YASAR UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MASTER THESIS

SOME TYPES OF CONTINUITY ON SPACES WITH
MINIMAL STRUCTURES

ilay BALKAN

Thesis Advisor: Assist. Prof. Dr. Esra DALAN YILDIRIM

Department of Mathematics

Presentation Date: 26.01.2016

Bornova-iZMiR
2016



I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a dissertation for the degree of master of science.

Assist. Prof. Dr. Esra DALAN YILDIRIM (Supervisor)

/.jr = S
<

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a dissertation for the degree of master of science.

Prof. Dr. Mehmet TERZILER

Vrters B

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a dissertation for the degree of master of science.

Prof. Dr. Oya BEDRE OZBAKIR

[

_—

Prof. Dr: Ciineyt GUZELIS
Dire or of the Graduate School




ABSTRACT

SOME TYPES OF CONTINUITY ON SPACES WITH MINIMAL
STRUCTURES

BALKAN, ilay
MSc in Department of Mathematics

Supervisor: Assist. Prof. Dr. Esra DALAN YILDIRIM
January 2016, 41 pages

This thesis consists, essentially, of five chapters.

In the first chapter, the topic of the thesis is introduced and in the second
chapter, in order to clarify the reading of the thesis, some types of open sets and some
types of continuity in topological spaces are introduced.

In the third chapter, after giving necessary knowledge on spaces with minimal
structures the interior and closure operators’ properties are investigated in those
spaces.

In the fourth chapter, we point out different kinds of open sets’ definitions and
their properties in these spaces. Also, while studying relationships between these sets
a number of original illustrating examples are given.

In final chapter, we deal with some types of continuity between spaces with
minimal structures and we examine the their fundamental properties and relations
between each other.

Keywords:m-structure, m-open sets, m-a-open sets, m-semiopen sets, m- preopen
sets, m-f-open sets, M-continuity, M-a-continuity, M-semicontinuity, M-
precontinuity, M-f-continuity.



OZET
MINIMAL YAPILI UZAYLARDA BAZI SUREKLILIK TURLERi

Ilay BALKAN
Yiiksek Lisans Tezi, Matematik Bolumii
Tez Damismani: Yrd. Dog. Dr. Esra DALAN YILDIRIM
Ocak 2016, 41 sayfa

Bu tez esas olarak bes boliimden olusmaktadir.

Birinci boliimde tez konusu tanitilmis, ikinci boliimde ise tezin anlasilabilir
olmasi igin topolojik uzaylardaki bazi acgik kiime tiirleri ve baz1 siireklilik tiirleri
tanitilmastir.

Uciincii boliimde, minimal yapili uzaylar iizerine bilgi verilerek bu uzaylardaki
i¢ ve kapanis operatdrlerinin 6zellikleri incelenmistir.

Dordiincii boliimde, minimal yapili uzaylardaki gesitli agik kiime tiirlerinin
tanimlarina ve temel Ozelliklerine yer verilmistir. Ayrica, bu kiimeler arasindaki
iliskiler incelenerek ¢alisma 6zgiin 6rneklerle desteklenmistir.

Son bolimde minimal yapili uzaylar arasindaki bazi siireklilik tiirleri ele

alinarak bunlarin temel 6zellikleri ve birbirleriyle iliskileri ¢aligiimistir.

Anahtar sozciikler: m-yapi, m-agik kiimeler, m-a-agik kiimeler, m-yariagik kiimeler,
m-6n acgik kiimeler, m-B-acik kiimeler, M-siireklilik, M-a-siireklilik, M-yarisiireklilik,
M-o6nsiireklilik, M-B-siireklilik.
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1.INTRODUCTION

Maki (1996) introduced the concept of minimal structure which is more general
than a topology, and using this concept he defined spaces with minimal structure.
Moreover, he studied properties of closure and interior operators defined in those
spaces. Then, Popa and Noiri (2000) defined M-continuous function’s concept
between spaces with minimal structures and obtained some characterizations and
aspects of these functions. On the other hand, they gave the definitions of m-

compactness and m-connectedness together with their properties.

Many mathematicians have defined some types of open sets and continuities
which are generalizations of m-open sets and M-continuity, in spaces with minimal

structures.

Min (2009) defined the concepts of m-semiopen sets, m-semi-interior and m-
semi-closure operators; Min and Kim (2009) defined the concepts of m-preopen sets,
m-pre-interior and m-pre-closure operators; Min (2010) defined the notions of m-a-
open sets, m-a-interior and m-a-closure operators, and Nasef and Roy (2013) defined
the concepts of m-p-open sets, m-B-interior and m-B-closure operators; and also they

investigated some their fundamental properties.

Furthermore, people above have introduced M-semi-continuous, M-pre-
continuous, M-a-continuous and M-B-continuous functions, and they obtained some
characterizations of them. Then, they investigated the relationships between M-

continuity and these new concepts.

In this thesis, we closely read all papers mentioned and provided original

examples, and also proved where we encountered a gap given in the paper.



2.PRELIMINARIES

Throughout this chapter necessary topics are given.

Definition2.1:Let (X, T) be a topological space and A < X.

a) Ais called an a-open setif A € Int(Cl(Int(A))) (Njastad, 1965)
b) Ais called semi-open set if A € CI(Int(A)) (Levine, 1963)
c) Ais called pre-open set ifA < Int(CI(A)) (Mashhour et al.,1982)

d) Ais called B—open if A < CI(Int(CI(A))) (Abd EI-Monsef et al. 1983)

The family of all a-open(semi-open, pre-open, -open) sets in X is
denoted by a(X)(SO(X), PO(X),B(X)).

Definition 2.2: Let (X, T) be a topological space and A € X.

(1) The complement of an a-open set is said to be a-closed.
(Mashouret al, 1983)
(2) The complement of a semi-open set is said to be semi-closed.
(Crossley and Hildebrand, 1971)
(3) The complement of a pre-open set is said to be a pre-closed.
(El-Deeb et al,1983)
(4) The complement of a B-open set is said to be a B-closed.
(Abd EI- Monsef et al, 1983)

Definition 2.3: Let (X,7) and (Y,0) be two topological spaces, and let
f:(X,t) — (Y, o) be afunction.

a) f is called a-continuous if for each x € X and each open set VV of Y
containing f(x), there exists ana-open set U of X containing x such that f(U) € V.
(Mashhour, et al. 1983)



b) f is called semi-continuous if for each x € X and each open set V of Y
containing f(x), there exists a semi-open set U of X containing x such that f(U) <
V.

(Levine, 1963)

c) f is called pre-continuous if for each x € X and each open set V of Y
containing f (x), there exists a pre-open set U of X containing x such that f(U) € V.
(Mashhour, et al. 1982)

d) f is called B-continuous if for each x € X and each open set V of Y
containing f(x), there exists a f-open set U of X containing x such that f(U) € V.
(Abd EI-Monsef et al., 1983)



3. MINIMAL STRUCTURES

Definition 3.1: A subfamily my of the power set go(X) of a nonempty set X is

called a minimal structure (briefly m-structure) on X if,
@ € my and X € my.

We denote a nonempty set X with a minimal structure my on it by (X, my).
Each member of my is said to be my-open (briefly m-open) set and the complement
of an my-open set is said to be my-closed (briefly m-closed) set.

(Maki, 1996 and Popa and Noiri, 2000)

Remark 3.1: Let (X,t) be a topological space. Then, the families

7,a(X),50(X),PO(X) and B(X) are all minimal structures on X.
(Popa and Noiri, 2000)

Definition 3.2: Let (X, my) be a space with a minimal structure my on X. For a
subset A of X, the m-closure of A and the m-interior of A, denoted by mcl(A) and
mint(A), respectively, are defined as follows:

mcl(A) = N{F:ACS F,X/F € my}
mint(A) = U{G:G S A,G € my}
(Maki,1996)

Example 3.1: Let X = {a, b, c} and let my = {@,X, {a, b}, {b, c}} be a minimal
structure on X. Consider the setA = {a,b} in X. Then, we have mcl(A) = X and
mint(A) = {a, b}.

