= {
𝑟3 𝑖𝑓 𝑟4 < 𝜏2

𝐶𝑅𝑖
𝑔−1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (9)

where 𝑟𝑗 ∈ {1,2,3,4} are uniform random numbers in the range [0,1]. 𝜏1 and 𝜏2

denote the probabilities to adjust the F and CR. They are taken as 𝜏1 = 𝜏2 = 0,1 and

𝐹l = 0,1 and 𝐹u = 0,9.

2.4 JADE

 In this section, a new DE algorithm called JADE that implements a mutation

strategy “DE/current-to-p-best” including optional archive and controls 𝐹 and 𝐶𝑅 in

and adaptive manner with self-adaptive parameters 𝜇𝐹 and 𝜇𝐶𝑅. JADE adopts the

15

same binary crossover and one-to-one selection as the classic DE. The algorithm

JADE will be introduced in three sections:

 DE/current-to-pbest 2.4.1

 DE/rand/1 is the first mutation strategy developed for DE by Storn & Price

(1997) and it said by Babu & Jehan (2003) that it is known as the most successful and

widely used DE scheme in the literature. Nevertheless Gamperle et al. (2002) in his

article, claims that DE/best/2 might have some advantages on DE/rand/1 and Pahner

& Hameyer (2000) favours DE/rand/1 for the most technical problems investigated.

Also Mezure-Montes et al. (2006) argue that the incorporation of best-solution

information is beneficial and use DE/current-to-best/1 in their algorithm. When

compared to DE/rand/k, other greedy strategies such as DE/current-to-best/k and

DE/best/k generally have faster convergence rate. On the other hands, their utilization

of best-solution is likely to cause such problems as premature convergence due to the

resultant decreased population diversity.

 Because of the fast but less reliable convergence performance of greedy

strategies, a new mutation strategy called as DE/current-to-p-best is introduced in

order to be able to serve as the basis of self-adaptive DE algorithm. In DE/current-to-

p-best/1, a mutation vector is generated in the following manner:

𝑣𝑖𝑗
𝑔

= 𝑥𝑖𝑗
𝑔−1

+ 𝐹𝑖 × (𝑥𝑖,𝑝𝑏𝑒𝑠𝑡
𝑔−1

− 𝑥𝑖𝑗
𝑔−1

) + 𝐹𝑖 × (𝑥𝑎𝑗
𝑔−1

− 𝑥𝑏𝑗
𝑔−1

) (10)

where 𝑥𝑖,𝑝𝑏𝑒𝑠𝑡
𝑔−1

 is uniformly chosen as one of the top 100𝑝% individuals of the current

population with 𝑝 ∈ (0,1], and 𝐹𝑖 is a mutation factor which has been associated with

𝑥𝑖𝑗
𝑔−1

and it is again created by the adaptation process at each iteration as algorithm is

being run. DE/current-to-p-best is indeed a generalization of DE/current-to-best. Any

of the top 100𝑝% solutions can be randomly selected in order to play the role of the

single best solution in DE/current-to-best.

 Self-Adaptation of Parameters 2.4.2

 In JADE, the self-adaptation is applied to update the parameters 𝜇𝐶𝑅 and 𝜇𝐹

used for generating mutation factor 𝐹𝑖 and crossover probability 𝐶𝑅𝑖 associated with

16

each individual vector 𝑥𝑖, respectively. The 𝐹𝑖 and 𝐶𝑅𝑖 are then used for creating the

trial vector 𝑢𝑖. At each generation 𝑔, crossover probabilities 𝐶𝑅𝑖 are generated based

on an independent normal distribution with 𝑟𝑎𝑛𝑑𝑛𝑖(𝜇𝐶𝑅 , 0,1) of mean 𝜇𝐶𝑅, standard

deviation 0,1 and truncated to the interval (0,1]:

𝐶𝑅𝑖 = 𝑟𝑎𝑛𝑑𝑛𝑖(𝜇𝐶𝑅 , 0.1) (11)

 Denoting that 𝑆𝐶𝑅 as the set of all successful crossover probabilities𝐶𝑅𝑖’s at

generation g. The mean 𝜇𝐶𝑅 is then updated by using following formula:

𝜇𝐶𝑅 = (1 + 𝑐) ∗ 𝜇𝐶𝑅 + 𝑐 ∗ 𝑚𝑒𝑎𝑛(𝑆𝐶𝑅) (12)

where 𝑐 is a positive constant number between 0 and 1 and 𝑚𝑒𝑎𝑛(.) is the usual

arithmetic mean operation.

 At each generation 𝑔, the mutation factor 𝐹𝑖 of each individual 𝑥𝑖 of the

population is created independently based on the mixture of a uniform distribution

𝑟𝑎𝑛𝑑𝑖(0, 1.2) and a normal distribution 𝑟𝑎𝑛𝑑𝑛𝑖(𝜇𝐹 , 0.1), and truncated to (0, 1.2].

That means:

𝐹𝑖
𝑔

= {
𝑟𝑎𝑛𝑑𝑖(0, 1.2) 𝑖𝑓 𝑖 < 𝐼1/3

𝑟𝑎𝑛𝑑𝑛𝑖(𝜇𝐹, 0.1) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13)

where 𝐼1/3 denotes a random collection of one-third indicates of the set

{1,2, … . . , 𝑁𝑃}. Denoting that 𝑆𝐹 is the set of all successful mutation factors 𝐹𝑖′s at a

generation 𝑔. The mean 𝜇𝐹 of the normal distribution is updated by using following

formula:

𝜇𝐹 = (1 − 𝑐) ∗ 𝜇𝐹 + 𝑐 ∗ 𝐿(𝑆𝐹) (14)

where 𝐿(.) is the Lehmer mean:

𝐿(𝑆𝐹) =
∑ 𝐹2

𝐹∈𝑆𝐹

∑ 𝐹𝐹∈𝑆𝐹

 (15)

17

 Explaining JADE Algorithm Setting 2.4.3

 There are some principles followed in order to provide the adaptation of 𝜇𝐶𝑅.

Better values of control parameters have more tendencies to create individuals which

are more likely to survive and hence these values should be spread. The basic

operation is therefore to keep successful crossover probabilities and make use of them

when it is necessary to guide the generation process of future 𝐶𝑅𝑖’s. The standard

deviation of the process is aimed to set to be small because other else the self-

adaptation would not work properly. For instance, as an extreme case of an infinite

standard deviation, the truncated normal distribution becomes a uniform distribution

and thus independent of the value of 𝜇𝐶𝑅. In JADE, the standard deviation of both

mutation and crossover parameters is set to be 0.1.

 First, compared to 𝐶𝑅, there are two different operations in the adaptation of 𝐹.

At each generation, only two thirds of all 𝐹𝑖’s are generated based on a normal

distribution while others are generated according to a uniform distribution. The

component including normal distribution has small variance so it is useful for

searching a suitable mutation factor in a manner similar to 𝐶𝑅 adaptation. On the

other hands, the uniform distribution component helps diversify the mutation factors

and therefore block from getting premature convergence which are quite possible to

occur in greedy mutation strategies when the mutation factors are highly around a

fixed value.

 Secondly, using the Lehmer mean given in equation (15) is much better than

the arithmetic mean used in 𝜇𝐶𝑅 adaptation because the adaptation of 𝜇𝐹 places more

weights on larger successful mutation factors. Arithmetic means of 𝑆𝐹 tend to be

smaller than the optimal value of the mutation factor hence causes to have a smaller

𝜇𝐹 and premature convergence at the end. The decrease in trend mainly is because of

inconsistency between success probability and progress rate of an evolution search.

On the other hands, Zang & Sanderson (2007) states that the DE/current-to-p-best

with small 𝐹𝑖 is similar to an (1 + 1) ES scheme in the sense that both generating an

offspring in the small neighbourhood of the base vector. For (1 + 1) ES, it is known

that it is better to keep the mutation variance as small as possible in order to have a

higher successful probability. However, when a mutation variance is close to 0, it

obviously causes to get a trivial evolution progress. A simple and effective way is to

18

place more weight on larger successful mutation factors in order to achieve a rapid

rate of progress.

2.5 Ensemble Differential Evolution

 In this study, an ensemble approach for DE algorithm was used. Mallipedi and

Suganthan (2011) stated that the performance of conventional DE as solving real

world optimisation problem relies on the selected mutation and crossover strategy

and its associated parameter values. Nevertheless, different type of optimization

problems may require different mutation strategies with different parameter values

regarding to the nature of the problem and necessary computation resources. It can

also be said that different mutation strategies with different parameter settings could

be better during stages of the evolution than a single mutation strategy using unique

parameter settings as traditional DE. By means of the motivation by these

observations, Mallipedi & Suganthan (2011) have proposed and ensemble of

mutation and crossover strategies and parameter values for DE where a pool of

mutation strategies, along with a pool of values to each associated parameter tries to

generate a better offspring population. Qin et al (2009) has mentioned that the

candidate pool of mutation and crossover must be restrictive in order to avoid the

undesirable influences of less effective mutation strategies and parameters. The

mutation strategies or the parameters in the pool should own diverse characteristics,

in order that they can demonstrate different performance characteristics during

different levels of the evolution, as focusing on a particular problem.

 Ensemble DE contains a pool of mutation and crossover strategies with a pool

of values for each of the control parameters associated. A different mutation strategy

is randomly assigned to each member of initial population with the associated values

obtained from the perspective pools. Therefore, trial vectors are produced by the

population members with the assigned mutation strategy and parameter values. When

the generated trial vector is better than the target vector, the mutation strategy and

corresponding parameter values are held with the trial vector which becomes a parent

vector of next generation. The combination of the mutation strategy and the

parameter values creating a better trial vector than the parent are kept. When the

target vector is better than the trial vector, then the target vector is initialized again

with a mutation strategy and the associated parameter values from either the pool or

19

the successful combinations of mutation strategy and the associated control parameter

for the following generations.

 The ensemble idea was presented in Tasgetiren et al. (2010) and Mallipeddi et

al. (2011). In both studies, ensemble of mutation strategies is considered to improve

EDE algorithm. Inspiring from these studies, following mutation strategies (𝑀𝑖) have

been taken into consideration in this thesis.

𝑀1: DE/rand/1/bin:

𝑣𝑖𝑗
𝑔

= 𝑥𝑎𝑗
𝑔−1

+ 𝐹 × (𝑥𝑏𝑗
𝑔−1

− 𝑥𝑐𝑗
𝑔−1

) (16)

𝑀2: DE/rand/2/bin:

𝑣𝑖𝑗
𝑔

= 𝑥𝑎𝑗
𝑔−1

+ 𝐹 × (𝑥𝑏𝑗
𝑔−1

− 𝑥𝑐𝑗
𝑔−1

) + 𝐹 × (𝑥𝑑𝑗
𝑔−1

− 𝑥𝑒𝑗
𝑔−1

) (17)

𝑀3: DE/best/1/bin:

𝑣𝑖𝑗
𝑔

= 𝑥𝑏𝑒𝑠𝑡,𝑗
𝑔−1

+ 𝐹 × (𝑥𝑎𝑗
𝑔−1

− 𝑥𝑏𝑗
𝑔−1

) (18)

𝑀4: DE/best/2/bin:

𝑣𝑖𝑗
𝑔

= 𝑥𝑏𝑒𝑠𝑡,𝑗
𝑔−1

+ 𝐹 × (𝑥𝑎𝑗
𝑔−1

− 𝑥𝑏𝑗
𝑔−1

) + 𝐹 × (𝑥𝑐𝑗
𝑔−1

− 𝑥𝑑𝑗
𝑔−1

) (19)

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are five randomly chosen individuals from the target population

such that (𝑎 ≠ 𝑏 ≠ 𝑐 ≠ 𝑑 ≠ 𝑒 ≠ 𝑖 ∈ (1, . . , 𝑁𝑃)) and 𝑗 = 1, . . , 𝐷. 𝐹 > 0 is a

mutation scale factor affecting the differential variation between two individuals, and

𝑥𝑏𝑒𝑠𝑡,𝑗
𝑔−1

 is the best vector in generation 𝑔 − 1.

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝐸𝐷𝐸()

Step 1. 𝑆𝑒𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑔 = 0,𝑁𝑃 = 100,𝑀𝑚𝑎𝑥 = 4

Step 2. 𝐸𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦

𝑃𝑔 = {𝑥1
𝑔
, . . , 𝑥𝑁𝑃

𝑔
} 𝑤𝑖𝑡ℎ 𝑥𝑖

𝑔
= {𝑥𝑖1

𝑔
, . . , 𝑥𝑖𝐷

𝑔
}

Step 3. 𝐴𝑠𝑠𝑖𝑔𝑛 𝑎 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑡𝑜 𝑒𝑎𝑐ℎ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦

20

𝑀𝑖 = 𝑟𝑎𝑛𝑑()%𝑀𝑚𝑎𝑥 𝑓𝑜𝑟 𝑖 = 1, . . , 𝑁𝑃

Step 4. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑓𝑖𝑛𝑑 𝑥𝑏𝑒𝑠𝑡
𝑔

𝑓(𝑃𝑔) = {𝑓(𝑥1
𝑔
), . . , 𝑓(𝑥𝑁𝑃

𝑔
)}

Step 5. 𝐴𝑠𝑠𝑖𝑛𝑔 𝐶𝑅[𝑖] = 0.5 𝑎𝑛𝑑 𝐹[𝑖] = 0.9 to each individual

Step 6. 𝑅𝑒𝑝𝑒𝑎𝑡 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑥𝑖
𝑔

 𝑜𝑏𝑡𝑎𝑖𝑛 𝑣𝑖
𝑔

= 𝑀𝑖(𝑥𝑖
𝑔
)

 𝑜𝑏𝑡𝑎𝑖𝑛 𝑢𝑖
𝑔

= 𝐶𝑅𝑖(𝑥𝑖
𝑔
, 𝑣𝑖

𝑔
)

 𝑜𝑏𝑡𝑎𝑖𝑛 𝑥𝑖
𝑔

= {
𝑢𝑖

𝑔
𝑖𝑓 𝑓(𝑢𝑖

𝑔
) ≤ 𝑓(𝑥𝑖

𝑔−1
)

𝑥𝑖
𝑔−1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑖𝑓 𝑓(𝑢𝑖
𝑔
) > 𝑓(𝑥𝑖

𝑔−1
), 𝑀𝑖 = 𝑟𝑎𝑛𝑑()%𝑀𝑚𝑎𝑥

 𝑖𝑓 (𝑓(𝑥𝑖
𝑔
) ≤ 𝑓(𝑥𝑏𝑒𝑠𝑡

𝑔
)) , 𝑥𝑏𝑒𝑠𝑡

𝑔
= 𝑥𝑖

𝑔

 𝑈𝑝𝑑𝑎𝑡𝑒 𝐹𝑖
𝑔
 𝑎𝑛𝑑 𝐶𝑅𝑖

𝑔

Step 7. 𝐼𝑓 𝑡ℎ𝑒 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑒𝑡, 𝑔𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 6,

𝑒𝑙𝑠𝑒 𝑠𝑡𝑜𝑝 𝑎𝑛𝑑 𝑟𝑒𝑡𝑢𝑟𝑛 𝜋𝑏𝑒𝑠𝑡

Figure 2.3. Outline of EDE Algorithm

2.6 Opposition-Based Differential Evolution

 The concept of opposition-based learning was firstly presented by Tizhoosh

(2005) and its applications can be found in Tizhoosh (2005) and Tizhoosh (2006).

