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ABSTRACT

EXTREMUM PROBLEM WITH THE CONSTRAINTS

Feridoon Saleh RASOOL

MSc in Mathematics

Supervisor: Assoc. Prof. Dr. Şahlar Meherrem

May 2016, 50 pages

In this thesis by using Dubovitskii Milyutin theorem we investigate neces-

sary optimality condition for optimal control system. In this way we used general

form of Euler equation and separate principle of conex cone.

The main idea of the method are generalizations ideas with which investi-

gated problems on extremum with constraints in the case of functions of a finite

number of variables.

Keywords: Necessary optimality conditions, The first variation, Support-

ing functionals, Linear convex functional, Convex set.
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ÖZET

KISITLAMA ŞARTLI EKSTREMUM PROBLEMİ

Feridoon Saleh RASOOL

Matematik Yüksek Lisans

Tez Danışmanı: Doç. Dr. Şahlar Meherrem

Mayıs 2016, 50 sayfa

Bu tezde Dubovitskii Milyutin teoremini kullanarak optimal kontrol sis-

temi için gereklilik şarti araştırdık. Bunun için genel Euler denklemi ve koneks

konların ayrılma prensibini kullandık.

Yöntemin temel amacı kısıtlama şartı olan optimal kontrol sestemleri için

gerek koşulların bulunmasıdır.

Anahtar sözcükler: Gerekli optimalite koşulları, Birinci varyasyon, Destek

fonksiyonları, Lineer konveks fonksiyonları, Konveks küme

iv



ACKNOWLEDGEMENTS

Firstly, I am grateful to the Almighty God for helping me to complete this

thesis

I also want to express my deepest thanks for all those who helped me

during my study and my research; especially my supervisor,Assoc. Prof. Dr.
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INTRODUCTION

In this thesis by using Dubovitskii Milyutin theorem (1.1) we investigate

necessary optimality condition for optimal control system. In this way we used

general form of Euler equation and separate principle of conex cone. The dis-

covery of Maximum Principle (MP) by L.S. Pontryagin and his students V.G.

Boltyanskii and R.V. Gamkrelidze (1956-58), and especially the publication of the

book by Pontryagin, Boltyanskii, Gamkrelidze and E.F. Mischchenko (1961), gave

a powerful impetus to an explosive development of the theory both of the optimal

control itself, and of extremum problems in general. The main idea of the method

are generalizations ideas with which investigated problems on extremum with

constraints in the case of functions of a finite number of variables. However,

for the application of these ideas to variational problems is required a known

amount of knowledge of the facts of functional analysis. Because the thesis is

intended not only to mathematicians, then it is given a lot of space ”technique”

with the required object function analysis. The main ”technical” question is how

to investigate this or other specific restrictions and how to write a general form

of the functional cone conjugate present. When ”solving” this problem, we went

the following path. Since, according to the proposed method, the restriction or

functionality of this type is sufficient to investigate only one once, and then simply

transfer the results of the task in the task, we tried highlight the most typical and

functional limitations and lead their detailed research. Here we omit the proofs

theorems of functional analysis, which only serve to strictly justify the legality of

certain actions.

The thesis consists of three chapters. In the first chapter we give some basic

definitions, examples and theorems related to necessary optimality conditions

contains a description of the method, shows the function theorem analysis that

substantiates the method.

In the second chapter we give the definition of the general form of a linear

functional from the cone conjugate the cone of a special kind. For convenience, the

end of each of these sections Rules are formulated in the form of the main results.
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In the study targets sufficiently mean only those rules. Relying on them, we solve

a large number of examples in which collected the most common functional and

cones. We believe that attentive acquaintance with all the examples is a necessary

condition mastery of the proposed method .

In the third chapter, we present the solution a number of problems in the

optimal regulation. Among these problems are the problem with constraints on

the phase coordinates and minimal problem.
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CHAPTER 1

NECESSARY OPTIMALITY CONDITIONS

In this chapter, we give some basic definitions, examples and theorems

related to necessary optimality conditions, we will start a general approach to

variational problem, with the help of that obtaining necessary optimality condi-

tions. We always call the necessary conditions resulting from application of this

method, the Euler equation. However, these conditions will not always be in the

form of a differential equation, but connected only with the specific features of the

problem, the method of obtaining the necessary conditions remains unchanged,

and essentially summarizes a method for obtaining Euler equations in classical

variational problems.

