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ABSTRACT 

VEHICLE AND CREW SCHEDULING PROBLEM IN PUBLIC BUS 

TRANSPORTATION  

ÖZTOP, Hande 

MSc in Industrial Engineering 

Co-Supervisor: Prof. Dr. Levent KANDİLLER 

Co-Supervisor: Assoc. Prof. Dr. Deniz TÜRSEL ELİİYİ 

August 2016, 73 pages 

  In this thesis, the vehicle and crew scheduling phases of the transportation 

planning process are studied, motivated by the real problem of a public bus 

transportation authority. The objective is to determine the optimal number of different 

types of vehicles and crew members (drivers) to cover a given set of trips and 

deadheads, regarding working and spread time limitations of drivers at minimum cost. 

Binary programming models are formulated for each subproblem. In crew scheduling, 

an iterative valid inequality generation scheme is developed for eliminating task 

sequences violating the working time constraints. Performances of the developed 

solution methodologies for the subproblems are investigated through detailed 

experimentations, and the results show that the proposed optimal-seeking solution 

procedures are quite effective in terms of solution times. Furthermore, sequential and 

integrated approaches are proposed for the whole problem. As an integrated approach, 

a binary programming model is formulated and optimally solved for small-sized 

problem instances. However, larger instances cannot be solved within reasonable time 

limits due to exponentially increasing solution times. Therefore, a sequential approach 

is proposed. The performance of the developed approach is investigated through 

detailed experimentation and the results show that our approach is quite efficient for 

instances with up to 120 trips. Additionally, the sequential approach is compared with 

the integrated one for small-sized instances and found to be quite effective in finding 

near optimal solutions within very reasonable computation times. 

Keywords: Vehicle Scheduling, Crew Scheduling, Public Transportation, Time 

Limitations, Eligibility Constraints, Fixed Job Scheduling.   
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ÖZET 

TOPLU TAŞIMADA ARAÇ VE SÜRÜCÜ ÇİZELGELEME 

PROBLEMLERİ  

Hande ÖZTOP 

Yüksek Lisans, Endüstri Mühendisliği Bölümü 

Tez Danışmanı: Prof. Dr. Levent KANDİLLER  

Tez Danışmanı: Doç. Dr. Deniz TÜRSEL ELİİYİ 

Ağustos 2016, 73 sayfa 

 Bu tezde, toplu taşıma operasyonlarının araç ve sürücü çizelgeleme aşamaları, 

bir toplu taşıma idaresinin gerçek hayat probleminden esinlenilerek çalışılmıştır. 

Problemde amaç önceden belirlenmiş seferleri ve araç atamalarından kaynaklanacak 

ölü kilometre seferlerini, sürücülerin toplam çalışma ve vardiya sürelerini dikkate 

alarak taşımacılığı minimum maliyetle karşılamak için gereken farklı tipteki araç ve 

sürücülerin sayısını optimal şekilde belirlemektir. Her iki alt problem için tamsayılı 

programlama modelleri geliştirilmiştir. Sürücü çizelgelemede, toplam çalışma süresini 

aşan görev sıralamalarını elemek üzere tekrarlamalı geçerli eşitsizlik yaratma yöntemi 

geliştirilmiştir. Her alt problem için geliştirilen çözüm yöntemlerinin performansları 

detaylı deneylerle araştırılmıştır ve sonuçlar önerilen optimal arama çözüm 

yöntemlerinin çözüm süreleri açısından oldukça etkili olduğunu göstermiştir. Bunun 

yanında, bütüncül problem için sıralı ve entegre olmak üzere iki yaklaşım önerilmiştir. 

Entegre yaklaşımda tamsayılı bir programlama modeli geliştirilmiş ve küçük boyutlu 

örnek problemler optimal olarak çözülmüştür. Ancak üstel artan çözüm süreleri 

nedeniyle büyük boyutlu problemler makul süreler içerisinde çözülememiştir. Bu 

nedenle araç ve sürücü çizelgeleme problemleri için geliştirilmiş olan tamsayılı 

programlama modellerinin sırayla çözüldüğü bir sıralı yaklaşım önerilmiştir. Bu 

yaklaşımın performansı kapsamlı sayısal deneyle araştırılmıştır ve sonuçlar sıralı 

yaklaşımın en fazla 120 sefere sahip örnekler için oldukça etkin ve verimli olduğunu 

göstermiştir. Ayrıca sıralı yaklaşım küçük boyutlu örnekler üzerinden entegre yaklaşım 

ile kıyaslanmıştır ve sonuçlar sıralı yaklaşımın çok makul sürede optimale yakın 

sonuçlar bulmada oldukça etkin olduğunu göstermiştir. 

Anahtar sözcükler: Araç Çizelgeleme, Sürücü Çizelgeleme, Toplu Taşıma, Zaman 

Kısıtlamaları, Uygunluk Kısıtları, Sabit İş Çizelgeleme.  
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1 INTRODUCTION 

 Public transportation companies are faced with difficulties in the transportation 

planning process by reason of population growth, the requirements for quality service 

and the need for efficient usage of the resources. Hence, the impact of planning systems 

in public transportation has been increasing, since significant cost savings are possible 

if the available resources such as crew and vehicles are used efficiently. As a 

consequence, the need for planning decision support systems that potentially reduce 

costs subject to specific operational restrictions has been increasing in operating public 

transportation. 

 In this thesis, the main cost incurring phases of the transportation planning 

process, namely the vehicle and crew scheduling activities are studied, inspired from 

the real life problem of the public bus transportation authority in Izmir. As of February 

2016, the authority runs 316 bus lines with 1,401 buses and 4,092 employees among 

which 2,405 are bus drivers (Eshot, 2016). The daily passenger demand is 

approximately one million passengers. Regarding the authority’s large vehicle fleet and 

crew, it can be said that if the vehicles and crew are scheduled efficiently, the operator 

can make considerable cost savings. 

 There are some operational restrictions for vehicles and drivers that should be 

taken into account. The trips require different types of vehicles having different 

characteristics such as capacity, average speed, fuel consumption, etc. Therefore, there 

are several vehicle classes based on the characteristics required to perform certain trips. 

When the operational constraints for the crew are concerned, each driver has a spread 

time limit from the start time to the end time of his/her shift, including the idle times. 

Furthermore, a driver cannot exceed the maximum total working time limit. The 

processing times of the tasks assigned to each driver are included in his/her working 

time as well as the sequence-dependent setup times, as the drivers must travel between 

the start and end locations in order to perform the assigned tasks. Since the trips require 

different types of vehicles, different types of crew with different capabilities are 

required. Therefore, there are several crew classes required to use certain vehicle types 

based on individual competencies. These vehicle and crew classes complicate the 

problem together with the time limitations. 
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 In the literature, vehicle scheduling problem is studied for single/multiple depot, 

multiple vehicle types and vehicle classes extensions, commonly with the objective of 

minimizing both fixed vehicle costs and variable operational costs. Network flow, 

transportation and multi-commodity formulations are commonly used in order to 

model these extensions of the vehicle scheduling problem. In this thesis, a fixed job 

scheduling approach is proposed for the vehicle scheduling problem. 

 Regarding crew scheduling, column generation approach is commonly used in 

the literature, where the master problem is a set partitioning/covering problem and the 

subproblem is a resource constrained shortest path problem. In studies using this 

approach, different crew types are considered with respect to work day type such as 

part-time, full time, etc., with a set of operator rules and relevant regulations such as 

working time limit, number/length of breaks, maximum driving time limit, spread time 

limit, etc. In this thesis, a fixed job scheduling approach is also proposed for the crew 

scheduling problem having different crew classes with dissimilar capabilities and time 

limitations. 

 In the literature, most of the studies deal with crew scheduling and vehicle 

scheduling individually. There are new studies considering both problems, using a 

sequential or an integrated approach. In the sequential approach, vehicle and crew 

scheduling problems are solved sequentially whereas they are solved simultaneously 

in the integrated one. In these studies, homogenous/heterogeneous vehicle fleet and 

single/multiple depots are considered as well as a set of operator regulations and 

different crew types differing with respect to work day type, generally using a column 

generation approach. However, vehicle and crew classes are not considered together in 

these studies. In this thesis, a fixed job scheduling-based sequential approach and an 

integrated formulation are proposed for the vehicle and crew scheduling problem, 

considering vehicle and crew classes collectively, regarding crew working and spread 

time limitations. We claim that the vehicle and crew scheduling problems studied in 

this thesis can be applied to real life problems of public transportation companies, as 

many realistic operational constraints such as different vehicle/crew classes and crew 

time limitations are taken into account.  

 The complete public transportation process is explained in Chapter 2 together 

with the related terminology. General problem descriptions are also given in this 

chapter in order to provide a better understanding of the whole planning process. 
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Thereafter, a detailed literature review for the vehicle and crew scheduling problems 

and the integration approaches are provided in Chapter 3. As the vehicle and crew 

scheduling problems are formulated as tactical fixed job scheduling problems (TFJSP) 

in the thesis, a literature review for TFJSP is also included in Chapter 3. The 

contribution of this thesis to the existing literature is elaborated as well. 

 In Chapter 4, the proposed formulation for the vehicle scheduling problem is 

presented together with the necessary assumptions and notation. Consecutively, a 

computational study is described in order to evaluate the performance of the proposed 

formulation on its own. Similarly in Chapter 5, the proposed approach for the crew 

scheduling problem is presented together with its necessary assumptions and notation. 

Thereafter, the computational study is presented for evaluating the performance of the 

proposed formulation and approach. 

 In Chapter 6, both of the vehicle and crew scheduling problems are considered 

together. In Section 6.1, a binary programming model is presented for the integration 

of vehicle and crew scheduling problems, as well as the necessary assumptions and 

notation. In Section 6.2, a sequential approach is employed using the computational 

results of the vehicle scheduling problem in Chapter 4. The computational study and 

results for the sequential approach are presented in the same section. Thereafter, the 

sequential approach is compared with the integrated one for small-sized instances in 

Section 6.3. 

 Finally, the general results of the proposed approaches are discussed in Chapter 

7 as well as the contribution of this thesis to the existing literature. Furthermore, 

potential future research topics are addressed. 
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2 PUBLIC TRANSIT-OPERATION PLANNING PROCESS 

 The public transit operation planning process includes five basic activities, 

usually performed in sequence: network route design, timetable development, vehicle 

scheduling, crew scheduling and crew rostering (Ceder, 2007). As shown in Figure 2.1, 

these activities are interrelated with each other; usually, the output of an activity at a 

higher level is an input for the activity at the subsequent level. In this thesis, the vehicle 

and crew scheduling activities are considered for public bus transportation and the 

definitions are made accordingly. The detailed terminology is given in Section 2.1. 

  

Figure 2.1 The Transit Operation Planning Process. 

 The public bus transportation service is composed of a set of bus lines, commonly 

defined by a number, which correspond to a bus traveling between two locations in the 

city. In network route design stage, the bus stops, terminals and interchanges are 

determined, as well as the route of each bus line. Then, the frequency of each bus line 

is determined based on public demand. Consequently, timetables are constructed, 

which lead to trips having start and end termini along with departure and destination 
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times. In vehicle scheduling problem (VSP), the vehicles are assigned to trips. Each 

daily vehicle schedule known as a vehicle block is defined as a bus journey starting at 

a depot and returning to the same or a different one.  

 The crew scheduling problem (CSP) is a short term crew planning where the 

daily shifts are formed for the crew, covering all vehicle blocks. There is a set of tasks 

corresponding to vehicle blocks, and the aim is to define the sequence of these tasks as 

shifts in such a way that each task must be assigned to a shift without any overlaps. The 

feasibility of a crew shift depends on a set of operator and labor rules such as maximum 

driving time limit, break time duration, etc. The crew rostering problem (CRP) includes 

long term crew planning, where crew rosters are generated from crew shifts. This stage 

consists of days off scheduling and shift scheduling. Days off scheduling deals with the 

assignment of rest days to the crew over a planning horizon while shift scheduling deals 

with the assignment of the crew to constructed shifts. 

 Several software have been developed for transit operation planning process such 

as HASTUS (Rousseau and Blais, 1985), IMPACTS (Smith and Wren, 1988), HOT 

(Daduna and Mojsilovic, 1988), TRACS II (Kwan et al., 1999), GIST Decision Support 

System (Lourenço et al., 2001), GoalBus (GOAL Systems, 2016) and IVU Suite (IVU 

Traffic Technologies AG, 2016). These systems include the aforementioned planning 

activities at different levels. 

2.1 Terminology  

 The relevant public bus transportation definitions used in the thesis are given 

below. It should be noted that vehicle and bus terms are used as substitutes, as well as 

crew and driver. 

(Bus) Line: It is defined by a start location, an end location and a set of intermediate 

stops. It is commonly identified by a number.  

Vehicle (Bus): There are several types of buses such as mini bus, solo bus, articulated 

bus, etc.; having different capacities and fuel consumptions. 

Crew (Driver): There are several types of drivers that have different capabilities and 

driving licences. 
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Timetable: Time schedule of each bus line over a day. It contains a set of trips that are 

characterized by a start and end location as well as a start and end time. 

Trip: A bus journey between two locations. It is represented by its start time, end time, 

start location, end location and arrival times at intermediate stops. Each trip must be 

performed by one vehicle. 

Vehicle Block: The sequence of trips performed by a vehicle that start and end at the 

depot. It is daily schedule for a single vehicle. 

Relief Point (Relief Opportunity, Relief Location): The planned locations and times 

where and when a change of driver may happen. Common relief points are start and 

end location of the bus line. However, intermediate stop on a line can be a relief point. 

Depot: A parking garage with limited space for vehicles to stay overnight. It is a relief 

point. 

D-trip: The portion of a trip which is created by dividing trips at relief points. Each d-

trip must be served by a single vehicle and a single driver. 

Deadhead: Driving of a vehicle without passengers. It can be a pull out (depot to start 

location of a trip), a pull in (end location of a trip to depot) and between two trips (from 

an end location of the trip to a start location of another trip). 

Task: Activity performed on single vehicle by single driver without an interruption. It 

can be a d-trip or deadhead. 

Piece of Work (POW): A sequence of tasks performed by a single driver on same 

vehicle without a break or walking activity. The feasibility of a piece of work is usually 

restricted by a minimum and maximum length. 

Break: The rest time between two pieces of work. It can be long break or short break. 

It can be taken at any relief point. 
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Walking (Driver Movement): Crew movement without driving a vehicle. It can be 

movement from depot to a relief point, from a relief point to depot or between two 

relief points.  

Shift (Duty): A daily work shift of a driver. It is generated by a set of pieces of work 

and breaks.  The feasibility of a shift is usually restricted by number of piece of works, 

break duration, working time and spread time limits. Common shift types are early, 

late, night according to its beginning and ending time; and straight, split based on the 

duration of shift and the included number of pieces of works. 

Spread Time: The total time between the start time and end time of the shift including 

the idle times.  

Working Time: Sum of the duration of tasks and walking times in a shift, excluding 

idle times. 

Sign on/off Time: Preparation time for a work shift. Shifts starting at the depot start 

with a sign on time. Consecutively, shifts ending at the depot end with a sign off time. 

Round-Trip: Two consecutive trips from location A to B and then back to A. 

Full Time (Straight) Shift: A work shift including one or two pieces of work with a 

short break between two pieces of work. 

Split Shift: A work shift including two or more short pieces of work. It has a long 

break between two pieces of work such that a driver can go home during this break. 

Roster: A work schedule for a driver over the long planning horizon which is 

composed of daily shifts and rest days.  

 The task definitions (d-trips and deadheads) are shown with an illustrative 

example in Figure 2.2.  
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Figure 2.2 Partition of a Vehicle Block into Tasks. 