Rahnamayan et al. has lately introduced an ODE for faster global search and

optimization. This algorithm also provides important applications to the noisy

optimization problems. The traditional DE is changed by taking advantage of

opposition number based optimization concept in three different levels, namely,

initialization of population, generation jumping, and local improvement in the

population’s best member. When a priori information about the actual optima is not

provided, an EA begins with random guesses. It is possible to increase the possibility

of starting with a better solution by instantaneously checking fitness of the opposite

solution. By means of this way, the fitter one which is either guess or opposite guess

can be selected as an initial solution. As mentioned in article of Tizhoosh (2005),

according to the probability theory, %50 of the time a guess have may have lower

fitness value than its opposite guess. Hence, to start with the fitter of the two guesses

is more probable to converge faster than opposite guess. The same approach is likely

to be applied continuously to each solution in the current population. When

population starts to converge into a smaller neighbourhood which surrounds and

optimum point, taking opposition moves may be able to increase the variability of the

21

population. Moreover, as the population converges, the magnitude of the difference

vector will be smaller. Nevertheless, difference vectors obtained by using parents that

just underwent an opposite move will be large thereby resulting larger perturbation in

the mutant vector. Thus, ODE has superior capability to get rid of local optima

basins.

Das & Suganthan (2011) have defined opposite numbers as given below:

𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 1: 𝐿𝑒𝑡 𝑥 𝑏𝑒 𝑎 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑛 𝑐𝑙𝑜𝑠𝑒𝑑 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [𝑎, 𝑏], 𝑖. 𝑒.,

𝑥 ∈ [𝑎, 𝑏]. 𝑇ℎ𝑒𝑛 𝑡ℎ𝑒 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑥∪ 𝑜𝑓 𝑥 𝑚𝑎𝑦 𝑏𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠:

𝑥∪ = 𝑎 + 𝑏 − 𝑥 (20)

The ODE changes the classical DE by using the concept of opposite numbers at the

following different stages:

 Opposition based population initialization: Firstly, a population is

generated according to uniform distribution randomly P(NP) and then

the opposite population OP(NP) is calculated. The ith opposite

individual corresponding to ith parameter vector of P(NP) is as given

in the article of Feoktistov and Janaqi (2004):

𝑂𝑃𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗 − 𝑃𝑖𝑗 , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … . , 𝑁𝑃 𝑎𝑛𝑑 𝑗 = 1,2, … . , 𝐷

𝑎𝑖𝑗 𝑎𝑛𝑑 𝑏𝑖𝑗 𝑑𝑒𝑛𝑜𝑡𝑒 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 𝑜𝑓 𝑗𝑡ℎ 𝑎𝑛𝑑 𝑘𝑡ℎ 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖. 𝑒.

𝑥𝑖𝑗 ∈ [𝑎𝑖𝑗, 𝑏𝑖𝑗]

As a final, NP fittest individuals are selected from the

{𝑃(𝑁𝑃), 𝑂𝑃{𝑁𝑃)} as the initial population.

 Opposition based generation jumping: in this stage, after each

iteration, instead of creating new population by evolutionary process,

the opposite population is found by using a known probability

𝐽𝑟(∈ (0, 0.04)) and the 𝑁𝑃 fittest individuals can be selected both

from the current population and its corresponding opposite population.

22

 Opposition based best individual jumping: in this stage, in the current

population, difference-offspring of the best individual is generated by

the following:

𝑥𝑛𝑒𝑤𝑏𝑒𝑠𝑡,𝑗
𝑔

= 𝑥𝑏𝑒𝑠𝑡,𝑗
𝑔−1

+ 𝐹′(𝑥𝑎𝑗
𝑔−1

− 𝑥𝑏𝑗
𝑔−1

) (21)

where 𝑎 and 𝑏 are mutually different integers indices selected from

population and 𝐹′ is a real constant between 0 𝑎𝑛𝑑 1. In the following

step, the opposite of offspring created as 𝑥𝑜𝑝𝑝−𝑛𝑒𝑤𝑏𝑒𝑠𝑡
𝑔

 and finally the

current best member is changed with the fittest member of the set

including best, new best and opposition of new best.

2.7 Ensemble DE with VNS

 In order to make an ensemble of 𝐷𝐸 algorithms, it is inspired from the 𝑉𝑁𝑆

algorithm and the idea of neighbourhood change in the 𝑉𝑁𝑆 algorithm is used.

Gamperle et al. (2002) and Brest et al. (2006) state that the core idea is to apply

different mutation strategies in the ensemble because it is known that the performance

of 𝐷𝐸 algorithms is very sensitive to mutation strategies selected. In this thesis, the

first four mutation strategies for the ensemble purposes are chosen in order to be

employed in 𝑉𝑁𝑆 loops and the fifth one is not employed in 𝑉𝑁𝑆 algorithm.

Mutation strategies 𝑀3 and 𝑀4 are taken from the article of Elsayed et al. (2014) in

which genetic algorithm is used for optimization problems:

𝑀1 = 𝐷𝐸/𝑟𝑎𝑛𝑑 /1/𝑏𝑖𝑛:

𝑣𝑖𝑗
𝑔

= 𝑥𝑎𝑗
𝑔−1

+ 𝐹(𝑥𝑏𝑗
𝑔−1

− 𝑥𝑐𝑗
𝑔−1

) (22)

𝑀2 = 𝐷𝐸/𝑝 − 𝑏𝑒𝑠𝑡 /1/𝑏𝑖𝑛:

𝑣𝑖𝑗
𝑔

= 𝑥𝑝,𝑗
𝑔−1

+ 𝐹(𝑥𝑏𝑗
𝑔−1

− 𝑥𝑐𝑗
𝑔−1

) (23)

𝑀3 = 𝐺𝐴 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑖𝑛 [𝐸𝑙𝑠𝑎𝑦𝑒𝑑 𝑒𝑡 𝑎𝑙.].:

23

𝑣𝑖𝑗
𝑔

= 𝑥𝑎𝑗
𝑔−1

+ 𝐹(𝑥𝑏𝑗
𝑔−1

− 𝑥𝑐𝑗
𝑔−1

) such that 𝑓(𝑥𝑎) ≤ 𝑓(𝑥𝑏) (24)

𝑀4 = 𝐺𝐴 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑖𝑛 [𝐸𝑙𝑠𝑎𝑦𝑒𝑑 𝑒𝑡 𝑎𝑙.].:

𝑣𝑖𝑗
𝑔

= 𝑥𝑐𝑗
𝑔−1

+ 𝐹(𝑥𝑎𝑗
𝑔−1

− 𝑥𝑏𝑗
𝑔−1

) such that 𝑓(𝑥𝑎) ≤ 𝑓(𝑥𝑏) (25)

𝑀5 = 𝐷𝐸/𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑜 𝑟𝑎𝑛𝑑 /1/𝑏𝑖𝑛:

𝑢𝑖𝑗
𝑔

= 𝑥𝑖𝑗
𝑔−1

+ 𝐾(𝑥𝑎𝑗
𝑔−1

− 𝑥𝑖𝑗
𝑔−1

) + 𝐹(𝑥𝑏𝑗
𝑔−1

− 𝑥𝑐𝑗
𝑔−1

) (26)

 In mutation strategies given above, 𝐾 is randomly chosen within the

range [0,1]. 𝑥𝑝,𝑗 is the individual selected by using the tournament selection with size

of 2. In other words, two individuals are randomly selected from the population and

the better one is picked up.

 So as to improve the 𝐸𝐷𝐸_𝑉𝑁𝑆 algorithm, four different 𝑉𝑁𝑆 local searches

are devised in order to generate trail individuals in an ensemble framework.

Moreover, a neighbourhood 𝑁𝑘 by using a mutation strategy and a crossover operator

together is generated to clarify the 𝑉𝑁𝑆 local searches as follows:

𝑁𝑘(𝑥) = 𝑀𝑘(𝑦), 𝐶𝑅(𝑥, 𝑦) (27)

 Equation (27) indicates that mutation strategy 𝑀𝑘 is used for generating a

mutant individual 𝑦 first so as to find a neighborhood of an individual 𝑥, and then

mutant individual 𝑦 with individual 𝑥 by means of crossover operator is recombined

in equation (5). With this definition and a temporary individual 𝜏, first of all 𝑉𝑁𝑆1

algorithm is developed as follows:

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑉𝑁𝑆1(𝑥𝑖
𝑔
)

𝑘𝑚𝑎𝑥 = 2

𝑘 = 1

𝜏 = 𝑥𝑖
𝑔

𝑑𝑜{
𝑥∗ = 𝑁𝑘 (𝜏) 𝑁1(𝜏) = 𝑀1(𝑦), 𝐶𝑅(𝜏, 𝑦)
𝑖𝑓 𝑓(𝑥∗) < 𝑓(𝜏) 𝑁2(𝜏) = 𝑀2(𝑦), 𝐶𝑅(𝜏, 𝑦)

24

𝜏 = 𝑥∗

𝑘 = 1

𝑒𝑙𝑠𝑒

𝑘 = 𝑘 + 1

}𝑤ℎ𝑖𝑙𝑒(𝑘 ≤ 𝑘𝑚𝑎𝑥)
𝑟𝑒𝑡𝑢𝑟𝑛 𝜏

𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒

𝐹𝑖𝑔𝑢𝑟𝑒 2.4. 𝑉𝑁𝑆1 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚.

 The performance of 𝑉𝑁𝑆 algorithms depends on the choice of the first

neighborhood strategy since the algorithm is quite sensitive. It should be noted that as

long as the first neighbourhood keeps improving the current solution, the

neighbourhood counter k will become 1 meaning that the first neighbourhood will be

used. Other else, the neighbourhood counter will be increased to 2 because first

neighbourhood has stopped improving the current solution. It indicates that second

neighbourhood will be employed. If the second neighbourhood manages to improve

the solution, the algorithm gets back to the fist neighbourhood again until the second

neighbourhood fails to improve the current solution.

 As seen in Fig. 2.4., the following neighbourhood structures are used in the

𝑉𝑁𝑆1 algorithm:

𝑁1(𝜏) = 𝑀1(𝑦), 𝐶𝑅(𝜏, 𝑦), 𝑁2(𝜏) = 𝑀2(𝑦), 𝐶𝑅(𝜏, 𝑦) (28)

 The second 𝑉𝑁𝑆2 algorithm can be gained by changing the sequence of the

neighborhoods as follows:

𝑁1(𝜏) = 𝑀2(𝑦), 𝐶𝑅(𝜏, 𝑦), 𝑁2(𝜏) = 𝑀1(𝑦), 𝐶𝑅(𝜏, 𝑦) (29)

 Similar VNS algorithms can be obtained by neighbourhood structures through

the use of mutation strategies 𝑀3 and 𝑀4.

 The third 𝑉𝑁𝑆3 can be obtained by the following neighbourhoods as follows:

𝑁1(𝜏) = 𝑀3(𝑦), 𝐶𝑅(𝜏, 𝑦), 𝑁2(𝜏) = 𝑀4(𝑦), 𝐶𝑅(𝜏, 𝑦) (30)

25

 The fourth 𝑉𝑁𝑆4 algorithm can be obtained by changing the sequence of the

neighborhoods as follows:

𝑁1(𝜏) = 𝑀4(𝑦), 𝐶𝑅(𝜏, 𝑦), 𝑁2(𝜏) = 𝑀3(𝑦), 𝐶𝑅(𝜏, 𝑦) (31)

 The fifth strategy generates directly applying the mutation strategy to the

individuals.

𝑢𝑖𝑗
𝑔

= 𝑥𝑖𝑗
𝑔−1

+ 𝐾(𝑥𝑎𝑗
𝑔−1

− 𝑥𝑖𝑗
𝑔−1

) + 𝐹(𝑥𝑏𝑗
𝑔−1

− 𝑥𝑐𝑗
𝑔−1

) (32)

 The pseudo codes of 𝑉𝑁𝑆 algorithms are given in Fig. 2.5. to 2.7.

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑉𝑁𝑆2(𝑥𝑖
𝑔
)

𝑘𝑚𝑎𝑥 = 2

𝑘 = 1

𝜏 = 𝑥𝑖
𝑔

𝑑𝑜{

 𝑥∗ = 𝑁𝑘 (𝜏) 𝑁1(𝜏) = 𝑀2(𝑦), 𝐶𝑅(𝜏, 𝑦)

 𝑖𝑓 𝑓(𝑥∗) < 𝑓(𝜏) 𝑁2(𝜏) = 𝑀1(𝑦), 𝐶𝑅(𝜏, 𝑦)
 𝜏 = 𝑥∗

𝑘 = 1

 𝑒𝑙𝑠𝑒

𝑘 = 𝑘 + 1

 }𝑤ℎ𝑖𝑙𝑒(𝑘 ≤ 𝑘𝑚𝑎𝑥)

𝑢𝑖
𝑔

= 𝜏

𝑟𝑒𝑡𝑢𝑟𝑛 𝜏

𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒

 𝐹𝑖𝑔𝑢𝑟𝑒 2. 5. 𝑉𝑁𝑆2 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚.

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑉𝑁𝑆3(𝑥𝑖
𝑔
)

𝑘𝑚𝑎𝑥 = 2

𝑘 = 1

𝜏 = 𝑥𝑖
𝑔

𝑑𝑜{

 𝑥∗ = 𝑁𝑘 (𝜏) 𝑁1(𝜏) = 𝑀3(𝑦), 𝐶𝑅(𝜏, 𝑦)

 𝑖𝑓 𝑓(𝑥∗) < 𝑓(𝜏) 𝑁2(𝜏) = 𝑀4(𝑦), 𝐶𝑅(𝜏, 𝑦)
𝜏 = 𝑥∗

26

𝑘 = 1

 𝑒𝑙𝑠𝑒

𝑘 = 𝑘 + 1

 }𝑤ℎ𝑖𝑙𝑒(𝑘 ≤ 𝑘𝑚𝑎𝑥)
𝑟𝑒𝑡𝑢𝑟𝑛 𝜏

𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒

 𝐹𝑖𝑔𝑢𝑟𝑒 2.6. 𝑉𝑁𝑆3 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚.

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑉𝑁𝑆4(𝑥𝑖
𝑔
)

𝑘𝑚𝑎𝑥 = 2

𝑘 = 1

𝜏 = 𝑥𝑖
𝑔

𝑑𝑜{

 𝑥∗ = 𝑁𝑘 (𝜏) 𝑁1(𝜏) = 𝑀4(𝑦), 𝐶𝑅(𝜏, 𝑦)

 𝑖𝑓 𝑓(𝑥∗) < 𝑓(𝜏) 𝑁2(𝜏) = 𝑀3(𝑦), 𝐶𝑅(𝜏, 𝑦)
𝜏 = 𝑥∗

𝑘 = 1

 𝑒𝑙𝑠𝑒

𝑘 = 𝑘 + 1

 }𝑤ℎ𝑖𝑙𝑒(𝑘 ≤ 𝑘𝑚𝑎𝑥)
𝑟𝑒𝑡𝑢𝑟𝑛 𝜏

𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒

 𝐹𝑖𝑔𝑢𝑟𝑒 2.7. 𝑉𝑁𝑆4 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚.

 In 𝑉𝑁𝑆 algorithms given above, a novel self-adapting parameter scheme

developed by Brest at al. is employed, so called 𝑗𝐷𝐸. It is very simple and effective.