We will try to illustrate the main features of the method of the problem

analysis, on those problems that to find extremum functionals of a finite number of

variables under certain restrictions. The following information it can be find in the

reference Milyutin, A.A., Dmitruk, A.V., Osmolovskii, N.P. (2004). Let us, give a

continuously differentiable functional of n variables f (x1, x2, . . . , xn). It is required

to find the extremum of this functional with restriction ϕ(x1, x2, . . . , xn) = 0, where

some of ϕ is continuously differentiable functional and grad ϕ , 0, grad f , 0 in

the area that we are interested in. Suppose that (x1
0, ..., xn

0) is an extreme point. It

is known that in this case according to the rules of Lagrange multipliers, necessary

conditions as follows:

There is a number λ such that for the functional H = f − λϕ at the point

(x1
0, ..., xn

0) all the partial derivatives vanish. This result can be obtained by the

following geometric reviews. Let’s say that the variation of x̄ = (x̄1, x̄2, ..., x̄n) is

prohibited variation, if ε > 0 and ε→ 0

lim
d
dε

f (x0 + εx̄) < 0. (1.1)

since
d
dε

f (x0 + εx̄) =
∂ f
∂x1

x̄1 + · · · +
∂ f
∂xn

x̄n i f ε = 0,
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where the partial derivatives are taken at the point x = x0, then the set of

all prohibited x̄ is determined by a linear inequality with constant coefficients.

Next we call the variation x̄ admissible to the restriction ϕ = 0 if ε > 0 and

ε→ 0 then

lim
∂
∂ε
ϕ(x0 + εx̄) = 0. (1.2)

This means that the half-line x0 + tx̄ , where t > 0, touches the surface ϕ = 0

at the point x0. since

∂
∂ε
ϕ(x0 + εx̄) =

∂ϕ

∂x1
x̄1 + · · · +

∂ϕ

∂xn
x̄n,

where the partial derivatives are taken at the point x = x0, the variation

admissible to the restriction ϕ = 0, defined by linear inequality with constant

coefficients. Since x0 gives the extremum, the sets variations determined by the

conditions (1.1) and (1.2) do not have common points. Conditions of nonintersect-

ing recorded by applying determining their linear form, it is a necessary condition

for an extremum.

It is particularly important for us to emphasize the following fact. The

problem of finding the necessary conditions has the problem of finding conditions

nonintersecting some sets defined by linear forms.

We also note that the sets defined by linear inequalities and equality are

convex. In this case, these conditions are easily obtained from the following

considerations: set defined by (1.2), should coincide with the set, defined by the

equation
∂ f
∂x1

x̄1 + · · · +
∂ f
∂xn

x̄n = 0.

But if the two linear forms of the set of zeros coincide, their coefficients character-

ized by a constant factor; so there is λ, which

∂ f
∂x1

= λ
∂ϕ

∂x1
,

. . . . . .

∂ f
∂xn

= λ
∂ϕ

∂xn
.

Now we proceed to obtain the necessary conditions of the second order. It

is known, these conditions are the following.
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The quadratic form satisfies∑
i,k

∂2H
∂xi∂xk

ξiξk > 0

for all those ξ which satisfy the equation

∂ϕ

∂x1
ξ1 +

∂ϕ

∂x2
ξ2 + · · · +

∂ϕ

∂xn
ξn = 0.

Let us obtain following last condition by using geometrical reviews, fix the vari-

ation of x̄ that satisfies the equation

∂ϕ

∂x1
x̄1 + · · · +

∂ϕ

∂xn
x̄n = 0.

Due to the necessary conditions of the first order, derivative of the func-

tional f in the x̄ direction is zero.

We call the second variation x̃ prohibited if the ε > 0 and→> 0

lim
∂2

∂ε2 f (x0 + εx̄ +
ε2

2
x̃) < 0. (1.3)

We are interested in the second derivative is as follows:

∂ f
∂x̄1

x̃1 + · · · +
∂ f
∂x̄n

x̃n +
∑

i,k

∂2 f
∂xi∂xk

x̄ix̄k.