 In a given vehicle block, there are two trips belonging to two different lines, along 

with their start/end times and locations. As shown in the figure, start/end locations of 

the trips are relief points. Additionally, intermediate stop (10th stop) of the trip 

belonging to Line #1 is a relief point and the arrival time to this stop is known. The 

departure time from depot is determined according to the earliest departure time from 

the depot. Similarly, the arrival time to depot is determined as the latest arrival time to 

the depot. In this example, the vehicle returns to the depot earlier than the latest arrival 

time. This vehicle block can be summarized as follows: the vehicle leaves the depot at 

6:00 and performs a deadhead task to reach the start location of its first trip (Line #1). 

After performing this trip, it performs another deadhead task to reach the start location 

of its second trip (Line #2). Subsequently, it performs a deadhead task to return to the 

depot. The trip belonging to Line #1 includes two d-trip tasks. Thus, this trip can be 

performed by at most two crew members. On the other hand, the trip belonging to Line 

#2 includes only one d-trip task, indicating that it must be served by only one crew 

member. 

 Crew shift generation from the vehicle blocks is shown with an illustrative 

example in Figure 2.3. As shown in the figure, there are two vehicle blocks and three 

crew shifts.  
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Figure 2.3 Crew Shift Generation from Vehicle Blocks. 

 Crew #1 starts his shift with a deadhead from the depot to the start location of its 

first trip (F.Altay) with Vehicle #1. After performing the d-trip with same vehicle, he 

leaves the vehicle at the relief point (10th stop), walks to the start location of its next 

trip (Konak) and performs the trip with Vehicle #2. Finally, he ends his shift with a 

deadhead from the end location of his final trip (Karşıyaka) to the depot with Vehicle 

#2. Meanwhile, Crew #2 starts his shift by walking to the relief point of his first trip 

(10th stop), takes Vehicle #1 and performs the d-trip from the relief point to the end 

location of the trip (Konak). After performing the d-trip, he performs a deadhead from 

the end location of the trip (Konak) to the start location of his next trip (Halkapınar) on 

same vehicle and leaves the vehicle there. Finally, he ends shift by walking from 

Halkapınar to the depot. In the example, Crew #3 starts shift with a deadhead from the 

depot to Halkapınar with Vehicle #2. After performing the whole trip with the same 

vehicle, he performs a deadhead from the end location of the trip (F.Altay) to the start 

location of the next trip (Konak) on the same vehicle, leaves the vehicle there and walks 

to start location of his next trip (Halkapınar). He then performs the whole trip with 

Vehicle #1 and ends shift with a deadhead from F.Altay to the depot. As it can be seen, 

a crew shift may start/end with a walking or a deadhead activity, and the crew can 

take/leave the bus at any relief point. All crew shifts start with a sign on time and end 

with a sign off time. These sign on and sign off times are included in the corresponding 

deadhead or walking activity.  
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 The piece of works (POWs) can be extracted from Figure 2.3 as follows. Based 

on the definition, a deadhead from the depot to F.Altay, and a d-trip from F.Altay to 

10th stop, is POW1 for Crew #1 (C1) performed on Vehicle #1 (V1). The other POW are 

listed as: 

• (V1, C2, POW1): d-trip (10th Stop - Konak) and deadhead (Konak - Halkapınar) 

• (V1, C3, POW2): d-trip (Halkapınar - F.Altay) and deadhead (F.Altay - Depot) 

• (V2, C3, POW1): deadhead (Depot - Halkapınar), d-trip (Halkapınar - F.Altay) 

and deadhead (F.Altay - Konak) 

• (V2, C1, POW2): d-trip (Konak – 12th Stop), d-trip (12th Stop - Karşıyaka) and 

deadhead (Karşıyaka - Depot)  

 The crew shifts are constructed using these POWs by connecting them with 

walking or break activities. 

2.2 Problem Definitions  

 The main problem definitions are provided in this section for the public bus 

transportation planning process. 

2.2.1 Timetabling  

 The timetabling activity determines alternative frequencies and timetables in 

order to meet public transport demand. The demand fluctuates during the hours of the 

day or the days of the week due to changes in the transportation needs of the 

community. Therefore, the day is usually divided into time intervals, and the 

frequencies are determined for each time interval. Additionally, the days of the week 

are commonly considered separately as weekdays and weekends.  

 The purpose of timetabling is to establish alternative timetables for each line in 

order to meet variations in public demand. Alternative timetables are determined based 

on public demand regarding the service quality constraints (Ceder, 2007). During the 

construction of alternative timetables, several objectives are considered including the 

minimization of the waiting time of passengers, balancing vehicle utilizations, or 

minimization of the resources used. The common inputs of the timetabling activity are 

the routes, the times of first and last trips, average vehicle utilizations (number of 

passengers onboard the transit vehicle) between adjacent stops, the desired vehicle 
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utilization, the boarding/alighting rate estimates for each stop, available resources and 

average running times between stops. The output of this activity are the trips, which 

correspond to the start and end locations as well as start and end times. 

2.2.2 Vehicle Scheduling (Bus Scheduling) 

 Vehicle scheduling involves scheduling a fleet of vehicles to cover a set of trips 

at minimum cost. The trips are given by specified time intervals as well as start and 

end termini. The vehicles are grouped into depots according to their locations, and 

classified by their types in these depots. If there is a single depot, the problem is referred 

as a Single Depot Vehicle Scheduling Problem (SD-VSP). On the other hand, it is 

referred as Multi-Depot Vehicle Scheduling Problem (MD-VSP) if there is more than 

one depot. SD-VSP is relatively easier to solve than MD-VSP. 

 Another complicating extension is the case of non-identical vehicles. This 

problem is referred as the Vehicle Scheduling Problem with Multiple Vehicle Types 

(MVT-VSP). The common vehicle types are midi bus, solo bus and articulated bus. 

These vehicle types differ in their capacities, average speeds, fuel consumptions, etc. 

Therefore, not all vehicle types may be able to serve all trips.  

 In VSP, the vehicle blocks are constructed using a minimum number of vehicles, 

where each trip is assigned exactly to one vehicle block. The common objectives are 

minimizing service costs by minimizing the number of vehicles used and minimizing 

traveling costs by avoiding unnecessary deadheads in vehicle blocks. The problem is 

solved daily, and the output is the set of vehicle blocks, which are the sequence of trips 

served by one vehicle that starts and ends in a depot. A detailed problem description 

will be given in Chapter 4. 

2.2.3 Crew Scheduling (Bus Driver Scheduling) 

 The Crew Scheduling Problem (CSP) consists of the short term scheduling of the 

crew with the aim of generating a set of daily shifts covering all vehicle blocks. There 

is a set of tasks (d-trips and deadheads) arising from the vehicle blocks, and the aim is 

to define a sequence of these tasks as shifts in such a way that every task is assigned to 

a shift without any overlaps.  
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 The feasibility of a crew shift depends on a set of operator rules and relevant 

regulations such as the working time limit, the number and length of breaks, the 

maximum driving time limit, the spread time limit, etc. Additionally, there can be 

distinct types of crew members having different capabilities and driving licences. In 

this case, the feasibility of a task-crew shift assignment depends also on crew 

capabilities. The commonly used solution methodology involves dividing the vehicle 

block into POWs that start and finish at relief points, and forming a feasible shift 

through a sequence of POWs satisfying all constraints. A detailed problem description 

will be provided in Chapter 5. 

2.2.4 Crew Rostering (Driver Rostering) 

 The Crew Rostering Problem (CRP) consists of the long term scheduling of the 

crew with the aim of generating a set of crew rosters to cover the daily crew shifts. It 

assigns crew members to constructed shifts over a long planning horizon, generally a 

month or a half year. It includes days-off scheduling and shift scheduling. Days-off 

scheduling deals with the assignment of the rest days between working days to the crew 

over a planning horizon, while shift scheduling deals with the assignment of the crew 

to shifts. When days-off and shifts are made simultaneously, the procedure is called 

tour scheduling.  

 The shifts are usually grouped in morning, day and night shifts. Additionally, the 

shifts can be grouped according to required crew capabilities. In this case, the shift 

types are considered during the generation of rosters. Crew rosters can be cyclic or 

noncyclic. In cyclic schedules all crew members have the same basic schedule starting 

with a different day, whereas noncyclic schedules are individual. In CRP, there are 

some hard constraints and soft constraints, where the hard constraints consist of 

coverage and regulatory requirements and the soft constraints include operational and 

personal preferences. The coverage requirements guarantee that there are adequate 

number of crew members on shift at all times. The regulatory requirements ensure that 

the crew’s work agreement and government rules are regarded. The operational and 

personnel preferences are also considered for a greater crew and operator satisfaction 

(Nurmi, 2011).  



 

 

13 

 

3 LITERATURE REVIEW  

 The detailed literature review for the vehicle and crew scheduling problems and 

the integration approaches for these two problems are provided in the following three 

sections. Since, both vehicle and crew scheduling problems are formulated as tactical 

fixed job scheduling problems (TFJSP) in Chapters 4 and 5 respectively, a literature 

review for this problem is given in Section 3.4. Finally, the contribution of this thesis 

to existing literature is discussed in Section 3.5. 

3.1 Vehicle Scheduling Problem 

 Daduna and Paixão (1995), discussed modeling approaches and their 

complexities for several variations of VSP such as using single depot, multiple depot 

and fixed number of vehicles. Bunte and Kliewer (2009) provided a detailed literature 

review on VSP and presented the modeling approaches for the basic single depot case 

and further practical extensions, including multiple depots, multiple vehicle types, time 

windows and route constraints.  

 The Single Depot Vehicle Scheduling Problem (SD-VSP) is well known to be 

solvable with polynomial time algorithms. Freling et al. (2001b) provided a comparison 

of these algorithms in terms of computational times and complexities. Commonly, this 

problem has been formulated as a transportation problem or a network flow problem 

in the literature. These two basic formulations are given in Sections 3.1.1 and 3.1.2, 

respectively. 

 VSP is extended with multiple depot and/or multiple vehicle type considerations 

where each trip must be performed by a subset of depots and/or vehicle types. Bertossi 

et al. (1987) proved that the Multi-Depot Vehicle Scheduling Problem (MD-VSP) is 

NP-Hard and Lenstra and Kan (1981) showed that the single depot Vehicle Scheduling 

Problem with Multiple Vehicle Types (MVT-VSP) is NP-Hard. Obviously, it can be 

concluded that the combination of these two extensions is also NP-Hard. There are 

many studies considering these two extensions in the literature. 

 Common modeling approaches for the MD-VSP are single-commodity model 

formulations (Carpaneto et al., 1989; Fischetti et al., 1999; Mesquita and Paixão, 1992), 

multi-commodity model formulations (Forbes et al., 1994; Löbel, 1998; Haghani and 
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Banihashemi, 2002; Mesquita and Paixão, 1999), multi-commodity model 

formulations based on time-space network (Kliewer et al., 2006; Gintner et al., 2005) 

and set partitioning model formulations (Riberio and Soumis, 1994; Hadjar et al., 

2006). In multi-commodity models, a multi-graph is generated including independent 

networks for each depot, while all depots are modeled with a single graph in single-

commodity models. Multi-commodity models based on time-space network differ from 

other multi-commodity models, as they aggregate possible connections between groups 

of compatible trips and avoid the disadvantage of explicit consideration of all possible 

connections between compatible trips. Set partitioning models generate all feasible 

schedules for vehicles usually through a column generation approach.  

 A common modeling approach for single depot MVT-VSP uses a multi-graph 

with subnetworks for each vehicle type, which is introduced by Bodin et al. (1983). 

This approach is also used later by Costa et al. (1995). Hassold and Ceder (2014) 

considered the same problem and proposed a minimum cost network flow model 

utilizing a set of Pareto efficient timetables. Gintner et al. (2005) considered the MVT-

VSP with multiple depot for public transport bus operators as well as depot capacity 

restrictions. They proposed a multi-commodity model including time-space networks 

for each depot and vehicle-type combination, and considered the case that a vehicle 

may return into another depot than its source depot.  

 As another approach, Eliiyi et al. (2009) developed a mixed integer programming 

model and several heuristics for the MVT-VSP, using a TFJSP formulation with spread 

time limitations while considering the sequence dependent setup times (deadheads) and 

vehicle capacity restrictions. Furthermore, if there are restrictions on trips such as 

certain type of trips must be performed with a subset of all vehicle types, problem is 

further extended including the concept of vehicle type groups. Forbes et al. (1994) and 

Löbel et al. (1997) also considered this extended problem for multiple depot case but 

within a multi-commodity modeling approach, while Kliewer et al. (2006) and Kliewer 

et al. (2008) studied the multi-commodity modeling approach based on time-space 

networks.  
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3.1.1 Transportation (Quasi-Assignment) Model  

 Gavish and Shlifer (1979) formulated the SD-VSP as a transportation problem. 

A mathematical formulation by Freling et al. (2001b) is presented here.  

 Let N = {1,2,…,n} be the set of trips, numbered due to increasing start times, and 

E = {(i, j) | i < j compatible, i ∈ N, j ∈ N} be the set of arcs that correspond to deadhead 

trips. Trips i and j are compatible, if trip j can be served directly after trip i by the same 

vehicle without any overlaps. Depot is represented by two nodes s and t.  The network 

is defined as an acyclic directed network G= (V, A) with nodes V= N ∪{s, t} and arcs 

A= E ∪ (s x N) ∪ (N x t). A path from s to t in the network forms a feasible vehicle 

schedule for a single vehicle, and a complete feasible vehicle schedule is a set of 

disjoint paths from s to t such that each node in N is covered. The objective function 

minimizes operational costs where 𝑐𝑖𝑗 represents the operational cost of serving trip j 

after trip i, and commonly a function of travel durations. Additionally, fixed cost of a 

vehicle can be considered in the objective function. It can be incorporated into the cost 

of arcs (s, j) or (i, t) for all i, j ∈ N. Therefore, SD-VSP can be formulated by using the 

binary decision variable 𝑥𝑖𝑗 , which represents whether a trip j is directly covered after 

trip i: 

( , )

Minimize ij ij

i j A

c x


                                                                                           (3.0) 

s.t.  
:( , )

1ij

j i j A

x


    i N                          (3.1) 

 
:( , )

1ij

i i j A

x


    j N                          (3.2) 

  0,1ijx     ( , )i j A                          (3.3) 

 The objective (3.0) minimizes the total operational costs. Constraints (3.1) and 

(3.2) are the flow conservation constraints, ensuring that exactly one deadhead is 

performed before each trip and one deadhead is performed after each trip. Since they 

define a totally unimodular restriction matrix, binary variables 𝑥𝑖𝑗 are commonly 

relaxed to 𝑥𝑖𝑗 ≥ 0 (Freling et al., 2001b). 
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 The problem above is a transportation problem, where the demand/supply of each 

trip node is one unit. This formulation can be extended for fixed number of vehicles v 

through the following constraints: 

 
sj

j N

x v


                             (3.4) 

 it

i N

x v


                             (3.5) 

 Both the demand/supply amounts of depot nodes s and t are taken as v units as 

stated in constraints (3.4) and (3.5). In that case, in order to allow a vehicle being idle, 

an arc between the depot nodes s and t should be inserted with cost zero. In the 

literature, Paixão and Branco (1987) referred to this transportation model as a quasi-

assignment model, since this model corresponds to a linear assignment model by not 

considering the nodes s and t, and the corresponding arcs.  

3.1.2 Network Flow Model  

 Bodin et al. (1983) formulated the SD-VSP as a network flow problem. A 

network flow model described in Bunte and Kliewer (2009) is presented here. In this 

model, each trip is represented by two nodes, a start and end node, and these nodes are 

connected with a trip arc. The depot is represented by two nodes s and t.  Arcs from the 

depot to trips only have operational costs. The fixed costs are modeled by a single arc 

leading back from t to s. A feasible flow from node s to t is also a feasible vehicle 

schedule.  