In 𝑗𝐷𝐸, each individual has its own F and CR values, they are updated according to

the equations given in (8) and (9) respectively.

 Generating Initial Population 2.7.1

In this thesis, target population is randomly established by using the equation

(2). Nevertheless, the opposition-based learning algorithm in order to enrich the

initial population and improve the solution is used. 𝑂𝐵𝐿 is firstly proposed by

Tizhoosh (2005) as a new method in computational intelligence and has been applied

to more improve various heuristic optimization algorithms (Rahnamayan &

Tizhoosh). 𝑂𝐵𝐿 highly relies on the idea that as evaluating the solution of a given

problem, its opposite solution is also probable to find a candidate solution which

27

might be closed to the global optimum. Inspired from 𝑂𝐵𝐿, generalized 𝑂𝐵𝐿 (𝐺𝑂𝐵𝐿)

is presented in Wang et al. (2011). It is assumed that 𝑥 is the current solution

with 𝑥 ∈ [𝑎, 𝑏]. Then it is opposition solution is given by:

𝑥∗ = 𝑘 ∗ (𝑎 + 𝑏) − 𝑥 (33)

 In 𝐺𝑂𝐵𝐿, opposite solutions are obtained by dynamically updated interval

boundaries in the population as follows:

𝑥𝑖𝑗
∗ = 𝑘 ∗ [𝑎𝑗

𝑔
+ 𝑏𝑗

𝑔
] − 𝑥𝑖𝑗

𝑔
 (34)

𝑎𝑗
𝑔

= min(𝑥𝑖𝑗
𝑔
) , 𝑏𝑗

𝑔
= max(𝑥𝑖𝑗

𝑔
) (35)

𝑥𝑖𝑗
∗ = 𝑟𝑎𝑛𝑑(𝑎𝑗

𝑔
, 𝑏𝑗

𝑔
) 𝑖𝑓 𝑥𝑖𝑗

∗ < 𝑥𝑚𝑖𝑛 𝑜𝑟 𝑥𝑖𝑗
∗ > 𝑥𝑚𝑎𝑥

𝑖 = 1,… . , 𝑁𝑃, 𝑗 = 1,… . , 𝐷, 𝑘 = 𝑟𝑎𝑛𝑑[0,1] (36)

 After establishing and evaluating the target population, the 𝐺𝑂𝐵𝐿 algorithm

given above is also used for obtaining the opposite target individual. The better one is

kept in the target population.

 Generation of Trial Population 2.7.2

 In order to generate trial individuals of population, VNS algorithm is applied

through the solution process. After obtaining each individual from the VNS

algorithm, an injection procedure is applied to trial individuals to diversify it escape

from the local minima. By injection procedure, an individual from the target

population is selected by using tournament selection with size of 2. Therefore,

depending on the injection probability, some good dimensional values are injected to

the trial individuals in such a way that a uniform random number 𝑟 is less than the

injection probability 𝑖𝑃, that dimension is obtained from individual𝑥𝑎 , that is

determined by using tournament selection procedure. Other else, the dimension of

trial individual is retained. The injection procedure is given in Fig. 2.8. below:

28

𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁𝑃

𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝐷

 𝑖𝑓 (𝑟 < 𝑖𝑃) 𝑡ℎ𝑒𝑛

 𝑥𝑎𝑗 = 𝑇𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡()

 𝑢𝑖𝑗 = 𝑥𝑎𝑗

𝑒𝑙𝑠𝑒

𝑢𝑖𝑗 = 𝑢𝑖𝑗

𝑒𝑛𝑑𝑓𝑜𝑟

𝑒𝑛𝑑𝑓𝑜𝑟

𝐹𝑖𝑔𝑢𝑟𝑒 2.8. 𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒

 Selection 2.7.3

 When the selection of the next population is performed, EC and SF constraint

handling methods that will be summarized in following sections are employed. For

each individual in the trial population, 𝜀(𝑡) level is checked. The individual is treated

as a feasible one, when its constraint violation is less than 𝜀(𝑡) level. Later on, the SF

method is used in order to determine if trial individual will be able to survive to be in

the next generation. Moreover, the SF method is simply used so as to update the best

so far solution in the population. The pseudo code for EDE-VNS algorithm is

provided below in Figure 2.9.

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝐸𝐷𝐸_𝑉𝑁𝑆()

𝑆𝑒𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑔 = 0,𝑁𝑃 = 50, 𝑆𝑚𝑎𝑥 = 5

Step 1. 𝐸𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦

𝑃𝑔 = {𝑥1
𝑔
, . . , 𝑥𝑁𝑃

𝑔
} 𝑤𝑖𝑡ℎ 𝑥𝑖

𝑔
= {𝑥𝑖1

𝑔
, . . , 𝑥𝑖𝐷

𝑔
}

Step 2. 𝐴𝑝𝑝𝑙𝑦 𝑂𝐵𝐿 𝑡𝑜 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑐ℎ𝑜𝑜𝑠𝑒 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑜𝑛𝑒𝑠

𝑃𝑔 = {𝑥1
𝑔
, . . , 𝑥𝑁𝑃

𝑔
} 𝑤𝑖𝑡ℎ 𝑥𝑖

𝑔
= {𝑥𝑖1

𝑔
, . . , 𝑥𝑖𝐷

𝑔
}

Step 3. 𝐴𝑠𝑠𝑖𝑔𝑛 𝑎 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑡𝑜 𝑒𝑎𝑐ℎ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙

𝑀𝑖 = 𝑟𝑎𝑛𝑑()%𝑀𝑚𝑎𝑥 𝑓𝑜𝑟 𝑖 = 1, . . , 𝑁𝑃

Step 4. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑓𝑖𝑛𝑑 𝑥𝑏𝑒𝑠𝑡
𝑔

𝑓(𝑃𝑔) = {𝑓(𝑥1
𝑔
), . . , 𝑓(𝑥𝑁𝑃

𝑔
)}

29

Step 5. 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑒(0)

Step 6. 𝑅𝑒𝑝𝑒𝑎𝑡 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑥𝑖
𝑔

 𝑜𝑏𝑡𝑎𝑖𝑛 𝑢𝑖
𝑔

= 𝑉𝑁𝑆𝑖(𝑥𝑖
𝑔
) 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑁𝐹𝑇

 𝑎𝑝𝑝𝑙𝑦 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑡𝑟𝑖𝑎𝑙 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙

 𝑜𝑏𝑡𝑎𝑖𝑛 𝑥𝑖
𝑔+1

 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑒 − 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑚𝑒𝑡ℎ𝑜𝑑

 𝑖𝑓 (𝑓(𝑥𝑖
𝑔
) ≤ 𝑓(𝑥𝑏𝑒𝑠𝑡

𝑔
)) , 𝑥𝑏𝑒𝑠𝑡

𝑔
= 𝑥𝑖

𝑔
 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑆𝐹

 𝑈𝑝𝑑𝑎𝑡𝑒 𝑒(𝑔) = 𝑒(0) (1 − 𝑔

𝑔𝑐
)

Step 7. 𝐼𝑓 𝑡ℎ𝑒 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑒𝑡, 𝑔𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 6,

𝑒𝑙𝑠𝑒 𝑠𝑡𝑜𝑝 𝑎𝑛𝑑 𝑟𝑒𝑡𝑢𝑟𝑛 𝜋𝑏𝑒𝑠𝑡

Figure 2.9. Outline of EDE-VNS Algorithm

30

3 CONSTRAINED REAL PARAMETER OPTIMIZATION

 Most of the optimization problems included in science and engineering involve

constraints. When constrains are present in the optimization problem, feasible region

reduces and the search process of the problem gets more complicated. Evolutionary

Algorithms (EAs) generally perform unconstrained searches. In order that the

evolutionary algorithm can solve constrained optimization problems, it is required to

put additional mechanisms to handle given constraints. In the literature, Coello

(2002) gives important information about several constraint handling techniques in

order to be used for EAs.

 During solving constrained optimization problems, solution candidates that can

satisfy all constraints are feasible individuals whereas individuals that cannot satisfy

all constraints are infeasible individuals. One of the most important issues of

constrained handling optimization is to determine how to deal with the infeasible

individuals through the search process. One way to handle it is to totally ignore all

infeasible individuals found and go on the search process with feasible individuals

only. This kind of approach is probable to be ineffective because EAs are

probabilistic search methods and important potential information in infeasible

individuals may be lost because of completely disregarding them. When the search

space is discontinuous, EAs are also possible to be trapped in one of the local

minima. Hence, different techniques have been developed to get the information held

by infeasible individuals. Michalewicz & Schoenauer (1996) has grouped the

methods to handle the constraints with EAs into four categories: preserving feasibility

of functions, penalty functions, make a separation between feasible and infeasible

solutions and hybrid methods. Wang et al. (2007) stated that a constrained

optimization problem can be formulated as a multi-objective problem, nevertheless it

is computationally intensive due to non-domination sorting.

 According to the no free lunch (NFL) theorem stated in the article of Wolpert

and Macready (1997), no single state-of-the-art constraint handling technique can be

said better than all others on every problem. Therefore, solving a particular

constrained problem needs many trial-and-error runs in order to be able to choose an

appropriate constraint handling technique and to fine tune the associated parameters.

This approach clearly has the disadvantage of suffering from unrealistic

computational requirements in particular when the objective function of the problem

31

is computationally expensive as in the article of Jin (2005) or the solutions are needed

in real-time. In the article of Mallipeddi & Suganthan (2010), an ensemble of

constraint handling techniques was proposed as an effective alternative to the trial-

and-error-based search for the best constrained handling technique with its best

parameters for any given problem. Each constraint handling technique has its own

population and each function is efficiently utilized by each of these populations.

 As mentioned above, According to J.J. Liang et al. (2006), because

evolutionary algorithms and other meta-heuristics behave as if they are unconstrained

search technique because of their nature during optimization process, additional

mechanism is required. Lately, the mostly used method is to generate the penalty

functions to incorporate constraints. On the other hand, to solve a problem the

optimum solution lies in the boundary between the feasible and the infeasible regions.

In addition to this, penalty functions require an effective fine-tuning to decide the

most suitable penalty factors in order to be used with meta-heuristics. Therefore,

same ranking methods are proposed in the literature to handle the constraints.

 In this thesis, 22 benchmark problems which were presented at CEC’2006 are

taken into consideration to solve by using EDE-VNS algorithms. The list of

benchmark functions are provided in Appendix 1.

(http://www.ntu.edu.sg/home/epnsugan/).

All of the 22 test functions were defined with minimization problem as

following:

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥), 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛] 𝑎𝑛𝑑 𝑋 ∈ 𝑆 (37)

subject to that constraints:

 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1,… , 𝑞 (38)

 ℎ𝑗(𝑥) = 0, 𝑗 = 𝑞 + 1,… ,𝑚 (39)

 For the converting of equality constraints into inequality form, following

strategy is used:

http://www.ntu.edu.sg/home/epnsugan/

32

 |ℎ𝑗(𝑥)| − 𝜀 ≤ 0, 𝑓𝑜𝑟 𝑗 = 𝑞 + 1,… ,𝑚 (40)

when equations (5) and (6) are satisfied, a solution 𝑥 is defined as feasible. In

accordance with the value of ε taken as ε =0,0001 in the special session, so it is taken

as the same value in this study as well.

3.1 Benchmark Problems

 The benchmark problems used for solving by 𝐸𝐷𝐸 − 𝑉𝑁𝑆 algorithm are taken

from 2006 IEE Congress Evolutionary Computation (CEC’2006) competition of

single objective constrained problems.

 A variety of engineering optimization problems provided by (CEC’ 2006) is

taken into consideration in this thesis. These problems vary in terms of mathematical

properties, presence and absence of function constraints, number of variables

included, static and dynamic in nature, and modality. The number of constraints in

each constrained problems also changes. The further information about these

problems is given in table below provided in the article of Elsayed et al. (2014).

Table 1 Details of the 24 test problems

Pr D

Objective

Function |𝐹|/|𝑆|(%) LI NI LE NE a Optimal

g1 13 Quadratic 0.00000 9 0 0 0 6 −15.000000000

g2 20 Nonlinear 99.9971 0 2 0 0 1 −0.8036191042

g3 10 Polynomial 0.0000 0 0 0 1 1 −1.0005001000

g4 5 Quadratic 52.1230 0 6 0 0 2 −30665.53867178

g5 4 Cubic 0.0000 2 0 0 3 3 5126.4967140071

g6 2 Cubic 0.0066 0 2 0 0 2 −6961.813875580

g7 10 Quadratic 0.0003 3 5 0 0 6 24.3062090681

g8 2 Nonlinear 0.8560 0 2 0 0 0 −0.0958250415

g9 7 Polynomial 0.5121 0 4 0 0 2 680.6300573745

g10 8 Linear 0.0010 3 3 0 0 6 7049.2480205286

g11 2 Quadratic 0.0000 0 0 0 1 1 0.7499000000

g12 3 Quadratic 4.7713 0 1 0 0 0 −1.0000000000

g13 5 Nonlinear 0.0000 0 0 0 3 3 0.0539415140

g14 10 Nonlinear 0.0000 0 0 3 0 3 −47.7648884595

g15 3 Quadratic 0.0000 0 0 1 1 2 961.7150222899

33

g16 5 Nonlinear 0.0204 4 34 0 0 4 −1.9051552586

g17 6 Nonlinear 0.0000 0 0 0 4 4 8853.5396748064

g18 9 Quadratic 33.4761 0 13 0 0 6 −0.8660254038

g19 15 Nonlinear 0.0000 0 5 0 0 0 32.6555929502

g21 7 Linear 0.0000 0 1 0 15 6 193.7245100700

g23 9 Linear 0.0000 0 2 3 1 6 −400.0551000000

g24 2 Linear 79.6556 0 2 0 0 2 −5.5080132716

 According to the table, 𝐷 is the number of decision variables, |𝐹| |𝑆|⁄ is the

estimated ratio between the feasible region and the search space. 𝐿𝐼 is the number of

linear inequality constraints, 𝑁𝐼 is the nonlinear inequality constraints, 𝐿𝐸 is the

number of linear equality constraints, 𝑁𝐸 is the number of nonlinear equality

constraints, and ∝ is the number of active constraints. Optimal solutions for each

problem are also given in the last column of the table.

3.2 Constraint Handling Methods

 There are different types of constraint handling techniques provided in articles

in the literature. In this thesis, the methods used for constraint handling are described

the following sections:

 Superiority of Feasible Solution 3.2.1

 SF (Superiority of Feasible Solutions) is one of the constraint handling methods

proposed by Deb (2000). It is developed for constrained optimization. If two

solutions 𝑥 and 𝑦 are compared, it can be said that 𝑥 is considered as superior to 𝑦

under the satisfaction of following conditions:

 𝑥 is feasible but 𝑦 is not feasible.

 𝑥 and 𝑦 are both feasible but 𝑥 has a smaller objective value for minimization

and greater objective value for maximization problem than 𝑦.

 𝑥 and 𝑦 are both feasible, but 𝑥 has a smaller overall constraint violation 𝑣(𝑥)

as computed by the following formula:

𝐺𝑖(𝑥) = max {𝑔𝑖(𝑥), 0} 𝑖 = 1,…𝑝

34

𝐻𝑖(𝑥) = max {|ℎ𝑖(𝑥)| − 𝛿, 0} 𝑖 = 𝑝 + 1,… ,𝑚

𝑣(𝑥) =
∑ 𝐺𝑖(𝑥)𝑝

𝑖=1 +∑ 𝐻𝑖(𝑥)𝑚
𝑖=𝑝+1

𝑚
 (41)

where 𝑣(𝑥) is the average violation of m number of constraints. Furthermore, 𝛿 is the

tolerance value for equality constraints and it is generally taken as 0,0001 in the

literature.