Lemma 3.1: Let (X, my) be a space with a minimal structure my on X. For
A,B < X, the following hold:

(1) mcl(X\A) = X\mint(A) and mint(X\A) = X\mcl(A),

(2) If (X\A) € my, then mcl(A) = A and if A € my, then mint(A4) = A,

(3) mcl(®) = @, mcl(X) = X, mint(@) = @ and mint(X) = X,

(4) If A € B, then mcl(A) € mcl(B) and mint(A) € mint(B),
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(5) A € mcl(A) and mint(A) C A,
(6) mcl(mcl(A)) = mcl(A) and mint(mint(4)) = mint(A),
( Maki,1996)

Proof:

(1) Since mint(A) =U {G: G < A and G € my }, we haveX\mint(A4) =
N{X/G:G S Aand G e my} =n{X/G:X/A € X/G and G € my}=mcl(X\A).
The proof ofX\mcl(A4) = mint(X\A) is done by the similar way.

(2) The proofs are clear from the definitions of m-closure and m-interior.

(3) Since @, X are both m-open and m-closed, it is obvious by(2).

(4) By hypothesis, we have mcl(B) =N{F:AS B CF and X\ F € my} 2
mcl(A) =N {H:A € H and X\H € my}. The other proof is done by the similar way.

(5) It is obvious by the definitions of m-closure and m-interior.

(6) From (5) and the definition of m-closure, we have mcl(mcl(A)) =N
{F:AcCmcl(A) € F and X\F € my}=mcl(A). By the similar way,

mint(mint(A4)) = mint(A) is proved.

The following examples show that the converse implications of (2) and (4) in

Lemma 3.1 are not true in general.

Example 3.2:

(1) Let X ={a,b,c} and let my = {(Z),X, {a,b},{b,c},{c}, {a}} be a minimal
structure on X. Consider two sets A = {b}and B = {a, c}. Then, we have mcl(4) = A
but X\A & my. Also, we get mint(B) = B butB ¢ my.

(2) Let X ={1,2,3} and let my = {(D,X,{l,z}, {2,3}} be a minimal structure on
X. Consider three sets A = {1}, B={2} and C = {2,3}. Thus, mcl(4) = {1} c
mcl(B) =X but A € B. Also, mint (A) = @ € mint(C) = {2,3} but A £ C.



Lemma 3.2: Let (X, my) be a space with a minimal structure my on X
andA € X. Then x €mcl(A) if and only if UNA+@ for every UE€
m,containing x.

(Popa and Noiri,2000)

Proof:

Necessity. Suppose that there is an m-open set U containing x such that
UNA=@. Then, we have A < X\U and X\U is m-closed. Thus, mcl(4) <
mcl(X\U) = X\U by Lemma3.1(2) and (4). Since x ¢ X\U, then x & mcl(A).

Sufficiency. Assume x & mcl(A). By the definition of m-closure, there is
an m-closed set F not containing x such that A € F. Thus, (X\F) N A = @ for an m-

open set X\F containing x.

Definition 3.3: A function f: (X, myx) = (Y, my), where (X, my) and (Y, my)
are two spaces with minimal structures my and my on X and Y, respectively, is said
to be M-continuous if for each x € X and each VV € my containing f(x), there exists
U € m, containing x such that f(U) € V.

(Popa and Noiri,2000)

Theorem 3.1: For a function f: (X, my) — (Y, my), the following properties
are equivalent:

(1) f is M-continuous,

(2) f7YV) = mint( f~1(V)) forevery V € my,

(3) f(mcl(A)) € mcl(f(A)) forevery A € X,

(4) mel(f~1(B)) € f~Y(mcl(B)) foreveryB C Y,

(5) f~1(mint(B)) € mint(f~1(B)) foreveryB C Y,

(6) mcl(f~1(K)) = f~1(K) for every K C Ysuch that (Y\K) € my.

(Popa and Noiri, 2000)



Proof:

(1)=(2) By Lemma 3.1(5), we have mint(f~1(V))cf 1(V). So, we must
show that f~1(V) € mint(f~1(V)). Let V € my, and x € f~1(V). Then, f(x) € V.
Since f is M-continuous, there exists an m-open set Ucontaining x such that f(U) €
V.Thus, x € U € f~1(V). Therefore, we have x € mint(f~*(V)).

(2)=(3) Let A < X. Assume that x € mcl(A) and V € my containing f(x).
Thus, x € f~1(V) = mint(f~1(V)) from (2). By the definition of m-interior, there
exists an m-open set U containing x such that U € f~1(V). Since x € mcl(A), then
we get UNA=+#0. Hence, @ = f(UNA) < f(UNf(A) < VNf(A). That is
VNf(A) # @. This shows that £ (x) € mcl(f(A)).

(3)=(4) Let B €Y. By (3),we have f(mcl(f~1(B))) € mcl(f(f~(B)))
mcl(B). Thus, we have mcl(f ~1(B)) € f~1(mcl(B)).

(4)=(5) The proof is obvious from (4) and Lemma 3.1(1).

(5) = (6) Let K be an m-closed subset of Y. By (5), we have f~1(mint(Y\
K)) € mint(f~Y(Y\K)). Since K is m-closed, we get f~(mint(Y\K)) =
X\f1(K) and mint(f~1(Y\K)) = X\mcl(f"1(K)) from Lemma 3.1(1). This
implies that mcl(f~1(K)) € f~1(K). Also, we have f~1(K) € mcl(f~1(K)) by
Lemma 3.1(5). Thus (f "1(K)) = mcl(f~*(K)).

(6) = (1) Let xe X and V € my containing f(x). Then, we have X\
fHV) = AV = mel(fH(Y\V) = mel(X\f 7' (V) = X\mint(f 7' (V)) by
(6) and Lemma 3.1(1). Sincef (x) € V, x € mint(f ~*(V)). Hence, there exists an m-

open set U containing x such that U € f~1(V). Thus, f is M-continuous.

Definition 3.4: A minimal structure my on a nonempty set X is said to have the
property (B) if the arbitrary union of m-open sets ism-open.
(Maki,1996)



Lemma 3.3: Let (X, my) be a space with a minimal structure my on X. Then,
the following are eguivalent:

(1) my has the property (B),

(2) If mint(V) = V,thenV € my,

(3) If mcl(F) = F, then X\F € my.

(Popa and Noiri, 2000)

Proof :

(1) = (2) Let mint(V) = V.By the definition of m-interior and the property
(B), mint(V) is m-open. Then, V € my.

(2) = (1) Suppose that U, emy for all iel. Let V=U;U;. By
Lemma3.1(5), we have mint(V) € V. So, we must show that V € mint(V). Let
x € V. Then, there exists iy € I such that x € U; . Since U;  is m-open and U; <
V.then U;, = mint(U;,) € mint(V) by Lemma 3.1(2) and (4). Thus, x € mint(V).
Hence, we obtain V' € mint(V). By (2), we get V € my.

(2) = (3) Let mcl(F) =F. Then, X\F = mint(X\F) by Lemma 3.1(1).
Thus, X\F € my from (2).

(3) = (2) Let mint(V) = V. Then, we have X\V = mcl(X\V) from Lemma
3.1(1). By (3), we have V € my.

Corollary 3.1: Let (X,myx) be a space with a minimal structure my
satisfying the property (B). For a function f: (X, my) — (Y, my) the following are
equivalent:

(1) f is M-continuous.

