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ABSTRACT 

AN ENSEMBLE OF DIFFERENTIAL EVOLUTION ALGORITHM 

FOR REAL-PARAMETER OPTIMIZATION AND ITS APPLICATION 

TO MULTIDIMENSIONAL KNAPSACK PROBLEM 

PALDRAK, Mert 

M.Sc in Industrial Engineering 

Supervisor: Prof. Dr. M. Fatih TAŞGETİREN 

January 2016, 86 pages 

 This thesis examines the recent real-parameter optimization methods through 

constrained single objective test functions. Inspired from this experience, it also 

presents the applicability of such methods to Multidimensional Knapsack Problem 

known as one of the most difficult discrete problems. 

 In the first part of this study, benchmark functions presented in CEC 2006 have 

been taken into consideration to solve. These benchmark problems are multi- 

dimensioned and constrained real-parameter optimization problems with non-linear 

objective functions. Hence, it is quite difficult to solve them without using heuristic 

and metaheuristic approaches. In order to obtain optimal solutions, proposed 

algorithm (EDE-VNS) has been applied to these test functions and competitive 

results have been collected to compare with the best performing algorithms from the 

literature. The performance of DE algorithm depends on the mutation strategies, 

crossover operators and control parameters selected. As a result, an EDE-VNS 

algorithm that is possible to employ multiple mutation operators and control 

parameters in its VNS loops is proposed so as to be able further enhance the quality 

of the solution. By means of ensemble of variable mutation strategies in VNS loops, 

the performance of DE algorithm is affected so positively that most of benchmark 

functions could be optimally solved with zero standard deviations. In order to show 

the power of ensemble of mutation strategies, these test functions have also been 

solved by using all mutation strategies alone. It has been concluded that when using 

individual mutation strategies one by one, all of them fail to find the optimal 

solutions for test functions whereas when applying ensemble of these mutation 

strategies, algorithm could find optimal solutions easily by means of different 

properties of mutation strategies. Moreover, this algorithm was run for both 240,000 
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and 500,000 function evolutions. It is overly clear that EDE-VNS algorithm requires 

more function evolutions to find more optimal solutions with zero standard 

deviations. In addition, a diversification procedure which is based on the inversion of 

the target individual and the injection of some good dimensional values from 

promising areas in the population is also applied by using tournament selection with 

size 2. In order to take advantage of infeasible solutions in the evolved population, 

some constraint handling methods are also utilized to further improve the solution. 

The computational results show that the simple EDE-VNS algorithm was very 

competitive to the some of the best performing algorithms from the literature. 

 In the second part of this thesis, the 0-1 multidimensional knapsack problem 

which has a great range of applications in real-life problems is considered to be 

solved by proposed EDE-VNS algorithm. In the literature, most of the heuristic 

methods applied to multidimensional knapsack problem use and check and repair 

operator to improve solutions. Unlike the studies appearing in literature, some 

sophisticated constraint handling methods in order to enrich the population diversity 

are used. Differential evolution algorithm with variable neighbourhood search 

employing ensemble of mutation strategies to generate the trial population is 

proposed. Since the proposed DE-VNS algorithm in fact works on a continuous 

domain, the real-values of the chromosomes are converted to 0-1 binary values by 

using S-shaped and V-shaped transfer functions. The effects of these transfer 

functions are tested by using them one by one in each mutation strategies of 

ensemble. So as to qualify the solutions, a binary swap local search algorithm is 

combined with proposed EDE-VNS algorithm and the proposed algorithm is tested 

on a benchmark instances from the OR-library. 

 This thesis consists of 6 chapters which include all of these subjects  

Keywords: Differential Evolution, Real Parameter Optimization, Variable 

Neighbourhood Search, Constraint Handling, Multidimensional Knapsack Problem,  
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ÖZET 

GERÇEK PARAMETRE OPTİMİZASYONU İÇİN TOPLU 

DİFERANSİYEL EVRİM ALGORİTMASI VE ÇOK BUYUTLU 

SIRT ÇANTASI PROBLEMİNE UYGULANMASI 

Mert PALDRAK 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Danışmanı: Prof. Dr. M. Fatih TAŞGETİREN 

Ocak 2016, 86 sayfa 

 Bu tez, kısıtlanmış tek amaçlı test fonksiyonları aracılığı ile son dönemlerdeki 

gerçek parametre optimizasyon metotlarını incelenmiştir. Bu deneyimden 

esinlenerek, bu tür yöntemlerin aynı zamanda en zor ayrık problemlerden birisi olarak 

bilinen çok boyutlu sırt çantası problemine uygulanabilirliğini de ortaya koymuştur. 

 Bu çalışmanın ilk bölümünde, CEC 2006’da ortaya konulan kıyaslama 

problemleri çözülmek üzere ele alınmıştır. Bu kıyaslama problemleri doğrusal 

olmayan amaç fonksiyonlarına sahip, çok boyutlu ve kısıtlanmış gerçek parametreli 

optimizasyon problemleridir. Bundan dolayı, sezgisel ve meta sezgisel yaklaşımları 

kullanmadan bu problemleri çözmek oldukça zordur. En iyi çözümler elde etmek için, 

önerilen algoritma (EDE-VNS) bu test fonksiyonlarına uygulanmıştır ve literatürdeki 

en iyi performansı gösteren algoritmalar ile karşılaştırılmış, rekabetçi sonuçlar elde 

edilmiştir. DE algoritmasının performansı çoğunlukla mutasyon stratejilerine, 

çaprazlama operatörlerine ve seçilmiş kontrol parametrelerine bağlıdır. Sonuç olarak, 

birden fazla mutasyon operatörleri ve kontrol parametrelerini kendi VNS döngüleri 

içerisinde bulundurabilen bir EDE-VNS algoritması çözümün kalitesini arttırabilmek 

amacıyla geliştirilmiştir. VNS döngüleri içindeki değişken mutasyon stratejilerinin 

toplu halde çalışmaları sayesinde, DE algoritmasının performansı o kadar olumlu 

etkilenmiştir ki çoğu kıyaslama problemleri sıfır standart sapma ile optimal olarak 

çözülmüştür. Mutasyon stratejilerinin toplu halde çalışmalarını etkisi göstermek için, 

bu test fonksiyonları bütün mutasyon stratejileri teker teker kullanılarak da 

çözülmüştür. Bireysel mutasyon stratejileri teker teker kullanıldığında, hepsi test 

fonksiyonlarında optimum çözümler bulma konusunda başarısız olduğu, oysaki bu 

mutasyon stratejileri toplu halde uygulandığında algoritma mutasyon stratejilerinin 

farklı özellikleri sayesinde optimal sonuçları kolaylıkla bulabildiği sonucuna 
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varılmıştır. Bunun üzerine, bu algoritma aynı zamanda 240,000 ve 500,000 fonksiyon 

değerlendirilmesi ile çalıştırılmıştır. . Bu apaçık ortadadır ki, EDE-VNS algoritması 

ile daha çok optimal çözümler bulmak, daha fazla fonksiyon değerlendirilmesine 

ihtiyaç duyulmaktadır. Buna ek olarak, hedef bireylerin evrimini ve popülasyon 

içinde umut vadeden alanlardan alınan bazı iyi boyutlu değenlerin enjeksiyonunu 

temel alan çeşitlendirme yöntemi de, iki boyutlu turnuva seçilim yöntemi kullanılarak 

uygulanmıştır. Gelişmiş popülasyon içerisindeki uygun olmayan çözümlerden 

faydalanabilmek için, çözümü daha da geliştirmek amacıyla bazı kısıtlama işleme 

kuralları kullanılmıştır. Hesaplanan sonuçlar göstermektedir ki basit bir EDE-VNS 

algoritması literatürdeki bazı en iyi performansı gösteren algoritmalarla oldukça 

rekabetçidir. 

 Bu tezin ikinci bölümünde, gerçek hayat problemlerinde geniş ölçüde 

uygulamaları olan 0-1 çok boyutlu sırt çantası probleminin, önerilen EDE-VNS 

algoritması ile çözülebileceği öngörülmüştür. Literatürde, çok boyutlu sırt çantası 

problemine uygulanan sezgisel yöntemlerin birçoğu, çözümleri geliştirmek için 

kontrol ve onarım operatörlerini kullanmıştır. Literatürde ortaya çıkan çalışmaların 

aksine, popülasyon çeşitliliğini zenginleştirmek için bazı gelişmiş kısıtlama işleme 

yöntemleri kullanılmıştır. Çeşitli toplu mutasyon stratejilerini kullanan değişken 

komşu aramalı diferansiyel evrim algoritması, deneme popülasyonunu oluşturmak 

için ortaya atılmıştır. Aslında önerilen bu EDE-VNS algoritması sürekli alanda 

çalıştığı için, gerçek değer kromozomları S-şeklindeki ve V-şeklindeki transfer 

fonksiyonlar kullanılarak 0-1 ikili değerlerine dönüştürülmüştür. Çözümleri 

geliştirmek için, EDE-VNS algoritmasıyla ikili takas yerel arama algoritması 

birleştirilmiş, önerilen algoritma OR-kütüphanesinden alınan karşılaştırma örnekleri 

üzerinde test edilmiştir. 

 Bu tez, yukarıda bahsedilen konuları içeren 5 üniteden oluşmaktadır. 

Keywords: Diferansiyel Evrim Algoritması, Gerçek Parametre Optimizasyonu, 

Değişken Komşu Arama, Kısıtlama İşleme, Çok Boyutlu Sırt Çantası Problemi  
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1 INTRODUCTION 

1.1 Subject of the Thesis 

 The subject of thesis consists of the solution algorithms for optimization 

problems used for finding the best solution from all possible feasible solutions. An 

optimization problem is either minimizes or maximizes a function of decision 

variables under the hard and soft constraints. Optimization problems are divided into 

two categories according to types of their decision variables. An optimization 

problem with discrete variables is called combinatorial optimization problem, 

whereas an optimization problem with continuous variables is called continuous 

optimization problems. If these so-called decision variables contain real parameters, 

the problem is called real parameter optimization. One of the earliest application 

areas of evolutionary algorithms is real parameter optimization. The evolutionary 

algorithms applied so far to solve real parameter problems can be summarized as: 

real-parameter GAs, evolution strategies (ES), differential evolution (DE), particle 

swarm optimization (PSO), evolutionary programming (EP), classical methods such 

as quasi-Newton method (QN), hybrid evolutionary-classical methods, other non-

evolutionary methods such as simulated annealing (SA), tabu search (TS) are some of 

most the well-known algorithms applied to solve real parameter problems. It is 

possible to find out the further improved versions of these algorithms mentioned 

above. Lately, different types of optimization problems used for solving real-

parameter optimization problem have arisen among the evolutionary computation 

committees or conferences as well as journals. Many different algorithms, developed 

for solving problems in CEC 2006 Special Session on Constrained Real-Parameter 

Optimization yielded favourable solutions.  

 The biggest reason of developing heuristic and metaheuristic algorithms to 

solve these problems is that they are too hard and complicated problems for solving 

by using exact techniques. These algorithms also involve some important ones such 

as ε-Constrained Differential Evolution with Gradient-Based Mutation and Feasible 

Elites (Takamaha T. & Sakai S., 2006), Dynamic Multi-Swarm Particle Swarm 

Optimizer with a Novel Constraint-Handling Mechanism (Liang J.J. & Suganthan P. 

N., 2006), Self-adaptive Differential Evolution Algorithm (Huang V. L., 2006), A 

Multi-Populated Differential Evolution Algorithm (Tasgetiren M. F. & Suganthan P. 

N., 2006). In those studies, optimization techniques are applied to the problems of 
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many field of science including standard test problems (Sphere function, Rosenbrock 

function or Schwefel function) and various engineering problems.  

 Moreover, the main focus of the study revolves around the application of an 

evolutionary algorithm to one of the most popular optimization problem called 

multidimensional knapsack problem with very important applications in financial and 

industrial areas such as investment decision, budget control, project choice, resources 

assignments and goods loading. This problem is a generalization of the standardize 0-

1 knapsack problem and known as one of the most difficult discrete optimization 

problems in the literature. It is probable to find the family of the knapsack problem in 

different areas of study. Members of the knapsack problem family are 0-1 knapsack 

problem, bounded knapsack problem, multiple choice knapsack problem and multiple 

or multidimensional knapsack problem. These problems require a subset of some 

given items to be chosen such that corresponding profit sum is maximized without 

exceeding the capacity of the knapsack or knapsacks. All of these members belong to 

the family of NP-hard problems. In spite of being NP-hard problems, many large 

instances of knapsack problems can be solved in seconds. This is because of several 

years of research having proposed many solution methodologies including exact as 

well as heuristic and metaheuristic algorithms. Heuristic algorithms involve simulated 

annealing ( Liu et al, 2006), genetic algorithm ( Thiel & Voss, 1994), ant colony 

optimization ( Zhao & Zhang, 2006), differential evolution ( Peng et al., 2008),  

immune algorithm (Lei et al., 2000) and particle swarm optimization (Ye et al., 

2006). In recent, some of powerful heuristic algorithms such as fruit fly optimization 

(Wang et al., 2013) and differential evolution with variable neighbourhood search 

(Taşgetiren et al., 20015) could further improve the solutions for knapsack problem in 

literature. The proposed heuristic algorithm (EDE-VNS) employing different 

mutation strategies in their VNS loops is tested on benchmark instances from the OR-

library and results are compared with other heuristic algorithms in the literature. 

1.2 Aims of the Research 

 Based on the previously given statements, the main goal of this thesis is to 

make use of the power of real-parameter optimization methods in constrained single 

objective test functions taken from literature. Based on this experience, the further 

goal of the thesis is to introduce its application to multidimensional knapsack 

problem by using differential evolution algorithm. 
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1.3 Context of the Thesis 

 This thesis content is based on real-parameter optimization techniques and its 

applicability to the various real life problems. Lately, since most of the optimization 

problems are too complicated to solve by means of traditional methods, different 

evolutionary algorithms have been being developed. In addition to this, differential 

evolution algorithm has become one of the most powerful evolutionary algorithms to 

solve optimization problems. Therefore, in this thesis, a variant of differential 

evaluation algorithm named EDE-VNS is considered to solve constrained-real 

parameter optimization problems. In order to test how much well the proposed 

algorithm is working, CEC 2006 benchmark instances are taken into consideration. 

Since these benchmark instances include various real-life problems in such 

disciplines as engineering, logistics, energy systems, scheduling, finance and so on, 

dealing with these problems by proposed algorithm also shows how suitable to apply 

EDE-VNS algorithm to real life-problems. The optimal solutions of the benchmark 

instances obtained by using proposed algorithm and comparisons with other best 

performing algorithms in the literature are provided in tables. 

 To extend the application of the proposed algorithm to real-life problems, this 

thesis also covers multidimensional knapsack problem in detail. Instead of traditional 

methods in the literature, it is aimed to solve this NP-hard problem by using proposed 

EDE-VNS algorithm with the help of constraint handling techniques. As the real-

parameter optimization problems run the algorithms in a continuous domain, some 

types of transfer functions are utilized to convert real values to binary 0-1 variables. 

In order to demonstrate the effect of algorithm on knapsack problem, benchmark 

instances varying in size on OR-library are used. The optimal solutions obtained and 

necessary comparisons with previously developed algorithms are provided in tables. 

According to these comparisons, it is concluded that this proposed algorithm is 

competitive to best performing algorithms from literature to solve a real-life problem. 

1.4 Methodology 

 The method of this thesis is based firstly on the problem definitions of 

CEC’2006 competition for constrained single objective real-parameter numerical 

optimization. In “CEC’ 2006 Constrained Single Objective Real-Parameter 

Optimization Special Session” some heuristic algorithms are competing through the 
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test functions including engineering problems presented in advance. In literature, it is 

possible to find the articles of researchers who have been trying to find the best 

solutions with zero standard deviations.  So as to achieve the optimal solutions, the 

results are obtained from Ensemble Differential Evolution Algorithm with Variable 

Neighborhood Search (EDE-VNS) was compared with best performing algorithms in 

the literature. With the proposed EDE-VNS algorithm, such constraint handling 

techniques as ∈-constraints, self-adaptive penalty function and superiority of feasible 

solution are used in order that possible important information carried by infeasible 

solutions can be used. Moreover, to demonstrate the effect of number of function 

evaluations on ensemble mutation strategies in differential evolution algorithm, the 

proposed algorithm was run for both 240,000 and 500,000 function evaluations. In 

order to further improve the solutions, Opposition Based Learning (OBL) and 

diversification methods are utilized for diversifying the initial and target populations 

respectively. After algorithm comparison for all benchmarks, this proposed algorithm 

is applied to multidimensional knapsack problem. Since it is a NP-hard problem 

aiming to maximize the profit under certain capacity constraints with 0-1 binary 

values, the dimensions of each chromosome of proposed algorithm is changed to 

binary numbers by using transfer functions. For better qualification of solutions, 

binary swap local search is applied to the best solution at each generation. Instead of 

using check and repair operators in literature, constraint handling methods are 

involved in the problem within a predetermined threshold. Finally, the computational 

results of the instances from OR-library demonstrate the efficiency of the algorithm 

in solving benchmark instances and its superiority to the best performing algorithm 

from the literature. 

 All in all, constrained Real-Parameter Optimization part of this study aims to 

test the performance of EDE-VNS Algorithm through CEC 2006 benchmarks by 

comparing to the best performing algorithms from the literature. According to results 

obtained, proposed EDE-VNS algorithm is competitive with the best performing 

algorithms. As an application of proposed algorithm, one of the most important real 

life problems, multidimensional knapsack problem is dealt with. This problem is 

handled in order to show how applicable and usable the evolutionary algorithms are 

to solve real life problems. 

. 



 

 

5 

 

2 DIFFERENTIAL EVOLUTION ALGORITHM 

2.1 Introduction to Differential Evolution Algorithm 

 Differential Evolution (DE) Algorithm was firstly introduced by Storn & Price 

(1995) as an efficient and powerful population-based heuristic search technique in 

order to minimize the objective function of optimization problems over nonlinear and 

non-differentiable continuous space. The optimization problems solved by differential 

evolution algorithm arise from many scientific and engineering fields. Moreover, DE 

has been successfully applied to optimization problems in such fields as mechanical 

engineering, communication and pattern recognition. 

 One of the recent studies conducted by Das& Suganthan(2011) has clearly 

explained the history of DE and its success in details. It is known that DE is one of 

the most powerful stochastic real-parameter optimization algorithms used currently. 

DE operates through similar computational steps like a standard evolutionary 

algorithm (EA). Nonetheless, unlike traditional evolutionary algorithms, DE variants 

perturb the current population members with the differences of randomly selected and 

distinct population members ( Das&Suganthan 2011). 

 The DE algorithm (Price & Storn, 1995-1996-1997) has become an important 

and competitive algorithm to evolutionary algorithms more than a decade ago. After 

the publication of first article written on DE by R. Storn and K. Price, DE algorithm 

was demonstrated as the best evolutionary algorithm in order to solve real-valued test 

function in the 1
st 

ICEO (International Contest on Evolutionary Optimization) and 

then turned to be the one of the best among the competing algorithms at 2
nd

 ICEO in 

2007. In two different journal articles, Price (1997), Storn and Price (1997) have 

introduced the algorithm in details which is followed by immediately in quick 

succession. In 2005, CEC competition on real parameter optimization, on 10-D 

problems classical DE secured 2
nd

 rank and a self-adaptive DE variant called SaDe 

(Quin, Suganthan, 2005) secured 3
rd

 rank although they performed poorly over 30-D 

problems. Even though some variants of ES gave much better results than classical 

and self-adaptive DE, later on many improved such variants of DE as opposition-

based DE (ODE) (Rahnamayan et al, 2008), DE with global and local 

neighbourhoods (Das et al., 2009) and (Zhang & Sanderson, 2009) were being 

proposed between the years 2006 and 2009. On the other hands, it became necessary 



 

 

6 

 

to determine how well these variants of DE can compete against the restart CMA-ES 

and other real parameter optimizers over the standard numerical benchmarks. It is 

also interesting to notify that the some variants of DE algorithm continued securing 

front ranks in the subsequent CEC competitions (Suganthan, 2012) like CEC 2006 

competition on constrained real parameter optimization (first rank), CEC 2007 

competition on multi objective optimization (second rank), CEC 2008 competition on 

large scale optimization (third rank). A very recent study conducted by Neri and 

Tirronen focuses on the variants of DE for single-objective optimization problems, as 

well as compared them on some set of benchmark problems. Based on the review 

studies, it is conducted that DE-variants are as effective as original DE to solve the 

complex optimization problems. 

