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ABSTRACT 
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This thesis consists, essentially, of five chapters. 

In the first chapter, the topic of the thesis is introduced and in the second 

chapter, in order to clarify the reading of the thesis, some types of open sets and some 

types of continuity in topological spaces are introduced. 

In the third chapter, after giving necessary knowledge on spaces with minimal 

structures the interior and closure operators’ properties are investigated in those 

spaces. 

In the fourth chapter, we point out different kinds of open sets’ definitions and 

their properties in these spaces. Also, while studying relationships between these sets 

a number of original illustrating examples are given. 

In final chapter, we deal with some types of continuity between spaces with 

minimal structures and we examine the their fundamental properties and relations 

between each other. 

 

Keywords:𝑚-structure, 𝑚-open sets, 𝑚-α-open sets, 𝑚-semiopen sets, 𝑚- preopen 

sets, 𝑚-β-open sets, M-continuity, M-α-continuity, M-semicontinuity, M-

precontinuity, M-β-continuity. 
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ÖZET 

MİNİMAL YAPILI UZAYLARDA BAZI SÜREKLİLİK TÜRLERİ 

İlay BALKAN 

Yüksek Lisans Tezi, Matematik Bölümü 

Tez Danışmanı: Yrd. Doç. Dr. Esra DALAN YILDIRIM 

Ocak 2016, 41 sayfa 

Bu tez esas olarak beş bölümden oluşmaktadır. 

Birinci bölümde tez konusu tanıtılmış, ikinci bölümde ise tezin anlaşılabilir 

olması için topolojik uzaylardaki bazı açık küme türleri ve bazı süreklilik türleri 

tanıtılmıştır. 

Üçüncü bölümde, minimal yapılı uzaylar üzerine bilgi verilerek bu uzaylardaki 

iç ve kapanış operatörlerinin özellikleri incelenmiştir. 

Dördüncü bölümde, minimal yapılı uzaylardaki çeşitli açık küme türlerinin 

tanımlarına ve temel özelliklerine yer verilmiştir. Ayrıca, bu kümeler arasındaki 

ilişkiler incelenerek çalışma özgün örneklerle desteklenmiştir. 

Son bölümde minimal yapılı uzaylar arasındaki bazı süreklilik türleri ele 

alınarak bunların temel özellikleri ve birbirleriyle ilişkileri çalışılmıştır. 

Anahtar sözcükler: m-yapı, m-açık kümeler, m-α-açık kümeler, m-yarıaçık kümeler, 

m-ön açık kümeler, m-β-açık kümeler, M-süreklilik, M-α-süreklilik, M-yarısüreklilik, 

M-önsüreklilik, M-β-süreklilik. 
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1.INTRODUCTION 

Maki (1996) introduced the concept of minimal structure which is more general 

than a topology, and using this concept he defined spaces with minimal structure. 

Moreover, he studied properties of closure and interior operators defined in those 

spaces. Then, Popa and Noiri (2000) defined M-continuous function’s concept 

between spaces with minimal structures and obtained some characterizations and 

aspects of these functions. On the other hand, they gave the definitions of m-

compactness and m-connectedness together with their properties. 

Many mathematicians have defined some types of open sets and continuities 

which are generalizations of m-open sets and 𝑀-continuity, in spaces with minimal 

structures. 

Min (2009) defined the concepts of m-semiopen sets, m-semi-interior and m-

semi-closure operators; Min and Kim (2009) defined the concepts of m-preopen sets, 

m-pre-interior and m-pre-closure operators; Min (2010) defined the notions of m-α-

open sets, m-α-interior and m-α-closure operators, and Nasef and Roy (2013) defined 

the concepts of m-β-open sets, m-β-interior and m-β-closure operators; and also they 

investigated some their fundamental properties. 

Furthermore, people above have introduced M-semi-continuous, M-pre-

continuous, M-α-continuous and M-β-continuous functions, and they obtained some 

characterizations of them. Then, they investigated the relationships between M-

continuity and these new concepts. 

In this thesis, we closely read all papers mentioned and provided original 

examples, and also proved where we encountered a gap given in the paper. 
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2.PRELIMINARIES 

Throughout this chapter necessary topics are given. 

Definition2.1:Let (𝑋, 𝜏) be a topological space and 𝐴 ⊆ 𝑋. 

 

a) A is called an α-open setif 𝐴 ⊆ 𝐼𝑛𝑡(𝐶𝑙(𝐼𝑛𝑡(𝐴)))      (Njastad, 1965) 

 

b) A is called semi-open set if 𝐴 ⊆ 𝐶𝐼(𝐼𝑛𝑡(𝐴))        (Levine, 1963)  

 

c) A is called pre-open set if𝐴 ⊆ 𝐼𝑛𝑡(𝐶𝐼(𝐴))                   (Mashhour et al.,1982) 

 

d) A is called β–open if 𝐴 ⊆ 𝐶𝐼(𝐼𝑛𝑡(𝐶𝐼(𝐴)))          (Abd El-Monsef et al. 1983) 

 

The family of all α-open(semi-open, pre-open, β-open) sets in X is 

denoted by α(X)(SO(X), PO(X),β(X)). 

Definition 2.2: Let (𝑋, 𝜏) be a topological space and 𝐴 ⊆ 𝑋. 

(1) The complement of an α-open set is said to be α-closed.  

(Mashouret al, 1983) 

(2) The complement of a semi-open set is said to be semi-closed. 

(Crossley and Hildebrand, 1971) 

(3) The complement of a pre-open set is said to be a pre-closed. 

(El-Deeb et al,1983) 

(4) The complement of a β-open set is said to be a β-closed.  

(Abd El- Monsef et al,1983) 

Definition 2.3: Let (𝑋, 𝜏) and (𝑌, 𝜎) be two topological spaces, and let 

𝑓: (𝑋, 𝜏) ⟶ (𝑌, 𝜎) be a function. 

a) 𝑓 is called 𝛼-continuous if for each 𝑥 ∈ 𝑋 and each open set 𝑉 of 𝑌 

containing 𝑓(𝑥), there exists an𝛼-open set 𝑈 of 𝑋 containing 𝑥 such that 𝑓(𝑈) ⊆ 𝑉.                      

(Mashhour, et al. 1983) 
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b) 𝑓 is called 𝑠𝑒𝑚𝑖-continuous if for each 𝑥 ∈ 𝑋 and each open set 𝑉 of 𝑌 

containing 𝑓(𝑥), there exists a 𝑠𝑒𝑚𝑖-open set 𝑈 of 𝑋 containing 𝑥 such that 𝑓(𝑈) ⊆

𝑉.     

(Levine, 1963) 

 

c) 𝑓 is called 𝑝𝑟𝑒-continuous if for each 𝑥 ∈ 𝑋 and each open set 𝑉 of 𝑌 

containing 𝑓(𝑥), there exists a 𝑝𝑟𝑒-open set 𝑈 of 𝑋 containing 𝑥 such that 𝑓(𝑈) ⊆ 𝑉. 

(Mashhour, et al. 1982) 

 

d) 𝑓 is called 𝛽-continuous if for each 𝑥 ∈ 𝑋 and each open set 𝑉 of 𝑌 

containing 𝑓(𝑥), there exists a 𝛽-open set 𝑈 of 𝑋 containing 𝑥 such that 𝑓(𝑈) ⊆ 𝑉.                 

(Abd El-Monsef et al., 1983) 
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3. MINIMAL STRUCTURES 

Definition 3.1: A subfamily 𝑚𝑋 of the power set ℘(𝑋) of a nonempty set 𝑋 is 

called a minimal structure (briefly m-structure) on 𝑋 if, 

 Ø ∈ 𝑚𝑋 and 𝑋 ∈ 𝑚𝑋. 

We denote a nonempty set 𝑋 with a minimal structure 𝑚𝑋 on it by (𝑋, 𝑚𝑋). 

Each member of 𝑚𝑋 is said to be 𝑚𝑋-open (briefly 𝑚-open) set and the complement 

of an 𝑚𝑋-open set is said to be 𝑚𝑋-closed (briefly 𝑚-closed) set.  

(Maki,1996 and Popa and Noiri, 2000) 

 

Remark 3.1: Let (𝑋,τ) be a topological space. Then, the families 

𝜏, 𝛼(𝑋), 𝑆𝑂(𝑋), 𝑃𝑂(𝑋) and 𝛽(𝑋) are all minimal structures on X. 

(Popa and Noiri, 2000) 

  

Definition 3.2: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on 𝑋. For a 

subset 𝐴 of 𝑋, the 𝑚-closure of 𝐴 and the 𝑚-interior of 𝐴, denoted by 𝑚𝑐𝑙(𝐴) and 

𝑚𝑖𝑛𝑡(𝐴), respectively, are defined as follows: 

    𝑚𝑐𝑙(𝐴) = ⋂{𝐹: 𝐴 ⊆ 𝐹, 𝑋 𝐹⁄ ∈ 𝑚𝑋} 

    𝑚𝑖𝑛𝑡(𝐴) = ⋃{𝐺: 𝐺 ⊆ 𝐴, 𝐺 ∈ 𝑚𝑋} 

(Maki,1996) 

 

Example 3.1: Let 𝑋 = {𝑎, 𝑏, 𝑐} and let 𝑚𝑋 = {Ø, X, {a, b}, {b, c}} be a minimal 

structure on 𝑋. Consider the set𝐴 = {𝑎, 𝑏} in 𝑋. Then, we have 𝑚𝑐𝑙(𝐴) = 𝑋 and 

𝑚𝑖𝑛𝑡(𝐴) = {𝑎, 𝑏}. 

  

Lemma 3.1: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on 𝑋. For 

𝐴, 𝐵 ⊆ 𝑋, the following hold: 

(1) 𝑚𝑐𝑙(𝑋\𝐴) = 𝑋\𝑚𝑖𝑛𝑡(𝐴) and 𝑚𝑖𝑛𝑡(𝑋\𝐴) = 𝑋\𝑚𝑐𝑙(𝐴), 

(2) If (𝑋\𝐴) ∈  𝑚𝑋, then 𝑚𝑐𝑙(𝐴) = 𝐴 and if 𝐴 ∈ 𝑚𝑋, then 𝑚𝑖𝑛𝑡(𝐴) = 𝐴, 

(3) 𝑚𝑐𝑙(∅) = ∅, 𝑚𝑐𝑙(𝑋) = 𝑋, 𝑚𝑖𝑛𝑡(∅) = ∅ and 𝑚𝑖𝑛𝑡(𝑋) = 𝑋, 

(4) If 𝐴 ⊆ 𝐵, then 𝑚𝑐𝑙(𝐴) ⊆ 𝑚𝑐𝑙(𝐵) and 𝑚𝑖𝑛𝑡(𝐴) ⊆ 𝑚𝑖𝑛𝑡(𝐵), 
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(5) 𝐴 ⊆ 𝑚𝑐𝑙(𝐴) and 𝑚𝑖𝑛𝑡(𝐴) ⊆ 𝐴, 

(6) 𝑚𝑐𝑙(𝑚𝑐𝑙(𝐴)) = 𝑚𝑐𝑙(𝐴) and 𝑚𝑖𝑛𝑡(𝑚𝑖𝑛𝑡(𝐴)) = 𝑚𝑖𝑛𝑡(𝐴), 

( Maki,1996) 

Proof: 

(1) Since  𝑚𝑖𝑛𝑡(𝐴) =∪ {𝐺: 𝐺 ⊆ 𝐴 𝑎𝑛𝑑 𝐺 ∈ 𝑚𝑋 }, we have𝑋\𝑚𝑖𝑛𝑡(𝐴) = 

∩ {𝑋 𝐺⁄ : 𝐺 ⊆ 𝐴𝑎𝑛𝑑 𝐺 ∈ 𝑚𝑋} = ∩ {𝑋 𝐺⁄ : 𝑋 𝐴⁄ ⊆ 𝑋 𝐺⁄ 𝑎𝑛𝑑 𝐺 ∈ 𝑚𝑋}= 𝑚𝑐𝑙(𝑋\𝐴). 

The proof of𝑋\𝑚𝑐𝑙(𝐴) = 𝑚𝑖𝑛𝑡(𝑋\𝐴) is done by the similar way. 

(2) The proofs are clear from the definitions of 𝑚-closure and 𝑚-interior. 

(3) Since ∅, 𝑋 are both m-open and m-closed, it is obvious by(2). 

(4) By hypothesis, we have 𝑚𝑐𝑙(𝐵) =∩ {𝐹: 𝐴 ⊆ 𝐵 ⊆ 𝐹 and 𝑋\ 𝐹 ∈ 𝑚𝑋} ⊇

𝑚𝑐𝑙(𝐴) =∩ {𝐻: 𝐴 ⊆ 𝐻 and 𝑋\𝐻 ∈ 𝑚𝑋}. The other proof is done by the similar way. 

(5) It is obvious by the definitions of 𝑚-closure and 𝑚-interior. 

(6) From (5) and the definition of 𝑚-closure, we have 𝑚𝑐𝑙(𝑚𝑐𝑙(𝐴)) =∩

{𝐹: 𝐴 ⊆ 𝑚𝑐𝑙(𝐴) ⊆ 𝐹 and 𝑋\𝐹 ∈ 𝑚𝑋} = 𝑚𝑐𝑙(𝐴). By the similar way, 

𝑚𝑖𝑛𝑡(𝑚𝑖𝑛𝑡(𝐴)) = 𝑚𝑖𝑛𝑡(𝐴) is proved. 