 In SF, feasible individuals are always taken into consideration as better than the

infeasible ones. Two infeasible solutions are compared according to their overall

constraint violations only, whereas two feasible solutions are compared according to

their objective functions only. The aim of comparing infeasible solutions based on the

overall constraint violation is to push the infeasible solutions to feasible solutions as

much as possible, while comparison of two feasible solutions only aims to improve

the value of the objective function. Hence, in Phase 1, infeasible solutions with low

overall constraint violation are to be selected. In Phase 2, all the feasible ones are

selected first and then infeasible ones with low overall constraint violation are

selected. In Phase 3, only feasible ones with better objective function values are

selected.

 The Adaptive Penalty Function 3.2.2

 In the article of Smith & Tate (2003), an adaptive penalty approach is

introduced. In adaptive penalty function, the idea of near feasibility threshold also

called NFT is used, in which both solutions with-in feasible region and the NFT-

neighbourhood of the in the infeasible region are favoured. Moreover, to be able to

differentiate the gap between the best feasible value and best infeasible value found

so far, an adaptive part is also included in the penalty method. The adaptive penalty

function is given as follows:

𝑓𝑝(𝑥) = 𝑓(𝑥) + (𝑓𝑓𝑒𝑎𝑠 − 𝑓𝑎𝑙𝑙)∑ (
𝑣𝑖(𝑥)

𝑁𝐹𝑇𝑖
)
𝛼𝑖𝑚

𝑖=1 (42)

35

where 𝑓𝑓𝑒𝑎𝑠 is the value of the best feasible solution yet obtained while 𝑓𝑎𝑙𝑙 is the

nonpenalized value of the best solution obtained so far. As Coello (2002) has

mentioned in his article, the adaptive term in the formula above might result in zero-

or over-penalty. Because of this reason, it is thought to be better to take only dynamic

of the function with NFT threshold into account as following:

𝑓𝑝(𝑥) = 𝑓(𝑥) + ∑ (
𝐺𝑖(𝑥)

𝑁𝐹𝑇𝑖
)
∝

+𝑝
𝑖=1 ∑ (

𝐻𝑗(𝑥)

𝑁𝐹𝑇𝑗
)
∝

𝑚
𝑗=𝑝+1 (43)

 The basic form of the 𝑁𝐹𝑇 method is introduced as 𝑁𝐹𝑇 =
𝑁𝐹𝑇0

1+𝜆∗𝑡
 where 𝑁𝐹𝑇0

is the initial value of 𝑁𝐹𝑇 method; 𝜆 and 𝑡 are user-defined positive value and

generation counter, respectively. 𝛼 is severity parameter. In view of the conversion

process of the equality constraints to the inequality constraints by subtracting 𝛿 from

the absolute value of the constraint value and 𝛿 is determined in advance, the 𝑁𝐹𝑇0 is

selected as 1e-4.

 𝝐 – Constraint (EC) 3.2.3

 Takahama & Sakai (2006) has proposed another constraint handling method

called ε-constraint. In the basis of their research, an appropriate control for the

epsilon parameter is required as the good feasible solutions for problems with

equality constraints are attained. According to control generation notated by 𝑔𝑐, the ε

level is updated. After generation counter 𝑔 becomes higher than control

generation 𝑔𝑐, the ε level is set to zero to finalize with feasible solutions. The

solutions which have violations less than 𝜀(𝑔) are taken to become feasible solutions

for selection process in the next generation. The main notion can be explained with

equations:

𝜀(0) = 𝑣(𝑥𝜃) (44)

 𝜀(𝑔) = {
𝜀(0) × (1 −

𝑔

𝑔𝑐
)
𝑐𝑝

𝑖𝑓 (𝑔 < 𝑔𝑐)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (45)

where 𝑥𝜃 is the top 𝜃-th individual.

36

 Stochastic Ranking 3.2.4

 Runarsson & Yao (2000) has presented 𝑆𝑅 method in order to achieve a

balance between objective and the overall constraint violation in a stochastic way. A

probability factor 𝑝𝑓 is required in order to determine if the objective function value

or the constraint violation value determines the rank of each individual in population.

Basic form of 𝑆𝑅 is presented in figure below:

𝑖𝑓 (𝑛𝑜 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑟 𝑟𝑎𝑛𝑑 < 𝑝𝑓)

𝑅𝑎𝑛𝑘 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑛𝑙𝑦

𝑒𝑙𝑠𝑒

𝑅𝑎𝑛𝑘 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑛𝑙𝑦

𝑒𝑛𝑑

𝐹𝑖𝑔𝑢𝑟𝑒 3.10. 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑅𝑎𝑛𝑘𝑖𝑛𝑔

 Using evolution strategies and differential variation, Runarsson & Yao (2005)

has proposed the improved version of the (𝐼𝑆𝑅) . In 𝑆𝑅, comparison between two

individuals might be performed based on only either objective value or constraint

violation as randomly determined. Hence, infeasible solutions yielding better

objective value are possible to be selected in all three phases of the evolution.

Mallipeddi & Suganthan (2010) used the modified version of 𝑆𝑅 presented by

Runarsson & Yao (2005). They have maintained the value of 𝑝𝑓 a linearly decreasing

function from 𝑝𝑓 = 0,475 in the initial generation to 𝑝𝑓 = 0,025 in the final

generation instead of a constant value.

3.3 Ensemble of Constraint Handling

 Each constrained optimization problem would differ from one another

according to the ratio between feasible search space and the whole search space,

multimodality and the nature of constraint functions. Mallipeddi & Suganthan (2010)

that since evolutionary algortihms uses stochastic nature to solve optimization

problems, the evalution could possibly follow the different paths in every run even

whem the same problem is solved by using the same algorithm. Hence, depending

upon such factors as the ratio between feasible search space and the whole search

space, multimodality of the problem, nature of equality/inequality constraints, the

chosen EA, global exploration, local exploitation stages of the search algorithm,

different constraint handling methods might be useful in different stages of the search

37

process. In view of the strong relationship between these diverse factors and the

randomness of the evolutionary algorithms, it is not practical to determine which

constraint handling method outperforms the others or which one is the best during a

particular stage of the evolution in order to solve a given problem when using a given

EA. By means of these observations, Mallipeddi & Suganthan (2010) developed the

𝐸𝐶𝐻𝑇 to implicity take advantage of the match between constraint handling methods,

characteristcs of the so-called problem, chosen EA and the exploration-exploitation

stages of the search process.

 Jin (2005) states that it might take several minutes to several hours in order to

compute the objective value of a real-world problem. Thus, it is thought to be

difficult to find a better constraint handling method for any problem by using trial-

and-error method. The computation time spent on finding searching for a better

constraint handling method can be saved by using the proposed ensemble method.

 In the article of Mallipeddi & Suganthan (2010), 𝐸𝐶𝐻𝑇 with four different

constrained handling methods given above sections, each of them has its own

population and parameters. Each population produces its own offspring according to

a constraint handling method. The parent population corresponding to a particular

constraint handling method competes with both its own spring population and the

offspring population of the other three constraint handling methods. Because of this

fact, it can be said that an offspring produced by a specific constraint handling

method could be refused by its own population, however might be accepted by the

population of other constraint handling methods. When the evolution of the objective

or constraint functions is rather expensive, it is better to include more constraint

handling methods in the ensemble in order to take more advantages of each function

call. And if a particular constraint handling technique is most suitable to the search

method and the problem during a point in the search process, the offspring population

produced by using that constraint handling method will be dominating the other and

enter other populations as well. In the following generations, these superior offspring

will be parents in other populations. When the constraint handling methods selected

to form an ensemble are similar in their nature populations associated with the each

of the constraint handling methods might lose diversity and the search ability of

𝐸𝐶𝐻𝑇 could worsen. Hence, the performance of 𝐸𝐶𝐻𝑇 can be developed by getting

constraint handling methods with diverse and competitive nature.

38

3.4 Computational Results of Constrained RPO

 The EDE-VNS Algorithm was coded in C++ and run on an Intel P4 1.33 GHz

Laptop PC with 256 MB memory. The population size is taken as NP=50. The 𝑁𝐹𝑇0

is fixed at 0.001. The diversification probability is taken as 0.005. For the EC

constraint handling method, following parameters are used as 𝜃 = 0.95𝑥𝑁𝑃,

𝑡𝑐 = 0.4 ∗ 𝑀𝑎𝑥𝐺𝑒𝑛 and 𝑐𝑝 = 2. It was carried out 25 replications for each

benchmark problem and average, minimum and standard deviation of 25 replications

are provided. It should be noted that real numbers are rounded to zero after 10 digits

in the standard deviation calculations.

 DE Algorithm with ensemble strategies and VNS (EDE-VNS) was compared

to the best performing algorithms from the literature such as GA-MPC (Elsayed et al.

2013), APF-GA (Tessema & Yen, 2009), MDE (Mezura-Montes et al., 2006),

ECHT-EP2 (Mallipedi et al., 2010). The presentation of overall analysis and

comparison based on the results are given in Table 2. As seen in the table 2, proposed

algorithm EDE-VNS was run for 240,000 and 500,000 function evaluations. Since it

is possible to find some algorithms run for 500,000 function evaluations in the

literature, it is thought that proposed algorithm is supposed to be more likely to find

more optimal solutions with zero standard deviations when number of function

evaluation increases. It is due to the fact that ensemble of mutation strategies help the

functions converge slowly to the optimal solution. Therefore, more function of

evaluations could yield better results. EDE-VNS algorithm with 240,000 function

evaluations was able to find the optimal solutions with zero standard deviations for

18 out of 22 benchmark problems, while the same algorithm with 500,000 function

evaluations was able to find the optimal solutions with zero standard deviations for

21 out of 22 benchmark problems. The EDE-VNS algorithm with 240,000 function

evaluations was slightly better than APF-GA and ECHT-EP2 algorithms, since they

were able to find 13 and 14 out of 22 benchmark problems respectively. The

performance of MDE is obviously better than these two algorithms as well. GA-MPC

and MDE algorithms were better than EDE-VNS algorithm with 240,000 function

evaluations. However, MDE was run for 500,000 function evaluations and if MDE is

compared to EDE-VNS with 500,000 function evaluations, it is obvious that EDE-

VNS is better than MDE. The clear winner is GA-MPC algorithm because of the fact

that it was able to find 20 optimal solutions with 240,000 function evaluations. It also

should be highlighted EDE-VNS algorithm with 500,000 function evaluations is

39

competitive to best performing algorithm GA-MPC, since it is able to find 21 optimal

solutions with zero standard deviations. In 2 benchmark problems, the standard

deviation of EDE-VNS algorithm was smaller than both GA-MPC and MDE,

respectively. In summary, the EDE-VNS algorithm with both 240,000 and 500,000

functions evaluations are competitive to the best performing algorithms taken from

the literature.

40

Problem

EDE-VNS EDE-VNS

 GA-MPC APF-GA MDE ECHT-EP2

FEs

240,000 500,000

240,000 500,000 500,000 240,000

g01 Best -15.0000 -15.0000

-15.0000 -15.0000 -15.0000 -15.0000

 Avg -15.0000 -15.0000

-15.0000 -15.0000 -15.0000 -15.0000

 Std

0.00E-00 0.00E-00

0.00E-00 0.00E-00 0.00E-00 0.00E-00

g02 Best

-0.8036191 -0.8036191

-0.8036191 -0.803601 -0.8036191

-
0.8036191

 Avg

-0.8036191 -0.8036191

-0.802921 -0.803518 -0.78616
-

0.7998220

 Std

0.0000

0.00E-00

2.4150E-03 1.00E-04 1.26E-02 6.29E-03

g03 Best

-1.0005

-1.0005

-1.0005 -1.001 -1.0005 -1.0005

 Avg

-1.0005 -1.0005

-1.0005 -1.001 -1.0005 -1.0005

 Std

0.00E-00 0.00E-00

0.00E-00 0.00E-00 0.00E-00 0.00E-00

g04 Best

-30665.54
-30665.539

-30665.539 -30665.539 -30665.539

-
30665.539

 Avg

-30665.54
-30665.539

-30665.539 -30665.539 -30665.539

-
30665.539

 Std

0.00E-00
0.00E-00

0.00E-00 1.00E-04 0.00E-00 0.00E-00

g05 Best

5126.497 5126.497

5126.497 5126.497 5126.497 5126.497

 Avg

5126.497 5126.497

5126.497 5127.5423 5126.497 5126.497

 Std

0.00E-00 0.00E-00

0.00E-00 1.4324E+00 0.00E-00 0.00E-00

g06 Best

-6961.814
-6961.814

-6961.814 -6961.814 -6961.814 -6961.814

 Avg

-6961.814
-6961.814

-6961.814 -6961.814 -6961.814 -6961.814

 Std

0.00E-00 0.00E-00

0.00E-00 0.00E-00 0.00E-00 0.00E-00

g07 Best

24.3062 24.3062

24.3062 24.3062 24.3062 24.3062

 Avg

24.3062 24.3062

24.3062 24.3062 24.3062 24.3063

 Std

0.00E-00 0.00E-00

0.00E-00 0.00E-00 0.00E-00 3.19E-05

g08 Best

-0.095825 -0.095825

-0.095825 -0.095825 -0.095825 -0.095825

 Avg

-0.095825 -0.095825

-0.095825 -0.095825 -0.095825 -0.095825

 Std

0.00E-00 0.00E-00

0.00E-00 0.00E-00 0.00E-00 0.0E-00

41

g09 Best

680.630 680.630

680.630 680.630 680.630 680.630

 Avg

680.630 680.630

680.630 680.630 680.630 680.630

 Std

0.00E-00
0.00E-00

0.00E-00 0.00E-00 0.00E-00 0.00E-00

g10 Best

7049.248021 7049.24802

7049.24802 7049.24802 7049.24802 7049.2483

 Avg

7049.248022 7049.24802

7049.24802 7077.6821 7049.24802 7049.2490

 Std

7.00E-06 0.00E-00

0.00E-00 5.1240E+01 0.00E-00 6.60E -04

g11 Best

0.7499 0.7499

0.7499 0.7499 0.7499 0.7499

 Avg

0.7499 0.7499

0.7499 0.7499 0.7499 0.7499

 Std

0.00E-00 0.00E-00

0.00E-00 0.00E-00 0.00E-00 0.00E-00

g12 Best -1.0000 -1.0000

-1.0000 -1.0000 -1.0000 -1.0000

 Avg -1.0000 -1.0000

-1.0000 -1.0000 -1.0000 -1.0000

 Std 0.00E-00 0.00E-00

0.00E-00 0.00E-00 0.00E-00 0.00E-00

g13 Best

0.053942 0.053942

0.053942 0.053942 0.053942 0.053942

 Avg

0.053942 0.053942

0.053942 0.053942 0.053942 0.053942

 Std

0.053942 0.053942

0.053942 0.00E-00 0.00E-00 0.00E-00

g14 Best

-47.764888 -47.764888

-47.764888 -47.76479 -47.764887 -47.7649

 Avg

-47.764888 -47.764888

-47.764888 -47.76479 -47.764874 -47.7648

 Std

0.00E-00 0.00E-00

0.00E-00 1.00E-04 1.400E-05 2.72E-05

g15 Best

961.7150 961.71502

961.71502 961.71502 961.71502 961.71502

 Avg

961.7150 961.71502

961.71502 961.71502 961.71502 961.71502

 Std

0.00E-00 0.00E-00

0.00E-00 0.00E-00 0.00E-00 0.00E-00

g16 Best -1.905155 -1.905155

-1.905155 -1.905155 -1.905155 -1.905155

 Avg -1.905155 -1.905155

-1.905155 -1.905155 -1.905155 -1.905155

 Std

0.00E-00 0.00E-00

0.00E-00 0.00E-00 0.00E-00 0.00E-00

g17 Best

8853.5397 8853.5397

8853.5397 8853.5398 8853.5397 8853.5397

 Avg

8853.5397 8853.5397

8853.5397 8888.4876 8853.5397 8853.5397

 Std

0.00E-00 0.00E-00

0.00E-00 29.0347 0.00E-00 2.13E -08

42

Table 2 Computational Results of EDE-VNS, GA-MPC, APF-GA, MDE, ECHT-EP2

For CEC 2006 Test Problem

 In additional to these comparisons, so as to demonstrate the effect of ensemble

of mutation strategies employed in VNS loops, the code was also run for 500,000

function evaluations for each mutation strategy alone. When each mutation strategy

was applied one by one and the code was run again, it was observed that each of them

yielded at least one infeasible solution for benchmark problems. Table 3 given below

provides the information about feasibility rate of each benchmark problem as

employing each mutation strategy alone and ensemble of mutation strategies.

