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ABSTRACT

ON GENERALIZED METRIC SPACES

SAKARYA, Cansu
MSc in Department of Mathematics
Supervisor: Assist. Prof. Dr. Esra DALAN YILDIRIM
May 2016, 40 pages

This thesis consists, mainly, of four chapters.

In the first chapter, the topic of the thesis is introduced and in the second
chapter, in order to clarify the reading of thesis, some types of metric space

definitions, the concepts of convergence and completeness are given.

In the third chapter, after given necessary knowledge on G-metric
spaces, which are a generalization of metric space, we investigate
fundamental properties of G-metrics. Also, we introduce G- metric topology
formed by means of G-metric. And then, we study some properties of
concepts such as G-convergence, G-continuity and G-completeness. All the

concepts occuring in this chapter are illustrated by original examples.

In the last chapter, we handle some fixed point theorems on G-metric

spaces.

Keywords: G-metric spaces, metric spaces, quasi-metric spaces, fixed

point.



OZET

GENELLESTIRILMIiS METRIK UZAYLAR UZERINE

Cansu SAKARYA
Yiiksek Lisans Tezi, Matematik Boliimii
Tez Danigmani: Yrd. Dog. Dr. Esra DALAN YILDIRIM
Mayis 2016, 40 sayfa

Bu tez esas olarak dort boliimden olusmaktadir.

Birinci boliimde tez konusu tanitilmis, ikinci boliimde ise tezin
anlagilabilir olmasi i¢in ¢esitli metrik uzay tanimlari, yakinsaklik ve tamlik

kavramlar1 verilmistir.

Ugiincii bdliimde, bir metrik uzayn genellestirilmesi olan G-metrik
uzaylar {lizerine bilgi verilerek G-metrigin temel 6zellikleri incelenmistir.
Ayrica G-metrik yardimiyla olusturulan G-metrik topoloji tanitilmigtir. Daha
sonra, G-yakinsaklik, G-stireklilik ve G-tamlik kavramlarina yer verilerek bu
kavramlara ait baz1 6zellikler ¢alisilmigtir. Boliimde gegen tiim kavramlara

ait 6zgiin orneklerle ¢alisma desteklenmistir.

Son bolimde G-metrik uzaylardaki bazi sabit nokta teoremleri ele

almmuastir.

Anahtar Sozciikler: G-metrik uzaylar, metrik uzaylar, quasi-metrik

uzaylar, sabit nokta.
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1. INTRODUCTION

The concept of metric spaces is basic in the study of topology and
functional analysis. Metric spaces are crucial because they play an important

role in the development of the fixed point theory.

Metric spaces may have different generalizations such as given in
(Gahler, 1963; Gahler, 1966) and (Dhage, 1992; Dhage, 2000). In 1960’s,
Gahler (Gahler, 1963; Gahler, 1966) introduced the concept of 2-metric space
as a generalization of usual notion of metric space (X, d). And then, Ha et al
(Ha et al, 1988) realized that 2-metric may not be a continuous function while
metric is a continuous function. This amounts to saying that there is no

relation between these two functions.

In 1992, Dhage (Dhage, 1992; Dhage, 2000) proposed a new class of
generalized metric space called D-metric space. In his ensuring papers, he
tried to develop topological structures in such papers, claimed that D-metrics
provide a generalization of metric functions and continued to present several

fixed point results.

However, Mustafa and Sims (Mustafa and Sims, 2003) showed that
most of Dhage’s claims concerning the topological properties of D-metric

spaces are not correct.

In 2006, they (Mustafa and Sims, 2006) introduced a new class of
generalized metric spaces which are called G-metric spaces, as a
generalization of a metric space (X,d). Consequently, many fixed point
results on such spaces appeared, for example, in (Mustafa et al, 2008; Mustafa
et al, 2009; Mustafa and Sims, 2009; Jleli and Samet, 2012).



In this thesis, we carefully read all papers mentioned and provided
original examples, and also proved where we encountered a gap found in the

papers.



2. PRELIMINARIES

Troughout this chapter necessary topics are given.

Definition 2.1. A metric space is a pair (X,d), where X is a set and d is a
metric on X, that is, a function defined on X x X such that for all x,y,z € X

we have:

(M1) d is real valued, finite and nonnegative,
(M2) d(x,y) = 0 ifand only if x = y,
(M3) d(x,y) =d(y,x) (symmetry),
(M4) d(x,y) <d(x,z) +d(z,y) (Triangle inequality).
(Kreyszig, 1978)

Definition 2.2. Let X be a nonempty set and d: X x X — [0, o) be a given

function which satisfies the following properties:

(1) d(x,y) = 0ifand only if x =y,
(2) d(x,y) < d(x,z) + d(z,y) forany points x,y,z € X.

Then d is called a quasi-metric and the pair (X,d) is called quasi-metric
space.
(Jleli and Samet, 2012)

Definition 2.3. Let X be a nonempty set and R denote the set of real numbers.
A functiond: X x X x X — R™ is said to be a 2-metric on X if it satisfies the

following properties:

(A1) For every distinct points x, y € X, there is z € X, such that
d(x,y,z) # 0,
(A2) d(x,y,z) = 0 if two of the triple x, y, z € X are equal,



(A3) d(x,y,z) = d(x,z,y) = (symmetry in all three variables),
(A4) d(x,y,z) <d(x,y,a) +d(x,a,z) +d(a,y,z), forall x,y,z,a € X.

The set X equipped with such a 2-metric is called a 2-metric space.
(Gahler, 1963)

Definition 2.4. Let X be a nonempty set and R denote the set of real numbers.
A function D: X x X x X — R is said to be a D-metric on X if it satisfies the

following properties:

(D1) D(x,y,z) = 0forall x,y,z € X,

(D2) D(x,y,z) =0ifandonly if x =y = z,

(D3) D(x,y,z) = D(x,z,y) = -~ (Symmetry in all three variables),

(D4) D(x,y,z) < D(x,y,a) + D(x,a,z) + D(a,y,z) for all x,y,z,a €X

(rectangle inequality).

The set X together with such a D-metric is called D-metric space, and
denoted by (X, D).
(Dhage, 1992)

Definition 2.5. A sequence (x,,) in a metric space (X, d) is said to converge
or to be convergent if there is an x € X such that

lim d(x,,x) =0,
n—-oo

and x is called the limit of (x,,) and we write

limx, =x

n-co
or, simply,
Xp > X
We say that (x,) converges to x or has the limit x. If (x,,) is not convergent,
it is said to be divergent.
(Kreyszig, 1978)



Definition 2.6. A sequence (x,,) in a metric space (X, d) is said to be Cauchy
if for every € > 0 there is a natural number N = N (&) such that
d(Xpm, x,) < € foreverym,n > N.

(Kreyszig, 1978)

Definition 2.7. The metric space (X, d) is said to be complete if every Cauchy

sequence in X converges.
(Kreyszig, 1978)



3. G-METRIC SPACES

3.1. G-Metric and G-Metric Topology

Definition 3.1.1. Let X be a nonempty set, and let G: Xx Xx X — R* be a

function satisfying the following conditions:

(Gl) G(x,y,z)=0ifx =y =z,
(G2) 0<G(x,x,y);forallx,y €X, withx #y,
(G3) G(x,x,y) <G(x,y,z)forallx,y,z € X with z # y,
(G4) G(x,y,z) =G(x,z,y) =G(y,z,x) = -+ (symmetry in all three
variables),
(G5) G(x,y,z) <G(x,a,a) +G(a,y,z), forallx,y,z,a € X (rectangle
inequality),
then the function G is called a generalized metric, or, more specifically, a G-
metric on X, and the pair (X, G) is a G-metric space.

