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ABSTRACT 

AN ADAPTIVE LARGE NEIGHBORHOOD SEARCH ALGORITHM 

FOR THE HETEROGENEOUS PICK-UP AND DELIVERY VEHICLE 

ROUTING PROBLEM WITH TIME WINDOWS 

Özsakallı, Gökberk 

MSc in Industrial Engineering 

Supervisor: Assoc. Prof. Dr. Deniz TÜRSEL ELİİYİ  

June 2016, 69 pages 

In this thesis, a heterogeneous vehicle routing problem with time windows and 

simultaneous pick-up and delivery, which has wide application areas, is handled. 

Three different types of mathematical models are proposed to formulate the problem. 

The first one is based on Miller-Tucker-Zemlin (1960) constraints. The other two are 

based on flow decision variables. To the best of our knowledge, the problem has not 

been studied in the vehicle routing literature. A new set of benchmark instances is also 

generated to compare lower bounds of mathematical models. The flow variable-based 

mathematical models provide the best results based on the computational experiments. 

As the mathematical models can solve only small sized instances, a heuristic algorithm 

based on Adaptive Large Neighborhood Search is proposed to solve larger real world 

instances. When the proposed heuristic algorithm and the mathematical models are 

compared, it is observed that the algorithm finds the optimal solution in most of the 

test instances. On the average, the algorithm finds better solutions than the 

mathematical models. The algorithm is also compared with a simple insertion heuristic 

for large instances, and is found to obtain much better solutions than the simple 

insertion heuristic. The proposed algorithm is not only stable in terms of solution 

quality, but also robust in terms of computation time. The proposed heuristic algorithm 

can be used in everyday logistics operations to obtain very fast and high quality 

solutions. 

Keywords: Vehicle routing problem, heterogeneous vehicle fleet, pick-up and delivery, 

time windows, mixed-integer programming, heuristic algorithm. 
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ÖZET 

HETEROJEN FİLOLU DAĞITIM, TOPLAMA VE ZAMAN 

PENCERELİ ARAÇ ROTALAMA PROBLEMİ İÇİN ADAPTİF GENİŞ 

KOMŞULUK ARAMA ALGORİTMASI 

Gökberk Özsakallı 

Yüksek Lisans Tezi, Endüstri Mühendisliği Bölümü 

Tez Danışmanı: Doç. Dr. Deniz TÜRSEL ELİİYİ  

Haziran 2016, 69 sayfa 

Bu tezde heterojen araç filolu, eşzamanlı dağıtım ve toplamalı, ve müşterilerin 

mal kabul saatlerinde zaman pencereleri bulunan bir araç rotalama problemi ele 

alınmıştır. Ele alınan problem gerçek hayatta birçok uygulama alanına sahiptir. 

Problemi formüle etmek için üç farklı matematiksel model önerilmiştir. Bunlardan ilki 

Miller-Tucker-Zemlin (1960) kısıtları kullanılarak yazılmıştır. Diğer ikisi ise akış 

karar değişkenlerinden faydalanılarak yazılmıştır. Bilgimiz dahilinde, tezde ele alınan 

problem araç rotalama literatüründe henüz çalışılmamıştır. Tezde ayrıca matematiksel 

modelleri sağladıkları alt sınırlar üzerinden karşılaştırabilmek için yeni test 

problemleri oluşturulmuştur. Yapılan geniş çaplı sayısal deneyler, en iyi 

formülasyonun akış değişkenlerinin kullanıldığı formülasyon olduğunu göstermiştir. 

Matematiksel model ile ancak küçük test problemleri çözülebildiğinden, daha büyük 

boyutlu gerçek hayat problemlerini çözebilmek amacıyla Adaptif Geniş Komşuluk 

Arama bazlı bir sezgisel algoritma geliştirilmiştir. Geliştirilen algoritma matematiksel 

modeller sonucu bulunan çözümler ile karşılaştırıldığında algoritmanın birçok test 

probleminde optimum sonuç bulduğu ve ortalamada matematiksel model 

çözümlerinden daha iyi çözümler bulduğu görülmüştür. Büyük veriler üzerinde 

algoritmayı basit ekleme sezgiseli ile karşılaştırdığımızda ise algoritmanın ekleme 

sezgiselinden çok daha iyi sonuçlar verdiği, hem çözüm kalitesi açısından oldukça 

istikrarlı olduğu hem de çözüm süresinin problem boyutuyla çok fazla değişmediği 

görülmüştür. Önerilen algoritma sevkiyat planlaması yapan firmaların günlük planları 

için çok hızlı ve yüksek kaliteli sonuçlar üretmede kullanılabilir. 

Anahtar sözcükler: Araç rotalama problemi, heterojen araç filosu, dağıtım ve 

toplama, zaman penceresi, karma tamsayılı programlama, sezgisel algoritma.  
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1 INTRODUCTION 

 One of the main processes in companies is logistics management. It consists of 

supply of raw materials, transportation of products, stock control etc., among which 

the most costly process is the transportation of products. Considerable expenses are 

made for this purpose. Due to this fact, it is obvious that even small improvements in 

transportation can lead to remarkable overall gains. Therefore, operations research 

techniques are crucial for the management of logistics operations. 

1.1 Subject of the Thesis 

 The subject of the thesis is developing a problem framework and solution 

methodologies to a heterogeneous vehicle routing problem with time windows and 

simultaneous pickup and delivery. The problem handled in this thesis is one of the 

most comprehensive variants of vehicle routing.  

 Different variants of the vehicle routing problem were examined and some of 

the most similar researches were reviewed. Details of the problem such as parameters 

and constraints were identified. Three different mathematical models were proposed 

to learn which way of modelling is suitable to the particular problem on hand in terms 

of obtained lower bounds.  

 It is known that vehicle routing problem is NP-Hard. Our problem is also NP-

Hard, since it generalizes the classical vehicle routing problem. Therefore, to solve 

real-world instances which are larger than classical benchmark instances, a heuristic 

approach is also proposed in this thesis. To the best of our knowledge, the problem in 

this thesis has not been studied in the literature. So, to test proposed mathematical 

models and proposed heuristic algorithm, a new set of instances was generated. A 

computational analysis was made, which includes small instances to compare the 

lower bounds obtained from different formulations, and to compare the results of the 

proposed heuristic approach to the optimal or best solutions from the developed 

formulations. Computational analysis also includes larger instances to measure the 

solution quality of the heuristic, by comparing our heuristic to a simple insertion 

based heuristic, as there are no available benchmark instances for our problem in the 

literature. 
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  Most of the route planners confront with this problem almost every day. For 

this reason, a software company wanted us to develop a solution methodology to 

provide fast and good results for its customers. Therefore, this thesis is motivated 

from a concrete real life need. 

1.2 Aims and Problem Definition 

 The aim of this thesis is to study a problem that has not been studied 

extensively. The problem has broad application areas from transporting goods to 

transporting people. The wide application area is critical for us, to be able to provide 

benefits to practitioners in different sectors, as the study is motivated from a real-life 

problem. As the total logistics costs are estimated as twenty percent of total 

production costs in OECD countries (Sudalaimuthu and Raj, 2009), another important 

aim is to develop an algorithm to obtain good solutions to real world instances, in 

order to help practitioners in terms of planning time and total logistics costs.  

 The problem interests any company distributing its products from the depot to 

some customers. The decisions of which product should be assigned to which vehicle, 

and determining the routes of the vehicles is of concern. In the problem studied in this 

thesis, the company may have a heterogeneous fleet where the vehicles may differ 

from one to another in terms of capacities and costs. We handle the problem from the 

company’s point of view, considering customer requirements. For example, some 

customers may request specific time intervals to accept visits from the vehicles, or 

some customers may have not only delivery demands but also some pickup demands 

to be transported back to the depot. Therefore, in this study, three extensions of the 

basic vehicle routing problem are considered: heterogeneous vehicles, time windows 

and simultaneous pickup and delivery demands.  

 Therefore, the heterogeneous vehicle routing problem with time windows and 

simultaneous pick-up and delivery is considered in this thesis, where the objective is 

to minimize the total fixed cost of the used vehicles and the total travelling cost. To 

the best of our knowledge, this complex problem has not been studied yet in the 

vehicle routing literature. Three different types of mathematical models is proposed 

to formulate the problem. The first one is based on Miller-Tucker-Zemlin (1960) 

constraints. The other two are based on flow decision variables. A new set of 

benchmark instances is generated to compare the lower bounds obtained by the 



 

 

3 

 

mathematical models. The flow variables-based mathematical models give the best 

results based on computational experiments. As the mathematical models can solve 

only small sized problem instances to optimality, a heuristic algorithm is also 

proposed to solve larger real world instances. When the proposed heuristic and the 

models are compared, the algorithm finds optimal solution in most of the instances, 

and on the average the algorithm finds better solutions than the mathematical models. 

For larger instances, we compare the algorithm with a simple insertion heuristic to 

find that it finds much better solutions than the simple heuristic. The results of the 

experiments show that the proposed algorithm is not only stable in terms of solution 

quality but also robust in terms of computational time. As a result, the proposed 

heuristic algorithm can be securely used in everyday logistics operations to obtain 

fast and quality results. The proposed algorithm will be embedded in a software 

package, and will be provided as a logistics planning tool to the customers of the 

software company.  

1.3 Context of the Thesis 

 The thesis content is based on the routing plan of vehicles in companies, which 

distribute their products to delivery locations. In the first part, we define the problem 

framework, which contains parameters and constraints. As the problem is motivated 

from a real-life need, the vehicle fleet is assumed to be heterogeneous, as most 

distribution companies have different types of vehicles. Time windows of the 

customers are respected while minimizing the total transportation cost. The time 

window of a customer is defined as the time interval in which the customer should 

receive the delivery by a vehicle. We consider hard time windows, which are 

identified as strictly determined deadlines. The pickup demands of customers are also 

included, as these can be seen as returned products, which have a wide application 

area in reverse logistics.  

 In the second part of the thesis, we review the literature on similar studies to 

our problem. Mathematical models of some specific vehicle routing problems are 

analyzed, and solution approaches are examined. As exact approaches can solve very 

limited number of instances, we concentrate on heuristic algorithms. In the last part, 

we propose three different formulations of the problem to examine which way of 

modeling performs better for obtaining lower bounds. To compare the lower bounds, 

we propose new sets of instances that consider different types of vehicles, pickup 
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demands and time windows, by extending Solomon’s (1987) benchmark instances. 

We also propose a heuristic algorithm, inspired from the Adaptive Large 

Neighborhood Search by Ropke and Pisinger (2006), to solve large practical 

instances.  

1.4 Organization of the Thesis 

 This thesis consists of six chapters and is organized as follows. The next 

chapter provides the literature review on related vehicle routing problems in three 

sections. The first section gives some background information about the vehicle 

routing problem and its variants. The second section consists of heuristic approaches 

to solve different variants of the problem. The last section concludes Chapter 2 with a 

discussion. Chapter 3 provides detailed information about the considered problem; 

three different mathematical models are presented, and a valid inequality proposed by 

Yaman (2006) is adapted in this chapter. In Chapter 4, a heuristic algorithm is 

proposed to obtain approximate solutions to the problem. The algorithm contains 

several sub-heuristics, and the pseudocode is provided for each. Chapter 5 reports the 

experimental analysis on the solutions of the mathematical models and the heuristic 

algorithm on generated test instances. Finally, the conclusions are given and the 

contributions of the thesis and future directions are discussed in Chapter 6. 
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2 LITERATURE REVIEW 

 As mentioned in the previous chapter, we consider a single depot, 

heterogeneous fleet, pick-up and delivery vehicle routing problem with time 

windows. Early works on vehicle routing problem (VRP) is started with Dantzig and 

Ramsey (1959). Since that date, VRP has been increasingly getting attention by the 

operations research community. This chapter is divided into three sections. The next 

section is a review of different class of VRPs, and the solution approaches are 

reviewed in the Chapter 2.2. 

2.1 Vehicle Routing Problem 

 The three simpler variants of the problem considered in this study are 

introduced in this section. These are heterogeneous VRP (HVRP), VRP with time 

windows (VRPTW), and simultaneous pick-up and delivery VRP (SPDVRP). In the 

following section, different variants of the VRP are explained and some studies are 

reviewed. Mathematical definitions are excluded for conciseness. For more detailed 

information on the problem, we refer the reader to the excellent textbook by Toth and 

Vigo (2001), and to the survey by Laporte (1992). It should be noted that, since the 

classical VRP is NP-hard because it generalizes the Travelling Salesman Problem, all 

three variants are NP-hard, as well. 

Heterogeneous Fleet VRP 

 In the capacitated VRP (CVRP), it is assumed that all vehicles are identical in 

terms of capacities and costs. The HVRP generalizes the CVRP by considering 

different types of vehicles. In general, the objective function is minimizing the fixed 

costs and the routing costs of vehicles. Although it is more realistic and the real-

world problems deal with heterogeneous vehicles more than the identical vehicles, 

the HVRP has received much less attention by the researchers, possibly due to its 

complexity.  

 Yaman (2006) also notes that the lack of interest may be caused by the 

difficulty of finding good lower bounds for HVRP. The reason of the difficulty is 

that, the fixed costs dominate the routing costs in the optimal solution of the linear 
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programming (LP)-relaxation. Therefore, the vehicles make fractional subtours. Also, 

Yaman (2006) proposes six different formulations for the HVRP; four of them are 

based on Miller-Tucker-Zemlin constraints and two are based on flow formulations. 

Flow formulations lead to much better lower bounds than Miller-Tucker-Zemlin 

based formulations. However, the computational time of strong formulations 

increases significantly for large instances. To improve lower bounds, several valid 

inequalities covering type inequalities, subtour elimination inequalities, generalized 

large multistar inequalities and valid inequalities based on lifting of the Miller-

Tucker-Zemlin constraints are proposed by the author. Computational results show 

that the valid inequalities, especially covering type inequalities, improve the lower 

bounds significantly.   

 The PhD dissertation of Özfırat (2008) considers three different variants of 

VRP, namely HVRP, split delivery (SDVRP) and VRPTW. A threshold algorithm is 

proposed to solve HVRP, SDVRP and small-sized VRPTW. The developed threshold 

algorithm is a two-stage algorithm, where the customers are clustered in the first 

stage and the routes are determined for each cluster in the second stage. A fuzzy goal 

programming approach is proposed for the clustering stage, and a constraint 

programming model is developed for the routing stage. In addition, a set covering 

algorithm is proposed for large scale VRPTW instances.   

 Baldacci et al. (2008) reviews different formulations and valid inequalities that 

are proposed by other researchers. Also, the authors briefly describe heuristic 

approaches proposed in the literature, and compare computational performances. 

VRP with Time Windows 

 The VRPTW is the extension of the CVRP where each customer has a time 

interval and a vehicle must visit the customer in that interval. There are two types of 

time windows, defined as soft and hard. Soft time windows allow the vehicles to visit 

customers outside their time windows with a penalty cost. On the contrary, the hard 

time windows cannot be violated. For detailed information, we refer the reader to the 

surveys by Cordeau et al. (2001), Kallehauge et al. (2005) and Kallehauge (2008). 

Cordeau et al. (2001) presents a multi-commodity network flow model to formulate 

VRPTW, and describes different heuristic approaches to derive upper bounds, and 
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two decomposition approaches (Lagrangean relaxation and column generation) for 

deriving lower bounds. Kallehauge et al. (2005) focuses on column generation 

approach in general, and path formulation is reviewed extensively. Also, the authors 

propose several acceleration strategies improving the overall approach considerably. 

Kallehauge (2008) reviews four types of formulations of Travelling Salesman 

Problem (TSP), which are the arc formulation, the arc-node formulation, the spanning 

tree formulation and the path formulation, and gives polyhedral results. The reason 

for reviewing different formulations of TSP is that, if one applies a decomposition 

approach, the subproblem can be formulated as TSP. Thus, the TSP forms a basis for 

the VRPTW. The author also gives a detailed literature review of solution approaches 

for the path formulation.  

 It should be noted that the existing solution approaches for the VRPTW are 

dominated by column generation. One of the most important reasons for this 

dominance might be the advancements in the solution of the subproblem, which is a 

path formulation, as there are pseudo-polynomial algorithms for the Shortest Path 

Problem with Resource Constraints. 

Pick-up and Delivery VRP  

 Another important class of VRP is the pickup and delivery problems (PDVRP). 

In this problem category, people or goods are to be transported to some destination 

points. In general, each request is defined by a pickup location and a delivery 

location. Delivery location may be the same as the pickup location. If that is the case, 

the problem is called as SPDVRP. Otherwise, the problem has some extra constraints 

such as coupling and precedence. In the VRP literature, the SPD has not received 

much attention as other pickup and delivery problems. For more information on 

PDVRP, we refer the reader to surveys by Berbeglia et al. (2007) and Parragh et al. 

(2008). 

2.2 Heuristic Approaches 

 In last two decades, several unsolved VRP problem instances have been solved 

optimally. However, for practical instances, exact algorithms are not reliable for 

solving the problem in terms of variability of computational time. From a practical 

point of view, the computational time is as important as the quality of the solution. 
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Therefore, heuristic approaches are still the only viable option for large instances. 

Several surveys on heuristic approaches have been published. We refer the reader to 

these surveys by Laporte et al. (2000), Cordeau et al. (2005), and Vidal et al. (2013) 

for detailed information.  

 Dethloff (2001) proposes a simple insertion-based heuristic for simultaneous 

pick-up and delivery VRP. The insertion heuristic includes the function of the total 

length of vehicle, the function of the remaining capacity of vehicle, and a distance 

function which prevents the late and unfavorable insertions of distant located 

customers. The algorithm starts with selecting a seed customer to create a route. The 

insertion cost is calculated for all unassigned customers (the customers who has not 

assigned to any vehicle/route) for each possible insertion to the route. Then the best 

candidate in terms of minimum cost is assigned to the route. This step is continued 

until no unassigned customer can be inserted into the route. After that step, if there 

are some unassigned customers, a new route is created with the same steps. The 

computational complexity of this very fast algorithm is 𝑂(𝑛4). However, the 

algorithm assumes homogenous vehicles and does not consider the time window 

constraints. 