(2) f~1(V) € my forevery V € m,.

(3) X\f ~1(F) € myfor every subset F of Y such that Y\F € m,.

(Popa and Noiri, 2000)

The following example shows when the property(B) does not hold, Corollary

3.1 may not be true.



Example 3.3: Let X ={a,b,c} and Y ={1,2}. Consider two minimal
structures defined as my = {0, X, {a},{b}, {c}} and m, = {@,Y,{2}} on X and Y,
respectively. Let f:(X,myx) — (Y,my) be a function defined by f(a)=1and
f(b) = f(c) = 2. Then, f is M-continuous but f~({2}) = {b,c} &€ my when
{2} € my.



4.DIFFERENT KINDS OF OPEN SETS ON SPACES WITH MINIMAL
STRUCTURES

4.1 m-a-Open Sets

Definition 4.1.1: Let (X, my) be a space with a minimal structure my on X. A
subset A of X is called an m-a-open set if A € mint(mcl(mint(A))).The
complement of an m-a-open set is called anm-a-closed set. The family of all m-a-
open sets in X is denoted by Ma(X).

(Min, 2010)

Remark 4.1.1: If the minimal structure my on a given non-empty set X is
topology, then an m-a- open set is a-open.
(Min, 2010)

Proposition 4.1.1: Let(X, my) be a space with a minimal structure my on X,
Then, every m-open set is m-a-open.
(Min, 2010)
Proof:
Let A be m-open. Then, we have A = mint(4) from Lemma 3.1(2). Since
A S mcl(A), we get A= mint(4A) S mint(mcl(A)) = mint(mcl(mint(4))).

Thus, A is m-a-open.

The following example shows that the converse implication of Proposition

4.1.1 is not true, in general.

Example 4.1.1: Let X = {1,2,3} and let my = {0, X,{1,2},{2,3}, {1}, {3}}be a
minimal structure on X. Consider A = {1,3}, then mint (mcl(mint(A))) = X.

Thus, A is m-a-open but it is not m-open.
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Lemma 4.1.1: Let (X, my) be a space with minimal structure my on X and
A € X. Then, A is anm-a-closed set if and only if mcl(mint(mcl(A))) € A.
(Min, 2010)

Proof:
Let A be m-a-closed. Then, we have X\A € mint(mcl(mint(X\A))). By

Lemma 3.1(1), we get mint (mcl(mint(X\A))) = X\mcl(mint(mcl(4))). Thus,

mcl(mint(mcl(A4))) < A. Converse implication is proved by the similar way.

Theorem 4.1.1: Let (X, my) be a space with minimal structuremy on X. Any
union of m-a-open set is m-a-open.
(Min, 2010)

Proof:

Let A;be an m-a-open set for each i€l. Then, we have
A; € mint(mcl(mint(4;))) € mint(mcl(mint(U;e; 4;))) for each i€l from
Lemma 3.1(4). Thus, Ui Aj € mint(mcl(mint(Uie A;))). Hence, Uier Ay is an m-

a-open set.

The following example shows that the intersection of any two m-a-open sets

may not be m-a-open.

Example 4.1.2: Let X ={1,2,3,4} and my = {0, X,{1,2,3},{3,4},{4}} be a
minimal structure on X. Then {1,2,3} and {3,4} are m-a-open sets but {1,2,3} N
{3,4} = {3} is not m-a-open.

Definition 4.1.2: Let (X, my) be a space with minimal structure my on X. For

a subset A of X, the m-a-closure of A and the m-a-interior of A, denoted by

macl(A) and maint(A), respectively, are defined as the following:

11



macl(A) =N {F:A € F,F is m-a-closed in X}
maint(A) =U {G: G € A, G is m-a-open in X}
(Min, 2010)

Theorem 4.1.2: Let (X,my) be a space with minimal structuremy on X and
A,B,F < X. Then, the following hold.

(1) maint(A) € Aand A € macl(A).

(2) If A < B, then maint (A) € maint(B) and macl(A) € macl(B).

(3) A is m-a-open iff maint (A) = A and F is m-a-closed iff macl(F) = F.

(4) maint(maint(A)) = maint(A) and macl(macl(A)) = macl(A).

(5) macl(X\A) = X\maint(A) and maint(X\A) = X\macl(A).

(Min, 2010)

Proof:

The proofs of (1) and (2) are obvious from the definitions of m-a-interior and
m-a-closure.

(3) If A is m-a-open, the proof is obvious from the definition of m-a-interior.
Let maint(A) = A. Since any union of m-a-open sets is m-a-open from Theorem
4.1.1, A is m-a-open. By the similar way, if A is m-a-closed, it is clear. Let
macl(A) = A. Since any intersection of m-a-closed sets is m-a-closed, A is m-a-
closed.

(4) Since maint(A) is m-a-open and macl(A) is m-a-closed, we have
maint(maint(A)) = maint(A) and macl(macl(A)) = macl(A) from (3).

(5) X\maint(A) = X\U{G:G < A, G is m-a-open}=N {X\G:G € A,G is m-
a-open}= N {X\G: X\A € X\G, X\G is m-a-closed} = macl(X\A). By the similar
way, we have maint(X\A) = X\macl(4).

The converse implication of (2) in Theorem 4.1.2 may not be true as shown in

the following example.

12



Example 4.1.3: Let (X, my) be a space with a minimal structure my on X as in
Example 4.1.1. Then, we get Ma(X) = {0, X,{1,2},{2,3}, {1}, {3},{1,3}}. Consider
A=1{2},B={1} and C ={1,3}, then maint(A) = @ c maint(B) = {1} and
macl(4) = {2} c macl(C) =XbutAZ Band A & C.

Theorem 4.1.3: Let (X, m,) be a space with a minimal structure my on X and
A C X. Then;
(1) x € macl(A) ifand only if AN G # @ for every m-a-open set G containing

(2) x € maint(A) if and only if there exists anm-a-open set Ucontaining x
such that U € A.

(Min, 2010)

Proof:

(1) Suppose there exists an m-a-open set G containing x such that An G = @.
Then, X\G is m-a-closed and A € X\G. Since A € macl(A) € X\G and x € X\G
implies x & macl(A). Converse implication is clear from the definition of m-a-
closure.

(2) Suppose there exists an m-a-open set U containing x such that U € A.
Since U € maint(A) €A andx € U implies x € maint(A). The converse is

obvious, from the definition of m-a-interior.

4.2 m-Semiopen Sets

Definition 4.2.1: Let (X, my) be a space with a minimal structure my on X. A
subset A of X is called an m-semiopen set if A € mcl(mint(A)). The complement of
an m-semiopen set is called m-semiclosed set. The family of all m-semiopen sets in
X is denoted by MSO (X).

(Min, 2009)
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Remark 4.2.1: If the minimal structure m, on a given nonempty set X is
topology, then an m-semiopen set is semi-open.
(Min, 2009)

Proposition 4.2.1: Let (X, my) be a space with a minimal structure my on X.

Then, every m-a-open set is m-semiopen.

Proof: Let A be an m-a-open set. Then, we have A € mint(mcl(mint(4))) <

mcl(mint(A)) by Lemma 3.1(5). Thus, A is m-semiopen.

The following example shows that the converse of Proposition 4.2.1 is not true,

in general.

Example 4.2.1:
Let X ={a,b,c} and let my = {0, X, {a},{b}} be a minimal structure on X.

Consider A = {a, c}, then A is m-semiopen but not m-a-open.
The following remark follows from Proposition 4.1.1 and Proposition 4.2.1.