(Mustafa and Sims, 2006)

Example 3.1.1. If G(x,y, z) is the perimeter of the triangle with vertices at
x,y,z in R?, then it satisfies all G-metric axioms.
(Mustafa and Sims, 2006)

Example 3.1.2. Let X be a nonempty set. We define G: Xx Xx X — R* by

0, allof the variables are equal .

1, two of varibles are equal and
the remaining is distinct .

2, allof the variables are distinct.

G(x,y,2z) =

for all x,y,z € X. Then, G satisfies all of the G-metric axioms.



Definition 3.1.2. A G-metric space (X, G) is symmetric if
(G6) G(x,y,y) =G(x,x,y) forallx,y € X.
(Mustafa and Sims, 2006)

Remark 3.1.1. The G-metric space (X, G) given in Example 3.1.2 is also

symmetric.

Proposition 3.1.1. Let (X, G) be a G-metric space, then the following hold
forall x,y,z,a € X.

1) If G(x,y,z) =0,thenx =y = z,

(2 Gx,y,z) <G(x,x,y)+G(x,x,2),

B) Glxy.y) <2G6(y,x,x),

4) Gx,y,2z)<G(x,a2z)+G(ay,2),

(5) G(x,y,z) < E(G(x, v,a)+G(x,a,z)+ G(a,y, Z)),

6) G(xv,2) <(G(xaa)+G(y aa)+G6(zaaq),
(7 16(x,y,2) —G(x,y,a)| < max{G(a,z2),G(z,a, a)},
@) 16(x,y,2) —G(x,y,0)| < G(x,a,2),
9) 16(x,y,2) —G(y,z,z)| <max{G(x,z,2),6(z,x,x)},
(10) |G(x,y,y) — Gy, x, x)| < max{G(y,x,x),G(x,y,¥}.
(Mustafa and Sims, 2006)

Proof:

(1) We proceed by proving the contrapositive of the statement.

Casel: Let all of the variables be distinct. From (G2) and (G3), we have
0<G(x,x,y) <G(x,y,2z).

Case2: Let two of the variables be equal and the remaining be distinct. From
(G4) and (G2), we get G(x,y,z) > 0.

Thus, G(x,y,z) # 0 for two cases.



(2) From (G4) and (G5), we get
GO, x,y)+G(x,x,2) =Gy, x,x) + G(x,x,z) = G(y,x,z) = G(x,y, 2).

(3) Weknowthat G(x,y,y) < G(x,x,y) + G(x,x,y) = 2G(x,x,y) by (2).
Then, we obtain G (x,y,y) < 2G(y, x, x) from (G4).

(4) Case 1: Let x # z. Thus, we have
G(x,y,z) <G(x,a,a)+G(a,y,z)
=G(a,a,x) +G(a,y,2)
<G(a,x,z) +G(a,vy,z)
= G(x,a,z) +G(a,y,2)
from (G5), (G4), (G3) and (G4), respectively.

Case 2: Let x = zand y # a. Then, we have

G(x,y,z) =G(x,y,x) =G(x,x,y) <G(x,y,a) < G(x,y,a) + G(x,a,x)
from (G4) and (G3). So, we obtain G(x,y,z) < G(a,y,x) +G(x,a,x) =
G(a,y,z)+ G(x,a,z) by (G4).

Case3: Let x = zand y = a. The proof is clear.

(5) By using (4), we have
G(x,v,2z2) <G(x,a,z) +G(a,y,z)
G(x,y,z) <G(x,a,y) +G(z,a,y)
G(x,y,z2) <Gy,ax)+G(zax)
Thus, we get 3G(x,v,z) <2(G(x,y,a) +G(x,a,z) + G(a,y,z))

from (G4). So, we obtain

G(x,y,2) < E(G(x,y, a)+G(x,a,z) + G(a,y,z)).

(6) By using (Gb), (2) and (G4), respectively, we have
G(x,y,z) <G(x,a,a)+G(a,y,z)
<G(x,aa)+G(y,aa)+G(za,a)



G(x,v,z) <G(y,aa)+G(a,x,z)
<GWy,aa)+G(x,aa)+G(zaa)
G(x,v,2z) <G(z,a,a) +G(a,x,y)
<G(z,a,a) +G(y,a,a)+ G(x,a,a)
Then, 3G(x,y,z) < 3G(x,a,a) + 3G(y,a,a) + 3G(z, a,a). Hence, we get
G(x,y,z) <G(x,a,a) +G(y,a,a) + G(z,a,a).

(7) From (G5), we have G(x,y,z) < G(z,a,a) + G(a, x,y). Thus,
G(x,y,z) —G(a,x,y) <G(z,a,a) <max{G(z,a,a),G(a,zz)}
By the similar way we have G(a,x,y) < G(a,z,z) + G(z,x,y) from (G5).
Hence,
—max{G(z,a,a),G(a,z,2)} < -G(a,z,z) < G(x,y,z) — G(a,x,y).
Therefore, we obtain

|G(x,y,2z) — G(x,y,a)| < max{G(a,z2),G(z,a,a)}

(8) Since G(x,y,z) < G(a,x,z) + G(a,x,y) and G(x,y,a) < G(z,x,a) +
G(z,x,y) from (4), we obtain

—G(x,a,2) <G(x,y,z) —G(x,y,a) < G(x,a,z)
by using (G4). Hence, |G(x,y,2z) — G(x,y,a)| < G(x,a, z).

(9) Since G(x,y,2z) < G(y,z,z) + G(z,x,z) and G(y,z,z) < G(z,x,x) +
G(y, z, x) from (G5), we have
G(x,v,z) —G(y,2,2) < G(x,z,2) < max{G(x,z2),G(z,x,x)}
and
—max{G(x,z2,2),G(z,x,x)} < —G(z,x,x) < G(x,vy,2z) — G(y,2,2)
by using (G4).
Thus, we obtain

|G(x,y,2) —G(y,2,z)| <max{G(x,z2z),G(z,x,x)}.

(10) The proof is done by a similar proof of (7) by using (3) and (G4). O



Proposition 3.1.2. Let (X, G) be a G-metric space and let k > 0, then G; and

G, are G-metrics on X, where

(1) Gi(x,y,2z) = min{k,G(x,y,2)},

= _Gy2)
(2) Go(x,y,2) = k+G(xy.z)

(Mustafa and Sims, 2006)

Proof:
(1) (G1) Since G(x,y,z) = 0 when x =y = z, we have G;(x,y,z) = 0.
(G2) Letx #y. G (x,x,y) > 0since G(x,x,y) > 0and k > 0.
(G3) Let z # y.
Case l: Letk < G(x,x,y).Since G(x,x,y) < G(x,y,z), we have
G,(x,x,y) = min{k, G(x,x,y)} = k = min{k, G(x,y,2)} = G,(x,y, z).
Case 2: Let G(x,x,y) < k. Since G(x,x,y) < G(x,y,z), we have
G1(x,x,y) = min{k,G(x,x,y)} = G(x,x,y) < min{k,G(x,y,2)} =
Gi(x,y,2).
Hence, we get G, (x, x,y) < G{(x,y, z) by two cases.
(G4) Since G satisfies (G4), then G, also satisfies (G4).
(G5) Since G(x,y,2z) < G(x,a,a) + G(a,y, z), then we get
min{k, G(x,y,z)} < min{k,G(x,a,a) + G(a,y,z)}
< min{k,G(x,a,a)} + min{k,G(a,y,2)}
=G,(x,a,a) + G(a,y,2).