 Li and Lim (2003) use a metaheuristic approach to solve the pick-up and 

delivery VRP with time windows (PDPVRPTW). The proposed algorithm is a hybrid 

method of simulated annealing and tabu search. The algorithm starts with finding an 

initial solution by using a simple insertion method. Then to find better feasible 

solutions, three types of neighborhood structures are used within a simulated-

annealing-like multiple-restart strategy. The algorithm also contains a tabu list to 

avoid cycling.  

 Lu and Dessouky (2006) develop an insertion-based heuristic for solving the 

PDVRPTW. The insertion heuristic considers the total length of the route as well as 

the total slack time of the time windows. In addition, a nonstandard measure 

“crossing length percentage” is presented to determine the visual attractiveness of the 

solution. Its value takes zero if the route does not have any crossing points in itself, 

and the value increases with respect to the length of the crossing distance. The routes 

with high crossing length percentage values are not accepted. The algorithm can be 

summarized as follows: Initial routes are determined by solving a maximum clique 

problem with a greedy algorithm. The solution gives a set of customers which cannot 
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be assigned to the same route. Then the insertion cost is calculated for each 

unassigned customer for each possible insertion to the routes. This process is 

continued until there is no customer to be assigned. The computational complexity of 

the algorithm is  𝑂(𝑛4). However, this algorithm also assumes the vehicles are 

identical. 

 Ropke and Pisinger (2006), and Pisinger and Ropke (2007) mention that there 

are many heuristic methods in the literature, but these methods have highly strict 

structures for specific VRP variants. These restrictions prevent the algorithms from 

applying to different problem types. Thus, the authors propose an algorithm that can 

be applied to five different VRP variants: VRPTW, CVRP, multi depot VRP, open 

VRP, and site-dependent VRP. First, the problems are transformed into PDVTPTW. 

Then, Adaptive Large Neighborhood Search (ALNS) is employed, which is an 

extension of the large scale neighborhood search heuristic of Shaw (1997, 1998). 

ALNS includes several insertion and removal heuristics, and applies these heuristics 

with an adaptive layer. In each iteration, a removal heuristic is selected to remove a 

predetermined number of customer requests from routes, and an insertion heuristic is 

selected to insert the unassigned customer requests to the routes. The selection of 

heuristics is adaptively made by considering the contribution in previous iterations. 

More information on Large Neighborhood Search (LNS) can be found in a survey 

proposed by Pisinger and Ropke (2010). The computational results show that the 

proposed algorithm is very stable in terms of the solution quality. The only 

disadvantage of the algorithm is, as ALNS is a metaheuristic, there are several 

parameters to fine-tuned. Due to the effectiveness of ALNS, the number of papers 

employing ALNS has been increasing in recent years (Riberio and Laporte, (2012), 

Hemmelmayr et al., (2012), Demir et al., (2012), Azi et al., (2014) Luo et al., 2016)). 

2.3 Discussion 

 Vehicle routing has been getting attention from the operations researchers for a 

long time. This interest leads researchers to study different variants of the problem. 

Also, as the different variants have been studied, a lot of effective algorithms have 

been proposed. However, the mainstream of the research focused on solving some 

benchmark problem instances better than others. In our opinion, it will be better to 

study practical realistic variants of the problem by a utilitarian approach. In other 

words, studying variants of the problem that have not received much attention despite 
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their broad application areas might be worthwhile from a practical point of view. For 

this purpose, we study the heterogeneous vehicle routing problem with time windows 

and simultaneous pickup and delivery (HVRPTWSPD). To the best of our 

knowledge, this problem has not been studied in the literature. 

 A recent study (Taşar, 2016) proposes a taxonomy for the VRP, which involves 

a five-field notation including operational policy, objective function, vehicle features, 

product features and the planning period. While operational policy field includes time 

windows, carrying types, split deliveries and trips, the objective function field 

contains minisum, minimax and load balancing type objectives. Vehicle features 

involve fleet type, capacity and compartment and the product features represent 

different product types in the problem. Finally, the planning period field contains the 

number of periods. Based on this notation, our operational policies include hard time 

windows (HTW), pick-up and delivery (PD), no split delivery (SP’) and single trip 

(ST). Our objective function is minimizing the total distribution cost (MSTC). The 

vehicle features are heterogeneous fleet (HF), fixed capacity (FC) and single 

compartment (SC), while the product features include multiple compatible products 

(MCP). Our planning period is a single time period (STP). Hence, our problem can be 

represented as follows, using the taxonomy by Tasar (2016): 

HTW, PD, SP’, ST | MSTC | HF, FC, SC | MCP | STP. 

 In the next chapter, we examine the details of the problem and propose three 

different formulations. 
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3 PROBLEM FRAMEWORK AND MATHEMATICAL 

FORMULATIONS 

 In this study, three extensions of the basic vehicle routing problem are 

considered together, which are VRPTW, HVRP and SPDVRP. It should be noted that 

this practical problem has been brought to our attention by a software company, 

which needed to form a route optimization algorithm as a logistics planning tool for 

its customers. 

 At the beginning of a planning day, all vehicles are ready to start their routes at 

the depot. When a vehicle is loaded with a set of customer delivery demands, it starts 

its route at time 0. Next, the vehicle visits its first customer to satisfy their delivery 

demand. If the customer has a pick-up demand as well, the pick-up demand must be 

picked up by the same vehicle at the same time. Hence, we assume that each 

customer is visited exactly once. For representation purposes, it is assumed that depot 

has zero pick-up and delivery demand. The arrival time of the vehicle to the first 

customer is the departure time from the depot plus the travel time between the depot 

and the first customer. If there is any service time at the depot, that must also be 

included in the arrival time to the first customer. The vehicle visits all its assigned 

customers in its route in the same manner, before returning to the depot. The vehicles 

may differ from each other in terms of their capacities, fixed costs, and cost per 

kilometer. We assume that the customers and the depot have time windows for 

receiving their service by a vehicle, i.e. a vehicle arriving to a customer before the 

start of their time window should wait until the start. Similarly, it is not allowed to 

serve a customer after the end of the customer’s time window. Latest arrival time to 

the depot indicates the permissible working hours of the vehicles. The objective 

function is to minimize the total fixed cost of vehicles, as well as total travelling 

costs. 

 The problem can be formulated as follows: 𝐺 = (𝑉, 𝐴) is a complete directed 

graph with node set 𝑉 = {0, 1, … , 𝑛, 𝑛 + 1} and arc set 𝐴 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗}. 

Nodes 0 and 𝑛 + 1 denote the initial and the terminal depot, which may correspond 

to the same geographical location. Subset 𝑉𝑐 = {1,2, … , 𝑛} denotes customer nodes. 

All vehicles start their routes at node 0 and finish at node 𝑛 + 1. The set 𝐾 =

{1, … , 𝑚} denotes the vehicles, while 𝑚 represents the number of available vehicles. 
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 In this thesis, we propose three different formulations to the problem. The first 

formulation is based on Miller-Tucker-Zemlin (1960) constraints, and the last two are 

based on flow variables. The following parameters and decision variables are 

common to the three formulations. 

Common Parameters: 

𝑑𝑖: delivery demand of node 𝑖 ∈ 𝑉. 

𝑝𝑖: pick-up demand of node 𝑖 ∈ 𝑉. 

𝑡𝑖,𝑗: distance between node 𝑖 and node 𝑗, (𝑖, 𝑗) ∈ 𝐴. 

ℎ𝑖: service time of node 𝑖 ∈ 𝑉. 

[𝑎𝑖, 𝑏𝑖]: earliest and latest possible arrival time of node 𝑖 ∈ 𝑉. 

𝑐𝑘: capacity of vehicle 𝑘 ∈ 𝐾. 

𝛾𝑘: fixed cost of vehicle 𝑘 ∈ 𝐾. 

𝛼𝑘: cost per kilometer of vehicle 𝑘 ∈ 𝐾. 

𝛽𝑘: average speed of vehicle 𝑘 ∈ 𝐾. 

𝑀: A large number, e.g. 𝑀 = max {∑ 𝑑𝑖 + 𝑝𝑖, ∑ 𝑡𝑖,𝑗(𝑖,𝑗)∈𝐴𝑖∈𝑉 }. 

Common Decision Variables: 

𝑥𝑖,𝑗
𝑘 : 1, if vehicle 𝑘 ∈ 𝐾 travels directly from node 𝑖 ∈ 𝑉 to node 𝑗 ∈ 𝑉. 0, otherwise. 

𝑤𝑘: 1, if vehicle 𝑘 ∈ 𝐾 is used. 0, otherwise. 

3.1 Formulation 1: Basic Formulation  

 The first formulation is based on Miller-Tucker-Zemlin (1960) constraints. 
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Additional Decision Variables: 

𝑠𝑖
𝑘: the time vehicle 𝑘 ∈ 𝐾 arrives at node 𝑖 ∈ 𝑉. 

𝑙𝑖
𝑘: the load of vehicle 𝑘 ∈ 𝐾 after leaving node 𝑖 ∈ 𝑉. 

 

With the above definitions, the mathematical model becomes: 

min: ∑ ∑ 𝛼𝑘𝑡𝑖,𝑗𝑥𝑖,𝑗
𝑘

𝑘∈𝐾(𝑖,𝑗)∈𝐴 + ∑ 𝛾𝑘𝑤𝑘
𝑘∈𝐾       (0) 

subject to: 

∑ ∑ 𝑥𝑖,𝑗
𝑘 = 1𝑘∈𝐾𝑖∈𝑉      𝑗 ∈ 𝑉𝑐   (1) 

∑ 𝑥𝑖,𝑗
𝑘 − ∑ 𝑥𝑗,𝑖

𝑘 = 0𝑖∈𝑉𝑖∈𝑉     𝑗 ∈ 𝑉𝑐, 𝑘 ∈ 𝐾  (2) 

𝑠𝑗
𝑘 ≥ 𝑠𝑖

𝑘 +
𝑡𝑖,𝑗

𝛽𝑘⁄ + ℎ𝑖 − 𝑀(1 − 𝑥𝑖,𝑗
𝑘 )  (𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾 (3) 

𝑎𝑖 ≤ 𝑠𝑖
𝑘 ≤ 𝑏𝑖      𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾  (4) 

𝑙𝑗
𝑘 ≥ 𝑙𝑖

𝑘 + 𝑝𝑖 − 𝑑𝑖 − 𝑀(1 − 𝑥𝑖,𝑗
𝑘 )   (𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾 (5) 

𝑙0
𝑘 = ∑ 𝑑𝑖𝑥𝑖,𝑗

𝑘
(𝑖,𝑗)∈𝐴      𝑘 ∈ 𝐾   (6) 

𝑙𝑖
𝑘 ≤ 𝑐𝑘      𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾  (7) 

∑ 𝑥0,𝑗
𝑘

𝑗∈𝑉𝑐
= 𝑤𝑘     𝑘 ∈ 𝐾   (8) 

𝑥𝑖,𝑗
𝑘 ∈ {0, 1}      (𝑖, 𝑗) ∈ 𝐴 , 𝑘 ∈ 𝐾 (9) 

𝑠𝑖
𝑘, 𝑙𝑖

𝑘 ∈ ℝ+      𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾                (10) 
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 The objective function minimizes the fixed cost of vehicles and the total travel 

cost. Constraint set (1) ensures that each customer request is satisfied. Constraint set 

(2) guarantees that, if a vehicle visits one node it must leave that node. Constraint set 

(3) imposes consistency of the visiting times of nodes. Constraint set (4) ensures that 

the arrival times of nodes are within time windows. Constraint set (5) imposes 

consistency of loads of vehicles. Constraint set (6) determines the load of vehicles 

upon leaving the depot. Constraint set (7) ensures that the vehicle capacities are not 

exceeded. Constraint set (8) determines which vehicles are used. Constraint sets (9) 

and (10) represent the ranges of decision variables. 

3.2 Formulation 2: Demand Flow Formulation 

 The second formulation is based on demand flow variables. Two additional 

decision variables are used to represent pick-up and delivery demand quantities along 

arcs. 

Additional Decision Variables: 

𝑠𝑖
𝑘: the time which vehicle 𝑘 ∈ 𝐾 arrives at node 𝑖 ∈ 𝑉. 

𝑓𝑖,𝑗
+ : the delivery demand flow of arc (𝑖, 𝑗) ∈ 𝐴. 

𝑓𝑖,𝑗
− : the pick-up demand flow of arc (𝑖, 𝑗) ∈ 𝐴. 

 

With the additional decision variables, the mathematical model becomes: 

min:  (0)  

subject to: 

(1) − (4), (8) − (9), and 

∑ 𝑓𝑖,𝑗
+

𝑖∈𝑉 − ∑ 𝑓𝑗,𝑖
+

𝑖∈𝑉 = 𝑑𝑗    𝑗 ∈ 𝑉𝑐   (11) 
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∑ 𝑑𝑗𝑥𝑖,𝑗
𝑘 ≤ 𝑓𝑖,𝑗

+ ≤ ∑ (𝑐𝑘 − 𝑑𝑖)𝑥𝑖,𝑗
𝑘

𝑘∈𝐾𝑘∈𝐾   (𝑖, 𝑗) ∈ 𝐴  (12) 

∑ 𝑓𝑖,𝑗
−

𝑗∈𝑉 − ∑ 𝑓𝑗,𝑖
−

𝑗∈𝑉 = 𝑝𝑖    𝑖 ∈ 𝑉𝑐   (13) 

∑ 𝑝𝑖𝑥𝑖,𝑗
𝑘 ≤ 𝑓𝑖,𝑗

− ≤ ∑ (𝑐𝑘 − 𝑝𝑗)𝑥𝑖,𝑗
𝑘

𝑘∈𝐾𝑘∈𝐾   (𝑖, 𝑗) ∈ 𝐴  (14) 

𝑓𝑖,𝑗
+ + 𝑓𝑖,𝑗

− ≤ ∑ 𝑐𝑘
𝑗𝑥𝑖,𝑗

𝑘
𝑘∈𝐾     𝑘 ∈ 𝐾   (15) 

𝑠𝑖
𝑘, 𝑓𝑖,𝑗

+ , 𝑓𝑖,𝑗
− ∈ ℝ+     (𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾 (16) 

 Constraint set (11) guarantees that the amount of delivery flow 𝑑𝑗 should be 

sent to node 𝑗 ∈ 𝑉𝑐. Constraint set (12) ensures that, if arc (𝑖, 𝑗) ∈ 𝐴 is traversed by a 

vehicle, delivery flow on it should be at least the delivery demand of node 𝑗 ∈ 𝑉𝑐, and 

the delivery flow on the arc cannot exceed the capacity of the vehicle. Constraint set 

(13) guarantees that, amount of pick-up flow 𝑝𝑖 should be sent to node 𝑖 ∈ 𝑉𝑐. 

Constraint set (14) ensures that if arc (𝑖, 𝑗) ∈ 𝐴 is traversed by a vehicle, the delivery 

flow on it should be at least the pick-up demand of node 𝑖 ∈ 𝑉𝑐, and the delivery flow 

on the arc cannot exceed the capacity of the vehicle. Constraint set (15) ensures that 

vehicle capacity is not exceeded. Constraint set (16) represents the range of decision 

variables. 

 

3.3  Formulation 3: Time Flow Formulation 

 The third formulation is based on time flow variables. An additional decision 

variable is used to represent time flow along arcs. 

Additional Decision Variables: 

𝑙𝑖
𝑘: the load of vehicle 𝑘 ∈ 𝐾 after leaving node 𝑖 ∈ 𝑉. 

𝑠𝑖,𝑗: the time when the node 𝑖 ∈ 𝑉 is left in direction to node 𝑗 ∈ 𝑉. 
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With the above additional decision variables, the mathematical model becomes: 

min:  (0)  

subject to: 

(1) − (2), (5) − (9), and 

∑ 𝑠𝑖,𝑗𝑗∈𝑉 ≥ ∑ 𝑠𝑗,𝑖𝑗∈𝑉 + ∑ ∑ 𝑥𝑗,𝑖
𝑘 (𝑘∈𝐾𝑗∈𝑉

𝑡𝑗,𝑖

𝛽𝑘⁄ + ℎ𝑖)  𝑖 ∈ 𝑉  (17) 

∑ 𝑥𝑖,𝑗
𝑘 (𝑘∈𝐾 𝑎𝑖 − ℎ𝑖) ≤ 𝑠𝑖,𝑗 ≤ ∑ 𝑥𝑖,𝑗

𝑘 (𝑘∈𝐾 𝑏𝑖 − ℎ𝑖)  𝑖 ∈ 𝑉  (18) 

𝑠𝑖,𝑗, 𝑙𝑖
𝑘 ∈ ℝ+      (𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾 (19) 

 Constraint set (17) determines the time a vehicle leaves node 𝑖 ∈ 𝑉. Constraint 

set (18) ensures that the arrival time to the nodes must be within their respective time 

windows. Constraint set (19) represents the range of decision variables. 

3.4 Valid Inequality 

 As mentioned in the literature review, the LP-relaxation solution of the HVRP 

is too weak (Yaman, 2006). The other disadvantage of solving the HVRP is, since the 

capacities and costs of the vehicles are different, the selection of which vehicles are 

used is crucial. This situation significantly increases the size of branch-and-bound 

tree in the exact solution. Therefore, the compound effect of these two difficulties 

makes the problem hardly solvable even for small instances. This fact is verified in 

our computational experiments, as well. To overcome these disadvantages, Yaman 

(2006) proposed several valid inequalities to the HVRP. The most promising valid 

inequality is the covering type inequality, which is also valid for the HVRP with time 

windows. Therefore, we add this inequality to our formulations for Q>0, as follows: 

∑ ∑ ⌈𝑐𝑘

𝑄⁄ ⌉ 𝑥0,𝑗
𝑘 ≥ ∑ ⌈

𝑑𝑖
𝑄⁄ ⌉𝑖∈𝑉𝑐𝑘∈𝐾𝑗∈𝑉𝑐

     (20) 
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4  SOLUTION APPROACH  

 As the VRP is NP-Hard, it is quite difficult to solve real-world instances. Under 

heterogeneous vehicles assumption, it is harder to solve even small instances 

optimally. In this thesis, a heuristic approach is proposed to overcome this difficulty. 