 Let AT be the set of trip arcs, A the set of arcs and N be the set of nodes. The 

parameter 𝑐𝑖𝑗 is the operational cost of serving trip j after trip i that is usually a function 

of travel durations. The decision variable 𝑥𝑖𝑗 represents the flow on the arc (i, j). Thus, 

SD-VSP can be formulated as a minimum cost flow problem as follows: 

( , )

Minimize ij ij

i j A

c x


                                  (3.6) 

s.t.  
:( , ) :( , )

0ij ji

i i j A i j i A

x x
 

     j N                                     (3.7) 
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 1 1ijx     ( , )i j AT                                      (3.8) 

 0ijx                 ( , )i j A                                      (3.9) 

 Objective (3.6) minimizes the total operational costs. Constraint (3.7) states that 

all nodes are transshipment nodes. In constraint (3.8), the lower and upper bounds on 

the trip arcs are equal to one in order to ensure that all trips are served. Additionally, 

this formulation can be extended for the case of fixed number of vehicles by setting the 

upper bound on the arc leading back from t to s, to the number of vehicles available 

(Bunte and Kliewer, 2009).  

3.2 Crew Scheduling Problem 

 Fischetti et al. (1987) proved that the fixed job scheduling problem (FJSP) with 

spread time constraints is NP-Hard. In a later study, Fischetti et al. (1989) proved that 

the FJSP with working time constraints is also NP-Hard. As these two basic variants 

of the CSP with spread and working time constraints are NP-Hard, it can be concluded 

that the CSP is also NP-Hard. Wren and Rousseau (1995) provided an overview of the 

Bus Driver Scheduling Problem (BDSP), which is a kind of CSP for public bus 

transportation, and its several variants. The authors presented constraints and 

conditions in different environments and proposed various solution approaches for the 

BDSP. Ernst et al. (2004) provided a detailed bibliography about crew scheduling and 

crew rostering problems. They classified the studies related to these two problems 

according to the problem type, application area and solution methodology. 

 In the literature, one of the most used approaches to the CSP is the column 

generation that is introduced by Desrochers and Soumis (1989), where the master 

problem is a set partitioning/covering problem and the subproblem is a Resource-

Constrained Shortest Path Problem (RCSPP) (Carraresi et al., 1995; Desrochers et al., 

1992; Freling et al., 1999; Freling et al., 2001a, 2003; Friberg and Haase, 1999; Haase 

et al., 2001; Mesquita and Paias, 2008; Rousseau and Desrosiers, 1995). With this 

approach, the feasible shifts are generated by solving the RCSPP, where the feasibility 

constraints such as the maximum working time limit, the number and the length of 

breaks, the maximum driving duration without a break, etc. are handled as different 

resources. Then, a crew schedule covering all tasks is determined from the given 

feasible shifts by solving a set partitioning/covering problem. In some of these studies, 
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different crew types are also considered which differ with respect to shift type such as 

part-time, full time, etc. Basic formulations for these approaches are given in the 

following sections. 

 Furthermore, Boschetti et al. (2004) extended the CSP with multiple depots. They 

considered the problem of determining the optimal shifts for a set of identical crews 

divided into several depots, in order to cover a set of trips regarding the working time 

(total duration of tasks assigned to a duty) and spread time limitations. They proposed 

an exact method based on a set partitioning formulation with additional constraints, as 

well as a bounding procedure based on Lagrangian relaxation and column generation. 

Their model is an extension of MD-VSP, since it corresponds to the MD-VSP when no 

time limits are imposed on duty duration. 

 Various heuristic approaches are also proposed in literature for the CSP. Shen 

and Kwan (2001) proposed a tabu search algorithm for the BDSP, whereas Lourenço 

et al. (2001) presented multi-objective metaheuristics for the same problem. The 

authors proposed a Greedy Randomized Adaptive Search Procedure (GRASP), a Tabu 

Search (TS) and a Genetic Algorithm (GA) as metaheuristics. They integrated these 

methods in a decision support system. Dias et al. (2002) studied on a GA 

implementation for the BDSP, through extending the traditional approach of set 

covering/partitioning formulations by considering several additional criteria. De Leone 

et al. (2011) proposed a mathematical formulation under special constraints forced by 

restrictions due to Italian transportation regulations, applied to small- or medium-sized 

problem instances. For larger instances, the authors proposed GRASP. Kecskeméti and 

Bilics (2013) proposed an integer programming and evolutionary hybrid algorithm for 

the BDSP. Toth and Kresz (2013) presented an efficient algorithm based on cut and 

join approach for the BDSP. The proposed method is divided into two phases. In the 

first phase, rough shifts are generated that contain only the trips and the travelling 

activities of the driver. In the second phase, complete shifts are generated which contain 

all the obligatory activities and the idle activities. 

3.2.1 Set Covering / Set Partitioning Model  

 A set covering formulation of Desrochers and Soumis (1989) is presented below. 

In this formulation, global constraints such as limitations on number of shift types are 

also considered as well as covering all tasks. Let M = {1,2,…,m}be the set of tasks, N 
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= {1,2,…,n} be the set of feasible shifts and K = {1,2,…,k} be the set of shift types. 

The parameter 𝑐𝑗 is the cost of shift j, which is a function of travel time and paid breaks. 

The parameter 𝑓𝑖𝑗 = 1 if feasible shift j covers the task i, 𝑓𝑖𝑗 = 0 otherwise. The 

parameter 𝑔𝑘𝑗 = 1 if feasible shift j has shift type k, 𝑔𝑘𝑗 = 0 otherwise and ℎ𝑘 is the 

upper bound for shift k. The decision variable 𝑥𝑗 = 1 if feasible shift j is selected, 𝑥𝑗 = 

0 otherwise. The master problem of the CSP can be formulated as a set covering 

formulation as follows: 
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n

j j
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c x


                 (3.10) 
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

    i M                        (3.11) 
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

    k K                        (3.12) 

  0,1jx     j N                        (3.13) 

 As shown above, the objective is to minimize the total crew costs. Constraint 

(3.11) ensures that each task i is covered by at least one shift. Constraint (3.12) limits 

the number of shift types and constraint (3.13) says that all 𝑥𝑗 decision variables are 

binary. Constraint set (3.12) is called as global constraints or sometimes base 

constraints, and minimum/maximum limitations on shift types (full time, split, etc.) are 

modeled in these constraints. In the set partitioning formulation, inequalities at 

constraint (3.11) are replaced with equalities (Desrochers and Soumis, 1989).  

3.2.2 Resource Constrained Shortest Path Problem 

 The Resource Constrained Shortest Path Problem (RCSPP) is a special case of 

the shortest path problem formulated on a graph G = (N, A), where N is the set of nodes 

including source s and sink t, A is the set of arcs. Additionally, there is a set of 

resources, R. The parameter 𝑐𝑖𝑗 is the cost of each arc (i, j) ∈ A and 𝑑𝑖𝑗
ℎ  is the 

consumption of resource h along each arc (i, j) ∈ A based on the resource extension 

function (REF) of resource h. Irnich (2008) provides a detailed REF descriptions for 

real life applications.  
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 Let 𝑊𝑗
ℎ be the amount of the hth resource accumulated along the path from source 

node s to node j.  Let the interval [𝑎𝑗
ℎ , 𝑏𝑗

ℎ] with 𝑎𝑗
ℎ < 𝑏𝑗

ℎ be the resource window for 

each node j ∈ N. A path from node s to node j is feasible, if and only if 𝑎𝑗
ℎ ≤ 𝑊𝑗

ℎ ≤ 𝑏𝑗
ℎ. 

Two types of constraints can be modeled with resource windows: time window 

constraints when h represents time, and capacity constraints when h corresponds to the 

quantity of resource. Time window constraints can be defined as hard or soft. In hard 

time window constraints, if node j is visited before 𝑎𝑗
ℎ, waiting is allowed without 

incurring a cost, where all arrival times after 𝑏𝑗
ℎ are forbidden. In soft time window 

case, a penalty cost is employed when node j is not visited within the given time 

window (Pugliese and Guerriero, 2013). 

 Given a source node s and sink node t, RCSPP aims to find the minimum cost 

path such that 𝑊𝑗
ℎ respects the feasibility window [𝑎𝑗

ℎ, 𝑏𝑗
ℎ] for all nodes of the path and 

all resources. The decision variable 𝑦𝑖𝑗= 1 if node j is visited after node i, 𝑦𝑖𝑗 = 0 

otherwise. 

( , )

Minimize ij ij
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  0,1ijy                            ( , )i j A            (3.18) 

 In the objective function (3.14), total cost of arcs is minimized. Constraint (3.15) 

indicates that the flow between the source node s and the sink node t must be equal to 

one by conserving the network flow between other nodes. Constraint (3.16) ensures 

that, if there is a positive flow between nodes i and j, the value of resource h at node j 

must be greater than or equal to the sum of the amount of the hth resource accumulated 

along the path from source node s to node i and the consumption along arc (i, j) of 

resource h. Constraint (3.17) enforces the resource windows of resource h for all nodes. 

Finally, constraint (3.18) ensures that all decision variables are binary. 
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 Many of the conditions on crew shifts can be formulated through resources and 

the constraints regarding the consumption of these resources in a shift. Common 

resource constraints for crew shifts are spread time, working time, break duration, 

number and length of piece of works. Pugliese and Guerriero (2013) provided a survey 

of resource constrained shortest path problems and exact solution approaches. 

3.3 Vehicle and Crew Scheduling Problem  

 In the literature, most of the studies deal with crew scheduling and vehicle 

scheduling individually, as in the aforementioned review of the VSP and CSP. 

However, there are studies on vehicle and scheduling problem (VCSP) considering 

both problems at the same time either by using a sequential approach or an integrated 

approach. In the sequential approach, VSP and CSP are solved sequentially, while they 

are solved simultaneously in the integrated one. 

 Freling et al. (1995) introduced the first exact formulation for integrated vehicle 

and crew scheduling problem (IVCSP), as well as an optimization-based heuristic 

approach. Their formulation includes a quasi-assignment structure for vehicle 

scheduling, set partitioning constraints for crew scheduling and a set of linking 

constraints between vehicle and crew scheduling. They proposed a column generation 

algorithm combined with Lagrangian relaxation as a solution approach. The proposed 

formulation and solution methodology including the computational results for the real 

world problems can be found in Freling et al. (1999).  

 Freling et al. (2003) studied on the relaxations and algorithms for the integrated 

approach to solve the single depot VCSP. They discussed the potential benefits of 

integration and provided an overview of the literature that considers partial integration. 

They proposed a mathematical formulation and a solution methodology based on 

column generation combined with Lagrangian relaxation of the IVCSP. Furthermore, 

they applied their techniques to real life problems of a public transport operator. 

According to Freling et al. (2003), three main approaches are pursued for the 

integration of vehicle and crew scheduling in the literature. The first one is the 

scheduling of vehicles by a heuristic approach, which is designed by Ball et al. (1983) 

for the crew scheduling problem. The second approach for the integration is 

determining the vehicle schedules by taking crew costs into consideration, which is 
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proposed by Darby-Dowman et al. (1988). The third approach is the complete 

integration of vehicle and crew scheduling, which is proposed by Freling et al. (1995).  

  Freling et al. (2001a) studied on a practical application of the single depot 

IVCSP. They considered the bus lines of a public transport operator, where particular 

constraints on shifts and breaks should be taken care of. They proposed both the 

sequential and integrated approaches for the VCSP and compared them with each other. 

As for the sequential approach for the vehicle scheduling, they developed a 

transportation model where nodes are trips, and the objective is to find the set of disjoint 

paths between two depots respecting the operator-specific roundtrip condition. They 

solved this model using subgradient optimization and Lagrangian relaxation of 

roundtrip condition. After solving this model, they proposed a two-step procedure for 

the crew scheduling. In the first step, they generated shifts by defining all relief points 

and generating all feasible pieces of works, sequentially. In the second step, they 

selected the optimal shifts by solving a set covering model. They proposed a column 

generation method for solving this problem. As an integrated approach for the VCSP, 

they proposed a formulation which is the combination of the quasi-assignment 

formulation for vehicle scheduling and a set partitioning formulation for crew 

scheduling. The quasi-assignment part assures the feasibility of vehicle schedules, 

while the set partitioning assures that each trip and deadhead is assigned to a shift if its 

corresponding deadhead is part of the vehicle schedule. They proposed a column 

generation algorithm for the integrated model.  Furthermore, they investigated the 

impact of allowing drivers to change vehicle during a break. According to their current 

operational rules, these changeovers are only allowed in split duties. They compared 

the sequential and integrated approaches with different variants of allowing 

changeovers. According to their computational results, the integrated approach gave 

better results than the sequential approach for all the variants. 

 Friberg and Haase (1999) introduced the first exact solution approach for the 

IVCSP, which combines the crew scheduling approach of Desrochers and Soumis 

(1989) and the vehicle scheduling approach by Riberio and Soumis (1994). They 

proposed a branch-price-and-cut algorithm, where a column generation is performed 

for generating both vehicle and crew schedules in order to obtain optimal solutions. 

However, only small instances including up to 20 trips could be solved to optimality 

within 3 hours. Later, Haase et al. (2001) proposed an exact approach for the single 

depot IVCSP with homogenous fleet, which relies on a set partitioning formulation for 
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the CSP that combines side constraints for the vehicle schedules. In their approach, 

column generation integrated into a branch and bound scheme is applied only for the 

generation of crew schedules. The side constraints on vehicles guarantee that optimal 

schedules can be derived afterwards in polynomial time. They also proposed a heuristic 

approach for larger instances. 

 Based on the integrated approach of Freling et al. (1995), Huisman (2004) and 

Huisman et al. (2005) introduced the first formulation for the multiple depot IVCSP. 

Later, Mesquita and Paias (2008) presented an integer linear programming formulation 

combining a multi-commodity network flow model with a set partitioning/covering 

model for the same problem. They proposed a four-step solution approach for the 

problem. In the first two steps, the set of tasks are defined and initial set of shifts is 

generated. In the third step, linear programming relaxation of the model is solved using 

a column generation scheme. In the fourth step, if the resulting solution is not integer, 

branch and bound techniques are used over the set of generated shifts in order to obtain 

a feasible solution. Later, Mesquita et al. (2009) developed and compared additional 

branching strategies for solving the model proposed by Mesquita and Paias (2008). 

Gintner et al. (2006), Steinzen (2007) and Steinzen et al. (2010) developed a time-space 

network structure for the multiple depot IVCSP and used the general solution scheme 

proposed by Freling (1997) in order to solve the model. 

 Kliewer et al. (2012) extended the multiple depot IVCSP with time windows for 

scheduled trips. They developed a mathematical model based on a time-space network 

and solved this model with column generation combined with Lagrangian relaxation. 

As another extension, Mesquita et al. (2013) studied on the vehicle-crew-roster 

problem with days-off pattern, which simultaneously determines the minimum cost 

vehicle and daily crew schedules that cover all trips, and the minimum cost roster that 

cover all daily crew shifts according to the given predetermined days-off pattern. They 

proposed an integer linear programming formulation and a heuristic solution approach 

based on Bender’s decomposition, which iterates between the solution of the IVCSP 

and the solution of the rostering problem. Gintner et al. (2008) presented a partially 

integrated approach for the multiple depot VCSP. Contrary to the traditional sequential 

approach, the crew scheduling in their method is based on a set of optimal vehicle 

schedules instead of only one optimal schedule. They used a multi-commodity flow 

formulation based on a time-space network for the MD-VSP, and a column generation 

approach combined with Lagrangian relaxation for the CSP.  
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3.4 Tactical Fixed Job Scheduling Problem 

 As for the studies on the FJSP, Kolen et al. (2007) provided a detailed survey on 

the Interval Scheduling Problem (ISP), such that each job is started at or after its ready 

time and completed before its deadline. If the job can be started after its ready time, the 

problem is defined as the Variable Job Scheduling Problem (VJSP). Conversely, if the 

job cannot be started after its ready time, the problem is referred as the FJSP. Kovalyov 

et al. (2007) provided a more recent review on models, applications and algorithms for 

the FJSP. The problem has two variants according to the objective functions: 

Operational Fixed Job Scheduling Problem (OFJSP) and Tactical Fixed Job Scheduling 

Problem (TFJSP). In the OFJSP, the objective is to maximize the weighted number of 

processed jobs with a given number of processors where each job has a weight. 