(2) (G1) Since G(x,y,z) = 0when x =y = z, we have G,(x,y,z) = 0.

(G2) Letbe x # y. Since G(x,x,y) > 0and k > 0, we have G,(x,x,y) > 0.

(G3) Letbe z # y. Since G(x,x,y) < G(x,y,z) and G, is increasing
function, we have G,(x,x,y) < G,(x,y, 2).

(G4) It is obvious.

(G5) Since G satisfies (G5) and G, is increasing, we get

G,(x,v,2) < Gy(x,a,a) + G,(a,y, z). O

10



Proposition 3.1.3. Let (X, G) be a G-metric space, k > 0 and X = Ui~ 4;

be any partition of X, then G5 is a G-metric on X, where

G(x,y,2), if for someiwe have x,y,z € A;
G3(%,y,2) =1 4+ G(x,y,2), otherwise.

(Mustafa and Sims, 2006)
Proof: It is clear. O

Proposition 3.1.4: Let (X, G) be a G-metric space, then the following are

equivalent.

(1) (X, G) is symmetric.
(2 G(x,y,y) <G(x,y,a),forall x,y,a € X.
3) G(x,y,2z) <G(x,y,a) + G(z,v,b), for all x,y,z,a,b € X.
(Mustafa and Sims, 2006)

Proof:
(1) => (2) Casel: Letx = a. G(x,y,y) < G(x,,y,a) from (G3).

Case2: Let x = a. It is obvious since (X, G) is symmetric.

(2) = (3) By Proposition 3.1.1(2) and hypothesis, we get
G(x,v,z) <G(x,y,y)+G(y,y,z) <G(x,y,a) + G(z,y,b).

(3) = (1) From hypothesis and (G4), we get

GOy, y) <G(x,y,x)+G(,y,y) =G(xyx) =G(xx,Y).
By similar way, we have

Gxx) <G6W,xy)+6xxx)=G60yxy) =G6(xyY).
Thus, we obtain G(x, x,y) = G(x,y,y). Thatis, (X, G) is symmetric. O

11



Proposition 3.1.5. Let (X, d) be a metric space. Then G4(d) and G,,,(d)

expressed as follows define G-metrics on X.

(1) Go(D)(x,y,2) =5 (d(x,y) +d(¥,2) + d(x,2)),

(2) Gn(d)(x,y,2) = max{d(x,y),d(y,2),d(x,2)}.
(Mustafa and Sims, 2006)

Proof:
(1) (G1) Let x = y = z. Since d is a metric, G;(d)(x,y,z) = 0.
(G2) Let x # y. We have G¢(d)(x, x,y) > 0since d(x,y) > 0.
(G3) Case 1: Let y # zand x = y. Thus,
Gs(d)(x, x,y) = 0 < Gs(d) (x,y,2).
Case 2: Letx =z,z # yand x # y. Then,
Gs(d)(x, x,y) = Gs(d)(x,y,2).
Case 3: Letx # z,z # y and x # y. By using (M4), we have

2d(x,y) <d(x,y) +d(x,z) + d(z,y).
Then,

6.(D) 06 Y) = 5, y) < 51d00y) + dx, ) + 2, Y)
= G5(d)(x,y, 2).
(G4) Itis clear.
(G5) From (M4), we have
d(x,y) <d(x,a) +d(a,y),
d(x,z) <d(x,a) +d(a,z).
Thus,

Gs(d)(x,y,2) =

<

[d(x,y) +d(x,2) +d(z,y)]

[d(x,a) + d(a,y) +d(x,a) +d(a,z) +d(y,z)]

:
:
= G.(d) (0, ) + G(d)(@,7, 2).

(2) (G1) Let x = y = z. Since d is a metric, we have G,,(d)(x,y,z) = 0.
(G2) Let x # y. We have G,,(d)(x,x,y) = d(x,y) > 0.

12



(G3) Let y # z. We get
G (d)(x, x,y) = d(x,y)
< max{d(x,y),d(y,2),d(x,2)} = G,(d)(x,y, z).
(G4) It is obvious.
(G5) Casel: Let Gp(d)(x,y,z) =max{d(x,y),d(y 2),d(x 2)}=
d(x,y). Since d is a metric, we have
d(x,y) <d(x,a) +d(a,y) = G,(d)(x,a,a) +d(a,y)
< G,(d)(x,a,a) + max{d(a,y),d(y, z),d(a, z)}
=Gnp(d)(x,a,a)+ G,(d)(a,y,z).

The proofs of other cases are done by similar way. O

Example 3.1.3. Let d be a metric on R defined by d(x,y) = |x — y|. Then,

the following functions Gg(d) and G, (d) are two G-metrics on R.

(D) G(Dxy,2) =5 (x =yl + Iy =zl +]x —zI),
(2 Gm(d&y,z) =max{|x -yl ly —zl, [x — z[}.

Proposition 3.1.6. Let (X, G) be a G-metric space. Then d; define a metric
on X.

dg(x,y) = G(x,y,y) + G(x,x,¥)
(Mustafa and Sims, 2006)

Proof:
(M1) Let x #y. dg(x,y) = G(x,y,y) + G(x,x,y) > 0 from (G2).
(M2) Let d;(x,y) = 0. Suppose x # y. By Proposition 3.1.1 (3), we have

6007.) +56(67,7) =56(07,9) < 6(07,7) + 66 x,3) = 0
Thus, G(x,y,y) < 0. This contradicts to (G2). Hence, our assumption is not
true. That is, x = y. The converse is clear.

(M3) dg(x,y) = G(x,y,y) + Gx,x,y) = G(y,y,x) + G(y,x,x) =
d¢ (v, x) from (G4).

13



(M4) We have G(x,y,y) < G(x,z,2) + G(z,y,y) and G(x,x,y) <
G(y,z,2) + G(z, x,x) by (G5). Then, we obtain

Gx,y,y) +G(x,x,y) <G(x,2,2) + G(z,x,x) + G(z,y,y) + G(y, 2, ).
Thus, dg(x,y) < dg(x,z) +dg(z,y). O

Example 3.1.4. Consider the G-metric space (X, G) given in Example 3.1.2.

Then, the following function d,; is a metric on X.

XFYy

2,
dete) g %2

Proposition 3.1.7. Let (X, G) be a G-metric space. Then, the following hold:

(1) G(x')"Z) < Gs(dG)(x)y'Z) < ZG(X'}"Z),
(2) G(x,y,2) < Gp(dg)(x,y,2) <3G(x,y,2).
(Mustafa and Sims,2006)

Proof:

(1) From Proposition 3.1.1 (2), we have
G(x,y,2) <G, x,y) + G(x,x,2)
Gx,y,z) <G,y x)+ Gy, 2)
G(x,v,2) <G(z,2,x) +G(z,2).