Our heuristic is inspired by the algorithm of Ropke and Pisinger (2006), namely the 

Adaptive Large Neighborhood Search (ALNS), which was developed for the 

PDVRPTW. In our case the problem is HVRPTWSPD, which leads to two extensions 

in the algorithm; computing the necessary number of vehicles, and a new insertion 

heuristic for time windows.  The proposed heuristic consists of two stages. The main 

objective is minimizing the number of vehicles, and the second aim is minimizing the 

total travelling distance of the vehicles. The algorithm considers all assumptions of 

the problem like time windows, pickup demands, and heterogeneous fleet.  

 The details of the proposed heuristic are explained in the following sections. 

Also, a flow chart is presented in Figure 1. The underlined words below indicate the 

heuristics (subroutines) explained in this chapter. 

The ALNS Heuristic: 

S1. Calculate the Minimum Number of Vehicles. 

S2. Find an Initial Solution. Set this solution as the current solution and the 

incumbent solution. 

S3. If the solution is infeasible, increase the number of vehicles and go to S2. 

Otherwise, go to S4. 

S4. Generate new solution:  

a. Select a Removal heuristic based on removal heuristic scores, and 

apply to the current solution. 

b. Select an Insertion Heuristic based on insertion heuristic scores, and 

apply to the current solution. 

S5. Apply a Local Search algorithm to the new solution. 

S6. If the Acceptance Criteria is met, set new solution to the current solution. 

S7. Update Heuristic Scores. 

S8. If the total cost of the current solution is less than the incumbent solution, set 
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current solution to the best solution. 

S9. If the Stopping Criteria is met, go to S10. Otherwise, go to S4. 

S10. If the last found incumbent solution is feasible, decrease the number of vehicles 

by one and go to S2. Otherwise, go to S11.  

S11. Report the last found best solution. 

 

 

Figure 1: Flow Chart of the Heuristic. 

4.1 Minimum Number of Vehicles Heuristic 

 The heuristic algorithm starts with finding a lower bound on the needed number 

of vehicles. Unlike our strategy, Ropke and Pisinger (2006) starts by finding an upper 
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bound on the number of vehicles. The advantage of starting with a lower bound 

instead of an upper bound is decreasing the total computation time of the algorithm. 

As the initial solution algorithm is regret-2, it finds a solution very quickly, as it will 

be explained later. This way, the main part of the heuristic can spend more time to 

improve the initial solution with the least number of vehicles.  

 Finding a minimum number of vehicles becomes a variant of the bin packing 

problem. As the vehicle fleet is heterogeneous, the bins are heterogeneous as well. 

However, it is time consuming to solve this problem to optimality as the bin packing 

problem is NP-Hard. Also, in our problem, the lower bound on the number of 

vehicles may be weak due to the existence of the time windows. Therefore, bin 

packing with heterogeneous bins problem is solved by an adaptation of the Best-Fit 

Decreasing heuristic (A-BFD), proposed by Crainic et al. (2011). The pseudocode of 

the algorithm is below.  

Inputs: 

𝑉𝑐: Set of customers  

𝐾: Set of vehicles  

𝑆: Set of selected vehicles (S = {∅})  

𝑑𝑖: Delivery demand of customer 𝑖 ∈ 𝑉𝑐  

𝑝𝑖: Pickup demand of customer 𝑖 ∈ 𝑉𝑐  

𝑣𝑖: 𝑣𝑖 = max{𝑑𝑖, 𝑝𝑖}, 𝑖 ∈ 𝑉𝑐  

𝛾𝑘: Fixed cost of  vehicle 𝑘 ∈ 𝐾  

𝑐𝑘: Capacity of vehicle 𝑘 ∈ 𝐾  

Sort the customer requests in 𝑉𝑐 in their nonincreasing order of 𝑣𝑖,  𝑖 ∈ 𝑉𝑐 
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Sort the vehicles in 𝐾 in their nonincreasing order of ratio  
𝛾𝑘

𝑐𝑘
⁄ , 𝑘 ∈ 𝐾 , and 

nondecreasing order of ck when the fixed costs γk, k ∈ K are equal.  

Minimum Number of Vehicles (Crainic et al., 2011) 

FOR All customer requests 𝑖 ∈ 𝑉; 

IF Customer request 𝑖 can be assigned to a vehicle in 𝑆  

Assign the customer request 𝑖 to the best vehicle in 𝑆 (vehicle with 

maximum idle capacity) 

ELSE  

Add the first vehicle, 𝑏′, in 𝐾 to the 𝑆, 𝑆 = 𝑆 ∪ {𝑏′}, and assign the 

customer request 𝑖 to vehicle 𝑏′ 

ENDIF 

ENDFOR 

FOR All vehicles, 𝑗 ∈ 𝑆; 

FOR All vehicles, 𝑘 ∈ 𝐾\𝑆; 

𝑈𝑗 = ∑ 𝑣𝑖𝑖 𝑙𝑜𝑎𝑑𝑒𝑑 𝑖𝑛 𝑗   

IF 𝑐𝑘 ≥ 𝑈𝑗 and, 𝛾𝑘 < 𝛾𝑗  

Move all customer requests from 𝑗 to 𝑘 

ENDIF 

ENDFOR 

ENDFOR 

Return the vehicles in 𝑆 and the total number of vehicles, (|𝑆|) 

4.2 Initial Solution  

 As stated in the previous section, the initial solution is found by regret-2 

heuristic, which is explained in the insertion heuristic section. At the beginning of the 

algorithm, all customer requests are placed into a request bank, and regret-2 is run in 

parallel for all vehicles found by the Minimum Number of Vehicles heuristic. If the 

initial solution is infeasible, the first unused vehicle in 𝐾 is added to the selected 

vehicles set 𝑆. This procedure is repeated until a feasible solution is found. 
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4.3 Removal Heuristics  

 The removal heuristics remove a predetermined number of customer requests 

from the current solution, and add them to the request bank. The request bank 

contains a set of customer requests not assigned to any vehicle. We propose three 

types of removal heuristics, as random, worst, and Shaw Removal. 

 Random Removal 

 This is a simple removal heuristic that selects r customer requests at random, 

and removes them from the current solution, as can be seen in the pseudocode below. 

The idea of random removal is applying randomization to the search process.  

Inputs: 

𝑛: Total number of customer requests  

𝑟: Total number of removed customer requests  

𝑋: 𝑆et of customer requests in the current solution  

𝐷: Request bank  

Random Removal 

WHILE 𝑟 customer request is selected; 

Select a customer requests at random from 𝑋 and remove the selected demand 

from the current solution, and assign it into the request bank, 𝐷 

ENDWHILE 

Return the request bank and new solution 

 Worst Removal 

 This subroutine selects r customer requests from the current solution that are 

most costly, and removes them from the solution. To achieve this, the costs of all 

customer requests are determined by removing the demand from the solution and 
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calculating cost of the demand. As the demands placed in the request bank have high 

cost, they are not assigned to the request bank but removed temporarily from the 

solution. Then, the customer request with the highest cost is removed. The details of 

the worst removal heuristic are provided in the following pseudocode.  

Inputs: 

𝑥: Current solution  

𝐷: Request bank  

𝑓(𝑥): Cost of the current solution  

𝑓−𝑖: Cost of current solution after customer request 𝑖 is removed  

∆𝑓𝑖: Cost of customer request 𝑖  

∆𝑓𝑖 = 𝑓(𝑥) − 𝑓−𝑖         (21) 

Worst Removal 

WHILE 𝑟 customer request is selected; 

FOR All customer requests in solution,  𝑖 ∈ 𝑥; 

Calculate the cost (21) of customer 𝑖 

ENDFOR 

Select the customer with the highest cost and remove it from the solution 𝑥, and 

add to the request bank, 𝐷 

ENDWHILE 

Return the request bank and new solution 

 Shaw Removal 

 This heuristic was proposed by Shaw (1997, 1998). The aim is removing 

customer requests from the current solution that are similar in terms of their delivery 

and pickup demands and locations. The idea is to reassign such requests to the same 
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vehicle, if possible. The heuristic starts by selecting and removing a customer request 

at random from the current solution, and assigning this customer to the removed list. 

Then, it randomly selects a customer request from the removed list and calculates the 

similarity of the selected customer and the rest of the customers by using a 

relatedness measure. The most similar customer request is removed from the solution, 

and added to the removed list. These steps are repeated until r customer requests are 

removed from the current solution. The pseudocode of the heuristic is below. 

Inputs:  

𝑉𝑐: Set of customers  

𝐵: Removed list  

𝐷: Request bank  

𝑥: Current solution  

𝑡𝑖,𝑗: Distance between customer 𝑖 ∈ 𝑉𝑐 and customer 𝑗 ∈ 𝑉𝑐  

𝑑𝑖: Delivery demand of customer 𝑖 ∈ 𝑉𝑐  

𝑝𝑖: Pickup demand of customer 𝑖 ∈ 𝑉𝑐  

𝑅𝑖,𝑗: Relatedness measure of customer 𝑖 and 𝑗  

𝑅𝑖,𝑗 = 𝛼 ∗ 𝑡𝑖,𝑗 + 𝛽 ∗ (|𝑑𝑖 − 𝑑𝑗| + |𝑝𝑖 − 𝑝𝑗|)     (22) 

Shaw Removal (Shaw, 1997) 

Remove a customer request from solution 𝑖 ∈ 𝑥 at random, and assign it to the 

removed list, 𝐵. 

Select a customer at random from removed list, 𝑖 ∈ 𝐵 

WHILE 𝑟 − 1 customer request is removed;  

FOR All customer requests from current solution, 𝑗 ∈ 𝑥; 
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Calculate 𝑅𝑖,𝑗 (22)  

ENDFOR 

Remove the customer from the solution with the lowest 𝑅𝑖,𝑗 value, and assign it 

to removed list 𝑗 ∈ 𝐵 

ENDWHILE 

Move all customer requests from 𝐵 to 𝐷 and return new solution 

4.4 Insertion Heuristics 

 There are two main types of insertion heuristics in the VRP literature, which are 

sequential insertion and parallel insertion. Sequential insertion methods construct 

routes one by one whereas parallel insertion constructs several routes concurrently. 

Our proposed algorithm contains three parallel insertion heuristics, as Greedy, Regret, 

and Time Windows Insertion. 

 Greedy Insertion  

 In this basic insertion heuristic, all customer requests from the request bank are 

tried for all possible positions in vehicles, to calculate an insertion cost for each 

position. If a request cannot be inserted to a position, the cost is set to infinity. Then, 

the customer request with the least insertion cost is assigned to its determined 

position and vehicle. These steps are repeated until the request bank is empty or no 

insertion is possible. Since only one route is changed at each iteration, the insertion 

costs for the other vehicles do not need to be calculated. This implementation 

improves the computation time of all insertion heuristics. The pseudocode is below. 

Inputs:  

𝐷: Request bank  

𝑆: Set of vehicles used in new solution 

𝑡𝑖,𝑗: Distance between customer 𝑖 ∈ 𝑉𝑐 and customer 𝑗 ∈ 𝑉𝑐  
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∆𝑖,𝑘,𝑗
𝑙 : change in objective value by inserting customer 𝑘 between customers    

𝑖 and 𝑗 in route l 

∆𝑖,𝑘,𝑗
𝑙 = 𝑡𝑖,𝑘 + 𝑡𝑘,𝑗 − 𝑡𝑖,𝑗       (23) 

Greedy Insertion 

WHILE All customer requests from request bank, 𝐷, are assigned or no more 

requests can be assigned; 

FOR All customer requests from request bank, 𝑖 ∈ 𝐷; 

FOR All vehicles, 𝑘 ∈ 𝑆; 

Calculate (23) for 𝑖 ∈ 𝐷 and for each position in 𝑘 ∈ 𝑆 

ENDFOR 

ENDFOR 

Assign customer request which have least insertion cost to determined position 

and vehicle, and remove the request from request bank 

ENDWHILE 

Update and return the new solution 

 Regret Insertion 

 Regret heuristics have been used by Potvin and Rousseau (1993). These 

insertion heuristics try to improve the basic greedy approach through not only using 

the best position, but also the second and the third best positions (depending on 

choice). Customer requests are assigned to positions in order to maximize the regret 

or opportunity cost, computed as the difference between the best and the second (or 

the third) best position costs. In this respect, the greedy heuristic can be seen as 

regret-1 heuristic. In our algorithm, we use regret-2 and regret-3 insertions. 

Inputs: 

𝐷: Request bank  

𝑆:  Set of vehicles used in new solution  
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𝑡𝑖,𝑗: Distance between customer 𝑖 ∈ 𝑉𝑐 and customer 𝑗 ∈ 𝑉𝑐  

∆𝑖,𝑘,𝑗
𝑙 : Change in objective value by inserting customer 𝑘 between customers    

𝑖 and 𝑗 in route l 

𝑐𝑜𝑠𝑡𝑘
𝑞: Minimum 𝑞th cost of customer request 𝑘 , i. e. , 𝑐𝑜𝑠𝑡𝑘

1 = min
𝑖,𝑗,𝑙

{∆𝑖,𝑘,𝑗
𝑙 }  

Regret-m Insertion 

WHILE All customer requests are assigned or no more requests can be assigned 

FOR All customer requests from request bank, 𝑖 ∈ 𝐷; 

FOR All vehicles, 𝑘 ∈ 𝑆; 

Calculate (23) for customer request 𝑖 and all feasible positions in 

vehicle 𝑘 

ENDFOR 

ENDFOR 

Assign customer request which have maximum regret-m value, ∑   𝑐𝑜𝑠𝑡𝑖
𝑚 −𝑚

𝑙=2

𝑐𝑜𝑠𝑡𝑖
1, 𝑖 ∈ 𝐷 to the determined position and vehicle. Remove the assigned 

request from request bank 

ENDWHILE 

Update and return the new solution 

 Time Windows Insertion 

 Time windows insertion (Lu and Dessouky, 2006) is different from the regret 

heuristics in the sense that it considers the time windows of the customers and the 

waiting times of the vehicles as a cost function instead of the distances between 

customers. The cost function contains the difference between the time window end 

time of a customer and the arrival time to that customer, which is named as slack in 

the time window; and the time window start time of a customer and the arrival time to 

that customer, which is called the waiting time. We use a simple algorithm to evaluate 

the cost function. The pseudocode of our time insertion heuristic is shown below. 
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Inputs: 

Let following be a route that starts from depot and visits 𝑘 customers: 

0, 𝑣1, … , 𝑣𝑖−1, 𝑣𝑖, 𝑣𝑖+1, … , 𝑣𝑘 , 𝑛 + 1;    

𝐷: Request bank  

𝑆: Set of vehicles used in new solution  

𝑎𝑖: Earliest possible arrival time of node 𝑖 ∈ 𝑉  

𝑏𝑖: Latest possible arrival time of node 𝑖 ∈ 𝑉  

ℎ𝑖: Service time of node 𝑖 ∈ 𝑉  

𝑡𝑖,𝑗: Distance between node 𝑖 ∈ 𝑉 and node 𝑗 ∈ 𝑉  

𝐴𝑖: Earliest arrival time of node 𝑖 ∈ 𝑉  

𝐴𝑣𝑖
= max(𝐴𝑣𝑖−1

, 𝑏𝑣𝑖−1
) + ℎ𝑣𝑖−1 + 𝑡𝑣𝑖−1,𝑣𝑖

      (24) 

𝑊𝑖: Waiting time at node 𝑖 ∈ 𝑉  

𝑊𝑣𝑖
= max(0, 𝑎𝑣𝑖−1

− 𝐴𝑣𝑖−1
)        (25) 

𝑌𝑖: Maximal postponed time interval of node 𝑖 ∈ 𝑉  

𝑌𝑣𝑖
= {

𝑏𝑣𝑘
− max(𝑎𝑣𝑘

, 𝐴𝑣𝑘
),   𝑖 = 𝑘 

min{𝑏𝑣𝑖
− max(𝑎𝑣𝑘

, 𝐴𝑣𝑘
), 𝑌𝑣𝑖+1

+ 𝑊𝑣𝑖+1
} ,   𝑖 = 𝑘 − 1, … ,1

  (26) 

Time Windows Insertion 

WHILE All customer requests are assigned or no more requests can be assigned 
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FOR All customer requests from request bank, 𝑖 ∈ 𝐷; 

FOR All vehicles, 𝑘 ∈ 𝑆; 

Calculate (24), (25) and (26) for customer request 𝑖 ∈ 𝐷 and for all 

feasible locations in 𝑘 ∈ 𝑆 

ENDFOR 

ENDFOR 

Assign customer request which have the largest value of summation of (25) and 

(26) to determined position and vehicle 

ENDWHILE 

Update and return the new solution 

4.5 Local Search Heuristics 

 After applying removal and insertion heuristics, we keep this solution as the 

new solution. Then, a local search heuristic is applied to the new solution for 

improvement. One of two types of local search heuristics is employed, at random. 

 Swap-Based Local Search Heuristic   

 Swap-based local search heuristic chooses two customer requests at random 

and interchanges them. If the new solution is feasible and costs less, the heuristic is 

re-called. The process is repeated until the new solution is infeasible or its cost larger. 

Inputs: 

𝑥′: New solution  

𝑓(𝑥′): Cost of the new solution  
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Swap Heuristic 

DO 

Select a customer request at random from the new solution, 𝑖 ∈ 𝑥′. 