 

The following examples show that the converse implications of (2) and (4) in 

Lemma 3.1 are not true in general. 

 

Example 3.2: 

(1) Let 𝑋 = {𝑎, 𝑏, 𝑐} and let 𝑚𝑋 = {∅, 𝑋, {𝑎, 𝑏}, {𝑏, 𝑐}, {𝑐}, {𝑎}} be a minimal 

structure on X. Consider two sets 𝐴 = {𝑏}and 𝐵 = {𝑎, 𝑐}. Then, we have 𝑚𝑐𝑙(𝐴) = 𝐴 

but 𝑋\𝐴 ∉ 𝑚𝑋. Also, we get 𝑚𝑖𝑛𝑡(𝐵) = 𝐵 but𝐵 ∉ 𝑚𝑋. 

(2) Let X = {1, 2, 3} and let 𝑚𝑋 = {∅, 𝑋, {1,2}, {2,3}} be a minimal structure on 

X. Consider three sets A = {1}, B = {2} and C = {2,3}. Thus, 𝑚𝑐𝑙(𝐴) = {1} ⊂

𝑚𝑐𝑙(𝐵) =X but A ⊈ B. Also, 𝑚𝑖𝑛𝑡 (𝐴) = ∅ ⊂ 𝑚𝑖𝑛𝑡(𝐶) = {2,3} but A ⊈ C. 
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 Lemma 3.2: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on 𝑋 

and 𝐴 ⊆ 𝑋. Then 𝑥 ∈ 𝑚𝑐𝑙(𝐴) if and only if 𝑈 ∩ 𝐴 ≠ ∅ for every 𝑈 ∈

𝑚𝑥containing 𝑥. 

(Popa and Noiri,2000) 

Proof: 

Necessity. Suppose that there is an 𝑚-open set 𝑈 containing 𝑥 such that 

𝑈 ∩ 𝐴 = ∅. Then, we have 𝐴 ⊆ 𝑋\𝑈 and 𝑋\U is 𝑚-closed. Thus, 𝑚𝑐𝑙(𝐴) ⊆

𝑚𝑐𝑙(𝑋\𝑈) = 𝑋\𝑈 by Lemma3.1(2) and (4). Since 𝑥 ∉ 𝑋\𝑈, then 𝑥 ∉ 𝑚𝑐𝑙(𝐴). 

Sufficiency. Assume 𝑥 ∉ 𝑚𝑐𝑙(𝐴). By the definition of 𝑚-closure,  there is 

an 𝑚-closed set 𝐹 not containing 𝑥 such that 𝐴 ⊆ 𝐹. Thus, (𝑋\𝐹) ∩ 𝐴 = ∅ for an 𝑚-

open set  𝑋\𝐹 containing 𝑥. 

  

Definition 3.3: A function 𝑓: (𝑋, 𝑚𝑋) → (𝑌, 𝑚𝑌), where (𝑋, 𝑚𝑋) and (𝑌, 𝑚𝑌) 

are two spaces with minimal structures 𝑚𝑋 and 𝑚𝑌 on 𝑋 and 𝑌, respectively, is said 

to be 𝑀-continuous if for each 𝑥 ∈ 𝑋 and each 𝑉 ∈ 𝑚𝑌 containing 𝑓(𝑥), there exists 

𝑈 ∈ 𝑚𝑥  containing 𝑥 such that 𝑓(𝑈) ⊆ 𝑉. 

(Popa and Noiri,2000) 

 

Theorem 3.1: For a function 𝑓: (𝑋, 𝑚𝑋) → (𝑌, 𝑚𝑌), the following properties 

are equivalent: 

(1)  𝑓 is M-continuous, 

(2)  𝑓−1(𝑉) = 𝑚𝑖𝑛𝑡( 𝑓−1(𝑉)) for every 𝑉 ∈ 𝑚𝑌, 

(3)  𝑓(𝑚𝑐𝑙(𝐴)) ⊆ 𝑚𝑐𝑙(𝑓(𝐴)) for every 𝐴 ⊆ 𝑋, 

(4) 𝑚𝑐𝑙(𝑓−1(𝐵)) ⊆ 𝑓−1(𝑚𝑐𝑙(𝐵)) for every 𝐵 ⊆ 𝑌, 

(5)  𝑓−1(𝑚𝑖𝑛𝑡(𝐵)) ⊆ 𝑚𝑖𝑛𝑡(𝑓−1(𝐵)) for every 𝐵 ⊆ 𝑌, 

(6) 𝑚𝑐𝑙(𝑓−1(𝐾)) = 𝑓−1(𝐾) for every 𝐾 ⊆ 𝑌such that (𝑌\𝐾) ∈ 𝑚𝑌. 

 

(Popa and Noiri, 2000) 
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Proof: 

(1)⟹(2) By Lemma 3.1(5), we have 𝑚𝑖𝑛𝑡(𝑓−1(𝑉))⊆𝑓−1(𝑉). So, we must 

show that 𝑓−1(𝑉) ⊆ 𝑚𝑖𝑛𝑡(𝑓−1(𝑉)). Let 𝑉 ∈ 𝑚𝑌 and 𝑥 ∈ 𝑓−1(𝑉). Then, 𝑓(𝑥) ∈ 𝑉. 

Since 𝑓 is 𝑀-continuous, there exists an 𝑚-open set 𝑈containing 𝑥 such that 𝑓(𝑈) ⊆

𝑉. Thus, 𝑥 ∊ 𝑈 ⊆ 𝑓−1(𝑉). Therefore, we have 𝑥 ∊ 𝑚𝑖𝑛𝑡(𝑓−1(𝑉)). 

(2)⟹(3) Let 𝐴 ⊆ 𝑋. Assume that 𝑥 ∈ 𝑚𝑐𝑙(𝐴) and 𝑉 ∈ 𝑚𝑌 containing 𝑓(𝑥). 

Thus, 𝑥 ∈ 𝑓−1(𝑉) =  𝑚𝑖𝑛𝑡(𝑓−1(𝑉)) from (2). By the definition of 𝑚-interior, there 

exists an 𝑚-open set 𝑈 containing 𝑥 such that 𝑈 ⊆ 𝑓−1(𝑉). Since 𝑥 ∈ 𝑚𝑐𝑙(𝐴), then 

we get 𝑈⋂𝐴 ≠ ∅. Hence, ∅ ≠ 𝑓(𝑈⋂𝐴) ⊆  𝑓(𝑈)⋂𝑓(𝐴) ⊆ 𝑉⋂𝑓(𝐴). That is 

𝑉⋂𝑓(𝐴) ≠ ∅. This shows that 𝑓(𝑥) ∈ 𝑚𝑐𝑙(𝑓(𝐴)). 

(3)⟹(4) Let 𝐵 ⊆ 𝑌. By (3),we have 𝑓(𝑚𝑐𝑙(𝑓−1(𝐵))) ⊆ 𝑚𝑐𝑙(𝑓(𝑓−1(𝐵))) ⊆

𝑚𝑐𝑙(𝐵). Thus, we have 𝑚𝑐𝑙(𝑓−1(𝐵)) ⊆ 𝑓−1(𝑚𝑐𝑙(𝐵)). 

(4)⟹(5) The proof is obvious from (4) and Lemma 3.1(1). 

(5) ⟹ (6) Let 𝐾 be an 𝑚-closed subset of 𝑌. By (5), we have 𝑓−1(𝑚𝑖𝑛𝑡(𝑌\

𝐾)) ⊆ 𝑚𝑖𝑛𝑡(𝑓−1(𝑌\𝐾)). Since 𝐾 is 𝑚-closed, we get 𝑓−1(𝑚𝑖𝑛𝑡(𝑌\𝐾)) =

 𝑋\𝑓−1(𝐾) and 𝑚𝑖𝑛𝑡(𝑓−1(𝑌\𝐾)) = 𝑋\𝑚𝑐𝑙(𝑓−1(𝐾)) from Lemma 3.1(1). This 

implies that 𝑚𝑐𝑙(𝑓−1(𝐾)) ⊆ 𝑓−1(𝐾). Also, we have 𝑓−1(𝐾) ⊆ 𝑚𝑐𝑙(𝑓−1(𝐾)) by 

Lemma 3.1(5). Thus (𝑓−1(𝐾)) = 𝑚𝑐𝑙(𝑓−1(𝐾)). 

(6) ⟹ (1) Let 𝑥 ∈ 𝑋 and 𝑉 ∈ 𝑚𝑌 containing 𝑓(𝑥). Then, we have 𝑋\

𝑓−1(𝑉) = 𝑓−1(𝑌\𝑉) = 𝑚𝑐𝑙(𝑓−1(𝑌\𝑉) = 𝑚𝑐𝑙(𝑋\𝑓−1(𝑉)) = 𝑋\𝑚𝑖𝑛𝑡(𝑓−1(𝑉)) by 

(6) and Lemma 3.1(1). Since𝑓(𝑥) ∈ 𝑉, 𝑥 ∈ 𝑚𝑖𝑛𝑡(𝑓−1(𝑉)). Hence, there exists an 𝑚-

open set 𝑈 containing 𝑥 such that 𝑈 ⊆ 𝑓−1(𝑉). Thus, 𝑓 is 𝑀-continuous. 

 

Definition 3.4: A minimal structure 𝑚X on a nonempty set 𝑋 is said to have the 

property (ℬ) if the arbitrary union of 𝑚-open sets is𝑚-open.                 

(Maki,1996) 
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Lemma 3.3: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on 𝑋. Then, 

the following are eguivalent: 

(1) 𝑚𝑋 has the property (ℬ), 

(2) If 𝑚𝑖𝑛𝑡(𝑉)  =  𝑉, then 𝑉 ∈ 𝑚𝑋, 

(3) If 𝑚𝑐𝑙(𝐹) = 𝐹, then 𝑋\𝐹 ∈  𝑚𝑋 . 

(Popa and Noiri, 2000) 

Proof : 

(1) ⟹ (2) Let 𝑚𝑖𝑛𝑡(𝑉) = 𝑉.By the definition of 𝑚-𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 and the property 

(ℬ), 𝑚𝑖𝑛𝑡(𝑉) is 𝑚-open. Then, 𝑉 ∈ 𝑚𝑋 . 

(2) ⟹ (1) Suppose that 𝑈𝑖 ∈ 𝑚𝑋 for all 𝑖 ∈ 𝐼. Let 𝑉 = ⋃ 𝑈𝑖𝑖∈𝐼 . By 

Lemma3.1(5), we have 𝑚𝑖𝑛𝑡(𝑉) ⊆ 𝑉. So, we must show that 𝑉 ⊆ 𝑚𝑖𝑛𝑡(𝑉). Let 

𝑥 ∈ 𝑉. Then, there exists i0 ∈ I such that 𝑥 ∈ 𝑈𝑖0
. Since 𝑈𝑖𝑜

 is 𝑚-open and 𝑈𝑖0
⊆

𝑉,then 𝑈𝑖0
= 𝑚𝑖𝑛𝑡(𝑈𝑖0

) ⊆ 𝑚𝑖𝑛𝑡(𝑉) by Lemma 3.1(2) and (4). Thus, 𝑥 ∈ 𝑚𝑖𝑛𝑡(𝑉). 

Hence, we obtain 𝑉 ⊆ 𝑚𝑖𝑛𝑡(𝑉). By (2), we get 𝑉 ∈ 𝑚𝑋. 

(2) ⟹ (3) Let 𝑚𝑐𝑙(𝐹) = 𝐹. Then, 𝑋\𝐹 = 𝑚𝑖𝑛𝑡(𝑋\𝐹) by Lemma 3.1(1). 

Thus, 𝑋\𝐹 ∈ 𝑚𝑋 from (2).  

(3) ⟹ (2) Let 𝑚𝑖𝑛𝑡(𝑉) = 𝑉. Then, we have 𝑋\𝑉 = 𝑚𝑐𝑙(𝑋\𝑉) from Lemma 

3.1(1). By (3), we have 𝑉 ∈ 𝑚𝑋. 

 

Corollary 3.1: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 

satisfying the property (ℬ). For a function 𝑓: (𝑋, 𝑚𝑋) → (𝑌, 𝑚𝑌) the following are 

equivalent: 

(1) 𝑓 is 𝑀-continuous. 

(2) 𝑓−1(𝑉) ∈ 𝑚𝑋 for every 𝑉 ∈ 𝑚𝑌. 

(3) 𝑋\𝑓−1(𝐹) ∈ 𝑚𝑋for every subset 𝐹 of 𝑌 such that 𝑌\𝐹 ∈ 𝑚𝑌. 