Remark 4.2.2: Every m-open set is m-semiopen.
(Min, 2009)
Lemma 4.2.1: Let (X, my) be a space with minimal structure my on X and
A € X. Then, A is an m-semiclosed set if and only if mint(mcl(A)) < A.
(Min, 2009)
Proof:
Let A Dbe m-semiclosed. Then, we have X\A € mcl(mint(X\A4)) =
mcl(X\mcl(A)) = X\(mint(mcl(A))) by Lemma 3.1(1). Thus, we obtain

mint(mcl(A)) € A. The converse is done by similar way.
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Theorem 4.2.1:Let (X, my) be a space with a minimal structure my on X. Any
union of m-semiopen sets ism-semiopen.
(Min,2009)

Proof: Let A; be an m-semiopen set for each i € I. Thus, we get A4; S
mcl(mint(4;)) € mcl(mint(U;¢; 4;))) for each i € I by Lemma 3.1(4). Hence, we

obtain U;¢; A; € mel(mint(U;er 4;)). S0, Uier 4; 1S m-semiopen.

The intersection of any two m-semiopen sets may not be m-semiopen as seen

from the following example.

Example 4.2.2: Let X ={1,2,3,4} and letmy = {@, X, {1,4},{1},{4}} be a
minimal structure on X. Consider 4 = {1,3} and B = {3,4}, then mcl(mint(4)) =
{1,2,3} and mcl(mint(B)) = {2,3,4}. Thus, A and B are m-semiopen sets but
{1,3} n {3,4} = {3} is not m-semiopen since mcl(mint({3})) = 0.

Definition 4.2.2: Let (X, my) be a space with a minimal structure my on X. For
a subset A of X, the m-semi-closure of A and the m-semi-interior of A, denoted by
mscl(A) and msint(A), respectively, are defined as the following:
mscl(A) =N {F: A € F,F is m-semiclosed in X}
msint(A) =U {G: G € A, G is m-semiopen in X}
(Min, 2009)

Theorem 4.2.2: Let (X, my) be a space with a minimal structure myon X and
A,B,F < X. Then, the following hold:
(1) msint(A) € A and A € mscl(A).
(2) If A < B, then msint(A) € msint(B) and mscl(A) € mscl(B).
(3) A is m-semiopen iff msint(A)=A and F is m-semiclosed iffmscl(F) = F.
(4) msint(msint(A)) = msint(A) and mscl(mscl(A)) = mscl(A).
(5) mscl(X\A) = X\msint(A) and msint(X\A) = X\mscl(4).
(Min, 2009)
15



Proof:

(1) and (2) are obvious from the definitions of m-semi-interior and m-semi-
closure.

(3) The proof is clear since any union of m-semiopen sets is m-semiopen from
Theorem 4.2.1.

(4) By (3), it is clear since msint(A) is m-semiopen and mscl(A4) is m-
semiclosed.

(5) X\msint(A) = X\U {G: G < A, G is m-semiopen}
=N {X\G: G € A, G is m-semiopen} =N {X\G: X\A € X\G, X\G is m-semiclosed} =
mscl(X\A). Also, we have msint(X\A) = X\mscl(A) by the similar way.

The following example shows that the converse of (2) in Theorem 4.2.2 is not

true, in general.

Example 4.2.3: Let X = {1,2,3} and let my = {0, X, {1,2},{1,3}} be a minimal
structure on X. Then, MSO(X) = {@,X,{1,2},{1,3}}. Consider A = {1}, B = {2} and
C = {1,3}, then msint(B) = @ c msint(C) = {1,3} but B € C and mscl(B) =
{2} c mscl(A) =X butB £ A.

Theorem 4.2.3: Let (X, my) be a space with a minimal structure my on X and
A € X.Then,

(1) x € mscl(A) if and only if AnG # @ for every m-semiopen set G
containing x.

(2) x € msint(A) if and only if there exists an m-semiopen set U containing x
such that U < A.

(Min, 2009)

Proof:

(1) Assume there is an m-semiopen set G containing x such that An G = @.
Then, we have A € X\G such that X\ G is m-semiclosed. Since A € mscl(A) € X\G

and x € X\G, we obtain x & mscl(A). The converse is clear.
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(2) Suppose there is an m-semiopen set U containing x such that U < A. Then,
U € msint(A) € A andx € U implies x € msint(A). The converse implication is

obvious.

4.3 m-Preopen Sets

Definition 4.3.1: Let (X, my) be a space with a minimal structure my on X. A
subset A of X is called an m-preopen set if A € mint(mcl(A)). The complement of
an m-preopen set is called an m-preclosed set. The family of all m-preopen sets in X
is denoted by MPO(X).

(Min and Kim, 2009)

Remark 4.3.1: If the minimal structure my on a given non-empty set X is a

topology, then an m-preopen set is preopen.

Proposition 4.3.1: Let (X, my) be a space with a minimal structure my on X.

Then, every m-a-open set is m-preopen.

Proof: Let A be an m-a-open set. Since mint(A) € A, we get AC

mint(mcl(mint(A4))) € mint(mcl(A)). Hence, A is m-preopen set.

The converse implications of Proposition 4.3.1 may not be true as shown in the

following example.

Example 4.3.1: Let X ={1,2,3,4} and my ={0,X,{1,2},{1,3,4}} be a
minimal structure on X. Consider A = {1, 3}, then A is m-preopen but it is not m-a-
open.

The following remark follows from Proposition 4.1.1 and Proposition 4.3.1.

Remark 4.3.2: Every m-open set is m-preopen.
(Min and Kim, 2009)
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Remark 4.3.3: m-preopenness and m-semiopenness are independent of each
other.
(Min and Kim, 2009)
Example 4.3.2:
(1) Let (X, m,) be a space with a minimal structure my on X and A = {1,3} as
in Example 4.3.1. Then, A is m-preopen but it is not m-semiopen.
(2) Let X ={1,2,3,4} and my = {0, X, {1}, {4}, {1,3}} be a minimal structure

on X. Consider B = {1,2,3}, then B is m-semiopen but it is not m-preopen.

Lemma 4.3.1: Let (X, my) be a space with minimal structure my on X. Then,
A is an m-preclosed set if and only if mcl(mint(A4)) € A.
(Min and Kim, 2009)
Proof: It is similar to that of Lemma 4.1.1.

Theorem 4.3.1: Let (X, my) be a space with a minimal structure my on X. Any
union of m-preopen sets is m-preopen.
(Min and Kim, 2009)

Proof: It is similar to that of Theorem 4.1.1.

The following example shows that the intersection of any two m-preopen sets

may not be m-preopen set.

Example 4.3.3: Let X ={1,2,3,4} and letmy = {0, X,{1,2,3},{3,4}} be a
minimal structure on X. {1, 2,3} and {2, 4} are m-preopen sets but {1,2,3} n {2,4} =

{2} is not m-preopen.
Definition 4.3.2: Let (X, my) be a space with a minimal structure my on X. For

a subset A of X, the m-pre-closure of A and m-pre-interior of A, denoted by mpcl(A)

and mpint(A), respectively, are defined as the following:
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mpcl(A) =N {F € X: A C F,F is m-preclosed in X}
mpint(A) =U {G € X: G € A, G is m-preopen in X}
(Min and Kim, 2009)

Theorem 4.3.2: Let (X, my) be a space with a minimal structure my on X and
A,B,F < X. Then, the following hold;
(1) mpint(A) € Aand A S mpcl(A).
(2) If A © B, then mpint(A) € mpint(B) and mpcl(A) € mpcl(B).
(3) A is m-preopen iff mpint(A) = A and F is m-preclosed iff mpcl(F) = F.
(4) mpint(mpint(A)) = mpint(A) and mpcl(mpcl(A)) = mpcl(A).
(5) mpcl(X\A) = X\mpint(A) and mpint(X\A) = X\mpcl(A).
(Min and Kim, 2009)

Proof:

The proofs of (1) and (2) are clear from the definitions of m-pre-interior and m-
pre-closure.