Conversely, in the TFJSP, the objective is the minimization of the total cost of 

machines required to cover all jobs. Eliiyi and Azizoğlu (2009, 2010, 2011) proposed 

solution techniques for the OFJSP with eligibility, working time and spread time 

limitations. 

 Many studies exist in literature on the TFJSP variants. Fischetti et al. (1989) 

studied the TFJSP with working time constraints. The authors dealt with the BDSP 

with working time constraints, where the objective is to find the minimum number of 

crew required to cover all daily tasks. They proposed a polynomial algorithm for the 

preemptive version of the problem, and developed a branch and bound algorithm. They 

also provided some lower bounds and dominance criteria for the problem. Fischetti et 

al. (1987) studied on the TFJSP with a constraint on the spread time of the bus drivers 

where each driver has a spread time limit from the start time to the end time of his shift, 

including the idle times. They proposed polynomial procedures to obtain some lower 

bounds, as well as dominance criteria and reductions in problem size. They also 

developed a branch and bound algorithm for the problem.  

 As another extension for the TFJSP, eligibility constraints are considered where 

each job can be processed only by a subset of the machine classes. Arkin and Silverberg 

(1987) showed that the FJSP with eligibility constraints is NP-Complete. Kroon et al. 

(1997) studied on the TFJSP with eligibility constraints, where the objective is to 

determine the minimum number of non-identical parallel machines in such a way that 

each machine can process only jobs from a subset of the job classes and preemption is 

not allowed. They provided exact and approximation algorithms for the problem. Eliiyi 
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et al. (2009) developed a mixed integer programming model and several heuristics for 

the vehicle scheduling problem, using a TFJSP formulation with spread time 

limitations while considering the sequence dependent setup times and vehicle capacity 

restrictions. Zhou et al. (2014) developed a branch and price algorithm for the TFJSP 

with spread time and eligibility constraints. Krishnamoorthy et al. (2012) studied on 

the shift minimization personnel task scheduling problem which is similar to the TFJSP 

with eligibility constraints, except that the machines have also availability limitations. 

They provided mathematical formulations and a heuristic approach. 

3.5 Discussion 

 As it has been elaborated in Section 3.1, VSP is commonly formulated as a 

network flow or transportation model. In the multiple depot and multiple vehicle type 

cases, multi-commodity model formulations are generally used, where a multi-graph is 

generated including subnetworks for each depot/vehicle type. In this thesis, a fixed job 

scheduling approach is proposed for the VSP by considering multiple vehicle types as 

eligibility constraints.  

 Furthermore, as discussed in Section 3.4, the common objective of the TFJSP 

formulations is to minimize the total fixed cost of machines required to cover all jobs. 

In this thesis, variable cost minimization is also handled within the fixed job scheduling 

framework. Thus, the proposed formulation is different from the existing fixed job 

scheduling literature. 

 In summary, the approach for the VSP in this thesis is different from the existing 

vehicle scheduling and tactical fixed job scheduling studies in literature due to:  

(1) The fixed job scheduling approach to the vehicle scheduling problem, 

(2) The consideration of eligibility constraints (multiple vehicle types), and 

(3) Minimization of both fixed and variable costs. 

 As mentioned in Section 3.2, column generation approach is commonly used for 

the CSP, where the master problem is a set partitioning/covering problem and the 

subproblem is RCSPP. In studies using this approach, different crew types are 
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considered that differ with respect to shift types such as part-time, full time, etc. 

However, different crew types with different capabilities are not considered, namely 

the cases where each task can be assigned to certain subset of crew types. In this thesis, 

a fixed job scheduling approach is proposed for the CSP considering different crew 

types with different capabilities as eligibility constraints. 

 Furthermore, as discussed in Section 3.4, the working time constraint is not 

considered with sequence dependent setup times in the TFJSP formulations. In this 

thesis, this constraint is handled by using a TFJSP based approach that includes the 

sequence dependent setup times, since the drivers must travel between the start and end 

locations of the tasks in order to fully perform the assigned tasks.  

 In summary, the approach for the CSP in this thesis is different from the existing 

crew scheduling and tactical fixed job scheduling studies in the related literature due 

to:  

(1) The fixed job scheduling approach to the crew scheduling problem, 

(2) The consideration of many realistic constraints such as working time, spread 

time and eligibility constraints, and 

(3) The handling of the working time constraint in the existence of sequence-

dependent setup times. 

 As stated in Section 3.3, column generation algorithms combined with 

Lagrangian relaxation are commonly used for the VCSP as a solution approach.  

Furthermore, multiple vehicle types (eligibility constraints for vehicles) are employed 

in some of these studies on the multiple depot VCSP (Huisman, 2004; Huisman et al., 

2005; Gintner et al. 2006; Steinzen, 2007; Steinzen et al. 2010; Kliewer et al. 2012), 

by referring to vehicle type as depot. However, all of these studies assume that each 

crew belongs to a specific depot and can only cover tasks performed by the vehicles 

from this certain depot. According to this assumption, crew member can be assigned 

to only one type of vehicle/depot. Thus, eligibility constraints are not considered for 

crew members in these studies, where each crew member can be assigned to more than 

one type of task (vehicle) based on his capabilities. 
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 In this thesis, a sequential approach and an integrated formulation are proposed 

for the VCSP that is different from the existing vehicle and crew scheduling studies in 

literature due to:  

(1) The fixed job scheduling based sequential approach for the VCSP, 

(2) A binary programming model for the integrated VCSP, 

(3) The consideration of eligibility constraints for both vehicles and crew 

members, and 

(4) The consideration of realistic constraints including working time and spread 

time for the crew. 
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4 THE VEHICLE SCHEDULING PROBLEM  

 This thesis is motivated by a real life vehicle scheduling problem of a public bus 

transportation authority, which has a heterogeneous fleet of buses. The trips are given 

by specified time intervals, as well as start and end termini. Furthermore, the trips may 

require distinct types of vehicles that have different characteristics such as capacity, 

average speed, fuel consumption, etc. Therefore, there are several vehicle classes 

corresponding to eligibility constraints in the problem. The objective includes the 

minimization of total fuel consumption cost arising from deadheads and trips, as well 

as the fixed cost of vehicles. 

 Based on these characteristics, the VSP in this thesis can be formulated as a 

Tactical Fixed Job Scheduling Problem (TFJSP), as the ready times and deadlines of 

the trips are fixed in advance, and the objective is to minimize the total fixed cost of 

vehicles to cover all trips and the total variable costs resulting from deadheads and 

trips. In the basic Fixed Job Scheduling Problem (FJSP), there are n independent tasks 

ready to be processed on m parallel resources. The time window of each task is defined 

by a ready time and a deadline. The tasks cannot be delayed after their ready times, 

meaning that the processing times of the tasks are equal to their corresponding time 

windows. The TFJSP is a variant of the FJSP where the objective is to minimize the 

total fixed cost of the resources required to process all tasks. In this thesis, additional 

eligibility constraints further complicating the problem are considered. Moreover, the 

existence of the additional objective function of minimizing the total variable costs 

arising from deadheads and trips diverge the problem from a typical TFJSP, further 

complicating the structure. A TFJSP-based binary programming model is formulated 

for the real life VSP mentioned above. Before presenting the mathematical formulation, 

the problem notation and the assumptions are stated. 

4.1 Assumptions and Notation 

 The trips can demand different types of vehicles such as mini bus, solo bus, or 

articulated bus according to their demand densities and physical constraints of the 

routes. For instance, a trip requiring articulated buses cannot be performed with a solo 

bus. Therefore, each vehicle is eligible to perform only a subset of trips.  
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 The VSP can be defined as a TFJSP where the ready times and deadlines of the 

trips are fixed in advance, and the objective is to minimize the total fixed cost of the 

vehicles and the total variable costs resulting from the deadheads and the trips. All trips 

must be covered satisfying the eligibility constraints. The notation for the problem 

formulation is given in Table 4.1. 

Table 4.1 VSP Notation. 

Sets 

K Set of trips 
D Set of trip/vehicle classes 
V Set of vehicles (buses) 
Vd Set of buses belonging to class d ∈ D; Vd ⊂ V 
Kd Set of trips belonging to class d ∈ D; Kd ⊂ K 
IVi Set of incompatible trips for trip i ∈ K; IVi ⊂ K 
AVd Set of trips that can be performed by a bus belonging to class d ∈ D; Kd ⊆ AVd        
BVd Set of buses that can perform trips belonging to class d ∈ D; Vd ⊆ 𝐵𝑉d        

Parameters 

ri Ready time of trip i ∈ K 
ei Deadline of trip i ∈ K 
aij Setup time between trip i and j, i, j ∈ K 
ov Trip based fuel consumption cost of vehicle v ∈ V, per time unit 
sv Deadhead based fuel consumption cost of vehicle v ∈ V, per time unit 
tv Fixed cost of vehicle v ∈ V 

Decision Variables 

𝑥𝑖
𝑣 1 if eligible trip i is assigned to vehicle v, 0 otherwise 

𝑧𝑣  1 if vehicle v is used, 0 otherwise 

𝑤𝑖
𝑣  1 if eligible trip i is first trip of vehicle v, 0 otherwise 

𝑝𝑖
𝑣 1 if eligible trip i is last trip of vehicle v, 0 otherwise 

ℎ𝑖𝑗
𝑣  1 if eligible trip j is covered consecutively after eligible trip i by vehicle v, 0 otherwise 

 The assumptions are listed below. 

 The problem is solved daily. The timetabling problem is assumed to be solved 

in advance; hence, the ready times and deadlines of the trips are fixed and 

known. The deadlines of the trips are defined as their ready times plus their 

constant processing times. 

 Trip preemption is not allowed. A trip must be performed wholly by a single 

bus. 

 Delay and cancellation are not possible, all trips must be performed/covered. 

 There are several trip classes that require certain vehicle types. There is a 

predefined subset of eligible trips for each vehicle class. These sets are 

inclusive; for any two vehicle classes d and f ∈ D, either AVd ⊆ AVf or AVf ⊆ 

AVd. 

 Each vehicle has a daily fixed cost. When a vehicle is assigned to a trip, its fixed 

cost is incurred and the privilege to use the vehicle for a day is obtained. Fixed 
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costs are different for each vehicle class and determined based on the daily 

depreciation cost of vehicles by the operator. 

 Each vehicle type has different trip and deadhead fuel consumption costs. It is 

assumed that vehicles consume more fuel during deadheads compared to trips, 

as the deadheads are performed at higher speeds. Hence, deadhead fuel 

consumption cost is higher than the trip cost for all vehicles. 

 There are sufficient number of vehicles in each class to perform all trips. 

 Sequence-dependent setup (deadhead) times between trips are deterministic. 

 The setup time between any two trips is determined by the shortest path between 

them. There is no setup time before first trip and after the last trip in a vehicle 

schedule. 

 The trips are numbered in increasing order based on their ready times, meaning 

that ri ≤ rj for all trips i < j. Sets of vehicles belonging to class d (Vd) are disjoint subsets 

of the vehicle set V. To make sure that there are sufficient number of vehicles in each 

class to perform all trips, an upper bound is computed for the number of vehicles 

belonging to each class through a simple greedy heuristic, where the trips are grouped 

based on their classes and the number of vehicles to cover all trips in each class is 

determined in a greedy manner with extra allowances. 

 Sets of trips belonging to class d (Kd) are disjoint subsets of the trip set K. 

However, the set of trips that can be performed by a vehicle belonging to class d (AVd) 

is an inclusive set, meaning that a vehicle can perform trips of all lower classes beside 

its own class. For instance, a solo bus cannot be assigned to trips requiring articulated 

buses, but an articulated bus can be assigned to both trip classes. The decision variables 

are defined only for eligible vehicle-trip assignments. Similarly, the set of vehicles that 

can perform trips belonging to class d (BVd) is an inclusive set, meaning that a trip can 

be performed by a bus of a higher class beside its own class. For instance, a trip 

requiring a solo bus can be assigned to a solo bus or an articulated bus. However, a trip 

requiring an articulated bus can be assigned to only an articulated bus. An 

incompatibility set for each vehicle is defined in order to handle the time overlaps 

between trips. The reason for any trip pair (i,j) not to be assigned to the same vehicle 

is that, the time windows of the two trips overlap (ri≤ rj < ei), or the setup time 

(deadhead) in between (ri≤ rj <ei + aij). According to these observations, the set of 

incompatible trips for trip i ∈ K, namely IVi, is defined as follows:  

 , ;i j i ijIV j K i j r e a      
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4.2 Formulation 

 The binary programming model of the proposed VSP is given below: 
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 The objective function (4.0) minimizes the total fixed and variable costs of the 

vehicles. Constraint set (4.1) ensures that all trips are covered by an eligible vehicle. 

Constraint set (4.2) guarantees that incompatible trip pairs are not assigned to the same 

vehicle. Constraint set (4.3) ensures that a trip can be assigned to a vehicle only if it is 

used. Constraint sets (4.4) and (4.5) guarantee that all trips must be scheduled to an 

eligible vehicle; that is, there must be an arrival to and a departure from each trip. 

Constraint sets (4.6) and (4.7) ensure that there can be a deadhead between any two 

trips only if both of these trips are assigned to same vehicle. Constraint sets (4.8) and 

(4.9) guarantee that there must be a first and a last trip for each used vehicle. Constraint 

sets (4.10) and (4.11) ensure that a trip can be the first/last trip of an eligible vehicle 

only if it is assigned to that vehicle. Finally, (4.12) defines the decision variables. 

4.3 Computational Study 

 In this section, a preliminary computational experiment is described to evaluate 

the performance of the proposed formulation in Section 4.2. A similar setting to the 

one described in Fischetti et al. (1987) is used for computational experimentation. 

Random test problems are generated for trip sets with K = 20, 40, 80 and 120.  

 It is assumed that there are 200 time units in a day. There are three trip/vehicle 

classes due to vehicle types: midi bus, solo bus and articulated bus. A midi bus can be 

assigned to trips only requiring midi buses. However, a solo bus can be assigned to trip 

classes requiring midi and solo buses. An articulated bus is assumed to be eligible to 

perform all trips. There are two settings for trip-class assignments. In the first setting 

(c=1), 25% of the trips belong to class 1 (midi bus), 50% of the trips belong to class 2 

(solo bus) and the remaining 25% belong to class 3 (articulated bus). In the second 

setting (c=2), 20% of the trips belong to class 1, 40% of the trips belong to class 2 and 

the remaining 40% belong to class 3. 

 Two sets of ready times are generated. In the first set (r=1), the ready times follow 

a discrete uniform distribution in the range [0,200]. In the second set (r=2), a peak time 

is considered where 25% of ready times follow a discrete uniform distribution in the 

range [30, 50], 25% come from the range [120,160], and the remaining 50% from 

ranges [0,29], [51,119] and [161,200].  
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 Two sets of distributions are used for the processing times of trips; (p=1) discrete 

uniform distribution in the range [4,13] and (p=2) triangular distribution in the range 

[4,9,13]. The setup times (deadheads) are uniform in the range [0,5]. Fixed cost of 

vehicles in each class are set as 60, 80 and 120 monetary units, respectively. Trip fuel 

consumption costs of vehicles in each class are taken as 3.5, 5 and 7 monetary units per 

time unit, whereas the deadhead fuel consumption costs of vehicles in each class are 

assumed to be 4.5, 6.5 and 9 monetary units per time unit, respectively. 