(Popa and Noiri, 2000) 

 

The following example shows when the property(ℬ) does not hold, Corollary 

3.1 may not be true. 
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Example 3.3: Let 𝑋 = {𝑎, 𝑏, 𝑐} and 𝑌 = {1,2}. Consider two minimal 

structures defined as 𝑚𝑋 = {∅, 𝑋, {𝑎}, {𝑏}, {𝑐}} and 𝑚𝑌 = {∅, 𝑌, {2}} on X and Y, 

respectively. Let 𝑓: (𝑋, 𝑚𝑋) → (𝑌, 𝑚𝑌) be a function defined by 𝑓(𝑎) = 1 and 

 𝑓(𝑏) = 𝑓(𝑐) = 2. Then, f is M-continuous but 𝑓−1({2}) = {𝑏, 𝑐} ∉ 𝑚𝑋 when 

{2} ∈ 𝑚𝑌. 
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4.DIFFERENT KINDS OF OPEN SETS ON SPACES WITH MINIMAL 

STRUCTURES 

4.1 𝒎-𝜶-Open Sets  

Definition 4.1.1: Let (𝑋, 𝑚𝑋) be a space with a minimal structure  𝑚𝑋 on X. A 

subset 𝐴 of 𝑋 is called an 𝑚-𝛼-open set if 𝐴 ⊆ 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝐴))).The 

complement of an 𝑚-𝛼-open set is called an𝑚-𝛼-closed set. The family of all 𝑚-𝛼-

open sets in 𝑋 is denoted by 𝑀𝛼(𝑋). 

(Min, 2010) 

 

Remark 4.1.1: If the minimal structure 𝑚𝑋  on a given non-empty set X is 

topology, then an 𝑚-𝛼- open set is 𝛼-open. 

(Min, 2010) 

 

Proposition 4.1.1: Let(𝑋, 𝑚𝑋) be a space with a minimal structure  𝑚𝑋 on X. 

Then, every 𝑚-open set is 𝑚-𝛼-open. 

(Min, 2010) 

Proof: 

Let A be 𝑚-open. Then, we have 𝐴 = 𝑚𝑖𝑛𝑡(𝐴) from Lemma 3.1(2). Since 

𝐴 ⊆ 𝑚𝑐𝑙(𝐴), we get 𝐴 = 𝑚𝑖𝑛𝑡(𝐴) ⊆ 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴)) = 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝐴))). 

Thus, A is 𝑚-𝛼-open. 

 

The following example shows that the converse implication of Proposition 

4.1.1 is not true, in general. 

Example 4.1.1: Let 𝑋 = {1, 2, 3} and let 𝑚𝑋 = {∅, 𝑋, {1,2}, {2,3}, {1}, {3}}be a 

minimal structure on X. Consider 𝐴 = {1, 3}, then 𝑚𝑖𝑛𝑡 (𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝐴))) = 𝑋. 

Thus, A is 𝑚-𝛼-open but it is not m-open. 
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Lemma 4.1.1: Let (𝑋, 𝑚𝑋) be a space with minimal structure 𝑚𝑋 on X and 

𝐴 ⊆ 𝑋. Then, A is an𝑚-𝛼-closed set if and only if 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴))) ⊆ 𝐴. 

(Min, 2010) 

 

Proof: 

Let A be 𝑚-𝛼-closed. Then, we have 𝑋\𝐴 ⊆ 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑋\𝐴))). By 

Lemma 3.1(1), we get 𝑚𝑖𝑛𝑡 (𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑋\𝐴))) = 𝑋\𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴))). Thus, 

𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴))) ⊆ 𝐴. Converse implication is proved by the similar way. 

 

Theorem 4.1.1: Let (𝑋, 𝑚𝑋) be a space with minimal structure𝑚𝑋 on X. Any 

union of 𝑚-𝛼-open set is 𝑚-𝛼-open. 

(Min, 2010) 

 

Proof: 

Let Ai be an 𝑚-𝛼-open set for each 𝑖 ∈ 𝐼. Then, we have 

𝐴𝑖 ⊆ 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝐴𝑖))) ⊆ 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(⋃ 𝐴𝑖𝑖∈𝐼 ))) for each 𝑖 ∈ 𝐼 from 

Lemma 3.1(4). Thus, ⋃ Aii∈I ⊆ 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(⋃ Aii∈I ))). Hence, ⋃ Ai i∈I is an 𝑚-

𝛼-open set. 

 

The following example shows that the intersection of any two 𝑚-𝛼-open sets 

may not be 𝑚-𝛼-open. 

  

Example 4.1.2: Let 𝑋 = {1,2,3,4} and 𝑚𝑋 = {∅, 𝑋, {1,2,3}, {3,4}, {4}} be a 

minimal structure on X. Then {1,2,3} and {3,4} are 𝑚-𝛼-open sets but {1,2,3} ∩

{3,4} = {3} is not 𝑚-𝛼-open. 

  

 Definition 4.1.2: Let (𝑋, 𝑚𝑋) be a space with minimal structure  𝑚𝑋 on X. For 

a subset 𝐴 of 𝑋, the 𝑚-𝛼-closure of A and the 𝑚-𝛼-interior of A, denoted by 

𝑚𝛼𝑐𝑙(𝐴) and 𝑚𝛼𝑖𝑛𝑡(𝐴), respectively, are defined as the following: 
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                            𝑚𝛼𝑐𝑙(𝐴) =∩ {𝐹: 𝐴 ⊆ 𝐹, 𝐹 𝑖𝑠 𝑚-𝛼-𝑐𝑙𝑜𝑠𝑒𝑑 𝑖𝑛 𝑋} 

                            𝑚𝛼𝑖𝑛𝑡(𝐴) =∪ {𝐺: 𝐺 ⊆ 𝐴, 𝐺 𝑖𝑠 𝑚-𝛼-𝑜𝑝𝑒𝑛 𝑖𝑛 𝑋} 

(Min, 2010) 

 

Theorem 4.1.2: Let (𝑋, 𝑚𝑋) be a space with minimal structure𝑚𝑋 on X and 

𝐴, 𝐵, 𝐹 ⊆ 𝑋. Then, the following hold. 

(1) 𝑚𝛼𝑖𝑛𝑡(𝐴) ⊆ 𝐴 and 𝐴 ⊆ 𝑚𝛼𝑐𝑙(𝐴). 

(2) If 𝐴 ⊆ 𝐵, then 𝑚𝛼𝑖𝑛𝑡 (𝐴) ⊆ 𝑚𝛼𝑖𝑛𝑡(𝐵) and  𝑚𝛼𝑐𝑙(𝐴) ⊆ 𝑚𝛼𝑐𝑙(𝐵). 

(3) A is 𝑚-𝛼-open iff 𝑚𝛼𝑖𝑛𝑡 (𝐴) = 𝐴 and F is 𝑚-𝛼-closed iff  𝑚𝛼𝑐𝑙(𝐹) = 𝐹. 

(4) 𝑚𝛼𝑖𝑛𝑡(𝑚𝛼𝑖𝑛𝑡(𝐴)) = 𝑚𝛼𝑖𝑛𝑡(𝐴) and 𝑚𝛼𝑐𝑙(𝑚𝛼𝑐𝑙(𝐴))  =  𝑚𝛼𝑐𝑙(𝐴). 

(5) 𝑚𝛼𝑐𝑙(𝑋\𝐴) = 𝑋\𝑚𝛼𝑖𝑛𝑡(𝐴) and 𝑚𝛼𝑖𝑛𝑡(𝑋\𝐴) = 𝑋\𝑚𝛼𝑐𝑙(𝐴). 

(Min, 2010) 

Proof: 

The proofs of (1) and (2) are obvious from the definitions of 𝑚-𝛼-interior and 

𝑚-𝛼-closure. 

(3) If A is 𝑚-𝛼-open, the proof is obvious from the definition of 𝑚-𝛼-interior. 

Let 𝑚𝛼𝑖𝑛𝑡(𝐴) = 𝐴. Since any union of 𝑚-𝛼-open sets is 𝑚-𝛼-open from Theorem 

4.1.1, A is 𝑚-𝛼-open. By the similar way, if A is 𝑚-𝛼-closed, it is clear. Let 

𝑚𝛼𝑐𝑙(𝐴) = 𝐴. Since any intersection of 𝑚-𝛼-closed sets is 𝑚-𝛼-closed, A is  𝑚-𝛼-

closed. 

(4) Since 𝑚𝛼𝑖𝑛𝑡(𝐴) is 𝑚-𝛼-open and 𝑚𝛼𝑐𝑙(𝐴) is 𝑚-𝛼-closed, we have 

𝑚𝛼𝑖𝑛𝑡(𝑚𝛼𝑖𝑛𝑡(𝐴)) = 𝑚𝛼𝑖𝑛𝑡(𝐴) and 𝑚𝛼𝑐𝑙(𝑚𝛼𝑐𝑙(𝐴)) =  𝑚𝛼𝑐𝑙(𝐴) from (3). 

(5) 𝑋\𝑚𝛼𝑖𝑛𝑡(𝐴) = 𝑋\∪ {𝐺: 𝐺 ⊆ 𝐴, 𝐺 𝑖𝑠 𝑚-𝛼-open}=∩ {𝑋\𝐺: 𝐺 ⊆ 𝐴, 𝐺 𝑖𝑠 𝑚-

𝛼-open}= ∩ {𝑋\𝐺: 𝑋\𝐴 ⊆ 𝑋\𝐺, 𝑋\𝐺 is 𝑚-𝛼-closed} = 𝑚𝛼𝑐𝑙(𝑋\𝐴). By the similar 

way, we have 𝑚𝛼𝑖𝑛𝑡(𝑋\𝐴) = 𝑋\𝑚𝛼𝑐𝑙(𝐴). 

 

The converse implication of (2) in Theorem 4.1.2 may not be true as shown in 

the following example. 
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Example 4.1.3: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on X as in 

Example 4.1.1. Then, we get 𝑀𝛼(𝑋) = {∅, 𝑋, {1,2}, {2,3}, {1}, {3}, {1,3}}. Consider 

𝐴 = {2}, 𝐵 = {1} and 𝐶 = {1,3}, then 𝑚𝛼𝑖𝑛𝑡(𝐴) =  ∅ ⊂ 𝑚𝛼𝑖𝑛𝑡(𝐵) = {1} and 

𝑚𝛼𝑐𝑙(𝐴) = {2} ⊂ 𝑚𝛼𝑐𝑙(𝐶) = 𝑋 but 𝐴 ⊈ 𝐵 and 𝐴 ⊈ 𝐶. 

Theorem 4.1.3: Let (𝑋, 𝑚𝑥) be a space with a minimal structure 𝑚𝑋 on X and 

𝐴 ⊆ 𝑋. Then; 

(1) 𝑥 ∈ 𝑚𝛼𝑐𝑙(𝐴) if and only if 𝐴 ∩ 𝐺 ≠ ∅ for every 𝑚-𝛼-open set 𝐺 containing 

𝑥. 

(2) 𝑥 ∈ 𝑚𝛼𝑖𝑛𝑡(𝐴) if and only if there exists an𝑚-𝛼-open set 𝑈containing 𝑥 

such that 𝑈 ⊆ 𝐴. 

(Min, 2010) 

Proof: 

(1) Suppose there exists an 𝑚-𝛼-open set 𝐺 containing 𝑥 such that 𝐴 ∩ 𝐺 = ∅. 

Then, 𝑋\𝐺 is 𝑚-𝛼-closed and 𝐴 ⊆ 𝑋\𝐺. Since 𝐴 ⊆ 𝑚𝛼𝑐𝑙(𝐴) ⊆ 𝑋\𝐺 and 𝑥 ∉ 𝑋\𝐺 

implies  𝑥 ∉ 𝑚𝛼𝑐𝑙(𝐴). Converse implication is clear from the definition of 𝑚-𝛼-

closure. 

(2) Suppose there exists an 𝑚-𝛼-open set 𝑈 containing 𝑥 such that 𝑈 ⊆ 𝐴. 

Since 𝑈 ⊆ 𝑚𝛼𝑖𝑛𝑡(𝐴) ⊆ 𝐴 and 𝑥 ∈ 𝑈 implies 𝑥 ∈ 𝑚𝛼𝑖𝑛𝑡(𝐴). The converse is 

obvious, from the definition of 𝑚-𝛼-interior. 

4.2 𝒎-Semiopen Sets 

Definition 4.2.1: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on 𝑋. A 

subset A of X is called an m-semiopen set if 𝐴 ⊆ 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝐴)). The complement of 

an 𝑚-semiopen set is called 𝑚-semiclosed set. The family of all 𝑚-semiopen sets in 

X is denoted by 𝑀𝑆𝑂(𝑋). 

(Min, 2009) 
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Remark 4.2.1: If the minimal structure 𝑚𝑥 on a given nonempty set X is 

topology, then an 𝑚-semiopen set is semi-open. 

(Min, 2009) 

Proposition 4.2.1: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on 𝑋. 

Then, every 𝑚-𝛼-open set is 𝑚-semiopen. 

Proof: Let A be an 𝑚-𝛼-open set. Then, we have 𝐴 ⊆ 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝐴))) ⊆

𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝐴)) by Lemma 3.1(5). Thus, A is  𝑚-semiopen. 

The following example shows that the converse of Proposition 4.2.1 is not true, 

in general. 

Example 4.2.1: 

Let 𝑋 = {𝑎, 𝑏, 𝑐} and let 𝑚𝑋 = {∅ , 𝑋, {𝑎}, {𝑏}} be a minimal structure on X. 

Consider 𝐴 = {𝑎, 𝑐}, then 𝐴 is 𝑚-semiopen but not 𝑚-α-open. 

The following remark follows from Proposition 4.1.1 and Proposition 4.2.1. 

Remark 4.2.2: Every 𝑚-open set is 𝑚-semiopen. 

(Min, 2009) 

Lemma 4.2.1: Let (𝑋, 𝑚𝑋) be a space with minimal structure 𝑚𝑋 on X and 

𝐴 ⊆ 𝑋. Then, A is an 𝑚-semiclosed set if and only if 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴)) ⊆ 𝐴. 