 In DE community, the individual trial solutions are called parameter vectors or 

genomes. In DE, there exist many trial vector generation strategies in which some of 

them might be powerful and suitable to solve a particular problem. However, DE 

employs difference of parameter vectors to find the objective function landscape. 

Because of this, DE algorithm owes a lot to its ancestors namely- the Nelder-Mead 

algorithm (Nelder & Mead, 1965) and controlled random search (CRS) algorithm 

(Price, 1977) which is based on the difference vectors to perturb the current trial 

solutions. 

 Compared to the other evolutionary algorithms, DE algorithm has following 

advantages: 

 DE algorithm has much more simple and straightforward code 

structure to implement. It enables users to practically solve 

optimization by means of its simple implementation. Main body of the 

algorithm takes from four to five lines to code in and programming 

language. Even though such algorithms as PSO is also quite easy to 

code, the performance of DE and its variants is largely better than the 

PSO variants over a wide range of optimization problems. (Das et al, 

2009), (Rahnamayan et al, 2008), (Vesterstrom & Thomson, 2004) 

 As indicated by recent studies conducted by (Das et al, 2009), 

(Rahnamayan et al, 2008) and (Zhang & Sanderson), DE demonstrates 
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much better performance in comparison with several others like G3 

with PCX, MA-S2, ALEP, CPSO-H, and so on of current interest on a 

wide variety of problems that include unimodal, bimodal, separable, 

non-separable and so on. In spite of the fact that strong EAs like the 

restart CMA-ES was able to beat DE at CEC 2005 competition, on 

non-separable objective functions, the total performance of DE in 

terms of accuracy robustness and convergence speed makes DE more 

suitable to apply to various real-world optimization problems in which 

finding an appropriate solution takes too much time. 

 Another advantage of DE algorithm is the fact that it requires few 

number of control parameters. Three crucial control parameters 

involved in DE, i.e., population size NP, scaling factor F, and 

crossover rate CR, may significantly affect the optimization 

performance of DE. Liu & Lampien (2002) has reported that the 

effectiveness, efficiency and robustness of the DE algorithm are very 

sensitive to the setting of its control parameters. The best settings for 

the control parameters depend on the function and requirements for 

consumption of time and accuracy. The effects of these parameters on 

the performance of algorithm have been being studied well. When 

only a simple rule of scaling factor F and cross over CR is altered, the 

performance and robustness of algorithm is significantly improved 

without imposing any important computational burden as presented in 

Brest et al. (2006), Qin et al. (2009), Zhang and Sanderson (2009).  

 Furthermore, DE is better to handle the large scale and expensive 

optimization problems owing to its feature that the space complexity 

of DE is less than the other competitive real parameter optimizers as 

mentioned in the article of Hansen & Ostermeier (2001). 

 On the other hands, like all other metaheuristic methods, DE has got some 

drawbacks that should be considered for the discussion of future research directions 

with DE. Some of the current publications made by Rahnamayan et al. (2008) 
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indicates that DE faces up with some important difficulties in solving such functions 

that are not linearly separable and can be outperformed by CMA-ES. As mentioned 

by Sutton et al.(2007), on some functions, DE is more dependent on its differential 

mutation procedure, which, unlike its recombination strategy with (CR<1), is 

rationally invariant. Sutton et al. (2007) also surmises that this mutation strategy lacks 

enough selection pressure as appointing target and donor vectors to have satisfying 

power on non-separable functions. The authors of the article also present a rank-based 

parent selection scheme so as to impose bias on the selection step, in order that DE 

can learn distribution information from elite individuals selected from population and 

can thus sample the local topology of the fitness landscape better. Nonetheless, they 

concluded that much more research is necessary in this realm to deduce that DE is 

sufficiently robust against the strong interdependency of the search variables. In 

another articled written by Langdon & Poli (2007) made an attempt in order to evolve 

certain fitness landscapes with GP to show the advantages and disadvantages of a few 

population-based metaheuristics like PSO, DE, and CMA-ES. Authors highlighted 

that some problem landscapes might deceive DE such that it will get stuck in local 

optima most of the time.  The same authors also pointed out that DE may sometimes 

show limited ability to move its population large distances across the search space 

when a limited portion of the population is clustered together. The work done by 

Langdon & Poli (2007) indicated that some landscape in which DE is outperformed 

by CMA-ES and a non-random gradient search based on Newton-Raphson’s method. 

The most effective DE-variants improved so far should be investigated with the 

problem evolution methodology of Langdon & Poli in order to identify some specific 

weak points over different function surfaces. 

2.2  Steps of DE Algorithm 

 DE is a simple real parameter optimization algorithm. In a real parameter 

optimization problem, all of decision numbers must be real numbers. To describe it 

well, the DE/rand/1/bin scheme of Storn and Price (1995) was used. This scheme has 

been applied to a variety of problems that can be found in Corne et al. (1999), 

Lampinen (2011), Babu and Onwubolu (2004), Price et al. (2005) and Chakraborty 

(2008) and Das and Suganthan (2011). A simple cycle of stages worked through by 

DE is presented in Figure 2.1. 
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Figure 2.1. Steps of DE algorithm 

 Initialization of Target Population 2.2.1

 In DE algorithm, global optimal point is searched over a D-dimensional real 

parameter space ℜ𝐷. It starts with a randomly initiated population with size NP 

(number of parents) having a D-dimensional real-values parameter vectors. Each 

vector, known as genome/chromosome carries an alternative solution to the 

multidimensional optimization problem. Subsequent generations in DE are denoted 

by 𝐺 = 0,1, … , 𝐺𝑚𝑎𝑥.As the parameter vectors are likely to alter over different 

generations, it may be adapted to following notations in order to represent ith vector 

of the population at any generation: 

𝑋𝑖
𝐺⃗⃗⃗⃗  ⃗ = [𝑥𝑖1

𝐺  , 𝑥𝑖2
𝐺 , 𝑥𝑖3

𝐺 , ……… , 𝑥𝑖𝐷
𝐺 ]                                        (1) 

 For each parameter of the problem, there might be a certain range within which 

the value of the parameter should be restricted, because parameters are related to 

physical components or measurements that own natural bounds. Each vector is 

obtained randomly and uniformly within the search space constrained by the 

predefined minimum and maximum bounds:[𝑥𝑖𝑗
𝑚𝑖𝑛,  𝑥𝑖𝑗

𝑚𝑎𝑥]. Therefore, the 

initialization of 𝑗𝑡ℎ component of 𝑖𝑡ℎ vector can be defined as: 

𝑥𝑖𝑗
0 = 𝑥𝑖𝑗

𝑚𝑖𝑛 + 𝑟 × (𝑥𝑖𝑗
𝑚𝑎𝑥 − 𝑥𝑖𝑗

𝑚𝑖𝑛 )                                   (2) 

where 𝑥𝑖𝑗
0  is the 𝑖𝑡ℎ target individual at generation 𝑔 = 0; and 𝑟 is a uniform random 

number in the range [0,1].  
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 Mutation with Difference Vector 2.2.2

 As a biological term, mutation is defined as a sudden change in the gene 

characteristics of a chromosome.  In the context of the evolutionary paradigm, 

mutation is seen as a change or perturbation with a random element selected. 

Mutation is a way to create new solutions. However, it consists in random changing 

value of parameters in the context of GAs and EAs. In DE literature, base vectors are 

mutated with scaled population-derived difference vectors and this method is 

believed to be one of the main strength of DE ( Storn & Price, 1997).These 

differences tend to adapt to the natural scaling of the problem as generations continue 

passing. Therefore, DE differs from the other evolutionary based algorithms because 

it requires only the specification of a single relative scale factor F for all variables. 

 By the definition of Das & Sughantan (2011), a parent vector from the current 

generation is called target vector, a mutant vector gained through the differential 

mutation operation is known as donor vector and finally an offspring generated by 

recombination of the donor with the target vector is called trial vector. 

 So as to obtain mutant individuals, the weighted difference of two individuals 

from target population is added to a third individual randomly chosen from 

population. 

𝑣𝑖𝑗
𝑔

= 𝑥𝑎𝑗
𝑔−1

+ 𝐹 × (𝑥𝑏𝑗
𝑔−1

− 𝑥𝑐𝑗
𝑔−1

)                                               (3) 

where 𝑎, 𝑏, 𝑐 are three randomly chosen individuals from the target population such 

that (𝑎 ≠ 𝑏 ≠ 𝑐 ≠ 𝑖 ∈ (1, . . , 𝑁𝑃))  and 𝑗 = 1, . . , 𝐷.  𝐹 > 0 is a mutation scale factor 

influencing the differential variation between two individuals.  

 Crossover 2.2.3

 Whereas Genetic Algorithm always recombine two vectors to generate two 

separate trial vectors with one-point crossover, DE algorithm is managed to crossover 

to produce one single trial vector. Crossover is used to enhance the potential variety 

of the population, and comes into play after creating the donor vector through vector 

mutation. The donor vector exchanges its components with the target vector 𝑋𝑖
𝐺⃗⃗⃗⃗  ⃗ under 

crossover operation in order to generate 𝑈𝑖
𝐺⃗⃗ ⃗⃗  ⃗ = [𝑢𝑖1

𝐺 , 𝑢𝑖2
𝐺 , 𝑢𝑖3

𝐺 , …… . , 𝑢𝑖𝐷
𝐺 ]. 𝑁-point 
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crossover is one of the most well-known crossover techniques for real coded GAs. In 

this technique, the offspring vector is divided into (𝑛 + 1) parts such that parameters 

in contiguous parts are obtained by different parent vectors. 

 Price et al. (2005) notifies that the DE family of algorithms may use two 

different crossover methods−exponential (or two-point modulo) and binomial (or 

uniform). By the definition of Das & Sughantan (2011), in exponential crossover, an 

integer number n is selected randomly among the numbers [1, 𝐷]. This integer 

number is considered as a starting point in target vector, from where the crossover of 

components with the donor vector begins. Another integer L denoting the number of 

components the donor vector which contributes to the target vector is selected from 

the interval[1, 𝐷]. After choosing n and L, the trial vector is acquired as: 

𝑢𝑖𝑗
𝑔

= 𝑣𝑖𝑗
𝑔
         𝑓𝑜𝑟 𝑗 = 〈𝑛〉𝐷     〈𝑛 + 1〉𝐷 , …… . , 〈𝑛 + 𝐿 − 1〉𝐷 

    𝑥𝑖𝑗
𝑔
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑗 ∈ [1, 𝐷]                                                    (4) 

where the angular brackets 〈. 〉𝐷 denote the modulo function with modulus D. The 

integer L is taken from [1, 𝐷]according to following pseudo-code: 

𝐿 = 0;  𝐷𝑂 

{ 
𝐿 = 𝐿 + 1 

} 𝑊𝐻𝐼𝐿𝐸 ((𝑟𝑎𝑛𝑑(0,1) ≤ 𝐶𝑅 )𝐴𝑁𝐷 (𝐿 ≤ 𝐷)) 

where “CR” is known as crossover rate and appears as a control parameter of DE just 

like F. CR is defined by users in the range [0,1], and 𝑟𝑖𝑗
𝑔

 is a uniform random number 

in the range [0,1]. 

 On the other hand, in this thesis, binomial crossover is applied to each variable 

when a randomly generated number between 0 and 1 is less than or equal to CR 

value. In this case, the number of parameters obtained from the donor has 

approximately binomial distribution. Trial individuals are gained by recombination of 

mutant individuals with its corresponding target individuals. The scheme can be 

outlined as: 
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𝑢𝑖𝑗
𝑔

= {
𝑣𝑖𝑗

𝑔
𝑖𝑓 𝑟𝑖𝑗

𝑔
≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝐷𝑗

𝑥𝑖𝑗
𝑔−1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                         (5) 

where the index 𝐷𝑗  is a randomly chosen dimension (𝑗 = 1, . . , 𝐷). It assures that at 

least one parameter of the trial individual 𝑢𝑖𝑗
𝑔

 will be different from the target 

individual 𝑥𝑖𝑗
𝑔−1

. 

 As generating trial individuals, parameter values might violate search ranger. In 

order to avoid this, parameter values that violate the search range are randomly and 

uniformly re-generated by using following formula: 

    𝑥𝑖𝑗
𝑔

= 𝑥𝑖𝑗
𝑚𝑖𝑛 + 𝑟 × (𝑥𝑖𝑗

𝑚𝑎𝑥 − 𝑥𝑖𝑗
𝑚𝑖𝑛 )                                           (6) 

 Selection 2.2.4

 In order to have constant number of population size as generations pass, the 

next step of the algorithm is selection. Selection is applied to determine whether the 

target of the trial vector survives to the next generation, i.e., at 𝑔 = 𝑔 + 1. For the 

next generation, selection is based on the survival of the fittest among trial and target 

individuals such that: 

𝑥𝑖
𝑔

= {
𝑢𝑖

𝑔
𝑖𝑓 𝑓(𝑢𝑖

𝑔
) ≤ 𝑓(𝑥𝑖

𝑔−1
)

𝑥𝑖
𝑔−1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                 (7) 

 The objective function is supposed to be minimized. Based on the equation 

above, if the fitness value of new trial vector yields an equal or lower value of the 

function, it replaces the corresponding target individual in the next generation, other 

else the target is held in the population. As a conclusion, the population either gets 

better or remains the same in fitness status, but never gets worse. 

2.3 Self-Adaptive Differential Evolution 

 Selection of the control parameters of DE is an important issue because it is 

quite possible to reach at different conclusions even if only one of them is changed. 
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The existence of different variants of DE has already been mentioned in previous 

chapter. In this study, the DE scheme presented by Storn et al. (1995) and Das et al. 

(2005) was applied to problems which can be grouped by using notation as 

DE/rand/1/bin strategy. 

 In the article of Janez, the version of self-adaptive DE is compared with the 

classical DE algorithm and the FADE algorithm conducted by Liu & Lampinen 

(2005). For comparison, some benchmark optimization problems from literature were 

tested by all algorithms. As a result of this comparison, it is deduced that “DE 

algorithm with self-adaptive control parameters setting is quite better or at least 

comparable to the standard DE algorithm and evolutionary algorithms from literature 

considering the quality of the solutions found with”. Their proposed algorithm 

yielded better results than the FADE algorithm. 

 The fuzzy adaptive differential evaluation algorithm (FADE) is a new variant of 

DE using fuzzy logic controllers in order to adapt the control parameters, scaling 

factor 𝐹𝑖 and crossover rate 𝐶𝑅𝑖 for mutation and crossover operations. Like other 

proposed adaptive DE algorithms, the population size is assumed to be constant in 

advance and kept fixed through whole evolution process of FADE. When fuzzy logic 

controlled approach is tested with a set of 10 benchmark problems, it is concluded 

that FADE yields better results than the classical DE in high dimensional problems. 

 In the DE algorithm above, a novel self-adapting parameter scheme improved 

by Brest et al. (2006) was used, known as jDE. It uses self-adapting mechanism on 

the control parameters F and CR. Brest et al. used the self-adaptive control 

mechanism of “rand/1/bin”. This strategy is mostly used in practice such as Storn et 

al. (1997), Gamperle et al.(2002), Liu and Lampien (2002), Sun et al. (2004). 

 In the article of Brest et. al. (2006), a self-adaptive control mechanism was used 

for changing the control parameters F and CR when the program is run. The third 

control parameter NP did not alter during the run. Each individual in population was 

extended with parameter values. The control parameters having been adjusted by 

means of evaluations are F and CR. Both of them were applied in individual levels. 

The better values of these encoded control parameters direct to better individuals that, 

in turn, are more probable to survive and produce offspring, hence propagate these 

better parameter values. 
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 𝐹𝑁𝑃
𝑔

 𝐶𝑅𝑁𝑃
𝑔

 

  Figure 2.2.  Self-Adapting: Encoding Aspect 

 It is very effective and converges much faster than the traditional DE, 

especially when the dimensionality of the problem is very high and important and so-

called problem is complicated. In jDE, each individual is given its own 𝐹𝑖 and 𝐶𝑅𝑖 

values. Initially, they are assigned to 𝐶𝑅𝑖 = 0,5 and 𝐹𝑖 = 0,9 and new control 

parameters are calculated as follows: 

𝐹𝑖
𝑔

= {
𝐹𝑙 + 𝑟1. 𝐹𝑢 𝑖𝑓 𝑟2 < 𝜏1

𝐹𝑖
𝑔−1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                             (8) 

𝐶𝑅𝑖
𝑔

= {
𝑟3 𝑖𝑓 𝑟4 < 𝜏2

𝐶𝑅𝑖
𝑔−1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                               (9) 

where 𝑟𝑗 ∈ {1,2,3,4} are uniform random numbers in the range [0,1]. 𝜏1 and 𝜏2 

denote the probabilities to adjust the F and CR. They are taken as 𝜏1 = 𝜏2 = 0,1 and 

𝐹l = 0,1 and 𝐹u = 0,9. 

2.4 JADE 

 In this section, a new DE algorithm called JADE that implements a mutation 

strategy “DE/current-to-p-best” including optional archive and controls 𝐹 and 𝐶𝑅 in 

and adaptive manner with self-adaptive parameters 𝜇𝐹 and 𝜇𝐶𝑅. JADE adopts the 
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same binary crossover and one-to-one selection as the classic DE. The algorithm 

JADE will be introduced in three sections: 

 DE/current-to-pbest 2.4.1

 DE/rand/1 is the first mutation strategy developed for DE by Storn & Price 

(1997) and it said by Babu & Jehan (2003) that it is known as the most successful and 

widely used DE scheme in the literature. Nevertheless Gamperle et al. (2002) in his 

article, claims that DE/best/2 might have some advantages on DE/rand/1 and Pahner 

& Hameyer (2000) favours DE/rand/1 for the most technical problems investigated. 

Also Mezure-Montes et al. (2006) argue that the incorporation of best-solution 

information is beneficial and use DE/current-to-best/1 in their algorithm. When 

compared to DE/rand/k, other greedy strategies such as DE/current-to-best/k and 

DE/best/k generally have faster convergence rate. On the other hands, their utilization 

of best-solution is likely to cause such problems as premature convergence due to the 

resultant decreased population diversity. 

 Because of the fast but less reliable convergence performance of greedy 

strategies, a new mutation strategy called as DE/current-to-p-best is introduced in 

order to be able to serve as the basis of self-adaptive DE algorithm. In DE/current-to-

p-best/1, a mutation vector is generated in the following manner: 

𝑣𝑖𝑗
𝑔

= 𝑥𝑖𝑗
𝑔−1

+ 𝐹𝑖 × (𝑥𝑖,𝑝𝑏𝑒𝑠𝑡
𝑔−1

− 𝑥𝑖𝑗
𝑔−1

) + 𝐹𝑖 × (𝑥𝑎𝑗
𝑔−1

− 𝑥𝑏𝑗
𝑔−1

)          (10) 

where 𝑥𝑖,𝑝𝑏𝑒𝑠𝑡
𝑔−1

 is uniformly chosen as one of the top 100𝑝% individuals of the current 

population with 𝑝 ∈ (0,1], and 𝐹𝑖 is a mutation factor which has been associated with 

𝑥𝑖𝑗
𝑔−1

and it is again created by the adaptation process at each iteration as algorithm is 

being run. DE/current-to-p-best is indeed a generalization of DE/current-to-best. Any 

of the top 100𝑝% solutions can be randomly selected in order to play the role of the 

single best solution in DE/current-to-best. 

 Self-Adaptation of Parameters 2.4.2

 In JADE, the self-adaptation is applied to update the parameters 𝜇𝐶𝑅 and 𝜇𝐹 

used for generating mutation factor 𝐹𝑖 and crossover probability 𝐶𝑅𝑖 associated with 
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each individual vector 𝑥𝑖, respectively. The 𝐹𝑖 and 𝐶𝑅𝑖 are then used for creating the 

trial vector 𝑢𝑖. At each generation 𝑔, crossover probabilities 𝐶𝑅𝑖 are generated based 

on an independent normal distribution with 𝑟𝑎𝑛𝑑𝑛𝑖(𝜇𝐶𝑅 , 0,1) of mean 𝜇𝐶𝑅, standard 

deviation 0,1 and truncated to the interval (0,1]: 

𝐶𝑅𝑖 = 𝑟𝑎𝑛𝑑𝑛𝑖(𝜇𝐶𝑅 , 0.1)                                           (11) 

 Denoting that 𝑆𝐶𝑅 as the set of all successful crossover probabilities𝐶𝑅𝑖’s at 

generation g. The mean 𝜇𝐶𝑅 is then updated by using following formula: 

𝜇𝐶𝑅 = (1 + 𝑐) ∗ 𝜇𝐶𝑅 + 𝑐 ∗ 𝑚𝑒𝑎𝑛(𝑆𝐶𝑅)                   (12) 

where 𝑐 is a positive constant number between 0 and 1 and 𝑚𝑒𝑎𝑛(. ) is the usual 

arithmetic mean operation. 