 For each problem combination, 10 random test problems are generated, summing 

up to 320 problem instances in total. The prime modulus multiplicative linear 

congruential generator (PMMLCG) by Law and Kelton (1991, pp. 449-457) is used 

with default seeds to generate the random numbers. The binary programming 

formulation in Section 4.2 is modeled in C++ programming language on Microsoft 

Visual Studio platform, and IBM ILOG Concert Technology is used for solving the 

model with IBM ILOG CPLEX 12.6. All test problems are optimally solved on a Core 

i7, 2.60 GHz, 8 GB RAM computer. Computational results for each problem 

combination are reported in Table 4.2. The table represents the minimum, average and 

maximum solution times over 10 instances for each setting. Bus set sizes for each 

vehicle class are generated to be nonbinding for all instances. 

 As shown in Table 4.2, the proposed model formulation is quite effective in terms 

of solution time for instances with up to 120 trips. For all instances with up to 80 trips, 

the optimal solutions are obtained in less than 30 seconds. Among instances with 120 

trips, the maximum solution time is around 4 minutes.  

 As observed from the table, the average solution times for settings (1,2,1), 

(1,2,2), (2,2,1) and (2,2,2) are higher than others. Especially, settings (1,2,1) and (1,2,2) 

have the highest solution times. Hence, it can be said that the instances with ready times 

considering peak hours (r = 2) are relatively harder to solve. Furthermore, it can be 

concluded that proposed formulation performs robustly under different vehicle type 

combinations and processing time distributions. 
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Table 4.2 Computational Results for the VSP model. 

c r p K Runtime (Sec.) 

        Min. Avg. Max. 

1 1 1 20 0.235 0.322 0.500 

      40 0.657 0.997 1.609 

      80 6.093 9.572 22.594 

      120 42.265 55.731 79.469 

1 1 2 20 0.250 0.352 0.563 

      40 0.656 0.908 1.406 

      80 6.719 9.770 14.453 

      120 34.547 57.139 89.032 

1 2 1 20 0.375 0.500 0.829 

      40 0.891 1.203 2.141 

      80 10.234 19.638 28.391 

      120 75.547 110.459 222.562 

1 2 2 20 0.297 0.335 0.516 

      40 0.578 0.964 1.610 

      80 7.563 10.775 13.672 

      120 53.281 70.736 111.812 

2 1 1 20 0.234 0.380 0.656 

      40 0.610 0.827 1.516 

      80 5.625 9.905 27.688 

      120 37.313 53.916 65.546 

2 1 2 20 0.235 0.316 0.593 

      40 0.594 0.713 1.140 

      80 6.047 8.616 15.625 

      120 31.969 53.255 145.703 

2 2 1 20 0.234 0.369 0.453 

      40 0.641 0.995 1.625 

      80 4.875 8.244 10.468 

      120 45.937 66.833 92.109 

2 2 2 20 0.266 0.316 0.578 

      40 0.750 0.978 1.672 

      80 6.671 9.890 22.687 

      120 45.906 59.644 71.437 
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5 THE CREW SCHEDULING PROBLEM  

 In the Crew Scheduling Problem (CSP) of the bus operator, each driver has a 

spread time limit from the start time to the end time of his/her shift including the idle 

times. Furthermore, a driver cannot exceed the maximum total working time limit. The 

processing times of the tasks assigned to drivers are included in their working times, 

as well as the sequence-dependent setup times. The tasks require different types of 

vehicles and different crew capabilities. Therefore, several crew classes exist based on 

competencies required to use certain vehicle types, corresponding to the eligibility 

constraints in the problem. The objective of the CSP is to minimize the total fixed cost 

of the crew such that all tasks are covered satisfying the operational constraints. 

 The CSP studied in this thesis is formulated as a Tactical Fixed Job Scheduling 

Problem (TFJSP), where the ready times and deadlines of the tasks are fixed in 

advance, and the objective is to minimize the total cost of crew to cover all tasks 

satisfying the eligibility constraints, working and spread time limitations. Before 

presenting the mathematical formulation, problem notation and the assumptions are 

stated briefly in Section 5.1. 

5.1 Assumptions and Notation 

 Each driver has a spread time limit from the start time to the end time of his/her 

shift. This limitation is defined as an upper bound on the total time elapsing from the 

start time of the first task assigned to that driver until the end time of the last task. The 

drivers can be idle at some time intervals during their shift; these idle times are also 

included in the spread time. Furthermore, a driver cannot exceed the maximum total 

working time limit. The processing times of the tasks assigned to the crew are included 

in the working time, as well as the sequence-dependent setup times, as the drivers must 

travel between the start and end locations of the tasks in order to perform the assigned 

tasks. 

 Different types of vehicles require different crew capabilities. For instance, a 

driver licensed to drive solo buses may not be licensed to drive an articulated bus. 

Therefore, each driver is eligible to perform only a subset of tasks. The notation for the 

problem formulation is given in Table 5.1. 
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Table 5.1 CSP Notation. 

Sets 

L Set of tasks 
D Set of crew/task classes 
Q Set of crew members (drivers) 
Qd Set of drivers belonging to class d ∈ D; Qd ⊂ Q 
Ld Set of tasks belonging to class d ∈ D; Ld ⊂ L 
Ii Set of incompatible tasks for task i ∈ L; Ii ⊂ L 
Ad Set of tasks that can be performed by a crew member belonging to class d ∈ D; Ld ⊆ Ad        
Bd Set of crew members that can perform tasks belonging to class d ∈ D; Qd ⊆ 𝐵d        

Parameters 

ri Ready time of task i ∈ L 
ei Deadline of task i ∈ L 
aij Setup time between task i and j, i, j ∈ L 
W Working time limit 
S Spread time limit 
ck Fixed cost of driver k ∈ Q 

Decision Variables 

𝑥𝑖
𝑘 1 if eligible task i is assigned to driver k, 0 otherwise 

𝑦𝑘  1 if driver k is used, 0 otherwise 

 The assumptions for the VSP are valid for the CSP, as well. The additional 

assumptions are listed below. 

 The problem is solved daily. The crew rostering problem is assumed to be 

solved in advance. Hence, the crew availabilities during the working week are 

known, along with days-off schedules and shifts. 

 The vehicle scheduling problem is assumed to be solved. Task preemption is 

not allowed. A task must be performed wholly by a single crew member. 

 There are several task and crew classes based on vehicle requirements and 

driver licences. There is a predefined subset of eligible tasks for each crew class. 

These sets are inclusive; for any two crew classes d and f ∈ D, either Ad ⊆ Af or 

Af ⊆ Ad. 

 Only full time drivers are considered. Each driver has a daily fixed cost. When 

a driver is assigned to a task, his/her fixed cost is incurred and the privilege to 

use the driver for a day is obtained. Fixed costs are different for each crew class. 

 Delay and cancellation are not possible. All tasks should be covered by the crew 

and there are sufficient drivers in each class. 

 Sequence-dependent setup (travel) times between tasks are deterministic, and 

is determined by the shortest path between the tasks. There is no setup time 

before first task and after the last task in a crew schedule. 

 Spread and working time limits are constant, known and the same for all drivers. 

 The tasks are numbered in increasing order based on their ready times, meaning 

that ri ≤ rj for all tasks i < j. Sets of drivers belonging to class d (Qd) are disjoint subsets 
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of driver set Q. It is assumed that a sufficient number of drivers exist in each crew class. 

The upper bounds on the number of drivers belonging to class d are determined as 

nonbinding values by using a simple greedy heuristic approach. For this purpose, the 

tasks are grouped based on their task classes, and the required number of drivers to 

cover all tasks in each task class is determined in a greedy manner with extra 

allowances. 

 Sets of tasks belonging to class d (Ld) are disjoint subsets of the task set L. 

However, the set of tasks that can be performed by a crew belonging to class d (Ad) is 

an inclusive set, meaning that a crew member can perform tasks of lower classes beside 

its own class. For instance, a driver licensed to drive a solo bus cannot be assigned to 

tasks requiring articulated buses. However, a driver licensed to drive an articulated bus 

can be assigned to any task class. Decision variables are defined only for eligible crew-

task assignments. Additionally, the set of drivers that can perform tasks belonging to 

class d (Bd) is an inclusive set, meaning that a task can be performed by a driver of a 

higher class beside its own class. For instance, a task with a solo bus can be assigned 

to a driver licensed to drive a solo bus or one licensed to drive an articulated bus.  

 An incompatibility set for each task is defined in order to handle the spread time 

constraints and the overlaps. The set of tasks that cannot be performed by the same 

driver are determined through these sets. There may be two reasons for any task pair 

(i,j) not to be assigned to the same crew. The first reason is that, the time windows of 

the two tasks overlap (ri≤ rj < ei), or a crew cannot perform the two tasks consecutively 

due to the setup time in between (ri≤ rj <ei + aij). The second reason could be that the 

difference between the ready time of first task and the deadline of second task exceeds 

the total spread time limit (ej -ri > S). According to these observations, the set of 

incompatible tasks for task i ∈ L, namely Ii, is defined as follows:  

 , ;i j i ij j iI j L j i r e a or e r S        

5.2 Formulation 

 Based on the above assumptions and definitions, the binary programming model 

of the CSP is given below: 
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Minimize k k
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i k d dx y i A k Q d D                    (5.4) 

 The objective function (5.0) minimizes the total fixed crew cost. Constraint set 

(5.1) ensures that all tasks are covered. Constraint set (5.2) guarantees that 

incompatible task pairs are not assigned to the same driver. Note that the setup times 

between tasks are considered in the definition of the incompatibility set. Thus, the setup 

time parameter (aij) and the spread time parameter (S) do not appear in the formulation. 

Constraint set (5.3) ensures that the sum of the processing times of tasks assigned to a 

driver does not exceed the total working time limit. Finally, constraint set (5.4) defines 

the necessary binary variables. 

 As mentioned before, the approach in this thesis is different from the crew 

scheduling studies in literature due to the handling of the working time constraint in 

the existence of sequence-dependent setup times. As shown in the formulation, the sum 

of the processing times of tasks assigned to a driver is not allowed to exceed the total 

working time limit. However, in practice the sequence-dependent setup times should 

also be included in the working time. In order to avoid defining an additional sequence 

variable, which increases the model size and the solution time considerably, an iterative 

valid inequality generation scheme is proposed, which eliminates the task sequences 

violating the total working time when the setup times are included. The procedure is 

based on repetitive solutions of the simpler and fast model above, where possible 

infeasible solutions are removed iteratively, as they are encountered. The model is 

solved initially with working time constraints including only the processing times of 

the tasks. Then, valid inequalities are generated (if needed) for infeasible task 

sequences exceeding the total working time limit when sequence-dependent setup 

times are included. The generated inequalities ensure that the tasks forming an 
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infeasible sequence cannot be assigned to same driver; they are added to the 

formulation and the model is re-solved. The procedure is automatically repeated until 

there is no infeasible sequence in the solution. 

 The approach for valid inequality generation is illustrated through an example 

given in Table 5.2. When the model is solved with a working time limit of 80 time 

units, an infeasible task sequence of 1-2-3-4-5-7-8 is obtained for a driver, with a total 

working time of 92 time units when the setup times are added. Therefore, a valid 

inequality for this sequence is generated, and added to the model. In addition, to avoid 

any infeasibilities that may occur in further iterations of the procedure, all infeasible 

subsequences of the original infeasible sequence (namely, 1-2-3-4-5-6, 2-3-4-5-6-7, 

and 3-4-5-6-7-8) are also eliminated at this same iteration through generating additional 

cuts, as shown in Table 5.2. 

Table 5.2 Valid Inequality Generation Example for the CSP. 

Original Infeasible Sequence: 1-2-3-4-5-7-8, Total Working Time: 92 and Working Time Limit: 80 

Subsequence 

Total 
Working 

Time  
(Time Units) 

Subsequence 
Total  

Working Time 
(Time Units) 

Subsequence 
Total  

Working Time 
(Time Units) 

1-2 25 2-3 30 3-4 27 
1-2-3 42 2-3-4 44 3-4-5 45 
1-2-3-4 56 2-3-4-5 62 3-4-5-6 57 
1-2-3-4-5 74 2-3-4-5-6 74 3-4-5-6-7 68 
1-2-3-4-5-6 86 2-3-4-5-6-7 85 3-4-5-6-7-8 84 

Inequalities are generated for subsequences: (1-2-3-4-5-6); (2-3-4-5-6-7); (3-4-5-6-7-8) 

5.3 Computational Study 

 In this section, the computational experiment is described to evaluate the 

performance of the proposed solution procedure for the CSP. A similar setting to the 

one described in Fischetti et al. (1987) is used. Random test problems are generated for 

task sets with L = 40, 80 and 120.  

 It is assumed that there are 200 time units in a day, and a task can be either a d-

trip or a deadhead. There are three task/crew classes due to vehicle types; midi bus, 

solo bus and articulated bus. A driver licensed to drive a midi bus can be assigned to 

tasks only with midi buses. However, a driver licensed to drive a solo bus can be 

assigned to two classes; with midi and solo buses. A driver licensed to drive an 

articulated bus is eligible to drive midi, solo and articulated buses.  
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 There are two settings for task-class assignments. In the first setting (c=1), 25% 

of the tasks belong to class 1 (midi bus), 50% of the tasks belong to class 2 (solo bus) 

and the remaining 25% belong to class 3 (articulated bus). In the second setting (c=2), 

40% of the tasks belong to class 1, 40% of the tasks belong to class 2 and the remaining 

20% belong to class 3. There are two settings for the task types. In the first setting (t=1) 

40% of the tasks are deadhead and the remaining 60% are d-trips, while in the second 

setting (t=2) 20% of the tasks are deadhead and the remaining 80% are d-trips. Two 

sets of ready times are generated. In the first set (r=1), the ready times follow a discrete 

uniform distribution in the range [0,200]. In the second set (r=2), a peak time is 

considered where 25% of ready times follow a discrete uniform distribution in the 

range [30, 50], 25% come from the range [120,160], and the remaining 50% from 

ranges [0,29], [51,119] and [161,200]. Two sets of distributions are used for the 

processing times of d-trips; (p=1) discrete uniform distribution in the range [3,13] and 

(p=2) triangular distribution in the range [3,8,13]. The duration of deadheads in all sets 

are uniform in the range [1,5], and setup times are uniform in the range [0,5]. Time 

limits are set as S=100 and W=80. Fixed cost of drivers in each class are determined as 

160, 180 and 200 monetary units, respectively. 

 For each problem combination, 10 random test problems are generated, summing 

up to 480 problem instances in total. The prime modulus multiplicative linear 

congruential generator (PMMLCG) by Law and Kelton (1991, pp. 449-457) is used 

with default seeds to generate random numbers. The binary programming formulation 

in Section 5.2 is modeled in C++ programming language on Microsoft Visual Studio 

platform, and IBM ILOG Concert Technology is used for solving the model with IBM 

ILOG CPLEX 12.6. As explained in the Section 5.2, the model is resolved with added 

cuts at each iteration. All test problems are optimally solved on a Core i7, 2.60 GHz, 8 

GB RAM computer. Computational results for each problem combination are reported 

in Table 5.3. 
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Table 5.3 Computational Results for the CSP. 

c t r p L Runtime (sec.) # of Iterations Total # of Cuts 

     Min. Avg. Max. Min.  Avg. Max. Min. Avg. Max. 