(Min, 2009) 

Proof: 

Let A be 𝑚-semiclosed. Then, we have 𝑋\𝐴 ⊆ 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑋\𝐴) ) =

𝑚𝑐𝑙(𝑋\𝑚𝑐𝑙(𝐴)) = 𝑋\(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴))) by Lemma 3.1(1). Thus, we obtain 

𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴)) ⊆ 𝐴. The converse is done by similar way. 
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Theorem 4.2.1:Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on X. Any 

union of 𝑚-semiopen sets is𝑚-semiopen. 

(Min,2009) 

Proof: Let 𝐴𝑖 be an 𝑚-semiopen set for each 𝑖 ∈ 𝐼. Thus, we get 𝐴𝑖 ⊆

𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝐴𝑖)) ⊆ 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(⋃ 𝐴𝑖)))𝑖∈𝐼  for each 𝑖 ∈ 𝐼 by Lemma 3.1(4). Hence, we

obtain ⋃ 𝐴𝑖𝑖∈𝐼 ⊆ 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(⋃ 𝐴𝑖𝑖∈𝐼 )). So, ⋃ 𝐴𝑖𝑖∈𝐼  is 𝑚-semiopen.

The intersection of any two 𝑚-semiopen sets may not be 𝑚-semiopen as seen 

from the following example. 

Example 4.2.2: Let 𝑋 = {1, 2, 3, 4} and let𝑚𝑋 = {∅, 𝑋, {1, 4}, {1}, {4}} be a

minimal structure on X. Consider 𝐴 = {1, 3} and 𝐵 = {3, 4}, then 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝐴)) =

{1, 2, 3} and 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝐵)) = {2, 3, 4}. Thus, A and B are 𝑚-semiopen sets but 

{1,3} ∩ {3,4} = {3} is not 𝑚-semiopen since 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡({3})) = ∅. 

Definition 4.2.2: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on X. For 

a subset A of X, the m-semi-closure of A and the m-semi-interior of A, denoted by 

𝑚𝑠𝑐𝑙(𝐴) and 𝑚𝑠𝑖𝑛𝑡(𝐴), respectively, are defined as the following: 

𝑚𝑠𝑐𝑙(𝐴) =∩ {𝐹: 𝐴 ⊆ 𝐹, 𝐹 𝑖𝑠 𝑚-semiclosed in X} 

         𝑚𝑠𝑖𝑛𝑡(𝐴) =∪ {𝐺: 𝐺 ⊆ 𝐴, 𝐺 𝑖𝑠 𝑚-semiopen in X} 

(Min, 2009) 

Theorem 4.2.2: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋on X and 

𝐴, 𝐵, 𝐹 ⊆ 𝑋. Then, the following hold: 

(1) 𝑚𝑠𝑖𝑛𝑡(𝐴) ⊆ 𝐴 and 𝐴 ⊆ 𝑚𝑠𝑐𝑙(𝐴). 

(2) If 𝐴 ⊆ 𝐵, then 𝑚𝑠𝑖𝑛𝑡(𝐴) ⊆ 𝑚𝑠𝑖𝑛𝑡(𝐵) and 𝑚𝑠𝑐𝑙(𝐴) ⊆ 𝑚𝑠𝑐𝑙(𝐵). 

(3) A is 𝑚-semiopen iff 𝑚𝑠𝑖𝑛𝑡(𝐴)=𝐴 and F is 𝑚-semiclosed iff𝑚𝑠𝑐𝑙(𝐹) = 𝐹. 

(4) 𝑚𝑠𝑖𝑛𝑡(𝑚𝑠𝑖𝑛𝑡(𝐴)) = 𝑚𝑠𝑖𝑛𝑡(𝐴) and 𝑚𝑠𝑐𝑙(𝑚𝑠𝑐𝑙(𝐴)) = 𝑚𝑠𝑐𝑙(𝐴). 

(5) 𝑚𝑠𝑐𝑙(𝑋\𝐴)  =  𝑋\𝑚𝑠𝑖𝑛𝑡(𝐴) and 𝑚𝑠𝑖𝑛𝑡(𝑋\𝐴)  =  𝑋\𝑚𝑠𝑐𝑙(𝐴). 

(Min, 2009) 
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Proof: 

(1) and (2) are obvious from the definitions of m-semi-interior and m-semi-

closure. 

(3) The proof is clear since any union of 𝑚-semiopen sets is 𝑚-semiopen from 

Theorem 4.2.1. 

(4) By (3), it is clear since 𝑚𝑠𝑖𝑛𝑡(𝐴) is 𝑚-semiopen and 𝑚𝑠𝑐𝑙(𝐴) is 𝑚-

semiclosed. 

(5) 𝑋\𝑚𝑠𝑖𝑛𝑡(𝐴) = 𝑋\∪ {𝐺: 𝐺 ⊆ 𝐴, 𝐺 𝑖𝑠 𝑚-semiopen} 

 =∩ {𝑋\𝐺: 𝐺 ⊆ 𝐴, 𝐺 𝑖𝑠 𝑚-semiopen} =∩ {𝑋\𝐺: 𝑋\𝐴 ⊆ 𝑋\𝐺, 𝑋\𝐺 is 𝑚-semiclosed} = 

𝑚𝑠𝑐𝑙(𝑋\𝐴). Also, we have 𝑚𝑠𝑖𝑛𝑡(𝑋\𝐴) = 𝑋\𝑚𝑠𝑐𝑙(𝐴) by the similar way. 

The following example shows that the converse of (2) in Theorem 4.2.2 is not 

true, in general. 

Example 4.2.3: Let 𝑋 = {1,2,3} and let 𝑚𝑋 = {∅, 𝑋, {1,2}, {1,3}} be a minimal

structure on 𝑋. Then, 𝑀𝑆𝑂(𝑋) = {∅, 𝑋, {1,2}, {1,3}}. Consider 𝐴 = {1}, 𝐵 = {2} and 

𝐶 = {1,3}, then 𝑚𝑠𝑖𝑛𝑡(𝐵) = ∅ ⊂ 𝑚𝑠𝑖𝑛𝑡(𝐶) = {1,3} but 𝐵 ⊈ 𝐶 and 𝑚𝑠𝑐𝑙(𝐵) =

{2} ⊂ 𝑚𝑠𝑐𝑙(𝐴) = 𝑋 but 𝐵 ⊈ 𝐴. 

Theorem 4.2.3: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on X and 

𝐴 ⊆ 𝑋. Then, 

(1) 𝑥 ∈ 𝑚𝑠𝑐𝑙(𝐴) if and only if 𝐴 ∩ 𝐺 ≠ ∅ for every 𝑚-semiopen set G 

containing 𝑥. 

(2)  𝑥 ∈ 𝑚𝑠𝑖𝑛𝑡(𝐴) if and only if there exists an 𝑚-semiopen set 𝑈 containing 𝑥 

such that 𝑈 ⊆ 𝐴. 

(Min, 2009) 

Proof: 

(1) Assume there is an 𝑚-semiopen set 𝐺 containing 𝑥 such that 𝐴 ∩ 𝐺 = ∅. 

Then, we have 𝐴 ⊆ 𝑋\𝐺 such that 𝑋\𝐺 is m-semiclosed. Since 𝐴 ⊆ 𝑚𝑠𝑐𝑙(𝐴) ⊆ 𝑋\𝐺 

and 𝑥 ∉ 𝑋\𝐺, we obtain 𝑥 ∉ 𝑚𝑠𝑐𝑙(𝐴). The converse is clear. 
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(2) Suppose there is an m-semiopen set 𝑈 containing 𝑥 such that  𝑈 ⊆ 𝐴. Then, 

𝑈 ⊆ 𝑚𝑠𝑖𝑛𝑡(𝐴) ⊆ 𝐴 and𝑥 ∈ 𝑈 implies 𝑥 ∈ 𝑚𝑠𝑖𝑛𝑡(𝐴). The converse implication is 

obvious. 

4.3 𝒎-Preopen Sets 

Definition 4.3.1: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on 𝑋. A 

subset A of X is called an 𝑚-preopen set if 𝐴 ⊆ 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴)). The complement of 

an 𝑚-preopen set is called an 𝑚-preclosed set. The family of all 𝑚-preopen sets in X 

is denoted by MPO(X).   

(Min and Kim, 2009) 

Remark 4.3.1: If the minimal structure 𝑚𝑋 on a given non-empty set X is a 

topology, then an 𝑚-preopen set is preopen. 

Proposition 4.3.1: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on 𝑋. 

Then, every 𝑚-𝛼-open set is 𝑚-preopen. 

Proof: Let A be an 𝑚-𝛼-open set. Since 𝑚𝑖𝑛𝑡(𝐴) ⊆ 𝐴, we get 𝐴 ⊆

𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝐴))) ⊆ 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴)). Hence, A is 𝑚-preopen set. 

The converse implications of Proposition 4.3.1 may not be true as shown in the 

following example.         

Example 4.3.1: Let 𝑋 = {1, 2, 3, 4} and 𝑚𝑋 = {∅, 𝑋, {1,2}, {1, 3, 4}} be a

minimal structure on X. Consider 𝐴 = {1, 3}, then A is 𝑚-preopen but it is not 𝑚-𝛼-

open. 

The following remark follows from Proposition 4.1.1 and Proposition 4.3.1. 

Remark 4.3.2: Every m-open set is 𝑚-preopen. 

(Min and Kim, 2009) 
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Remark 4.3.3: 𝑚-preopenness and 𝑚-semiopenness are independent of each 

other. 

(Min and Kim, 2009) 

Example 4.3.2: 

(1) Let (𝑋, 𝑚𝑥) be a space with a minimal structure 𝑚𝑋 on X and 𝐴 = {1,3} as 

in Example 4.3.1. Then, A is 𝑚-preopen but it is not 𝑚-semiopen. 

(2)  Let 𝑋 = {1,2,3,4} and 𝑚𝑋 = {∅, 𝑋, {1}, {4}, {1,3}} be a minimal structure

on X. Consider 𝐵 = {1,2,3}, then B is 𝑚-semiopen but it is not 𝑚-preopen. 

Lemma 4.3.1: Let (𝑋, 𝑚𝑋) be a space with minimal structure 𝑚𝑋 on X. Then, 

A is an 𝑚-preclosed set if and only if 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝐴)) ⊆ 𝐴. 

(Min and Kim, 2009) 

Proof: It is similar to that of Lemma 4.1.1. 

Theorem 4.3.1: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on 𝑋. Any 

union of 𝑚-preopen sets is 𝑚-preopen. 

(Min and Kim, 2009) 

Proof: It is similar to that of Theorem 4.1.1. 

The following example shows that the intersection of any two 𝑚-preopen sets 

may not be 𝑚-preopen set. 

Example 4.3.3: Let 𝑋 = {1, 2, 3, 4} and let𝑚𝑋 = {∅, 𝑋, {1, 2, 3}, {3, 4}} be a

minimal structure on 𝑋. {1, 2,3} and {2, 4} are 𝑚-preopen sets but {1,2,3} ∩ {2,4} =

{2} is not 𝑚-preopen. 

Definition 4.3.2: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on X. For 

a subset A of X, the m-pre-closure of A and m-pre-interior of A, denoted by 𝑚𝑝𝑐𝑙(𝐴) 

and 𝑚𝑝𝑖𝑛𝑡(𝐴), respectively, are defined as the following: 
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𝑚𝑝𝑐𝑙(𝐴) =∩ {𝐹 ⊆ 𝑋: 𝐴 ⊆ 𝐹, 𝐹 𝑖𝑠 𝑚-preclosed in X} 

𝑚𝑝𝑖𝑛𝑡(𝐴) =∪ {𝐺 ⊆ 𝑋: 𝐺 ⊆ 𝐴, 𝐺 𝑖𝑠 𝑚-preopen in X} 

(Min and Kim, 2009) 

Theorem 4.3.2: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on X and 

𝐴, 𝐵, 𝐹 ⊆ 𝑋. Then, the following hold; 

(1) 𝑚𝑝𝑖𝑛𝑡(𝐴) ⊆  𝐴 and 𝐴 ⊆  𝑚𝑝𝑐𝑙(𝐴). 

(2) If 𝐴 ⊆  𝐵, then 𝑚𝑝𝑖𝑛𝑡(𝐴) ⊆ 𝑚𝑝𝑖𝑛𝑡(𝐵) and  𝑚𝑝𝑐𝑙(𝐴) ⊆ 𝑚𝑝𝑐𝑙(𝐵). 

(3) A is 𝑚-preopen iff 𝑚𝑝𝑖𝑛𝑡(𝐴) = 𝐴 and F is 𝑚-preclosed iff 𝑚𝑝𝑐𝑙(𝐹) = 𝐹. 

(4) 𝑚𝑝𝑖𝑛𝑡(𝑚𝑝𝑖𝑛𝑡(𝐴)) = 𝑚𝑝𝑖𝑛𝑡(𝐴) and 𝑚𝑝𝑐𝑙(𝑚𝑝𝑐𝑙(𝐴)) = 𝑚𝑝𝑐𝑙(𝐴). 

(5) 𝑚𝑝𝑐𝑙(𝑋\𝐴) = 𝑋\𝑚𝑝𝑖𝑛𝑡(𝐴) and 𝑚𝑝𝑖𝑛𝑡(𝑋\𝐴) = 𝑋\𝑚𝑝𝑐𝑙(𝐴). 