Thus, we get

1
G(x,y,z) < §[G(x.x,y) +G(x,y,y)

+ G(x,%,2)+G(z,2,x) + G(y,y,2) + G(z,2,y)]

1
= 3lds(x,y) + dg (v,2) + dg (x, 2)]

= Gs(dG)(x’ y’ Z)-

On the other hand,
Case 1. Let all variables be different. By (G3), we get

G(x,y,y) <GxY,z)
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G(x,x,y) <G(x,y,2)

G(x,2,z) <G(x,2,Y)

G(z,x,x) < G(z,x,y)

G(zyy) <G(zxY)

Gy, z2z) <G, zx).
Thus, we have
[G(x,x,y) +G(x,y,y) + G(x,x,2)+G(z,2,x) + G(y,y,2) + G(z,2,y)]
< 6G(x,y,2).

Hence,

2l () + dg(y,2) + dg(x,2)] = Gs(dg) (x,7,2) < 26(x,y,2).

Case2: Letx = yand y # z. By Proposition 3.1.1 (3) and (G3), respectively,
we have

G(x,2,z) <2G(z,x,x) < 2G(x,y,2)

G(y,z,2) <2G(z,y,y) < 2G(x,y,2)

G(z,x,x) <G(x,y,2)

G(z,y,y) <G(x,y,2)

G(x,y,y) =0

G(x,x,y) = 0.

Then, we obtain
1
3 [G(x,x,y) + G(x,y,y) + G(x,x,2)+G(z,z,x) + G(y,y,2) + G(z,2,y)]

= 2de(6y) + de(,2) + do(x,2)] = Gs(dg) (%,7,2) < 26(x,7,2).

The other cases are proved similarly.

(2) By Proposition 3.1.1 (2), we obtain
G(x,y,2) <G(x,x,y) + G(x,x,2)
G(x,y,2) Gy, y,x)+G(y.y,2)
G(x,y,2) <G(z,2,x) +G(z,2,y).
Then, we have
36(x,y,2) <G, x,y) +G(x,x,2z) + G(y,y,x) +G(y,y,2) + G(z,2,x)
+G(z,2,y)
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< 3max{G(x,x,y) + G(y,y,x),G(x,x,2) + G(z,z,x),
G(y,y.2) +G(z,2)}
= 3G (de) (x,y,2).
Thus, G(x,y,z) < G,,(dg)(x,y, z).

On the other hand, we get G,,,(d;)(x,v,2) < 3G(x,y, z) from Proposition
3.1.1 (3) and (G3). O

Proposition 3.1.8. Let (X, d) be a metric space. Then, the following hold:

(1) de,&xy) = %d(x, ),
() dg @ y) = 2d(xy).
(Mustafa and Sims, 2006)

Proof:
(1) dey@®y) = Gs( &y, ) + Gs(d) (%, %,y)
=2[dGy) +d(y) + dxy)] + 3 [dx %) +dxy) +
d(x,y)]
=2d(xy).

(2) dg, (), Y) = Gr(d)(x,y,Y) + G (D) (x,x,¥)
= max{d(x,y),d(y,y),d(x,y)} +
max{d(x, x),d(x,v),d(x,y)}
= 2d(x,y). =

Theorem 3.1.1. Let (X, G) be a G-metric space. The function d: X x X —
[0, o0) defined by d(x,y) = G(x,y, y) satisfies the following properties:

1) d(x,y) =0ifandonly if x =y,
(2) d(x,y) <d(x,z) + d(z,y) for any points x,y,z € X.

(Jleli and Samet,2012)
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Proof:

(1) Let d(x,y) = 0. By hypothesis G (x,y,y) = 0. From Proposition 3.1.1
(1), we have x = y. Conversely, let x = y. Then, d(x,y) = d(x,x) =
G(x,x,x) = 0by (G1).

(2) From (G5), we get
d(x,y) =G6(x,y,y) <G(x,2z,2) + G(z,y,y) =d(x,z) + d(z,y). O

Definition 3.1.3. Let (X, G) be a G-metric space, then for x, € X, r > 0,

the G-ball with centre x, and radius r is defined by

BG(XOJ I‘) = {y €eX: G(XO' Y, Y) < T}
(Mustafa and Sims, 2006)

Example 3.1.5. Consider the G-metric space (X, G) given in Example 3.1.2.

Then, we have

X , r>1
Bg(x0,7) = {{xo} r<i

for any x, € X.

Proposition 3.1.9. Let (X, G) be a G-metric space, then for any x, € X and
r > 0, the following hold:

(1) FG(xg,x,y) <1, thenx,y € B;(xq,7),
(2) If y € B;(xy, r),then there existsa § > 0 such that B;(y, §) S Bg;(x,, 7).
(Mustafa and Sims, 2006)

Proof:

(1) Itis obvious from (G3).

(2) Let y € B;(xg, 7). Assume a € B;(y, ). Then, we have G(a,a,y) < 9.
By (G5), we get G(a,a,xy) < G(x,y,y) +G(y,a,a) < G(xy,y,y) +
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§.Take § = r — G(xq,y,y). Thus, we obtain G(a, a, x,) < r.Hence, a €

B (xo, 7). O

Proposition 3.1.10. Let (X, G) be a G-metric space. Then B = {B;(x,r) :
x € X,r > 0} is the base of a G-metric topology z(G) on X.
(Mustafa and Sims, 2006)

Proof:
1) By the definition of a G-ball, x € B;(x,r) for all x € X. So,

X = Uyex Be(x, 7).

(2) Let B;(x,7,),Bs(y,12) € Band a € B;(x,r1) N B;(y, 1) for
a € X. From Proposition 3.1.9 (2), there exist 6;, 5, > 0 such that
B;(a,6;) € Bg(x,m) and Bg(a,d,) € B (y,1,). Let us choose a
6 > 0 such that § = min{d,, 5,}. Then, a € B;(a,d) € Bs(x,1) N

BG(yirZ)' o

Proposition 3.1.11. Let (X, G) be a G-metric space, then for all x, € X and

r > 0, we have
1
Bg(x0,37) € Bag(x0,7) € Bg(xo,7)

(Mustafa and Sims, 2006)

Proof:

Letz € BG(xO,gr). Then, G(xy,2,2) < %r. By Proposition 3.1.1 (3), we
have G(z, xo, xo) < 2G(xo,2,2) < gr. S0, dg(xo,2) = G(xg,2,2) +
G(z,x0,x0) <1.Hence, z € By (xo, 7). Therefore, z € B (x,, 1) since

G(z,z,xy) <T. m|
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Corollary 3.1.1. The G-metric topology 7(G) coincides with the metric
topology induced by d,.
(Mustafa and Sims, 2006)

3.2. G-Convergence and G-Continuity

Definition 3.2.1. Let (X, G) be a G-metric space. The sequence (x,) € X is
G-convergent to x if it converges to x in the G-metric topology 7(G).
(Mustafa and Sims, 2006)

Proposition 3.2.1. Let (X, G) be a G-metric space, then for a sequence (x,) S

X and a point x € X, the following are equivalent.

(1) (x,) is G-convergent to x.

(2) dg(x,,x) = 0,85 N — 00,

(3) G(xp, xp,x) = 0,85 — 0.
(4) G(xp, x,x) = 0,asn - 0.