Select another customer request at random from the new solution, 𝑗 ∈ 𝑥′\{𝑖}. 

Interchange selected customer requests 𝑖 and 𝑗 and calculate the new solution 

cost. 

WHILE The new solution is feasible and cost of the new solution, 𝑓(𝑥′), is smaller  

Update and return the new solution. 

 Arc Transfer Local Search Heuristic 

 Arc Transfer starts with selecting two adjacent customer requests from a route 

at random. Then, selected requests are removed from the route, and are added to the 

last position of another route. If the new solution is feasible and its cost is less, the 

heuristic is re-called. Else, the procedure stops. 

Inputs: 

𝑥′: New solution  

𝑆: Set of vehicles used in new solution 

𝑓(𝑥′): Cost of the new solution  

Arc Transfer Heuristic 

DO 

Select a vehicle at random, 𝑘 ∈ 𝑆 

Select two adjacent customer requests at random from selected vehicle 𝑘, 𝑖, 𝑗 ∈
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𝑥′(𝑘) 

Select a vehicle at random, 𝑙 ∈ 𝑆\{𝑘}  

Insert selected customers to the last position of the vehicle, 𝑖, 𝑗 ∈ 𝑥′(𝑘), 𝑙 ∈
𝑆\{𝑘} and calculate the new solution cost 

WHILE The new solution is feasible and cost of the new solution, 𝑓(𝑥′), is smaller 

Update and return the new solution. 

4.6 Feasibility Check  

 Insertion heuristics assign customer request to a position if and only if the new 

solution is feasible. The feasibility check contains two criteria: the capacities of the 

vehicles and the time window constraints.  

4.7 Acceptance and Stopping Criteria   

 When any local search heuristic is applied, we check if the new solution is 

accepted or not. If the new solution is accepted, it is set as the current solution for the 

next iteration. As in Ropke and Pisinger (2006, 2007), we use the acceptance criterion 

from the well-known simulated annealing (Kirkpatrick et al., 1983). The acceptance 

criterion consists of two parts. If the cost of the new solution is less than the current 

solution, we set the new solution as current solution. Otherwise, we accept the 

solution based on the following probability. 

Acceptance Probability = 𝑒−(𝑓(𝑥′)−𝑓(𝑥))/𝑇 
     (27), 

where 

𝑓(𝑥): Cost of the current solution.  

𝑓(𝑥′): Cost of the new solution.  

𝑇: Temperature.  
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𝑐: Cooling rate, 0 < 𝑐 < 1.  

The new solution is accepted based on value of formula (27). We set the cost of the 

initial solution as the initial value of the temperature, and the temperature is 

decreased at each iteration by multiplying it with a constant cooling factor 𝑐: 

𝑇 = 𝑇 ∗ 𝑐         (28) 

The algorithm stops after a predetermined number of iterations, w.  

4.8 Adaptive Weight Adjustment 

 Removal and insertion heuristics are selected by considering their contributions 

to the solution in the past iterations. At the beginning of the algorithm, the scores of 

all heuristics are identical. The search is divided into segments of predetermined 

consecutive iterations, and the scores of heuristics are updated at the end of each 

segment. At each iteration, the selected removal and insertion heuristics are 

considered as a pair, and their scores are updated to the same value. Three types of 

scores are used. The first one is the best score, and if the heuristic pair is able to find 

the new best solution, their scores are increased by the best score. If a heuristic pair 

finds a solution that is better than the current solution, their scores are increased by 

the second best score. Finally, if the pair finds a solution worse than the current one 

but is accepted, their scores are increased by the third best score. The procedure of 

updating scores and selecting heuristics is shown below: 

Inputs: 

𝜎1: The best score when the heuristic pair finds the new best solution  

𝜎2: The second best score when the heuristic pair finds a better solution 

 than the current  

𝜎3: The third best score when  heuristics finds a nonimproving accepted solution  

𝜑: Segment, i. e. , number of iterations  



 

 

32 

 

𝜋𝑖,𝑗: The score of heuristic 𝑖 used in segment 𝑗  

𝜌: Reaction parameter that controls how quickly the weight adjustment reacts  

to changes  

𝑢𝑖: The number of times that heuristic 𝑖 has been used in the last segment  

 Removal and insertion heuristics are selected by a roulette wheel mechanism 

independent from each other: 

Selection probability = 
𝜋𝑖,𝑗

∑ 𝜋𝑙,𝑗𝑙
      (29)  

 At the end of each segment, 𝜑, heuristic scores are updated as: 

𝜋𝑖,𝑗+1 = 𝜌
𝜋𝑖,𝑗

𝑢𝑖
+ (1 − 𝜌)𝜋𝑖,𝑗+1      (30)  
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5  COMPUTATIONAL STUDY  

 In this chapter, we report the comparison of mathematical model results and the 

heuristic algorithm. We have extended Solomon’s benchmark instances for 100 

customers for the VRPTW to test our mathematical models and the proposed 

heuristic algorithm. To create pickup demands, we select a delivery demand from the 

data set at random and assign that delivery demand to the pickup demand. For pickup 

demands, we assume that some customers do not need pickups. We fix this ratio to 

10% of the total number of customers. Two different approaches are used to have a 

heterogeneous fleet. In the first approach, we assume that the cost and capacity of 

vehicles are similar, hence a low variance is obtained in terms of cost and capacity. In 

the second approach, the vehicles have a high variance in terms of their cost and 

capacity. The instances having a high variance are found to be harder to solve than 

the low-variance ones, as can be seen in the computational results. 

 Solomon’s benchmark contains 56 instances with 100 customer requests. The 

instances have 6 types of categories, as R1, R2, C1, C2, RC1 and RC2. R instances 

have randomly distributed locations. C instances have clustered locations. RC 

instances have partially randomly distributed and partially clustered locations. The 

last number indicates whether instances have short or long planning horizons, and 

small or large vehicle capacities. The instances containing number 1 have short 

planning horizons, and others have long planning horizons. We add two number 

prefixes to the name of each instance to distinguish different problem types. The first 

number (0) indicates pickup demands and the second number (0 or 1) indicates 

heterogeneous fleet. For heterogeneous fleet, the instances containing number 0 have 

low variance and the others have high variance. 

5.1 Mathematical Model Results  

 To compare the proposed mathematical models, we use 10, 15, and 20 customer 

requests, as it is very difficult to solve even medium-sized instances to optimality. 

These problem instances are all extracted from the extended 100-customer instances 

explained above. In the following tables, F1 indicates the Miller-Tucker-Zemlin-

based formulation. F2 and F3 indicate our Demand Flow and Time Flow 

formulations, respectively. The F2 and F3 formulations contain valid inequality (20). 

For the formulation F1, we consider two cases with and without valid inequality (20). 
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 A time limit of 1800 seconds is imposed on each instance. The solutions which 

have “*” are the ones that cannot be solved in the allowed time limit. In the tables, 

“LP Relax.” indicates the value of the LP-relaxation at the root node, “UB” indicates 

the best upper bound value obtained within the time limit, and “CPU” indicates the 

computation time in seconds. All experiments are performed on an Intel Core i7-3770 

CPU with 3.4GHZ and 8 GB RAM, and IBM ILOG Cplex 12.6 was used. 

 The solutions of the 112 instances having 10 customer requests are shown in 

Table 1 and 2. F1 formulation has provided very poor linear relaxation solutions as 

expected. As it can be seen, the valid inequality improves the lower bound 

significantly, when we compare the solutions of F1 and F1 with Covering Type 

Inequality. F1 could not solve 8 of the 56 instances with a low variance, and could 

not solve 14 of 56 instances with a high variance, due to the poor lower bound 

performance. For these smallest instances, the best lower bound and the fastest 

computational time have been obtained by F2 formulation, which is the demand flow 

formulation. One important observation is that, F1 has found near-optimal solutions 

with the linear relaxation at the root node, as it can be observed from the CPU time. 

Average CPU times of 56 instances are only 0.98 seconds and 16.72 seconds for low 

and high-variances, respectively. The difficulty increases with increasing capacity of 

vehicles. When the vehicles have larger capacities, the feasible solution space 

broadens, and the total number of nodes in the branch-and-bound tree increases 

significantly. Hence, without using problem-specific efficient branching and 

bounding rules, the necessary CPU time to solve the problem is amplified 

considerably.  

 All 10-customer instances with high variance could be solved by only F2 

formulation. It seems that on most instances, F1 and F3 have also found the optimal 

solutions as they reached the time limit. However, the optima could not be verified, 

as it was not possible to bound and/or prune all nodes in the branch-and-bound tree 

within the given time. This observation is also valid for 15 and 20-customer request 

instances. 
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Table 1: 10 Customer Requests with Low Variance 

10 

customers 
F1 

F1 with Covering Type 

Inequality 
F2 F3 

No: 
LP 

Relax. 
UB 

CPU 

(sec.) 

LP 

Relax 
UB 

CPU 

sec. 

LP 

Relax 
UB 

CPU  

sec.) 

LP 

Relax 
UB 

CPU  

(sec.) 

00c101 23.36 1572.2 5.85 1547.08 1572.2 0.21 1555.70 1572.2 0.69 1550.3 1572.2 2.05 

00c102 23.36 1572.1 397.93 1547.08 1572.1 3.31 1555.52 1572.1 1.14 1548.8 1572.1 10.61 

00c103 23.36 1572.1 393.69 1547.08 1572.1 3.01 1555.52 1572.1 1.05 1548.8 1572.1 10.58 

00c104 23.36 1569.3 1800.02* 1547.08 1569.3 4.72 1554.73 1569.3 1.05 1548.3 1569.3 17.68 

00c105 23.36 1572.2 4.72 1547.08 1572.2 0.27 1554.63 1572.2 0.30 1550.1 1572.2 3.75 

00c106 23.36 1572.2 5.03 1547.08 1572.2 0.91 1554.89 1572.2 0.57 1550.1 1572.2 1.83 

00c107 23.36 1572.2 4.75 1547.08 1572.2 0.29 1555.76 1572.2 0.49 1549.9 1572.2 2.25 

00c108 23.36 1569.3 51.74 1547.08 1569.3 0.85 1555.76 1569.3 0.57 1549.6 1569.3 2.77 

00c109 23.36 1569.3 133.46 1547.08 1569.3 1.27 1555.76 1569.3 0.46 1549.2 1569.3 3.42 

00c201 101.54 1642.0 1.27 1587.71 1642.0 0.21 1614.83 1642.0 0.43 1588.9 1642.0 2.50 

00c202 101.54 1642.0 1119.55 1587.71 1642.0 6.57 1614.83 1642.0 1.21 1588.0 1642.0 90.00 

00c203 101.54 1642.0 1129.80 1587.71 1642.0 5.65 1614.83 1642.0 1.19 1588.0 1642.0 81.95 

00c204 101.54 1642.0 1800.02* 1587.71 1642.0 12.5 1614.83 1642.0 1.39 1588.0 1642.0 30.44 

00c205 101.54 1642.0 33.39 1587.71 1642.0 1.38 1614.83 1642.0 0.52 1588.8 1642.0 16.39 

00c206 101.54 1642.0 38.93 1587.71 1642.0 2.28 1613.56 1642.0 0.47 1588.8 1642.0 5.23 

00c207 101.54 1642.0 22.25 1587.71 1642.0 1.39 1611.68 1642.0 0.57 1588.9 1642.0 13.59 

00c208 101.54 1642.0 15.45 1587.71 1642.0 2.61 1614.83 1642.0 0.80 1588.8 1642.0 20.44 

00r101 145.98 1548.5 0.18 1452.18 1548.5 0.19 1463.14 1548.5 0.25 1462.5 1548.5 8.16 

00r102 145.98 1483.9 227.58 1452.18 1483.9 5.36 1465.07 1483.9 1.91 1456.9 1483.9 6.76 

00r103 145.98 1483.9 228.17 1452.18 1483.9 4.68 1465.07 1483.9 1.88 1456.9 1483.9 6.60 

00r104 145.98 1470.5 1215.33 1452.18 1470.5 0.85 1465.30 1470.5 0.46 1456.7 1470.5 1.38 

00r105 145.98 1509.5 0.38 1452.18 1509.5 0.18 1464.94 1509.5 0.24 1460.7 1509.5 1.85 

00r106 145.98 1479.5 120.55 1452.18 1479.5 2.28 1465.07 1479.5 0.86 1456.9 1479.5 5.73 

00r107 145.98 1479.5 119.16 1452.18 1479.5 2.24 1465.07 1479.5 0.85 1456.9 1479.5 5.57 

00r108 145.98 1470.5 1800.00* 1452.18 1470.5 0.77 1465.30 1470.5 0.29 1456.7 1470.5 0.88 

00r109 145.98 1493.4 5.76 1452.18 1493.4 1.04 1462.45 1493.4 0.77 1458.6 1493.4 1.63 

00r110 145.98 1479.5 32.59 1452.18 1479.5 0.75 1462.45 1479.5 0.71 1458.1 1479.5 1.52 

00r111 145.98 1479.5 487.35 1452.18 1479.5 2.74 1464.63 1479.5 0.89 1458.1 1479.5 2.89 

00r112 145.98 1479.5 1104.62 1452.18 1479.5 3.48 1462.45 1479.5 1.18 1457.6 1479.5 2.49 

00r201 145.98 1500.5 6.35 1452.18 1500.5 0.22 1465.41 1500.5 0.13 1457.2 1500.5 4.12 
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Table 1: 10 Customer Requests with Low Variance (cont.) 

10 

customers 
F1 

F1 with Covering Type 

Inequality 
F2 F3 

No: 
LP 

Relax. 
UB 

CPU 

(sec.) 

LP 

Relax 
UB 

CPU 

sec. 

LP 

Relax 
UB 

CPU  

sec.) 

LP 

Relax 
UB 

CPU  

(sec.) 

00r202 145.98 1479.5 915.39 1452.18 1479.5 3.73 1462.59 1479.5 1.33 1453.1 1479.5 5.71 

00r203 145.98 1479.5 918.73 1452.18 1479.5 3.64 1462.59 1479.5 1.32 1453.1 1479.5 5.70 

00r204 145.98 1470.5 1800.05* 1452.18 1470.5 1.75 1462.48 1470.5 0.41 1453.1 1470.5 1.66 

00r205 145.98 1483.9 83.82 1452.18 1483.9 1.02 1464.93 1483.9 0.80 1454.3 1483.9 2.24 

00r206 145.98 1470.5 1800.01* 1452.18 1470.5 3.31 1463.12 1470.5 0.46 1453.1 1470.5 1.83 

00r207 145.98 1470.5 1800.10* 1452.18 1470.5 3.19 1463.12 1470.5 0.49 1453.1 1470.5 1.47 

00r208 145.98 1470.5 1800.02* 1452.18 1470.5 1.41 1462.49 1470.5 0.41 1453.1 1470.5 1.33 

00r209 145.98 1479.5 110.56 1452.18 1479.5 0.96 1462.66 1479.5 0.61 1453.6 1479.5 2.05 

00r210 145.98 1479.5 1179.87 1452.18 1479.5 2.59 1462.74 1479.5 1.08 1453.4 1479.5 7.04 

00r211 145.98 1470.5 1800.02* 1452.18 1470.5 1.13 1461.24 1470.5 0.46 1453.3 1470.5 0.91 

00rc101 42.39 2407.3 2.92 2291.43 2407.3 0.66 2305.18 2407.3 0.60 2293.7 2407.3 4.86 

00rc102 42.39 2399.4 77.26 2291.43 2399.4 38.4 2305.18 2399.4 1.35 2292.2 2399.4 54.43 

00rc103 42.39 2399.4 77.33 2291.43 2399.4 44.2 2305.18 2399.4 1.38 2292.2 2399.4 54.36 

00rc104 42.39 2399.4 447.79 2291.43 2399.4 63.4 2306.00 2399.4 1.86 2292.2 2399.4 54.54 

00rc105 42.39 2403.7 70.56 2291.43 2403.7 8.21 2305.20 2403.7 1.14 2292.4 2403.7 42.95 

00rc106 42.39 2407.3 15.87 2291.43 2407.3 16.9 2305.18 2407.3 1.28 2292.4 2407.3 34.79 

00rc107 42.39 2405.8 52.89 2291.43 2405.8 12.1 2306.26 2405.8 1.72 2292.2 2405.8 69.99 

00rc108 42.39 2399.4 192.82 2291.43 2399.4 25.4 2306.26 2399.4 1.16 2291.9 2399.4 51.66 

00rc201 42.39 2407.3 2.70 2291.43 2407.3 0.96 2305.44 2407.3 0.68 2293.6 2407.3 24.06 

00rc202 42.39 2399.4 155.96 2291.43 2399.4 47.6 2305.18 2399.4 0.97 2291.8 2399.4 69.57 

00rc203 42.39 2399.4 165.07 2291.43 2399.4 48.9 2305.18 2399.4 0.97 2291.8 2399.4 69.27 

00rc204 42.39 2399.4 303.01 2291.43 2399.4 64.3 2304.82 2399.4 2.05 2291.8 2399.4 110.52 

00rc205 42.39 2405.8 314.74 2291.43 2405.8 26.6 2303.99 2405.8 3.50 2291.8 2405.8 174.26 

00rc206 42.39 2407.3 48.24 2291.43 2407.3 9.29 2305.18 2407.3 1.85 2292.6 2407.3 66.04 

00rc207 42.39 2407.3 106.04 2291.43 2407.3 8.16 2306.27 2407.3 2.13 2292.1 2407.3 72.78 

00rc208 42.39 2399.4 442.24 2291.43 2399.4 63.7 2303.34 2399.4 1.5 2291.5 2399.4 108.24 

Avg.   481.96   10.2   0.98   26.02 
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Table 2: 10 Customer Requests with High Variance  

10 

customers 
F1 

F1 with Covering Type 

Inequality 
F2 F3 

No: 
LP 

Relax 
UB 

CPU 

(sec.) 

LP 

Relax 
UB 

CPU 

(sec.) 