1 1 1 1 40 0.703 0.920 1.359 0 0 0 0 0 0 

    80 4.250 8.385 13.125 0 0 1 0 23 23 

    120 36.984 97.317 311.328 0 0 1 0 29 30 

1 1 1 2 40 0.531 0.667 0.875 0 0 0 0 0 0 

    80 4.140 6.553 11.704 0 0 1 0 24 24 

    120 21.641 80.499 125.172 0 1 2 0 58 140 

1 1 2 1 40 0.563 0.733 0.937 0 0 0 0 0 0 

    80 3.500 7.150 11.531 0 0 0 0 0 0 

    120 28.359 61.384 129.906 0 0 1 0 34 34 

1 1 2 2 40 0.531 0.775 0.907 0 0 0 0 0 0 

    80 2.219 5.289 7.109 0 0 0 0 0 0 

    120 30.609 76.933 197.531 0 0 1 0 52 68 

1 2 1 1 40 0.625 0.764 1.062 0 0 0 0 0 0 

    80 3.500 9.047 22.577 0 1 3 0 36 75 

    120 32.875 147.949 219.609 0 1 2 0 73 224 

1 2 1 2 40 0.516 0.697 0.938 0 0 0 0 0 0 

    80 2.797 7.303 15.313 0 0 1 0 26 27 

    120 50.718 208.394 784.735 0 1 3 0 64 150 

1 2 2 1 40 0.547 0.738 1.141 0 0 1 0 18 18 

    80 5.328 8.045 14.391 0 0 1 0 23 23 

    120 22.344 81.531 306.610 0 0 2 0 49 78 

1 2 2 2 40 0.468 0.717 0.891 0 0 0 0 0 0 

    80 3.453 7.955 12.781 0 0 1 0 38 56 

    120 30.672 92.002 263.266 0 0 2 0 75 105 

2 1 1 1 40 0.609 0.864 1.110 0 0 0 0 0 0 

    80 1.968 7.811 19.656 0 0 0 0 0 0 

    120 41.875 207.610 1053.160 0 1 2 0 55 87 

2 1 1 2 40 0.672 0.858 1.344 0 0 0 0 0 0 

    80 3.890 7.605 13.985 0 0 0 0 0 0 

    120 31.969 74.478 134.312 0 1 2 0 63 120 

2 1 2 1 40 0.469 0.671 0.906 0 0 0 0 0 0 

    80 3.359 5.798 10.953 0 0 0 0 0 0 

    120 26.891 54.044 83.438 0 0 1 0 34 34 

2 1 2 2 40 0.687 0.938 1.188 0 0 0 0 0 0 

    80 4.719 8.289 13.000 0 0 1 0 27 27 

    120 31.953 80.352 242.953 0 0 0 0 0 0 

2 2 1 1 40 0.625 0.967 1.375 0 0 0 0 0 0 

    80 3.344 9.027 16.828 0 0 1 0 26 26 

    120 34.688 196.736 568.015 0 1 3 0 67 180 

2 2 1 2 40 0.703 0.985 1.579 0 0 0 0 0 0 

    80 5.453 11.198 21.359 0 0 1 0 32 52 

    120 36.454 156.816 364.813 0 1 2 0 100 165 

2 2 2 1 40 0.515 0.786 1.672 0 0 1 0 18 18 

    80 3.375 6.469 11.422 0 0 1 0 68 108 

    120 31.016 69.071 140.641 0 0 1 0 34 35 

2 2 2 2 40 0.500 0.594 0.671 0 0 0 0 0 0 

    80 4.407 6.804 9.906 0 0 1 0 30 30 

    120 21.703 91.436 404.375 0 0 1 0 54 72 
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 The table represents the minimum, average and maximum solution times over 10 

instances from each setting, along with the number of iterations and the total number 

of added cuts. Driver set sizes for each crew class are generated to be nonbinding. As 

shown in the table, the proposed solution procedure is quite efficient in terms of 

solution time for instances with up to 120 tasks. For almost all instances with 40 tasks, 

the optimal solutions are obtained with no repetition of solutions, in less than one 

second. For instances with 80 tasks, the optimal solutions are obtained with at most one 

iteration, except for setting (1,2,1,1), and the maximum solution time is around 23 

seconds. For instances with 120 tasks, the solutions are obtained with at most two 

iterations, except for settings (1,2,1,2) and (2,2,1,1), and the maximum solution time is 

18 minutes.  

 As shown in the table, the average solution times for settings (1,2,1,1), (1,2,1,2), 

(2,2,1,1), (2,2,1,2) and (2,1,1,1) are higher than others. In other words, if the number 

of d-trip tasks is increased (t = 2) the solution time increases accordingly. Additionally, 

it can be said that the settings with ready times considering peak hours (r = 2) are 

relatively easier to solve than the settings without peak hours (r = 1). When the 

processing times of the d-trips are concerned, there is no significant change in solution 

performance due to changes in the distribution. 
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6 THE VEHICLE AND CREW SCHEDULING PROBLEM 

 The Vehicle and Crew Scheduling Problem (VCSP) is considered as a 

combination of the VSP and CSP in this chapter. An integrated approach is presented 

first, followed by a sequential one. 

6.1 An Integrated Approach for the VCSP 

 In this section, an integrated approach is proposed for the VCSP, where the 

vehicles and the drivers are assigned to trips simultaneously. In the integrated VCSP, 

the aim is to cover all d-trips with an eligible driver and an eligible vehicle, where the 

ready times and deadlines of the d-trips are fixed in advance, and the objective is to 

minimize the total fixed cost of drivers, the total fixed cost of vehicles and the total 

variable costs resulting from deadheads and d-trips. Each d-trip must be assigned to an 

eligible vehicle and an eligible driver without any overlaps. Additionally, the d-trips 

belonging to the same trip must be assigned to the same vehicle. Each deadhead arising 

from the vehicle-d-trip assignments must be covered by an eligible driver. The 

processing times of the tasks (deadheads and d-trips) assigned to the crew are included 

in their working time, as well as the sequence-dependent setup times between tasks. 

Problem notation and the assumptions are stated in Section 6.1.1. 

6.1.1 Assumptions and Notation  

 The notation for the problem formulation is given in Table 6.1. To provide a 

better understanding of travel times, an illustrative example is given in Figure 6.1. The 

driving (deadhead) times between d-trips are indicated with parameter aij, while the 

driver movement (without driving a vehicle) times between d-trips are specified with 

parameter bij. Additionally, as shown in the figure, parameter γij is used to indicate the 

driver movement time between a deadhead and d-trip pair, parameter βij is used to 

specify the driver movement time between a deadhead and deadhead pair, while 

parameter αij is used to indicate the driver movement time between a d-trip and 

deadhead pair. 
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Table 6.1 VCSP Notation. 

Sets 

K Set of trips 
D Set of crew/vehicle/d-trip classes 
N Set of d-trips 
Q Set of crew members (drivers) 
V Set of vehicles (buses) 
Nd Set of d-trips belonging to class d ∈ D; Nd ⊂ N 
Qd Set of drivers belonging to class d ∈ D; Qd ⊂ Q 
Vd Set of vehicles belonging to class d ∈ D; Vd ⊂ V 
DTl Set of d-trips belonging to trip l ∈ K; DTl ⊂ N 
IVi Set of incompatible d-trips for d-trip i ∈ N; IVi ⊂  𝑁 
VCi Set of eligible vehicles that can perform d-trip i ∈ N; VCi ⊂  𝑉 
QCi Set of eligible crew members that can perform d-trip i ∈ N; QCi ⊂  𝑄 
Ad Set of d-trips that can be performed by a crew member belonging to class d ∈ D; Nd ⊆ Ad        
AVd Set of d-trips that can be performed by a vehicle belonging to class d ∈ D; Nd ⊆ AVd        
IDd Set of ineligible crew classes for vehicle class (type) d ∈ D; IDd ⊆ 𝐷        

Parameters 

ri Ready time of d-trip i ∈ N 
ei Deadline of d-trip i ∈ N 
W Working time limit 
S Spread time limit 
ck Fixed cost of driver k ∈ Q 
tv Fixed cost of vehicle v ∈ V 
ov Trip based fuel consumption cost of vehicle v, per time unit 
sv Deadhead based fuel consumption cost of vehicle v, per time unit 
aij Driving time between end location of d-trip i and  start location of d-trip j, i, j ∈ N 
bij Driver movement time between end location of d-trip i and start location of d-trip j, i, j ∈ N 
γij Driver movement time between start location of d-trip i and start location of d-trip j, i, j ∈ N 
βij Driver movement time between start location of d-trip i and end location of d-trip j, i, j ∈ N 
αij Driver movement time between end location of d-trip i and end location of d-trip j, i, j ∈ N 
dcij 1 if the driving time between end location of d-trip i and start location of d-trip j (i, j ∈ N) is 

zero,  0 otherwise 

Decision Variables 

𝑥𝑖
𝑘𝑣 1 if eligible d-trip i is assigned to driver k and vehicle v, 0 otherwise 

𝑦𝑘  1 if driver k is used, 0 otherwise 

𝑧𝑣  1 if vehicle v is used, 0 otherwise 

𝑤𝑖
𝑣  1 if eligible d-trip i is first d-trip of vehicle v, 0 otherwise 

𝑝𝑖
𝑣 1 if eligible d-trip i is last d-trip of vehicle v, 0 otherwise 

ℎ𝑖𝑗
𝑘𝑣  

1 if eligible d-trip j is covered consecutively after d-trip i by vehicle v and it is assigned to 
driver k, 0 otherwise 

𝑔𝑑𝑖
𝑘 1 if eligible d-trip i is first task of driver k, 0 otherwise 

𝑔𝑡𝑖
𝑘 1 if eligible d-trip i is last task of driver k, 0 otherwise 

𝑔𝑖𝑗
𝑘  1 if eligible deadhead i-j is first task of driver k, 0 otherwise 

𝑔𝑐𝑖𝑗
𝑘  1 if eligible deadhead i-j is last task of driver k, 0 otherwise 

𝑠𝑏𝑖𝑗𝑚
𝑘  1 if eligible d-trip m is covered consecutively after deadhead i-j by driver k, 0 otherwise 

𝑠𝑐𝑚𝑖𝑗
𝑘  1 if eligible deadhead i-j is covered consecutively after d-trip m by driver k, 0 otherwise 

𝑢𝑖𝑗𝑚𝑛
𝑘  1 if eligible deadhead m-n is covered consecutively after deadhead i-j by driver k, 0 otherwise 

𝑢𝑐𝑖𝑗
𝑘  1 if eligible d-trip j is covered consecutively after d-trip i by driver k, 0 otherwise 

𝑎𝑟𝑖𝑗
𝑣  

1 if eligible d-trip j is covered consecutively after d-trip i by vehicle v with zero deadhead 
time, 0 otherwise 
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Figure 6.1 Travel Times between Tasks in the VCSP. 

The complete assumptions of the VCSP are listed below. 

 The problem is solved daily. The timetabling and crew rostering problems are 

assumed to be solved in advance; hence, the ready times and deadlines of the 

trips are fixed and known.  

 Relief points are known in advance as well as the trips that allow driver change. 

Therefore, d-trips are given by specified time intervals along with start and end 

termini. The deadlines of d-trips are defined as their ready times plus their 

constant processing times. 

 A deadhead between d-trips i and j start immediately after d-trip i. Therefore, 

the ready time of deadhead i-j is taken as the deadline of d-trip i. 

 Preemption is not allowed. A d-trip must be performed wholly by a single crew 

member and a single vehicle, and d-trips belonging to the same trip must be 

performed by the same vehicle. 

 Delay and cancellation is not possible, all d-trips must be covered. 

 Only full time drivers are included.  

 Each driver (and vehicle) has a daily fixed cost. When a driver is assigned to a 

task (a vehicle assigned to a d-trip), the fixed cost is incurred and the privilege 

to use the driver (vehicle) for a day is obtained. Fixed costs are different for 

each crew (vehicle) class. 

 Spread and working time limits are constant, known and the same for all drivers. 

 Sequence-dependent setup (travel) times between tasks are deterministic. There 

is no setup time before first task and after the last task in a crew schedule. 
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Similarly, there is no setup time before first d-trip and after the last d-trip in a 

vehicle schedule.  

 Each vehicle has d-trip and deadhead fuel consumption costs. Both deadhead 

and d-trip fuel consumption costs are defined as different for each vehicle class. 

 There are sufficient numbers of drivers and vehicles in each class. 

 There are several d-trip classes that require certain vehicle types and several 

crew classes based on the competencies required to use certain vehicle types. 

There is a predefined subset of eligible d-trips for each vehicle class. These sets 

are inclusive for any two vehicle classes d and f ∈ D, either AVd ⊆ AVf or AVf 

⊆ AVd. Similarly, there is a predefined subset of eligible d-trips for each crew 

class. These sets are also inclusive, for any two crew classes d and f ∈ D, either 

Ad ⊆ Af or Af ⊆ Ad.  

 Each crew can cover tasks performed by certain subset of vehicle classes 

(types). A task which is assigned to vehicle belonging to class d ∈ D cannot be 

performed by a driver belonging to class f ∈ IDd.  

 The d-trips are numbered in increasing order based on their ready times, meaning 

that ri ≤ rj for all d-trips i < j. Sets of drivers belonging to class d (Qd) are disjoint 

subsets of driver set Q and sets of vehicles belonging to class d (Vd) are disjoint subsets 

of vehicle set V. It is assumed that a sufficient number of drivers and vehicles exist in 

each crew/vehicle class. Hence, the upper bounds on the number of drivers and vehicles 

belonging to class d, are determined as nonbinding values by using a simple greedy 

heuristic approach, where the d-trips are grouped based on their d-trip classes and the 

required number of drivers and vehicles to cover all drips in each d-trip class is 

determined in a greedy manner with extra allowances. 

 Sets of d-trips belonging to class d (Nd) are disjoint subsets of the d-trip set N. 

However, the set of d-trips that can be performed by a vehicle belonging to class d 

(AVd) is an inclusive set, meaning that a vehicle can perform d-trips of another class 

beside its own class. For instance, a solo bus cannot be assigned to d-trips requiring 

articulated buses. However, an articulated bus can be assigned to both d-trip classes. 

Also, the set of d-trips that can be performed by a crew belonging to class d (Ad) is an 

inclusive set, where a crew member can perform d-trips of another class beside its own 

class. Therefore, decision variables are defined only for eligible crew-vehicle-d-trip 

assignments.  

 As mentioned before, each driver is eligible to drive certain subset of vehicle 

types, correspondingly eligible to perform tasks requiring these certain vehicle types. 
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However, a task (deadhead or d-trip) can be assigned to a driver only if this driver is 

eligible to drive the vehicle that is assigned to this task. For instance, if a solo bus is 

assigned to a d-trip requiring midi bus, a driver only licensed to drive midi buses will 

not be capable for this d-trip anymore, even if it belongs to set of drivers that can 

perform d-trips requiring midi buses, since he/she is not eligible to drive solo buses. 

 An incompatibility set for each d-trip is defined in order to handle the overlaps. 

The set of d-trips that cannot be performed by the same vehicle are determined through 

these sets. There may be two reasons for any d-trip pair (i,j) not to be assigned to the 

same vehicle. The first reason is that the time windows of the two d-trips overlap (ri≤ 

rj < ei). The second reason could be that a vehicle cannot perform the two d-trips 

consecutively due to the driving time in between (ri≤ rj <ei + aij). According to these 

observations, the set of incompatible d-trips for d-trip i, namely IVi, is defined as 

follows:  

 , ; .i j i ijIV j N i j r e a       

6.1.2 Formulation 

 Based on the above assumptions and definitions, the binary programming model 

of the VCSP is given below: 
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 The objective function minimizes the total fixed cost of drivers, the total fixed 

cost of vehicles and total variable costs arising from deadheads and d-trips. Constraint 

set (6.1) ensures that a d-trip can be assigned to an eligible vehicle only if it is used. 