(3) If A is m-preopen, it is clear. Let mpint(A) = A. By Theorem 4.3.1, A is
m-preopen. The other part of (3) is proved by the similar way.

(4) Since mpint(A) is m-preopen and mpcl(A) is m-preclosed, the proofs are
obvious.

(5) X\mpint(A) = X\U {G: G < A, Gism-preopen}=nN {X\G:G € A,G is m-
preopen}= N {X\G: X\A € X\G, X\G is m-preclosed} = mpcl(X\A). By the similar
way, we have mpint(X\A) = X\mpcl(4).

The converse implication of (2) in Theorem 4.3.2 may not be true as shown in

the following example.

Example 4.3.4: Let X =1{1,2,3} and let my = {0, X,{1,2},{2,3}} be a
minimal structure on X. Then, MPO(X) = {0, X,{2},{1,2},{2,3},{1,3}}. Consider
A = {1} and B = {2,3}, then mpint(4) = ® < mpint(B) = {2,3} and mpcl(4) =
{1} c mpcl(B) = X but A € B.
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Theorem 4.3.3: Let (X, my) be a space with a minimal structure my on X and
A C X.Then
(1) x € mpcl(A) if and only if AnG +# @ for every m-preopen set G
containing Xx.
(Min and Kim, 2009)

(2) x € mpint(A) if and only if there exists an m-preopen set U containing x
such that U < A.

Proof:

(1) The proof is similar to that of Theorem 4.1.3(1).

(2) Assume that there exists an m-preopen set U containing x such that U < A.
Since U € mpint(A) € A and x € U, we have x € mpint(A). The other part of (2)

is clear from the definition of m-pre-interior.

4.4 m-B-Open Sets

Definition 4.4.1: Let (X, my) be a space with a minimal structure my on X. A
subset A of X is called an m-B-open set if A € mcl(mint(mcl(A))). The
complement of an m-fB-open set is called an m-g-closed set. The family of all m-S-
open sets in X is denoted by MBSO (X).

(Vasques et. al., 2011)

Remark 4.4.1: If the minimal structure my on a given non-empty set X is a
topology, then an m-S-open set is S-open set.
(Nasef and Roy, 2013)

Proposition 4.4.1: Let (X, my) be a space with a minimal structure my on X.
Then,
(1) Every m-preopen set is m--open.

(2) Every m-semiopen set is m--open.
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Proof:

(1)Let A be m-preopen set. Then, A< mint(mcl(4)) <
mcl(mint(mcl(A))). Hence, A is m-B-open.

(2) Let A be m-semiopen set. Since A S mcl(A), we have AC

mcl(mint(A))Smcl(mint(mcl(A))). Thus, A is m-B-open.

The following example shows that the converse implication of (1) and (2) of

Proposition 4.4.1 may not be true.

Example 4.4.1: Let X = {1, 2, 3,4}and letmy = {0, X, {1, 2,3},{3,4},{2}} be a
minimal structure on X. Consider A = {1, 2} and B = {1, 4}, then A and B are m-f3-

open but A is not m-preopen and B is not m-semiopen.

The following remark follows from Proposition 4.4.1, Remark 4.2.2 and
Remark 4.3.2.

Remark 4.4.2: Every m-open set is m-£-open.
(Nasef and Roy, 2013)

Lemma 4.4.1: Let (X, my) be a space with a minimal structure my on X and
A € X. Then, Ais an m-B-closed if and only if mint(mcl(mint(A)) < A.
(Nasef and Roy, 2013)

Proof: The proof is done by the similar way of Lemma 4.1.1 by using Lemma
3.1(2).

Theorem 4.4.1: Let (X, my) be a space with a minimal structure my on X. Any
union of m-f-open sets is m-B-open.

(Nasef and Roy, 2013)
Proof: It is similar to that of Theorem 4.1.1.
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The following example shows that the intersection of any two m-f-open sets

may not be m--open set.

Example 4.4.2:Let (X, my) be a space with a minimal structure my on X as in
Example 4.2.2. Consider A = {1,3} and B = {3,4}, then A and B are m-f-open but
{1,3} n {3,4} = {3} is not m-B-open.

Definition 4.4.2:Let (X, my) be a space with a minimal structure my on X.
For a subset A of X, the m-B-closure of A and m-g-interior of A are denoted by
mpcl(A) and mpBint(A), respectively, are defined as the following;
mpBcl(A) =n{F: A € F,Fis m-B-closed in X}
mpint(A) =U {G:G < A, G is m-£-open in X}
(Nasef and Roy, 2013)

Theorem 4.4.2: Let (X, my) be a space with a minimal structure my on X and
A,B,F € X. Then;
(1) mBint(A) € Aand A € mfcl(A).
(2) If A <€ B, then mpBint(A) € mpBint(B) and mBcl(A) € mpBcl(B).
(3) Ais m-gB-open iff mBint(A) = A and F ism-B-closed iff mBcl(F) = F.
(4) mBint(mpBint(A)) = mpPint(A) and mBcl(mpBcl(A)) = mpBcl(A).
(5) mBcl(X\A) = X\mpint(A) and mBint(X\A) = X\mpcl(A).
(Nasef and Roy, 2013)

Proof:

The proofs of (1) and (2) are obvious from the definitions of m-B-interior and
m-B-closure.

(3) If A is m-B-open, the proof is obvious. Let mpBint(A) = A. By Theorem
4.4.1, A is m-B-open. Using similar way, the second part is proved.

(4) Since mpint(A) is m-f-open and mpBcl(A) is m-f-closed, the proofs are
obvious by (3).
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(5) X\mpint(4A) = X \U{G:G S A, G is m-f-open}=
=N {X\G:G S A, G is m-f-open}=n {X\G: X\A € X\G, X\G is m-B-closed}
=mpcl(X\A). By the similar way, we can proved mpBint(X\A) = X\mpcl(A).

The following example shows that the converse of (2) in Theorem 4.4.2 is not

true, in general.

Example 4.4.3: Let X = {a, b, c} and let my = {@, X, {a, b}, {b, c}} be a minimal
structure on X. Then, MBO(X) = {®, X, {a, b}, {a, c}, {b, c}, {b}}. Consider A = {a}
and B = {b, c}, then mBint(A) = @ <€ mBint(B) = {b, ¢} and mBcl(A) = {a} c
mpcl(B) =X but A £ B.

Theorem 4.4.3: Let (X, my) be a space with a minimal structure m,, on X and
A c X.Then,

(1) x e mBcl(A) if and only ifA N G # @ for every m-fB-open set G containing

(2) x € mpBint(A)if and only if there exists an m-fB-open set U containing X

such that U < A.
(Nasef and Roy, 2013)

Proof: The proofs are similar to that of Theorem 4.1.3.
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S5.DIFFERENT KINDS OF CONTINUITIES BETWEEN SPACES WITH
MINIMAL STRUCTURES

5.1. M-a-Continuity

Definition 5.1.1: Let f: (X, my) — (Y, my) be a function betweeen two spaces
X and Y with minimal structures my and my, respectively. Then f is said to be M-a-
continuous if for each x and each m-open set V containing f(x), there exists an m-a-

open set U containing x such that f(U) € V.

(Min, 2010)

Remark 5.1.1: Let f:(X,myx)— (Y,my) be an M-a-continuous function
betweeen two spaces X and Y with minimal structures myand my, respectively. If
the minimal structures my and my are topologies on X and Y, respectively, then f is
a-continuous.

(Min, 2010)

Proposition 5.1.1: Every M-continuous function is M-a-continuous.