g18 Best

-0.866025 -0.866025

-0.866025 -0.866025 -0.866025 -0.866025

 Avg

-0.866025 -0.866025

-0.866025 -0.866025 -0.866025 -0.866025

 Std

0.00E-00 0.00E-00

0.00E-00 0000 0.00E-00 0.00E-00

g19 Best

32.655593 32.655593

32.655593 32.655593 32.655693 32.6591

 Avg

32.656792 32.655688

32.655593 32.655593 33.34125 32.6623

 Std

4.935E-03 2.55E-04

0.00E-00 0.00E-00 8.475E-01 3.4E -03

g21 Best

193.72451 193.72451

193.72451 196.63301 193.72451 193.7246

 Avg

193.72451 193.72451

193.72451 196.51581 193.72451 193.7438

 Std

0.00E-00 0.00E-00

0.00E-00 2.3565E+00 0.00E-00 1.65E-02

g23 Best

-400.0551 -400.0551

-400.0527 -399.7624 -400.0551 -398.9731

 Avg

-399.590570 -400.0551

-400.023589 -394.7627 -400.0551 -373.2178

 Std

2.3227E+00 0.00E-00

6.3463E-02 3.8656E+00 0.00E-00 3.37E+01

g24 Best -5.508013 -5.508013

-5.508013 -5.508013 -5.508013 -5.508013

 Avg -5.508013 -5.508013

-5.508013 -5.508013 -5.508013 -5.508013

 Std 0.00E-00 0.00E-00

0.00E-00 0.00E-00 0.00E-00 0.00E-00

43

 Table 3 Feasibility Rates of Benchmark Problems for EDE and Each Mutation Strategy

Problem D EDE
Strategy

1

Strategy

2

Strategy

3

Strategy

4

Strategy

5

g1 13 1.00 1.00 1.00 1.00 1.00 1.00

g2 20 1.00 1.00 1.00 1.00 1.00 1.00

g3 10 1.00 1.00 1.00 1.00 1.00 0.56

g4 5 1.00 1.00 1.00 1.00 1.00 1.00

g5 4 1.00 1.00 1.00 1.00 1.00 0.00

g6 2 1.00 1.00 1.00 1.00 1.00 0.00

g7 10 1.00 1.00 1.00 1.00 1.00 0.00

g8 2 1.00 1.00 1.00 1.00 1.00 1.00

g9 7 1.00 1.00 1.00 1.00 1.00 1.00

g10 8 1.00 1.00 1.00 1.00 1.00 0.32

g11 2 1.00 1.00 1.00 1.00 1.00 1.00

g12 3 1.00 0.00 0.00 1.00 1.00 1.00

g13 5 1.00 0.00 0.00 1.00 1.00 0.00

g14 10 1.00 1.00 1.00 1.00 1.00 0.00

g15 3 1.00 1.00 1.00 1.00 1.00 0.00

g16 5 1.00 1.00 1.00 1.00 1.00 1.00

g17 6 1.00 1.00 1.00 1.00 1.00 0.00

g18 9 1.00 1.00 1.00 1.00 1.00 1.00

g19 15 1.00 1.00 1.00 1.00 1.00 1.00

g21 7 1.00 0.64 0.84 0.60 0.60 0.00

g23 9 1.00 0.72 0.68 0.28 0.84 0.00

g24 2 1.00 1.00 1.00 1.00 1.00 1.00

 As an interpretation to these feasibility rates in table, it is strictly clear that each

mutation strategy has failed to find %100 feasible solutions for all benchmark

problems, while ensemble of mutation strategies could provide %100 feasibility rate

for all benchmark problems. This situation has shown the power of ensemble of

mutation strategies in finding feasible solutions for all benchmark problems.

44

4 APPLICATIONS ON MULTIDIMENSIONAL KNAPSACK

PROBLEM

 Chu & Beasley (1998) stated in their article that the multidimensional knapsack

problem (MKP) is a popular NP-hard and combinatorial optimization problem. The

objective of the problem is to maximize the total profit of the selected given item by

satisfying all resource constraints. Practical applications of 𝑀𝐾𝑃 arise in a variety of

problems such as capital budgeting (Chu & Beastley, 1998), cargo loading (Shih

1979), resource allocating (Gavish & Pirkul 1982), cutting stock (Gilmore & Gomory

1966) etc. Therefore, it is important in the development of effective and efficient

algorithms for solving MKPs. The mathematical formulation of MKP can be given as

follows:

max 𝑧 =∑ 𝑐𝑗 ∗ 𝑦𝑗
𝑛
𝑗=1 (46)

subjected to:

∑ 𝑎𝑖𝑗 ∗ 𝑦𝑗 ≤ 𝑏𝑖
𝑛
𝑗=1 𝑖 = 1,2, … .𝑚 (47)

𝑦𝑗 ∈ {0,1}, 𝑗 = 1,2, … . 𝑛

 In the formulation given above, 𝑛 denotes the number of items and 𝑚 denotes

the number of knapsack constraints with the capacity 𝑏𝑖 (𝑖 = 1,2,3, … .𝑚). Each item

𝑗 requires 𝑎𝑖𝑗 units of resource consumption in the 𝑖th knapsack and returns 𝑐𝑗 units

of profit on incorporation. All entries must be nonnegative.

 From the viewpoint of the computation, several proposed algorithms in the

literature can be grouped into two main classes: Exact algorithms and heuristic/meta-

heuristic algorithms. There have been some exact algorithms applied in order to deal

with MKPs in early studies, such as the branch and bound algorithm used by Shih

(1979) and dynamic programming used by (DP) Toth (1980). Even though these

exact algorithms can yield optimum solutions in solving small-scale problems, they

perform badly when the scales of the problem come to be large owing to the NP-

hardness property of MKPs. These algorithms cannot provide an optimal solution

because of not only high space requirements of the problem but also the limited

45

computational capacity. In order to remove these limitations, the rule based 𝐵&𝐵

algorithm was proposed by Gavish & Pirkul (1985) so as to reduce the size of the

problem and attain better results solutions than previously proposed techniques. In

addition to this, Plateau & Elkihel (1985) have introduced 𝐵&𝐵 and 𝐷𝑃 based

hybridization method in their article. Lately, an approximated 𝐷𝑃 based approach and

a hybridization with a branch and cut procedure were proposed by Bertsimas &

Demir (2002) and Boyer et al. (2009). Moreover, exact techniques for solving MKP

also include the Lagrangian methods, reduction schemes, special enumeration and

surrogate relaxation techniques. Since the search space grows exponentially as the

problem size increases, these exact algorithms are generally not useful for solving

MKPs. Therefore, some heuristics and meta-heuristic algorithms were introduced to

further improve solutions. Simulated annealing is one of the earliest method

presented by Drexel (1988) concerning 𝑀𝐾𝑃. Glover & Kochenberger have proposed

tabu search methods and and Hanafi & Freville (1998) have further developed this

technique to be able to solve all the available public instances in the article of Freville

(2004). In the article of Chu & Beasley (1998), a genetic algorithm with large

correlated instances was introduced. Their several results were improved by using

tabu search algorithm proposed by Vasquez & Hao (2001). Taking the new GA

operators and fitness landscapes analysis into consideration, 𝐶𝐵𝐺𝐴 algorithms were

used in series of studies as proposed in articles Raidl (1998), Gottlieb (2000),

Gottlieb (2001), Tavares et al. (2006), Tavares et al. (2008). More recently,

estimation distribution algorithms 𝐸𝐷𝐴𝑠 are used in the articles of Kong et al. (2008),

Wang et al. (2012), Martins et al. (2013), Martins & Delbem (2013). Morover, some

other meta-heuristic algorithms were developed for MKP such as particle swarm

optimization (𝑃𝑆𝑂) in the articles of Behesthi et al. (2012), Chen et al. (2010), Chih

et al. (2014) and Azad et al. (2014), differential evolution in Wang et al (2012) and

other heuristic algorithms in Angelelli et al. (2012).

4.1 Solution Methodology for MKP

 In this thesis, an ensemble differential evolution algorithm with a variable

neighbourhood search in order to solve multidimensional knapsack problem is

applied. Unlike the studies that use check and repair operators, some sophisticated

constraint handling methods which are further explained in constraint handling

methods are to enrich the diversity of the population by taking advantages of

infeasible solution within a predetermined threshold. In order to generate the trial

46

population, 𝑉𝑁𝑆 algorithm with different mutation strategies is proposed. Since this

proposed algorithm is employed in a continuous domain, it is required to change

these real-values to binary 0,1 values by using 𝑆-shaped and 𝑉-shaped transfer

functions that will be explained in detail in following sections. So as to be able to

develop the solution, the differential evolution algorithm with a variable

neighbourhood search is combined with a binary swap local search algorithm as well.

4.2 Solution Representation

 Since traditional DE algorithm is employed for a continuous space, a unique

𝐷𝐸 with a multi-chromosome solution representation is proposed. This representation

is required because of the fact that 𝑀𝐾𝑃 is a binary optimization problem. First of all,

𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝐷𝐸_𝑉𝑁𝑆 algorithm works on a continuous domain within the range [0,1].

However, each dimension is converted to binary 0 − 1 values by means of 𝑆-shaped

and 𝑉-shaped transfer functions. Since 𝐸𝐷𝐸_𝑉𝑁𝑆 algorithm is used, it is probable to

use different transfer functions for each loops of 𝑉𝑁𝑆 algorithm.

 Firstly, most well-known 𝑆-shaped transfer function called sigmoid function

inspired from the article of Wang et al. (2013) is used to convert each dimension to

0 − 1. Sigmoid function uses following probability model to provide conversion:

𝜋𝑖𝑗 = {1 𝑖𝑓 𝑟 < 1/(1 + 𝑒
−𝑤(𝑢𝑖𝑗

𝑔
−0.5)

)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (48)

where 𝑟 is a uniform random number in [0,1]; 𝑢𝑖𝑗 is the real value in [0,1] of the trial

individual; and 𝑤 is the coefficient of the sigmoid function. Since the selection of 𝑤

is quite important, it is tried to take the coefficient 𝑤 as 10 , 20, 30, 40 and 50 by

means of trial-and-error method. In this thesis, two different sigmoid functions are

used for converting real values to binary variables. Therefore, 𝑤 is taken as 30 like

suggested in Wang et al. (2013). In addition to this suggested strategy, 𝑤 is also taken

as 50 as a second strategy.

 On the other hand, such 𝑉-shaped transfer functions using diverse mathematical

equations as 𝑡𝑎𝑛 and 𝑎𝑟𝑐𝑡𝑎𝑛 are also employed in 𝑉𝑁𝑆 algorithm. These functions

use following probability model in order to provide the conversion:

47

 𝑇(𝑥) = |tanh (𝑥)|

𝜋𝑖𝑗 = { 1 𝑖𝑓 𝑟 < |tanh (𝑢𝑖𝑗)|

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (49)

 𝑇(𝑥) = |(𝑥)/√1 + 𝑥2|

𝜋𝑖𝑗 = {1 𝑖𝑓 𝑟 < |(𝑢𝑖𝑗)/√1 + (𝑢𝑖𝑗

𝑔
)
2
|

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (50)

 𝑇(𝑥) = |
2

𝜋
arctan (

𝜋

2
𝑥)|

𝜋𝑖𝑗 = {1 𝑖𝑓 𝑟 < |
2

𝜋
arctan (

𝜋

2
𝑢𝑖𝑗

𝑔
)|

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (51)

where 𝑟 is a uniform random number in [0,1]; 𝑢𝑖𝑗 is the real value in [0,1] of the trial

individual.

 For conversion to binary values, two 𝑆-shaped and three 𝑉-shaped transfer

functions were employed. In summary, when a trial individual is generated by 𝑉𝑁𝑆

algorithm, binary value of each dimension is determined by one of the equations (48),

(49), (50) and (51) given above so as to calculate the fitness functions. Figure below

illustrates the multi-chromosome solution representation.

𝐹𝑖𝑔𝑢𝑟𝑒 4.11. 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

j 1 2 3 4 5

0.2 0.9 0.1 0.8 0.7

0 1 0 1 1

𝑥𝑖𝑗

𝜋𝑖𝑗

48

4.3 Families of Transfer Functions

 A transfer function is used for defining the probability of changing a position

vector’s element from 0 to 1 and vice versa. In literature, a transfer function is

responsible for mapping a continuous search space to a discrete search space.

Therefore a transfer function forces particles to move in a binary space. According to

Rashedi et al. (2009), there exist some concepts that should be considered for

selecting a transfer function in order to map dimension values of a chromosome to

probability values to probability values as follows:

 The range of a transfer function should be bounded in the interval [0,1], since

they represent the probability of a particle that changes its position.

 A transfer function should be able to provide a high probability of changing

the position for a large absolute dimension value. Dimensions with large

absolute values for their dimension values are supposedly far from the best

solution.

 A transfer function should also provide a small probability of change in the

position for small absolute value of dimensions.

 The return value of a transfer function should increase while the value of a

dimension rises. Dimensions with a higher probability changing their position

must be moving away from the best solution in order to return their previous

positions.

 The return value of a transfer function should decrease as the dimension value

reduces.

These concepts guarantee that a transfer function can map the process of search in

continuous search space to a binary search space as preserving similar concepts of the

search for a specific evolutionary algorithm.