Thus, the second prohibited defines some variation x̄ linear inequality with a free

term, depending on the variation of x̃. We call forth x permissible to restrict ϕ = 0

if

lim
∂2

∂ε2ϕ(x0 + εx̄ +
ε2

2
x̃) = 0 (1.4)

if ε > 0 and ε→ 0

This condition means that the parabola x0 + tx̄ + (t2/2) tangent at x0 surface

ϕ = 0 up to small higher than second order in t. Equality (1.4) can be opened as

follows:
∂ϕ

∂x1
x̃1 + · · · +

∂ϕ

∂xn
x̃n +

∑
i,k

∂2ϕ

∂xi∂xk
x̄ix̄k = 0

Thus, the second admissible variation x̃ identifies some linear inequality

with a free term, depending on the variation of x̃. Since x0 gives the extremum, the

plurality of second variations of x̃, defined (1.3) and (1.4) do not have common

points. As well as before, the condition of their nonintersection recorded by

applying and free members objectified.
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Just as above, we call attention to the fact that the necessary condition of

extreme acts as a condition of some nonintersection convex sets. In this case, the

problem is solved as follows. Expression :

∂ f
∂x1

x̃1 + · · · +
∂ f
∂xn

x̃n +
∑

i,k

∂2 f
∂xi∂xk

x̄kx̄i (1.5)

must be a negative constant for all x̃ that satisfy condition (1.4). And since

∇ f = λ∇ϕ, then, substituting λ( ∂ϕ∂xi
) (1.5) instead of ∂ f

∂xi
get

0 6 δ = λ
∂ϕ

∂x1
x̃1 + · · · + λ

∂ϕ

∂xn
x̃n +

∑
i,k

∂2 f
∂xi∂xk

x̄kx̄i .

but according to (1.4)

∂ϕ

∂x1
x̃1 + · · · +

∂ϕ

∂xn
x̃n = −

∑
i,k

∂2ϕ

∂xi∂xk
x̄kx̄i .

Finally, we obtain ∑
i,k

∂2 f
∂xi∂xk

x̄kx̄i − λ
∑

i,k

∂2ϕ

∂xi∂xk
x̄kx̄i = δ > 0 .

We arrive at the stated above known necessary condition extreme.

We now note that the two terms as first and second order, we got a result,

substantially the same considerations, both conditions can be regarded as the

Euler equations for the corresponding tasks. The method is to ensure that we

identify some many curves along which explore the problem of the extremum,

and enter a description of them, in which there is a plurality of predetermined

using linear relations are convex. Necessary extremum condition then reduces to

the condition of nonintersection convex sets. However, there are such problems,

which arising sets are not convex, in this case this set divide them into convex set

most convenient way.

1.1. The First Variation

In this section we now present the general scheme of the method, which

we have illustrated with examples in the previous section.

Suppose that in a complete normed space W is given functional F(W). It

required to find the minimum of this functional for some conditions restricting the

6



set of values of w. Let w0 is the minimum point. We will explore the functionals

and restrictions in a neighborhood of w0. We assume here that is set a finite

number of constraints such as inequality and equality constraints. Each inequality

constraints given by the set, which is the closure of some open to the W of the set.

restrictions equality type emit a closed set in W, and open part of which is empty.

We call w prohibited variation if there is a neighborhood Uw and ε0 > 0

such that F(w0 + εw1) < F(w0) with at 0 < ε < ε0 and w1 ∈ Uw. We assume that a

set of prohibited variation w is not empty.

It can be seen from the definition of prohibited variations, in the case when

the set of prohibited variations are not empty the it make an open cone with vertex

at the origin.