(Min and Kim, 2009) 

Proof: 

The proofs of (1) and (2) are clear from the definitions of m-pre-interior and m-

pre-closure. 

(3) If A is 𝑚-preopen, it is clear. Let 𝑚𝑝𝑖𝑛𝑡(𝐴) = 𝐴. By Theorem 4.3.1, A is 

𝑚-preopen. The other part of (3) is proved by the similar way. 

(4) Since 𝑚𝑝𝑖𝑛𝑡(𝐴) is 𝑚-preopen and 𝑚𝑝𝑐𝑙(𝐴) is 𝑚-preclosed, the proofs are 

obvious. 

(5) 𝑋\𝑚𝑝𝑖𝑛𝑡(𝐴) = 𝑋\∪ {𝐺: 𝐺 ⊆ 𝐴, 𝐺is𝑚-preopen}=∩ {𝑋\𝐺: 𝐺 ⊆ 𝐴, 𝐺 is 𝑚-

preopen}= ∩ {𝑋\𝐺: 𝑋\𝐴 ⊆ 𝑋\𝐺, 𝑋\𝐺 is 𝑚-preclosed} = 𝑚𝑝𝑐𝑙(𝑋\𝐴). By the similar 

way, we have 𝑚𝑝𝑖𝑛𝑡(𝑋\𝐴) = 𝑋\𝑚𝑝𝑐𝑙(𝐴). 

The converse implication of (2) in Theorem 4.3.2 may not be true as shown in 

the following example. 

Example 4.3.4: Let 𝑋 = {1, 2, 3} and let 𝑚𝑋 = {∅, 𝑋, {1, 2}, {2,3}} be a

minimal structure on X. Then, 𝑀𝑃𝑂(𝑋) = {∅, 𝑋, {2}, {1,2}, {2,3}, {1,3}}. Consider 

𝐴 = {1} and 𝐵 = {2,3}, then 𝑚𝑝𝑖𝑛𝑡(𝐴) = ∅ ⊂ 𝑚𝑝𝑖𝑛𝑡(𝐵) = {2,3} and 𝑚𝑝𝑐𝑙(𝐴) =

{1} ⊂ 𝑚𝑝𝑐𝑙(𝐵) = 𝑋 but 𝐴 ⊈ 𝐵. 
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Theorem 4.3.3: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on X and 

𝐴 ⊆ 𝑋. Then 

(1) 𝑥 ∈ 𝑚𝑝𝑐𝑙(𝐴) if and only if 𝐴 ∩ 𝐺 ≠ ∅ for every 𝑚-preopen set G 

containing x. 

(Min and Kim, 2009) 

(2) 𝑥 ∈ 𝑚𝑝𝑖𝑛𝑡(𝐴) if and only if there exists an 𝑚-preopen set 𝑈 containing x 

such that 𝑈 ⊆ 𝐴. 

Proof: 

(1) The proof is similar to that of Theorem 4.1.3(1). 

(2) Assume that there exists an m-preopen set U containing x such that 𝑈 ⊆ 𝐴. 

Since 𝑈 ⊆ 𝑚𝑝𝑖𝑛𝑡(𝐴) ⊆ 𝐴 and 𝑥 ∈ 𝑈, we have 𝑥 ∈ 𝑚𝑝𝑖𝑛𝑡(𝐴). The other part of (2) 

is clear from the definition of m-pre-interior. 

4.4 𝒎-𝜷-Open Sets 

Definition 4.4.1: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on X. A 

subset 𝐴 of 𝑋 is called an 𝑚-𝛽-open set if 𝐴 ⊆ 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴))). The 

complement of an 𝑚-𝛽-open set is called an 𝑚-𝛽-closed set. The family of all 𝑚-𝛽-

open sets in X is denoted by 𝑀𝛽𝑂(𝑋). 

(Vasques et. al., 2011) 

Remark 4.4.1: If the minimal structure 𝑚𝑋 on a given non-empty set X is a 

topology, then an 𝑚-𝛽-open set is 𝛽-open set. 

(Nasef and Roy, 2013) 

Proposition 4.4.1: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on X. 

Then, 

(1) Every 𝑚-preopen set is 𝑚-𝛽-open. 

(2) Every 𝑚-semiopen set is 𝑚-𝛽-open. 
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Proof: 

(1) Let A be 𝑚-preopen set. Then, 𝐴 ⊆ 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴)) ⊆

𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴))). Hence, A is 𝑚-𝛽-open. 

(2) Let A be 𝑚-semiopen set. Since 𝐴 ⊆ 𝑚𝑐𝑙(𝐴), we have 𝐴 ⊆

𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝐴))⊆𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴))). Thus, A is 𝑚-𝛽-open. 

The following example shows that the converse implication of (1) and (2) of 

Proposition 4.4.1 may not be true. 

Example 4.4.1: Let 𝑋 = {1, 2, 3, 4}and let𝑚𝑋 = {∅, 𝑋, {1, 2, 3}, {3, 4}, {2}} be a 

minimal structure on X. Consider 𝐴 = {1, 2} and 𝐵 = {1, 4}, then A and B are 𝑚-𝛽-

open but A is not 𝑚-preopen and B is not 𝑚-semiopen. 

The following remark follows from Proposition 4.4.1, Remark 4.2.2 and 

Remark 4.3.2. 

Remark 4.4.2: Every 𝑚-open set is 𝑚-𝛽-open. 

(Nasef and Roy, 2013) 

Lemma 4.4.1: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on X and 

𝐴 ⊆ 𝑋. Then, A is an 𝑚-𝛽-closed if and only if 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝐴)) ⊆ 𝐴. 

(Nasef and Roy, 2013) 

Proof: The proof is done by the similar way of Lemma 4.1.1 by using Lemma 

3.1(1). 

Theorem 4.4.1: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on X. Any 

union of 𝑚-𝛽-open sets is 𝑚-β-open. 

(Nasef and Roy, 2013) 

Proof: It is similar to that of Theorem 4.1.1. 
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The following example shows that the intersection of any two m-𝛽-open sets 

may not be 𝑚-𝛽-open set. 

Example 4.4.2:Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on X as in 

Example 4.2.2. Consider 𝐴 = {1,3} and 𝐵 = {3,4}, then 𝐴 and 𝐵 are 𝑚-𝛽-open but 

{1,3} ∩ {3,4} = {3} is not 𝑚-𝛽-open. 

Definition 4.4.2:Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on X. 

For a subset A of X, the m-β-closure of A and 𝑚-𝛽-interior of A are denoted by 

𝑚𝛽𝑐𝑙(𝐴) and 𝑚𝛽𝑖𝑛𝑡(𝐴), respectively, are defined as the following; 

𝑚𝛽𝑐𝑙(𝐴) =∩ {𝐹: 𝐴 ⊆  𝐹, 𝐹𝑖𝑠 𝑚-𝛽-closed in X} 

𝑚𝛽𝑖𝑛𝑡(𝐴) =∪ {𝐺: 𝐺 ⊆  𝐴, 𝐺 𝑖𝑠 𝑚-𝛽-open in X} 

(Nasef and Roy, 2013) 

Theorem 4.4.2: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on X and 

𝐴, 𝐵, 𝐹 ⊆ 𝑋. Then; 

(1) 𝑚𝛽𝑖𝑛𝑡(𝐴) ⊆ 𝐴 and 𝐴 ⊆ 𝑚𝛽𝑐𝑙(𝐴). 

(2) If 𝐴 ⊆ 𝐵, then 𝑚𝛽𝑖𝑛𝑡(𝐴) ⊆ 𝑚𝛽𝑖𝑛𝑡(𝐵) and 𝑚𝛽𝑐𝑙(𝐴) ⊆ 𝑚𝛽𝑐𝑙(𝐵). 

(3) A is m-𝛽-open iff 𝑚𝛽𝑖𝑛𝑡(𝐴) = 𝐴 and F is𝑚-𝛽-closed iff 𝑚𝛽𝑐𝑙(𝐹) = 𝐹. 

(4) 𝑚𝛽𝑖𝑛𝑡(𝑚𝛽𝑖𝑛𝑡(𝐴))  =  𝑚𝛽𝑖𝑛𝑡(𝐴) and 𝑚𝛽𝑐𝑙(𝑚𝛽𝑐𝑙(𝐴))  =  𝑚𝛽𝑐𝑙(𝐴). 

(5) 𝑚𝛽𝑐𝑙(𝑋\𝐴) = 𝑋\𝑚𝛽𝑖𝑛𝑡(𝐴) and 𝑚𝛽𝑖𝑛𝑡(𝑋\𝐴) = 𝑋\𝑚𝛽𝑐𝑙(𝐴). 

(Nasef and Roy, 2013) 

Proof: 

The proofs of (1) and (2) are obvious from the definitions of m-β-interior and 

m-β-closure. 

(3) If A is 𝑚-𝛽-open, the proof is obvious. Let 𝑚𝛽𝑖𝑛𝑡(𝐴) = 𝐴. By Theorem 

4.4.1, A is 𝑚-𝛽-open. Using similar way, the second part is proved. 

(4) Since 𝑚𝛽𝑖𝑛𝑡(𝐴) is 𝑚-𝛽-open and 𝑚𝛽𝑐𝑙(𝐴) is 𝑚-𝛽-closed, the proofs are 

obvious by (3). 
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(5) 𝑋\𝑚𝛽𝑖𝑛𝑡(𝐴) = 𝑋 ∖∪ {𝐺: 𝐺 ⊆ 𝐴, 𝐺 𝑖𝑠 𝑚-𝛽-open}=  

=∩ {𝑋\𝐺: 𝐺 ⊆ 𝐴, 𝐺 𝑖𝑠 𝑚-𝛽-open}=∩ {𝑋\𝐺: 𝑋\𝐴 ⊆ 𝑋\𝐺, 𝑋\𝐺 is 𝑚-𝛽-closed} 

= 𝑚𝛽𝑐𝑙(𝑋\𝐴). By the similar way, we can proved 𝑚𝛽𝑖𝑛𝑡(𝑋\𝐴) = 𝑋\𝑚𝛽𝑐𝑙(𝐴). 

The following example shows that the converse of  (2) in Theorem 4.4.2 is not 

true, in general. 

Example 4.4.3: Let 𝑋 = {𝑎, 𝑏, 𝑐} and let 𝑚𝑋 = {∅, 𝑋, {𝑎, 𝑏}, {𝑏, 𝑐}} be a minimal 

structure on X. Then, 𝑀𝛽O(𝑋) = {∅, 𝑋, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}, {𝑏}}. Consider 𝐴 = {𝑎} 

and 𝐵 = {𝑏, 𝑐}, then 𝑚𝛽𝑖𝑛𝑡(𝐴) = ∅ ⊂ 𝑚𝛽𝑖𝑛𝑡(𝐵) = {𝑏, 𝑐} and 𝑚𝛽𝑐𝑙(𝐴) = {𝑎} ⊂ 

𝑚𝛽𝑐𝑙(𝐵) = 𝑋 but 𝐴 ⊈ 𝐵. 

Theorem 4.4.3: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑥 on X and 

𝐴 ⊆ 𝑋. Then, 

(1) 𝑥 ∈ 𝑚𝛽𝑐𝑙(𝐴) if and only if𝐴 ∩ 𝐺 ≠ ∅ for every 𝑚-𝛽-open set G containing 

x. 

(2) 𝑥 ∈ 𝑚𝛽𝑖𝑛𝑡(𝐴)if and only if there exists an 𝑚-𝛽-open set 𝑈 containing x 

such that 𝑈 ⊆ 𝐴. 

(Nasef and Roy, 2013) 

Proof: The proofs are similar to that of Theorem 4.1.3. 
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5.DIFFERENT KINDS OF CONTINUITIES BETWEEN SPACES WITH 

MINIMAL STRUCTURES 

5.1. 𝑴-𝜶-Continuity 

Definition 5.1.1: Let 𝑓: (𝑋, 𝑚𝑋) → (𝑌, 𝑚𝑌) be a function betweeen two spaces 

X and Y with minimal structures 𝑚𝑋 and 𝑚𝑌, respectively. Then 𝑓 is said to be 𝑀-𝛼-

continuous if for each x and each 𝑚-open set V containing 𝑓(𝑥), there exists an 𝑚-𝛼-

open set U containing x such that 𝑓(𝑈) ⊆ 𝑉. 

(Min, 2010) 

Remark 5.1.1: Let 𝑓: (𝑋, 𝑚𝑋) → (𝑌, 𝑚𝑌) be an 𝑀-𝛼-continuous function 

betweeen two spaces X and Y with minimal structures 𝑚𝑋and 𝑚𝑌, respectively. If 

the minimal structures 𝑚𝑋 and 𝑚𝑌 are topologies on X and Y, respectively, then 𝑓 is 

𝛼-continuous. 

(Min, 2010) 

Proposition 5.1.1: Every 𝑀-continuous function is 𝑀-𝛼-continuous. 

  (Min, 2010) 

Proof: Since every 𝑚-open set is 𝑚-𝛼-open, the proof is obvious. 

The following example shows that the converse of Proposition 5.1.1 is not true, 

in general. 