LP 

Relax 
UB 

CPU  

(sec.) 

LP 

Relax 
UB 

CPU  

(sec.) 

01c101 258.34 939.60 1.15 785.25 939.60 0.37 897.39 939.60 0.46 783.36 939.60 38.30 

01c102 24.75 939.60 820.19 780.96 939.60 1146.79 893.02 939.60 4.82 781.33 939.60 1800* 

01c103 24.75 939.60 812.42 780.96 939.60 1134.53 893.02 939.60 4.08 781.33 939.60 1800* 

01c104 23.36 937.39 1800.00* 780.96 937.39 1800.02* 891.65 937.39 12.30 781.18 937.39 1800* 

01c105 258.21 939.60 0.56 785.12 939.60 0.81 897.27 939.60 1.81 783.03 939.60 56.87 

01c106 258.34 939.60 3.40 785.25 939.60 0.72 897.39 939.60 0.35 783.12 939.60 153.5 

01c107 258.21 939.60 1.00 785.12 939.60 1.34 897.27 939.60 0.97 782.85 939.60 293.7 

01c108 25.41 938.86 140.17 782.94 938.86 144.86 896.15 938.86 10.52 782.60 938.86 261.7 

01c109 24.33 938.74 26.55 782.94 938.74 29.76 894.41 938.74 1.24 782.24 938.74 1800* 

01c201 394.66 1002.27 0.97 852.27 1002.27 0.30 965.13 1002.27 0.63 832.30 1002.27 251.6 

01c202 118.14 1002.27 1320.53 833.32 1002.27 1800.00* 953.19 1002.27 3.08 827.83 1002.27 1800* 

01c203 118.14 1002.27 1373.10 833.32 1002.27 1800.00* 953.19 1002.27 2.89 827.83 1002.27 1800* 

01c204 101.54 1002.27 1800.03* 824.54 1002.27 1800.00* 948.49 1002.27 5.78 826.15 1002.27 1802* 

01c205 317.17 1002.27 17.86 830.81 1002.27 38.37 954.81 1002.27 1.55 830.91 1002.27 1338 

01c206 135.76 1002.27 51.73 830.81 1002.27 25.94 954.15 1002.27 2.20 830.11 1002.27 1800* 

01c207 330.34 1002.27 19.83 832.34 1002.27 26.90 958.72 1002.27 0.98 830.98 1002.27 1616 

01c208 124.62 1002.27 133.58 830.81 1002.27 115.78 954.15 1002.27 3.17 828.53 1002.27 1800* 

01r101 853.09 1087.34 0.14 1003.09 1087.34 0.17 1011.73 1087.34 0.29 907.46 1087.34 14.01 

01r102 145.98 983.92 175.81 879.40 983.92 45.51 887.35 983.92 165.88 884.22 983.92 315.80 

01r103 145.98 983.92 176.45 879.40 983.92 46.24 887.35 983.92 160.76 884.22 983.92 342.46 

01r104 145.98 908.29 983.73 879.40 908.29 5.76 887.35 908.29 5.56 884.01 908.29 3.41 

01r105 664.92 1009.53 0.31 964.92 1009.53 0.25 964.92 1009.53 1.41 889.32 1009.53 6.54 

01r106 145.98 941.11 437.94 879.40 941.11 42.51 887.35 941.11 107.68 884.22 941.11 149.97 

01r107 145.98 941.11 435.70 879.40 941.11 42.68 887.35 941.11 107.62 884.22 941.11 146.54 

01r108 145.980 908.29 1668.12 879.40 908.29 7.97 887.35 908.29 4.84 884.01 908.29 30.43 

01r109 400.81 993.44 1.70 900.83 993.44 1.51 908.84 993.44 17.43 886.48 993.44 96.24 

01r110 171.23 947.85 37.14 885.47 947.85 5.09 890.19 947.85 8.29 885.70 947.85 10.36 

01r111 145.98 941.11 310.80 879.40 941.11 62.85 887.35 941.11 106.52 885.52 941.11 188.91 

01r112 145.98 924.95 1390.62 879.40 924.95 21.90 887.35 924.95 120.37 885.15 924.95 85.07 
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Table 2: 10 Customer Requests with High Variance (cont.) 

10 

customers 
F1 

F1 with Covering Type 

Inequality 
F2 F3 

No: 
LP 

Relax 
UB 

CPU 

(sec.) 

LP 

Relax 
UB 

CPU 

(sec.) 

LP 

Relax 
UB 

CPU  

(sec.) 

LP 

Relax 
UB 

CPU  

(sec.) 

01r201 453.87 949.74 1.28 944.12 949.74 0.20 944.68 949.74 0.44 885.44 949.74 3.44 

01r202 145.98 917.24 1308.94 879.40 917.24 11.44 887.35 917.24 4.76 880.40 917.24 35.95 

01r203 145.98 917.24 1294.29 879.40 917.24 11.54 887.35 917.24 4.72 880.40 917.24 35.82 

01r204 145.98 905.07 1800.00* 879.40 905.07 5.94 887.35 905.07 3.45 880.39 905.07 9.47 

01r205 207.51 920.43 56.89 890.56 920.43 0.50 899.51 920.43 0.94 882.62 920.43 35.78 

01r206 145.98 905.07 1800.03* 879.40 905.07 2.14 887.35 905.07 1.64 880.40 905.07 4.20 

01r207 145.98 905.07 1800.02* 879.40 905.07 2.09 887.35 905.07 1.53 880.40 905.07 4.23 

01r208 145.98 908.29 1800.00* 879.40 905.07 3.18 887.35 905.07 1.88 880.39 905.07 3.02 

01r209 171.23 905.07 259.68 885.47 905.07 1.31 890.19 905.07 0.83 881.07 905.07 7.46 

01r210 145.98 917.24 1800.00* 879.40 917.24 15.10 887.35 917.24 6.25 880.62 917.24 57.57 

01r211 145.98 905.07 1800.00* 879.40 905.07 13.65 895.46 905.07 2.22 880.56 905.07 4.73 

01rc101 738.93 1485.25 3.12 1283.29 1485.25 1.58 1458.60 1485.25 0.91 1276.75 1485.25 570.4 

01rc102 110.89 1477.05 630.63 1271.01 1477.05 693.08 1448.31 1477.05 2.91 1272.23 1477.05 1800* 

01rc103 110.89 1477.05 634.56 1271.01 1477.05 687.11 1448.31 1477.05 2.67 1272.23 1477.05 1800* 

01rc104 42.39 1471.88 1800.00* 1270.33 1471.88 1800.00* 1430.21 1471.88 2.97 1272.23 1471.88 1800* 

01rc105 127.27 1519.52 103.29 1272.08 1519.52 420.09 1449.49 1519.52 9.44 1271.34 1523.41 1800* 

01rc106 53.60 1477.05 28.03 1277.21 1477.05 104.50 1432.93 1477.05 1.97 1273.04 1477.05 1800* 

01rc107 42.39 1471.88 397.21 1267.94 1471.88 375.89 1430.13 1471.88 4.31 1272.10 1471.88 1800* 

01rc108 42.39 1471.88 1800.02* 1267.94 1471.88 1800.00* 1430.13 1471.88 2.52 1272.01 1471.88 1807* 

01rc201 147.67 1480.13 52.26 1283.29 1480.13 132.74 1454.43 1480.13 0.83 1274.95 1480.13 1785 

01rc202 110.54 1474.91 1800.00* 1271.01 1474.91 1800.00* 1448.31 1474.91 2.20 1270.07 1474.91 1800* 

01rc203 110.54 1474.91 1800.00* 1271.01 1474.91 1800.00* 1448.31 1474.91 1.66 1270.07 1474.91 1800* 

01rc204 42.39 1471.88 1800.00* 1270.33 1471.88 1800.02* 1430.21 1471.88 3.55 1269.62 1471.88 1800* 

01rc205 112.81 1474.91 413.39 1272.08 1474.91 671.02 1448.59 1474.91 1.66 1271.18 1475.83 1800* 

01rc206 57.33 1477.10 196.76 1281.46 1477.10 222.57 1435.34 1477.10 1.75 1272.34 1477.10 1801* 

01rc207 48.14 1471.88 836.29 1272.08 1471.88 1271.05 1432.78 1471.88 2.05 1270.34 1471.88 1803* 

01rc208 42.39 1471.88 1800.00* 1267.94 1471.88 1800.06* 1430.13 1471.88 2.89 1268.78 1471.88 1800* 

Avg.   729.70   457.06   16.72   881.76 
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 As the 10-customer instances do not seem to be promising for F1 and F3 

formulations, we only solved the 15-customer instances with F1 with valid inequality, 

and with F2 formulation. The results of the 112 instances can be seen in Tables 3 and 

4. These instances could be solved within a reasonable time by the two formulations. 

On the average, F2 formulation was better in terms of lower bound and CPU time. On 

low variance instances, both formulations have found optimal solutions. However, on 

high variance instances, F1 with valid inequality has found only 11 optimal solutions 

out of 56. On the other hand, F2 has found 37 optimal solutions. Similar to the results 

of the 10-customer instances, F2 has found near-optimal solutions for the linear 

relaxation at the root node.  

 Finally, we solved 20-customer instances by using only F2 formulation. The 

results of these 112 instances can be seen in Tables 5 and 6. In the tables, “LB” 

indicates the best lower bound and “GAP” indicates the gap in percentage between 

the value of the linear relaxation at the root node and the optimal value. F2 has found 

optimal solutions in 26 out of 56 instances with low variance. For the instances 

reaching the time limit, the gaps are very small. A majority, namely 28 of the 30 

instances is less than %10 far from the optimum, and the average gap is %3.1. The 

number of instances that cannot be solved increases in high variance instances, as 

expected. Only 10 of 56 instances have been solved to optimality, where the largest 

gap from the optimum is %31.11, and the average gap is %6.46. Although the 

performance of F2 is much better than the other formulations, the results show that 

solving even the small sized instances is hard. Therefore, to solve larger instances, a 

heuristic algorithm is evidently crucial. In the next section, we compare the results of 

the F2 formulation with the solutions by our heuristic approach. Then, we analyze the 

quality of the proposed heuristic for larger sized instances. 
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Table 3: 15 Customer Requests with Low Variance 

15 

customers 
F1 with Covering Type Inequality F2 

No: 
LP 

Relax 
UB 

CPU 

(sec.) 

LP 

Relax 
UB 

CPU  

(sec.) 

00c101 2641.29 2691.37 3.85 2659.36 2691.37 4.73 

00c102 2604.58 2661.17 19.06 2650.84 2661.17 7.19 

00c103 2604.58 2661.17 19.19 2650.23 2661.17 11.68 

00c104 2604.58 2660.61 28.52 2649.52 2660.61 45.43 

00c105 2641.29 2690.68 5.83 2657.53 2690.68 6.05 

00c106 2641.29 2691.37 6.41 2659.36 2691.37 5.82 

00c107 2637.10 2689.65 56.94 2657.33 2689.65 8.14 

00c108 2629.54 2662.40 12.03 2653.09 2662.40 10.87 

00c109 2604.58 2661.17 43.07 2650.56 2661.17 20.44 

00c201 2674.28 2716.94 3.15 2704.21 2716.94 1.16 

00c202 2632.58 2715.22 160.06 2696.47 2715.22 17.38 

00c203 2632.58 2715.22 112.17 2696.47 2715.22 18.21 

00c204 2632.58 2715.22 255.56 2695.14 2715.22 80.04 

00c205 2627.23 2715.22 12.31 2694.33 2715.22 6.52 

00c206 2627.23 2715.22 42.88 2694.33 2715.22 10.25 

00c207 2627.23 2714.01 121.49 2695.36 2714.01 6.97 

00c208 2627.23 2714.01 20.83 2694.24 2714.01 6.57 

00r101 2359.56 2440.48 0.44 2360.44 2440.48 0.98 

00r102 2266.60 2372.00 400.21 2283.31 2372.00 122.98 

00r103 2255.39 2372.00 591.95 2276.82 2372.00 155.02 

00r104 2251.84 2339.90 50.28 2272.74 2339.90 64.86 

00r105 2328.49 2386.08 0.69 2329.83 2386.08 1.36 

00r106 2261.96 2344.12 33.06 2281.10 2344.12 37.19 

00r107 2255.39 2344.12 26.44 2276.82 2344.12 62.68 

00r108 2251.84 2339.90 95.91 2272.74 2339.90 89.51 

00r109 2261.40 2344.12 9.83 2279.89 2344.12 5.79 

00r110 2251.84 2339.90 57.97 2273.14 2339.90 62.68 

00r111 2255.39 2339.90 72.10 2276.82 2339.90 39.47 

00r112 2251.84 2339.90 165.20 2272.74 2339.90 218.56 

00r201 2311.48 2370.49 4.31 2314.73 2370.49 4.07 
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Table 3: 15 Customer Requests with Low Variance (cont.) 

15 

customers 
F1 with Covering Type Inequality F2 

No: 
LP 

Relax 
UB 

CPU 

(sec.) 

LP 

Relax 
UB 

CPU  

(sec.) 

00r202 2255.39 2339.90 48.91 2276.82 2339.90 9.03 

00r203 2255.39 2339.90 54.41 2276.82 2339.90 20.51 

00r204 2251.84 2339.90 137.09 2272.74 2339.90 29.00 

00r205 2261.40 2344.12 55.68 2280.71 2344.12 48.45 

00r206 2255.39 2339.90 86.56 2276.82 2339.90 27.78 

00r207 2255.39 2339.90 104.08 2276.82 2339.90 108.05 

00r208 2251.84 2339.90 117.14 2272.74 2339.90 304.39 

00r209 2261.28 2339.90 31.00 2277.94 2339.90 53.91 

00r210 2255.39 2339.90 29.36 2276.82 2339.90 31.59 

00r211 2251.84 2339.90 172.35 2272.74 2339.90 58.91 

00rc101 3594.82 3639.95 1.09 3604.89 3639.95 2.96 

00rc102 3586.31 3632.09 22.46 3598.72 3632.09 14.37 

00rc103 3586.31 3632.09 93.38 3598.05 3632.09 78.53 

00rc104 3586.31 3631.74 135.61 3596.63 3631.74 51.57 

00rc105 2950.00 3636.37 25.02 3599.79 3636.37 16.15 

00rc106 2950.00 3637.05 11.47 3598.02 3637.05 15.36 

00rc107 3583.59 3636.77 97.24 3595.83 3636.77 74.30 

00rc108 2950.00 3631.74 189.03 3595.83 3631.74 27.56 

00r201 2950.00 3639.95 5.83 3604.89 3639.95 5.77 

00rc202 3586.31 3632.09 84.40 3598.72 3632.09 13.90 

00rc203 3586.31 3632.09 69.55 3598.05 3632.09 128.48 

00rc204 2950.00 3631.74 127.22 3596.63 3631.74 16.89 

00rc205 3586.31 3637.12 45.90 3600.87 3637.12 48.95 

00rc206 3590.64 3639.53 40.09 3598.69 3639.53 44.83 

00rc207 3584.69 3636.77 109.56 3596.27 3636.77 86.38 

00rc208 2950.00 3631.74 201.01 3595.83 3631.74 198.65 

Avg.   80.84   47.30 
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Table 4: 15 Customer Requests with High Variance 

15 

customers 
F1 with Covering Type Inequality F2 

No: 
LP 

Relax 
UB 

CPU 

(sec.) 

LP 

Relax 
UB 

CPU  

(sec.) 

01c101 1329.40 1635.30 0.89 1591.94 1635.30 3.12 

01c102 1329.76 1635.30 1800.19* 1591.38 1635.30 41.91 

01c103 1329.76 1632.72 1800.27* 1591.24 1632.72 53.16 

01c104 1329.63 1633.12 1800.32* 1592.35 1632.72 84.29 

01c105 1329.63 1635.30 64.03 1592.02 1635.30 8.68 

01c106 1329.40 1635.30 47.41 1592.64 1635.30 7.34 

01c107 1329.53 1634.43 1276.14 1592.49 1634.43 7.87 

01c108 1329.40 1635.30 1801.99* 1595.18 1634.43 38.12 

01c109 1368.49 1630.97 1800.07* 1592.96 1630.97 36.43 

01c201 1354.75 1682.86 5.23 1641.16 1682.86 1.11 

01c202 1354.01 1679.90 1800.41* 1638.05 1679.90 23.83 

01c203 1355.64 1678.15 1800.04* 1639.66 1678.15 22.75 

01c204 1368.49 1698.66 1800.08* 1640.39 1678.15 68.35 

01c205 1354.01 1678.15 1104.4 1638.77 1678.15 7.63 

01c206 1352.00 1678.15 1800.02* 1640.14 1678.15 4.78 

01c207 1349.97 1678.15 1800.08* 1641.16 1678.15 6.09 

01c208 1282.08 1678.15 1800.02* 1637.41 1678.15 6.34 

01r101 1287.09 1683.83 2.02 1361.38 1683.83 0.77 

01r102 1287.30 1523.99 1801.61* 1361.46 1548.55 1802.27* 

01r103 1289.81 1643.38 1802.22* 1360.83 1601.63 1800.05* 

01r104 1279.77 1491.89 1800.05* 1361.40 1491.89 1802.28* 

01r105 1287.27 1566.94 22.78 1361.46 1566.94 178.78 

01r106 1287.58 1496.11 1800.02* 1361.46 1496.11 1803.63* 

01r107 1289.81 1496.11 1800.63* 1361.46 1583.06 1804.84* 

01r108 1286.56 1447.52 1800.10* 1361.23 1445.08 1800.05* 

01r109 1286.67 1449.07 897.54 1361.23 1449.07 464.56 

01r110 1285.35 1491.89 1800.05* 1361.16 1504.67 1801.32* 

01r111 1283.12 1491.89 1800.12* 1361.39 1509.93 1803.47* 

01r112 1274.59 1564.88 1800.10* 1361.46 1481.21 1813.03* 

01r201 1288.91 1460.80 496.23 1360.99 1460.80 63.34 
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Table 4: 15 Customer Requests with High Variance (cont.) 