49

Table 4 Transfer Functions

 In the article of Mirjalili & Lewis (2013), the properties of transfer functions

which are given in table 4 are summarized. In this article, authors have used second

transfer function (S2) in table for the conventional 𝐵𝑃𝑆𝑂. As shown in table, first

four transfer functions are S-shaped and the rest are V-shaped ones. These transfer

functions manipulate the coefficient of 𝑥. If it is necessary to give information about

transfer functions in detail, it can be said that S1 sharply increases and reaches its

saturation as the dimension value increases much higher than S2, whereas the

saturations of S3 and S4 start later than S2. It must be kept on the mind that when the

slope of these transfer functions increases, the probability of changing the values of

the position vector rises, therefore it can be concluded that S1 returns the highest

probability among them for the same dimension value, while S4 yields the lowest

one. These transfer functions have been selected with different slopes compared to

one used in the article of Mirjalili & Lewis (2013), in order that the efficiency of

these characteristics on improving the performance of their proposed algorithm𝐵𝑃𝑆𝑂

can be investigated. Moreover, to compare this algorithm with the proposed

algorithm of this thesis, S3 is used in one of the VNS loops of EDE-VNS algorithm

instead of S2. In view of the shapes of the curves of S1, S2, S3 and S4, they are

named as S-shaped transfer functions and their group name is given as “S-shaped”

family of transfer functions as well.

 On the other hand, Rashedi et al. (2009) has used another type of transfer

functions that could be used for their different position updating rules. The transfer

50

function used by Rashedi et al. (2009) is presented in Table 4 as S6. Since these

functions are pretty different from the S-shaped family, they are possible to need new

position updating rules. These functions are named V-shaped transfer functions and

their group name is given as “V-shaped” family of transfer functions. In order to

compare this article with this thesis, not only S6 but also S7 and S8 given in the table

above are used in the different loops of proposed EDE-VNS algorithm. These new S7

and S8 transfer functions uses the diverse mathematical equations. To give more

information about this V-shaped transfer functions, it can be said that S5 starts with

lower absolute values of dimensions compared to S6. This situation makes S5 be able

to provide higher probability of switching dimension values of a chromosome than S6

for the same value. In contrast, the S7 and S8 transfer functions’ saturations begin

after S5 and S6 providing less probability of change for the same dimension values.

In the article of Mirjalili & Lewis (2013), it is possible to see a study about the

efficiency of these families.

4.4 Binary Swap Local Search

 In this thesis, the neighbourhood search is based on a simple swap

neighbourhood. It should be noted that this local search is applied to the best solution

𝜋𝑏
𝑔

 at each generation 𝑔. The binary swap (𝑏𝑆𝑊𝐴𝑃) local search includes two steps:

 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡𝑤𝑜 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠, 𝑢 𝑎𝑛𝑑 𝑣, 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 [1, 𝑛]

 𝐼𝑓 𝜋𝑏,𝑢
𝑔

= 𝜋𝑏,𝑣
𝑔

 𝑡ℎ𝑒𝑛 𝜋𝑏,𝑢
𝑔

= (𝜋𝑏,𝑢
𝑔

+ 1) 𝑚𝑜𝑑 2

𝑒𝑙𝑠𝑒

 𝜋𝑏,𝑢
𝑔

= (𝜋𝑏,𝑢
𝑔

+ 1) 𝑚𝑜𝑑 2 𝑎𝑛𝑑 𝜋𝑏,𝑣
𝑔

= (𝜋𝑏,𝑣
𝑔

+ 1) 𝑚𝑜𝑑 2

 The outline of the local search is given in Fig. 4.12. below:

𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝜋𝑏
𝑔
)

𝜋1 = 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 (𝜋𝑏
𝑔
)

𝑓𝑜𝑟 (𝑙 = 1 𝑡𝑜 𝑛)

{
𝜋2 = 𝑏𝑆𝑊𝐴𝑃(𝜋1)

𝑖𝑓 (𝑓(𝜋2) > 𝑓(𝜋1))
{

𝜋1 = 𝜋2

𝑖𝑓 (𝑓(𝜋2) > 𝑓(𝜋𝑏
𝑔
))

51

{
𝜋𝑏

𝑔
= 𝜋2

} 𝑒𝑛𝑑 𝑖𝑓

}𝑒𝑛𝑑 𝑖𝑓

}𝑒𝑛𝑑 𝑓𝑜𝑟

𝑟𝑒𝑡𝑢𝑟𝑛 𝜋𝑏
𝑔

𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒

𝐹𝑖𝑔𝑢𝑟𝑒 4.12. 𝑂𝑢𝑡𝑙𝑖𝑛𝑒 𝑜𝑓 𝑏𝑆𝑊𝐴𝑃 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ

 In the local search algorithm detailed above, 𝜋1 refers to the perturbed best

solution up to now 𝜋𝑏
𝑔

 at each generation 𝑔. It can be also said that, the best so far

solution is perturbed by swapping two different items randomly. Then the 𝑏𝑆𝑊𝐴𝑃

operator is applied to 𝜋1. The number of items 𝑛 is set as the size of the local search.

The full computational procedure of EDE-VNS algorithm is given in Fig. 4.13.

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝐸𝐷𝐸_𝑉𝑁𝑆()

𝑆𝑒𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑔 = 0,𝑁𝑃 = 50, 𝑆𝑚𝑎𝑥 = 5

Step 1. 𝐸𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦

𝑃𝑔 = {𝑥1
𝑔
, . . , 𝑥𝑁𝑃

𝑔
} 𝑤𝑖𝑡ℎ 𝑥𝑖

𝑔
= {𝑥𝑖1

𝑔
, . . , 𝑥𝑖𝐷

𝑔
}

Step 2. 𝐴𝑝𝑝𝑙𝑦 𝑂𝐵𝐿 𝑡𝑜 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑐ℎ𝑜𝑜𝑠𝑒 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑜𝑛𝑒𝑠

𝑃𝑔 = {𝑥1
𝑔
, . . , 𝑥𝑁𝑃

𝑔
} 𝑤𝑖𝑡ℎ 𝑥𝑖

𝑔
= {𝑥𝑖1

𝑔
, . . , 𝑥𝑖𝐷

𝑔
}

Step 3. 𝐴𝑠𝑠𝑖𝑔𝑛 𝑎 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑡𝑜 𝑒𝑎𝑐ℎ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙

𝑀𝑖 = 𝑟𝑎𝑛𝑑()%𝑀𝑚𝑎𝑥 𝑓𝑜𝑟 𝑖 = 1, . . , 𝑁𝑃

Step 4. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑓𝑖𝑛𝑑 𝑥𝑏𝑒𝑠𝑡
𝑔

𝑓(𝑃𝑔) = {𝑓(𝑥1
𝑔
), . . , 𝑓(𝑥𝑁𝑃

𝑔
)}

Step 5. 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑒(0)

Step 6. 𝑅𝑒𝑝𝑒𝑎𝑡 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑥𝑖
𝑔

 𝑜𝑏𝑡𝑎𝑖𝑛 𝑢𝑖
𝑔

= 𝑉𝑁𝑆𝑖(𝑥𝑖
𝑔
) 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑁𝐹𝑇

 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝜋𝑖𝑗 𝑢𝑠𝑖𝑛𝑔 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠.

 𝑎𝑝𝑝𝑙𝑦 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑡𝑟𝑖𝑎𝑙 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙

 𝑜𝑏𝑡𝑎𝑖𝑛 𝑥𝑖
𝑔+1

 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑒 − 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑚𝑒𝑡ℎ𝑜𝑑

 𝑖𝑓 (𝑓(𝑥𝑖
𝑔
) ≤ 𝑓(𝑥𝑏𝑒𝑠𝑡

𝑔
)) , 𝑥𝑏𝑒𝑠𝑡

𝑔
= 𝑥𝑖

𝑔
 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑆𝐹

52

 𝑈𝑝𝑑𝑎𝑡𝑒 𝑒(𝑔) = 𝑒(0) (1 − 𝑔

𝑔𝑐
)

Step 7. 𝐼𝑓 𝑡ℎ𝑒 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑒𝑡, 𝑔𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 6,

𝑒𝑙𝑠𝑒 𝑠𝑡𝑜𝑝 𝑎𝑛𝑑 𝑟𝑒𝑡𝑢𝑟𝑛 𝜋𝑏𝑒𝑠𝑡

Figure 4.13 Outline of EDE-VNS Algorithm for Knapsack Problem

4.5 Computational Results

 The proposed 𝐸𝐷𝐸_𝑉𝑁𝑆 algorithm was coded in Visual C++ and run on an

Intel (R) Core (TM) Duo 2.4 GHz PC with 2GB memory. According the parameters

of the 𝐸𝐷𝐸_𝑉𝑁𝑆 algorithm, the population size was fixed at 𝑁𝑃 = 100. As a

termination criterion, the 𝐸𝐷𝐸_𝑉𝑁𝑆 algorithm was run for 𝑔𝑚𝑎𝑥 = 20000 generation

as in the article of Chih (2014). Next parameters were set in the 𝜀-constraint handling

method: 𝜃 = 0.95 × 𝑁𝑃 𝑔𝐶 = 0.4 × 𝑔𝑚𝑎𝑥 and 𝑐𝑝 = 2. The severity parameter 𝛼 and

the positive constant 𝛾 of the 𝑁𝐹𝑇 penalty function are taken as 2.0 and 0.004,

respectively. The 𝑁𝐹𝑇0 is selected as 1e-8, because the probability that algorithm

results in an infeasible solution is higher when the 𝑁𝐹𝑇0 threshold distance is larger.

As in the article of Chih (2014), 100 runs are carried out for each instance.

 In this thesis, the performance of the 𝐸𝐷𝐸_𝑉𝑁𝑆 algorithm is compared to

penalty method based 𝑃𝑆𝑂 and 𝑆𝐴𝐶𝑅𝑂 (self-adaptive check and repair) based 𝑃𝑆𝑂

algorithms in Chih (2014) a novel binary fruit fly algorithm (𝑏𝐹𝑂𝐴2) in Wang et al.

(2013) and the hybrid 𝐸𝐷𝐴-based algorithm (𝐻𝐸𝐷𝐴2) in Wang et al. (2012).

 Table 5 provides the information about number of items, number of constraints

and best known solutions for Sento and Weing instances.

Table 5 Details of Sento and Weing Instances

Instance n m

Best

Known

SENTO1 60 30 7772

SENTO2 60 30 8722

WEING1 28 2 141278

WEING2 28 2 130883

WEING3 28 2 95677

WEING4 28 2 119337

53

WEING7 105 2 1095445

WEING8 105 2 624319

 Table 6 summarizes the computational results of the 𝐸𝐷𝐸_𝑉𝑁𝑆 algorithm. As

seen in Table 6, penalty function based 𝐵𝑃𝑆𝑂_𝑇𝑉𝐴𝐶 and 𝐶𝐵𝑃𝑆𝑂_𝑇𝑉𝐴𝐶 algorithms

were not competitive to 𝐸𝐷𝐸_𝑉𝑁𝑆 algorithm. In addition, 𝐸𝐷𝐸_𝑉𝑁𝑆 algorithm is

able to find the best known solution in each run with zero standard deviation for 7 out

of 10 instances whereas 𝑆𝐴𝐶𝑅𝑂 based PSO algorithms were only able to do the same

thing for 6 problem instances. For the last 2 instances, 𝐸𝐷𝐸_𝑉𝑁𝑆 algorithm yielded

better 𝐵𝑒𝑠𝑡, 𝐴𝑣𝑔, and 𝑆𝑡𝑑 values than all the algorithms compared.

Table 6 Computational Results for Sento and Weing Instances

P Penalty function based algorithms SACRO

EDE_VNS
BPSO– CBPSO– BPSO– CBPSO–

TVAC TVAC TVAC TVAC

Sento1 Best 7772 7772 7772 7772 7772

 Avg. 7772 7763.26 7635.72 7769.48 7769.48

 Std. 0 11.525 357.784 5.406 5.406

Sento2 Best 8722 8722 8722 8722 8722

 Avg. 8722 8712.58 8668.47 8722 8722

 Std. 0 7.038 101.033 0 0

Weing1 Best 141,278 141,278 141,278 141,278 141,278

 Avg. 141,278 141,278 141,226.8 141,278 141,278

 Std. 0 0 281.978 0 0

Weing2 Best 130,883 130,883 130,883 130,883 130,883

 Avg. 130,883 130,883 130,759.8 130,883 130,883

 Std. 0 0 545.503 0 0

Weing3 Best 95,677 95,677 95,677 95,677 95,677

 Avg. 95,673.5 95,670.58 95,503.93 95,676.39 95,676.39

 Std. 12.82162 25.528 672.423 6.1 6.1

Weing4 Best 119,337 119,337 119,337 119,337 119,337

 Avg. 119,337 119,337 119,294.2 119,337 119,337

 Std. 0 0 378.583 0 0

Weing5 Best 98,796 98,796 98,796 98,796 98,796

 Avg. 98,796 98,796 98,710.4 98,796 98,796

 Std. 0 0 572.82 0 0

Weing6 Best 130,623 130,623 130,623 130,623 130,623

 Avg. 130,623 130,611.3 130,531.3 130,623 130,623

 Std. 0 66.864 343.456 0 0

Weing7 Best 1,095,382 1,095,382 1,095,382 1,095,382 1,095,445

 Avg. 1,095,391 1,095,164 1,084,172 1,094,349 1,094,410

 Std. 21.97031 383.743 30,020.95 2697.39 1795.58

54

Weing8 Best 624,319 624,319 624,319 624,319 624,319

 Avg. 622,501.40 622,446.6 597,190.6 622,079.9 622,032.5

 Std. 1705.16 2.000.923 75,169.93 1462.09 1454.99

 Table 7 provides the information about number of items, number of constraints

and best known solutions for Weish instances.

Table 7 Details of Weish Instances

Instance n m Best Known

WEISH1 30 5 4554

WEISH2 30 5 4536

WEISH3 30 5 4115

WEISH4 30 5 4561

WEISH5 30 5 4514

WEISH6 40 5 5557

WEISH7 40 5 5567

WEISH8 40 5 5605

WEISH9 40 5 5246

WEISH10 50 5 6339

WEISH11 50 5 5643

WEISH12 50 5 6339

WEISH13 50 5 6159

WEISH14 60 5 6954

WEISH15 60 5 7486

WEISH16 60 5 7289

WEISH17 60 5 8633

WEISH18 70 5 9580

WEISH19 70 5 7698

WEISH20 70 5 9450

WEISH21 70 5 9074

WEISH22 80 5 8947

WEISH23 80 5 8344

WEISH24 80 5 10220

WEISH25 80 5 9939

WEISH26 90 5 9584

WEISH27 90 5 9819

WEISH28 90 5 9492

WEISH29 90 5 9410

WEISH30 90 5 11191

 Table 8 gives the information about computational results for 𝑊𝐸𝐼𝑆𝐻

instances. It can be concluded that penalty based functions 𝐵𝑃𝑆𝑂_𝑇𝑉𝐴𝐶 and

𝐶𝐵𝑃𝑆𝑂_𝑇𝑉𝐴𝐶 are not able to be competitive to proposed algorithm 𝐸𝐷𝐸 − 𝑉𝑁𝑆,

55

whereas 𝑆𝐴𝐶𝑅𝑂-based algorithms yields much better results than penalty based

functions. Moreover, It is necessary to highlight that 𝐸𝐷𝐸 − 𝑉𝑁𝑆 is able to find the

best known solution in each run with zero standard deviation for 29 out of 30

instances and only instance WEISH26 is found with 8.089 standard deviation, while

𝑆𝐴𝐶𝑅𝑂-based 𝐶𝐵𝑃𝑆𝑂_𝑇𝑉𝐴𝐶 and 𝐵𝑃𝑆𝑂_𝑇𝑉𝐴𝐶 algorithms could find the best

known solutions in each run with zero standard deviation for 23 and 25 instances,

respectively. Therefore, it can be said that proposed algorithm is competitive to the

best performing algorithms in the literature.