 At each generation 𝑔, the mutation factor 𝐹𝑖 of each individual 𝑥𝑖 of the 

population is created independently based on the mixture of a uniform distribution 

𝑟𝑎𝑛𝑑𝑖(0, 1.2) and a normal distribution 𝑟𝑎𝑛𝑑𝑛𝑖(𝜇𝐹 , 0.1), and truncated to (0, 1.2]. 

That means: 

𝐹𝑖
𝑔

= {
𝑟𝑎𝑛𝑑𝑖(0, 1.2) 𝑖𝑓 𝑖 < 𝐼1/3

𝑟𝑎𝑛𝑑𝑛𝑖(𝜇𝐹, 0.1) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                     (13) 

where 𝐼1/3 denotes a random collection of one-third indicates of the set 

{1,2, … . . , 𝑁𝑃}. Denoting that 𝑆𝐹 is the set of all successful mutation factors 𝐹𝑖′s at a 

generation 𝑔. The mean 𝜇𝐹 of the normal distribution is updated by using following 

formula: 

𝜇𝐹 = (1 − 𝑐) ∗ 𝜇𝐹 + 𝑐 ∗ 𝐿(𝑆𝐹)                                (14) 

where 𝐿(. ) is the Lehmer mean: 

𝐿(𝑆𝐹) =
∑ 𝐹2

𝐹∈𝑆𝐹

∑ 𝐹𝐹∈𝑆𝐹

                                              (15) 
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 Explaining JADE Algorithm Setting 2.4.3

 There are some principles followed in order to provide the adaptation of 𝜇𝐶𝑅. 

Better values of control parameters have more tendencies to create individuals which 

are more likely to survive and hence these values should be spread.  The basic 

operation is therefore to keep successful crossover probabilities and make use of them 

when it is necessary to guide the generation process of future 𝐶𝑅𝑖’s. The standard 

deviation of the process is aimed to set to be small because other else the self-

adaptation would not work properly. For instance, as an extreme case of an infinite 

standard deviation, the truncated normal distribution becomes a uniform distribution 

and thus independent of the value of 𝜇𝐶𝑅. In JADE, the standard deviation of both 

mutation and crossover parameters is set to be 0.1. 

 First, compared to 𝐶𝑅, there are two different operations in the adaptation of  𝐹. 

At each generation, only two thirds of all 𝐹𝑖’s are generated based on a normal 

distribution while others are generated according to a uniform distribution. The 

component including normal distribution has small variance so it is useful for 

searching a suitable mutation factor in a manner similar to 𝐶𝑅 adaptation. On the 

other hands, the uniform distribution component helps diversify the mutation factors 

and therefore block from getting premature convergence which are quite possible to 

occur in greedy mutation strategies when the mutation factors are highly around a 

fixed value. 

 Secondly, using the Lehmer mean given in equation (15) is much better than 

the arithmetic mean used in 𝜇𝐶𝑅 adaptation because the adaptation of 𝜇𝐹 places more 

weights on larger successful mutation factors. Arithmetic means of 𝑆𝐹 tend to be 

smaller than the optimal value of the mutation factor hence causes to have a smaller 

𝜇𝐹 and premature convergence at the end. The decrease in trend mainly is because of 

inconsistency between success probability and progress rate of an evolution search. 

On the other hands, Zang & Sanderson (2007) states that the DE/current-to-p-best 

with small 𝐹𝑖 is similar to an (1 + 1) ES scheme in the sense that both generating an 

offspring in the small neighbourhood of the base vector. For (1 + 1) ES, it is known 

that it is better to keep the mutation variance as small as possible in order to have a 

higher successful probability. However, when a mutation variance is close to 0, it 

obviously causes to get a trivial evolution progress. A simple and effective way is to 



 

 

18 

 

place more weight on larger successful mutation factors in order to achieve a rapid 

rate of progress.  

2.5 Ensemble Differential Evolution 

 In this study, an ensemble approach for DE algorithm was used. Mallipedi and 

Suganthan (2011) stated that the performance of conventional DE as solving real 

world optimisation problem relies on the selected mutation and crossover strategy 

and its associated parameter values. Nevertheless, different type of optimization 

problems may require different mutation strategies with different parameter values 

regarding to the nature of the problem and necessary computation resources. It can 

also be said that different mutation strategies with different parameter settings could 

be better during stages of the evolution than a single mutation strategy using unique 

parameter settings as traditional DE. By means of the motivation by these 

observations, Mallipedi & Suganthan (2011) have proposed and ensemble of 

mutation and crossover strategies and parameter values for DE where a pool of 

mutation strategies, along with a pool of values to each associated parameter tries to 

generate a better offspring population. Qin et al (2009) has mentioned that the 

candidate pool of mutation and crossover must be restrictive in order to avoid the 

undesirable influences of less effective mutation strategies and parameters. The 

mutation strategies or the parameters in the pool should own diverse characteristics, 

in order that they can demonstrate different performance characteristics during 

different levels of the evolution, as focusing on a particular problem. 

 Ensemble DE contains a pool of mutation and crossover strategies with a pool 

of values for each of the control parameters associated. A different mutation strategy 

is randomly assigned to each member of initial population with the associated values 

obtained from the perspective pools. Therefore, trial vectors are produced by the 

population members with the assigned mutation strategy and parameter values. When 

the generated trial vector is better than the target vector, the mutation strategy and 

corresponding parameter values are held with the trial vector which becomes a parent 

vector of next generation. The combination of the mutation strategy and the 

parameter values creating a better trial vector than the parent are kept. When the 

target vector is better than the trial vector, then the target vector is initialized again 

with a mutation strategy and the associated parameter values from either the pool or 
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the successful combinations of mutation strategy and the associated control parameter 

for the following generations. 

 The ensemble idea was presented in Tasgetiren et al. (2010) and Mallipeddi et 

al. (2011). In both studies, ensemble of mutation strategies is considered to improve 

EDE algorithm. Inspiring from these studies, following mutation strategies (𝑀𝑖) have 

been taken into consideration in this thesis. 

𝑀1: DE/rand/1/bin: 

𝑣𝑖𝑗
𝑔

= 𝑥𝑎𝑗
𝑔−1

+ 𝐹 × (𝑥𝑏𝑗
𝑔−1

− 𝑥𝑐𝑗
𝑔−1

)                              (16) 

 

𝑀2: DE/rand/2/bin: 

𝑣𝑖𝑗
𝑔

= 𝑥𝑎𝑗
𝑔−1

+ 𝐹 × (𝑥𝑏𝑗
𝑔−1

− 𝑥𝑐𝑗
𝑔−1

) + 𝐹 × (𝑥𝑑𝑗
𝑔−1

− 𝑥𝑒𝑗
𝑔−1

)          (17) 

 

𝑀3: DE/best/1/bin: 

𝑣𝑖𝑗
𝑔

= 𝑥𝑏𝑒𝑠𝑡,𝑗
𝑔−1

+ 𝐹 × (𝑥𝑎𝑗
𝑔−1

− 𝑥𝑏𝑗
𝑔−1

)             (18) 

 

𝑀4: DE/best/2/bin: 

𝑣𝑖𝑗
𝑔

= 𝑥𝑏𝑒𝑠𝑡,𝑗
𝑔−1

+ 𝐹 × (𝑥𝑎𝑗
𝑔−1

− 𝑥𝑏𝑗
𝑔−1

) + 𝐹 × (𝑥𝑐𝑗
𝑔−1

− 𝑥𝑑𝑗
𝑔−1

)        (19) 

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are five randomly chosen individuals from the target population 

such that (𝑎 ≠ 𝑏 ≠ 𝑐 ≠ 𝑑 ≠ 𝑒 ≠ 𝑖 ∈ (1, . . , 𝑁𝑃))  and 𝑗 = 1, . . , 𝐷.  𝐹 > 0 is a 

mutation scale factor affecting the differential variation between two individuals, and 

𝑥𝑏𝑒𝑠𝑡,𝑗
𝑔−1

  is the best vector in generation 𝑔 − 1. 

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝐸𝐷𝐸() 

Step 1. 𝑆𝑒𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑔 = 0,𝑁𝑃 = 100,𝑀𝑚𝑎𝑥 = 4 

Step 2. 𝐸𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 

𝑃𝑔 = {𝑥1
𝑔
, . . , 𝑥𝑁𝑃

𝑔
} 𝑤𝑖𝑡ℎ 𝑥𝑖

𝑔
= {𝑥𝑖1

𝑔
, . . , 𝑥𝑖𝐷

𝑔
} 

Step 3. 𝐴𝑠𝑠𝑖𝑔𝑛 𝑎  𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑡𝑜 𝑒𝑎𝑐ℎ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 
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𝑀𝑖 = 𝑟𝑎𝑛𝑑()%𝑀𝑚𝑎𝑥  𝑓𝑜𝑟 𝑖 = 1, . . , 𝑁𝑃 

Step 4. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑓𝑖𝑛𝑑 𝑥𝑏𝑒𝑠𝑡
𝑔

 

𝑓(𝑃𝑔) = {𝑓(𝑥1
𝑔
), . . , 𝑓(𝑥𝑁𝑃

𝑔
)} 

Step 5. 𝐴𝑠𝑠𝑖𝑛𝑔 𝐶𝑅[𝑖] = 0.5 𝑎𝑛𝑑 𝐹[𝑖] = 0.9 to each individual 

Step 6. 𝑅𝑒𝑝𝑒𝑎𝑡 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑥𝑖
𝑔

 

 𝑜𝑏𝑡𝑎𝑖𝑛 𝑣𝑖
𝑔

=  𝑀𝑖(𝑥𝑖
𝑔
) 

 𝑜𝑏𝑡𝑎𝑖𝑛 𝑢𝑖
𝑔

=  𝐶𝑅𝑖(𝑥𝑖
𝑔
, 𝑣𝑖

𝑔
) 

 𝑜𝑏𝑡𝑎𝑖𝑛 𝑥𝑖
𝑔

= {
𝑢𝑖

𝑔
𝑖𝑓 𝑓(𝑢𝑖

𝑔
) ≤ 𝑓(𝑥𝑖

𝑔−1
)

𝑥𝑖
𝑔−1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 𝑖𝑓 𝑓(𝑢𝑖
𝑔
) > 𝑓(𝑥𝑖

𝑔−1
),    𝑀𝑖 = 𝑟𝑎𝑛𝑑()%𝑀𝑚𝑎𝑥 

 𝑖𝑓 (𝑓(𝑥𝑖
𝑔
) ≤ 𝑓(𝑥𝑏𝑒𝑠𝑡

𝑔
)) , 𝑥𝑏𝑒𝑠𝑡

𝑔
= 𝑥𝑖

𝑔
 

 𝑈𝑝𝑑𝑎𝑡𝑒 𝐹𝑖
𝑔
 𝑎𝑛𝑑 𝐶𝑅𝑖

𝑔
 

Step 7. 𝐼𝑓 𝑡ℎ𝑒 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑒𝑡, 𝑔𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 6, 

𝑒𝑙𝑠𝑒 𝑠𝑡𝑜𝑝 𝑎𝑛𝑑 𝑟𝑒𝑡𝑢𝑟𝑛 𝜋𝑏𝑒𝑠𝑡 

Figure 2.3. Outline of EDE Algorithm 

2.6 Opposition-Based Differential Evolution 

 The concept of opposition-based learning was firstly presented by Tizhoosh 

(2005) and its applications can be found in Tizhoosh (2005) and Tizhoosh (2006). 

Rahnamayan et al. has lately introduced an ODE for faster global search and 

optimization. This algorithm also provides important applications to the noisy 

optimization problems. The traditional DE is changed by taking advantage of 

opposition number based optimization concept in three different levels, namely, 

initialization of population, generation jumping, and local improvement in the 

population’s best member. When a priori information about the actual optima is not 

provided, an EA begins with random guesses. It is possible to increase the possibility 

of starting with a better solution by instantaneously checking fitness of the opposite 

solution. By means of this way, the fitter one which is either guess or opposite guess 

can be selected as an initial solution. As mentioned in article of Tizhoosh (2005), 

according to the probability theory, %50 of the time a guess have may have lower 

fitness value than its opposite guess. Hence, to start with the fitter of the two guesses 

is more probable to converge faster than opposite guess. The same approach is likely 

to be applied continuously to each solution in the current population. When 

population starts to converge into a smaller neighbourhood which surrounds and 

optimum point, taking opposition moves may be able to increase the variability of the 
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population. Moreover, as the population converges, the magnitude of the difference 

vector will be smaller. Nevertheless, difference vectors obtained by using parents that 

just underwent an opposite move will be large thereby resulting larger perturbation in 

the mutant vector. Thus, ODE has superior capability to get rid of local optima 

basins. 

Das & Suganthan (2011) have defined opposite numbers as given below: 

𝐷𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 1: 𝐿𝑒𝑡 𝑥 𝑏𝑒 𝑎 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑛 𝑐𝑙𝑜𝑠𝑒𝑑 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [𝑎, 𝑏], 𝑖. 𝑒.,  

𝑥 ∈ [𝑎, 𝑏].  𝑇ℎ𝑒𝑛 𝑡ℎ𝑒 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑥∪  𝑜𝑓 𝑥 𝑚𝑎𝑦 𝑏𝑒 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠: 

𝑥∪ = 𝑎 + 𝑏 − 𝑥                                                              (20) 

The ODE changes the classical DE by using the concept of opposite numbers at the 

following different stages: 

 Opposition based population initialization: Firstly, a population is 

generated according to uniform distribution randomly P(NP) and then 

the opposite population OP(NP) is calculated. The ith opposite 

individual corresponding to ith parameter vector of P(NP) is as given 

in the article of Feoktistov and  Janaqi (2004): 

𝑂𝑃𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗 − 𝑃𝑖𝑗 , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, … . , 𝑁𝑃 𝑎𝑛𝑑 𝑗 = 1,2, … . , 𝐷 

𝑎𝑖𝑗  𝑎𝑛𝑑 𝑏𝑖𝑗 𝑑𝑒𝑛𝑜𝑡𝑒 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 𝑜𝑓 𝑗𝑡ℎ 𝑎𝑛𝑑 𝑘𝑡ℎ 𝑣𝑒𝑐𝑡𝑜𝑟 𝑖. 𝑒.  

𝑥𝑖𝑗 ∈ [𝑎𝑖𝑗, 𝑏𝑖𝑗]  

As a final, NP fittest individuals are selected from the 

{𝑃(𝑁𝑃), 𝑂𝑃{𝑁𝑃)} as the initial population. 

 Opposition based generation jumping: in this stage, after each 

iteration, instead of creating new population by evolutionary process, 

the opposite population is found by using a known probability 

𝐽𝑟(∈ (0, 0.04)) and the 𝑁𝑃 fittest individuals can be selected both 

from the current population and its corresponding opposite population. 
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 Opposition based best individual jumping: in this stage, in the current 

population, difference-offspring of the best individual is generated by 

the following: 

𝑥𝑛𝑒𝑤𝑏𝑒𝑠𝑡,𝑗
𝑔

= 𝑥𝑏𝑒𝑠𝑡,𝑗
𝑔−1

+ 𝐹′(𝑥𝑎𝑗
𝑔−1

− 𝑥𝑏𝑗
𝑔−1

)         (21) 

 

where 𝑎 and 𝑏 are mutually different integers indices selected from 

population and 𝐹′ is a real constant between 0 𝑎𝑛𝑑 1. In the following 

step, the opposite of offspring created as 𝑥𝑜𝑝𝑝−𝑛𝑒𝑤𝑏𝑒𝑠𝑡
𝑔

 and finally the 

current best member is changed with the fittest member of the set 

including best, new best and opposition of new best. 

 

2.7 Ensemble DE with VNS 

 In order to make an ensemble of 𝐷𝐸 algorithms, it is inspired from the 𝑉𝑁𝑆 

algorithm and the idea of neighbourhood change in the  𝑉𝑁𝑆 algorithm is used. 

Gamperle et al. (2002) and Brest et al. (2006) state that the core idea is to apply 

different mutation strategies in the ensemble because it is known that the performance 

of 𝐷𝐸 algorithms is very sensitive to mutation strategies selected. In this thesis, the 

first four mutation strategies for the ensemble purposes are chosen in order to be 

employed in 𝑉𝑁𝑆 loops and the fifth one is not employed in 𝑉𝑁𝑆 algorithm. 

Mutation strategies 𝑀3 and 𝑀4 are taken from the article of Elsayed et al. (2014) in 

which genetic algorithm is used for optimization problems: 

𝑀1 = 𝐷𝐸/𝑟𝑎𝑛𝑑 /1/𝑏𝑖𝑛: 

 

𝑣𝑖𝑗
𝑔

= 𝑥𝑎𝑗
𝑔−1

+ 𝐹(𝑥𝑏𝑗
𝑔−1

− 𝑥𝑐𝑗
𝑔−1

)                                 (22) 

 

𝑀2 = 𝐷𝐸/𝑝 − 𝑏𝑒𝑠𝑡 /1/𝑏𝑖𝑛: 

 

𝑣𝑖𝑗
𝑔

= 𝑥𝑝,𝑗
𝑔−1

+ 𝐹(𝑥𝑏𝑗
𝑔−1

− 𝑥𝑐𝑗
𝑔−1

)                                                        (23) 

 

𝑀3 = 𝐺𝐴 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑖𝑛 [𝐸𝑙𝑠𝑎𝑦𝑒𝑑 𝑒𝑡 𝑎𝑙. ].: 
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𝑣𝑖𝑗
𝑔

= 𝑥𝑎𝑗
𝑔−1

+ 𝐹(𝑥𝑏𝑗
𝑔−1

− 𝑥𝑐𝑗
𝑔−1

)   such that  𝑓(𝑥𝑎) ≤ 𝑓(𝑥𝑏)         (24) 

 

𝑀4 = 𝐺𝐴 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑖𝑛 [𝐸𝑙𝑠𝑎𝑦𝑒𝑑 𝑒𝑡 𝑎𝑙. ].: 

 

𝑣𝑖𝑗
𝑔

= 𝑥𝑐𝑗
𝑔−1

+ 𝐹(𝑥𝑎𝑗
𝑔−1

− 𝑥𝑏𝑗
𝑔−1

)   such that  𝑓(𝑥𝑎) ≤ 𝑓(𝑥𝑏)         (25) 

 

𝑀5 = 𝐷𝐸/𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑜 𝑟𝑎𝑛𝑑 /1/𝑏𝑖𝑛: 

 

𝑢𝑖𝑗
𝑔

= 𝑥𝑖𝑗
𝑔−1

+ 𝐾(𝑥𝑎𝑗
𝑔−1

− 𝑥𝑖𝑗
𝑔−1

) + 𝐹(𝑥𝑏𝑗
𝑔−1

− 𝑥𝑐𝑗
𝑔−1

)                 (26) 

 In mutation strategies given above, 𝐾 is randomly chosen within the 

range [0,1]. 𝑥𝑝,𝑗 is the individual selected by using the tournament selection with size 

of 2. In other words, two individuals are randomly selected from the population and 

the better one is picked up. 

 So as to improve the 𝐸𝐷𝐸_𝑉𝑁𝑆 algorithm, four different 𝑉𝑁𝑆 local searches 

are devised in order to generate trail individuals in an ensemble framework. 

Moreover, a neighbourhood 𝑁𝑘 by using a mutation strategy and a crossover operator 

together is generated to clarify the 𝑉𝑁𝑆 local searches as follows: 

𝑁𝑘(𝑥) = 𝑀𝑘(𝑦), 𝐶𝑅(𝑥, 𝑦)                                              (27) 

 Equation (27) indicates that mutation strategy 𝑀𝑘 is used for generating a 

mutant individual 𝑦 first so as to find a neighborhood of an individual 𝑥, and then 

mutant individual 𝑦 with individual 𝑥 by means of crossover operator is recombined 

in equation (5).  With this definition and a temporary individual 𝜏, first of all 𝑉𝑁𝑆1 

algorithm is developed as follows: 

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑉𝑁𝑆1(𝑥𝑖
𝑔
) 

𝑘𝑚𝑎𝑥 = 2 

𝑘 = 1 

𝜏 = 𝑥𝑖
𝑔

 

𝑑𝑜{ 
𝑥∗ = 𝑁𝑘  (𝜏)                            𝑁1(𝜏) = 𝑀1(𝑦), 𝐶𝑅(𝜏, 𝑦) 
𝑖𝑓 𝑓(𝑥∗) < 𝑓(𝜏)                    𝑁2(𝜏) = 𝑀2(𝑦), 𝐶𝑅(𝜏, 𝑦) 
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𝜏 = 𝑥∗ 

𝑘 = 1 

𝑒𝑙𝑠𝑒 

𝑘 = 𝑘 + 1 

}𝑤ℎ𝑖𝑙𝑒(𝑘 ≤ 𝑘𝑚𝑎𝑥) 
𝑟𝑒𝑡𝑢𝑟𝑛 𝜏 

𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 

 

𝐹𝑖𝑔𝑢𝑟𝑒 2.4.  𝑉𝑁𝑆1 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚. 