Example 5.1.1: Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝑌 = {1, 2, 3}. Consider two minimal 

structures defined as follows 𝑚𝑋 = {∅, 𝑋, {𝑎}, {𝑎, 𝑐, 𝑑}}, 𝑚𝑌 = {∅, 𝑌, {1, 2}} on X and 

Y, respectively. Let 𝑓: (𝑋, 𝑚𝑋) → (𝑌, 𝑚𝑌) be a function defined by 𝑓(𝑎) = 1, 𝑓(𝑏) =

𝑓(𝑐) = 2 𝑎𝑛𝑑 𝑓(𝑑) = 3. Then 𝑓 is 𝑀-𝛼-continuous but not 𝑀-continuous. 

 



 

 

25 

 

Theorem 5.1.1: Let 𝑓: (𝑋, 𝑚𝑋) → (𝑌, 𝑚𝑌) be a function betweeen two spaces 

X and Y with minimal structures 𝑚𝑋and 𝑚𝑌,respectively. Then following are 

equivalent: 

(1) 𝑓 is 𝑀-𝛼-continuous, 

(2) f −1(𝑉) is an 𝑚-𝛼-open set for each 𝑚-open set 𝑉 in 𝑌, 

(3) 𝑓−1(𝐵) is an 𝑚-𝛼-closed set for each 𝑚-closed set 𝐵 in 𝑌, 

(4) 𝑓(𝑚𝛼𝑐𝑙(𝐴)) ⊆ 𝑚𝑐𝑙(𝑓(𝐴)) for 𝐴 ⊆ 𝑋, 

(5) 𝑚𝛼𝑐𝑙(𝑓−1(𝐵)) ⊆ 𝑓−1(𝑚𝑐𝑙(𝐵)) for 𝐵 ⊆ 𝑌, 

(6) 𝑓−1(𝑚𝑖𝑛𝑡(𝐵)) ⊆ 𝑚𝛼𝑖𝑛𝑡(𝑓−1(𝐵)) for 𝐵 ⊆ 𝑌. 

(Min, 2010) 

 Proof : 

(1) ⟹ (2) Let V be an 𝑚-open set in Y and 𝑥 ∈ 𝑓−1(𝑉). Since 𝑓 is𝑀-𝛼-

continuous, there exist an 𝑚-𝛼-open set U containing x such that𝑓(𝑈) ⊆ 𝑉. So, 

𝑥 ∈ 𝑈 ⊆ 𝑓−1(𝑉) for all 𝑥 ∈ 𝑓−1(𝑉). Thus, 𝑓−1(𝑉) is m-𝛼-open since any union of 

m-𝛼-open sets is m-𝛼-open. 

(2) ⟹ (3) Let B be an 𝑚-closed set in Y. Then 𝑌\𝐵 is 𝑚-open in Y. By (2), 

𝑓−1(𝑌\𝐵) = 𝑋\𝑓−1(𝐵) is 𝑚-𝛼-open. Hence, 𝑓−1(𝐵) is 𝑚-𝛼-closed. 

(3) ⟹ (4) Let 𝐴 ⊆ 𝑋. Then, 𝑚𝑐𝑙(𝑓(𝐴))) =∩ {𝐹 ⊆ 𝑌, 𝑓(𝐴) ⊆ 𝐹 and 𝐹 𝑖𝑠 𝑚-

closed}. So, 𝑓−1(𝑚𝑐𝑙(𝑓(𝐴))) =∩ {𝑓−1(𝐹) ⊆ 𝑋: 𝐴 ⊆ 𝑓−1(𝐹) and 𝑓−1(𝐹) is m-𝛼-

closed} ⊇ 𝑚𝛼𝑐𝑙(𝐴). Thus,𝑓(𝑚𝛼𝑐𝑙(𝐴)) ⊆ 𝑚𝑐𝑙(𝑓(𝐴)). 

(4)⟹(5) Let 𝐵 ⊆ 𝑌. By (4), we have 𝑓(𝑚𝛼𝑐𝑙(𝑓−1(𝐵))) ⊆ 𝑚𝑐𝑙(𝑓(𝑓−1(𝐵))) ⊆

𝑚𝑐𝑙(𝐵). Thus, 𝑚𝛼𝑐𝑙(𝑓−1(𝐵)) ⊆ 𝑓−1(𝑚𝑐𝑙(𝐵)). 

(5) ⟹ (6) Let 𝐵 ⊆ 𝑌. Then,𝑓−1(𝑚𝑖𝑛𝑡(𝐵)) = 𝑓−1(𝑌\𝑚𝑐𝑙(𝑌\𝐵)) =

𝑋\𝑓−1(𝑚𝑐𝑙(𝑌\𝐵)). Since, 𝑚𝛼𝑐𝑙(𝑓−1(𝑌\𝐵)) ⊆ 𝑓−1(𝑚𝑐𝑙(𝑌\𝐵)) by (5), we have  

𝑓−1(𝑚𝑖𝑛𝑡(𝐵))  ⊆  𝑋\𝑚𝛼𝑐𝑙(𝑓−1(𝑌\𝐵)) = 𝑚𝛼𝑖𝑛𝑡(𝑓−1(𝐵)).  
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(6)⟹(1) Let V be an 𝑚-open set containing𝑓(𝑥). By (6),we have 

𝑓−1(𝑚𝑖𝑛𝑡(𝑉)) ⊆ 𝑚𝛼𝑖𝑛𝑡(𝑓−1(𝑉)). From Lemma3.1(2), 𝑥 ∊ 𝑓−1(𝑚𝑖𝑛𝑡(𝑉)). Thus, 

𝑥 ∊ 𝑚𝛼𝑖𝑛𝑡(𝑓−1(𝑉)). By Theorem 4.1.3(2), there exists an m-𝛼-open set U 

containing x such 𝑈 ⊆ 𝑓−1(𝑉). Hence 𝑓 is M-𝛼-continuous. 

Lemma 5.1.1: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on X and 𝐴 ⊆ 𝑋. 

Then; 

(1) 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴))) ⊆  𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝛼𝑐𝑙(𝐴))) ⊆ 𝑚𝛼𝑐𝑙(𝐴). 

(2) 𝑚𝛼𝑖𝑛𝑡(𝐴) ⊆ 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝛼𝑖𝑛𝑡(𝐴)))) ⊆ 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝐴))). 

(Min, 2010) 

Proof: 

(1) Let 𝐴 ⊆ 𝑋. Since 𝑚𝛼𝑐𝑙(𝐴) is an m-𝛼-closed, 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝛼𝑐𝑙(𝐴))) ⊆

𝑚𝛼𝑐𝑙(𝐴) by Lemma 4.1.1. Furthermore, we have 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴)) ⊆

𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝛼𝑐𝑙(𝐴))) since 𝐴 ⊆ 𝑚𝛼𝑐𝑙(𝐴).  

(2) Let 𝐴 ⊆ 𝑋. Since 𝑚𝛼𝑖𝑛𝑡(𝐴) = 𝑋\𝑚𝛼𝑐𝑙(𝑋\𝐴), the proof is obvious. 

 

Theorem 5.1.2: Let 𝑓: (𝑋, 𝑚𝑋) → (𝑌, 𝑚𝑌) be a function betweeen two spaces 

X and Y with minimal structures 𝑚𝑋 and 𝑚𝑌,respectively. Then, the following are 

equivalent: 

(1) 𝑓 is 𝑀-𝛼-continuous, 

(2) 𝑓−1(𝑉) ⊆  𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡 (𝑓−1(𝑉)))) for each 𝑚-open set V in 𝑌, 

(3) 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑓−1(𝐹)))) ⊆ 𝑓−1(𝐹) for each 𝑚-closed set F in 𝑌, 

(4) 𝑓 (𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴))) ⊆ 𝑚𝑐𝑙(𝑓(𝐴) for 𝐴 ⊆  𝑋, 

(5) 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑓−1(𝐵))) ⊆ 𝑓−1(𝑚𝑐𝑙(𝐵)) for 𝐵 ⊆ 𝑌, 

(6) 𝑓−1(𝑚𝑖𝑛𝑡(𝐵)) ⊆  𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑓−1(𝐵)))) for 𝐵 ⊆ 𝑌. 

(Min, 2010) 

Proof: 

(1) ⟺ (2)From Theorem 5.1.1 and definition of m-𝛼-open set, the proof is 

clear. 
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(2) ⟺ (3) From Theorem 5.1.1 and Lemma 4.1.1, the proof is obvious. 

(3) ⟹ (4) Let 𝐴 ⊆ 𝑋. By Theorem 5.1.1(4), we have 𝑓(𝑚𝛼𝑐𝑙(𝐴)) ⊆

𝑚𝛼𝑐𝑙(𝐴). Then, by Lemma 5.1.1(1), we get 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴))) ⊆ 𝑚𝛼𝑐𝑙(𝐴). Thus, 

𝑚𝑐𝑙 (𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴))) ⊆ 𝑚𝛼𝑐𝑙(𝐴) ⊆ 𝑓−1(𝑚𝑐𝑙(𝑓(𝐴)). Hence, 

𝑓(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴))) ⊆ 𝑚𝑐𝑙(𝑓(𝐴)). 

(4)⟹(5)Let 𝐵 ⊆ 𝑌.Then,𝑓−1(𝐵) ⊆ 𝑋. By(4), 𝑓(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑓−1(𝐵))) ⊆

𝑚𝑐𝑙(𝑓(𝑓−1(𝐵)))  ⊆  𝑚𝑐𝑙(𝐵).Hence 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡 (𝑚𝑐𝑙(𝑓−1(𝐵))) ⊆ 𝑓−1(𝑚𝑐𝑙(𝐵)). 

(5)⟹(6) Let 𝐵 ⊆ 𝑌. Then, 𝑓−1(𝑚𝑖𝑛𝑡(𝐵))  =  𝑓−1(𝑌\𝑚𝑐𝑙(𝑌\𝐵)) =

 𝑋\𝑓−1(𝑚𝑐𝑙(𝑌\𝐵)). Since by (5), we have 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡 (𝑚𝑐𝑙(𝑓−1(𝑌\𝐵))))  =

𝑓−1(𝑚𝑐𝑙(𝑌\𝐵)), we get 𝑓−1(𝑚𝑖𝑛𝑡(𝐵)) ⊆ 𝑋\𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑓−1(𝑌\𝐵)))) = 

𝑚𝑖𝑛𝑡(𝑚𝑐𝑙 (𝑚𝑖𝑛𝑡(𝑓−1(𝐵)))). 

(6)⟹(1) Let 𝑉 be an 𝑚-open set in Y. Since 𝑚𝑖𝑛𝑡(𝑉) = 𝑉,𝑓−1(𝑉) =

𝑓−1(𝑚𝑖𝑛𝑡(𝑉)) ⊆ 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑓−1(𝑉))) from (6). Thus, f is M-𝛼-continuous 

by (2). 

5.2 𝑴-Semicontinuity 

Definition 5.2.1: Let 𝑓: (𝑋, 𝑚𝑋) → (𝑌, 𝑚𝑌) be a function between two spaces 

X and Y with minimal structures 𝑚𝑋 and 𝑚𝑌, respectively. Then 𝑓 is said to be 𝑀-

semicontinuous if for each x and each 𝑚-open set V contining 𝑓(𝑥), there exists an 

𝑚-semiopen set U containing x such that 𝑓(𝑈) ⊆ 𝑉. 

(Min, 2009) 

Remark 5.2.1: Let 𝑓: (𝑋, 𝑚𝑋) → (𝑌, 𝑚𝑌) be an 𝑀-semicontinuous function 

between two spaces X and Y with minimal structures 𝑚𝑋 and 𝑚𝑌, respectively. If the 
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structures 𝑚𝑋 and 𝑚𝑌 are topologies on X and Y, respectively, then 𝑓 is 

semicontinuous. 

(Min,2009) 

Proposition 5.2.1: Every 𝑀-𝛼-continuous function is 𝑀-semicontinuous. 

Proof: The proof is obvious since every m-α-open set is m-semiopen. 

The following example shows that the converse of Proposition 5.2.1 may not be 

true. 

Example 5.2.1: Let  𝑋 = {𝑎, 𝑏, 𝑐} and 𝑌 = {1,2}. Consider two minimal 

structures defined as follows 𝑚𝑋 = {∅, 𝑋, {𝑎}, {𝑐}} and 𝑚𝑌 = {∅, 𝑌, {1}} on X and Y, 

respectively. Let 𝑓: (𝑋, 𝑚𝑥) ⟶ (𝑌, 𝑚𝑌) be a function defined by 𝑓(𝑎) = 𝑓(𝑏) = 1 

and 𝑓(𝑐) = 2. Then, f is 𝑀-semicontinuous but not 𝑀-α-continuous. 

The following remark follows from Proposition 5.1.1 and Proposition 5.2.1.  

Remark 5.2.2: Every 𝑀-continuous function is 𝑀-semicontinuous  

(Min,2009) 

Theorem 5.2.1: Let 𝑓: (𝑋, 𝑚𝑋) → (𝑌, 𝑚𝑌) be a function between two spaces X 

and Y with minimal structures 𝑚𝑋 and 𝑚𝑌, respectively. Then the following are 

equivalent: 

(1) 𝑓 is 𝑀-semicontinuous, 

(2) 𝑓−1(𝑉) is 𝑚-semiopen for each 𝑚-open set 𝑉 in𝑌, 

(3) 𝑓−1(𝐵) is 𝑚-semiclosed for each 𝑚-closed set 𝐵 in 𝑌, 

(4) 𝑓(𝑚𝑠𝑐𝑙(𝐴)) ⊆ 𝑚𝑐𝑙(𝑓(𝐴)) for 𝐴 ⊆ 𝑋, 

(5) 𝑚𝑠𝑐𝑙(𝑓−1(𝐵) ⊆ 𝑓−1(𝑚𝑠𝑐𝑙(𝐵)) for 𝐵 ⊆ 𝑌, 

(6) 𝑓−1(𝑚𝑖𝑛𝑡(𝐵)) ⊆ 𝑚𝑠𝑖𝑛𝑡(𝑓−1(𝐵)) for 𝐵 ⊆ 𝑌. 