Constraint set (6.2) guarantees that each d-trip must be covered by an eligible vehicle 

and an eligible driver. Constraint set (6.3) says that incompatible d-trips cannot be 

(6.49) 
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assigned to the same vehicle. Constraint set (6.4) ensures that the d-trips belonging to 

the same trip must be assigned to the same vehicle. Constraint sets (6.5) and (6.6) 

guarantee that all d-trips must be scheduled to an eligible vehicle, that is, there must be 

an arrival to and a departure from each d-trip. These constraints also ensure that an 

eligible driver can be assigned to a deadhead only if the deadhead duration is greater 

than zero, otherwise the deadhead is only assigned to an eligible vehicle. 

 Constraint sets (6.7), (6.8), (6.9) and (6.10) ensure that there can be a deadhead 

between any two d-trips only if both of these d-trips are assigned to same vehicle. 

Particularly, constraint sets (6.7) and (6.8) consider the deadheads which have 

durations greater than zero, while constraint sets (6.9) and (6.10) consider the 

deadheads that have zero duration. Constraint set (6.11) guarantees that two types of 

deadhead variables cannot be equal to 1 for any d-trip pair at the same time. Constraint 

sets (6.12) and (6.13) guarantee that there must be a first and a last d-trip for each used 

vehicle. Constraint sets (6.14) and (6.15) ensure that a d-trip can be a first/last d-trip of 

an eligible vehicle only if it is assigned to that vehicle. 

 Constraint sets (6.16) and (6.17) guarantee that all d-trips must be scheduled to 

an eligible driver, that is, there must be an arrival to and a departure from each d-trip.  

Similarly, constraint sets (6.18) and (6.19) guarantee that all deadheads must be 

scheduled to an eligible driver, that is, there must be an arrival to and a departure from 

each deadhead. The constraint sets (6.16), (6.17), (6.18) and (6.19) consider the all 

consecutive task pair alternatives; d-trip-d-trip, d-trip-deadhead, deadhead-d-trip and 

deadhead-deadhead task pairs. Constraint sets (6.20) and (6.21) ensure that there must 

be a first and a last task (deadhead or d-trip) for each used driver. Constraint set (6.22) 

ensures that a d-trip can be assigned to an eligible driver only if it is used. Similarly, 

constraint set (6.23) guarantees that a deadhead can be assigned to an eligible driver 

only if it is used. Constraint sets (6.24) and (6.25) ensure that a d-trip can be a first/last 

d-trip of an eligible driver only if it is assigned to that driver. Similarly, constraint sets 

(6.26) and (6.27) guarantee that a deadhead can be a first/last deadhead of an eligible 

driver only if it is assigned to that driver.  

 Constraint sets (6.28) and (6.29) ensure that a d-trip can be consecutively covered 

after a deadhead only if both of them are assigned to same driver. Similarly, constraint 

sets (6.30) and (6.31) guarantee that a deadhead can be consecutively covered after a 

d-trip only if both of them are assigned to same driver. Constraint sets (6.32) and (6.33) 
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ensure that there can be a driver movement between any two deadheads only if both of 

these deadheads are assigned to same driver. In same way, constraint sets (6.34) and 

(6.35) guarantee that there can be a driver movement between any two d-trips only if 

both of these d-trips are assigned to same driver, where the driver movement refers to 

travel activity without driving a vehicle. Constraint set (6.36) ensures that a driver can 

cover any two d-trips consecutively, either by driving vehicle or without driving a 

vehicle. 

 Constraint set (6.37) ensures that there cannot be a deadhead between any two d-

trips if the time windows of these d-trips overlap or the driver cannot perform these d-

trips consecutively due to the driving time in between. Similarly, constraint set (6.38) 

guarantees that there cannot be a driver movement between any two d-trips if the time 

windows of these d-trips overlap or the driver cannot perform these d-trips 

consecutively due to the driver movement time in between. Constraint set (6.39) 

ensures that a d-trip can be consecutively covered after a deadhead only if the time 

windows of these tasks do not overlap regarding the driver movement time in between. 

Similarly, constraint set (6.40) guarantees that a deadhead can be consecutively 

covered after a deadhead only if the time windows of these tasks do not overlap 

regarding the driver movement time in between. In same way, constraint set (6.41) 

ensures that a deadhead can be consecutively covered after a d-trip only if the time 

windows of these tasks do not overlap regarding the driver movement time in between. 

 Constraint sets (6.42), (6.43), (6.44) and (6.45) ensure that the difference between 

the deadline of second task and the ready time of first task do not exceed the total 

spread time limit for all task pairs assigned to a driver. Particularly, constraint set (6.42) 

considers the all d-trip-d-trip pairs, constraint set (6.43) considers the all deadhead-d-

trip pairs, constraint set (6.44) considers the all deadhead-deadhead pairs, and 

constraint set (6.45) considers the all d-trip-deadhead pairs. Constraint set (6.46) 

ensures that total working time of a driver cannot exceed the total working time limit. 

The d-trip durations, the deadhead durations and the driver movement durations 

between tasks are included in working time. Constraint set (6.47) guarantees that a d-

trip can be assigned to a driver only if this driver is eligible to drive the vehicle that is 

assigned to this d-trip. Similarly, constraint set (6.48) ensures that a deadhead can be 

assigned to a driver only if this driver is eligible to drive the vehicle that is assigned to 

this deadhead.  
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 All decision variables are defined as binary by (6.49) considering only eligible 

vehicle-driver-d-trip assignments. Particularly, the eligible vehicle set for a deadhead 

between d-trip i and d-trip j is defined as the intersection set of the eligible vehicle set 

for d-trip i and the eligible vehicle set for d-trip j, since the vehicle assigned to this 

deadhead should be eligible to perform both of these d-trips. Similarly, the eligible 

driver sets for driver movements and deadheads between tasks are defined in same way, 

since the driver assigned to a deadhead/driver movement should be eligible to drive 

both of the vehicles assigned to these tasks. 

 The proposed binary programming model is optimally solved for small-sized 

problem instances and the results are presented in Section 6.3. However, larger 

instances cannot be solved within reasonable time limits due to exponentially 

increasing solution times. Therefore, a sequential approach is proposed in the following 

section. 

6.2 A Sequential Approach for the VCSP  

 In the sequential approach proposed in this thesis, the vehicles are firstly assigned 

to trips and the crew members are assigned to tasks, i.e. the generated vehicle blocks. 

Namely, the CSP presented in Chapter 5 is solved using the output of the VSP in 

Chapter 4. The solution procedure including the iterative valid inequality generation 

scheme is used for the CSP in order to cover tasks resulting from the computational 

results of the VSP in Section 4.3. The detailed description, assumptions, formulation 

and computational results for both models were presented in Chapters 4 and 5. 

6.2.1 Computational Study 

 In this section, a computational experiment is described to evaluate the 

performance of the sequential approach for the VCSP. The vehicle blocks generated by 

the computational study for VSP in Section 4.3 are used as input for the crew 

scheduling part of the problem. In order to schedule the drivers, tasks are defined based 

on the vehicle blocks. Based on the obtained vehicle schedules, the trips and deadheads 

are defined, and the initial trip types are updated according to vehicle assignments. For 

instance, if a solo bus has been assigned to a trip originally requiring a midi bus, a 

driver only licensed to drive midi buses will not be eligible for this trip anymore, and 

this trip now requires a driver licensed to drive solo buses for the solution of the CSP. 
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 As mentioned before, a task refers to deadhead or d-trip where each task must be 

performed by a single driver. In VSP, the trips must be performed by a single vehicle. 

However, in CSP, a trip can be divided into d-trips where each d-trip must be performed 

by a single driver. Hence, d-trips are defined from the solutions of the VSP by dividing 

50% of the trips which are longer than equal to 8 time units. The trips are divided into 

2 d-trips at a point that follows a discrete uniform distribution between 40% and 60% 

of the trip duration. Hence, the durations of d-trips are within the range [3, 13] similar 

to Section 5.3.  

 It is assumed that a deadhead between d-trips i and j start immediately after i. 

Therefore, the ready time of deadhead i-j is taken as the deadline of i. Additionally, the 

durations of deadheads are within the range [1, 5] similar to Section 5.3, as the 

deadheads having zero duration are not included. The setup time between any two tasks 

is determined by the shortest path between these tasks. Furthermore, the setup time 

between consecutive tasks of a vehicle schedule is assumed to be zero, as tasks 

performed by the same vehicle can also be performed by the same driver. Based on 

these assumptions, the setup times are generated uniformly in the range [0,5]. The time 

limits and costs are taken as in Chapter 5. 

 Regarding the above assumptions, the solutions of the test problems in Section 

4.3 are converted to appropriate input data for the CSP. The percentages of deadheads, 

the percentages of tasks for each class, and the percentages of tasks having ready times 

within peak hours are shown in Table 6.2. As shown in the table, approximately 25% 

of the tasks are deadheads for all settings. 

Table 6.2 Crew Scheduling Problem Data Analysis. 

VSP 

Settings 

Deadhead 

Tasks  

 Class 1 

Tasks 

Class 2 

Tasks 

 Class 3 

Tasks 

Peak Hour          

[30-50]  

Peak Hour 

[120-160]  

c r p 
Avg. 

(%) 

Std. 

Dev. 

Avg. 

(%) 

Std. 

Dev. 

Avg. 

(%) 

Std. 

Dev. 

Avg. 

(%) 

Std. 

Dev. 

Avg. 

(%) 

Std. 

Dev. 

Avg. 

(%) 

Std. 

Dev. 

1 1 1 27 0.03 19 0.05 50 0.08 31 0.06 10 0.06 22 0.06 

1 1 2 26 0.03 22 0.03 48 0.04 30 0.03 12 0.06 22 0.05 

1 2 1 25 0.05 19 0.06 50 0.07 31 0.04 25 0.03 25 0.03 

1 2 2 24 0.04 20 0.07 50 0.06 31 0.05 24 0.03 24 0.03 

2 1 1 27 0.03 15 0.06 40 0.07 45 0.04 12 0.06 21 0.06 

2 1 2 26 0.03 16 0.04 39 0.05 45 0.06 11 0.05 21 0.06 

2 2 1 25 0.05 16 0.06 40 0.07 44 0.04 24 0.04 24 0.02 

2 2 2 24 0.04 17 0.05 38 0.06 45 0.05 23 0.02 25 0.03 
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 As mentioned in Section 4.3, in the first setting (c=1), 25% of the trips belong to 

class 1 (midi bus), 50% of the trips belong to class 2 (solo bus) and the remaining 25% 

belong to class 3 (articulated bus). After solving the VSP, approximately 20% of the 

tasks belong to class 1 (midi bus), 50% of the tasks belong to class 2 (solo bus) and the 

remaining 30% to belong class 3 (articulated bus). In the second setting (c=2), 20% of 

the trips belong to class 1, 40% of the trips belong to class 2 and the remaining 40% 

belong to class 3. After solving the VSP, approximately 15% of the tasks belong to 

class 1, 40% of the tasks belong to class 2 and the remaining 45% to belong class 3. 

For both settings (c=1, c=2), the percentage distribution of the tasks generally reflect 

the percentages of trips in terms of class assignments, except that the tasks belonging 

to class 1 are decreased by 5% and the tasks belonging to class 3 are increased by 5%. 

As mentioned in Section 4.3, in the first setting (r=1), the ready times follow a discrete 

uniform distribution in the range [0, 200]. After solving the VSP, approximately 10% 

of the tasks are in the range [30, 50] while 20% of the tasks are in the range [120, 160]. 

The percentages of tasks fit the discrete uniform distribution for the range [0, 200]. In 

the second setting (r=2), a peak time is considered where 25% of ready times follow a 

discrete uniform distribution in the range [30, 50], 25% come from the range [120,160], 

and the remaining 50% from ranges [0-29], [51,119] and [161,200]. After solving the 

VSP, approximately 25% of the tasks are in the range [30, 50] while 25% of the tasks 

are in the range [120, 160], which are similar to the percentages in the VSP. For both 

settings (r=1, r=2), it can be concluded that ready times of tasks reflects the ready time 

settings used for VSP.  

6.2.2 Computational Results 

 As in Section 4.3, random test vehicle scheduling problems were generated for 

trip sets with K = 20, 40, 80 and 120. For each setting and trip set combination, 10 

random test problems were generated, summing up to 320 problem instances in total. 

In this section, the CSP of Chapter 5 is solved based on the results of these problem 

instances. Computational results for these problem combinations are reported in Table 

6.3. The table represents the minimum, average and maximum solution times over 10 

instances from each setting, along with the number of tasks, the number of iterations 

and the total number of added cuts. The proposed solution procedure is quite effective 

in terms of solution time for instances with up to 84 tasks (K=20 and 40). For instances 

with up to 44 tasks (K=20), the optimal solutions are obtained with no repetition of 

solutions, in less than 1.5 seconds. For instances having tasks between 66 and 84 
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(K=40), the optimal solutions are obtained with at most 2 iterations, except for setting 

(1,1,2), and the maximum solution time is around 32 seconds. For instances having 

tasks between 128 and 163 (K=80), the solutions are obtained with at most 6 iterations 

except settings (1,1,2) and (2,2,1), and the maximum solution time is 88 minutes. It can 

be concluded that the optimal solutions are obtained with at most 9 iterations for all 

settings. 

 As shown in the table, the solution times increase exponentially due to the 

increasing number of tasks. Additionally, it can be said that the settings with ready 

times considering peak hours (r = 2) are relatively easier to solve than settings without 

peak hours (r = 1), as the solution times of the settings considering peak hours are lower 

than the others. This outcome is also consistent with the outcome of the computational 

study for the CSP in Section 5.3. Furthermore, as shown in the table, the solution times 

of the settings (c=2) are slightly higher than the settings (c=1).  

Table 6.3 Computational Results (sequential) for K = 20, 40 and 80. 

c r p K # of Tasks (L) Runtime (Sec.) # Iterations # Cuts 

        Min. Avg. Max. Min. Avg. Max. Avg. Max. Avg. Max. 

1 1 1 20 33 37 42 0.44 0.76 1.36 0 0 0 0 

      40 66 72 79 2.36 5.66 12.08 0 1 17 17 

      80 132 141 152 72.59 606.02 2245.41 1 6 149 435 

1 1 2 20 37 40 44 0.42 0.63 0.95 0 0 0 0 

      40 75 79 84 2.11 9.84 32.50 1 5 80 105 

      80 150 155 163 74.88 937.47 2079.48 2 8 140 480 

1 2 1 20 35 37 41 0.42 0.56 0.83 0 0 0 0 

      40 66 73 80 2.89 5.68 15.44 0 0 0 0 

      80 132 140 148 62.69 216.62 694.78 0 2 52 75 

1 2 2 20 38 40 43 0.49 0.72 1.20 0 0 0 0 

      40 73 77 81 3.33 9.40 15.88 0 0 0 0 

      80 144 146 152 241.97 543.62 1187.48 1 1 44 90 

2 1 1 20 33 37 41 0.39 0.53 0.72 0 0 0 0 

      40 69 74 81 2.25 5.16 11.09 0 1 18 19 

      80 139 143 153 147.19 998.80 5302.08 2 9 185 783 

2 1 2 20 36 39 42 0.44 0.61 1.03 0 0 0 0 

      40 75 80 83 3.16 9.88 26.91 0 1 40 40 

      80 147 153 161 136.56 762.01 2201.02 1 3 91 130 

2 2 1 20 35 38 40 0.36 0.60 0.75 0 0 0 0 

      40 66 73 79 2.33 5.88 12.88 0 2 38 38 

      80 128 139 148 68.03 273.48 642.38 1 2 49 81 

2 2 2 20 38 40 43 0.47 0.65 1.05 0 0 0 0 

      40 72 75 82 3.63 5.86 9.47 0 1 36 36 

      80 135 148 156 178.42 744.37 2807.95 1 4 95 300 
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 As mentioned in Section 4.3, two sets of distributions are used for the processing 

times of trips; (p=1) discrete uniform distribution in the range [4,13] and (p=2) 

triangular distribution in the range [4,9,13]. It can be concluded that the settings which 

are based on trips following a triangular distribution (p=2) are relatively harder to solve 

than the other settings which are based on trips following a discrete uniform 

distribution (p=1), since the solution times of the settings following a triangular 

distribution are higher than the others. This result is expected since the number of trips 

that will be divided into d-trips, and correspondingly the number of tasks are increased 

when the processing times of trips follow a triangular distribution. 