(Min, 2010)

Proof: Since every m-open set is m-a-open, the proof is obvious.

The following example shows that the converse of Proposition 5.1.1 is not true,

in general.

Example 5.1.1: Let X = {a,b,c,d} and Y = {1, 2, 3}. Consider two minimal
structures defined as follows my = {@, X, {a}, {a, c,d}}, my = {@,Y,{1,2}} on X and
Y, respectively. Let f: (X, my) — (Y, my) be a function defined by f(a) = 1, f(b) =
f(c) =2and f(d) = 3. Then f is M-a-continuous but not M-continuous.
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Theorem 5.1.1: Let f: (X, my) - (Y, my) be a function betweeen two spaces
X and Y with minimal structures myand my,respectively. Then following are
equivalent:

(1) f is M-a-continuous,

(2) £~1(V) is an m-a-open set for each m-openset V inY,

(3) f~1(B) is an m-a-closed set for each m-closed set B in Y,

(4) f(macl(4)) € mcl(f(A)) for A € X,

(5) macl(f~Y(B)) € f*(mcl(B)) forB C Y,

(6) f~Y(mint(B)) € maint(f~1(B))forB C Y.

(Min, 2010)

Proof :

(1) = (2) Let V be an m-open set in Y and x € f~1(V). Since f isM-a-
continuous, there exist an m-a-open set U containing x such thatf(U) € V. So,
x €U f~Y(V) forall x € f~1(V). Thus, f~1(V) is m-a-open since any union of

m-a-open sets is m-a-open.

(2) = (3) Let B be an m-closed set in Y. Then Y\B is m-open in Y. By (2),
f~Y(Y\B) = X\f~1(B) is m-a-open. Hence, f ~1(B) is m-a-closed.

(3) = (4) Let A< X. Then, mcl(f(A))) =N{F € Y,f(A) € FandF is m-
closed}. So, f~Y(mcl(f(A)) =n{f"Y(F)c X:Ac f~Y(F) and f~1(F) is m-a-
closed} 2 macl(A). Thus,f (macl(A4)) € mcl(f(4)).

(4)=(5) Let B € Y. By (4), we have f(macl(f~1(B))) € mel(f(f~(B))) €
mcl(B). Thus, macl(f~1(B)) € f~1(mcl(B)).

(5) = (6) Let B € Y. Then,f~'(mint(B)) = f~1(Y\mcl(Y\B)) =
X\f " Y(mcl(Y\B)). Since, macl(f~1(Y\B)) € f1(mcl(Y\B)) by (5), we have
f~Y(mint(B)) € X\macl(f 1(Y\B)) = maint(f ~1(B)).
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(6)=(1) Let V be an m-open set containingf(x). By (6),we have
fY(mint(V)) € maint(f~1(V)). From Lemma3.1(2), x € f~1(mint(V)). Thus,
x € maint(f~1(V)). By Theorem 4.1.3(2), there exists an m-a-open set U

containing x such U € f~1(V). Hence f is M-a-continuous.

Lemma 5.1.1: Let (X, my) be a space with a minimal structure my on X and A € X.
Then;
(1) mcl(mint(mcl(A))) €S mcl(mint(mcl(macl(A))) € macl(A).
(2) maint(A) € mint(mcl(mint(maint(A)))) € mint(mcl(mint(A4))).
(Min, 2010)

Proof:

(1) Let A < X. Since macl(A) is an m-a-closed, mcl(mint(mcl(macl(A4))) <
macl(A) by Lemma 4.1.1. Furthermore, we have mcl(mint(mcl(A)) S
mcl(mint(mcl(macl(A))) since A € macl(A).

(2) Let A < X. Since maint(A) = X\macl(X\A), the proof is obvious.

Theorem 5.1.2: Let f: (X,my) — (Y, my) be a function betweeen two spaces
X and Y with minimal structures my and my,respectively. Then, the following are
equivalent:
(1) f is M-a-continuous,
(2) fF~Y(V) € mint(mcl(mint (f~1(V)))) for each m-opensetVinY,
(3) mcl(mint(mcl(f~1(F)))) € f~1(F) for each m-closed set Fin Y,
@) f (mcl(mint(mcl(A))) € mcl(f(A) for A C X,
(5) mcl(mint(mcl(f~1(B))) € f~1(mcl(B)) forB C Y,
(6) f~Y(mint(B)) € mint(mcl(mint(f~1(B))))forB C Y.
(Min, 2010)

Proof:
(1) & (2)From Theorem 5.1.1 and definition of m-a-open set, the proof is

clear.
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(2) & (3) From Theorem 5.1.1 and Lemma 4.1.1, the proof is obvious.

(3) = (4) Let A € X. By Theorem 5.1.1(4), we have f(macl(A)) S
macl(A). Then, by Lemma 5.1.1(1), we get mcl(mint(mcl(A))) S macl(A). Thus,

mcl (mint(mcl(A))) C macl(A) € f~1(mcl(f (4)). Hence,

f(mcl(mint(mcl(A))) € mcl(f(A)).

(4)=(5)Let B C Y.Then,f~1(B) € X. By(4), f(mcl(mint(mcl(f~1(B))) €
mcl(F(f~X(B))) € mcl(B).Hence mcl(mint (mcl(f-l(B))) c f-1(mcl(B)).

(5)=>(6) Let BCY. Then, f-'(mint(B)) = f - (Y\mcl(Y\B)) =
X\f~(mcl(Y\B)). Since by (5), we have mcl(mint (mcl(f~'(Y\B)))) =

fi(mcl(Y\B)), we get f~(mint(B)) < X\mcl(mint(mcl(f~*(Y\B))))
mint(mcl (mint(f‘l(B)))).
(6)=(1) Let V be an m-open set in Y. Since mint(V) =V,f~1(V) =

f~Ymint(V)) € mint(mcl(mint(f~1(V))) from (6). Thus, f is M-a-continuous
by (2).

5.2 M-Semicontinuity

Definition 5.2.1: Let f: (X,myx) — (Y, my) be a function between two spaces
X and Y with minimal structures my and my, respectively. Then f is said to be M-
semicontinuous if for each x and each m-open set V contining f(x), there exists an

m-semiopen set U containing x such that f(U) S V.
(Min, 2009)

Remark 5.2.1: Let f:(X,my) — (Y,my) be an M-semicontinuous function

between two spaces X and Y with minimal structures my and my, respectively. If the
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structures my and m, are topologies on X and Y, respectively, then f is
semicontinuous.
(Min,2009)

Proposition 5.2.1: Every M-a-continuous function is M-semicontinuous.

Proof: The proof is obvious since every m-a-open set is m-semiopen.

The following example shows that the converse of Proposition 5.2.1 may not be

true.

Example 5.2.1: Let X ={a,b,c} and Y = {1,2}. Consider two minimal
structures defined as follows my = {@,X, {a},{c}} and my = {@,Y,{1}} on X and Y,
respectively. Let f:(X,m,) — (Y, my) be a function defined by f(a) = f(b) =1

and f(c) = 2. Then, fis M-semicontinuous but not M-a-continuous.

The following remark follows from Proposition 5.1.1 and Proposition 5.2.1.

Remark 5.2.2: Every M-continuous function is M-semicontinuous
(Min,2009)

Theorem 5.2.1: Let f: (X, myx) — (Y, my) be a function between two spaces X
and Y with minimal structures my and my, respectively. Then the following are
equivalent:

(1) f is M-semicontinuous,

(2) f~X(V) is m-semiopen for each m-open set V inY,

(3) f~1(B) is m-semiclosed for each m-closed set B inY,

(4) f(mscl(A)) € mcl(f(A)) forA c X,

(5) mscl(f~Y(B) € f~Y(mscl(B)) forB C Y,

(6) f~1(mint(B)) € msint(f~Y(B))forB C Y.