We call w as the prohibited variation on some type of restriction inequality,

if there is a neighborhood in the Uw and ε0 > 0 such that 0 < ε < ε0 and w1 ∈ Uw

point w0 + εw1 satisfy this constraint. We assume here that many variations

allowed for each of the restrictions of inequality type is not empty. In this case, as

well as for the prohibited variation, it is clear that the set of prohibited variations

on this inequality constraint form an open cone with vertex at the origin. We call

w admissible variation for equality constraints if, whatever the neighborhood Uw

and whatever ε0 > 0, there are always about 0 < ε < ε0 and the w̄1 ∈ Uw that the

point w0 + εw1 satisfies the equality constraints. Easily It is seen that in the case

where the set of admissible ω is not empty, it is a closed cone with vertex at the

origin.

We now denote cone of prohibited variations with Ω0 , cone of variations

which admissible for the i-th inequality constraints with Ωi and finally, the cone of

variations admissible for restrictions inequality type by Ω. Because of the design

is evident that if the cones Ω0, Ω1, . . . ,Ωn and Ω are not empty intersection, the

point w0 could not be a point of minimum of the functional F(w) under these

restrictions.

Indeed, let w0
, 0 , w0

∈ Ω0Ω1, . . . ,ΩnΩ . Since the intersection a finite

number of neighborhoods of w0 is also a neighborhood of w0, there is a a neigh-

borhood Uw0 and is ε0 > 0 , as soon as that 0 < ε < ε0 and we w̄ ∈ Uw0 , then

F(w0) > F(w0 + εw̄) and the point w0 + εw̄ satisfies all inequality constraints. Since
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w0
∈ Ω, i.e. Is prohibited for the equality restriction, then there is 0 < ε1 < ε0

and the w̄1 ∈ Uw0 , that the point w0 + ε1w1 satisfies all the constraints of equality

type. But, it is already mentioned, this is same point satisfies all the inequality

constraints and the value it functional F at this point less then F(w0). So, the

requirement that the intersection Ω0Ω1, . . . ,ΩnΩ . was empty, is a minimum con-

dition. This condition is easily stored in the case, when all the cones are convex.

Any convex set can be set using finite or infinite number of linear inequalities. It

is therefore natural to formulate the condition of non-intersection of convex cones

by means of the linear inequalities, which they are set. Here is the wording of this

condition.

Theorem 1.1 ( Dubovitskii, A.Ya. and Milyutin, A.A. (1968) ) Let Ω0,Ω1, . . . ,Ωn be

an open convex cone with vertex at the origin and Ω be closed convex cone with vertex at

the origin. Then, to the intersection of all of the cones was empty if and only if there exist

linear functional ω0, ω1, . . . , ωn, ω with such properties

(1) ω0 + ω1 + · · · + ωn + ω = 0, (1.6)

(2) not all functionals are equal to zero,

(3) ωi(Ωi) > 0, i = 0, 1, . . . ,n, ω(Ω) > 0

Equation (1.6) is called the Euler equation.

1.2. The Dual Cone

Definition 1.1 Let Ω be a convex cone. The set of linear functional, non-negative on Ω

is called a dual cone and denoted by Ω∗ .

We give a formulation of the theory concerning the relationship with cones.

They conjugate.

Theorems 1.2 and 1.4 have not been previously known.

Theorem 1.2o ( Dubovitskii, A.Ya. and Milyutin, A.A. (1968) ) Let M be an open

convex set, N be a convex set. If M
⋂

N is empty there exists a linear functional λ

separating the sets M and N, i.e. such that for any pair of elements m ∈ M and n ∈ N,

the inequality λ(m) < λ(n).

8



Theorem 1.2 ( Dubovitskii, A.Ya. and Milyutin, A.A. (1968) ) Let there are given an

open convex cone Ω1, . . . ,Ωn and convex cone of Ω . For the intersection of these cones

to be empty, it is necessary and sufficient that there exist linear functional ω1, . . . , ωn, ω

where ωi ∈ Ωi
∗, ω ∈ Ω∗ not all equal zero such that ω1 + ω2 + · · · + ωn + ω = 0

Theorem 1.3 ( Dubovitskii, A.Ya. and Milyutin, A.A. (1968) ) Let Ω be an open

convex cone with vertex the origin and L be a subspace of W. Let Ω′ the intersection of

Ω and L. Then if Ω′ is not empty and any linear functional λ′, which is defined on L and

non-negative on Ω′, can be extended to the whole space so that the extension will belong

Ω∗.