(5) G(xpp, xp, x) = 0,83 M, N = 0.

(Mustafa and Sims, 2006)

Proof:

(1) © (2): Itis obvious from Proposition 3.1.11.

(2) = (3): Let dg(xp,,x) » 0 asn — oo. Then, for each € > 0, there exists a
natural number N = N(&) such that d;(x,, x) < € whenever n > N. By
Proposition 3.1.6, we have G(x,, X, x) < G(xp, X, X) + G(xp, x, %) < €.
Thus, G(x,,, x,, x) » 0asn — oo,

(2) = (4): The proof is similar to that of (2) = (3).

(3) = (4): It is clear since G(xy,x,x) < 2G(xy, x,, x) by Proposition 3.1.1
(3).

(4)=(5): It follows from Proposition 3.1.1 (2) since G(xpy, Xn, X) <

G(me Xm» xn) + G(xm: Xm» x).
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5)=>(2) Let G(xpx,x)—0 as m,n - . Since dg;(x,,x) =
G, 2x,x) + G(xp, Xy X) < 2G (X, X, X) + G (X, X, X) = 3G (%5, X5, X)
from Proposition 3.1.6 and Proposition 3.1.1 (3), we have d;(x,,x) — 0 as

n — oo, O

Definition 3.2.2. Let (X,G) and (X',G') be G-metric spaces and let
f:(X,G) = (X',G") be a function, then f is said to be G-continuous at a
point x, € X if and only if given € > 0, there exists § > 0 such that for
x € X; G(xo,x,x) < & implies G'(f (xo), f (%), f(x)) < &. Afunction f is G-
continuous on X if and only if it is G-continuous at all x, € X.

(Mustafa and Sims, 2006)

Example 3.2.1. Consider the G-metric G on R as in Example 3.1.3 (2). Let
f:(R,G) = (R,G) be a function defined by f(x) = 2x. Then, f is G-
continuous. Indeed, given € > 0, we must find a number § > 0 such that

G(f(x), f), f(¥)) < & whenever G(x,y,y) < & forall x,y € R. Since

G(f), fO), f) = max{|2x — 2yl |2x — 2y, |2y — 2y|} < ¢, it

follows that G(x,y,y) = max{|x — y|,|x —y|, |y —yl} < z Hence, we

have § = <.
2

Proposition 3.2.2. Let (X, G) and (X', G") be G-metric spaces, then a function
f:X - X' is G-continuous at a point x, € X if and only if it is G-sequentially
continuous at x,; that is, whenever (x,) is G-convergent to x, we have that
(f (x,)) is G-convergent to f(x,).

(Mustafa and Sims, 2006)

Proof :
Let f be G-continuous at x, and (x,) — x,. Since f is G-continuous at

Xo, for each € > 0, there exists 6 > 0 such that G(x,,x,x) < & implies

G'(f(xo), f(x), f(x)) < &. As (x,) = xo, there exists a natural number N
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such that for all n>N, G(x,x,x)<6. By hypothesis,
G'(f(xp), f(xp), f(x)) < e forall n > N. Hence, (f(x,,)) = f(xo).

Conversely, assume that (x,,) = x, implies (f(x,)) = f(x,) and f is
not G-continuous at x, € X. Then, there exists an € > 0 such that for every
>0, there is an x#x, satisfying G(xg,x,x)<d but
G'(f(xo), f(x),f(x)) = . In particular, for & = 1/,, there is an (x,)
satisfying G (xy, xu, %o) < - but G'(f (x), £ (a), £ (x0)) 2 &. Thus, (x,) —
xo but (f(x,,)) does not converge to f(x,). This is a contradiction. Hence, f

is G-continuous. O

Proposition 3.2.3. Let (X,G) be a G-metric space, then the function G is
jointly continuous at all three of its variables.
(Mustafa and Sims, 2006)

Proof:
Assume (xi),(ym) and (z,) are G-convergent to x,y and z, respectively.
From (G5), we get
G(x,y,2) < GV, Y Ym) + G (Y, X, 2)
G(z,x,ym) < G(x,x, x1) + G(Xk, Y, Z)
G(z, Xk, Ym) < G (2,2, 2y) + G(Zp, Ym» Xi)-
Thus,
G(x,y,2) = G, Yins Zn) < GV, Yo Ym) + G (X, Xk, Xi) + G (2, 2, Z).
Similarly,
G, Vi Zn) — G(x,y,2) < G(xp, x,x) + GV, v, V) + G(2, 2, 2).
By Proposition 3.1.1 (3), we have,
|G Cxper Yo 2n) — G(x, ¥, 2)| < 2(G (%, X, Xp) + G (Y, Yy Vi) +
G(z, 2y, Zy)).
Hence, G(xy, Ym,zn) = G(x,y,2), as k,m,n - o and the result follows

from Proposition 3.2.2. O
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Example 3.2.2. Let (X, G) be a G-metric space and G’ be G-metric defined
on R by G'(a,b,c)=|a—b|+|b—c|+|a—c|. Then, for the G-
continuous functions f,g:X >R and e €R, f+g and af are G-
continuous, where
f+rg:X->R (f+9)=fk)+9x)
af: X >R, (af)(x) = af(x).

Indeed, given € > 0, let the sequence (x,,) € X be G-convergentto x €

X. Since f and g are G-continuous, there exists a natural number N = N(¢)

such that for each n > N, G'(f(xp), f(xn), F (X)) = 2|f (xn) — f()I <§
and G'(g(xa), 9 (), 9()) = 219(xy) — g ()| < 5. Thus,

G'((f + 9 ), (f + 9)(xn), (f + 9) (%))
= 2|f(xn) + g(xn) — f(x) — g(x)]
< 2(If (xn) = FO)| + [g(x) — g()])
<2(+)=c

Thus, f + g is G-continuous.

Since f is G-continuous, there exists a natural number N = N (&) such that

foreachn > N,

G'(f Gen, f O, £ (20)) = 21f () = FO| <

Thus, G"((af) (), (af) (), (@f) (1)) = 2laf (x,) — af ()]
= 2]al.1f (xn) = f ()]

<=.la|l =«
la

Hence, af is G-continuous.
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3.3. G-Completeness

Definition 3.3.1. Let (X, G) be a G-metric space, then a sequence (x,) € X
is said to be G-Cauchy if for every € > 0, there exists a natural number N =
N(¢) such that G (x,,, x,,, x;) < € foralln,m,l > N.

(Mustafa and Sims, 2006)

Proposition 3.3.1. Let (X, G) be a G-metric space. Then the following are

equivalent.

(1) The sequence (x,,) is G-Cauchy.
(2) For every € > 0, there exists a natural number N = N (&) such that
G(xp, X, X)) < € foralln,m > N.
(3) (x,,) is a Cauchy sequence in the metric space (X, d;).
(Mustafa and Sims, 2006)

Proof:
(1)=(2): It is obvious by (G3).
(2) © (3): Itis clear from Proposition 3.1.6.

(2) =(2): Itiis obvious by (G5) if we set a = x,,. O

Corollary 3.3.1. Every G-convergent sequence in any G-metric space is G-

Cauchy.