(Min, 2009)
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Proof:
(1)=(2) Since any union of m-semiopen sets is m-semiopen, the proof is

obvious.

(2)=(3) Let B be an m-closed set in Y. Then, Y\B is m-open. From
(2),f"Y(Y\B) = X\f~1(B) is m-semiopen. Thus, f~1(B) is m-semiclosed.

(3)=(4) LetA < X. Since, mcl(f(4)) =n{FcY:f(A) < Fand Fis m-
closed}, then £~ (mcl(f(A))) =N {f~(F) S X:A S f~'(F) and f*(F) is m-

semiclosed}2 mscl(A). Hence, mcl(f(A)) 2 f(mscl(A)).

(4)=(5) LetB < Y. From (4), we get f(mscl(f~X(B))) € mcl(f(f~1(B))) <
mcl(B). Thus, mscl(f~*(B)) € f~(mcl(B)).

(5)=(®6) LetBcyY. Then, f~Y(mint(B)) = f"Y(Y\mcl(Y\B)) =
X\f~Y(mcl(Y\B)). By hypothesis, f~t(mint(B)) < X\mscl(f~1(Y\B)) =
msint(f~1(B)).

(6)=(1) Let V be an m-open set containing f(x). From (6), we get
f 1 (mint(V)) € msint(f~1(V)). Since V =mint(V) by Lemma 3.1(2), then
x € f~Y(mint(V)). Therefore, x € msint(f~*(V)). So, there exists an m-semiopen
set Ucontaining x such that U € f~1(V) from Theorem 4.2.3(2). Thus, f is M-

semicontinuous.

Lemma 5.2.1: Let (X, my) be a space with a minimal structure my on X and
A C X.Then

(1) mint(mcl(A)) € mint(mcl(mscl(4))) € mscl(4).
(2) msint(A) € mcl(mint(msint(4))) S mint(mcl(A4)).
(Min,2009)
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Proof:

(1) LetA<c X. Since mscl(A) is m-semiclosed, by Lemma 4.2.1,
mint(mcl(mscl(A))) € mscl(A). Also, since A C mscl(A), we have
mint(mcl(4)) € mint(mcl(mscl(4))).

(2) 1t is obvious by Theorem 4.2.2(5).

Theorem 5.2.2: Let f: (X,my) — (Y, my) be a function between two spacesX
and Y with minimal structures my and my, respectively. Then, the following are
equivalent:

(1) f is M-semicontinuous,

(2) £71(V) € mel(mint(f~(V))) for each m-open set Vin Y,
(3) mint (mcl(f‘l(F))) c f~I(F) for each m-closed set F in Y,
@) f (mint(mcl(A))) c mcl(f(A)) for A € X.

(5) mint(mcl(f~*(B))) € f~ (mcl(B)) for B C Y.

(6) f~(mint(B)) € mcl(mint(f~*(B))) for B c Y.
(Min,2009)

Proof:

(1)&(2) By Theorem 5.2.1 and definition of m-semiopen set, the proof is
obvious.

(1)<=(3) Itis clear from Theorem 5.2.1 and Lemma 4.2.1.

(3)=(4) Let Ac X. By Theorem 5.2.1(4) and Lemma 5.2.1(1), we have
mint(mcl(A)) C mscl(A) c 1 (mcl(f(A))). Thus, f(mint(mcl(A4)) <

mcl(f(A)).

(4)=(5) Let BcY. From (4), we get
f(mint(mcl(f~2(B))) € mcl(f(f~1(B)) € mcl(B). So, mint(mcl(f~1(B))

f~H(mel(B)).

(5)=(6) Let B < Y. Since mint(B) = Y\mcl(Y\B), the proof is obvious.
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(6)=(1) Let V be an m-open set in Y. Since V is m-open, we have f~1(V) =

f(mint(V)) € mcl(mint(f~1(V))) by (6). Thus, f is M-semicontinuous via (2).
5.3 M-Precontinuity

Definition 5.3.1: Let f: (X, myx) — (Y, my) be a function between two spaces
X and Y with minimal structures my and my, respectively. Then f is said to be M-
precontinuous if for each x and each m-open set V contining f (x), there exists an m-

preopen set U containing X such that f(U) & V.
(Min and Kim, 2009)

Remark 5.3.1: Let f:(X,myx) — (Y,my) be an M-precontinuous function
between two spaces X and Y with minimal structures my and my, respectively. If the
minimal structures my and my are topologies on X and Y, respectively, then f is

precontinuous.
Proposition 5.3.1: Every M-a-continuous function is M-precontinuous.
Proof: Since every m-a-open set is m-preopen, it is clear.

The following example shows that the converse of Proposition 5.3.1 is not true,

in general.

Example 5.3.1:Let X ={a,b,c} and Y ={1,2,3}. Consider two minimal
structures defined as my = {®@, X, {a, b}, {b,c}} andm, = {@,Y,{2}} on X and Y,
respectively. Let f:(X,my) — (Y,my) be a function defined by f(a) = f(c) =

2, f(b) = 1. Then,f is M-precontinuous but not M-a-continuous.

The following remark follows from Proposition 5.1.1 and Proposition 5.3.1
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Remark 5.3.2: Every M-continuous function is M-precontinuous.

(Min and Kim, 2009)

Remark 5.3.3: M-precontinuity and M-semicontinuity are independent of each
other.

(Min and Kim, 2009)

Example 5.3.2:

(1) Consider Example 5.3.1., then f is M-precontinuous but not M-
semicontinuous.

(2) Let X ={1,2,3,4} and Y ={a,b}. Consider two minimal structures
my = {0,X,{1},{4}} and m, ={0,Y,{a},{b}} on X and Y, respectively. Let
f:(X,myx) — (Y, my) be a function defined by f(1) = f(2) = f(3) = a andf (4) =

b. Then, f is M-semicontinuous but not M-precontinuous.

Theorem 5.3.1: Let f: (X, my) — (Y, my) be a function between two spaces X
and Y with minimal structures my and my, respectively. Then following are
equivalent:

(1) f is M-precontinuous,

(2) f~Y(V)is an m-preopen set for each m-openset VinY,

(3) f~1(B)is an m-preclosed set for each m-closed set B in Y,

(4) f(mpcl(A)) € mcl(f(A)) forA c X,

(5) mpcl(f~Y(B)) € f~Y(mcl(B)) forB CY,

(6) f~1(mint(B)) € mpint(f~}(B))forB C Y.

(Min and Kim,2009)

Proof :
(1)=(2) By Theorem 4.3.1, it is obvious.

(2)=(3) It is similar to that of Theorem 5.2.1.
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(3)=(4) Let A < X. Then, we havef " 1(mcl(f(4))) = f"Y(n{FCY,f(A) <
F and F is m-closed}) 2N {H S X:AcH and H is m-preclosed} = mpcl(A).
Thus,f (mpcl(A)) € mcl(f (4)).

(4)=(5) Let B C Y. By(4), we have f(mpcl(f~*(B))) € mel(f(f~*(B))) <
mcl(B). So, we obtain mpcl(f~1(B)) € f~1(mcl(B)).

(5)=(6) Let BCY. Since, mint(B) = Y\mcl(Y\B), we
have f~1(mint(B)) = X\f~*(mcl(Y\B)).Then,
f~Y(mint(B)) € mspint(f ~1(B)) by (5) and Theorem 4.3.2(5).

(6)=(1) It follows from Theorem 4.3.3(2) and Lemma 3.1(2).