 The performance of 𝑉𝑁𝑆 algorithms depends on the choice of the first 

neighborhood strategy since the algorithm is quite sensitive. It should be noted that as 

long as the first neighbourhood keeps improving the current solution, the 

neighbourhood counter k will become 1 meaning that the first neighbourhood will be 

used. Other else, the neighbourhood counter will be increased to 2 because first 

neighbourhood has stopped improving the current solution. It indicates that second 

neighbourhood will be employed. If the second neighbourhood manages to improve 

the solution, the algorithm gets back to the fist neighbourhood again until the second 

neighbourhood fails to improve the current solution. 

 As seen in Fig. 2.4., the following neighbourhood structures are used in the 

𝑉𝑁𝑆1 algorithm:  

𝑁1(𝜏) = 𝑀1(𝑦), 𝐶𝑅(𝜏, 𝑦),  𝑁2(𝜏) = 𝑀2(𝑦), 𝐶𝑅(𝜏, 𝑦)      (28) 

 The second 𝑉𝑁𝑆2 algorithm can be gained by changing the sequence of the 

neighborhoods as follows: 

𝑁1(𝜏) = 𝑀2(𝑦), 𝐶𝑅(𝜏, 𝑦),  𝑁2(𝜏) = 𝑀1(𝑦), 𝐶𝑅(𝜏, 𝑦)       (29) 

 Similar VNS algorithms can be obtained by neighbourhood structures through 

the use of mutation strategies 𝑀3 and 𝑀4.  

 The third 𝑉𝑁𝑆3 can be obtained by the following neighbourhoods as follows: 

 

𝑁1(𝜏) = 𝑀3(𝑦), 𝐶𝑅(𝜏, 𝑦), 𝑁2(𝜏) = 𝑀4(𝑦), 𝐶𝑅(𝜏, 𝑦)       (30) 



 

 

25 

 

 The fourth 𝑉𝑁𝑆4 algorithm can be obtained by changing the sequence of the 

neighborhoods as follows: 

𝑁1(𝜏) = 𝑀4(𝑦), 𝐶𝑅(𝜏, 𝑦), 𝑁2(𝜏) = 𝑀3(𝑦), 𝐶𝑅(𝜏, 𝑦)       (31) 

 The fifth strategy generates directly applying the mutation strategy to the 

individuals.  

𝑢𝑖𝑗
𝑔

= 𝑥𝑖𝑗
𝑔−1

+ 𝐾(𝑥𝑎𝑗
𝑔−1

− 𝑥𝑖𝑗
𝑔−1

) + 𝐹(𝑥𝑏𝑗
𝑔−1

− 𝑥𝑐𝑗
𝑔−1

)       (32) 

 

 The pseudo codes of  𝑉𝑁𝑆 algorithms are given in Fig. 2.5. to 2.7. 

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑉𝑁𝑆2(𝑥𝑖
𝑔
) 

𝑘𝑚𝑎𝑥 = 2 

𝑘 = 1 

𝜏 = 𝑥𝑖
𝑔

 

𝑑𝑜{ 

      𝑥∗ = 𝑁𝑘  (𝜏)                            𝑁1(𝜏) = 𝑀2(𝑦), 𝐶𝑅(𝜏, 𝑦) 

 𝑖𝑓 𝑓(𝑥∗) < 𝑓(𝜏)                    𝑁2(𝜏) = 𝑀1(𝑦), 𝐶𝑅(𝜏, 𝑦) 
           𝜏 = 𝑥∗ 

𝑘 = 1 

 𝑒𝑙𝑠𝑒 

𝑘 = 𝑘 + 1 

 }𝑤ℎ𝑖𝑙𝑒(𝑘 ≤ 𝑘𝑚𝑎𝑥) 

𝑢𝑖
𝑔

= 𝜏 

𝑟𝑒𝑡𝑢𝑟𝑛 𝜏 

𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 

  

 𝐹𝑖𝑔𝑢𝑟𝑒 2. 5.  𝑉𝑁𝑆2 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚. 

 

 

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑉𝑁𝑆3(𝑥𝑖
𝑔
) 

𝑘𝑚𝑎𝑥 = 2 

𝑘 = 1 

𝜏 = 𝑥𝑖
𝑔

 

𝑑𝑜{ 

      𝑥∗ = 𝑁𝑘  (𝜏)                            𝑁1(𝜏) = 𝑀3(𝑦), 𝐶𝑅(𝜏, 𝑦) 

 𝑖𝑓 𝑓(𝑥∗) < 𝑓(𝜏)                     𝑁2(𝜏) = 𝑀4(𝑦), 𝐶𝑅(𝜏, 𝑦) 
𝜏 = 𝑥∗ 
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𝑘 = 1   

 𝑒𝑙𝑠𝑒 

𝑘 = 𝑘 + 1 

 }𝑤ℎ𝑖𝑙𝑒(𝑘 ≤ 𝑘𝑚𝑎𝑥) 
𝑟𝑒𝑡𝑢𝑟𝑛 𝜏 

𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 

  

 𝐹𝑖𝑔𝑢𝑟𝑒 2.6.  𝑉𝑁𝑆3 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚. 

 

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑉𝑁𝑆4(𝑥𝑖
𝑔
) 

𝑘𝑚𝑎𝑥 = 2 

𝑘 = 1 

𝜏 = 𝑥𝑖
𝑔

 

𝑑𝑜{ 

  𝑥∗ = 𝑁𝑘  (𝜏)                           𝑁1(𝜏) = 𝑀4(𝑦), 𝐶𝑅(𝜏, 𝑦) 

 𝑖𝑓 𝑓(𝑥∗) < 𝑓(𝜏)                 𝑁2(𝜏) = 𝑀3(𝑦), 𝐶𝑅(𝜏, 𝑦) 
𝜏 = 𝑥∗ 

𝑘 = 1 

 𝑒𝑙𝑠𝑒 

𝑘 = 𝑘 + 1 

 }𝑤ℎ𝑖𝑙𝑒(𝑘 ≤ 𝑘𝑚𝑎𝑥) 
𝑟𝑒𝑡𝑢𝑟𝑛 𝜏 

𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 

  

 𝐹𝑖𝑔𝑢𝑟𝑒 2.7.  𝑉𝑁𝑆4 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚. 

 

 

 In 𝑉𝑁𝑆 algorithms given above, a novel self-adapting parameter scheme 

developed by Brest at al. is employed, so called 𝑗𝐷𝐸. It is very simple and effective. 

In 𝑗𝐷𝐸, each individual has its own F and CR values, they are updated according to 

the equations given in (8) and (9) respectively. 

 Generating Initial Population 2.7.1

In this thesis, target population is randomly established by using the equation 

(2). Nevertheless, the opposition-based learning algorithm in order to enrich the 

initial population and improve the solution is used. 𝑂𝐵𝐿 is firstly proposed by 

Tizhoosh (2005) as a new method in computational intelligence and has been applied 

to more improve various heuristic optimization algorithms (Rahnamayan & 

Tizhoosh). 𝑂𝐵𝐿  highly relies on the idea that as evaluating the solution of a given 

problem, its opposite solution is also probable to find a candidate solution which 
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might be closed to the global optimum. Inspired from 𝑂𝐵𝐿, generalized 𝑂𝐵𝐿 (𝐺𝑂𝐵𝐿) 

is presented in Wang et al. (2011). It is assumed that 𝑥 is the current solution 

with 𝑥 ∈ [𝑎, 𝑏]. Then it is opposition solution is given by: 

 

𝑥∗ = 𝑘 ∗ (𝑎 + 𝑏) − 𝑥                         (33) 

 In 𝐺𝑂𝐵𝐿, opposite solutions are obtained by dynamically updated interval 

boundaries in the population as follows: 

𝑥𝑖𝑗
∗ = 𝑘 ∗ [𝑎𝑗

𝑔
+ 𝑏𝑗

𝑔
] − 𝑥𝑖𝑗

𝑔
                   (34) 

𝑎𝑗
𝑔

= min(𝑥𝑖𝑗
𝑔
) , 𝑏𝑗

𝑔
= max(𝑥𝑖𝑗

𝑔
)         (35) 

𝑥𝑖𝑗
∗ = 𝑟𝑎𝑛𝑑(𝑎𝑗

𝑔
, 𝑏𝑗

𝑔
) 𝑖𝑓 𝑥𝑖𝑗

∗ < 𝑥𝑚𝑖𝑛 𝑜𝑟 𝑥𝑖𝑗
∗ > 𝑥𝑚𝑎𝑥  

𝑖 = 1,… . , 𝑁𝑃, 𝑗 = 1,… . , 𝐷, 𝑘 = 𝑟𝑎𝑛𝑑[0,1]           (36) 

 After establishing and evaluating the target population, the 𝐺𝑂𝐵𝐿 algorithm 

given above is also used for obtaining the opposite target individual. The better one is 

kept in the target population. 

 Generation of Trial Population 2.7.2

 In order to generate trial individuals of population, VNS algorithm is applied 

through the solution process. After obtaining each individual from the VNS 

algorithm, an injection procedure is applied to trial individuals to diversify it escape 

from the local minima. By injection procedure, an individual from the target 

population is selected by using tournament selection with size of 2. Therefore, 

depending on the injection probability, some good dimensional values are injected to 

the trial individuals in such a way that a uniform random number 𝑟 is less than the 

injection probability 𝑖𝑃, that dimension is obtained from individual𝑥𝑎 ,  that is 

determined by using tournament selection procedure. Other else, the dimension of 

trial individual is retained. The injection procedure is given in Fig. 2.8. below: 
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𝑓𝑜𝑟 𝑖 = 1     𝑡𝑜  𝑁𝑃 

𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝐷 

 𝑖𝑓  (𝑟 < 𝑖𝑃)   𝑡ℎ𝑒𝑛 

         𝑥𝑎𝑗 = 𝑇𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡() 

                𝑢𝑖𝑗 = 𝑥𝑎𝑗 

𝑒𝑙𝑠𝑒 

𝑢𝑖𝑗 = 𝑢𝑖𝑗 

𝑒𝑛𝑑𝑓𝑜𝑟 

𝑒𝑛𝑑𝑓𝑜𝑟 

𝐹𝑖𝑔𝑢𝑟𝑒 2.8.  𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 

 Selection 2.7.3

 When the selection of the next population is performed, EC and SF constraint 

handling methods that will be summarized in following sections are employed. For 

each individual in the trial population, 𝜀(𝑡) level is checked. The individual is treated 

as a feasible one, when its constraint violation is less than 𝜀(𝑡) level. Later on, the SF 

method is used in order to determine if trial individual will be able to survive to be in 

the next generation. Moreover, the SF method is simply used so as to update the best 

so far solution in the population. The pseudo code for EDE-VNS algorithm is 

provided below in Figure 2.9. 

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝐸𝐷𝐸_𝑉𝑁𝑆() 

𝑆𝑒𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑔 = 0,𝑁𝑃 = 50,  𝑆𝑚𝑎𝑥 = 5 

Step 1. 𝐸𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 

𝑃𝑔 = {𝑥1
𝑔
, . . , 𝑥𝑁𝑃

𝑔
} 𝑤𝑖𝑡ℎ 𝑥𝑖

𝑔
= {𝑥𝑖1

𝑔
, . . , 𝑥𝑖𝐷

𝑔
} 

Step 2. 𝐴𝑝𝑝𝑙𝑦 𝑂𝐵𝐿 𝑡𝑜 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑐ℎ𝑜𝑜𝑠𝑒 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑜𝑛𝑒𝑠 

𝑃𝑔 = {𝑥1
𝑔
, . . , 𝑥𝑁𝑃

𝑔
} 𝑤𝑖𝑡ℎ 𝑥𝑖

𝑔
= {𝑥𝑖1

𝑔
, . . , 𝑥𝑖𝐷

𝑔
} 

Step 3. 𝐴𝑠𝑠𝑖𝑔𝑛 𝑎 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑡𝑜 𝑒𝑎𝑐ℎ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 

𝑀𝑖 = 𝑟𝑎𝑛𝑑()%𝑀𝑚𝑎𝑥  𝑓𝑜𝑟 𝑖 = 1, . . , 𝑁𝑃 

Step 4. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑓𝑖𝑛𝑑 𝑥𝑏𝑒𝑠𝑡
𝑔  

𝑓(𝑃𝑔) = {𝑓(𝑥1
𝑔
), . . , 𝑓(𝑥𝑁𝑃

𝑔
)} 
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Step 5. 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑒(0) 

Step 6. 𝑅𝑒𝑝𝑒𝑎𝑡 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑥𝑖
𝑔

 

 𝑜𝑏𝑡𝑎𝑖𝑛 𝑢𝑖
𝑔

= 𝑉𝑁𝑆𝑖(𝑥𝑖
𝑔
) 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑁𝐹𝑇 

 𝑎𝑝𝑝𝑙𝑦 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑡𝑟𝑖𝑎𝑙 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 

 𝑜𝑏𝑡𝑎𝑖𝑛 𝑥𝑖
𝑔+1

 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑒 − 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑚𝑒𝑡ℎ𝑜𝑑 

 𝑖𝑓 (𝑓(𝑥𝑖
𝑔
) ≤ 𝑓(𝑥𝑏𝑒𝑠𝑡

𝑔
)) , 𝑥𝑏𝑒𝑠𝑡

𝑔
= 𝑥𝑖

𝑔
 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑆𝐹 

 𝑈𝑝𝑑𝑎𝑡𝑒 𝑒(𝑔) = 𝑒(0) (1 − 𝑔

𝑔𝑐
) 

Step 7. 𝐼𝑓 𝑡ℎ𝑒 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑒𝑡, 𝑔𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 6, 

𝑒𝑙𝑠𝑒 𝑠𝑡𝑜𝑝 𝑎𝑛𝑑 𝑟𝑒𝑡𝑢𝑟𝑛 𝜋𝑏𝑒𝑠𝑡 

Figure 2.9. Outline of EDE-VNS Algorithm 
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3 CONSTRAINED REAL PARAMETER OPTIMIZATION 

 Most of the optimization problems included in science and engineering involve 

constraints. When constrains are present in the optimization problem, feasible region 

reduces and the search process of the problem gets more complicated. Evolutionary 

Algorithms (EAs) generally perform unconstrained searches. In order that the 

evolutionary algorithm can solve constrained optimization problems, it is required to 

put additional mechanisms to handle given constraints. In the literature, Coello 

(2002) gives important information about several constraint handling techniques in 

order to be used for EAs. 

 During solving constrained optimization problems, solution candidates that can 

satisfy all constraints are feasible individuals whereas individuals that cannot satisfy 

all constraints are infeasible individuals. One of the most important issues of 

constrained handling optimization is to determine how to deal with the infeasible 

individuals through the search process. One way to handle it is to totally ignore all 

infeasible individuals found and go on the search process with feasible individuals 

only. This kind of approach is probable to be ineffective because EAs are 

probabilistic search methods and important potential information in infeasible 

individuals may be lost because of completely disregarding them. When the search 

space is discontinuous, EAs are also possible to be trapped in one of the local 

minima. Hence, different techniques have been developed to get the information held 

by infeasible individuals. Michalewicz & Schoenauer (1996) has grouped the 

methods to handle the constraints with EAs into four categories: preserving feasibility 

of functions, penalty functions, make a separation between feasible and infeasible 

solutions and hybrid methods. Wang et al. (2007) stated that a constrained 

optimization problem can be formulated as a multi-objective problem, nevertheless it 

is computationally intensive due to non-domination sorting. 

 According to the no free lunch (NFL) theorem stated in the article of Wolpert 

and Macready (1997), no single state-of-the-art constraint handling technique can be 

said better than all others on every problem. Therefore, solving a particular 

constrained problem needs many trial-and-error runs in order to be able to choose an 

appropriate constraint handling technique and to fine tune the associated parameters. 

This approach clearly has the disadvantage of suffering from unrealistic 

computational requirements in particular when the objective function of the problem 
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is computationally expensive as in the article of Jin (2005) or the solutions are needed 

in real-time. In the article of Mallipeddi & Suganthan (2010), an ensemble of 

constraint handling techniques was proposed as an effective alternative to the trial-

and-error-based search for the best constrained handling technique with its best 

parameters for any given problem. Each constraint handling technique has its own 

population and each function is efficiently utilized by each of these populations. 

 As mentioned above, According to J.J. Liang et al. (2006), because 

evolutionary algorithms and other meta-heuristics behave as if they are unconstrained 

search technique because of their nature during optimization process, additional 

mechanism is required. Lately, the mostly used method is to generate the penalty 

functions to incorporate constraints. On the other hand, to solve a problem the 

optimum solution lies in the boundary between the feasible and the infeasible regions. 

In addition to this, penalty functions require an effective fine-tuning to decide the 

most suitable penalty factors in order to be used with meta-heuristics. Therefore, 

same ranking methods are proposed in the literature to handle the constraints. 

 In this thesis, 22 benchmark problems which were presented at CEC’2006 are 

taken into consideration to solve by using EDE-VNS algorithms. The list of 

benchmark functions are provided in Appendix 1. 

(http://www.ntu.edu.sg/home/epnsugan/). 

All of the 22 test functions were defined with minimization problem as 

following: 

                               𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥), 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛] 𝑎𝑛𝑑 𝑋 ∈ 𝑆               (37) 

subject to that constraints: 

                                       𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1,… , 𝑞                                               (38) 

                                  ℎ𝑗(𝑥) = 0, 𝑗 = 𝑞 + 1,… ,𝑚                                            (39) 

 For the converting of equality constraints into inequality form, following 

strategy is used: 

http://www.ntu.edu.sg/home/epnsugan/
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                           |ℎ𝑗(𝑥)| − 𝜀 ≤ 0, 𝑓𝑜𝑟 𝑗 = 𝑞 + 1,… ,𝑚                                    (40) 

when equations (5) and (6) are satisfied, a solution 𝑥 is defined as feasible. In 

accordance with the value of ε taken as ε =0,0001 in the special session, so it is taken 

as the same value in this study as well. 

3.1 Benchmark Problems 

 The benchmark problems used for solving by 𝐸𝐷𝐸 − 𝑉𝑁𝑆 algorithm are taken 

from 2006 IEE Congress Evolutionary Computation (CEC’2006) competition of 

single objective constrained problems. 

 A variety of engineering optimization problems provided by (CEC’ 2006) is 

taken into consideration in this thesis. These problems vary in terms of mathematical 

properties, presence and absence of function constraints, number of variables 

included, static and dynamic in nature, and modality. The number of constraints in 

each constrained problems also changes. The further information about these 

problems is given in table below provided in the article of  Elsayed et al. (2014). 

Table 1  Details of the 24 test problems 

Pr D 

Objective     

Function  |𝐹|/|𝑆|(%) LI NI LE NE a Optimal 

g1 13 Quadratic 0.00000 9 0 0 0 6 −15.000000000 

g2 20 Nonlinear 99.9971 0 2 0 0 1 −0.8036191042 

g3 10 Polynomial 0.0000 0 0 0 1 1 −1.0005001000 

g4 5 Quadratic 52.1230 0 6 0 0 2 −30665.53867178 

g5 4 Cubic 0.0000 2 0 0 3 3 5126.4967140071 

g6 2 Cubic 0.0066 0 2 0 0 2 −6961.813875580 

g7 10 Quadratic 0.0003 3 5 0 0 6 24.3062090681 

g8 2 Nonlinear 0.8560 0 2 0 0 0 −0.0958250415 

g9 7 Polynomial 0.5121 0 4 0 0 2 680.6300573745 

g10 8 Linear 0.0010 3 3 0 0 6 7049.2480205286 

g11 2 Quadratic 0.0000 0 0 0 1 1 0.7499000000 

g12 3 Quadratic 4.7713 0 1 0 0 0 −1.0000000000 

g13 5 Nonlinear 0.0000 0 0 0 3 3 0.0539415140 

g14 10 Nonlinear 0.0000 0 0 3 0 3 −47.7648884595 

g15 3 Quadratic 0.0000 0 0 1 1 2 961.7150222899 
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g16 5 Nonlinear 0.0204 4 34 0 0 4 −1.9051552586 

g17 6 Nonlinear 0.0000 0 0 0 4 4 8853.5396748064 

g18 9 Quadratic 33.4761 0 13 0 0 6 −0.8660254038 

g19 15 Nonlinear 0.0000 0 5 0 0 0 32.6555929502 

g21 7 Linear 0.0000 0 1 0 15 6 193.7245100700 

g23 9 Linear 0.0000 0 2 3 1 6 −400.0551000000 

g24 2 Linear 79.6556 0 2 0 0 2 −5.5080132716 

 According to the table, 𝐷 is the number of decision variables, |𝐹| |𝑆|⁄  is the 

estimated ratio between the feasible region and the search space. 𝐿𝐼 is the number of 

linear inequality constraints, 𝑁𝐼 is the nonlinear inequality constraints, 𝐿𝐸 is the 

number of linear equality constraints, 𝑁𝐸 is the number of nonlinear equality 

constraints, and ∝ is the number of active constraints. Optimal solutions for each 

problem are also given in the last column of the table. 