15 

customers 
F1 with Covering Type Inequality F2 

No: 
LP 

Relax 
UB 

CPU 

(sec.) 

LP 

Relax 
UB 

CPU  

(sec.) 

01r202 1288.91 1465.76 1800.09* 1360.76 1483.35 1822.08* 

01r203 1287.88 1491.89 1800.04* 1361.27 1491.89 1808.49* 

01r204 1282.78 1429.33 1800.05* 1361.04 1442.57 1805.28* 

01r205 1286.67 1494.32 1800.07* 1361.06 1449.05 1800.52* 

01r206 1287.09 1471.47 1800.05* 1361.39 1439.45 1807.68* 

01r207 1289.40 1499.27 1800.04* 1360.51 1471.47 1808.51* 

01r208 1289.40 1508.64 1800.05* 1361.24 1451.58 1802.21* 

01r209 1280.14 1507.79 1800.05* 1361.27 1449.07 1803.47* 

01r210 1287.44 1491.89 1800.04* 1361.38 1504.38 1807.81* 

01r211 1281.34 1491.89 1800.05* 1360.82 1444.96 1801.46* 

01rc101 1702.66 2153.27 934.30 2105.60 2153.27 4.17 

01rc102 1689.92 2147.78 1800.02* 2106.03 2144.01 29.86 

01rc103 1692.25 2144.01 1800.02* 2105.89 2144.01 10.60 

01rc104 1702.66 2141.02 1800.07* 2106.33 2141.02 17.02 

01rc105 1702.20 2144.93 1802.35* 2105.92 2144.01 30.49 

01rc106 1702.66 2141.02 1800.10* 2106.35 2141.02 6.71 

01rc107 1687.15 2139.91 1800.02* 2106.59 2139.91 71.66 

01rc108 1702.66 2139.91 1800.02* 2105.40 2139.91 120.75 

01rc201 1693.24 2153.27 907.10 2106.12 2153.27 13.08 

01rc202 1692.97 2144.01 1800.04* 2106.21 2144.01 15.50 

01rc203 1695.35 2144.01 1800.41* 2106.32 2144.01 43.90 

01rc204 1702.66 2141.32 1800.37* 2106.89 2141.02 23.83 

01rc205 1694.91 2144.01 1800.07* 2106.32 2144.01 9.76 

01rc206 1689.58 2146.24 1800.04* 2106.35 2146.24 39.10 

01rc207 1702.44 2139.91 1800.10* 2106.41 2139.91 19.38 

01rc208 1696.77 2139.91 1800.18* 2106.31 2139.91 27.60 

Avg.   1517.36   641.26 
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Table 5: 20 Customer Requests with Low Variance 

20 

customers 
F2 

No: LP Relax. LB UB GAP (%) CPU (sec.) 

00c101 3327.52 3337.58 3337.58 - 5.76 

00c102 3320.94 3278.71 3337.58 - 583.18 

00c103 3308.30 3329.56 3337.58 0.24 1802.42* 

00c104 3307.08 3334.55 3337.54 0.09 1800.11* 

00c105 3317.81 3337.58 3337.58 - 17.56 

00c106 3327.52 3337.58 3337.58 - 4.10 

00c107 3313.83 3337.58 3337.58 - 12.96 

00c108 3309.39 3334.74 3334.74 - 223.39 

00c109 3308.20 3334.74 3334.74 - 369.75 

00c201 3376.18 3395.20 3395.20 - 3.40 

00c202 3355.92 3390.79 3390.79 - 560.06 

00c203 3353.81 3377.16 3390.79 0.40 1800.08* 

00c204 3352.71 3378.24 3390.79 0.37 1800.70* 

00c205 3355.93 3395.20 3395.20 - 230.51 

00c206 3355.76 3395.20 3395.20 - 864.09 

00c207 3362.63 3395.20 3395.20 - 873.03 

00c208 3355.61 3395.20 3395.20 - 1230.11 

00r101 2691.25 2890.37 2890.37 - 345.31 

00r102 2486.57 2510.03 2790.25 10.04 1801.06* 

00r103 2453.68 2470.04 2824.52 12.55 1819.06* 

00r104 2453.68 2469.87 2814.61 12.55 1800.56* 

00r105 2509.83 2620.95 2620.95 - 1372.73 

00r106 2467.73 2487.77 2677.23 7.08 1818.52* 

00r107 2453.68 2493.30 2580.38 3.73 1800.73* 

00r108 2453.68 2467.10 2829.43 12.81 1800.53* 

00r109 2470.43 2487.64 2778.74 10.48 1800.07* 

00r110 2453.70 2471.12 2668.16 7.38 1800.72* 

00r111 2454.93 2471.64 2646.49 6.61 1800.86* 

00r112 2453.68 2509.19 2684.23 6.52 1800.94* 

00r201 2495.07 2520.84 2686.16 6.15 1800.93* 

00r202 2458.14 2478.03 2726.14 9.10 1800.11* 
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Table 5: 20 Customer Requests with Low Variance (cont.) 

20 

customers 
F2 

No: LP Relax. LB UB GAP (%) CPU (sec.) 

00r203 2453.68 2470.09 2603.79 5.13 1800.43* 

00r204 2453.68 2471.08 2673.36 7.57 1800.52* 

00r205 2468.64 2486.31 2666.11 6.74 1800.76* 

00r206 2454.93 2472.94 2665.68 7.23 1800.15* 

00r207 2453.68 2468.94 2692.89 8.32 1800.02* 

00r208 2453.68 2468.42 2685.00 8.07 1800.88* 

00r209 2456.59 2474.68 2636.87 6.15 1803.15* 

00r210 2454.93 2471.04 2721.70 9.21 1800.45* 

00r211 2453.68 2468.19 2652.45 6.95 1800.02* 

00rc101 4286.36 4373.20 4456.54 1.87 1800.47* 

00rc102 4228.63 4253.70 4253.70 - 185.14 

00rc103 4224.44 4246.97 4246.97 - 591.81 

00rc104 4224.40 4243.10 4246.97 0.09 1800.05* 

00rc105 4229.60 4253.63 4253.63 - 412.54 

00rc106 4229.79 4255.16 4255.16 - 715.03 

00rc107 4222.76 4243.40 4246.97 0.02 1800.02* 

00rc108 4222.76 4238.15 4246.97 0.21 1800.05* 

00rc201 4238.24 4290.38 4290.38 - 6.43 

00rc202 4228.56 4253.63 4253.63 - 390.35 

00rc203 4224.44 4246.97 4246.97 - 886.28 

00rc204 4224.40 4246.97 4246.97 - 869.55 

00rc205 4229.37 4253.63 4253.63 - 366.81 

00rc206 4231.39 4255.44 4255.44 - 48.43 

00rc207 4223.59 4243.67 4246.97 0.08 1800.02* 

00rc208 4222.76 4236.67 4246.97 0.24 1804.47* 

Avg.    3.10 1196.91 
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Table 6: 20 Customer Requests with High Variance 

20 

customers 
F2 

No: LP Relax. LB UB GAP (%) CPU (sec.) 

01c101 1666.22 1695.93 1695.93 - 63.22 

01c102 1658.46 1669.42 1693.40 1.42 1800.24* 

01c103 1645.77 1660.65 1824.41 8.98 1804.50* 

01c104 1644.73 1659.90 1890.49 12.20 1805.05* 

01c105 1665.89 1689.33 1689.33 - 1142.49 

01c106 1666.22 1695.93 1695.93 - 213.79 

01c107 1654.56 1689.33 1689.33 - 353.35 

01c108 1644.99 1672.61 1689.33 0.99 1800.10* 

01c109 1643.96 1661.78 1690.23 1.68 1803.10* 

01c201 1712.24 1729.49 1729.49 - 5.59 

01c202 1698.61 1719.74 1729.49 0.56 1800.26* 

01c203 1688.59 1711.60 1730.16 1.07 1800.15* 

01c204 1686.76 1708.69 1730.89 1.28 1800.05* 

01c205 1699.51 1729.49 1729.49 - 36.04 

01c206 1696.21 1724.51 1729.49 0.29 1800.05* 

01c207 1694.28 1727.8 1727.80 - 922.98 

01c208 1694.15 1726.04 1729.88 0.22 1800.18* 

01r101 2113.63 2119.33 2119.33 - 1.11 

01r102 1388.63 1407.94 2043.84 31.11 1819.93* 

01r103 1343.59 1355.75 1700.13 20.26 1809.35* 

01r104 1343.58 1354.57 1801.20 24.30 1814.11* 

01r105 1443.46 1626.39 1760.77 7.63 1800.10* 

01r106 1361.34 1379.50 1799.53 23.34 1805.19* 

01r107 1343.59 1356.19 1601.63 15.32 1803.20* 

01r108 1343.58 1354.65 1690.20 19.85 1804.30* 

01r109 1371.68 1386.11 1703.37 18.63 1817.28* 

01r110 1345.92 1356.44 1677.51 19.14 1810.29* 

01r111 1345.71 1357.89 1585.08 14.33 1812.88* 

01r112 1343.58 1353.66 1417.74 4.52 1800.05* 

01r201 1408.23 1456.4 1456.40 - 991.00 

01r202 1348.47 1368.82 1635.15 16.29 1803.94* 
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Table 6: 20 Customer Requests with High Variance (cont.) 

20 

customers 
F2 

No: LP Relax. LB UB GAP (%) CPU (sec.) 

01r203 1343.59 1355.30 1455.95 6.91 1812.41* 

01r204 1343.58 1354.17 1376.46 1.62 1803.44* 

01r205 1368.36 1379.15 1607.48 14.20 1807.06* 

01r206 1345.78 1357.99 1557.81 12.83 1807.48* 

01r207 1343.59 1354.82 1659.93 18.38 1805.61* 

01r208 1343.58 1357.15 1376.46 1.40 1802.94* 

01r209 1351.62 1364.10 1421.37 4.03 1804.36* 

01r210 1345.71 1358.85 1431.83 5.10 1809.26* 

01r211 1343.58 1354.57 1384.84 2.19 1804.80* 

01rc101 2175.69 2327.57 2327.57 - 809.21 

01rc102 2123.02 2253.43 2316.38 2.72 1801.97* 

01rc103 2100.47 2203.11 2304.34 4.39 1820.46* 

01rc104 2099.76 2230.35 2298.16 2.95 1800.18* 

01rc105 2123.43 2220.08 2322.61 4.41 1802.75* 

01rc106 2110.33 2243.74 2310.46 2.89 1800.07* 

01rc107 2106.63 2234.00 2307.64 3.19 1805.42* 

01rc108 2096.38 2204.92 2298.16 4.06 1802.80* 

01rc201 2132.30 2287.06 2321.90 1.50 1803.75* 

01rc202 2117.94 2226.45 2311.33 3.67 1802.81* 

01rc203 2100.47 2204.03 2311.34 4.64 1816.73* 

01rc204 2099.76 2203.59 2309.58 4.59 1824.27* 

01rc205 2121.52 2265.52 2313.45 2.07 1800.46* 

01rc206 2112.86 2220.74 2308.77 3.81 1802.88* 

01rc207 2110.25 2227.72 2302.21 3.24 1802.10* 

01rc208 2096.38 2212.87 2300.09 3.79 1803.67* 

Avg.    6.46 1564.29 
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5.2 Heuristic Results 

 The proposed algorithm uses 11 different parameters in its execution as shown 

in Table 7, of which values are to be determined. To determine good values for the 

algorithm parameters, a pilot experiment was performed. Only one parameter’s value 

was changed while the others were fixed. The ALNS algorithm was executed for 10 

replications for each setting on all instances that contain 50 customer requests, and 

the best combination of parameters was chosen. Table 7 lists the best values.  

 The most important parameter is  𝑟, which determines the number of customers 

to be removed from the current solution at each iteration. As shown by Pisinger and 

Ropke (2006, 2007), removing a large number of requests is not necessary to find 

good solutions. If 𝑟 is too large, the heuristic may try to solve the problem from the 

scratch at each iteration. If 𝑟 is too small on the other hand, the heuristic is not able to 

move to different solutions, and most probably trap in local optima. The value of this 

parameter is therefore chosen as instance-dependent. If the total number of customer 

requests is below 100 (𝑛 ≤ 100), 𝑟 is chosen at random in the interval [0.1𝑛, 0.4𝑛], 

and for larger instances 𝑟 is chosen at random in the interval [20, 40]. 

Table 7: Parameters of ALNS 

Parameter Definition Best Value 

𝑟 Number of customers removed at each iteration 

𝑟 ∈ [0.1𝑛, 0.4𝑛] 

or 

𝑟 ∈ [20,40] 

𝜇 
Penalizes the solution if there is a request in 

request bank  
10−5 

𝛼 Effect of distance value at Shaw removal 0.2 

𝛽 
Effect of difference of demands value at Shaw 

removal 
0.5 

𝑇𝑠𝑡𝑎𝑟𝑡 Initial value of temperature 
Cost of  the  

initial solution 

𝑐 Cooling rate  0.99975 

𝜎1 Score of finding the new best solution 50 
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𝜎2 Score of finding a better solution than current one 20 

𝜎3 
Score of finding a non-improving solution which 

is accepted 
10 

𝜑 Number of consecutive iterations in a segment  50 

𝜌 Reaction factor 0.01 

 ALNS algorithm was executed for 10 replications for each instance. The best 

and the average solutions are reported. The maximum number of iterations for ALNS 

is fixed to 5000 iterations. This means that, if only one vehicle is removed from the 

solution at the end of the algorithm, 10000 ALNS steps were executed.  

 The comparison between F2 formulation and ALNS on 20-request instances is 

shown in Tables 8 and 9. In the tables, “GAP” indicates the percentage gap between 

the solution of F2 (𝑈𝐵𝐹2
) formulation and the best solution of the ALNS 

(𝑈𝐵𝐴𝐿𝑁𝑆𝐵𝑒𝑠𝑡
), which can be computed as 𝐺𝐴𝑃 = %100 ∗

𝑈𝐵𝐴𝐿𝑁𝑆𝐵𝑒𝑠𝑡
−𝑈𝐵𝐹2

𝑈𝐵𝐴𝐿𝑁𝑆𝐵𝑒𝑠𝑡

.  

 Our first observation is that the proposed algorithm works better on harder 

instances such as r instances, which have short planning horizon and low demands. 

Even when a better solution is obtained by F2, the resulting gap is very small. The 

largest gap is %8.95 whereas the smallest is %-10.30. On the average, ALNS finds 

better solutions, and the average gap is %-0.90 for low-variance instances. For high 

variance instances, the largest gap is %29.74, which may be due the tightness of the 

problem. F2 can solve the problem very quickly when the constraints are very tight. 

But it should be noted that the fleet is heterogeneous, which means the selection of 

vehicles to be used is extremely important. If ALNS starts by selecting the wrong 

vehicles, at the end of the search, the algorithm may not be able to remove any 

vehicles, leading to a poor solution. For other instances, the gap is never so high, and 

on the average ALNS finds better solutions. The average gap for the high-variance 

instances is %-0.66. The algorithm performs very robustly in terms of computation 

time for both settings. The longest computation times of ALNS are less than 12 

seconds for low variance, and less than 11 seconds for high variance instances. On 

the average, the CPU time of low and high variance instances are 6.03 and 5.17 

seconds respectively, which are significantly shorter than the computation time of F2. 
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Table 8:  Comparison of F2 and ALNS 

20 customers F2 ALNS (Best over 10 reps.) ALNS (Avg. over 10 reps.) 

No: UB CPU (sec.) UB GAP (%) UB  CPU (sec.) 

00c101 3337.58 5.76 3337.58 - 3342.338 6.28 

00c102 3337.58 583.18 3337.58 - 3343.673 7.04 

00c103 3337.58 1802.42* 3337.58 - 3340.713 8.29 

00c104 3337.54 1800.11* 3337.54 - 3339.334 5.04 

00c105 3337.58 17.56 3337.58 - 3341.491 6.99 

00c106 3337.58 4.10 3337.58 - 3340.946 6.76 

00c107 3337.58 12.96 3337.58 - 3343.145 6.65 

00c108 3334.74 223.39 3339.78 0.1509 3442.925 2.08 

00c109 3334.74 369.75 3339.78 0.1509 3380.974 6.89 

00c201 3395.20 3.40 3420.17 0.7300 3422.299 7.01 

00c202 3390.79 560.06 3390.79 - 3393.333 7.33 

00c203 3390.79 1800.08* 3390.79 - 3498.989 2.20 

00c204 3390.79 1800.70* 3394.5 0.1092 3508.923 6.83 

00c205 3395.20 230.51 3494.76 2.8488 3509.003 2.11 

00c206 3395.20 864.09 3424.33 0.8506 3438.826 4.36 

00c207 3395.20 873.03 3425.18 0.8752 3434.987 6.29 

00c208 3395.20 1230.11 3425.63 0.8883 3432.439 4.75 

00r101 2890.37 345.31 3174.82 8.9595 3186.163 11.47 

00r102 2790.25 1801.06* 2860.68 2.4620 2873.066 6.35 

00r103 2824.52 1819.06* 2582.43 -9.3745 2629.694 6.36 

00r104 2814.61 1800.56* 2569.65 -9.5328 2617.651 6.58 

00r105 2620.95 1372.73 2854.07 8.1679 2862.523 7.00 

00r106 2677.23 1818.52* 2611.51 -2.5165 2624.882 6.76 

00r107 2580.38 1800.73* 2581.18 0.0309 2624.3 8.83 

00r108 2829.43 1800.53* 2565.06 -10.3066 2581.041 10.36 

00r109 2778.74 1800.07* 2633.39 -5.5195 2654.709 6.66 

00r110 2668.16 1800.72* 2595.77 -2.7887 2664.775 7.18 

00r111 2646.49 1800.86* 2582.97 -2.4591 2646.359 7.35 

00r112 2684.23 1800.94* 2571.46 -4.3854 2579.301 7.64 

00r201 2686.16 1800.93* 2618.08 -2.6003 2636.086 7.44 

00r202 2726.14 1800.11* 2588.68 -5.3100 2604.568 6.70 
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Table 8:  Comparison of F2 and ALNS (cont.) 