 Test problems for K = 120 are solved under a 3-hour run time limit on a Core i7, 

2.60 GHz, 8 GB RAM computer. Computational results are reported in Table 6.4. The 

table represents the minimum, average and maximum solution times over 10 instances 

from each setting, along with the number of tasks, the number of iterations and the total 

number of added cuts. Number of optimally solved instances within the time limit (out 

of 10) are also reported. As mentioned before, driver set sizes for each crew class are 

generated to be nonbinding for all instances. 

Table 6.4 Computational Results (sequential) for K = 120. 

c r p  # of Tasks (L) Runtime (Sec.) # Iterations # Cuts 

      Opt. Min. Avg. Max. Min. Avg. Max. Avg. Max. Avg. Max. 

1 1 1 6 201 208 216 1902.20 7236.64 10800.00 1 2 128 272 

1 1 2 3 210 221 227 7836.41 10214.41 10800.00 1 3 213 408 

1 2 1 8 183 198 211 1940.89 5756.61 10800.00 1 2 78 152 

1 2 2 4 202 214 220 2881.86 8718.68 10800.00 1 2 133 216 

2 1 1 9 201 208 215 1236.89 6457.97 10800.00 2 6 257 576 

2 1 2 3 211 222 231 3772.26 9752.29 10800.00 1 4 254 416 

2 2 1 8 188 197 205 2742.19 7879.66 10800.00 1 3 148 252 

2 2 2 2 210 216 226 2818.73 9460.60 10800.00 0 1 88 152 

 As shown in Table 6.4, number of tasks changes in between 183 and 231, and 

some of the instances cannot be optimally solved within 3 hours in all settings. For only 

settings (1,2,1), (2,1,1) and (2,2,1), almost all instances are optimally solved within the 

time limit. When the processing times of trips are concerned, the same conclusion can 

be made for these instances; the settings which are based on trips following a triangular 

distribution (p=2) are relatively harder to solve than other settings, which are based on 

trips following a discrete uniform distribution (p=1). 
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6.3 Comparison 

 In this section, the sequential approach is compared with the integrated approach 

for the VCSP. Regarding the complexity of the problem, random test problems are 

generated only for trip sets with K = 12 and K = 15. The same setting described in 

Section 4.3 is used for vehicle scheduling. There are two settings for trip-class 

assignments. In the first setting (c=1), 25% of the trips belong to class 1 (midi bus), 

50% of the trips belong to class 2 (solo bus) and the remaining 25% belong to class 3 

(articulated bus). In the second setting (c=2), 20% of the trips belong to class 1, 40% 

of the trips belong to class 2 and the remaining 40% belong to class 3. 

 Two sets of ready times are generated. In the first set (r=1), the ready times follow 

a discrete uniform distribution in the range [0,200]. In the second set (r=2), a peak time 

is considered where 25% of ready times follow a discrete uniform distribution in the 

range [30, 50], 25% come from the range [120,160], and the remaining 50% from 

ranges [0-29], [51,119] and [161,200]. Two sets of distributions are used for the 

processing times of trips; (p=1) discrete uniform distribution in the range [4,13] and 

(p=2) triangular distribution in the range [4,9,13].  Fixed cost of vehicles in each 

class are determined as 60, 80 and 120 monetary units, respectively. Trip based fuel 

consumption cost of vehicles in each class are determined as 3.5, 5 and 7 monetary 

units per time unit, respectively. Deadhead based fuel consumption cost of vehicles in 

each class are determined as 4.5, 6.5 and 9 monetary units per time unit, respectively. 

 The d-trips are defined by dividing 50% of the trips which are longer than equal 

to 8 time units. The trips are divided into 2 d-trips at the point that follows a discrete 

uniform distribution between 40% and 60% of the trip duration. Hence, the durations 

of d-trips are within the range [3, 13]. The deadhead duration (driving time) between 

end location of d-trip i and start location of d-trip j is determined by the shortest path 

between them and they are uniform in the range [0,5]. The deadhead duration between 

d-trips of same trip is assumed to be zero. There are 3 crew classes due to vehicle types; 

midi bus, solo bus and articulated bus. A driver licensed to drive a midi bus can be 

assigned to tasks only with midi buses. However, a driver licensed to drive a solo bus 

can be assigned to two classes; with midi and solo buses. A driver licensed to drive an 

articulated bus is eligible to drive midi, solo and articulated buses. Time limits for 

drivers are set as S=100 and W=80. Fixed cost of drivers in each class are determined 

as 160, 180 and 200 monetary units, respectively.  
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 In the sequential approach, it is assumed that the setup (driver movement) time 

between any two tasks is determined by the shortest path between these tasks. In order 

to be able compare the results of integrated approach to the sequential one, this 

assumption is regarded in all setup times which are used in sequential approach. 

However, this assumption is not valid for other generated setup times which are not 

used in sequential approach. Consequently, setup times between d-trips i and j (bij, γij, 

βij, αij) are generated uniformly in the range [0,5]. For each setting and trip set, a random 

test problem is generated, summing up to 16 problem instances. The binary 

programming formulations of the sequential approach which are described in Sections 

4.2 and 5.2 are modeled in C++ programming language on Microsoft Visual Studio 

platform, and IBM ILOG Concert Technology is used for solving the models with IBM 

ILOG CPLEX 12.6. The binary programming formulation of integrated approach 

which is described in Section 6.1.2 is modeled on IBM ILOG CPLEX Optimization 

Studio platform and solved with IBM ILOG CPLEX 12.6. 

 All test problems having 12 trips are optimally solved with integrated approach, 

on a Core i7, 2.60 GHz, 8 GB RAM computer. The results of the sequential approach 

are obtained by optimally solving the VSP and CSP sequentially on the same computer. 

Bus and driver set sizes for each d-trip class are generated to be nonbinding. The 

integrated and sequential approach results for each problem instance having 12 trips 

are reported in Table 6.5, as well as the number of d-trips. The sequential approach 

results are compared with the optimal solutions (integrated approach) in terms of 

objective function values and run times. The percent gaps from the optimal solution 

are calculated as: 

( (sequentialapproach) (optimal))
% *100

(optimal)

Obj Obj
Gap

Obj


 , 

where Obj(sequential approach) is the result obtained by optimally solving the models 

of sequential approach, and Obj(optimal) is the optimal objective function value of the 

model of integrated approach. As shown in Table 6.5, the optimal solutions are 

obtained in less than 1 second for 6 of the 8 instances using the sequential approach, 

while they are obtained in more than 20 minutes with the integrated approach. Note 

that, the optimal results of the integrated approach are obtained in more than 3.5 hours 

for 3 instances even for these small problem instances. As shown in the table, 2 

instances cannot be optimally solved using the sequential approach, and the maximum 
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gap is 7.03%. However, the solution times of the sequential approach clearly 

outperform the solution times of the integrated one. Hence, it can be concluded that our 

sequential approach is quite efficient and effective in finding near optimal solutions 

within reasonable computation times.  

Table 6.5 Comparison of the models for K = 12. 

 c r   p 
 # d-trips 

(N) 

Sequential 

Runtime (sec.) 

Integrated 

Runtime (sec.) 

Gap 

% 

1 1 1 17 0.718 21640.390 0.00 

1 1 2 18 0.749 16264.160 0.00 

1 2 1 15 0.516 4768.000 7.03 

1 2 2 16 0.516 13186.380 0.98 

2 1 1 16 0.595 4598.060 0.00 

2 1 2 17 0.563 4814.090 0.00 

2 2 1 16 0.531 5233.030 0.00 

2 2 2 16 0.594 1725.270 0.00 

 For some of the additional generated instances having 12 trips, it has been 

observed that the optimal (integrated approach) solutions cannot be obtained within 10 

hours of computation time. Furthermore, for larger instances having more than 12 trips, 

it has been observed that the solution times increase exponentially. The results of the 

sequential and integrated approaches for the random test problems having 15 trips are 

reported in Table 6.6, as well as the number of dtrips. These test problems are solved 

on same computer. However, they are solved with integrated approach under a 1-hour 

run time limit due to exponentially increasing solution times. The sequential approach 

results are compared with the feasible solutions of integrated approach in terms of 

objective function values and run times. The percent gaps from the feasible solution 

are calculated as: 

( (sequentialapproach) (integrated approach))
% *100

(integrated approach)

Obj Obj
Gap

Obj


 , 

where Obj(sequential approach) is the result obtained by optimally solving the models 

of sequential approach, and Obj(integrated approach) is the feasible objective function 

value of the model of integrated approach. Furthermore, the percent gaps from the 

optimal solutions are reported for the results of the integrated approach, which are 

obtained when the runtime limit is reached.  
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 As shown in Table 6.6, feasible solutions cannot be obtained for two instances 

and optimal solutions cannot be obtained for all instances using integrated approach 

under a 1 hour runtime limit. However, feasible solutions are obtained for all instances 

using the sequential approach in less than 1 second, and these solutions are clearly 

better than the results obtained using the integrated approach. 

Table 6.6 Comparison of the models for K = 15. 

 c r   p 
 # d-trips 

(N) 

Sequential 

Runtime (sec.) 

Integrated 

Runtime (sec.) 

Gap 

% 

Optimality 

Gap of 

Integrated 

Result % 

1 1 1 22 0.562 3600 -24.54 26.71 

1 1 2 22 0.671 3600 - - 

1 2 1 21 0.688 3600 -0.26 15.48 

1 2 2 23 0.782 3600 - - 

2 1 1 21 0.656 3600 -31.23 31.71 

2 1 2 22 0.547 3600 -18.86 29.76 

2 2 1 21 0.640 3600 -1.54 22.03 

2 2 2 22 0.657 3600 -49.42 44.77 

 Hence, it can be concluded that larger instances of the complete problem cannot 

be solved within reasonable time limits using the integrated approach, due to 

exponentially increasing solution times. The sequential approach is clearly superior 

when the low solution times and quality solutions are considered. 
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7 CONCLUSION  

 In this thesis, both vehicle and crew scheduling problems are studied, where the 

objective is to determine the optimal number of different types of vehicles and crew 

members with a minimum operating cost to cover a given set of trips and corresponding 

deadheads subject to the working and spread time limitations of drivers. We treat first, 

vehicle and crew scheduling problems individually.  

 A Tactical Fixed Job Scheduling Problem (TFJSP)-based binary programming 

formulation is proposed for the vehicle scheduling problem considering multiple 

vehicle types as eligibility constraints. In the proposed formulation, the objective 

includes the minimization of total fuel consumption cost arising from deadheads and 

trips, as well as the fixed cost of vehicles. The additional eligibility constraints and the 

existence of additional objective function that minimizes total variable costs diverge 

our problem from a typical TFJSP, further complicating the structure. When the related 

literature is considered, our approach for the vehicle scheduling problem in this thesis 

is different from the existing vehicle scheduling and tactical fixed job scheduling 

studies in the literature due to: (1) fixed job scheduling approach to the vehicle 

scheduling problem; (2) eligibility constraints (multiple vehicle types); and (3)  

minimization of both fixed and variable costs. The performance of the developed model 

is investigated through a set of detailed experimentations and the numerical results are 

reported. The results show that the proposed model is quite effective in terms of 

solution time for instances with up to 120 trips. For all instances with up to 80 trips, 

the optimal solutions are obtained in less than 30 seconds. Particularly, optimal 

solutions of the instances with up to 40 trips are obtained in less than 2 seconds while 

the maximum solution time is around 4 minutes for instances with 120 trips. 

 A TFJSP-based binary programming model is proposed for crew scheduling 

problem as well considering different crew types with different capabilities as 

eligibility constraints and regarding operational constraints as working and spread time 

limitations, in the existence of sequence-dependent setup times. In the formulation, 

only processing times of tasks are considered as working time. In order to handle 

sequence dependent setup times in working time, an iterative valid inequality 

generation scheme is developed, which cuts off task sequences that exceed the total 

working time when setup times are included. When the related literature is considered, 

our approach for crew scheduling problem in this thesis is different from the existing 
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crew scheduling and tactical fixed job scheduling studies in the related literature due 

to: (1) fixed job scheduling approach to the crew scheduling problem; (2) many realistic 

constraints such as working time, spread time and eligibility constraints; and (3) 

handling of the working time constraint in the existence of sequence-dependent setup 

times. The performance of the developed solution procedure is investigated through a 

detailed experimentation and the numerical results are reported. The results show that 

the proposed solution procedure is quite effective in terms of solution time for instances 

with up to 120 tasks. Particularly, the solution procedure returns optimal solutions for 

problem instances with up to 80 tasks within only seconds. It is worth noting that the 

optimal solutions are obtained with at most three iterations for all settings. 

 Furthermore, sequential and integrated approaches are proposed for the overall 

problem. As an integrated approach, a binary programming model is formulated and 

optimally solved for small-sized problem instances. However, larger instances cannot 

be solved within reasonable time limits due to exponentially increasing solution times. 

Therefore, a sequential approach is proposed. When the related literature is considered, 

the approaches for Vehicle and Crew Scheduling Problem (VCSP) in this thesis are 

different from the existing vehicle and crew scheduling studies in literature due to: (1) 

fixed job scheduling based sequential approach for VCSP; (2) binary programming 

model for integrated VCSP; (3) eligibility constraints for both vehicles and crew 

members; and (4) realistic constraints including working time and spread time for crew 

members. The performance of the sequential approach is investigated through a 

detailed experimentation, and results show that the sequential approach is quite 

efficient for instances with up to 120 trips. Additionally, the sequential approach is 

compared with the integrated one in terms of small sized instances and results indicate 

that sequential approach is quite effective in finding near optimal solutions within 

reasonable computation times.  

 As addressing for further studies, alternative operational constraints can be added 

into the formulations regarding more realistic representation of the problem. For 

example, the addition of part-time or split-shift drivers with corresponding costs may 

be a useful and practically meaningful extension of the problem. This extension can be 

handled by differentiating the fixed costs, as well as the working and spread times of 

different driver types. Alternatively, additional constraints on number and length of 

breaks can be included. 
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 The trip/task times are assumed to be deterministic in this study. If the variability 

in trip/task durations due to traffic congestion or demand are taken into account, the 

crew scheduling, as well as the vehicle scheduling becomes much more complex. A 

simulation optimization approach may be worth studying as a future research topic 

when stochasticity is introduced into the problem.    

 Within the scope of this thesis, detailed experimentations are carried out using 

randomly generated instances and the performances of the proposed approaches are 

evaluated. For future work, computational studies are planned using real data obtained 

from the public bus transportation authority. Besides, the experimentations are carried 

out for instances with only up to 120 trips. For larger instances up to 1000 trips, 

metaheuristic approaches can definitely turn out to be quite useful in practice. Thus, 

the development of such heuristics is one of the fruitful research direction to follow. 
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