3.2 Constraint Handling Methods 

 There are different types of constraint handling techniques provided in articles 

in the literature. In this thesis, the methods used for constraint handling are described 

the following sections: 

 Superiority of Feasible Solution 3.2.1

 SF (Superiority of Feasible Solutions) is one of the constraint handling methods 

proposed by Deb (2000). It is developed for constrained optimization. If two 

solutions 𝑥 and 𝑦 are compared, it can be said that 𝑥 is considered as superior to 𝑦 

under the satisfaction of following conditions: 

 𝑥 is feasible but 𝑦 is not feasible. 
 

 𝑥 and 𝑦 are both feasible but 𝑥 has a smaller objective value for minimization 

and greater objective value for maximization problem than 𝑦. 

 
 𝑥 and 𝑦 are both feasible, but 𝑥 has a smaller overall constraint violation 𝑣(𝑥) 

as computed by the following formula: 

𝐺𝑖(𝑥) = max {𝑔𝑖(𝑥), 0}                           𝑖 = 1,…𝑝 
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𝐻𝑖(𝑥) = max {|ℎ𝑖(𝑥)| − 𝛿, 0}       𝑖 = 𝑝 + 1,… ,𝑚       

 

𝑣(𝑥) =
∑ 𝐺𝑖(𝑥)𝑝

𝑖=1 +∑ 𝐻𝑖(𝑥)𝑚
𝑖=𝑝+1

𝑚
                                     (41) 

where 𝑣(𝑥) is the average violation of m number of constraints. Furthermore, 𝛿 is the 

tolerance value for equality constraints and it is generally taken as 0,0001 in the 

literature. 

 In SF, feasible individuals are always taken into consideration as better than the 

infeasible ones. Two infeasible solutions are compared according to their overall 

constraint violations only, whereas two feasible solutions are compared according to 

their objective functions only. The aim of comparing infeasible solutions based on the 

overall constraint violation is to push the infeasible solutions to feasible solutions as 

much as possible, while comparison of two feasible solutions only aims to improve 

the value of the objective function. Hence, in Phase 1, infeasible solutions with low 

overall constraint violation are to be selected. In Phase 2, all the feasible ones are 

selected first and then infeasible ones with low overall constraint violation are 

selected. In Phase 3, only feasible ones with better objective function values are 

selected. 

 The Adaptive Penalty Function 3.2.2

 In the article of Smith & Tate (2003), an adaptive penalty approach is 

introduced. In adaptive penalty function, the idea of near feasibility threshold also 

called NFT is used, in which both solutions with-in feasible region and the NFT-

neighbourhood of the in the infeasible region are favoured. Moreover, to be able to 

differentiate the gap between the best feasible value and best infeasible value found 

so far, an adaptive part is also included in the penalty method. The adaptive penalty 

function is given as follows: 

𝑓𝑝(𝑥) = 𝑓(𝑥) + (𝑓𝑓𝑒𝑎𝑠 − 𝑓𝑎𝑙𝑙)∑ (
𝑣𝑖(𝑥)

𝑁𝐹𝑇𝑖
)
𝛼𝑖𝑚

𝑖=1                                     (42) 
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where  𝑓𝑓𝑒𝑎𝑠 is the value of the best feasible solution yet obtained while 𝑓𝑎𝑙𝑙 is the 

nonpenalized value of the best solution obtained so far. As Coello (2002) has 

mentioned in his article, the adaptive term in the formula above might result in zero-

or over-penalty. Because of this reason, it is thought to be better to take only dynamic 

of the function with NFT threshold into account as following: 

𝑓𝑝(𝑥) = 𝑓(𝑥) + ∑ (
𝐺𝑖(𝑥)

𝑁𝐹𝑇𝑖
)
∝

+𝑝
𝑖=1 ∑ (

𝐻𝑗(𝑥)

𝑁𝐹𝑇𝑗
)
∝

𝑚
𝑗=𝑝+1                            (43) 

 The basic form of the 𝑁𝐹𝑇 method is introduced as 𝑁𝐹𝑇 =
𝑁𝐹𝑇0

1+𝜆∗𝑡
 where 𝑁𝐹𝑇0 

is the initial value of 𝑁𝐹𝑇 method; 𝜆 and 𝑡 are user-defined positive value and 

generation counter, respectively. 𝛼 is severity parameter. In view of the conversion 

process of the equality constraints to the inequality constraints by subtracting 𝛿 from 

the absolute value of the constraint value and 𝛿 is determined in advance, the 𝑁𝐹𝑇0 is 

selected as 1e-4. 

 𝝐 – Constraint (EC) 3.2.3

 Takahama & Sakai (2006) has proposed another constraint handling method 

called ε-constraint. In the basis of their research, an appropriate control for the 

epsilon parameter is required as the good feasible solutions for problems with 

equality constraints are attained. According to control generation notated by 𝑔𝑐, the ε 

level is updated. After generation counter 𝑔 becomes higher than control 

generation 𝑔𝑐, the ε level is set to zero to finalize with feasible solutions. The 

solutions which have violations less than 𝜀(𝑔) are taken to become feasible solutions 

for selection process in the next generation. The main notion can be explained with 

equations: 

𝜀(0) = 𝑣(𝑥𝜃)                                           (44) 

                  𝜀(𝑔) = {
𝜀(0) × (1 −

𝑔

𝑔𝑐
)
𝑐𝑝

𝑖𝑓 (𝑔 < 𝑔𝑐)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.                (45) 

where 𝑥𝜃 is the top 𝜃-th individual. 
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 Stochastic Ranking 3.2.4

 Runarsson & Yao (2000) has presented 𝑆𝑅 method in order to achieve a 

balance between objective and the overall constraint violation in a stochastic way. A 

probability factor 𝑝𝑓 is required in order to determine if the objective function value 

or the constraint violation value determines the rank of each individual in population. 

Basic form of 𝑆𝑅 is presented in figure below: 

𝑖𝑓 (𝑛𝑜 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑟 𝑟𝑎𝑛𝑑 < 𝑝𝑓) 

𝑅𝑎𝑛𝑘 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑛𝑙𝑦 

𝑒𝑙𝑠𝑒 

𝑅𝑎𝑛𝑘 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑛𝑙𝑦 

𝑒𝑛𝑑 

𝐹𝑖𝑔𝑢𝑟𝑒 3.10.  𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑅𝑎𝑛𝑘𝑖𝑛𝑔 

 Using evolution strategies and differential variation, Runarsson & Yao (2005) 

has proposed the improved version of the  (𝐼𝑆𝑅) . In 𝑆𝑅, comparison between two 

individuals might be performed based on only either objective value or constraint 

violation as randomly determined. Hence, infeasible solutions yielding better 

objective value are possible to be selected in all three phases of the evolution. 

Mallipeddi & Suganthan (2010) used the modified version of 𝑆𝑅 presented by 

Runarsson & Yao (2005). They have maintained the value of 𝑝𝑓 a linearly decreasing 

function from 𝑝𝑓 = 0,475 in the initial generation to 𝑝𝑓 = 0,025 in the final 

generation instead of a constant value. 

3.3 Ensemble of Constraint Handling 

 Each constrained optimization problem would differ from one another 

according to the ratio between feasible search space and the whole search space, 

multimodality and the nature of constraint functions. Mallipeddi & Suganthan (2010) 

that since evolutionary algortihms uses stochastic nature to solve optimization 

problems, the evalution could possibly follow the different paths in every run even 

whem the same problem is solved by using the same algorithm. Hence, depending 

upon such factors as the ratio between feasible search space and the whole search 

space, multimodality of the problem, nature of equality/inequality constraints, the 

chosen EA, global exploration, local exploitation stages of the search algorithm, 

different constraint handling methods might be useful in different stages of the search 
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process. In view of the strong relationship between these diverse factors and the 

randomness of the evolutionary algorithms, it is not practical to determine which 

constraint handling method outperforms the others or which one is the best during a 

particular stage of the evolution in order to solve a given problem when using a given 

EA. By means of these observations, Mallipeddi & Suganthan (2010) developed the 

𝐸𝐶𝐻𝑇 to implicity take advantage of the match between constraint handling methods, 

characteristcs of the so-called problem, chosen EA and the exploration-exploitation 

stages of the search process.  

 Jin (2005) states that it might take several minutes to several hours in order to 

compute the objective value of a real-world problem. Thus, it is thought to be 

difficult to find a better constraint handling method for any problem by using trial-

and-error method. The computation time spent on finding searching for a better 

constraint handling method can be saved by using the proposed ensemble method. 

 In the article of Mallipeddi & Suganthan (2010), 𝐸𝐶𝐻𝑇 with four different 

constrained handling methods given above sections, each of them has its own 

population and parameters. Each population produces its own offspring according to 

a constraint handling method. The parent population corresponding to a particular 

constraint handling method competes with both its own spring population and the 

offspring population of the other three constraint handling methods. Because of this 

fact, it can be said that an offspring produced by a specific constraint handling 

method could be refused by its own population, however might be accepted by the 

population of other constraint handling methods. When the evolution of the objective 

or constraint functions is rather expensive, it is better to include more constraint 

handling methods in the ensemble in order to take more advantages of each function 

call. And if a particular constraint handling technique is most suitable to the search 

method and the problem during a point in the search process, the offspring population 

produced by using that constraint handling method will be dominating the other and 

enter other populations as well. In the following generations, these superior offspring 

will be parents in other populations. When the constraint handling methods selected 

to form an ensemble are similar in their nature populations associated with the each 

of the constraint handling methods might lose diversity and the search ability of 

𝐸𝐶𝐻𝑇  could worsen. Hence, the performance of 𝐸𝐶𝐻𝑇 can be developed by getting 

constraint handling methods with diverse and competitive nature.  
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3.4 Computational Results of Constrained RPO 

 The EDE-VNS Algorithm was coded in C++ and run on an Intel P4 1.33 GHz 

Laptop PC with 256 MB memory. The population size is taken as NP=50. The 𝑁𝐹𝑇0 

is fixed at 0.001. The diversification probability is taken as 0.005. For the EC 

constraint handling method, following parameters are used as 𝜃 = 0.95𝑥𝑁𝑃,  

𝑡𝑐 = 0.4 ∗ 𝑀𝑎𝑥𝐺𝑒𝑛  and 𝑐𝑝 = 2. It was carried out 25 replications for each 

benchmark problem and average, minimum and standard deviation of 25 replications 

are provided. It should be noted that real numbers are rounded to zero after 10 digits 

in the standard deviation calculations. 

  DE Algorithm with ensemble strategies and VNS (EDE-VNS) was compared 

to the best performing algorithms from the literature such as GA-MPC (Elsayed et al. 

2013), APF-GA (Tessema & Yen, 2009), MDE (Mezura-Montes et al., 2006), 

ECHT-EP2 (Mallipedi et al., 2010). The presentation of overall analysis and 

comparison based on the results are given in Table 2. As seen in the table 2, proposed 

algorithm EDE-VNS was run for 240,000 and 500,000 function evaluations. Since it 

is possible to find some algorithms run for 500,000 function evaluations in the 

literature, it is thought that proposed algorithm is supposed to be more likely to find 

more optimal solutions with zero standard deviations when number of function 

evaluation increases. It is due to the fact that ensemble of mutation strategies help the 

functions converge slowly to the optimal solution. Therefore, more function of 

evaluations could yield better results. EDE-VNS algorithm with 240,000 function 

evaluations was able to find the optimal solutions with zero standard deviations for 

18 out of 22 benchmark problems, while the same algorithm with 500,000 function 

evaluations was able to find the optimal solutions with zero standard deviations for 

21 out of 22 benchmark problems. The EDE-VNS algorithm with 240,000 function 

evaluations was slightly better than APF-GA and ECHT-EP2 algorithms, since they 

were able to find 13 and 14 out of 22 benchmark problems respectively. The 

performance of MDE is obviously better than these two algorithms as well. GA-MPC 

and MDE algorithms were better than EDE-VNS algorithm with 240,000 function 

evaluations. However, MDE was run for 500,000 function evaluations and if MDE is 

compared to EDE-VNS with 500,000 function evaluations, it is obvious that EDE-

VNS is better than MDE. The clear winner is GA-MPC algorithm because of the fact 

that it was able to find 20 optimal solutions with 240,000 function evaluations. It also 

should be highlighted EDE-VNS algorithm with 500,000 function evaluations is 
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competitive to best performing algorithm GA-MPC, since it is able to find 21 optimal 

solutions with zero standard deviations. In 2 benchmark problems, the standard 

deviation of EDE-VNS algorithm was smaller than both GA-MPC and MDE, 

respectively. In summary, the EDE-VNS algorithm with both 240,000 and 500,000 

functions evaluations are competitive to the best performing algorithms taken from 

the literature.  
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Problem  

 
 

EDE-VNS EDE-VNS 

 

                       GA-MPC APF-GA MDE       ECHT-EP2 

  
FEs 

 
 

240,000 500,000 

 

240,000 500,000 500,000 240,000 

 

g01 Best -15.0000 -15.0000 
 

-15.0000 -15.0000 -15.0000 -15.0000  

 Avg -15.0000 -15.0000 
 

-15.0000 -15.0000 -15.0000 -15.0000  

 Std 
 

0.00E-00 0.00E-00 
 

0.00E-00 0.00E-00 0.00E-00 0.00E-00 

g02 Best 
 

-0.8036191 -0.8036191 
 
-0.8036191 -0.803601 -0.8036191 

-
0.8036191 

 

 Avg 
 

-0.8036191 -0.8036191 
 

-0.802921 -0.803518 -0.78616 
-

0.7998220 
 

 Std 
 

0.0000 
 

0.00E-00 
 
2.4150E-03 1.00E-04 1.26E-02 6.29E-03 

g03 Best 
 

-1.0005 
 

-1.0005 
 

-1.0005 -1.001 -1.0005 -1.0005  

 Avg 
 

-1.0005 -1.0005 
 

-1.0005 -1.001 -1.0005 -1.0005  

 Std 
 

0.00E-00 0.00E-00 
 

0.00E-00 0.00E-00 0.00E-00 0.00E-00 

g04 Best 
 
 

-30665.54 
-30665.539 

 
-30665.539 -30665.539 -30665.539 

-
30665.539  

 Avg 
 
 

-30665.54 
-30665.539 

 
-30665.539 -30665.539 -30665.539 

-
30665.539  

 Std 
 
 

0.00E-00 
0.00E-00 

 
0.00E-00 1.00E-04 0.00E-00 0.00E-00 

g05 Best 
 

5126.497 5126.497 
 

5126.497 5126.497 5126.497 5126.497  

 Avg 
 

5126.497 5126.497 
 

5126.497 5127.5423 5126.497 5126.497  

 Std 
 

0.00E-00 0.00E-00 
 

0.00E-00 1.4324E+00 0.00E-00 0.00E-00 

g06 Best 
 
 

-6961.814 
-6961.814 

 
-6961.814 -6961.814 -6961.814 -6961.814  

 Avg 
 
 

-6961.814 
-6961.814 

 
-6961.814 -6961.814 -6961.814 -6961.814  

 Std 
 

0.00E-00 0.00E-00 
 

0.00E-00 0.00E-00 0.00E-00 0.00E-00 

g07 Best 
 

24.3062 24.3062 
 

24.3062 24.3062 24.3062 24.3062  

 Avg 
 

24.3062 24.3062 
 

24.3062 24.3062 24.3062 24.3063  

 Std 
 

0.00E-00 0.00E-00 
 

0.00E-00 0.00E-00 0.00E-00 3.19E-05 

g08 Best 
 

-0.095825 -0.095825 
 

-0.095825 -0.095825 -0.095825 -0.095825  

 Avg 
 

-0.095825 -0.095825 
 

-0.095825 -0.095825 -0.095825 -0.095825  

 Std 
 

0.00E-00 0.00E-00 
 

0.00E-00 0.00E-00 0.00E-00 0.0E-00 
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g09 Best 
 

680.630 680.630 
 

680.630 680.630 680.630 680.630  

 Avg 
 

680.630 680.630 
 

680.630 680.630 680.630 680.630  

 Std 
 
 

0.00E-00 
0.00E-00 

 
0.00E-00 0.00E-00 0.00E-00 0.00E-00 

g10 Best 
 

7049.248021 7049.24802 
 
7049.24802 7049.24802 7049.24802 7049.2483  

 Avg 
 

7049.248022 7049.24802 
 
7049.24802 7077.6821 7049.24802 7049.2490  

 Std 
 

7.00E-06 0.00E-00 
 

0.00E-00 5.1240E+01 0.00E-00 6.60E -04 

g11 Best 
 

0.7499 0.7499 
 

0.7499 0.7499 0.7499 0.7499  

 Avg 
 

0.7499 0.7499 
 

0.7499 0.7499 0.7499 0.7499  

 Std 
 

0.00E-00 0.00E-00 
 

0.00E-00 0.00E-00 0.00E-00 0.00E-00 

g12 Best -1.0000 -1.0000 
 

-1.0000 -1.0000 -1.0000 -1.0000  

 Avg -1.0000 -1.0000 
 

-1.0000 -1.0000 -1.0000 -1.0000  

 Std 0.00E-00 0.00E-00 
 

0.00E-00 0.00E-00 0.00E-00 0.00E-00 

g13 Best 
 

0.053942 0.053942 
 

0.053942 0.053942 0.053942 0.053942  

 Avg 
 

0.053942 0.053942 
 

0.053942 0.053942 0.053942 0.053942  

 Std 
 

0.053942 0.053942 
 

0.053942 0.00E-00 0.00E-00 0.00E-00 

g14 Best 
 

-47.764888 -47.764888 
 
-47.764888 -47.76479 -47.764887 -47.7649  

 Avg 
 

-47.764888 -47.764888 
 
-47.764888 -47.76479 -47.764874 -47.7648  

 Std 
 

0.00E-00 0.00E-00 
 

0.00E-00 1.00E-04 1.400E-05 2.72E-05 

g15 Best 
 

961.7150 961.71502 
 

961.71502 961.71502 961.71502 961.71502  

 Avg 
 

961.7150 961.71502 
 

961.71502 961.71502 961.71502 961.71502  

 Std 
 

0.00E-00 0.00E-00 
 

0.00E-00 0.00E-00 0.00E-00 0.00E-00 

g16 Best -1.905155 -1.905155 
 

-1.905155 -1.905155 -1.905155 -1.905155  

 Avg -1.905155 -1.905155 
 

-1.905155 -1.905155 -1.905155 -1.905155  

 Std 
 

0.00E-00 0.00E-00 
 

0.00E-00 0.00E-00 0.00E-00 0.00E-00 

g17 Best 
 

8853.5397 8853.5397 
 

8853.5397 8853.5398 8853.5397 8853.5397  

 Avg 
 

8853.5397 8853.5397 
 

8853.5397 8888.4876 8853.5397 8853.5397  

 Std 
 

0.00E-00 0.00E-00 
 

0.00E-00 29.0347 0.00E-00 2.13E -08 
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Table 2 Computational Results of EDE-VNS, GA-MPC, APF-GA, MDE, ECHT-EP2  

For CEC 2006 Test Problem 

 In additional to these comparisons, so as to demonstrate the effect of ensemble 

of mutation strategies employed in VNS loops, the code was also run for 500,000 

function evaluations for each mutation strategy alone. When each mutation strategy 

was applied one by one and the code was run again, it was observed that each of them 

yielded at least one infeasible solution for benchmark problems. Table 3 given below 

provides the information about feasibility rate of each benchmark problem as 

employing each mutation strategy alone and ensemble of mutation strategies. 