(Mustafa and Sims, 2006)
Proof:
It is obvious by (G5) and Proposition 3.2.1. O

Corollary 3.3.2. If a G-Cauchy sequence in a G-metric space (X, G) contains
a G-convergent subsequence, then the sequence itself is G-convergent.
(Mustafa and Sims, 2006)
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Proof: It is clear. a

Definition 3.3.2. A G-metric space (X, G) is said to be G-complete if every
G-Cauchy sequence in (X, G) is G-convergent in (X, G).
(Mustafa and Sims, 2006)

Proposition 3.3.2. A G-metric space (X,G) is G-complete if and only if
(X,dg) is a complete metric space.
(Mustafa and Sims, 2006)

Proof: It follows from Proposition 3.1.6 and Proposition 3.3.1. O

Theorem 3.3.1. Let (X, G) be a G-metric space. Letd: X x X — [0, o) be
the function defined by d(x, y) = G(x,y,y). Then, the following hold:

(1) (X, d) is a quasi-metric space,
(2) (x,,) c X is G-convergent to x € X if and only if (x,,) is convergent to X
in (X,d),
(3) (x,) € X is G-Cauchy if and only if (x;,) is Cauchy in (X, d),
(4) (X, G) is G-complete if and only if (X, d) is complete.
(Jleli and Samet,2012)

Proof:

(1) It is clear from Theorem 3.1.1.

(2) Let (x,) be G-convergent to x € X. By Proposition 3.2.1 (4), we have
G(xp,x,x) >0 as n—- o, Thus, d(x,,x) >0 as n - o. So, (x;) is
convergent to x in (X, d). Similarly, the converse implication is performed
again by using Proposition 3.2.1 (4).

(3) Let (x,) < X be G-Cauchy. Given £ > 0, there exists a natural number

N = N(¢) such that G(x,, Xy, xy) < € for all n,m > N from Proposition
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3.3.1. Thus, d(x,, x,,) < €. That is, (x,) is Cauchy in (X, d). The converse
is clear from Proposition 3.3.1.
(4) The proof is obvious by (3) and the definitions of G-completeness and

completeness. O

Remark 3.3.1. If (X, d) is a quasi-metric space then the function §: X x X —
[0, ) defined by 6 (x, y) = max{d(x,y),d(y,x)} is a metric on X.
(Jleli and Samet,2012)

Theorem 3.3.2. Let (X, G) be a G-metric space. Let §: X x X — [0, =) be the
function defined by &(x,y) = max{G(x,y,y),G(y,x,x)}. Then, the

following hold:

(1) (X, 6) is a metric space,
(2) (x,,) € X is G-convergent to x € X if and only if (x;,) is convergent to x
in (X,9),
(3) (x,,) € X is G-Cauchy if and only if (x,,) is Cauchy in (X, §),
(4) (X, G) is G-complete if and only if (X, &) is complete.
(Jleli and Samet,2012)

Proof:

The proofs are clear since this theorem is a result of Theorem 3.3.1 and

Remark 3.3.1. 0O
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4. SOME FIXED POINT THEOREMS ON G-METRIC SPACES

Theorem 4.1. Let (X, G) be a complete G-metric space, and let T: X — X be

a mapping satisfying one of the following conditions:

G(T(x),T(y),T(z)) <aG(x,y,z)+ bG(x,T(x),T(x))
+cG(y, T(y), T(y)) + dG(z, T(z2), T(Z))
(4.1)
or
G(T(x), T(y),T(2)) < aG(x,y,z) + bG(x,x,T(x))
+cG(y,y,T»)) +dG(z,2,T(2))
(4.2)

for all x,y,z€ X where 0 <a+b+c+d <1, then T has unique fixed
point (say u, i.e., Tu=u), and T is G-continuous at u.
(Mustafa et al., 2008)

Proof:
Let T satisfy condition (4.1), then for all x, y € X, we get
G(Tx, Ty, Ty) < aG(x,y,y) + bG(x,Tx,Tx) + cG(y, Ty, Ty)
+dG(y, Ty, Ty)
=aG(x,y,y) + bG(x,Tx,Tx)
+(c+d)6c(y, Ty, Ty)
(4.3)
and
G(Ty, Tx,Tx) < aG(y,x,x) + bG(y, Ty, Ty) + cG(x,Tx,Tx)
+dG(x,Tx,Tx)
=aG(y,x,x) + bG(y, Ty, Ty) + (c + d)G(x,Tx,Tx)
(4.4)

Adding (4.3) and (4.4) side by side, we have
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de(Tx,Ty) = G(Tx,Ty,Ty) + G(Ty,Tx,Tx)
< adg(x,y) + b(G(x, Tx,Tx) + G(y, Ty, Ty))
+(c+d)(G(y, Ty, Ty) + G(x,Tx,Tx))
=ads(x,y)+(b+c+d)[G(x,Tx,Tx) + G(y, Ty, Ty)]
(4.5)

If (X, G) is symmetric, then d;(x,y) = 2G(x,y,y) foreach x,y € X.
So, from (4.5), we have

b+c+d b+c+d

de(Tx, Ty) < adg(x,y) + 5 de(x,Tx) + de(y,Ty)

(4.6)

foreach x,y € X.

Since0 < a+ b+ c+d <1, the existence and uniqueness of the

fixed point follows from well-known theorem in metric space (X, d;).

If (X,G) is not symmetric, then %G(x, y,¥) <dg(x,y) <3G(x,y,y)

for each x, y € X. From (4.5), we have
2 2
de(Tx,Ty) < adg(x,y) + §(b +c+d)d;(x, Tx) + §(b +c+d)dg(y, Ty)

(4.7)

for each x,y € X.

Since a + %(b +c+d) +§(b + ¢ + d) may not be less than 1, we can

not use metric to prove this case.

Let x, € X be an arbitrary point, and let define the sequence (x,) by
X, = T™(x,). From (4.1), we get
G (X, Xn41, Xn41) S A6 (X1, Xn, Xn) + DG (Xp-1, Xp, Xn)
+(c + d)G (X, X1, Xns1)
(4.8)

Then, we have
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G(xnr Xn+1) xn+1) —(c+ d)G(xn, Xn+1» xn+1) < (a + b)G(xn—l'xn' xn)-

Therefore, we obtain

a+b
G (Xn, Xn+1, Xn+1) < mG(xn—llxn: Xn)

(4.9)

Setq=(a+b)/(1—-(c+d)),then0<g<1since0<a+b+c+d<
1. So,

G (Xpy Xnt1, Xn41) < QG (Xp_q, X, Xp).

If we continue, we will have

G (X, Xn41, Xn+1) < q"G (xg, X1, X1).

(4.10)
Then, for all n,m € N such that n < m, by (G5), we get
G(xn'xm: xm) < G(xn'xn+1:xn+1) + G(xn+1'xn+2'xn+2)
+ G(xn+2;xn+3rxn+3) +ot G(xm—lfxm: xm)
< (@ "+ "4 4+ @D G, x1, %)
< lq__q G(th X1, xl)'
(4.11)

That is G (x,, X, x,,) = 0asn,m - . Thus (x,,) is G-Cauchy
sequence. Since (X, G) is G-complete, there exists u € X such that (x,,)

G-converges to u.

Assume that T'(u) # u, then from (4.3), we have
G(xn,T(u),T(u)) < aG(xp_1, w,u) + bG(xXp_q, Xp, Xp)
+(c+d)G(u, T(w), T(w)).
(4.12)
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Taking the limit as n — oo, we have
G(u,T(w), Tw)) < (c + )G (w, T(w), T(w)) since (x,) - u. This is a

contradiction. Thus, u = T (u).