This theorem is equivalent to the following

Theorem 1.3′ ( Dubovitskii, A.Ya. and Milyutin, A.A. (1968) ) Let X and Y are

complete normed space, A be linear operator mapping X into Y, Ωy be an open

convex cone in Y, Ωx be the complete inverse image Cone Ωy when displaying

A. If Ωx is not empty, then any linear functional l(x) ∈ Ωx
∗ can be represented as

A∗λ[y(x)], where λ(y) ∈ Ωy
∗ (Lemma Farkaşa - Minkovskoki).

Theorem 1.4 ( Dubovitskii, A.Ya. and Milyutin, A.A. (1968) ) Suppose there are two

convex cone Ω1 and Ω2, and Ω1 be an open cone. Then, if (Ω1
⋂

Ω2) is not empty, then

(Ω1
⋂

Ω2)∗ = Ω1
∗ + Ω2

∗.

Theorem 1.5 ( Dmitruk, A.V. (1990) ) Let X and Y be a complete normed space and A

be a linear operator from X to Y. In the space of pairs Z = ( X,Y ) consider the subspace

L : Y = AX; then L∗ consists of all the functional, which have the form l(y −Ax), where l

ba an arbitrary linear functional which is defined on L.

Theorem 1.6 ( Dmitruk, A.V. (1990) ) Let L1 and L2 are a subspace of W. If L1 + L2 is

a subspace (closed linear manifold), then (L1
⋂

L2)∗ = L1
∗ + L2

∗.

1.3. Linear Convex Functionals

In this section we consider the so-called linear convex functional, which

will play a significant role in the future the study of certain cones.
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Definition 1.2 A functional f (x) is called linear convex functional which is defined on

the elements x of a complete normed space X, with the following three properties:

(1) f (αx) = α f (x); if α > 0

(2) f (x1 + x2) 6 f (x1) + f (x2);

(3) | f (x)| 6 c‖x‖ , for constant c > 0.

Note that the properties (1) and (3) follow the continuity of the functional

f (x).

Here are some examples of linear convex functional.

1. Let f (x) = l(x) , where l(x) is a linear functional, then, obviously, f (x) is

linear convex functional.

2. Also f (x) = ‖x‖ is linear convex functional.

3. f (x) = ‖Ax‖ where A is bounded linear operator, f (x) is linear convex

functional We formulate some properties of linear convex functional, that we will

use later on:

(1) Let f (x) are linear convex functional; then α f (x) where (α is a negative

number) is obviously a linear convex functional,

(2) Let f1(x) and f2(x) are linear convex functional; then f (x) = f1(x) + f2(x) is

also a linear convex functional,

(3) Let there be an arbitrary set { fα} is uniformly bounded linear convex func-

tional; then f (x) = sup
α

fα also linear convex functional.

We define the important concept of supporting functional . Let f (x) be a

linear convex functional. A linear functional µ(x) is called a supporting to the

functional f (x), if f (x) > µ(x) for any x. We have the following

Definition 1.3 Let X be a locally convex space, and C ⊂ X be a convex set and f : C→ R

, then the continuous linear functional µ : X → R is a supporting functional of f if

f (x) > µ(x) for every x ∈ C.

Theorem 1.7 ( Milyutin, A.A., Dmitruk, A.V., Osmolovskii, N.P. (2004) ) For any x0

there exists a supporting functional µ(x) such that µ(x0) = f (x0).

10



Let us point out some obvious properties of the set of supporting func-

tionals, arising from the definition of the supporting functional and Theorem

(1.7):

(1) Let f (x) are linear convex functional; then the set supporting functional is

bounded;

(2) A set of supporting functionals is a convex set;

(3) A set of supporting functionals is a closed set;

(4) Linear convex functional f (x) is uniquely determined by the set their sup-

porting functionals, and f (x) = maxµ(x) for all the supporting functionals

µ.

Here are some examples of supporting functional.

(1) Let f (x) = l(x), where l(x) is a linear functional. To that there is only one func-

tional supporting functional, matching with himself. In fact, the inequality

l(x) = µ(x) follows equality l(x) = µ(x).