Table 8 Computational results for Weish Instances

P Penalty function SACRO

 EDE_VNS BPSO– CBPSO– BPSO- CBPSO-

 TVAC TVAC TVAC TVAC

Weish1 Best 4554 4554 4554 4554 4554

 Avg. 4554 4554 4548.55 4554 4554

 Std. 0 0 32.808 0 0

Weish2 Best 4536 4536 4536 4536 4536

 Avg. 4536 4534.2 4531.88 4536 4536

 Std. 0 2.412 23.117 0 0

Weish3 Best 4115 4115 4115 4115 4115

 Avg. 4115 4114.37 4105.79 4115 4115

 Std. 0 6.3 52.697 0 0

Weish4 Best 4561 4561 4561 4561 4561

 Avg. 4561 4561 4552.41 4561 4561

 Std. 0 0 85.9 0 0

Weish5 Best 4514 4514 4514 4514 4514

 Avg. 4514 4514 4505.89 4514 4514

 Std. 0 0 74.451 0 0

Weish6 Best 5557 5557 5557 5557 5557

 Avg. 5557 5550.32 5533.79 5553.75 5553.88

 Std. 0 8.196 79.282 5.657 5.58

Weish7 Best 5567 5567 5567 5567 5567

 Avg. 5567 5566.3 5547.83 5567 5567

 Std. 0 3.448 71.946 0 0

Weish8 Best 5605 5605 5605 5605 5605

 Avg. 5605 5064.58 5596.16 5604.92 5605

 Std. 0 0.818 42.809 0.394 0

Weish9 Best 5246 5246 5246 5246 5246

 Avg. 5246 5246 5232.99 5246 5246

 Std. 0 0 65.701 0 0

Weish10 Best 6339 6339 6339 6339 6339

 Avg. 6339 6337.57 6271.84 6339 6339

 Std 0 9.56 188.63 0 0

56

Weish11 Best 5643 5643 5643 5643 5643

 Avg. 5643 5635.58 5532.15 5643 5643

 Std 0 25.717 403.037 0 0

Weish12 Best 6339 6339 6339 6339 6339

 Avg. 6339 6338.71 6231.5 6339 6339

 Std 0 1.914 304.427 0 0

Weish13 Best 6159 6159 6159 6159 6159

 Avg. 6159 6159 6120.38 6159 6159

 Std 0 0 1725 0 0

Weish14 Best 6954 6954 6954 6954 6954

 Avg. 6954 6953.38 6837.77 6954 6954

 Std 0 4.361 364.656 0 0

Weish15 Best 7486 7486 7486 7486 7486

 Avg. 7486 7486 7324.55 7486 7486

 Std 0 0 554.352 0 0

Weish16 Best 7289 7289 7289 7289 7289

 Avg. 7289 7287.84 7145.71 7288.7 7288.71

 Std 0 1.709 367.298 0.46 0.456

Weish17 Best 8633 8633 8633 8633 8633

 Avg. 8633 8633 8547.71 8633 8633

 Std 0 0 227.164 0 0

Weish18 Best 9580 9580 9580 9580 9580

 Avg. 9580 9577.21 9480.86 9578.46 9579.02

 Std 0 5.255 275.537 2.914 2.441

Weish19 Best 7698 7698 7698 7698 7698

 Avg. 7698 7693.1 7528.55 7698 7698

 Std 0 7.13 489.373 0 0

Weish20 Best 9450 9450 9450 9450 9450

 Avg. 9450 9446.22 9332.11 9450 9450

 Std 0 7.527 410.738 0 0

Weish21 Best 9074 9074 9074 9074 9074

 Avg. 9074 9067.94 8948.22 9074 9074

 Std 0 10.41 378.377 0 0

Weish22 Best 8947 8947 8947 8947 8947

 Avg. 8947 8931.88 8774.2 8936.92 8939.8

 Std 0 6.632 486.714 8.979 8.862

Weish23 Best 8344 8344 8344 8344 8344

 Avg. 8344 8342.89 8165 8344 8344

 Std 0 5.111 437.232 0 0

Weish24 Best 10,22 10,22 10,22 10,22 10,22

 Avg. 10,22 10,216.96 10,106.28 10,219.7 10,219.32

 Std 0 6.439 295.796 1.193 2.308

Weish25 Best 9939 9939 9939 9939 9939

 Avg. 9939 9934.46 9826.57 9939 9939

 Std 0 7.086 361.88 0 0

Weish26 Best 9584 9584 9584 9584 9584

 Avg. 9581.66 9527.56 9313.87 9584 9584

 Std 8.089 12.806 710.769 0 0

57

Weish27 Best 9819 9819 9819 9819 9819

 Avg. 9819 9818.61 9607.54 9819 9819

 Std 0 3.9 640.43 0 0

Weish28 Best 9492 9492 9492 9492 9492

 Avg. 9492 9489.01 9123.26 9492 9492

 Std 0 7.774 887.332 0 0

Weish29 Best 9410 9410 9410 9410 9410

 Avg. 9410 9406.81 9025.5 9410 9410

 Std 0 10.094 854.501 0 0

Weish30 Best 11,191 11,191 11,191 11,191 11,191

 Avg. 11,191 11,190.48 10,987.21 11,190.12 11,189.96

 Std 0 1.352 491.815 1.665 1.763

 Table 9 provides the information about number of items, number of constraints

and best known solutions for some of HP and PB instances.

Table 9 Details of HP and PB Instances

Instance n m Best Known

Hp1 28 4 3418

Hp2 35 4 3186

Pb5 20 10 2136

Pb6 40 30 776

Pb7 37 30 1035

 Table 10 details the computational results for the 𝐻𝑝 and 𝑃𝑏 instances. From

table, it can be said that penalty function based 𝐵𝑃𝑆𝑂_𝑇𝑉𝐴𝐶 and 𝐶𝐵𝑃𝑆𝑂_𝑇𝑉𝐴𝐶 are

not competitive to proposed algorithm 𝐸𝐷𝐸 − 𝑉𝑁𝑆. However, it is also worth

emphasizing that 𝐸𝐷𝐸 − 𝑉𝑁𝑆 is able to find best known solution in each run with

zero standard deviation for all instances so, 𝐸𝐷𝐸 − 𝑉𝑁𝑆 is best one among them. On

the other hand, 𝑆𝐴𝐶𝑅𝑂-based 𝐶𝐵𝑃𝑆𝑂_𝑇𝑉𝐴𝐶 and 𝐵𝑃𝑆𝑂_𝑇𝑉𝐴𝐶 algorithms could find

the best known solutions in each run with zero standard deviation for 5 and 5

instances, respectively.

58

Table 10 Computational results for HP and PB Instances

P

Penalty function SACRO

EDE_VNS
BPSO– CBPSO– BPSO- CBPSO-

TVAC TVAC TVAC TVAC

Hp1 Best 3418 3418 3418 3418 3418

 Avg. 3418 3406.56 3403.9 3413.38 3414.36

 Std. 0 10.692 13.69 6.616 6.172

Hp2 Best 3186 3186 3186 3186 3186

 Avg. 3186 3179.49 3173.61 3184.74 3185.64

 Std. 0 13.947 21.354 4.615 2.532

Pb1 Best 3090 3090 3090 3090 3090

 Avg. 3090 3081 3079.74 3086.78 3085.95

 Std. 0 9.438 10.521 5.921 6.369

Pb2 Best 3186 3186 3186 3186 3186

 Avg. 3186 3181.5 3171.55 3186 3186

 Std. 0 7.686 18.731 0 0

Pb4 Best 95,168 95,168 95,168 95,168 95,168

 Avg. 95,168 94,939.9 94,863.67 95,168 95,168

 Std. 0 797.051 875.081 0 0

Pb5 Best 2139 2139 2139 2139 2139

 Avg. 2139 2136.28 2135.6 2139 2139

 Std. 0 6.263 6.834 0 0

Pb6 Best 776 776 776 776 776

 Avg. 776 767.3 758.26 776 776

 Std. 0 Eyl.99 40.172 0 0

Pb7 Best 1035 1035 1035 1035 1035

 Avg. 1035 1029.57 1021.95 1035 1035

 Std 0 5.712 24.247 0 0

 According to the analysis above, it can be concluded that the proposed 𝐸𝐷𝐸 −

𝑉𝑁𝑆 algorithm is superior to both penalty based and 𝑆𝐴𝐶𝑅𝑂-based algorithms.

59

5 CONCLUSIONS & FUTURE WORK

 A research about the application of optimization algorithms on one of the most

important real-life problem called multidimensional knapsack problem after testing

these optimization algorithms on benchmark functions from literature was introduced

in this thesis. The underlying reason of using this kind of algorithms is because of the

fact that it is not possible to find optimal solutions for NP-hard problems by means of

traditional algorithms. Since, multidimensional knapsack problems have real numbers

to be found optimally, the main idea of this thesis focused on the term which has been

researched and analysed over last decades by engineers named, “Real Parameter

Optimization”.

 Firstly, 22 benchmark problems from CEC’ 2006 technical report were taken

into consideration to solve by using proposed 𝐸𝐷𝐸 − 𝑉𝑁𝑆 algorithm. Since these

benchmark problems are considered as real-life problems, finding optimal solutions

for these benchmark problems could demonstrate the applicability of proposed

algorithm to real-life problems. 𝐸𝐷𝐸 − 𝑉𝑁𝑆 algorithm was able to employ multiple

mutation strategies in its 𝑉𝑁𝑆 loops to improve the solution quality. In order to take

advantage of infeasible solutions, various constrained handling methods (𝑆𝐹, 𝑁𝐹𝑇

and ε-constraint) were handled. Moreover, opposition-based learning algorithm in

order to enrich the initial population is also used for improving this proposed

heuristic algorithm. A diversification procedure based on the inversion of the target

individuals and injection of some good dimensional values from promising areas in

the target population by tournament selection with size 2 was presented to provide

improved individuals for target population. The computational results showed that the

simple 𝐸𝐷𝐸 − 𝑉𝑁𝑆 algorithm was quite competitive to some of the best performing

algorithms from the literature.

 Secondly, the proposed algorithm is applied to multidimensional knapsack

problem in order to demonstrate the applicability of this algorithm to real-life

problems. In this part, some sophisticated constraint handling techniques are utilized

to enrich the population diversity within a predetermined threshold instead of making

use of the studies employing check and repair operators. So as to generate the trial

population, a variable neighbourhood search employing different mutation strategies

in each loop is proposed. As the proposed algorithm truly works on a continuous

domain, these real-values in chromosomes are converted to 0-1 binary values by

60

using some S-shaped and V-shaped functions. Moreover, in order to enhance the

quality of solution, the differential evolution algorithm with a variable neighbourhood

search is combined with a binary swap local search. This proposed algorithm is tested

on a benchmark instances in OR-library and computational results are compared to

some algorithms called bFOA2 and HEDA2 algorithms from the literature.

Computational results show its efficiency in solving benchmark instances and its

superiority to other algorithms.

 For future work, it is aimed to develop some DE algorithm making use of the

idea of neighbourhood change of VNS algorithms for not only unconstrained but also

constrained real parameter optimization problems and also apply this algorithm

together with some constructive heuristics from literature to solve binary optimization

problems in real life in order to demonstrate applicability of evolutionary algorithms.

61

REFERENCES

Angelelli, E., & Mansini, R., 2002., The vehicle routing problem with time windows

and simultaneous pick-up and delivery, In Quantitative approaches to distribution

logistics and supply chain management (pp. 249-267). Springer Berlin Heidelberg.

Azad, M. A. K., Rocha, A. M. A., & Fernandes, E. M., 2014, “Improved binary

artificial fish swarm algorithm for the 0–1 multidimensional knapsack problems,”

Swarm and Evolutionary Computation, vol. 14, pp. 66-75.

Babu, B. V., and Jehan, M., 2003, “Differential evolution for multi-objective

optimization,” IEEE, 2003. CEC'03. The 2003 Congress on Vol. 4, pp. 2696-2703

Babu B. V., and Onwubolu G. C., (eds.), 2004, “New Optimization Techniques in

Engineering”, Springer Verlag.

Beheshti, Z., Shamsuddin, S. M., & Yuhaniz, S. S., 2013, “Binary accelerated

particle swarm algorithm (BAPSA) for discrete optimization problems,” Journal of

Global optimization, vol.57, no. 2, pp. 549-573.

Bertsimas, D., and Demir, R., 2002, “An approximate dynamic programming

approach to multidimensional knapsack problems,” Management Science, vol.48,

no.4, pp. 550-565.

Boyer, V., Elkihel, M., and El Baz, D., 2009, Heuristics for the 0–1

multidimensional knapsack problem, European Journal of Operational

Research, 199(3), pp. 658-664.

Brest J., Greiner S., Boskovic B., Mernik M., and Zumer V., 2006, “Self-adapting

control parameters in differential evolution: A comparative study on numerical

benchmark problems,” IEEE Trans. Evol. Comput., vol. 10, no. 6, pp. 646–657.

Chakraborty U K., 2008 (ed.) Advances in Differential Evolution. Berlin: Springer.

http://www.addall.com/author/11497946-1
http://www.addall.com/author/3621022-1
http://www.addall.com/detail/354020167X.html
http://www.addall.com/detail/354020167X.html

62

Chen, W. N., Zhang, J., Chung, H. S., Zhong, W. L., Wu, W. G., & Shi, Y. H.,

2010, “A novel set-based particle swarm optimization method for discrete

optimization problems,” Evolutionary Computation, IEEE Transactions, vol. 14 no.

2, pp. 278-300.

Chih, M., Lin, C. J., Chern, M. S., & Ou, T. Y., 2014,” Particle swarm

optimization with time-varying acceleration coefficients for the multidimensional

knapsack problem,” Applied Mathematical Modelling, vol. 38, no. 4, pp. 1338-1350

Chih, M. 2015, “Self-adaptive check and repair operator-based particle swarm

optimization for the multidimensional knapsack problem,”Applied Soft

Computing, vol. 26, no. 378-389.

Chu, P. C., and Beasley, J. E., 1998, “A genetic algorithm for the multidimensional

knapsack problem,” Journal of heuristics, vol. 4, no. 1, pp. 63-86.

Coello, C. A. C., 2002, “Theoretical and numerical constraint-handling techniques

used with evolutionary algorithms: a survey of the state of the art,” Computer

methods in applied mechanics and engineering, vol. 191, no.11, pp. 1245-1287.

Corne D., Dorigo M., and Glover F., (eds.), 1999, “Part Two: Differential

Evolution,” New Ideas in Optimization, McGraw-Hill, pp. 77-158.

Das S., Abraham A., Chakraborty U. K., and Konar A., 2009, “Differential

evolution using a neighbourhood based mutation operator,” IEEE Trans. Evol.

Comput., vol. 13, no. 3, pp. 526–553.

Das S., Konar A., and Chakraborty U., 2005, “Improved differential evolution

algorithms for handling noisy optimization problems,” in Proc. IEEE Congr. Evol.

Comput., vol. 2. 2005, pp. 1691–1698.

Das S., Suganthan P.N., 2011, Differential Evolution: A Survey of the State-of-the-

Art,IEEE Trans. Evol. Comput.,Vol 15, No.1.

63

Deb, K., 2000, An efficient constraint handling method for genetic algorithms,

Comput. Methods Appl. Mech. Eng., 186, pp. 311–338.

Drexl, A., 1988, “A simulated annealing approach to the multiconstraint zero-one

knapsack problem,” Computing, vol. 40, no. 1, pp. 1-8.