Suppose that u # v such that T(v) = v, then
G(w,v,v) < aG(w,v,v) +bG(u, T(W), TW)) + (c + )G (v, T(v), T(v))
= aG(u,v,v).
(4.13)
That is, u = v.

Let (y,,) € X be a sequence such that (y,) - uasn — oo,

Then, we get
G(u, T(vn), T()) < aG(u, yn, ¥o) + bG (v, T(W), T(w))
+(c+ DG (Y, Tr), T (7))

=aGu,yn,yn) + (c + d)G(yn' T(Yp), T(yn))
(4.14)

By (G5) and (4.14), we obtain
G(u, T(yn); T(yn)) <aG(u, Y yn) + (c + d)G(yn' u,u)
+(c+ DG(w, TG, T(m))

Thus, we have

(1= (c+d))6(wTOm), TOm)) < aGW, yu, ¥n) + (¢ + )G (¥, u, u)

That is,

G(u’ T (), T(yn)) < (a/(1 = (c+ad))G(Wu, Yn, Yn)
+(c+d)/(1—(c+d)G(y, u,u).
(4.15)

By taking the limit as n — oo, we have G (u, T (y,), T (¥,)) — 0 since
() — u. From Proposition 3.2.1, T(y,,) = u = Tu. Thus, T is G-

continuous at u by Proposition 3.2.2.
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If T satisfies condition (4.2), the proof can be done by using similar

argument. |

Corollary 4.1. Let (X, G) be a complete G-metric space and let T: X — X be

a mapping satisfying one of the following conditions:

G(Tm(x),Tm(y),Tm(Z)) <{aG(x,y,y) + bG(x, Tm(x),Tm(x))
+cG(y,Tm(y),Tm(y)) + dG(z, Tm(z),Tm(Z))}
(4.16)
or
G(Tm(x),Tm(y),Tm(z)) <{aG(x,y,y) + bG(x, 5% Tm(x)) + cG(y, Y, Tm(y))
+dG(Z, z, Tm(z))}
(4.17)

forall x,y,z € X,where0 <a+ b+ c+d < 1. Then T has a unique fixed
point (say u), and T™ is G-continuous at u.
(Mustafa et al., 2008)

Proof:

From Theorem 4.1, we can say that T™ has unique fixed point (say u), that is,
T™(w) = u. Since T(w) = T(T™(w)) = T™(w) = T™(T (w)), it follows

that T'(u) is another fixed point for T™ and by uniqueness Tu = u. O

Theorem 4.2. Let (X, G) be a G-metric space and let T: X — X be a

mapping such that T satisfies

(Al) G(Tx,Ty,Tz) <aG(x,Tx,Tx)+ bG(y,Ty,Ty) +cG(z,Tz,Tz) for
all x,y,ze Xwhere0 <a+b+c<1,
(A2) T is G-continuous at a point u € X,
(A3) there is x € X; (T™(x)) has a subsequence (T"(x)) G-converges to u.
Then u is a unique fixed point (i.e., Tu = u).

(Mustafa et al., 2009)
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Proof:

By (A2) and Proposition 3.2.2, (T"i“(x)) G-converges to T (u).

Assume that T'(u) # u and consider the two G-open balls B; = B(u, €) and
B, = B(Tu, €) where € < (1/6) min{G (u, Tu, Tu), G(Tu, u,u)}.

As T™(x) - u and T™*1(x) — Tu, there exists a natural number
N; = N; (&) such that if i > N; implies T™(x) € B; and T™*'(x) € B,.

Hence, we must have

G (Tni(x)’ Tni+1(x)’ Tni+1(x)) > e foreach i > N;. (4-18)

From (Al), we get
G (Tni+1(x)' Tni+2(x)’ Tni+3(x)) < aG (Tni (x)' Tni+1(x)’ Tni+1(x))
+bG (Tni+1(x)' Tni+2 (x)’ Tni+2 (x))

+cG (Tni+2 (X), Tni+3 (x)’ Tni+3 (x))
(4.19)

but, by (G3), we obtain
G (Tni+1 (x)’ Tni+2 (x)’ Tni+2 (x)) <G (Tni+1(x)’ Tni+2 (x)' Tni+3 (x))’
(4.20)

G (Tni+2 (x)’ Tni+2 (x)’ Tni+3 (x)) <G (Tni+1(x)’ Tni+2 (x)' Tni+3 (x))
(4.21)

Then,
G (Tni+1(x)’ Tni+2(x)) Tni+3(x)) < qG (Tni (x), Tni+1(x)’ Tni+1(x))’

(4.22)
whereq =a/(1—(b+c))andq < 1.
So, by inequalities (4.20) and (4.22), we get
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G (Tni+1(x)' Tni+2(x)’ Tni+2(x)) < qG (Tni (x)' Tni+1(x)’ Tni+1(x)).
(4.23)

For [ > j > N; and by (4.23), we have

G(T™(x), T (x), T (x)) < qG(T™ 1 (x), T™(x), T™(x))
< @?G(T™ 2(x), T 1 (x), T 1 (x))

< qnl—n]-G (Tn]- (X), Tnj+1(x), Tnj+1(X))

(4.24)

So, as | > o we have lim G(T™(x), T (x), T"*1(x)) < 0 which

contradict (4.18). Hence Tu = wu.

To prove uniqueness of u, suppose that u# v such that Tv = v. Then,

we have
G(u,v,v) =G6(Tu, Tv,Tv) < aG(u,Tu,Tu) + (b + ¢)G(v,Tv,Tv) = 0.
(4.25)
which implies that u = v. O

Theorem 4.3. Let (X, G) be a complete G-metric space and let T: X — X be
a mapping satisfying for all x,y,z € X

G(Tx,Ty,Tz) < bG(x,Tx,Tx) + cG(y, Ty, Ty) + dG(z,Tz,Tz)
(4.26)

where 0 < b + ¢ +d < 1, then T has a unique fixed point, say u, and T is G-
continuous at u.
(Mustafa et al., 2009)

Proof: This theorem follows from Theorem 4.1 if a = 0 is taken. O
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Example 4.1. Let X =[0,1), T(x) =x/4 and G(x,y,z) = max{|x —
yl,ly — z|, |x — z|}. Then (X, G) is G-metric space but not complete since
the sequence x, =1 —1/n is G-Cauchy which is not G-convergent in
(X, G). However, conditions (2) and (3) in Theorem 4.2 are satisfied.
(Mustafa et al., 2009)

Theorem 4.4. Let (X,G) be a G-metric space and let T: X — X be a G-

continuous mapping satisfying the following conditions:

(Bl) G(Tx, Ty, Tz) < k{G(x,Tx,Tx) + G(y, Ty, Ty) + G(z,Tz,Tz)} for all

x,y,z € M where M is an everywhere dense subset of X (with respect to the

topology of G-metric convergence) and 0 < k < 1/6,

(B2) there is x € X such that (T™(x)) — x,. Then x, is unique fixed point.
(Mustafa et al., 2009)