 

 

g18 Best 
 

-0.866025 -0.866025 
 

-0.866025 -0.866025 -0.866025 -0.866025  

 Avg 
 

-0.866025 -0.866025 
 

-0.866025 -0.866025 -0.866025 -0.866025  

 Std 
 

0.00E-00 0.00E-00 
 

0.00E-00 0000 0.00E-00 0.00E-00 

g19 Best 
 

32.655593 32.655593 
 

32.655593 32.655593 32.655693 32.6591  

 Avg 
 

32.656792 32.655688 
 

32.655593 32.655593 33.34125 32.6623  

 Std 
 

4.935E-03 2.55E-04 
 

0.00E-00 0.00E-00 8.475E-01 3.4E -03 

g21 Best 
 

193.72451 193.72451 
 

193.72451 196.63301 193.72451 193.7246  

 Avg 
 

193.72451 193.72451 
 

193.72451 196.51581 193.72451 193.7438  

 Std 
 

0.00E-00 0.00E-00 
 

0.00E-00 2.3565E+00 0.00E-00 1.65E-02 

g23 Best 
 

-400.0551 -400.0551 
 

-400.0527 -399.7624 -400.0551 -398.9731  

 Avg 
 

-399.590570 -400.0551 
 
-400.023589 -394.7627 -400.0551 -373.2178  

 Std 
 

2.3227E+00 0.00E-00 
 
6.3463E-02 3.8656E+00 0.00E-00 3.37E+01 

g24 Best -5.508013 -5.508013 
 

-5.508013 -5.508013 -5.508013 -5.508013  

 Avg -5.508013 -5.508013 
 

-5.508013 -5.508013 -5.508013 -5.508013  

 Std 0.00E-00 0.00E-00 
 

0.00E-00 0.00E-00 0.00E-00 0.00E-00 
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 Table 3 Feasibility Rates of Benchmark Problems for EDE and Each Mutation Strategy 

Problem D EDE 
Strategy 

1 

Strategy 

2 

Strategy 

3 

Strategy 

4 

Strategy 

5 

g1 13 1.00 1.00 1.00 1.00 1.00 1.00 

g2 20 1.00 1.00 1.00 1.00 1.00 1.00 

g3 10 1.00 1.00 1.00 1.00 1.00 0.56 

g4 5 1.00 1.00 1.00 1.00 1.00 1.00 

g5 4 1.00 1.00 1.00 1.00 1.00 0.00 

g6 2 1.00 1.00 1.00 1.00 1.00 0.00 

g7 10 1.00 1.00 1.00 1.00 1.00 0.00 

g8 2 1.00 1.00 1.00 1.00 1.00 1.00 

g9 7 1.00 1.00 1.00 1.00 1.00 1.00 

g10 8 1.00 1.00 1.00 1.00 1.00 0.32 

g11 2 1.00 1.00 1.00 1.00 1.00 1.00 

g12 3 1.00 0.00 0.00 1.00 1.00 1.00 

g13 5 1.00 0.00 0.00 1.00 1.00 0.00 

g14 10 1.00 1.00 1.00 1.00 1.00 0.00 

g15 3 1.00 1.00 1.00 1.00 1.00 0.00 

g16 5 1.00 1.00 1.00 1.00 1.00 1.00 

g17 6 1.00 1.00 1.00 1.00 1.00 0.00 

g18 9 1.00 1.00 1.00 1.00 1.00 1.00 

g19 15 1.00 1.00 1.00 1.00 1.00 1.00 

g21 7 1.00 0.64 0.84 0.60 0.60 0.00 

g23 9 1.00 0.72 0.68 0.28 0.84 0.00 

g24 2 1.00 1.00 1.00 1.00 1.00 1.00 

 

 As an interpretation to these feasibility rates in table, it is strictly clear that each 

mutation strategy has failed to find %100 feasible solutions for all benchmark 

problems, while ensemble of mutation strategies could provide %100 feasibility rate 

for all benchmark problems. This situation has shown the power of ensemble of 

mutation strategies in finding feasible solutions for all benchmark problems. 



 

 

44 

 

4 APPLICATIONS ON MULTIDIMENSIONAL KNAPSACK 

PROBLEM 

 Chu & Beasley (1998) stated in their article that the multidimensional knapsack 

problem (MKP) is a popular NP-hard and combinatorial optimization problem. The 

objective of the problem is to maximize the total profit of the selected given item by 

satisfying all resource constraints. Practical applications of 𝑀𝐾𝑃 arise in a variety of 

problems such as capital budgeting (Chu & Beastley, 1998), cargo loading (Shih 

1979), resource allocating (Gavish & Pirkul 1982), cutting stock (Gilmore & Gomory 

1966) etc. Therefore, it is important in the development of effective and efficient 

algorithms for solving MKPs. The mathematical formulation of MKP can be given as 

follows: 

max 𝑧 =∑ 𝑐𝑗 ∗ 𝑦𝑗
𝑛
𝑗=1                                          (46) 

subjected to: 

∑ 𝑎𝑖𝑗 ∗ 𝑦𝑗 ≤ 𝑏𝑖
𝑛
𝑗=1     𝑖 = 1,2, … .𝑚                     (47) 

𝑦𝑗 ∈ {0,1},     𝑗 = 1,2, … . 𝑛 

  In the formulation given above, 𝑛 denotes the number of items and 𝑚 denotes 

the number of knapsack constraints with the capacity 𝑏𝑖 (𝑖 = 1,2,3, … .𝑚). Each item 

𝑗 requires 𝑎𝑖𝑗 units of resource consumption in the 𝑖th knapsack and returns 𝑐𝑗 units 

of profit on incorporation. All entries must be nonnegative. 

  From the viewpoint of the computation, several proposed algorithms in the 

literature can be grouped into two main classes: Exact algorithms and heuristic/meta-

heuristic algorithms. There have been some exact algorithms applied in order to deal 

with MKPs in early studies, such as the branch and bound algorithm used by Shih 

(1979) and dynamic programming used by (DP) Toth (1980). Even though these 

exact algorithms can yield optimum solutions in solving small-scale problems, they 

perform badly when the scales of the problem come to be large owing to the NP-

hardness property of MKPs. These algorithms cannot provide an optimal solution 

because of not only high space requirements of the problem but also the limited 
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computational capacity. In order to remove these limitations, the rule based 𝐵&𝐵 

algorithm was proposed by Gavish & Pirkul (1985) so as to reduce the size of the 

problem and attain better results solutions than previously proposed techniques. In 

addition to this, Plateau & Elkihel (1985) have introduced 𝐵&𝐵 and 𝐷𝑃 based 

hybridization method in their article. Lately, an approximated 𝐷𝑃 based approach and 

a hybridization with a branch and cut procedure were proposed by Bertsimas & 

Demir (2002) and Boyer et al. (2009). Moreover, exact techniques for solving MKP 

also include the Lagrangian methods, reduction schemes, special enumeration and 

surrogate relaxation techniques. Since the search space grows exponentially as the 

problem size increases, these exact algorithms are generally not useful for solving 

MKPs. Therefore, some heuristics and meta-heuristic algorithms were introduced to 

further improve solutions. Simulated annealing is one of the earliest method 

presented by Drexel (1988) concerning 𝑀𝐾𝑃. Glover & Kochenberger have proposed 

tabu search methods and and Hanafi & Freville (1998) have further developed this 

technique to be able to solve all the available public instances in the article of Freville 

(2004). In the article of Chu & Beasley (1998), a genetic algorithm with large 

correlated instances was introduced. Their several results were improved by using 

tabu search algorithm proposed by Vasquez & Hao (2001). Taking the new GA 

operators and fitness landscapes analysis into consideration, 𝐶𝐵𝐺𝐴 algorithms were 

used in series of studies as proposed in articles Raidl (1998), Gottlieb (2000), 

Gottlieb (2001), Tavares et al. (2006), Tavares et al. (2008). More recently, 

estimation distribution algorithms 𝐸𝐷𝐴𝑠 are used in the articles of Kong et al. (2008), 

Wang et al. (2012), Martins et al. (2013), Martins & Delbem (2013). Morover, some 

other meta-heuristic algorithms were developed for MKP such as particle swarm 

optimization (𝑃𝑆𝑂) in the articles of Behesthi et al. (2012), Chen et al. (2010), Chih 

et al. (2014) and Azad et al. (2014), differential evolution in Wang et al (2012) and 

other heuristic algorithms in Angelelli et al. (2012). 

4.1 Solution Methodology for MKP 

 In this thesis, an ensemble differential evolution algorithm with a variable 

neighbourhood search in order to solve multidimensional knapsack problem is 

applied. Unlike the studies that use check and repair operators, some sophisticated 

constraint handling methods which are further explained in constraint handling 

methods are to enrich the diversity of the population by taking advantages of 

infeasible solution within a predetermined threshold. In order to generate the trial 
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population, 𝑉𝑁𝑆 algorithm with different mutation strategies is proposed. Since this 

proposed algorithm is employed in a continuous domain, it is required to change 

these real-values to binary 0,1 values by using 𝑆-shaped and 𝑉-shaped transfer 

functions that will be explained in detail in following sections. So as to be able to 

develop the solution, the differential evolution algorithm with a variable 

neighbourhood search is combined with a binary swap local search algorithm as well. 

4.2 Solution Representation 

 Since traditional DE algorithm is employed for a continuous space, a unique 

𝐷𝐸 with a multi-chromosome solution representation is proposed. This representation 

is required because of the fact that 𝑀𝐾𝑃 is a binary optimization problem. First of all, 

𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝐷𝐸_𝑉𝑁𝑆 algorithm works on a continuous domain within the range [0,1]. 

However, each dimension is converted to binary 0 − 1 values by means of 𝑆-shaped 

and 𝑉-shaped transfer functions. Since 𝐸𝐷𝐸_𝑉𝑁𝑆 algorithm is used, it is probable to 

use different transfer functions for each loops of 𝑉𝑁𝑆 algorithm. 

 Firstly, most well-known 𝑆-shaped transfer function called sigmoid function 

inspired from the article of Wang et al. (2013) is used to convert each dimension to 

0 − 1. Sigmoid function uses following probability model to provide conversion: 

𝜋𝑖𝑗 = {1      𝑖𝑓 𝑟 < 1/(1 + 𝑒
−𝑤(𝑢𝑖𝑗

𝑔
−0.5)

)
0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      

                          (48) 

where 𝑟 is a uniform random number in [0,1]; 𝑢𝑖𝑗 is the real value in [0,1] of the trial 

individual; and 𝑤 is the coefficient of the sigmoid function. Since the selection of 𝑤 

is quite important, it is tried to take the coefficient 𝑤 as 10 , 20, 30, 40  and 50 by 

means of trial-and-error method. In this thesis, two different sigmoid functions are 

used for converting real values to binary variables. Therefore, 𝑤 is taken as 30 like 

suggested in Wang et al. (2013). In addition to this suggested strategy, 𝑤 is also taken 

as 50 as a second strategy. 

 On the other hand, such 𝑉-shaped transfer functions using diverse mathematical 

equations as 𝑡𝑎𝑛 and 𝑎𝑟𝑐𝑡𝑎𝑛 are also employed in 𝑉𝑁𝑆 algorithm. These functions 

use following probability model in order to provide the conversion: 
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 𝑇(𝑥) = |tanh (𝑥)| 
 

𝜋𝑖𝑗 = { 1        𝑖𝑓 𝑟 < |tanh (𝑢𝑖𝑗)|

              0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      
                  (49) 

 

 𝑇(𝑥) = |(𝑥)/√1 + 𝑥2| 

 

𝜋𝑖𝑗 = {1      𝑖𝑓 𝑟 < |(𝑢𝑖𝑗)/√1 + (𝑢𝑖𝑗

𝑔
)
2
|

0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      

                             (50) 

 

 

 𝑇(𝑥) = |
2

𝜋
arctan (

𝜋

2
𝑥)| 

 
 
 

𝜋𝑖𝑗 = {1             𝑖𝑓 𝑟 < |
2

𝜋
arctan (

𝜋

2
𝑢𝑖𝑗

𝑔
)|

0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      
                             (51) 

 

where 𝑟 is a uniform random number in [0,1]; 𝑢𝑖𝑗 is the real value in [0,1] of the trial 

individual. 

 For conversion to binary values, two 𝑆-shaped and three 𝑉-shaped transfer 

functions were employed. In summary, when a trial individual is generated by 𝑉𝑁𝑆 

algorithm, binary value of each dimension is determined by one of the equations (48), 

(49), (50) and (51) given above so as to calculate the fitness functions. Figure below 

illustrates the multi-chromosome solution representation. 

 

𝐹𝑖𝑔𝑢𝑟𝑒 4.11.  𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑅𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 

j 1 2 3 4 5

0.2 0.9 0.1 0.8 0.7

0 1 0 1 1

𝑥𝑖𝑗

𝜋𝑖𝑗
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4.3 Families of Transfer Functions 

 A transfer function is used for defining the probability of changing a position 

vector’s element from 0 to 1 and vice versa. In literature, a transfer function is 

responsible for mapping a continuous search space to a discrete search space. 

Therefore a transfer function forces particles to move in a binary space. According to 

Rashedi et al. (2009), there exist some concepts that should be considered for 

selecting a transfer function in order to map dimension values of a chromosome to 

probability values to probability values as follows: 

 The range of a transfer function should be bounded in the interval [0,1], since 

they represent the probability of a particle that changes its position. 

 A transfer function should be able to provide a high probability of changing 

the position for a large absolute dimension value. Dimensions with large 

absolute values for their dimension values are supposedly far from the best 

solution. 

 A transfer function should also provide a small probability of change in the 

position for small absolute value of dimensions. 

  The return value of a transfer function should increase while the value of a 

dimension rises. Dimensions with a higher probability changing their position 

must be moving away from the best solution in order to return their previous 

positions. 

 The return value of a transfer function should decrease as the dimension value 

reduces. 

These concepts guarantee that a transfer function can map the process of search in 

continuous search space to a binary search space as preserving similar concepts of the 

search for a specific evolutionary algorithm. 
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Table 4 Transfer Functions 

 

 In the article of Mirjalili & Lewis (2013), the properties of transfer functions 

which are given in table 4 are summarized. In this article, authors have used second 

transfer function (S2) in table for the conventional 𝐵𝑃𝑆𝑂. As shown in table, first 

four transfer functions are S-shaped and the rest are V-shaped ones. These transfer 

functions manipulate the coefficient of 𝑥. If it is necessary to give information about 

transfer functions in detail, it can be said that S1 sharply increases and reaches its 

saturation as the dimension value increases much higher than S2, whereas the 

saturations of S3 and S4 start later than S2. It must be kept on the mind that when the 

slope of these transfer functions increases, the probability of changing the values of 

the position vector rises, therefore it can be concluded that S1 returns the highest 

probability among them for the same dimension value, while S4 yields the lowest 

one. These transfer functions have been selected with different slopes compared to 

one used in the article of Mirjalili & Lewis (2013), in order that the efficiency of 

these characteristics on improving the performance of their proposed algorithm𝐵𝑃𝑆𝑂 

can be investigated. Moreover, to compare this algorithm with the proposed 

algorithm of this thesis, S3 is used in one of the VNS loops of EDE-VNS algorithm 

instead of S2. In view of the shapes of the curves of S1, S2, S3 and S4, they are 

named as S-shaped transfer functions and their group name is given as “S-shaped” 

family of transfer functions as well. 

 On the other hand, Rashedi et al. (2009) has used another type of transfer 

functions that could be used for their different position updating rules. The transfer 



 

 

50 

 

function used by Rashedi et al. (2009) is presented in Table 4 as S6. Since these 

functions are pretty different from the S-shaped family, they are possible to need new 

position updating rules. These functions are named V-shaped transfer functions and 

their group name is given as “V-shaped” family of transfer functions. In order to 

compare this article with this thesis, not only S6 but also S7 and S8 given in the table 

above are used in the different loops of proposed EDE-VNS algorithm. These new S7 

and S8 transfer functions uses the diverse mathematical equations. To give more 

information about this V-shaped transfer functions, it can be said that S5 starts with 

lower absolute values of dimensions compared to S6. This situation makes S5 be able 

to provide higher probability of switching dimension values of a chromosome than S6 

for the same value. In contrast, the S7 and S8 transfer functions’ saturations begin 

after S5 and S6 providing less probability of change for the same dimension values. 

In the article of Mirjalili & Lewis (2013), it is possible to see a study about the 

efficiency of these families. 

4.4 Binary Swap Local Search 

 In this thesis, the neighbourhood search is based on a simple swap 

neighbourhood. It should be noted that this local search is applied to the best solution 

𝜋𝑏
𝑔

 at each generation 𝑔. The binary swap (𝑏𝑆𝑊𝐴𝑃) local search includes two steps: 

 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡𝑤𝑜 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠, 𝑢 𝑎𝑛𝑑 𝑣, 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑎𝑛𝑔𝑒 [1, 𝑛] 

 𝐼𝑓 𝜋𝑏,𝑢
𝑔

= 𝜋𝑏,𝑣
𝑔

 𝑡ℎ𝑒𝑛 𝜋𝑏,𝑢
𝑔

= (𝜋𝑏,𝑢
𝑔

+ 1) 𝑚𝑜𝑑 2  

𝑒𝑙𝑠𝑒 

 𝜋𝑏,𝑢
𝑔

= (𝜋𝑏,𝑢
𝑔

+ 1) 𝑚𝑜𝑑 2 𝑎𝑛𝑑 𝜋𝑏,𝑣
𝑔

= (𝜋𝑏,𝑣
𝑔

+ 1) 𝑚𝑜𝑑 2    

 The outline of the local search is given in Fig. 4.12. below: 

𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝜋𝑏
𝑔
) 

𝜋1 = 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 (𝜋𝑏
𝑔
) 

𝑓𝑜𝑟 (𝑙 = 1 𝑡𝑜 𝑛) 

{ 
𝜋2 = 𝑏𝑆𝑊𝐴𝑃(𝜋1) 

𝑖𝑓 (𝑓(𝜋2) > 𝑓(𝜋1)) 
{ 

𝜋1 = 𝜋2 

𝑖𝑓 (𝑓(𝜋2) > 𝑓(𝜋𝑏
𝑔
)) 
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{ 
𝜋𝑏

𝑔
= 𝜋2 

} 𝑒𝑛𝑑 𝑖𝑓 

}𝑒𝑛𝑑 𝑖𝑓 

}𝑒𝑛𝑑 𝑓𝑜𝑟 

𝑟𝑒𝑡𝑢𝑟𝑛 𝜋𝑏
𝑔

 

𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 
 

𝐹𝑖𝑔𝑢𝑟𝑒 4.12. 𝑂𝑢𝑡𝑙𝑖𝑛𝑒 𝑜𝑓 𝑏𝑆𝑊𝐴𝑃 𝐿𝑜𝑐𝑎𝑙 𝑆𝑒𝑎𝑟𝑐ℎ 

 In the local search algorithm detailed above, 𝜋1 refers to the perturbed best 

solution up to now 𝜋𝑏
𝑔

 at each generation 𝑔. It can be also said that, the best so far 

solution is perturbed by swapping two different items randomly. Then the 𝑏𝑆𝑊𝐴𝑃 

operator is applied to 𝜋1. The number of items 𝑛 is set as the size of the local search. 

The full computational procedure of EDE-VNS algorithm is given in Fig. 4.13. 

𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝐸𝐷𝐸_𝑉𝑁𝑆() 

𝑆𝑒𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑔 = 0,𝑁𝑃 = 50,  𝑆𝑚𝑎𝑥 = 5 

Step 1.    𝐸𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 

𝑃𝑔 = {𝑥1
𝑔
, . . , 𝑥𝑁𝑃

𝑔
} 𝑤𝑖𝑡ℎ 𝑥𝑖

𝑔
= {𝑥𝑖1

𝑔
, . . , 𝑥𝑖𝐷

𝑔
} 

Step 2. 𝐴𝑝𝑝𝑙𝑦 𝑂𝐵𝐿 𝑡𝑜 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑐ℎ𝑜𝑜𝑠𝑒 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑜𝑛𝑒𝑠 

𝑃𝑔 = {𝑥1
𝑔
, . . , 𝑥𝑁𝑃

𝑔
} 𝑤𝑖𝑡ℎ 𝑥𝑖

𝑔
= {𝑥𝑖1

𝑔
, . . , 𝑥𝑖𝐷

𝑔
} 

Step 3. 𝐴𝑠𝑠𝑖𝑔𝑛 𝑎 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑡𝑜 𝑒𝑎𝑐ℎ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 

𝑀𝑖 = 𝑟𝑎𝑛𝑑()%𝑀𝑚𝑎𝑥  𝑓𝑜𝑟 𝑖 = 1, . . , 𝑁𝑃 

Step 4. 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑓𝑖𝑛𝑑 𝑥𝑏𝑒𝑠𝑡
𝑔  

𝑓(𝑃𝑔) = {𝑓(𝑥1
𝑔
), . . , 𝑓(𝑥𝑁𝑃

𝑔
)} 

Step 5. 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒 𝑒(0) 

Step 6. 𝑅𝑒𝑝𝑒𝑎𝑡 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑥𝑖
𝑔

 

 𝑜𝑏𝑡𝑎𝑖𝑛 𝑢𝑖
𝑔

= 𝑉𝑁𝑆𝑖(𝑥𝑖
𝑔
) 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑁𝐹𝑇 

 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝜋𝑖𝑗  𝑢𝑠𝑖𝑛𝑔 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠. 