(Min, 2009) 
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Proof: 

(1)⟹(2) Since any union of 𝑚-semiopen sets is 𝑚-semiopen, the proof is 

obvious. 

(2)⟹(3) Let B be an 𝑚-closed set in Y. Then, 𝑌\𝐵 is 𝑚-open. From 

(2),𝑓−1(𝑌\𝐵) = 𝑋\𝑓−1(𝐵) is 𝑚-semiopen. Thus, 𝑓−1(𝐵) is 𝑚-semiclosed. 

(3)⟹(4) Let 𝐴 ⊆ 𝑋. Since, 𝑚𝑐𝑙(𝑓(𝐴)) =∩ {𝐹 ⊆ 𝑌: 𝑓(𝐴) ⊆ 𝐹 and 𝐹 is 𝑚-

closed}, then 𝑓−1 (𝑚𝑐𝑙(𝑓(𝐴))) =∩ {𝑓−1(𝐹) ⊆ 𝑋: 𝐴 ⊆ 𝑓−1(𝐹) and 𝑓−1(𝐹) is 𝑚-

semiclosed}⊇ 𝑚𝑠𝑐𝑙(𝐴). Hence, 𝑚𝑐𝑙(𝑓(𝐴)) ⊇ 𝑓(𝑚𝑠𝑐𝑙(𝐴)). 

(4)⟹(5) Let𝐵 ⊆ 𝑌. From (4), we get 𝑓(𝑚𝑠𝑐𝑙(𝑓−1(𝐵))) ⊆ 𝑚𝑐𝑙(𝑓(𝑓−1(𝐵))) ⊆

𝑚𝑐𝑙(𝐵). Thus, 𝑚𝑠𝑐𝑙(𝑓−1(𝐵)) ⊆ 𝑓−1(𝑚𝑐𝑙(𝐵)). 

(5)⟹(6) Let 𝐵 ⊆ 𝑌. Then, 𝑓−1(𝑚𝑖𝑛𝑡(𝐵)) = 𝑓−1(𝑌\𝑚𝑐𝑙(𝑌\𝐵)) =

𝑋\𝑓−1(𝑚𝑐𝑙(𝑌\𝐵)). By hypothesis, 𝑓−1(𝑚𝑖𝑛𝑡(𝐵)) ⊆ 𝑋\𝑚𝑠𝑐𝑙(𝑓−1(𝑌\𝐵)) =

𝑚𝑠𝑖𝑛𝑡(𝑓−1(𝐵)). 

(6)⟹(1) Let V be an 𝑚-open set containing 𝑓(𝑥). From (6), we get 

𝑓−1(𝑚𝑖𝑛𝑡(𝑉)) ⊆ 𝑚𝑠𝑖𝑛𝑡(𝑓−1(𝑉)). Since 𝑉 = 𝑚𝑖𝑛𝑡(𝑉) by Lemma 3.1(2), then 

𝑥 ∈ 𝑓−1(𝑚𝑖𝑛𝑡(𝑉)). Therefore, 𝑥 ∈ 𝑚𝑠𝑖𝑛𝑡(𝑓−1(𝑉)). So, there exists an 𝑚-semiopen 

set 𝑈containing x such that 𝑈 ⊆ 𝑓−1(𝑉) from Theorem 4.2.3(2). Thus, f is 𝑀-

semicontinuous. 

Lemma 5.2.1: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on X and 

𝐴 ⊆ 𝑋. Then  

(1) 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴)) ⊆ 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑠𝑐𝑙(𝐴))) ⊆ 𝑚𝑠𝑐𝑙(𝐴). 

(2) 𝑚𝑠𝑖𝑛𝑡(𝐴) ⊆ 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑠𝑖𝑛𝑡(𝐴))) ⊆ 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴)). 

(Min,2009) 
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Proof: 

(1) Let 𝐴 ⊆ 𝑋. Since 𝑚𝑠𝑐𝑙(𝐴) is 𝑚-semiclosed, by Lemma 4.2.1, 

𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑠𝑐𝑙(𝐴))) ⊆ 𝑚𝑠𝑐𝑙(𝐴). Also, since 𝐴 ⊆ 𝑚𝑠𝑐𝑙(𝐴), we have 

𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴)) ⊆ 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑠𝑐𝑙(𝐴))). 

(2) It is obvious by Theorem 4.2.2(5). 

 

Theorem 5.2.2: Let 𝑓: (𝑋, 𝑚𝑋) → (𝑌, 𝑚𝑌) be a function between two spacesX 

and Y with minimal structures 𝑚𝑋 and 𝑚𝑌, respectively. Then, the following are 

equivalent: 

(1) 𝑓 is 𝑀-semicontinuous, 

(2) 𝑓−1(𝑉) ⊆ 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑓−1(𝑉))) for each 𝑚-open set V in Y, 

(3) 𝑚𝑖𝑛𝑡 (𝑚𝑐𝑙(𝑓−1(𝐹))) ⊆ 𝑓−1(𝐹) for each 𝑚-closed set F in Y, 

(4) 𝑓 (𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴))) ⊆ 𝑚𝑐𝑙(𝑓(𝐴)) for 𝐴 ⊆ 𝑋. 

(5) 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑓−1(𝐵))) ⊆ 𝑓−1(𝑚𝑐𝑙(𝐵)) for 𝐵 ⊆ 𝑌. 

(6) 𝑓−1(𝑚𝑖𝑛𝑡(𝐵)) ⊆ 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑓−1(𝐵))) for 𝐵 ⊆ 𝑌. 

(Min,2009) 

 

Proof: 

(1)⇔(2) By Theorem 5.2.1 and definition of 𝑚-semiopen set, the proof is 

obvious. 

(1)⇔(3) It is clear from Theorem 5.2.1 and Lemma 4.2.1. 

(3)⟹(4) Let 𝐴 ⊆ 𝑋. By Theorem 5.2.1(4) and Lemma 5.2.1(1), we have 

𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴)) ⊆ 𝑚𝑠𝑐𝑙(𝐴) ⊆ 𝑓−1 (𝑚𝑐𝑙(𝑓(𝐴))). Thus, 𝑓(mint (𝑚𝑐𝑙(𝐴)) ⊆

𝑚𝑐𝑙(𝑓(𝐴)). 

(4)⟹(5) Let 𝐵 ⊆ 𝑌. From (4), we get 

𝑓(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑓−1(𝐵))) ⊆ 𝑚𝑐𝑙(𝑓(𝑓−1(𝐵)) ⊆ 𝑚𝑐𝑙(𝐵). So, 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑓−1(𝐵)) ⊆

𝑓−1(𝑚𝑐𝑙(𝐵)). 

(5)⟹(6) Let 𝐵 ⊆ 𝑌. Since 𝑚𝑖𝑛𝑡(𝐵) = 𝑌\𝑚𝑐𝑙(𝑌\𝐵), the proof is obvious. 
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(6)⟹(1) Let 𝑉 be an 𝑚-open set in Y. Since V is 𝑚-open, we have 𝑓−1(𝑉) =

𝑓−1(𝑚𝑖𝑛𝑡(𝑉)) ⊆ 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑓−1(𝑉))) by (6). Thus, 𝑓 is 𝑀-semicontinuous via (2). 

5.3 𝑴-Precontinuity 

Definition 5.3.1: Let 𝑓: (𝑋, 𝑚𝑋) → (𝑌, 𝑚𝑌) be a function between two spaces 

X and Y with minimal structures 𝑚𝑋 and 𝑚𝑌, respectively. Then 𝑓 is said to be 𝑀-

precontinuous if for each x and each 𝑚-open set V contining 𝑓(𝑥), there exists an 𝑚-

preopen set U containing x such that 𝑓(𝑈) ⊆ 𝑉. 

(Min and Kim, 2009) 

Remark 5.3.1: Let 𝑓: (𝑋, 𝑚𝑋) ⟶ (𝑌, 𝑚𝑌) be an 𝑀-precontinuous function 

between two spaces X and Y with minimal structures 𝑚𝑋 and 𝑚𝑌, respectively. If the 

minimal structures 𝑚𝑋 and 𝑚𝑌 are topologies on X and Y, respectively, then 𝑓 is 

precontinuous. 

Proposition 5.3.1: Every M-𝛼-continuous function is 𝑀-precontinuous. 

Proof: Since every m-𝛼-open set is 𝑚-preopen, it is clear. 

The following example shows that the converse of Proposition 5.3.1 is not true, 

in general. 

Example 5.3.1:Let 𝑋 = {𝑎, 𝑏, 𝑐} and 𝑌 = {1, 2, 3}. Consider two minimal 

structures defined as 𝑚𝑋 = {∅, 𝑋, {𝑎, 𝑏}, {𝑏, 𝑐}} and𝑚𝑌 = {∅, 𝑌, {2}} on X and Y, 

respectively. Let 𝑓: (𝑋, 𝑚𝑋) ⟶ (𝑌, 𝑚𝑌) be a function defined by 𝑓(𝑎) = 𝑓(𝑐) =

2, 𝑓(𝑏) = 1. Then,𝑓 is 𝑀-precontinuous but not 𝑀-𝛼-continuous. 

The following remark follows from Proposition 5.1.1 and Proposition 5.3.1 
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Remark 5.3.2: Every 𝑀-continuous function is 𝑀-precontinuous. 

(Min and Kim, 2009) 

Remark 5.3.3: 𝑀-precontinuity and 𝑀-semicontinuity are independent of each 

other. 

(Min and Kim, 2009) 

Example 5.3.2:  

(1) Consider Example 5.3.1., then 𝑓 is 𝑀-precontinuous but not 𝑀-

semicontinuous.  

(2) Let 𝑋 = {1,2,3,4} and 𝑌 = {𝑎, 𝑏}. Consider two minimal structures 

𝑚𝑋 = {∅, 𝑋, {1}, {4}} and 𝑚𝑌 = {∅, 𝑌, {𝑎}, {𝑏}} on X and Y, respectively. Let 

𝑓: (𝑋, 𝑚𝑋) ⟶ (𝑌, 𝑚𝑌) be a function defined by 𝑓(1) = 𝑓(2) = 𝑓(3) = 𝑎 and𝑓(4) =

𝑏. Then, 𝑓 is 𝑀-semicontinuous but not 𝑀-precontinuous. 

 

Theorem 5.3.1: Let 𝑓: (𝑋, 𝑚𝑋) ⟶ (𝑌, 𝑚𝑌) be a function between two spaces X 

and Y with minimal structures 𝑚𝑋 and 𝑚𝑌, respectively. Then following are 

equivalent: 

(1) 𝑓 is 𝑀-precontinuous, 

(2) 𝑓−1(𝑉)is an 𝑚-preopen set for each 𝑚-open set 𝑉 in 𝑌, 

(3) 𝑓−1(𝐵)is an 𝑚-preclosed set for each 𝑚-closed set 𝐵 in 𝑌, 

(4) 𝑓(𝑚𝑝𝑐𝑙(𝐴)) ⊆ 𝑚𝑐𝑙(𝑓(𝐴)) for 𝐴 ⊆ 𝑋, 

(5) 𝑚𝑝𝑐𝑙(𝑓−1(𝐵)) ⊆ 𝑓−1(𝑚𝑐𝑙(𝐵)) for 𝐵 ⊆ 𝑌, 

(6) 𝑓−1(𝑚𝑖𝑛𝑡(𝐵)) ⊆ 𝑚𝑝𝑖𝑛𝑡(𝑓−1(𝐵)) for 𝐵 ⊆ 𝑌. 

(Min and Kim,2009) 

 Proof : 

(1)⟹(2) By Theorem 4.3.1, it is obvious. 

(2)⟹(3) It is similar to that of Theorem 5.2.1. 
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(3)⟹(4) Let 𝐴 ⊆ 𝑋. Then, we have𝑓−1(𝑚𝑐𝑙(𝑓(𝐴))) = 𝑓−1(∩ {𝐹 ⊆ 𝑌, 𝑓(𝐴) ⊆

𝐹 and 𝐹 𝑖𝑠 𝑚-closed}) ⊇∩ {H ⊆ X: A ⊆ H and H is 𝑚-preclosed} = 𝑚𝑝𝑐𝑙(𝐴). 

Thus,𝑓(𝑚𝑝𝑐𝑙(𝐴)) ⊆ 𝑚𝑐𝑙(𝑓(𝐴)). 

(4)⟹(5) Let 𝐵 ⊆ 𝑌. By(4), we have 𝑓(𝑚𝑝𝑐𝑙(𝑓−1(𝐵))) ⊆ 𝑚𝑐𝑙(𝑓(𝑓−1(𝐵))) ⊆

𝑚𝑐𝑙(𝐵). So, we obtain 𝑚𝑝𝑐𝑙(𝑓−1(𝐵)) ⊆ 𝑓−1(𝑚𝑐𝑙(𝐵)). 