(2) Let f (x) = ||x||. The set of supporting functional consists such functional

which norm of this functional no greater then one. The rate does not exceed

unity. Therefore, in this case, set of supporting makes unique sphere .

The following theorem and suggestions allow us to find supporting func-

tional.

Theorem 1.8 ( Milyutin, A.A., Dmitruk, A.V., Osmolovskii, N.P. (2004) ) Let ϕ(x) be

a linear convex functional, L be subspace of X , µL(x) be a linear functional define on L

and supporting for ϕ(x) on L then there exist functional µ(x) defined on X supporting

functional for ϕ(x) and µ(x) = µL(x) if x ∈ L.

Theorem 1.9 ( Milyutin, A.A., Dmitruk, A.V., Osmolovskii, N.P. (2004) ) Let

f (x) = f1(x) + f2(x) where f1(x) and f2(x) are linear convex functional µ(x) is sup-

porting functional for f (x) iff µ(x) = µ1(x) + µ2(x) where µ1(x) is supporting functional

for f1(x) and µ2(x) is supporting functional for f2(x).
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Theorem 1.10 ( Milyutin, A.A., Dmitruk, A.V., Osmolovskii, N.P. (2004) ) Let f1(x)

and f2(x) are linear convex functional and f (x) = max( f1(x), f2(x)). In order to µ(x) was

a supporting to f (x) functional, it is necessary and sufficient that µ(x) = αµ1(x) + βµ2(x)

where α, β > 0 and α + β = 1; µ1(x) and µ2(x) supporting functional f1(x) and f2(x),

respectively.

Theorem 1.11 ( Milyutin, A.A., Dmitruk, A.V., Osmolovskii, N.P. (2004) ) Let f1(x)

and f2(x) are linear convex functional. Let | f1(x) − f2(x)| 6 c||x||. Then, whatever the

functional µ1(x), a supporting to the f1(x), there is a supporting functional µ2(x) , for the

f2(x) such that ||µ1(x) − µ2(x)|| 6 c , and Conversely.

Consider the homogeneous convex functional of two real variables F(ξ, η).

Such a functional can be considered as an example of linear convex functional

defined on the plane. As we have shown above, F(ξ, η) = max(µ′(ξ, η)) around

the µ′, where µ′ is linear functional two variables satisfies the inequality µ′(ξ, η) 6

F(ξ, η). Assume that F(ξ, η) which has a form µ′(ξ, η) = aξ + bη , be a supporting

functional for F(ξ, η), a and b are non-negative. Let f1(x) and f2(x) are linear convex

functional. Then the functional ϕ(x) = F( f1(x) , f2(x)) linear convex functional. Let

us take this supporting functional in condition ϕ(x) = F( f1(x) , f2(x)).

Theorem 1.12 ( Milyutin, A.A., Dmitruk, A.V., Osmolovskii, N.P. (2004) ) A linear

functional µ(x) is the supporting functional for ϕ(x) if and only if there exists a linear

functional two variablesµ′(ξ, η) = aξ + bη that is the supporting functional for F(ξ, η)

and µ(x) is a supporting functional to the ϕµ′(x) = a f1(x) + b f2(x).

Note. We note that the theorem holds for the case of convex functionals

f (ξ1, . . . , ξn) of any finite number of variables.

Let A be a bounded linear operator mapping X into Y. Suppose that in Y

given a linear convex functional f (y). We consider the functional ϕ(x) = f (Ax).

It is easy to see that ϕ(x) is a linear convex functional. By using functional,

supporting functional for the f (y), we find functional, supporting for ϕ(x).

Theorem 1.13 ( Milyutin, A.A., Dmitruk, A.V., Osmolovskii, N.P. (2004) ) For a linear

functional µ(x) be supporting for ϕ(x) is necessary and sufficient for it to be represented

in the form µ(x) = v(Ax), where v(y) is a supporting functional for f (y).

12



In conclusion, it seems good for us to provide a brief overview of the

results of this section. Thus, as above, fr(x), r = 1, 2, · · · are Linear convex

functionals, µr(x), r = 1, 2, · · · are supporting functionals them accordingly linear

functions. Next,F(ξ1, . . . , ξn) is convex functional of n variables, µ′(ξ1, . . . , ξn) be

the supporting for it a linear form.