 𝑎𝑝𝑝𝑙𝑦 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑡𝑟𝑖𝑎𝑙 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 

 𝑜𝑏𝑡𝑎𝑖𝑛 𝑥𝑖
𝑔+1

 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑒 − 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑚𝑒𝑡ℎ𝑜𝑑 

 𝑖𝑓 (𝑓(𝑥𝑖
𝑔
) ≤ 𝑓(𝑥𝑏𝑒𝑠𝑡

𝑔
)) , 𝑥𝑏𝑒𝑠𝑡

𝑔
= 𝑥𝑖

𝑔
 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑆𝐹 
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 𝑈𝑝𝑑𝑎𝑡𝑒 𝑒(𝑔) = 𝑒(0) (1 − 𝑔

𝑔𝑐
) 

Step 7. 𝐼𝑓 𝑡ℎ𝑒 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑚𝑒𝑡, 𝑔𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 6, 

𝑒𝑙𝑠𝑒 𝑠𝑡𝑜𝑝 𝑎𝑛𝑑 𝑟𝑒𝑡𝑢𝑟𝑛 𝜋𝑏𝑒𝑠𝑡 

Figure 4.13 Outline of EDE-VNS Algorithm for Knapsack Problem 

4.5 Computational Results 

 The proposed 𝐸𝐷𝐸_𝑉𝑁𝑆 algorithm was coded in Visual C++ and run on an 

Intel (R) Core (TM) Duo 2.4 GHz PC with 2GB memory. According the parameters 

of the 𝐸𝐷𝐸_𝑉𝑁𝑆 algorithm, the population size was fixed at 𝑁𝑃 = 100. As a 

termination criterion, the 𝐸𝐷𝐸_𝑉𝑁𝑆 algorithm was run for 𝑔𝑚𝑎𝑥 = 20000 generation 

as in the article of Chih (2014). Next parameters were set in the 𝜀-constraint handling 

method: 𝜃 = 0.95 × 𝑁𝑃 𝑔𝐶 = 0.4 × 𝑔𝑚𝑎𝑥 and 𝑐𝑝 = 2. The severity parameter 𝛼 and 

the positive constant 𝛾 of the 𝑁𝐹𝑇 penalty function are taken as 2.0 and 0.004, 

respectively. The 𝑁𝐹𝑇0 is selected as 1e-8, because the probability that algorithm 

results in an infeasible solution is higher when the 𝑁𝐹𝑇0 threshold distance is larger. 

As in the article of Chih (2014), 100 runs are carried out for each instance. 

 In this thesis, the performance of the 𝐸𝐷𝐸_𝑉𝑁𝑆 algorithm is compared to 

penalty method based 𝑃𝑆𝑂 and 𝑆𝐴𝐶𝑅𝑂 (self-adaptive check and repair) based 𝑃𝑆𝑂 

algorithms in Chih (2014) a novel binary fruit fly algorithm (𝑏𝐹𝑂𝐴2) in Wang et al. 

(2013) and the hybrid 𝐸𝐷𝐴-based algorithm (𝐻𝐸𝐷𝐴2) in Wang et al. (2012). 

 Table 5 provides the information about number of items, number of constraints 

and best known solutions for Sento and Weing instances. 

Table 5 Details of Sento and Weing Instances 

Instance n m 

Best 

Known 

SENTO1  60 30 7772 

SENTO2 60 30 8722 

WEING1 28 2 141278 

WEING2 28 2 130883 

WEING3 28 2 95677 

WEING4 28 2 119337 
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WEING7 105 2 1095445 

WEING8 105 2 624319 

 Table 6 summarizes the computational results of the 𝐸𝐷𝐸_𝑉𝑁𝑆 algorithm. As 

seen in Table 6, penalty function based 𝐵𝑃𝑆𝑂_𝑇𝑉𝐴𝐶 and 𝐶𝐵𝑃𝑆𝑂_𝑇𝑉𝐴𝐶 algorithms 

were not competitive to 𝐸𝐷𝐸_𝑉𝑁𝑆 algorithm. In addition, 𝐸𝐷𝐸_𝑉𝑁𝑆 algorithm is 

able to find the best known solution in each run with zero standard deviation for 7 out 

of 10 instances whereas 𝑆𝐴𝐶𝑅𝑂 based PSO algorithms were only able to do the same 

thing for 6 problem instances. For the last 2 instances, 𝐸𝐷𝐸_𝑉𝑁𝑆 algorithm yielded 

better 𝐵𝑒𝑠𝑡, 𝐴𝑣𝑔, and 𝑆𝑡𝑑 values than all the algorithms compared.  

Table 6 Computational Results for Sento and Weing Instances 

P   Penalty function based algorithms SACRO 

  
 

EDE_VNS 
BPSO– CBPSO– BPSO– CBPSO– 

TVAC TVAC TVAC TVAC 

Sento1 Best 7772 7772 7772 7772 7772 

  Avg. 7772 7763.26 7635.72 7769.48 7769.48 

  Std. 0 11.525 357.784 5.406 5.406 

Sento2 Best 8722 8722 8722 8722 8722 

  Avg. 8722 8712.58 8668.47 8722 8722 

  Std. 0 7.038 101.033 0 0 

Weing1 Best 141,278 141,278 141,278 141,278 141,278 

  Avg. 141,278 141,278 141,226.8 141,278 141,278 

  Std. 0 0 281.978 0 0 

Weing2 Best 130,883 130,883 130,883 130,883 130,883 

  Avg. 130,883 130,883 130,759.8 130,883 130,883 

  Std. 0 0 545.503 0 0 

Weing3 Best 95,677 95,677 95,677 95,677 95,677 

  Avg. 95,673.5 95,670.58 95,503.93 95,676.39 95,676.39 

  Std. 12.82162 25.528 672.423 6.1 6.1 

Weing4 Best 119,337 119,337 119,337 119,337 119,337 

  Avg. 119,337 119,337 119,294.2 119,337 119,337 

  Std. 0 0 378.583 0 0 

Weing5 Best 98,796 98,796 98,796 98,796 98,796 

  Avg. 98,796 98,796 98,710.4 98,796 98,796 

  Std. 0 0 572.82 0 0 

Weing6 Best 130,623 130,623 130,623 130,623 130,623 

  Avg. 130,623 130,611.3 130,531.3 130,623 130,623 

  Std. 0 66.864 343.456 0 0 

Weing7 Best 1,095,382 1,095,382 1,095,382 1,095,382 1,095,445 

  Avg. 1,095,391 1,095,164 1,084,172 1,094,349 1,094,410 

  Std. 21.97031 383.743 30,020.95 2697.39 1795.58 
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Weing8 Best 624,319 624,319 624,319 624,319 624,319 

  Avg. 622,501.40 622,446.6 597,190.6 622,079.9 622,032.5 

  Std. 1705.16 2.000.923 75,169.93 1462.09 1454.99 

 Table 7 provides the information about number of items, number of constraints 

and best known solutions for Weish instances. 

Table 7 Details of Weish Instances 

Instance n m Best Known 

WEISH1 30 5 4554 

WEISH2 30 5 4536 

WEISH3 30 5 4115 

WEISH4 30 5 4561 

WEISH5 30 5 4514 

WEISH6 40 5 5557 

WEISH7 40 5 5567 

WEISH8 40 5 5605 

WEISH9 40 5 5246 

WEISH10 50 5 6339 

WEISH11 50 5 5643 

WEISH12 50 5 6339 

WEISH13 50 5 6159 

WEISH14 60 5 6954 

WEISH15 60 5 7486 

WEISH16 60 5 7289 

WEISH17 60 5 8633 

WEISH18 70 5 9580 

WEISH19 70 5 7698 

WEISH20 70 5 9450 

WEISH21 70 5 9074 

WEISH22 80 5 8947 

WEISH23 80 5 8344 

WEISH24 80 5 10220 

WEISH25 80 5 9939 

WEISH26 90 5 9584 

WEISH27 90 5 9819 

WEISH28 90 5 9492 

WEISH29 90 5 9410 

WEISH30 90 5 11191 

 Table 8 gives the information about computational results for 𝑊𝐸𝐼𝑆𝐻 

instances. It can be concluded that penalty based functions 𝐵𝑃𝑆𝑂_𝑇𝑉𝐴𝐶 and 

𝐶𝐵𝑃𝑆𝑂_𝑇𝑉𝐴𝐶 are not able to be competitive to proposed algorithm 𝐸𝐷𝐸 − 𝑉𝑁𝑆, 
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whereas 𝑆𝐴𝐶𝑅𝑂-based algorithms yields much better results than penalty based 

functions. Moreover, It is necessary to highlight that 𝐸𝐷𝐸 − 𝑉𝑁𝑆 is able to find the 

best known solution in each run with zero standard deviation for 29 out of 30 

instances and only instance WEISH26 is found with 8.089 standard deviation, while 

𝑆𝐴𝐶𝑅𝑂-based  𝐶𝐵𝑃𝑆𝑂_𝑇𝑉𝐴𝐶 and 𝐵𝑃𝑆𝑂_𝑇𝑉𝐴𝐶 algorithms could find the best 

known solutions in each run with zero standard deviation for 23 and 25 instances, 

respectively. Therefore, it can be said that proposed algorithm is competitive to the 

best performing algorithms in the literature. 

Table 8 Computational results for Weish Instances 

P         Penalty function SACRO 

    EDE_VNS BPSO– CBPSO– BPSO- CBPSO- 

      TVAC TVAC TVAC TVAC 

Weish1 Best 4554 4554 4554 4554 4554 

  Avg. 4554 4554 4548.55 4554 4554 

  Std. 0 0 32.808 0 0 

Weish2 Best 4536 4536 4536 4536 4536 

  Avg. 4536 4534.2 4531.88 4536 4536 

  Std. 0 2.412 23.117 0 0 

Weish3 Best 4115 4115 4115 4115 4115 

  Avg. 4115 4114.37 4105.79 4115 4115 

  Std. 0 6.3 52.697 0 0 

Weish4 Best 4561 4561 4561 4561 4561 

  Avg. 4561 4561 4552.41 4561 4561 

  Std. 0 0 85.9 0 0 

Weish5 Best 4514 4514 4514 4514 4514 

  Avg. 4514 4514 4505.89 4514 4514 

  Std. 0 0 74.451 0 0 

Weish6 Best 5557 5557 5557 5557 5557 

  Avg. 5557 5550.32 5533.79 5553.75 5553.88 

  Std. 0 8.196 79.282 5.657 5.58 

Weish7 Best 5567 5567 5567 5567 5567 

  Avg. 5567 5566.3 5547.83 5567 5567 

  Std. 0 3.448 71.946 0 0 

Weish8 Best 5605 5605 5605 5605 5605 

  Avg. 5605 5064.58 5596.16 5604.92 5605 

  Std. 0 0.818 42.809 0.394 0 

Weish9 Best 5246 5246 5246 5246 5246 

  Avg. 5246 5246 5232.99 5246 5246 

  Std. 0 0 65.701 0 0 

Weish10 Best 6339 6339 6339 6339 6339 

  Avg. 6339 6337.57 6271.84 6339 6339 

  Std 0 9.56 188.63 0 0 
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Weish11 Best 5643 5643 5643 5643 5643 

  Avg. 5643 5635.58 5532.15 5643 5643 

  Std 0 25.717 403.037 0 0 

Weish12 Best 6339 6339 6339 6339 6339 

  Avg. 6339 6338.71 6231.5 6339 6339 

  Std 0 1.914 304.427 0 0 

Weish13 Best 6159 6159 6159 6159 6159 

  Avg. 6159 6159 6120.38 6159 6159 

  Std 0 0 1725 0 0 

Weish14 Best 6954 6954 6954 6954 6954 

  Avg. 6954 6953.38 6837.77 6954 6954 

  Std 0 4.361 364.656 0 0 

Weish15 Best 7486 7486 7486 7486 7486 

  Avg. 7486 7486 7324.55 7486 7486 

  Std 0 0 554.352 0 0 

Weish16 Best 7289 7289 7289 7289 7289 

  Avg. 7289 7287.84 7145.71 7288.7 7288.71 

  Std 0 1.709 367.298 0.46 0.456 

Weish17 Best 8633 8633 8633 8633 8633 

  Avg. 8633 8633 8547.71 8633 8633 

  Std 0 0 227.164 0 0 

Weish18 Best 9580 9580 9580 9580 9580 

  Avg. 9580 9577.21 9480.86 9578.46 9579.02 

  Std 0 5.255 275.537 2.914 2.441 

Weish19 Best 7698 7698 7698 7698 7698 

  Avg. 7698 7693.1 7528.55 7698 7698 

  Std 0 7.13 489.373 0 0 

Weish20 Best 9450 9450 9450 9450 9450 

  Avg. 9450 9446.22 9332.11 9450 9450 

  Std 0 7.527 410.738 0 0 

Weish21 Best 9074 9074 9074 9074 9074 

  Avg. 9074 9067.94 8948.22 9074 9074 

  Std 0 10.41 378.377 0 0 

Weish22 Best 8947 8947 8947 8947 8947 

  Avg. 8947 8931.88 8774.2 8936.92 8939.8 

  Std 0 6.632 486.714 8.979 8.862 

Weish23 Best 8344 8344 8344 8344 8344 

  Avg. 8344 8342.89 8165 8344 8344 

  Std 0 5.111 437.232 0 0 

Weish24 Best 10,22 10,22 10,22 10,22 10,22 

  Avg. 10,22 10,216.96 10,106.28 10,219.7 10,219.32 

  Std 0 6.439 295.796 1.193 2.308 

Weish25 Best 9939 9939 9939 9939 9939 

  Avg. 9939 9934.46 9826.57 9939 9939 

  Std 0 7.086 361.88 0 0 

Weish26 Best 9584 9584 9584 9584 9584 

  Avg. 9581.66 9527.56 9313.87 9584 9584 

  Std 8.089 12.806 710.769 0 0 
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Weish27 Best 9819 9819 9819 9819 9819 

  Avg. 9819 9818.61 9607.54 9819 9819 

  Std 0 3.9 640.43 0 0 

Weish28 Best 9492 9492 9492 9492 9492 

  Avg. 9492 9489.01 9123.26 9492 9492 

  Std 0 7.774 887.332 0 0 

Weish29 Best 9410 9410 9410 9410 9410 

  Avg. 9410 9406.81 9025.5 9410 9410 

  Std 0 10.094 854.501 0 0 

Weish30 Best 11,191 11,191 11,191 11,191 11,191 

  Avg. 11,191 11,190.48 10,987.21 11,190.12 11,189.96 

  Std 0 1.352 491.815 1.665 1.763 

 Table 9 provides the information about number of items, number of constraints 

and best known solutions for some of HP and PB instances. 

Table 9 Details of HP and PB Instances 

Instance n m Best Known 

Hp1 28 4 3418 

Hp2 35 4 3186 

Pb5 20 10 2136 

Pb6 40 30 776 

Pb7 37 30 1035 

 Table 10 details the computational results for the 𝐻𝑝 and 𝑃𝑏 instances. From 

table, it can be said that penalty function based 𝐵𝑃𝑆𝑂_𝑇𝑉𝐴𝐶 and 𝐶𝐵𝑃𝑆𝑂_𝑇𝑉𝐴𝐶 are 

not competitive to proposed algorithm 𝐸𝐷𝐸 − 𝑉𝑁𝑆. However, it is also worth 

emphasizing that 𝐸𝐷𝐸 − 𝑉𝑁𝑆 is able to find best known solution in each run with 

zero standard deviation for all instances so, 𝐸𝐷𝐸 − 𝑉𝑁𝑆 is best one among them. On 

the other hand, 𝑆𝐴𝐶𝑅𝑂-based 𝐶𝐵𝑃𝑆𝑂_𝑇𝑉𝐴𝐶 and 𝐵𝑃𝑆𝑂_𝑇𝑉𝐴𝐶 algorithms could find 

the best known solutions in each run with zero standard deviation for 5 and 5 

instances, respectively. 
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Table 10 Computational results for HP and PB Instances 

P 
 

Penalty function SACRO 

 
 

EDE_VNS 
BPSO– CBPSO– BPSO- CBPSO- 

 
TVAC TVAC TVAC TVAC 

Hp1 Best 3418 3418 3418 3418 3418 

 Avg. 3418 3406.56 3403.9 3413.38 3414.36 

 Std. 0 10.692 13.69 6.616 6.172 

Hp2 Best 3186 3186 3186 3186 3186 

 Avg. 3186 3179.49 3173.61 3184.74 3185.64 

 Std. 0 13.947 21.354 4.615 2.532 

Pb1 Best 3090 3090 3090 3090 3090 

 Avg. 3090 3081 3079.74 3086.78 3085.95 

 Std. 0 9.438 10.521 5.921 6.369 

Pb2 Best 3186 3186 3186 3186 3186 

 Avg. 3186 3181.5 3171.55 3186 3186 

 Std. 0 7.686 18.731 0 0 

Pb4 Best 95,168 95,168 95,168 95,168 95,168 

 Avg. 95,168 94,939.9 94,863.67 95,168 95,168 

 Std. 0 797.051 875.081 0 0 

Pb5 Best 2139 2139 2139 2139 2139 

 Avg. 2139 2136.28 2135.6 2139 2139 

 Std. 0 6.263 6.834 0 0 

Pb6 Best 776 776 776 776 776 

 Avg. 776 767.3 758.26 776 776 

 Std. 0 Eyl.99 40.172 0 0 

Pb7 Best 1035 1035 1035 1035 1035 

 Avg. 1035 1029.57 1021.95 1035 1035 

 Std 0 5.712 24.247 0 0 

 According to the analysis above, it can be concluded that the proposed 𝐸𝐷𝐸 −

𝑉𝑁𝑆 algorithm is superior to both penalty based and 𝑆𝐴𝐶𝑅𝑂-based algorithms. 
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5 CONCLUSIONS & FUTURE WORK 

 A research about the application of optimization algorithms on one of the most 

important real-life problem called multidimensional knapsack problem after testing 

these optimization algorithms on benchmark functions from literature was introduced 

in this thesis. The underlying reason of using this kind of algorithms is because of the 

fact that it is not possible to find optimal solutions for NP-hard problems by means of 

traditional algorithms. Since, multidimensional knapsack problems have real numbers 

to be found optimally, the main idea of this thesis focused on the term which has been 

researched and analysed over last decades by engineers named, “Real Parameter 

Optimization”. 

 Firstly, 22 benchmark problems from CEC’ 2006 technical report were taken 

into consideration to solve by using proposed 𝐸𝐷𝐸 − 𝑉𝑁𝑆 algorithm. Since these 

benchmark problems are considered as real-life problems, finding optimal solutions 

for these benchmark problems could demonstrate the applicability of proposed 

algorithm to real-life problems. 𝐸𝐷𝐸 − 𝑉𝑁𝑆 algorithm was able to employ multiple 

mutation strategies in its 𝑉𝑁𝑆 loops to improve the solution quality. In order to take 

advantage of infeasible solutions, various constrained handling methods (𝑆𝐹, 𝑁𝐹𝑇 

and ε-constraint) were handled. Moreover, opposition-based learning algorithm in 

order to enrich the initial population is also used for improving this proposed 

heuristic algorithm. A diversification procedure based on the inversion of the target 

individuals and injection of some good dimensional values from promising areas in 

the target population by tournament selection with size 2 was presented to provide 

improved individuals for target population. The computational results showed that the 

simple 𝐸𝐷𝐸 − 𝑉𝑁𝑆 algorithm was quite competitive to some of the best performing 

algorithms from the literature. 