(5)⟹(6) Let 𝐵 ⊆ 𝑌. Since, 𝑚𝑖𝑛𝑡(𝐵) = 𝑌\𝑚𝑐𝑙(𝑌\𝐵), we 

have 𝑓−1(𝑚𝑖𝑛𝑡(𝐵)) =  𝑋\𝑓−1(𝑚𝑐𝑙(𝑌\𝐵)).Then, 

𝑓−1(𝑚𝑖𝑛𝑡(𝐵)) ⊆ 𝑚𝑠𝑝𝑖𝑛𝑡(𝑓−1(𝐵)) by (5) and Theorem 4.3.2(5). 

(6)⟹(1) It follows from Theorem 4.3.3(2) and Lemma 3.1(2). 

Lemma 5.3.1: Let (𝑋, 𝑚𝑋) be a space with minimal structure 𝑚𝑋 on X and 

𝐴 ⊆ 𝑋. Then; 

(1) 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝐴)) ⊆  𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑝𝑐𝑙(𝐴)) ⊆ 𝑚𝑝𝑐𝑙(𝐴)). 

(2) 𝑚𝑝𝑖𝑛𝑡(𝐴) ⊆ 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑝𝑖𝑛𝑡(𝐴))) ⊆ 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴))). 

(Min and Kim,2009) 

Proof: 

(1) Let 𝐴 ⊆ 𝑋. Since 𝑚𝑝𝑐𝑙(𝐴) is 𝑚-preclosed, by Lemma 

4.3.1, 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑝𝑐𝑙(𝐴)) ⊆ 𝑚𝑝𝑐𝑙(𝐴). Also, we have𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝐴)) ⊆

𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑝𝑐𝑙(𝐴)))since 𝐴 ⊆ 𝑚𝑝𝑐𝑙(𝐴).  

(2) It is similar to the proof of (1) since 𝑚𝑝𝑖𝑛𝑡(𝑋\𝐴) = 𝑋\𝑚𝑝𝑐𝑙(𝐴) for 𝐴 ⊆ 𝑋. 

Theorem 5.3.2:Let 𝑓: (𝑋, 𝑚𝑋) ⟶ (𝑌, 𝑚𝑌)be a function between two spaces X 

and Y with minimal structure 𝑚𝑋 and 𝑚𝑌, respectively. The following are equivalent: 

(1) 𝑓 is 𝑀-precontinuous, 

(2) 𝑓−1(𝑉) ⊆  𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑓−1(𝑉)))) for each 𝑚-open set V in 𝑌, 

(3) 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑓−1(𝐹))) ⊆ 𝑓−1(𝐹) for each 𝑚-closed set F in 𝑌, 
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(4) 𝑓 (𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝐴)) ⊆ 𝑚𝑐𝑙(𝑓(𝐴)) for 𝐴 ⊆  𝑋, 

(5) 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑓−1(𝐵)) ⊆ 𝑓−1(𝑚𝑐𝑙(𝐵)) for 𝐵 ⊆ 𝑌, 

(6) 𝑓−1(𝑚𝑖𝑛𝑡(𝐵)) ⊆  𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑓−1(𝐵))) for 𝐵 ⊆ 𝑌. 

(Min and Kim, 2009) 

Proof: The proofs are similar to the proof of Theorem 5.2.2. 

  

5.4 𝑴-𝜷-Continuity 

Definition 5.4.1:Let 𝑓: (𝑋, 𝑚𝑋) → (𝑌, 𝑚𝑌) be a function between two spaces 

X and Y with minimal structures 𝑚X and 𝑚𝑌, respectively. Then 𝑓 is said to be 𝑀-𝛽-

continuous if for each x and each 𝑚-open set V containing 𝑓(𝑥),there exists an 𝑚-𝛽-

open set 𝑈containing x such that 𝑓(𝑈) ⊆ 𝑉. 

(Nasef and Roy, 2013) 

Remark 5.4.1: Let 𝑓: (𝑋, 𝑚𝑋) → (𝑌, 𝑚𝑌) be an M-𝛽-continuous function 

between two spaces X and Y with minimal structures 𝑚𝑋 and 𝑚𝑌 , respectively. If the 

minimal structures 𝑚𝑋 and 𝑚𝑌are topologies on X and Y, respectively, then 𝑓 is 𝛽-

continuous. 

(Nasef and Roy,2013) 

Proposition 5.4.1:  

(1) Every𝑀-semicontinuous function is M-𝛽-continuous. 

(2) Every 𝑀-precontinuous function is M-𝛽-continuous. 

Proof: From Proposition 4.4.1, the proofs are obvious. 

The following examples illustrate that the converse implications of (1) and (2) 

of Propositon 5.4.1 may not be true. 
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Examples 5.4.1: 

(1) Consider Example 5.3.1., then𝑓 is 𝑀-𝛽-continuous but not 𝑀-

semicontinuous. 

(2) Consider Example 5.3.2(2).,then 𝑓 is 𝑀-𝛽-continuous but not 𝑀-

precontinuous. 

The following remark follows from Proposition 5.4.1., Remark 5.2.2 and 

Remark 5.3.2. 

Remark 5.4.2: Every 𝑀-continuous function is 𝑀-𝛽-continuous.  

(Nasef and Roy, 2013) 

Theorem 5.4.1: Let 𝑓: (𝑋, 𝑚𝑋) → (𝑌, 𝑚𝑌) be a function between two spaces X 

and Y with minimal structures 𝑚𝑋and𝑚𝑌 , respectively. Then the following are 

equivalent: 

(1) 𝑓 is 𝑀-𝛽-continuous, 

(2) 𝑓−1 (𝑉) is 𝑚-𝛽-open for each 𝑚-open set 𝑉 in 𝑌, 

(3) 𝑓−1 (𝐹) is 𝑚-𝛽-closed for each 𝑚-closed set 𝐹 in 𝑌, 

(4) 𝑓(𝑚𝛽𝑐𝑙(𝐴)) ⊆ 𝑚𝑐𝑙(𝑓(𝐴)) for 𝐴 ⊆ 𝑋, 

(5) 𝑚𝛽𝑐𝑙(𝑓−1(𝐵)) ⊆ 𝑓−1(𝑚𝑐𝑙(𝐵)) for 𝐵 ⊆ 𝑌, 

(6) 𝑓−1(𝑚𝑖𝑛𝑡(𝐵)) ⊆ 𝑚𝛽𝑖𝑛𝑡(𝑓−1(𝐵)) for 𝐵 ⊆ 𝑌. 

(Nasef and Roy, 2013) 

Proof: 

(1)⟹(2) It follows from Theorem 4.4.1. 

(2)⟹(3) Let F be an 𝑚-closed set in Y. By (2), 𝑓−1(𝑌\𝐹) = 𝑋\𝑓−1(𝐹) is 𝑚-

𝛽-open. Hence, 𝑓−1(𝐹) is m-𝛽-closed. 
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(3)⟹(4) Let 𝐴 ⊆ 𝑋. Then, we have 𝑓−1(𝑚𝑐𝑙(𝑓(𝐴))) =𝑓−1(∩ {𝐹 ⊆ 𝑌: 𝑓(𝐴) ⊆

𝐹 and F is 𝑚-closed in 𝑌}) =∩ {𝑓−1(𝐹) ⊆ 𝑋: 𝐴 ⊆ 𝑓−1(𝐹) and 𝑓−1(𝐹) is 𝑚-𝛽-

closed in 𝑋} ⊇ 𝑚𝛽𝑐𝑙(𝐴). Thus 𝑚𝑐𝑙(𝑓(𝐴)) ⊇ 𝑓(𝑚𝛽𝑐𝑙(𝐴)). 

(4)⟹(5) Let 𝐵 ⊆ 𝑌. By (4), we have 

𝑓(𝑚𝛽𝑐𝑙(𝑓−1(𝐵))) ⊆ 𝑚𝑐𝑙(𝑓(𝑓−1(𝐵)))  ⊆ 𝑚𝑐𝑙(𝐵). Thus 𝑚𝛽𝑐𝑙(𝑓−1(𝐵)) ⊆

 𝑓−1(𝑚𝑐𝑙(𝐵)). 

(5)⟹(6) Let 𝐵 ⊆ 𝑌. By (5), we get 𝑚𝛽𝑖𝑛𝑡(𝑓−1(𝐵))  = 𝑋\𝑚𝛽𝑐𝑙(𝑓−1(𝑌|𝐵)) ⊇

𝑋\𝑓−1(𝑚𝑐𝑙(𝑌\𝐵)) = 𝑓−1(𝑌\𝑚𝑐𝑙(𝑌\𝐵)) = 𝑓−1(𝑚𝑖𝑛𝑡(𝐵)). 

(6)⟹(1) Let V be an 𝑚-open set containing 𝑓(𝑥). By Lemma 3.1(2) and (6), 

𝑥 ∈  𝑚𝛽𝑖𝑛𝑡(𝑓−1(𝑉 )). Therefore, there exists an m-𝛽-open set U containing x such 

that 𝑈 ⊆ 𝑓−1(𝑉 ) from Theorem 4.4.3(2). Hence, 𝑓 is 𝑀-𝛽-continuous. 

Lemma 5.4.1: Let (𝑋, 𝑚𝑋) be a space with a minimal structure 𝑚𝑋 on X and 

𝐴 ⊆  𝑋.Then; 

 (i) 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝐴))) ⊆ 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝛽𝑐𝑙(𝐴)))) ⊆ 𝑚𝛽𝑐𝑙(𝐴). 

(ii) 𝑚𝛽𝑖𝑛𝑡(𝐴) ⊆ 𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝛽𝑖𝑛𝑡(𝐴)))) ⊆ 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝐴)). 

(Nasef and Roy, 2013) 

Proof: 

(i) It follows from Lemma 4.4.1. 

(ii) It is obvious since 𝑚𝛽𝑖𝑛𝑡(𝑋\𝐴) = 𝑋\𝑚𝛽𝑐𝑙(𝐴) for 𝐴 ⊆ 𝑋 from Theorem 

4.4.2(5). 

 

Theorem 5.4.2: Let 𝑓 ∶  (𝑋, 𝑚𝑋)  →  (𝑌, 𝑚𝑌) be a function between two spaces 

X andY with minimal structures 𝑚𝑋 and 𝑚𝑌, respectively. Then the following 

areequivalent: 
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(1) 𝑓 is 𝑀-𝛽-continuous,  

(2) 𝑓−1(𝑉 ) ⊆  𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑓−1(𝑉 )))) for each 𝑚-open set V in Y, 

(3) 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑓−1(𝐹)))) ⊆ 𝑓−1(𝐹) for each 𝑚-closed set F in Y, 

(4) 𝑓(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝐴))))  ⊆  𝑚𝑐𝑙(𝑓(𝐴)) for 𝐴 ⊆  𝑋, 

(5) 𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑓−1(𝐵))))  ⊆ 𝑓−1(𝑚𝑐𝑙(𝐵)) for 𝐵 ⊆ 𝑌, 

(6) 𝑓−1(𝑚𝑖𝑛𝑡(𝐵))  ⊆  𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑓−1(𝐵)))) for 𝐵 ⊆ 𝑌. 

(Nasef and Roy, 2013) 

Proof: 

(1)⟺(2) The proof is obvious from Theorem 5.4.1 and the definiton of 𝑚-𝛽-

open set. 

(1)⇔(3) By Theorem 5.4.1 and Lemma 4.4.1, it is clear. 

(3)⟹(4) Let 𝐴 ⊆ 𝑋. By Theorem 5.4.1(4) and Lemma 5.4.1(1), we have 

𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝐴))) ⊆ 𝑚𝛽𝑐𝑙(𝐴) ⊆ 𝑓−1(𝑚𝑐𝑙(𝑓(𝐴))).Thus, 

𝑓(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝐴))))  ⊆ 𝑚𝑐𝑙(𝑓(𝐴)). 

(4)⟹(5) Let 𝐵 ⊆ 𝑌. Since (4), we obtain 𝑓(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑓−1(𝐵))) ⊆

𝑚𝑐𝑙(𝑓(𝑓−1(𝐵))) ⊆ 𝑚𝑐𝑙(𝐵). Hence,𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑓−1(𝐵))) ⊆ 𝑓−1(𝑚𝑐𝑙(𝐵)). 

(5)⟹(6) It is clear. 

(6)⟹(1) Let V be an 𝑚-open set in Y. Then by (6), we have𝑓−1(𝑉) =

𝑓−1(𝑚𝑖𝑛𝑡(𝑉)) ⊆  𝑚𝑐𝑙(𝑚𝑖𝑛𝑡(𝑚𝑐𝑙(𝑓−1(𝑉 )))). Hence, 𝑓 is 𝑀-𝛽-continuous. 
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6. CONCLUSION

In this thesis, first spaces with minimal structures are introduced and properties 

of m-interior and m-closure operators are investigated. Then, the definitions of m-α-

open set, m-semiopen set, m-preopen set and m-β-open set are given. Related 

properties are investigated and relationships between eachother are shown in the 

following diagram. 

  m-preopen 

m-open m-α-open  m-β-open  

m-semiopen 

Also, examples are given to show that opposite implications in the diagram do 

not hold. Besides, m-α-continuity, m-semi-continuity, m-pre-continuity and m-β-

continuity are dealt. Investigating the transitions between those functions and 

relationships between M-continuous functions and continuity types above the 

following is obtained. 

m-pre-continuous 

m-continuous m-α-continuous m-β-continuous 

m-semi-continuous 

The converse implications in the diagram are shown to be not true by given 

examples. 

For a further research, one can defined distinct types of sets and different types 

of continuity in spaces with minimal structures. 
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