Lemma 5.3.1: Let (X, my) be a space with minimal structure my on X and
A c X. Then;
(1) mcl(mint(A)) € mcl(mint(mpcl(A)) € mpcl(4)).
(2) mpint(A) € mint(mcl(mpint(A))) € mint(mcl(A))).
(Min and Kim,2009)

Proof:

(I)Let AcX. Since mpcl(A) is m-preclosed, by Lemma
4.3.1, mcl(mint(mpcl(A)) € mpcl(A). Also, we havemcl(mint(A)) <
mcl(mint(mpcl(A)))since A € mpcl(A).

(2) Itis similar to the proof of (1) since mpint(X\A) = X\mpcl(A) for A € X.

Theorem 5.3.2:Let f: (X, my) — (Y, my)be a function between two spaces X

and Y with minimal structure my and my, respectively. The following are equivalent:

(1) f is M-precontinuous,
(2) f~1(V) € mint(mcl(f~1(V)))) for each m-opensetVinY,
(3) mcl(mint(f~1(F))) € f~1(F) for each m-closed set Fin Y,
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(4) f (mcl(mint(A)) € mcl(f(A)) for A € X,
(5) mcl(mint(f~Y(B)) € f~Y(mcl(B)) forBC Y,
(6) f~1(mint(B)) € mint(mcl(f~1(B)))forB CY.
(Min and Kim, 2009)

Proof: The proofs are similar to the proof of Theorem 5.2.2.

5.4 M-B-Continuity

Definition 5.4.1:Let f: (X,myx) — (Y, my) be a function between two spaces
X and Y with minimal structures my and my, respectively. Then f is said to be M-3-
continuous if for each x and each m-open set V containing f(x),there exists an m-f-

open set Ucontaining x such that f(U) c V.

(Nasef and Roy, 2013)

Remark 5.4.1: Let f:(X,myx) — (Y,my) be an M-S-continuous function
between two spaces X and Y with minimal structures my and my, respectively. If the
minimal structures my and myare topologies on X and Y, respectively, then f is -
continuous.

(Nasef and Roy,2013)

Proposition 5.4.1:

(1) EveryM-semicontinuous function is M-£-continuous.

(2) Every M-precontinuous function is M-£-continuous.

Proof: From Proposition 4.4.1, the proofs are obvious.

The following examples illustrate that the converse implications of (1) and (2)

of Propositon 5.4.1 may not be true.
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Examples 5.4.1:

(1) Consider Example 5.3.1., thenf is M-B-continuous but not M-
semicontinuous.

(2) Consider Example 5.3.2(2).,then f is M-f-continuous but not M-

precontinuous.

The following remark follows from Proposition 5.4.1., Remark 5.2.2 and
Remark 5.3.2.

Remark 5.4.2: Every M-continuous function is M-f-continuous.

(Nasef and Roy, 2013)

Theorem 5.4.1: Let f: (X,my) — (Y, my) be a function between two spaces X
and Y with minimal structures myandmy respectively. Then the following are
equivalent:

(1) f is M-B-continuous,

(2) f~1 (V) is m-B-open for each m-opensetV in Y,
(3) £~1 (F) is m-B-closed for each m-closed set F in Y,
(4) f(mBcl(A)) < mcl(f(4)) for A c X,

(5) mBel(f~*(B)) € f~*(mcl(B)) for B €Y,

(6) f~1(mint(B)) € mPBint(f~1(B)) forB CY.
(Nasef and Roy, 2013)

Proof:
(1)=(2) It follows from Theorem 4.4.1.

(2)=(3) Let F be an m-closed set in Y. By (2), f~1(Y\F) = X\f "}(F) is m-
B-open. Hence, f~1(F) is m-pB-closed.
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(3)=(4) Let A € X. Then, we have f~Y(mcl(f(A))=f X (n{FcY:f(4A) <
F and F is m-closed in YD) =n{f"Y(F)cX:Ac f~1(F) and f~1(F) is m--
closed in X} 2 mpBcl(A). Thus mcl(f (A)) 2 f(mpBcl(A)).

(4)=(5) LetB CY. By (4), we have
fmBcl(f~(B))) € mcl(f(f ' (B))) &€ mcl(B). Thus mpcl(f~1(B))
f1(mcl(B)).

(5)=>(6) Let B C Y. By (5), we get mBint(f~1(B)) = X\mBcl(f~1(Y|B)) 2
X\f~H(mcl(Y\B)) = f ' (Y\mcl(Y\B)) = f~'(mint(B)).

(6)=(1) Let V be an m-open set containing f(x). By Lemma 3.1(2) and (6),
x € mpint(f~1(V)). Therefore, there exists an m-£-open set U containing x such
that U < f~1(V ) from Theorem 4.4.3(2). Hence, f is M-B-continuous.

Lemma 5.4.1: Let (X, my) be a space with a minimal structure my on X and
A € X.Then;

(i) mint(mcl(mint(A4))) € mint(mcl(mint(mfBcl(A)))) € mpBcl(A).

(ii) mBint(A) € mcl(mint(mcl(mpBint(A4)))) € mint(mcl(A)).

(Nasef and Roy, 2013)

Proof:
(i) It follows from Lemma 4.4.1.

(i) It is obvious since mpBint(X\A) = X\mpfcl(A) for A € X from Theorem
4.4.2(5).

Theorem 5.4.2: Let f : (X,myx) — (Y, my) be a function between two spaces
X andY with minimal structures my and my, respectively. Then the following

areequivalent:

36



(1) f is M-B-continuous,

(2) f71(V) € mcl(mint(mcl(f~(V )))) for each m-open set Vin Y,
(3) mint(mcl(mint(f~1(F)))) € f~1(F) for each m-closed set F in Y,
(4) f (mint(mcl(mint(A)))) € mcl(f(4)) forA < X,

(5) mint(mcl(mint(f~(B)))) < f~'(mcl(B))forB <Y,

(6) f~L(mint(B)) S mcl(mint(mcl(f~*(B)))) forB Y.

(Nasef and Roy, 2013)

Proof:

(1)<(2) The proof is obvious from Theorem 5.4.1 and the definiton of m-f-

open set.

(1)&(3) By Theorem 5.4.1 and Lemma 4.4.1, it is clear.

(3)=(4) Let Ac X. By Theorem 5.4.1(4) and Lemma 5.4.1(1), we have
mint(mcl(mint(4))) € mBcl(A) € f~1(mcl(f(A))).Thus,

f (mint(mcl(mint(A)))) < mcl(f(4)).

(4)=(5) Let B < Y. Since (4), we obtain f(mint(mcl(mint(f~*(B))) <
mel(f(f~1(B))) € mcl(B). Hence,mint(mcl(mint(f ~*(B))) € f~*(mcl(B)).

(5)=(6) Itis clear.

(6)=(1) Let V be an m-open set in Y. Then by (6), we havef~1(V) =
f~Y(mint(V)) € mcl(mint(mcl(f~1(V)))). Hence, f is M-B-continuous.
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6. CONCLUSION

In this thesis, first spaces with minimal structures are introduced and properties
of m-interior and m-closure operators are investigated. Then, the definitions of m-a-
open set, m-semiopen set, m-preopen set and m-p-open set are given. Related
properties are investigated and relationships between eachother are shown in the

following diagram.

m-open ——» M-o-0pen m-p-open

/ e \
\ m-semiopen /

Also, examples are given to show that opposite implications in the diagram do
not hold. Besides, m-a-continuity, m-semi-continuity, m-pre-continuity and m-p-
continuity are dealt. Investigating the transitions between those functions and
relationships between M-continuous functions and continuity types above the
following is obtained.

m-pre-continuous

m-continuous —— m-a-continuous m-B-continuous

\ m-semi-continuous /

The converse implications in the diagram are shown to be not true by given
examples.
For a further research, one can defined distinct types of sets and different types

of continuity in spaces with minimal structures.
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