Theorems (1.7) and (1.8) are devoted to the problem of the existence of

supporting functionals; they imply, in particular set of supporting functionals

uniquely identifies linear convex functional. Theorems (1.9) and (1.12) establish

a connection between the operations of the linear convex functionals on sets and

supporting them functional. Through these theorems in some cases easily find a

lot of supporting functionals for the linear convex functional. The results these

theorems can be conveniently represented in the form of regulations in Table.

(1.1).

Linear convex functional Supporting functional

f (x) = L(x) µ(x) = L(x)
n∑
1

αi fi , αi > 0
n∑
1

αiµi

max( f1, . . . , fn) α1µ1 + · · · + αnµn , αi > 0 ,
n∑
1

αi = 1

F( f1, . . . , fn) µ′(µ1, . . . , µn)

f (Ax) µ(Ax)

Table 1.1: Relation between supporting functionals and linear convex functional

The functional F(ξ1, . . . , ξn) such that any supporting coefficients linear

form µ′ Non-negative.

Let f (x) = |L(x)|where L is linear convex functional

It is clear

f (x) = max{L(x),−L(x)}

then by Table 1.1

µ(x) = (α + β)L(x), α + β = 1

µ(x) = αµ0(x) + βµ2(x)
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= αL(x) − βL(x)

= (α − β)L(x)

1.4. Extremum Problems With The Constraints

Example 1.1 Let f (x) = |l(x)| , where l(x) is a linear functional. Obviously, f (x) =

max(l(x);−l(x)). According to the theorem (1.10), µ(x) = (α− β)l(x) ,where α, β > 0 and

α + β = 1. Putting α − β = γ, we obtain µ(x) = γl(x), where |γ| 6 1.

Example 1.2 Let f (x) = max(l1(x), . . . , ln(x)). According to the theorem (1.10) µ(x) =

α1l1(x) + · · · + αnln(x), where αi > 0 ,
∑
αi = 1.

Example 1.3 Let f (x) = max(|l1(x)|, ..., |ln(x)|). By using the results of example(1.1)

and theorem (1.9), we have µ(x) =
∑
αiγili(x) , αi > 0 ,

∑
αi = 1 , |γi| 6 1 , Assuming

(αiγi = γ′i) then we have µ(x) =
∑
γ′i li(x) and

∑
|γ′i | 6 1.

Example 1.4 Let f (x) = |l1(x)|+ · · ·+ |ln(x)|. Let us use theorem (1.10), F(ξ1, . . . , ξn) =

ξ1+· · ·+ξn whereµ′(ξ1, . . . , ξn) = ξ1+· · ·+ξn by theorem (1.10)µ(x) = µ1(x)+· · ·+µn(x)

where µi(x) is a supporting functional to |li(x)|. Using the result of Example 4.1, we finally

obtain

µ(x) =
∑
γili(x), |γi| 6 1 .

Example 1.5 Consider the space of continuous functionals x(t), defined on the interval

(0,1). Let f (x) = max x(t).

It is easy to verify that f (x) are linear convex functional. Let us find general form of the

supporting functional. It is known that any linear functional in the space of continuous

functionals can be represented as
∫

x(t)dv, where v be some completely additive measure.

We describe those v, for which us take
∫

x(t)dv = µ(x). Let the measure v0 belongs to

this class. Let n be a positive integer. Let tn = k/n, where k = 1, . . . ,n. Consider the

(n + 1) dimensional subspace of Rn+1 continuous space functionals, which we define as

follows: x(t) ∈ Rn+1 and then only if x(t) is linear in every interval between two adjacent

the points. Obviously, if x(t) ∈ Rn+1 then

f (x) = max
k=0,1,...,n

x(tk).