20 customers F2 ALNS (Best over 10 reps.) ALNS (Avg. over 10 reps.) 

No: UB CPU (sec.) UB GAP (%) UB  CPU (sec.) 

00r203 2603.79 1800.43* 2571.19 -1.2679 2611.109 8.27 

00r204 2673.36 1800.52* 2555.18 -4.6251 2567.057 9.23 

00r205 2666.11 1800.76* 2606.31 -2.2944 2614.862 7.78 

00r206 2665.68 1800.15* 2577.19 -3.4335 2591.104 7.23 

00r207 2692.89 1800.02* 2574.59 -4.5949 2582.942 7.79 

00r208 2685.00 1800.88* 2568.00 -4.5560 2601.478 7.68 

00r209 2636.87 1803.15* 2572.64 -2.4966 2593.964 7.35 

00r210 2721.70 1800.45* 2577.95 -5.5761 2617.763 8.10 

00r211 2652.45 1800.02* 2551.78 -3.9450 2588.63 8.54 

00rc101 4456.54 1800.47* 4353.76 -2.3607 4363.898 3.71 

00rc102 4253.70 185.14 4353.70 2.2968 4396.669 3.66 

00rc103 4246.97 591.81 4355.90 2.5007 4398.88 3.78 

00rc104 4246.97 1800.05* 4349.71 2.3619 4398.838 3.88 

00rc105 4253.63 412.54 4253.63 - 4400.344 3.79 

00rc106 4255.16 715.03 4255.16 - 4364.01 4.02 

00rc107 4246.97 1800.02* 4254.89 0.1869 4360.423 3.79 

00rc108 4246.97 1800.05* 4253.99 0.1650 4399.379 3.62 

00rc201 4290.38 6.43 4290.38 - 4368.33 4.01 

00rc202 4253.63 390.35 4258.69 0.1188 4363.545 4.43 

00rc203 4246.97 886.28 4257.28 0.2421 4362.83 4.08 

00rc204 4246.97 869.55 4249.88 0.0684 4363.956 3.76 

00rc205 4253.63 366.81 4358.89 2.4148 4364.031 4.11 

00rc206 4255.44 48.43 4355.85 2.3051 4402.851 3.35 

00rc207 4246.97 1800.02* 4249.71 0.0644 4357.168 4.24 

00rc208 4246.97 1804.47* 4255.14 0.1920 4361.284 4.30 

Avg.  1196.91  -0.9071  6.03 
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Table 9: Comparison of F2 and ALNS 

20 customers F2 ALNS (Best over 10 reps.) ALNS (Avg. over 10 reps.) 

No: UB CPU (sec.) UB  GAP  UB CPU (sec.) 

01c101 1695.93 63.22 1695.93 - 1696.514 4.43 

01c102 1693.40 1800.24* 1693.40 - 1694.888 5.33 

01c103 1824.41 1804.50* 1688.98 -8.01 1692.375 5.92 

01c104 1890.49 1805.05* 1689.38 -11.9 1691.023 5.38 

01c105 1689.33 1142.49 1689.33 - 1691.016 5.31 

01c106 1695.93 213.79 1695.93 - 1697.751 4.68 

01c107 1689.33 353.35 1689.33 - 1691.081 4.58 

01c108 1689.33 1800.10* 1689.33 - 1692.017 5.63 

01c109 1690.23 1803.10* 1688.5 -0.10 1689.633 5.55 

01c201 1729.49 5.59 1729.49 - 1729.49 4.62 

01c202 1729.49 1800.26* 1729.49 - 1729.756 5.59 

01c203 1730.16 1800.15* 1729.49 -0.03 1730.406 5.39 

01c204 1730.89 1800.05* 1727.80 -0.17 1729.246 6.22 

01c205 1729.49 36.04 1729.49 - 1730.171 5.30 

01c206 1729.49 1800.05* 1729.49 - 1730.65 4.64 

01c207 1727.80 922.98 1727.80 - 1728.008 5.29 

01c208 1729.88 1800.18* 1729.49 -0.02 1730.129 4.99 

01r101 2119.33 1.11 3016.62 29.74 3016.651 7.91 

01r102 2043.84 1819.93* 2634.91 22.43 2634.91 5.81 

01r103 1700.13 1809.35* 1685.85 -0.84 1688.21 4.85 

01r104 1801.20 1814.11* 1428.55 -26.08 1459.4 5.46 

01r105 1760.77 1800.10* 1860.77 5.37 1912.941 10.54 

01r106 1799.53 1805.19* 1784.65 -0.83 1784.65 8.33 

01r107 1601.63 1803.20* 1453.34 -10.20 1483.382 6.39 

01r108 1690.20 1804.30* 1409.32 -19.93 1411.92 6.96 

01r109 1703.37 1817.28* 1776.87 4.13 1776.87 8.63 

01r110 1677.51 1810.29* 1662.25 -0.91 1669.558 6.37 

01r111 1585.08 1812.88* 1475.22 -7.44 1581.594 4.90 

01r112 1417.74 1800.05* 1413.67 -0.28 1418.558 6.82 

01r201 1456.40 991.00 1493.48 2.48 1504.113 5.39 

01r202 1635.15 1803.94* 1430.37 -14.31 1437.463 6.01 
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Table 9:  Comparison of F2 and ALNS (cont.) 

20 customers F2 ALNS (Best over 10 reps.) ALNS (Avg. over 10 reps.) 

No: UB CPU (sec.) UB  GAP  UB CPU (sec.) 

01r203 1455.95 1812.41* 1414.03 -2.96 1432.358 6.00 

01r204 1376.46 1803.44* 1383.50 0.50 1400.609 5.82 

01r205 1607.48 1807.06* 1434.40 -12.06 1442.765 6.04 

01r206 1557.81 1807.48* 1412.06 -10.32 1416.223 7.38 

01r207 1659.93 1805.61* 1412.06 -17.55 1417.258 6.41 

01r208 1376.46 1802.94* 1383.50 0.50 1392.657 7.01 

01r209 1421.37 1804.36* 1422.62 0.08 1426.418 6.46 

01r210 1431.83 1809.26* 1423.09 -0.61 1427.556 6.49 

01r211 1384.84 1804.80* 1370.91 -1.01 1377.767 6.75 

01rc101 2327.57 809.21 2386.70 2.47 2390.769 4.88 

01rc102 2316.38 1801.97* 2378.57 2.61 2379.216 5.46 

01rc103 2304.34 1820.46* 2376.27 3.02 2377.4 2.62 

01rc104 2298.16 1800.18* 2369.33 3.00 2370.007 2.80 

01rc105 2322.61 1802.75* 2383.09 2.53 2383.783 2.75 

01rc106 2310.46 1800.07* 2377.11 2.80 2377.253 2.53 

01rc107 2307.64 1805.42* 2364.39 2.40 2364.72 2.70 

01rc108 2298.16 1802.80* 2364.39 2.80 2365.545 2.43 

01rc201 2321.90 1803.75* 2383.93 2.60 2385.75 2.65 

01rc202 2311.33 1802.81* 2378.50 2.82 2380.791 2.75 

01rc203 2311.34 1816.73* 2375.39 2.69 2376.956 2.95 

01rc204 2309.58 1824.27* 2369.33 2.52 2371.876 3.16 

01rc205 2313.45 1800.46* 2378.50 2.73 2381.313 2.74 

01rc206 2308.77 1802.88* 2377.11 2.87 2377.856 2.57 

01rc207 2302.21 1802.10* 2364.94 2.65 2366.77 2.47 

01rc208 2300.09 1803.67* 2364.39 2.71 2364.802 2.68 

Avg.  1564.29  -0.66  5.17 
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 To see how ALNS works on larger instances, 50 and 100-request instances 

were used. However, F2 formulation could not obtain the optimal solutions for these 

larger instances. Hence, we employed a simple insertion heuristic, namely regret-2, 

and compare its results with ALNS. The results are reported in the following four 

tables.  

 The solutions for the 50-request instances are shown in Tables 10 and 11. In 

this case, “GAP1” columns indicate the percentage gaps between regret-2 solution 

and the best ALNS solution, and “GAP2” columns indicate the percentage gaps 

between the average ALNS solution and the best ALNS solution. If GAP2 

approaches zero, we can say that the algorithm is stable in terms of solution quality 

among its different replications. When we compare regret-2 and the best ALNS 

solutions, huge differences exist in almost all instances, as expected. For low-

variance instances the average gap is %12.97, and for high-variance the average gap 

is %18.08.  

 As regret-2 is a simple insertion heuristic, all instances can be solved less than 

1 second. Our heuristic also runs under a minute for the 50-request instances, which 

is quite fast.  

 The percentage gaps between the best and the average solutions of the ALNS 

are very small. In almost all instances, the gap is less than %2, and on the average it is 

%0.75 for low-variance instances and %1.20 for high-variance instances. This 

observation may indicate that the algorithm converges to a small range of solutions, 

which may be close to the optimal solution. Another important observation is on 

computation times. It seems that the computation time of ALNS does not increase 

significantly when the problem size is increased. This fact is interesting, as it 

contradicts a common disadvantage of metaheuristic algorithms. 
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Table 10: Results of ALNS on 50 Requests with Low Variance 

50 

customers 
Regret-2 

ALNS 

(Avg. over 10 reps.) 

ALNS 

(Best over 10 reps.) 

No: UB GAP1 UB 
CPU 

(sec.) 
UB GAP2 

00c101 6434.60 11.47 5719.011 28.66 5697.03 0.38 

00c102 6539.85 12.64 5730.656 33.12 5713.53 0.29 

00c103 6631.71 13.84 5724.062 33.65 5714.10 0.17 

00c104 6614.71 13.71 5719.818 37.47 5708.26 0.20 

00c105 6373.73 10.56 5721.86 30.78 5700.81 0.36 

00c106 6414.79 11.12 5722.097 31.15 5701.89 0.35 

00c107 6449.23 11.60 5723.56 30.17 5701.73 0.38 

00c108 6461.21 11.21 5763.817 23.70 5737.16 0.46 

00c109 6685.58 14.26 5746.847 41.93 5732.27 0.25 

00c201 6428.64 10.02 5794.722 35.81 5785.02 0.16 

00c202 6574.89 11.74 5813.425 37.22 5803.36 0.17 

00c203 6645.11 12.69 5813.573 43.88 5802.30 0.19 

00c204 6830.00 15.05 5813.382 43.47 5802.75 0.18 

00c205 6680.02 12.99 5826.144 28.93 5812.30 0.23 

00c206 6755.78 14.00 5827.175 35.55 5810.44 0.28 

00c207 6818.60 14.88 5811.685 39.53 5804.17 0.12 

00c208 6759.01 14.08 5820.458 31.40 5807.83 0.21 

00r101 8930.83 18.82 7265.394 64.74 7250.70 0.20 

00r102 7925.30 17.01 6580.466 59.94 6577.61 0.04 

00r103 5613.43 3.57 5460.041 15.22 5413.39 0.85 

00r104 7023.56 24.44 5331.922 64.03 5307.18 0.46 

00r105 7303.84 16.94 6092.499 58.17 6066.71 0.42 

00r106 6246.13 13.15 5555.515 29.69 5425.31 2.34 

00r107 6300.55 14.56 5398.414 30.31 5383.31 0.27 

00r108 6404.72 17.01 5335.11 37.30 5315.85 0.36 

00r109 6971.22 21.66 5735.087 43.52 5461.61 4.76 

00r110 6294.81 14.23 5459.166 35.60 5399.59 1.09 

00r111 6355.77 15.37 5388.535 39.94 5379.52 0.16 

00r112 6362.99 16.31 5341.058 42.95 5325.58 0.28 

00r201 5838.01 7.49 5415.352 18.01 5400.87 0.26 

00r202 5868.45 9.27 5347.738 21.43 5324.55 0.43 

00r203 5833.4 9.30 5307.229 20.67 5290.91 0.30 

00r204 5919.02 10.91 5287.19 21.46 5273.61 0.25 

00r205 5792.54 7.83 5354.612 22.00 5339.31 0.28 

00r206 5929.60 10.72 5315.664 23.36 5294.45 0.39 

00r207 5992.66 11.81 5300.895 21.89 5285.49 0.29 

00r208 5843.4 9.75 5284.186 22.81 5274.18 0.18 

00r209 5964.5 11.12 5314.566 17.75 5301.57 0.24 

00r210 5852.74 9.16 5325.545 18.04 5317.21 0.15 

00r211 5770.35 8.66 5278.649 18.73 5270.79 0.14 

00rc101 7931.63 9.28 7271.59 25.43 7195.7 1.04 

00rc102 8086.03 16.48 6983.331 30.69 6754.19 3.28 

00rc103 7812.54 8.02 7235.913 12.03 7186.75 0.67 
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Table 10: Results of ALNS on 50 Requests with Low Variance (cont.) 

50 

customers 
Regret-2 

ALNS 

(Avg. over 10 reps.) 

ALNS 

(Best over 10 reps.) 

No: UB GAP1 UB 
CPU 

(sec.) 
UB GAP2 

00rc104 8037.27 11.49 7160.389 13.01 7114.1 0.64 

00rc105 8470.43 18.90 7309.301 19.99 6869.89 6.01 

00rc106 7613.33 6.37 7169.892 12.06 7129.05 0.56 

00rc107 8404.78 21.37 6781.113 31.28 6608.89 2.53 

00rc108 8634.72 23.66 6799.372 29.07 6592.25 3.04 

00rc201 8094.32 10.61 7276.26 11.72 7236.08 0.55 

00rc202 7752.77 7.55 7231.218 11.97 7167.71 0.87 

00rc203 8116.39 11.92 7193.65 13.04 7149.35 0.61 

00rc204 8382.34 15.03 7179.754 12.48 7123.21 0.78 

00rc205 8058.19 11.04 7233.372 12.24 7169.18 0.88 

00rc206 8264.02 13.56 7202.625 14.18 7143.47 0.82 

00rc207 8307.26 14.09 7214.532 12.02 7137.31 1.07 

00rc208 8122.00 12.36 7160.395 13.17 7118.62 0.58 

Avg.  12.97  28.72  0.75 

 

 

Table 11: Results of ALNS on 50 Requests with High Variance 

50 customers Regret-2 
ALNS 

(Avg. over 10 reps.) 

ALNS 

 (Best over 10 reps.) 

No: UB GAP1 UB 
CPU 

(sec.) 
UB GAP2 

01c101 4842.96 5.39 4583.26 17.53 4582.22 0.02 

01c102 4853.58 5.65 4583.07 17.08 4579.39 0.08 

01c103 5003.62 8.49 4588.54 19.96 4579.08 0.20 

01c104 5162.17 11.30 4582.02 30.14 4579.22 0.06 

01c105 4907.59 6.63 4584.06 16.88 4582.22 0.04 

01c106 4849.43 5.52 4583.75 16.83 4582.22 0.03 

01c107 5342.71 14.24 4583.80 32.34 4582.24 0.03 

01c108 4898.51 6.38 4590.18 20.73 4586.06 0.08 

01c109 5026.06 8.86 4591.96 24.06 4580.97 0.23 

01c201 4791.95 2.79 4664.18 19.07 4658.37 0.12 

01c202 4970.55 6.24 4669.16 22.72 4660.48 0.18 

01c203 5021.92 7.27 4670.18 23.49 4657.30 0.27 

01c204 5269.84 11.64 4664.87 29.83 4656.63 0.17 

01c205 5073.71 8.16 4672.28 21.01 4659.92 0.26 

01c206 5247.54 11.26 4667.01 23.37 4656.68 0.22 

01c207 5314.90 12.43 4662.50 24.16 4654.69 0.16 

01c208 5115.51 9.04 4669.59 23.87 4653.31 0.34 

01r101 8257.10 17.64 6941.26 73.61 6800.70 2.02 

01r102 6896.71 8.31 6324.19 47.99 6323.69 0.00 

01r103 6040.24 10.53 5522.86 30.12 5404.74 2.13 
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Table 11:  Results of ALNS on 50 Requests with High Variance (cont.) 

50 customers Regret-2 
ALNS 

(Avg. over 10 reps.) 

ALNS 

(Best over 10 reps.) 