Elsayed, S. M., Sarker, R. A., & Essam, D. L., 2014, “A new genetic algorithm for

solving optimization problems,” Engineering Applications of Artificial

Intelligence, vol.27, pp. 57-69.

Feoktistov, V., & Janaqi, S., 2004, “Generalization of the strategies in differential

evolution,” Parallel and Distributed Processing SymposiumProceedings. 18th

International, pp. 165.

Gämperle, R., Müller, S. D., and Koumoutsakos, P., 2002, “A parameter study for

differential evolution,” Advances in intelligent systems, fuzzy systems, evolutionary

computation, vol. 10, pp. 293-298.

Gavish, B., and Pirkul, H., 1985. “Efficient algorithms for solving multiconstraint

zero-one knapsack problems to optimality,” Mathematical programming, vol. 31, no.

1, pp. 78-105.

Gilmore, P. C., & Gomory, R. E., 1966, “The theory and computation of knapsack

functions,” Operations Research, vol. 14, no.6, pp. 1045-1074.

Glover, F., and Kochenberger, G. A., 1996, Critical event tabu search for

multidimensional knapsack problems. In Meta-Heuristics, pp. 407-427, Springer US.

Gottlieb, J., 2001, On the feasibility problem of penalty-based evolutionary

algorithms for knapsack problems. Lecture notes in computer science, pp. 50-59.

64

Hanafi, S., and Freville, A., 1998, “An efficient tabu search approach for the 0–1

multidimensional knapsack problem,” European Journal of Operational

Research, vol. 106, no.2, pp. 659-675.

Hansen N. and Ostermeier A., 2001, “Completely derandomized self-adaptation in

evolution strategies”, Evolutionary Computation, 9(2) pp. 159–195.

Huang V. L., Qin A. K., and Suganthan P. N., 2006, "Self-adaptive Differential

Evolution Algorithm for Constrained Real-Parameter Optimization", Nanyang

Technological University, Singapore.

Jin, Y. 2005, “A comprehensive survey of fitness approximation in evolutionary

computation” Soft computing, vol. 9, no. 1, pp. 3-12.

Kennedy, J., & Eberhart, R. C., 1997, “A discrete binary version of the particle

swarm algorithm,” In Systems, Man, and Cybernetics, 1997. Computational

Cybernetics and Simulation., 1997 IEEE International Conference, Vol. 5, pp. 4104-

4108.

Kong, M., Tian, P., and Kao, Y., 2008, “A new ant colony optimization algorithm

for the multidimensional Knapsack problem,” Computers & Operations Research,

vol. 35, no. 8, pp. 2672-2683.

Koziel, S., and Michalewicz, Z., 1999, “Evolutionary algorithms, homomorphous

mappings, and constrained parameter optimization,” Evolutionary computation, vol. 7

no.1, pp. 19-44.

Lampinen, J., 2001, A bibliography of differential evolution algorithm,

Lappeenranta University of Technology, Finland.

Lampinen, J., 1999, “Differential evolution- New naturally parallel approach for

engineering design optimization,” Developments in computational mechanics with

high performance computing, pp. 217-228.

65

Lampinen, J., 2002, A constraint handling approach for the differential evolution

algorithm., WCCI, pp. 1468-1473.

Langdon, W. B., and Poli, R., 2007, “Evolving problems to learn about particle

swarm optimizers and other search algorithms,” Evolutionary Computation, IEEE

Transactions, vol. 11, no. 5, pp. 561-578.

Liang J. J. and P. N. Suganthan, 2006, "Dynamic Multi-Swarm Particle Swarm

Optimizer with a Novel Constraint-Handling Mechanism", Nanyang Technological

University, Singapore 639798.

Liang J. J., Runarsson T. P., Mezura-Montes E., Clerc M., Suganthan P. N.,

Coello Coello C. A., Deb K., 2006, "Problem Definitions and Evaluation Criteria for

the CEC 2006", Special Session on Constrained Real-Parameter Optimization,

Technical Report, Nanyang Technological University, Singapore.

Langdon, W. B., and Poli, R., 2007, “Evolving problems to learn about particle

swarm optimizers and other search algorithms,” Evolutionary Computation, IEEE

Transactions on, vol 11 no. 5, pp. 561-578.

Liu J. and Lampinen J., 2005, “A fuzzy adaptive differential evolution algorithm,”

Soft Computing—A Fusion of Foundations, Methodologies and Applications, vol. 9,

no. 6, pp. 448–462, 2005 [Online]. Available:

http://springerlink.metapress.com/index/10.1007/s00500-004-0363-x

Mallipeddi, R., Suganthan, P. N., Pan, Q. K., & Tasgetiren, M. F., 2011.,

“Differential evolution algorithm with ensemble of parameters and mutation

strategies,” Applied Soft Computing, vol. 11 no. 2, pp. 1679-1696.

Mallipeddi, R., & Suganthan, P. N., 2011, Ensemble differential evolution

algorithm for CEC2011 problems. In Evolutionary Computation (CEC), 2011 IEEE

Congress on (pp. 1557-1564). IEEE.

http://springerlink.metapress.com/index/10.1007/s00500-004-0363-x

66

Martins, J. P., Bringel Neto, C., Crocomo, M. K., Vittori, K., & Delbem, A. C.,

2013, “A comparison of linkage-learning-based genetic algorithms in

multidimensional knapsack problems,” In Evolutionary Computation (CEC), 2013

IEEE Congress, pp. 502-509.

Mezura-Montes, E., Velázquez-Reyes, J., & Coello Coello, C., 2006, “Modified

differential evolution for constrained optimization.” In Evolutionary Computation,

2006. CEC 2006. IEEE Congress on pp. 25-32

Michalewicz, Z., and Schoenauer, M., 1996, “Evolutionary algorithms for

constrained parameter optimization problems” Evolutionary computation, vol. 4 no.1

pp. 1-32.

Mirjalili, S., & Lewis, A., 2013., “S-shaped versus V-shaped transfer functions for

binary particle swarm optimization,” Swarm and Evolutionary Computation, vol. 9,

pp. 1-14.

Nelder, J. A., and Mead, R., 1965, “A simplex method for function

minimization”.The computer journal, vol 7(4), pp. 308-313.

Neri F. and Tirronen V., 2010, “Recent advances in differential evolution: A review

and experimental analysis,” Artif. Intell. Rev., vol. 33, no. 1, pp. 61–106.

Plateau, G., and Elkihel, M. 1985, A hybrid method for the 0–1 knapsack

problem. Methods of Operations Research, vol. 49, pp. 277-293.

Powell, D., and Skolnick, M. M., 1993, “Using genetic algorithms in engineering

design optimization with non-linear constraints,” Proceedings of the 5th international

conference on genetic algorithms pp. 424-431 Morgan Kaufmann Publishers Inc..

Price, W. L., 1977, “Global optimization by controlled random search”. Journal of

Optimization Theory and Applications, vol 20 no 4, pp. 333-348.

Price K., Storn R., Lampinen J., 2005, Differential Evolution: A Practical

Approach to Global Optimization, Springer-Verlag, Berlin.

67

Price K. V., and Storn R., 1997, Differential evolution: A simple evolution strategy

for fast optimization, Dr. Dobb’s J., vol. 22, no. 4, pp. 18–24.

Qin A. K. and Suganthan P. N., 2005, “Self-adaptive Differential Evolution

Algorithm for Numerical Optimization”, Proc. IEEE Congress on Evolutionary

Computation.

Rahnamayan S., Tizhoosh H. R., and Salama M. M. A., 2008, “Opposition based

differential evolution,” IEEE Trans. Evol. Comput., vol. 12, no. 1, pp. 64–79.

Raidl, G. R., 1998, “An improved genetic algorithm for the multiconstrained 0-1

knapsack problem,” In Evolutionary Computation Proceedings, 1998. IEEE World

Congress on Computational Intelligence., The 1998 IEEE International Conference,

pp. 207-211.

Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S., 2010, “BGSA: binary

gravitational search algorithm,” Natural Computing, vol. 9 no. 3, pp. 727-745.

Runarsson, T. P., and Yao, X., 2000, “Stochastic ranking for constrained

evolutionary optimization,” Evolutionary Computation, IEEE Transactions, vol.4, no.

3, pp. 284-294.

Runarsson, T. P., and Yao, X., 2005, “Search biases in constrained evolutionary

optimization,” IEEE Trans. Syst. Man., Cybern.,vol. 35, no.2, pp. 233-243.

Shih, W., 1979, A branch and bound method for the multiconstraint zero-one

knapsack problem, Journal of the Operational Research Society, pp. 369-378.

Smith, A. E., and Tate, D. M., 1993, “Genetic optimization using a penalty

function,” Proceedings of the 5th international conference on genetic algorithms, pp.

499-505 Morgan Kaufmann Publishers Inc.

Storn R. and Price K. V., 1995 “Differential evolution: A simple and efficient

adaptive scheme for global optimization over continuous spaces,” ICSI, USA, Tech.

Rep. TR-95-012, [Online]. Available: http://icsi.berkeley.edu/∼storn/litera.html

68

Storn R. and Price K. V., 1997, Differential evolution: A simple and efficient

heuristic for global optimization over continuous spaces, J. Global Optimization, vol.

11, no. 4, pp. 341–359.

Storn, R., (1999) “System Design by Constraint Adaptation and Differential

Evolution,” IEEE Transactions on Evolutionary Computation, vol. 3, pp. 22-34.

Sutton, A. M., Lunacek, M., & Whitley, L. D., 2007, “Differential evolution and

non-separability: using selective pressure to focus search,” In Proceedings of the 9th

annual conference on Genetic and evolutionary computation, pp. 1428-1435, ACM.

Takahama T. and Sakai S., 2006, "Constrained Optimization by the Constrained

Differential Evolution with Gradient-Based Mutation and Feasible Elites," in IEEE

Congress on Evolutionary Computation Sheraton Vancouver Wall Centre Hotel,

Vancouver, BC, Canada, pp. 1-8.

Tasgetiren M. F., and Suganthan P. N., 2006,“A Multi-Populated Differential

Evolution Algorithm for Solving Constrained Optimization Problems", Fatih

University, 34500, Buyukcekmece, Istanbul, Turkey.

Tavares, J., Pereira, F. B., & Costa, E., 2006, “The role of representation on the

multidimensional knapsack problem by means of fitness landscape analysis,”

In Evolutionary Computation, 2006, pp. 2307-2314.

Tavares, J., Pereira, F. B., & Costa, E., 2008, “Multidimensional knapsack

problem: A fitness landscape analysis,” Systems, Man, and Cybernetics, Part B:

Cybernetics, IEEE Transactions, vol. 38, no. 3, pp. 604-616.

Tessema, B., & Yen, G. G., 2006, “A self adaptive penalty function based algorithm

for constrained optimization,” Evolutionary Computation, 2006. CEC 2006. IEEE

Congress, pp. 246-253.

69

Tessema, B., & Yen, G. G., 2009, “An adaptive penalty formulation for constrained

evolutionary optimization.,” Systems, Man and Cybernetics, Part A: Systems and

Humans, IEEE Transactions, vol. 39 no. 3, pp. 565-578.

Toth, P., 1980, “Dynamic programming algorithms for the zero-one knapsack

problem,” Computing, vol. 25, no.1, pp. 29-45.

Vasquez, M., and Hao, J. K., 2001,”A hybrid approach for the 0-1 multidimensional

knapsack problem” IJCAI, pp. 328-333.

Vesterstrom J. and Thomson R.A., 2004, “Comparative study of differential

evolution, particle swarm optimization, and evolutionary algorithms on numerical

benchmark problems,” in Proc. Congr. Evol. Comput., pp. 1382-1389.

Wang, L., and Zheng, D. Z., 2001, “ An effective hybrid optimization strategy for

job-shop scheduling problems,” Computers & Operations Research, vol. 28, no.6, pp.

585-596.

Wang, Y., Cai, Z., Guo, G., & Zhou, Y., 2007, “Multiobjective optimization and

hybrid evolutionary algorithm to solve constrained optimization problems,”Systems,

Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions vol.37, no.3, pp. 560-

575.

Wang, L., Fu, X., Mao, Y., Menhas, M. I., & Fei, M., 2012, “A novel modified

binary differential evolution algorithm and its applications,” Neurocomputing, vol 98,

pp. 55-75.

Wang, L., Zheng, X. L., & Wang, S. Y., 2013., “A novel binary fruit fly

optimization algorithm for solving the multidimensional knapsack problem,”

Knowledge-Based Systems, vol 48, pp. 17-23.

Wolpert, D. H., & Macready, W. G., 1997 “No free lunch theorems for

optimization,” IEEE Trans. Evol. Comput., vol.1 no. 1, pp. 67-82.

70

Zhang J. and Sanderson A. C., 2009, “JADE: Adaptive differential evolution with

optional external archive,” IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 945–958.

Zhang, J., and Sanderson, A. C., 2007, “JADE: Self-adaptive differential evolution

with fast and reliable convergence performance,” IEEE Evol. Comput., 2007. CEC

2007. pp. 2251-2258.

71

CURRICULUM VITEA

 Mert Paldrak was born in İzmir/Konak in 1991. He has been working as a

research assistant at the Department of Industrial Engineering at Yaşar University in

İzmir since October 2013. He has received his BSc degree in Industrial Engineering

with the 2nd degree from Yaşar University Engineering Faculty in 2013 and then he

continued his MSc degree in Industrial Engineering in Yaşar University Engineering

Faculty. During his master degree period, he has taken such various courses as

System Simulation, Optimization Models and Algorithms, Heuristic Optimization,

Scheduling Theory, Probabilistic Analysis and Applied Stochastic Processes,

Dynamic Programming, Mathematics of Operational Research and Supply Chain and

Management.

72

APPENDIX 1 CEC 2006 BENCHMARKS

 Function1: g01 (Floundas C. and Pardalos P., 1987)

Function2: g02 (Kozieland S., Michalewicz Z., 1999)

73

Function 3: g03 (Michalewicz Z., Nazhiyath G., and Michalewicz M., 1996)

Function 4: g04 (Himmelblau D., 1972)

74

Function 5: g05 (Hock W. and Schittkowski K., 1981)

Function 6: g06 (Floundas C. and Pardalos P., 1987)

75

Function 7: g07 (Hock W. and Schittkowski K., 1981)

Function 8: g08 (Kozieland S., Michalewicz Z., 1999)

76

Function 9: g09 (Hock W. and Schittkowski K., 1981)

Function 10: g10 (Hock W. and Schittkowski K., 1981)

77

Function 11: g11 (Kozieland S., Michalewicz Z., 1999)

Function 12: g12 (Kozieland S., Michalewicz Z., 1999)

Function 13: g13 (Hock W. and Schittkowski K., 1981)

78

Function 14: g14 (Himmelblau D. M., 1972)

Function 15: g15 (Himmelblau D. M., 1972)

79

Function 16: g16 (Himmelblau D. M., 1972)

80

81

Function 17: g17 (Himmelblau D. M., 1972)

82

Function 18: g18 (Himmelblau D. M., 1972)

Function 19: g19 (Himmelblau D. M., 1972)

83

Function 20: g20 (Himmelblau D. M., 1972)

84

Function 21: g21 (Epperly T.)

85

Function 22: g22 (Epperly T.)

86

Function 23: g23 (Xia Q.)

Function 24: g24 (Floudas C., 1999)