 Secondly, the proposed algorithm is applied to multidimensional knapsack 

problem in order to demonstrate the applicability of this algorithm to real-life 

problems. In this part, some sophisticated constraint handling techniques are utilized 

to enrich the population diversity within a predetermined threshold instead of making 

use of the studies employing check and repair operators. So as to generate the trial 

population, a variable neighbourhood search employing different mutation strategies 

in each loop is proposed. As the proposed algorithm truly works on a continuous 

domain, these real-values in chromosomes are converted to 0-1 binary values by 
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using some S-shaped and V-shaped functions. Moreover, in order to enhance the 

quality of solution, the differential evolution algorithm with a variable neighbourhood 

search is combined with a binary swap local search. This proposed algorithm is tested 

on a benchmark instances in OR-library and computational results are compared to 

some algorithms called bFOA2 and HEDA2 algorithms from the literature. 

Computational results show its efficiency in solving benchmark instances and its 

superiority to other algorithms. 

 For future work, it is aimed to develop some DE algorithm making use of the 

idea of neighbourhood change of VNS algorithms for not only unconstrained but also 

constrained real parameter optimization problems and also apply this algorithm 

together with some constructive heuristics from literature to solve binary optimization 

problems in real life in order to demonstrate applicability of evolutionary algorithms. 

 

  

 

 

 

 



 

 

61 

 

REFERENCES 

Angelelli, E., & Mansini, R., 2002., The vehicle routing problem with time windows 

and simultaneous pick-up and delivery, In Quantitative approaches to distribution 

logistics and supply chain management (pp. 249-267). Springer Berlin Heidelberg. 

Azad, M. A. K., Rocha, A. M. A., & Fernandes, E. M., 2014, “Improved binary 

artificial fish swarm algorithm for the 0–1 multidimensional knapsack problems,” 

Swarm and Evolutionary Computation, vol. 14, pp. 66-75. 

Babu, B. V., and Jehan, M., 2003, “Differential evolution for multi-objective 

optimization,” IEEE, 2003. CEC'03. The 2003 Congress on  Vol. 4, pp. 2696-2703   

Babu B. V., and Onwubolu G. C.,  (eds.), 2004, “New Optimization Techniques in 

Engineering”, Springer Verlag. 

Beheshti, Z., Shamsuddin, S. M., & Yuhaniz, S. S., 2013, “Binary accelerated 

particle swarm algorithm (BAPSA) for discrete optimization problems,” Journal of 

Global optimization, vol.57, no. 2, pp. 549-573. 

Bertsimas, D., and Demir, R., 2002, “An approximate dynamic programming 

approach to multidimensional knapsack problems,” Management Science, vol.48, 

no.4, pp. 550-565. 

Boyer, V., Elkihel, M., and El Baz, D., 2009, Heuristics for the 0–1 

multidimensional knapsack problem,  European Journal of Operational 

Research, 199(3),  pp. 658-664. 

Brest J., Greiner S., Boskovic B., Mernik M., and Zumer V., 2006, “Self-adapting 

control parameters in differential evolution: A comparative study on numerical 

benchmark problems,” IEEE Trans. Evol. Comput., vol. 10, no. 6, pp. 646–657. 

Chakraborty U K., 2008 (ed.) Advances in Differential Evolution. Berlin: Springer. 

http://www.addall.com/author/11497946-1
http://www.addall.com/author/3621022-1
http://www.addall.com/detail/354020167X.html
http://www.addall.com/detail/354020167X.html


 

 

62 

 

Chen, W. N., Zhang, J., Chung, H. S., Zhong, W. L., Wu, W. G., & Shi, Y. H., 

2010, “A novel set-based particle swarm optimization method for discrete 

optimization problems,” Evolutionary Computation, IEEE Transactions, vol. 14 no. 

2, pp. 278-300. 

Chih, M., Lin, C. J., Chern, M. S., & Ou, T. Y., 2014,” Particle swarm 

optimization with time-varying acceleration coefficients for the multidimensional 

knapsack problem,” Applied Mathematical Modelling, vol. 38, no. 4, pp. 1338-1350 

Chih, M. 2015, “Self-adaptive check and repair operator-based particle swarm 

optimization for the multidimensional knapsack problem,”Applied Soft 

Computing, vol. 26, no. 378-389. 

Chu, P. C., and Beasley, J. E., 1998, “A genetic algorithm for the multidimensional 

knapsack problem,” Journal of heuristics, vol. 4,  no. 1, pp. 63-86. 

Coello, C. A. C., 2002, “Theoretical and numerical constraint-handling techniques 

used with evolutionary algorithms: a survey of the state of the art,” Computer 

methods in applied mechanics and engineering, vol. 191, no.11, pp. 1245-1287. 

Corne D., Dorigo M., and Glover F., (eds.), 1999, “Part Two: Differential 

Evolution,” New Ideas in Optimization, McGraw-Hill, pp. 77-158. 

Das S., Abraham A., Chakraborty U. K., and Konar A., 2009, “Differential 

evolution using a neighbourhood based mutation operator,” IEEE Trans. Evol. 

Comput., vol. 13, no. 3, pp. 526–553. 

Das S., Konar A., and Chakraborty U., 2005, “Improved differential evolution 

algorithms for handling noisy optimization problems,” in Proc. IEEE Congr. Evol. 

Comput., vol. 2. 2005, pp. 1691–1698. 

Das S., Suganthan P.N., 2011, Differential Evolution: A Survey of the State-of-the-

Art,IEEE Trans. Evol. Comput.,Vol 15, No.1. 



 

 

63 

 

Deb, K., 2000, An efficient constraint handling method for genetic algorithms, 

Comput. Methods Appl. Mech. Eng., 186, pp. 311–338. 

Drexl, A., 1988, “A simulated annealing approach to the multiconstraint zero-one 

knapsack problem,” Computing, vol. 40, no. 1, pp. 1-8. 

Elsayed, S. M., Sarker, R. A., & Essam, D. L., 2014, “A new genetic algorithm for 

solving optimization problems,” Engineering Applications of Artificial 

Intelligence, vol.27, pp. 57-69. 

Feoktistov, V., & Janaqi, S., 2004, “Generalization of the strategies in differential 

evolution,” Parallel and Distributed Processing SymposiumProceedings. 18th 

International, pp. 165.  

Gämperle, R., Müller, S. D., and Koumoutsakos, P., 2002, “A parameter study for 

differential evolution,” Advances in intelligent systems, fuzzy systems, evolutionary 

computation, vol. 10, pp. 293-298. 

Gavish, B., and Pirkul, H., 1985. “Efficient algorithms for solving multiconstraint 

zero-one knapsack problems to optimality,” Mathematical programming, vol. 31, no. 

1, pp. 78-105. 

Gilmore, P. C., & Gomory, R. E., 1966,  “The theory and computation of knapsack 

functions,” Operations Research, vol. 14, no.6, pp. 1045-1074. 

Glover, F., and Kochenberger, G. A., 1996, Critical event tabu search for 

multidimensional knapsack problems. In Meta-Heuristics, pp. 407-427, Springer US. 

Gottlieb, J., 2001, On the feasibility problem of penalty-based evolutionary 

algorithms for knapsack problems. Lecture notes in computer science, pp. 50-59. 



 

 

64 

 

Hanafi, S., and Freville, A., 1998, “An efficient tabu search approach for the 0–1 

multidimensional knapsack problem,” European Journal of Operational 

Research, vol. 106, no.2, pp. 659-675. 

Hansen N. and Ostermeier A., 2001, “Completely derandomized self-adaptation in 

evolution strategies”, Evolutionary Computation, 9(2) pp. 159–195. 

Huang V. L., Qin A. K., and Suganthan P. N., 2006, "Self-adaptive Differential 

Evolution Algorithm for Constrained Real-Parameter Optimization", Nanyang 

Technological University,  Singapore. 

Jin, Y. 2005, “A comprehensive survey of fitness approximation in evolutionary 

computation” Soft computing, vol. 9, no. 1, pp. 3-12. 

Kennedy, J., & Eberhart, R. C., 1997, “A discrete binary version of the particle 

swarm algorithm,” In Systems, Man, and Cybernetics, 1997. Computational 

Cybernetics and Simulation., 1997 IEEE International Conference, Vol. 5, pp. 4104-

4108. 

Kong, M., Tian, P., and Kao, Y., 2008, “A new ant colony optimization algorithm 

for the multidimensional Knapsack problem,” Computers & Operations Research, 

vol. 35, no. 8, pp. 2672-2683. 

Koziel, S., and Michalewicz, Z., 1999, “Evolutionary algorithms, homomorphous 

mappings, and constrained parameter optimization,” Evolutionary computation, vol. 7 

no.1, pp. 19-44. 

Lampinen, J., 2001, A bibliography of differential evolution algorithm, 

Lappeenranta University of Technology, Finland. 

Lampinen, J., 1999, “Differential evolution- New naturally parallel approach for 

engineering design optimization,” Developments in computational mechanics with 

high performance computing, pp. 217-228. 



 

 

65 

 

Lampinen, J., 2002, A constraint handling approach for the differential evolution 

algorithm., WCCI, pp. 1468-1473.  

Langdon, W. B., and Poli, R., 2007, “Evolving problems to learn about particle 

swarm optimizers and other search algorithms,” Evolutionary Computation, IEEE 

Transactions, vol. 11, no. 5, pp. 561-578. 

Liang J. J. and P. N. Suganthan, 2006, "Dynamic Multi-Swarm Particle Swarm 

Optimizer with a Novel Constraint-Handling Mechanism", Nanyang Technological 

University, Singapore 639798. 

Liang J. J., Runarsson T. P., Mezura-Montes E.,   Clerc M., Suganthan P. N., 

Coello Coello C. A., Deb K., 2006, "Problem Definitions and Evaluation Criteria for 

the CEC 2006", Special Session on Constrained Real-Parameter Optimization, 

Technical Report, Nanyang Technological University, Singapore. 

Langdon, W. B., and Poli, R., 2007, “Evolving problems to learn about particle 

swarm optimizers and other search algorithms,” Evolutionary Computation, IEEE 

Transactions on, vol 11 no. 5,  pp. 561-578. 

Liu J. and Lampinen J., 2005, “A fuzzy adaptive differential evolution algorithm,” 

Soft Computing—A Fusion of Foundations, Methodologies and Applications, vol. 9, 

no. 6, pp. 448–462, 2005 [Online]. Available: 

http://springerlink.metapress.com/index/10.1007/s00500-004-0363-x 

Mallipeddi, R., Suganthan, P. N., Pan, Q. K., & Tasgetiren, M. F., 2011., 

“Differential evolution algorithm with ensemble of parameters and mutation 

strategies,” Applied Soft Computing, vol. 11 no. 2, pp. 1679-1696. 

Mallipeddi, R., & Suganthan, P. N., 2011, Ensemble differential evolution 

algorithm for CEC2011 problems. In Evolutionary Computation (CEC), 2011 IEEE 

Congress on (pp. 1557-1564). IEEE. 

http://springerlink.metapress.com/index/10.1007/s00500-004-0363-x


 

 

66 

 

Martins, J. P., Bringel Neto, C., Crocomo, M. K., Vittori, K., & Delbem, A. C., 

2013, “A comparison of linkage-learning-based genetic algorithms in 

multidimensional knapsack problems,” In Evolutionary Computation (CEC), 2013 

IEEE Congress, pp. 502-509. 

Mezura-Montes, E., Velázquez-Reyes, J., & Coello Coello, C., 2006, “Modified 

differential evolution for constrained optimization.” In Evolutionary Computation, 

2006. CEC 2006. IEEE Congress on pp. 25-32 

Michalewicz, Z., and Schoenauer, M., 1996, “Evolutionary algorithms for 

constrained parameter optimization problems” Evolutionary computation, vol. 4 no.1 

pp. 1-32. 

Mirjalili, S., & Lewis, A., 2013., “S-shaped versus V-shaped transfer functions for 

binary particle swarm optimization,” Swarm and Evolutionary Computation, vol. 9, 

pp. 1-14. 

Nelder, J. A., and Mead, R., 1965, “A simplex method for function 

minimization”.The computer journal, vol 7(4), pp. 308-313. 

Neri F. and Tirronen V., 2010, “Recent advances in differential evolution: A review 

and experimental analysis,” Artif. Intell. Rev., vol. 33, no. 1, pp. 61–106. 

Plateau, G., and Elkihel, M. 1985, A hybrid method for the 0–1 knapsack 

problem. Methods of Operations Research, vol. 49, pp. 277-293. 

Powell, D., and Skolnick, M. M., 1993, “Using genetic algorithms in engineering 

design optimization with non-linear constraints,” Proceedings of the 5th international 

conference on genetic algorithms  pp. 424-431 Morgan Kaufmann Publishers Inc.. 

Price, W. L., 1977, “Global optimization by controlled random search”. Journal of 

Optimization Theory and Applications, vol 20 no 4, pp. 333-348. 

Price K., Storn R., Lampinen J., 2005, Differential Evolution: A Practical 

Approach to Global Optimization, Springer-Verlag, Berlin. 



 

 

67 

 

Price K. V., and Storn R., 1997, Differential evolution: A simple evolution strategy 

for fast optimization, Dr. Dobb’s J., vol. 22, no. 4, pp. 18–24. 

Qin A. K. and Suganthan P. N., 2005, “Self-adaptive Differential Evolution 

Algorithm for Numerical Optimization”, Proc. IEEE Congress on Evolutionary 

Computation. 

Rahnamayan S., Tizhoosh H. R., and Salama M. M. A., 2008, “Opposition based 

differential evolution,” IEEE Trans. Evol. Comput., vol. 12, no. 1, pp. 64–79. 

Raidl, G. R., 1998, “An improved genetic algorithm for the multiconstrained 0-1 

knapsack problem,” In Evolutionary Computation Proceedings, 1998. IEEE World 

Congress on Computational Intelligence., The 1998 IEEE International Conference, 

pp. 207-211. 

Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S., 2010, “BGSA: binary 

gravitational search algorithm,” Natural Computing, vol. 9 no. 3, pp. 727-745. 

Runarsson, T. P., and Yao, X., 2000, “Stochastic ranking for constrained 

evolutionary optimization,” Evolutionary Computation, IEEE Transactions, vol.4, no. 

3, pp. 284-294. 

Runarsson, T. P., and Yao, X., 2005, “Search biases in constrained evolutionary 

optimization,”  IEEE Trans. Syst. Man., Cybern.,vol. 35, no.2, pp. 233-243. 

Shih, W., 1979, A branch and bound method for the multiconstraint zero-one 

knapsack problem,  Journal of the Operational Research Society, pp. 369-378. 

Smith, A. E., and Tate, D. M., 1993, “Genetic optimization using a penalty 

function,” Proceedings of the 5th international conference on genetic algorithms, pp. 

499-505 Morgan Kaufmann Publishers Inc. 

Storn R. and Price K. V., 1995 “Differential evolution: A simple and efficient 

adaptive scheme for global optimization over continuous spaces,” ICSI, USA, Tech. 

Rep. TR-95-012, [Online]. Available: http://icsi.berkeley.edu/∼storn/litera.html 



 

 

68 

 

Storn R. and Price K. V., 1997, Differential evolution: A simple and efficient 

heuristic for global optimization over continuous spaces, J. Global Optimization, vol. 

11, no. 4, pp. 341–359. 

Storn, R., (1999) “System Design by Constraint Adaptation and Differential 

Evolution,” IEEE Transactions on Evolutionary Computation, vol. 3, pp. 22-34. 

Sutton, A. M., Lunacek, M., & Whitley, L. D., 2007, “Differential evolution and 

non-separability: using selective pressure to focus search,” In Proceedings of the 9th 

annual conference on Genetic and evolutionary computation, pp. 1428-1435, ACM. 

Takahama T.  and Sakai S., 2006, "Constrained Optimization by the   Constrained 

Differential Evolution with Gradient-Based Mutation and Feasible Elites," in IEEE 

Congress on Evolutionary Computation Sheraton Vancouver Wall Centre Hotel, 

Vancouver, BC, Canada, pp. 1-8. 

Tasgetiren M. F., and Suganthan P. N., 2006,“A Multi-Populated Differential 

Evolution Algorithm for Solving Constrained Optimization Problems", Fatih 

University, 34500, Buyukcekmece, Istanbul, Turkey. 

Tavares, J., Pereira, F. B., & Costa, E., 2006, “The role of representation on the 

multidimensional knapsack problem by means of fitness landscape analysis,” 

In Evolutionary Computation, 2006,  pp. 2307-2314.  

Tavares, J., Pereira, F. B., & Costa, E., 2008, “Multidimensional knapsack 

problem: A fitness landscape analysis,” Systems, Man, and Cybernetics, Part B: 

Cybernetics, IEEE Transactions, vol. 38, no. 3, pp. 604-616. 

Tessema, B., & Yen, G. G., 2006, “A self adaptive penalty function based algorithm 

for constrained optimization,”  Evolutionary Computation, 2006. CEC 2006. IEEE 

Congress, pp. 246-253. 



 

 

69 

 

Tessema, B., & Yen, G. G., 2009, “An adaptive penalty formulation for constrained 

evolutionary optimization.,” Systems, Man and Cybernetics, Part A: Systems and 

Humans, IEEE Transactions, vol. 39 no. 3, pp. 565-578. 

Toth, P., 1980, “Dynamic programming algorithms for the zero-one knapsack 

problem,” Computing, vol. 25, no.1, pp. 29-45. 

Vasquez, M., and Hao, J. K., 2001,”A hybrid approach for the 0-1 multidimensional 

knapsack problem” IJCAI, pp. 328-333. 

Vesterstrom J. and Thomson R.A., 2004, “Comparative study of differential 

evolution, particle swarm optimization, and evolutionary algorithms on numerical 

benchmark problems,” in Proc. Congr. Evol. Comput., pp. 1382-1389. 

Wang, L., and Zheng, D. Z., 2001, “ An effective hybrid optimization strategy for 

job-shop scheduling problems,” Computers & Operations Research, vol. 28, no.6, pp. 

585-596. 

Wang, Y., Cai, Z., Guo, G., & Zhou, Y., 2007, “Multiobjective optimization and 

hybrid evolutionary algorithm to solve constrained optimization problems,”Systems, 

Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions vol.37, no.3, pp. 560-

575. 

Wang, L., Fu, X., Mao, Y., Menhas, M. I., & Fei, M., 2012, “A novel modified 

binary differential evolution algorithm and its applications,” Neurocomputing, vol 98, 

pp. 55-75. 

Wang, L., Zheng, X. L., & Wang, S. Y., 2013., “A novel binary fruit fly 

optimization algorithm for solving the multidimensional knapsack problem,” 

Knowledge-Based Systems, vol 48, pp. 17-23. 

Wolpert, D. H., & Macready, W. G., 1997 “No free lunch theorems for 

optimization,”  IEEE Trans. Evol. Comput., vol.1 no. 1, pp. 67-82. 



 

 

70 

 

Zhang J. and Sanderson A. C., 2009, “JADE: Adaptive differential evolution with 

optional external archive,” IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 945–958. 

Zhang, J., and  Sanderson, A. C., 2007, “JADE: Self-adaptive differential evolution 

with fast and reliable convergence performance,” IEEE Evol. Comput., 2007. CEC 

2007. pp. 2251-2258.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

71 

 

CURRICULUM VITEA 

 Mert Paldrak was born in İzmir/Konak in 1991. He has been working as a 

research assistant at the Department of Industrial Engineering at Yaşar University in 

İzmir since October 2013. He has received his BSc degree in Industrial Engineering 

with the 2nd degree from Yaşar University Engineering Faculty in 2013 and then he 

continued his MSc degree in Industrial Engineering in Yaşar University Engineering 

Faculty. During his master degree period, he has taken such various courses as 

System Simulation, Optimization Models and Algorithms, Heuristic Optimization, 

Scheduling Theory, Probabilistic Analysis and Applied Stochastic Processes, 

Dynamic Programming, Mathematics of Operational Research and Supply Chain and 

Management. 

 



 

 

72 

 

APPENDIX 1 CEC 2006 BENCHMARKS 
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Function 4: g04 (Himmelblau D., 1972) 

 

 

 



 

 

74 

 

Function 5: g05 (Hock W. and Schittkowski K., 1981) 
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Function 9: g09 (Hock W.  and Schittkowski K., 1981) 
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Function 11: g11 (Kozieland S., Michalewicz Z., 1999) 

 

Function 12: g12 (Kozieland S., Michalewicz Z., 1999) 
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Function 14: g14 (Himmelblau D. M., 1972) 
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Function 16: g16 (Himmelblau D. M., 1972) 
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Function 18: g18 (Himmelblau D. M., 1972) 
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Function 23: g23 (Xia Q.) 
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