       

01r104 6767.22 37.25 4262.98 123.18 4246.60 0.38 

01r105 6918.03 12.97 6055.12 51.98 6020.99 0.56 

01r106 6068.38 18.14 5069.51 49.96 4968.10 2.00 

01r107 6136.94 28.14 4757.79 73.40 4410.53 7.29 

01r108 6190.92 31.58 4241.57 104.12 4236.09 0.12 

01r109 6742.04 19.91 5423.29 57.28 5399.92 0.43 

01r110 6072.07 19.70 5132.39 50.73 4876.18 4.99 

01r111 6097.45 21.08 4830.09 71.90 4812.63 0.36 

01r112 6199.35 30.73 4649.37 84.24 4294.60 7.63 

01r201 5139.69 23.03 3992.72 59.44 3956.41 0.90 

01r202 5020.55 23.82 3858.81 74.71 3825.11 0.87 

01r203 5052.90 25.71 3771.27 103.50 3754.2 0.45 

01r204 4876.69 24.32 3708.59 113.25 3690.94 0.47 

01r205 5192.65 25.73 3880.94 63.86 3856.89 0.61 

01r206 5115.31 26.30 3792.03 94.63 3770.42 0.56 

01r207 5101.24 26.93 3756.69 84.19 3727.88 0.76 

01r208 4892.79 24.26 3714.35 104.44 3705.88 0.22 

01r209 5141.94 26.71 3807.65 72.88 3768.56 1.02 

01r210 5008.91 24.55 3808.28 84.2 3779.71 0.75 

01r211 5075.42 27.14 3734.90 84.42 3698.37 0.97 

01rc101 7886.91 29.33 6065.16 72.4 5574.03 8.09 

01rc102 6844.61 19.48 5679.88 34.52 5511.35 2.96 

01rc103 6416.89 14.46 5511.06 28.19 5489.48 0.39 

01rc104 7659.19 29.18 5499.77 57.7 5424.33 1.37 

01rc105 7346.39 24.91 5807.47 47.96 5516.43 5.01 

01rc106 6797.11 19.13 5709.92 35.74 5497.37 3.72 

01rc107 8180.97 33.27 5574.60 79.07 5459.9 2.05 

01rc108 8091.53 33.00 5445.36 78.23 5421.85 0.43 

01rc201 6659.31 16.79 5577.40 14.33 5541.55 0.64 

01rc202 6342.57 13.70 5532.24 18.95 5474.03 1.05 

01rc203 6553.13 16.25 5522.72 16.96 5488.43 0.62 

01rc204 6562.48 17.07 5470.75 21.75 5442.37 0.51 

01rc205 6829.32 19.33 5546.64 16.85 5509.62 0.66 

01rc206 6660.89 17.36 5536.27 16.45 5504.88 0.56 

01rc207 6726.52 18.51 5525.37 15.28 5481.73 0.78 

01rc208 6398.23 15.14 5474.03 16.65 5430.01 0.80 

Avg.  18.08  48.43  1.20 

  

 Similar comments also apply to the 100-request instances, whose results are 

reported in Tables 12 and 13. ALNS finds much better solutions than regret-2 (gaps 

are %12.59 and %16.02 on the average for low and high variance instances, 
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respectively). The percentage gap between the average ALNS solution and the best 

ALNS solution is reduced for both low and high variance settings. The increase in 

computation times is not significant. All instances are solved with ALNS less than 

230 and 365 seconds for low and high variance instances, respectively. 

 

Table 12: Results of ALNS on 100 Requests with Low Variance 

100 

customers 
Regret-2 

ALNS  

(Avg. over 10 reps.) 

ALNS  

(Best over 10 reps.) 

No: UB GAP1 UB 
CPU 

(sec.) 
UB GAP2 

00c101 13177.28 4.40 12667.45 76.92 12597.86 0.54 

00c102 13422.97 5.64 12690.70 94.08 12666.99 0.18 

00c103 13754.55 10.94 12324.88 91.26 12250.32 0.60 

00c104 13883.55 11.50 12338.89 113.46 12288.19 0.41 

00c105 13253.51 7.41 12390.14 66.20 12272.47 0.94 

00c106 13464.08 8.50 12420.57 100.02 12320.67 0.80 

00c107 13256.35 7.64 12276.67 96.34 12243.95 0.26 

00c108 13419.46 8.17 12436.08 63.94 12323.75 0.90 

00c109 13556.86 9.24 12358.49 102.68 12304.33 0.43 

00c201 12925.79 5.28 12300.69 63.62 12244.26 0.45 

00c202 13534.78 9.02 12351.90 118.53 12315.08 0.29 

00c203 13807.63 10.48 12408.70 86.35 12361.79 0.37 

00c204 13979.95 11.63 12410.44 81.27 12354.56 0.45 

00c205 13323.28 7.10 12487.22 95.58 12377.96 0.87 

00c206 13754.10 9.49 12545.95 68.15 12449.57 0.76 

00c207 13862.47 10.73 12433.39 83.08 12375.9 0.46 

00c208 13813.44 10.33 12644.34 70.99 12387.05 2.03 

00r101 14149.43 13.32 12680.02 146.90 12266.11 3.26 

00r102 12586.33 11.01 11661.15 99.90 11201.58 3.94 

00r103 11576.37 12.44 10173.04 175.25 10137.02 0.35 

00r104 11859.84 16.15 9981.63 163.70 9944.57 0.37 

00r105 12019.11 10.57 10907.48 95.84 10748.86 1.45 

00r106 11476.47 11.05 10283.45 121.54 10208.37 0.73 

00r107 11646.74 13.29 10190.84 108.49 10098.95 0.90 

00r108 11835.42 16.12 9977.72 117.99 9928.47 0.49 

00r109 11772.80 13.86 10402.92 102.43 10141.87 2.50 

00r110 12345.62 18.35 10184.44 229.84 10080.99 1.01 

00r111 11631.02 13.72 10094.93 149.00 10035.34 0.59 

00r112 11812.49 15.29 10101.86 102.41 10007.12 0.93 

00r201 11635.43 13.10 10201.99 134.85 10111.66 0.88 

00r202 11840.55 15.36 10140.67 152.55 10022.59 1.16 

00r203 12005.36 17.00 10000.63 194.03 9964.84 0.35 

00r204 11928.36 16.94 9935.28 181.23 9908.85 0.26 

00r205 12023.33 16.78 10060.93 165.59 10006.47 0.54 



 

 

59 

 

Table 12: Results of ALNS on 100 Requests with Low Variance (cont.) 

100 

customers 
Regret-2 

ALNS  

(Avg. over 10 reps.) 

ALNS  

(Best over 10 reps.) 

No: UB GAP1 UB 
CPU 

(sec.) 
UB GAP2 

00r206 11846.97 15.64 10005.66 134.85 9994.91 0.10 

00r207 11971.59 16.88 9972.79 221.36 9951.58 0.21 

00r208 11935.48 17.33 9909.58 169.6 9867.45 0.42 

00r209 11953.33 16.90 9977.06 179.33 9933.82 0.43 

00r210 11928.53 16.45 10002.02 179.25 9966.95 0.35 

00r211 11986.04 17.38 9934.17 144.34 9903.15 0.31 

00rc101 14082.05 6.22 13424.33 41.94 13206.99 1.61 

00rc102 14277.91 11.20 12915.64 83.88 12679.18 1.83 

00rc103 14523.35 13.60 12642.33 116.94 12548.23 0.74 

00rc104 14594.20 14.07 12588.05 187.24 12541.85 0.36 

00rc105 14241.63 10.77 12920.16 89.27 12708.57 1.63 

00rc106 14581.25 13.10 12829.00 134.63 12671.59 1.22 

00rc107 14621.59 13.17 12732.67 130.19 12696.86 0.28 

00rc108 14879.51 15.03 12739.11 113.75 12643.54 0.75 

00rc201 14412.74 12.39 12672.03 197.35 12627.98 0.34 

00rc202 14613.16 13.83 12623.70 206.51 12593.24 0.24 

00rc203 14589.58 13.81 12608.76 182.02 12575.97 0.26 

00rc204 14834.01 15.34 12587.12 173.75 12558.63 0.22 

00rc205 14709.22 14.08 12664.26 191.21 12639.06 0.19 

00rc206 14825.00 15.16 12653.04 166.97 12577.8 0.59 

00rc207 14911.05 15.50 12645.05 126.14 12600.97 0.34 

00rc208 14831.40 15.87 12529.27 172.20 12479.09 0.40 

Avg.  12.59  129.58  0.77 
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Table 13: Results of ALNS on 100 Requests with High Variance 

100 

customers 
Regret-2 

ALNS  

(Avg. over 10 reps.) 

ALNS  

(Best over 10 reps.) 

No: UB GAP1 UB 
CPU 

(sec.) 
UB GAP2 

01c101 10659.24 12.68 9412.22 163.37 9307.87 1.10 

01c102 10462.86 11.60 9397.88 69.52 9249.86 1.57 

01c103 10668.00 12.84 9427.05 88.39 9298.81 1.36 

01c104 10754.61 13.10 9438.794 105.09 9346.36 0.97 

01c105 10598.29 12.19 9384.58 103.79 9307.3 0.82 

01c106 10620.25 10.77 9600.332 77.26 9477.33 1.28 

01c107 10650.51 13.01 9375.26 95.36 9265.69 1.16 

01c108 10586.15 9.68 9619.046 87.61 9561.51 0.59 

01c109 10519.74 10.38 9589.324 90.73 9428.34 1.67 

01c201 9750.37 4.84 9295.662 93.59 9278.85 0.18 

01c202 10264.75 8.44 9420.092 97.15 9398.5 0.22 

01c203 10741.56 12.40 9486.12 89.25 9410.34 0.79 

01c204 10896.46 13.47 9456.114 157.39 9429.34 0.28 

01c205 10323.55 8.29 9492.582 110.14 9468.41 0.25 

01c206 10679.85 11.63 9486.678 129.64 9438.1 0.51 

01c207 10727.77 12.10 9494.478 95.3 9430.21 0.67 

01c208 10828.00 4.98 10357.47 91.59 10288.81 0.66 

01r101 12007.19 11.02 10906.42 176.2 10684.55 2.03 

01r102 11963.40 24.99 9226.05 165.78 8974.66 2.72 

01r103 10821.24 24.79 8165.172 225.98 8139.26 0.31 

01r104 10620.50 3.13 10357.47 91.59 10288.81 0.66 

01r105 10964.85 18.49 9207.222 162.31 8937.45 2.93 

01r106 10334.49 19.99 8303.926 194.09 8268.99 0.42 

01r107 10440.83 25.99 7830.148 364.18 7727.96 1.30 

01r108 10986.84 18.39 9125.168 325.76 8966.65 1.73 

01r109 11676.14 27.40 8829.40 296.12 8477.97 3.98 

01r110 11322.58 27.12 8387.13 174.55 8252.03 1.61 

01r111 9890.80 17.35 8198.88 331.59 8175.56 0.28 

01r112 10983.52 28.71 7859.59 97.30 7831.24 0.36 

01r201 8912.59 13.29 7747.72 149.64 7728.81 0.24 

01r202 9264.37 17.43 7653.68 173.03 7649.78 0.05 

01r203 9177.77 17.51 7584.53 212.89 7571.32 0.17 

01r204 8937.33 13.62 7733.93 142.52 7720.9 0.16 

01r205 9198.98 16.77 7683.08 93.79 7657.22 0.33 

01r206 9245.23 17.75 7622.45 175.28 7604.36 0.23 

01r207 9003.50 16.18 7563.00 185.9 7547.59 0.20 

01r208 9118.21 16.26 7672.04 141.78 7635.65 0.47 

01r209 9094.57 15.78 7685.03 156.25 7659.94 0.32 

01r210 9106.96 16.81 7584.57 158.6 7576.87 0.10 

01r211 9130.83 16.23 7653.68 156.34 7649.78 2.32 

01rc101 12007.19 12.16 10683.17 115.02 10547.16 1.27 

01rc102 12233.53 19.61 9958.22 208.68 9835.72 1.23 

01rc103 12150.88 20.75 9734.27 363.39 9630.61 1.06 
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Table 13: Results of ALNS on 100 Requests with High Variance (cont.) 

100 

customers 
Regret-2 

ALNS  

(Avg. over 10 reps.) 

ALNS  

(Best over 10 reps.) 

No: UB GAP1 UB 
CPU 

(sec.) 
UB GAP2 

01rc104 13413.48 20.83 11076.55 177.88 10620.18 4.12 

01rc105 13031.41 18.34 10876.27 236.42 10642.73 2.14 

01rc106 13148.58 21.62 10676.99 231.88 10306.35 3.47 

01rc107 13185.78 22.32 10385.62 351.47 10242.81 1.37 

01rc108 13916.76 29.71 9807.69 117.03 9782.41 0.25 

01rc201 11371.44 14.73 9726.73 117.17 9697.21 0.30 

01rc202 11370.28 15.73 9637.34 124.29 9581.87 0.57 

01rc203 11402.06 16.48 9571.52 130.13 9523.53 0.50 

01rc204 11665.50 16.62 9784.89 96.29 9727.71 0.58 

01rc205 11323.42 14.60 9721.86 103.62 9671.28 0.52 

01rc206 11482.61 15.98 9680.64 110.89 9647.89 0.33 

01rc207 11302.32 16.33 9569.25 115.16 9456.90 1.17 

01rc208 11306.92 13.97 9784.89 172.2 9727.71 0.50 

Avg.  16.02  156.75  1.00 

5.3 Discussion 

 Solutions by the mathematical models and the ALNS are compared in this 

section. The experimental results show that, the flow type variables tighten the 

formulation significantly, which leads to much better lower bounds. Also, the 

covering type inequality proposed by Yaman (2006) strengthens the formulations 

remarkably. Based on small-size instance results, the demand flow formulation (F2) 

is superior to the other ones with regard to its lower bounds and computation time. 

 The comparison between the best formulation (F2) and ALNS shows that the 

proposed algorithm finds optimal solutions when the mathematical model can find 

optimal solutions, and finds better solutions when the model cannot obtain the 

optimal solutions within the limited time. On the average, ALNS finds better 

solutions in all test instances in less than 10 seconds when compared with the model. 

 Expectedly, ALNS finds better solutions than a simple insertion heuristic. 

When we compare ALNS and regret-2 heuristic on large instances, the average gap is 

very large. Two important characteristics of the proposed heuristic are worth 

underlying. When problem size increases, the computation time of ALNS does not 

increase significantly. Besides, the solution quality of ALNS is very stable when the 

gaps between its different replications are considered. All in all, the proposed ALNS 
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algorithm seems to be very promising for the studied HVRPTWSPD problem. In 

Table 14, a summary of computational experiments is shown. The rows in the table 

show the averages over all instances in each problem size, considering low and high 

variances. “GAP1” indicates the percentage gap of the best result of ALNS and the 

result of F2, as 𝐺𝐴𝑃1 = %100 ∗
𝑈𝐵𝐴𝐿𝑁𝑆𝐵𝑒𝑠𝑡

−𝑈𝐵𝐹2

𝑈𝐵𝐴𝐿𝑁𝑆𝐵𝑒𝑠𝑡

, and “GAP2” is the percentage 

gap of the best result of ALNS and the result of  regret-2, as 𝐺𝐴𝑃2 = %100 ∗
𝑈𝐵𝐴𝐿𝑁𝑆𝐵𝑒𝑠𝑡

−𝑈𝐵𝑟𝑒𝑔𝑟𝑒𝑡−2

𝑈𝐵𝐴𝐿𝑁𝑆𝐵𝑒𝑠𝑡

. On the average, ALNS finds better solutions over all instances 

in each setting. The percentage gaps between ALNS and regret-2 are considerably 

large, the smallest being %12.59. ALNS is extremely fast, especially in large 

instances, when complexity of the problem is considered. 

 

Table 14: Comparison of Results 

Instances  

(56 inst. in each row) 

F2 Regret-2 ALNS 

GAP1 

(%) 

CPU  

(sec.) 

GAP2  

(%) 

CPU  

(sec.) 

CPU  

(sec.) 

20 cust. – low variance 0.90 1196.91 17.21 0.003 6.03 

20 cust. – high variance 0.66 1564.29 16.56 0.001 5.17 

50 cust. – low variance - - 12.97 0.22 28.72 

50 cust. – high variance - - 18.08 0.23 48.43 

100 cust. – low variance - - 12.59 0.61 129.58 

100 cust. – high variance - - 16.02 1.63 156.75 
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6 CONCLUSION 

 In this thesis, a heterogeneous vehicle routing problem with time windows and 

simultaneous pick-up and delivery is considered. The problem has been brought to 

our attention by a software company, to provide a route optimization tool to its 

customers. For us, the main attractions for studying this problem have been its wide 

application areas and the possible contribution to the academic literature. Therefore, 

our study hopefully brings contributions to both practitioners and the VRP literature. 

 We reviewed the literature on similar studies. Three formulations were 

proposed for the problem, as well as a heuristic to solve large real life problem 

instances that are encountered by the customers of the aforementioned software 

company. A covering type valid inequality proposed by Yaman (2006) was adapted 

to our problem, which strengthened our formulations. The proposed heuristic 

algorithm was inspired by the ALNS algorithm proposed by Ropke and Pisinger 

(2006). New sets of benchmark instances were generated to compare the results of the 

mathematical models and the proposed ALNS algorithm, as well as comparison to a 

well-known simple heuristic.  

 Computational experiments showed that the mathematical model based on 

demand flow variables gives the best results in terms of both the lower bounds and 

the computation times for small instances. When we compared the demand flow 

model and our ALNS, our algorithm gives near optimal solutions extremely fast. For 

larger instances, the proposed algorithm is stable in terms of solution quality, and is 

very robust in terms of computation time. Unlike other metaheuristic algorithms, the 

marginal increase in the computation times of our ALNS decreases as problem size 

increases. When the evident complexity of the studied problem is considered, we can 

safely state that the developed algorithm gives outstanding results. 

 Currently, our algorithm is in the implementation stage by the company, and 

will be used for route optimization in the very near future. In this respect, we are glad 

to have contributed to the practitioners by supplying a tool that can be used in their 

everyday logistics operations. The solution qualities obtained by the algorithm over 

the generated instances in very small computation times also indicate a significant 

contribution to the VRP literature for this hard problem. The implementation will also 
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provide us with the opportunity to observe the performance of the proposed heuristic 

on real life instances.   

 As it was stated before, the problem has many application areas. However, one 

natural extension of this study can include stochastic aspects. For example, the times 

between nodes are assumed to be known and fixed in our study, as the distances 

between nodes and the velocities of the vehicles are known. However, this parameter 

is rarely deterministic in real world. The stochastic extension of the problem may lead 

to more reliable results, however it will be much harder to solve. 

 Another realistic extension may contain multi-depots. This feature is important 

especially when dealing with pick-up demands, when the returned products are 

delivered to another depot, which may be the recycling plant. Therefore, the multi-

depot extension may be worth studying. 

 Lastly, in real life practices, it is very common that some vehicles cannot visit 

some customers due to some physical limitations. Therefore, it will be better if the 

algorithm is compatible with site-dependent VRP. In our algorithm, it is very easy to 

add site dependency. Because, only the feasible insertions are accepted during search. 

Therefore, if a check is made whether vehicle can visit a customer or not, the 

algorithm will also be compatible with site-dependent VRP.         
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