Proof:
Letx,y,z € X.
Case1:If x,y,z € X\M, let (x;,), (¥n), and (z,,) be sequences in M such that
() = X, (y) = ¥ and (2,) - z. By (G5), we get
G(Tx,Ty,Tz) < G(Tx, Ty, Ty) + G(Ty, Ty, Tz),
(4.27)

Again, by using (G5) twice, we have
G(Tz,Ty,Ty) < G(TzTz,,Tz,) + G(Tz,, Ty, Ty)
<G(Tz Tz, Tz,) + G(Tz,, Ty,, Ty,) + G(Ty,, Ty, Ty)
(4.28)

From (B1) and (G5), we obtain
G(T2p, Tyn, Tyn) < k{G(2n, T2y, T2p) + 2G (Y, Tyn, Tyn)}
< k{G(z,,z,2) +G(2,T2,Tz) + G(Tz,Tz,, Tz,)

+2[G(Yny,y) + G, Ty, Ty) + G(Ty, Ty, Ty,) 1}
(4.29)
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From (4.28) and (4.29),
G(Tz,Ty,Ty) < (1+k)G(Tz,Tz,, Tz,) + G(Ty,, Ty, Ty) +
kG(zn,2,2) + 2kG Yy, y, ) + 2kG(Ty, Tyn, Tyn)
+kG(2,Tz,Tz) + 2kG(y, Ty, Ty) (4.30)

In a similar way, we find
G(Tx, Ty, Ty) < (1+k)G(Tx,Tx,, Tx,,) + G(Ty,, Ty, Ty) +
kG (xn, %, %) + 2KG (Y, ¥, ) + 2kG(TY, Ty, Tyy)
+kG(x,Tx,Tx) + 2kG(y, Ty, Ty). (4.32)

Hence by (4.30) and (4.31), we get
G(Tx,Ty,Tz) < G(Tx,Ty,Ty) + G(Tz, Ty, Ty)

<{A+kKk)G(Tx,Tx,, Tx,) + G(Ty,, Ty, Ty)
+kG(xp, x,x) + 2kG (Y, v, ¥) + 2kG(Ty, Typn, Tyn)
+kG(x,Tx,Tx) + 2kG(y, Ty, Ty)}
+{(1+ k)G(Tz,Tz,, Tz, + G(Ty,, Ty, Ty)
+kG(zy,2,2) + 2kG(yy, v, V)
+2kG(Ty, Tyn, Tyn) + kG(2,Tz,Tz)
+2kG(y, Ty, Ty)}. (4.32)

Taking the limit as n — oo, we have
G(Tx,Ty,Tz) < k{G(x,Tx,Tx) + 4G(y,Ty,Ty) + G(2,Tz,Tz)}, (4.33)

since T is G-continuous.

Case 2: If x,y € M and z € X \M, let (z,) be a sequence in M such that
(z,) = z. By using (G5) and (B1), we have
G(Tx,Ty,Tz) < G(Tx,Ty,Ty) + G(Tz, Ty, Ty)
< k{G(x,Tx,Tx) + 2G(y, Ty, Ty)}+G(Tz, Ty, Ty)
< k{G(x,Tx,Tx) + 2G(y, Ty, Ty)}+G(Tz,Tz,, Tz,) +
G(T2y, Ty, Ty)
< k{G(x,Tx,Tx) + 2G(y, Ty, Ty)}+ G(Tz,Tz,,Tz,) +
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k{G(2,Tzn, T2z,) + 2G(y, Ty, Ty)}
< k{G(x,Tx,Tx) + 2G(y,Ty,Ty)} +
G(Tz,Tz,, Tz,) + k{G(z,,2,2) +
G(z,Tz,Tz) + G(Tz,Tz,, Tz,) + 2G(y, Ty, Ty)}
= k{G(x,Tx,Tx) + 2G(y, Ty, Ty) + G(z,,2,2z) +
G(z,Tz,Tz) + G(Tz,Tz,, Tz,) + 2G(y, Ty, Ty)} +
G(Tz Tz, Tz,)
(4.34)

Taking the limitas n — oo , we get
G(Tx, Ty, Tz) < k{G(x,Tx,Tx) +4G(y,Ty,Ty) + G(2,Tz, Tz)}
(4.35)

Case 3: If y e M and x, z € X\M, let (x,,) and (z,,) be a sequence in M such
that (x,) — x and (z,) — z. By (G5) and (B1), we have
G(Tx,Ty,Tz) < G(Tx, Ty, Ty) + G(Tz, Ty, Ty)
< G(Tx,Tx,, Tx,) + G(Tx,, Ty, Ty) + G(Tz, Ty, Ty)
< G(Tx,Tx,, Txy) + k{G(x,, Tx,, Txy) + 2G(y, Ty, Ty)}
+G(Tz, Ty, Ty)
< G(Tx,Tx,, Tx,) + k{G(x,,, x,x) + G(x,Tx,Tx) +
G(Tx,Tx,, Tx,) +2G(y, Ty, Ty)}+ G(Tz, Ty, Ty)
=1+ k)G(Tx,Tx,, Tx,) + kG(x,, x,x) +
kG(x,Tx,Tx) + 2kG(y, Ty, Ty) + G(Tz, Ty, Ty)
<A+ k)G(Tx,Tx,, Tx,) + kG(x,,x,x) + kG(x,Tx,Tx)
+ 2kG(y, Ty, Ty) + kG(z,,2,2z) + kG(2,Tz,Tz)
+ (1 +k)G(Tz,Tz,, Tz,) + 2kG(y, Ty, Ty)
(4.36)

Since T is G-continuous, taking the limit as n — oo, we get

G(Tx,Ty,Tz) < k{G(x,Tx,Tx) +4G(y,Ty,Ty) + G(2,Tz, Tz)}
(4.37)
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Thus, for each x,y,z € X
G(Tx,Ty,Tz) < aG(x,Tx,Tx) + bG(y,Ty,Ty) + cG(z,Tz,Tz)
wherea =k, b =4k, c=k,anda+b+c <1since0 < k <1/6.Then

from Theorem 4.2, T has a unique fixed point. O

Theorem 4.5. Let (X, d) be a complete quasi-metric spaceand T: X — X

be a mapping satisfiying

d(TX', T)’) < d(x, 3’) - (p(d(x; y))!
for all x,y € X, where ¢: [0, ) — [0, o) is continuous with ¢ ~1({0}) =
{0}. Then T has a unique fixed point.

(Jleli and Samet, 2012)

Theorem 4.6. Let (X, G) be a G-complete metric spaceand T: X — X bea
mapping satisfiying

G(Tx, Ty, Ty) < G(x,y,y) — 9(G(x,y,¥)),

for all x,y € X, where ¢:[0, %) — [0, ) is continuous with ¢~1({0}) =
{0}. Then T has a unique fixed point.
(Jleli and Samet, 2012)

Proof: The proof follows from Theorem 3.1.1 and Theorem 4.5. O
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5. CONCLUSION

In this thesis, firstly, the concept of G-metric is introduced and its
various properties are studied. Moreover, one studies how to deduce a G-
metric from a metric and vice versa. Then, relationships between these
metrics are investigated. Also, the definitions of G-metric topology and G-
ball are given. After then, the concepts of G-convergence, G-continuity and
G-completeness are handled, and several examples have supported the
understanding of these concepts. At the end, some fixed point theorems on G-
metric spaces are studied.

For a further research, one can obtain new fixed point theorems on such

spaces.
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