14



Consider µ(x) =
∫

x(t)dv0 on the elements of the subspace Rn+1. If x(tk) is a linear

functional, then, according to the result of example 4.2,∫
x(t)dv0 =

∑
k

αkx(tk),

where αk > 0 and
∑
αk = 1 for all x(t) ∈ Rn+1. Letting n tend to infinity, We obtain that

v0(t) be weak limit of a sequence non-negative measures, a complete change of which is

equal to one. It is known that the measure v0 should also have these two properties. Thus

we have shown that if
∫

x(t)dv0 = µ(x), then dv0 > 0,
∫

dv0 = 1 , It is also easy to see

that if the measure v has two properties, the
∫

x(t)dv = µ(x).

Indeed, ∫
x(t)dv 6 max x(t)

∫
dv = max x(t) = f (x).

For the generalization let us take arbitrary set. Now let M be a closed

bounded set in a finite dimensional space (ξ1, . . . , ξn) . Consider the space of

continuous functionals x(ξ1, . . . , ξn), defined on the set M. Let take

f (x) = max
ξ

x(ξ1, . . . , ξn)

In this case, we obtain µ(x) =
∫

x(ξ)dv where v is a non-negative measure concen-

trated on M and complete v is the change unit.

Now let us consider the following question: Let x0(t) is a continuous functional

on the interval [0,1] , and take f (x) = max
t

x(t). Let us discuss those supporting

functionals µ(x), which satisfy the equation µ(x0) = f (x0). As described above,

µ(x) =

∫ 1

0
x(t)dv , where, dv > 0,

∫ 1

0
dv = 1

If the functional µ(x) satisfies µ(x0) = f (x0), it means that∫ 1

0
x0(t)dv = max

t
x0(t)

Denote with the set M0 such values of t , for which x0(t) = f (xo). It is clear, the

measure v should focus on M0. It is easy to see that this circumstance completely

characterizes the class of supporting functionals, which at x0(t) coincide with f (x0).

In what follows we will be useful following reformulation subordinate functional

properties this type:

Linear functional µ(x) is a supporting to f (x) and µ(x0) = f (x0), if and only if

following conditions satisfies:
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(1) µ(x) is a non-negative functional; it means that µ(x) > 0 if x(t) > 0 (dv > 0)

for all t;

(2) µ(1) = 1;

(3) For every functional x(t), which vanishes on the set M0, µ(x) = 0.

Example 1.6 Consider again the space of continuous functionals, defined on the interval

[0,1]. Let M is a closed subset of [0,1]. Let

f (x) = max
t∈M

x(t)

In order to find a general form of the supporting functional, it is convenient to use the

following method:

The space of continuous functionals, defined on [0,1] denote the C0,1. The space of

continuous functionals,defined on M, denoted by CM. Consider the linear mapping A

from the space C0,1 to the space CM. when x1(t)
t∈M

= x(t)
t∈M

In the space CM we consider linear convex functional

f1(x1) = max
t

x1(t)
t∈M

It is clear. f (x) = f1(Ax).

From the theorem 1.11 and the result of the previous example, we have µ(x) =
∫

x(t)dv ,

where v be a non-negative measure concentrated on M full change equal to one.

Example 1.7 Consider the space of bounded measurable functionals u(t) defined on the

interval [0,1]. Let

‖u(t)‖ = vrai max
t
|u(t)| , F(u) = vrai max

t
u(t).

It is easy to see that F(u) are linear convex functional. characterize set of functional,

supporting to the functional F(u). Same as in Example 1.6, we prove that for a linear

functional µ(u) was a supporting to F(u), it is necessary and sufficient that µ(u) has the

following two properties:

(1) µ(u) > 0, if u > 0;

(2) µ(u ≡ 1) = 1.

16



Let us prove the necessity. Let µ(u) be a supporting functional, u0(t) > 0. Suppose

thatµ(u) < 0. Then

µ(−u0) > 0 > vrai max
t

(−u0(t)),

It is impossible. Thus, the need for property (1) proved. Further,obviously, µ(u ≡ 1) 6 1,

µ(u ≡ −1) = −µ(u ≡ 1) 6 −1 . Both inequalities derive from the fact that µ(u) 6 F(u)

for all u. The inequalities seen that µ(u ≡ 1) = 1 . The need for the property (2) is proved.

Let us prove the sufficiency. Assume that the functional µ(u) has properties (1) and (2).

Let u0(t) is a functional and c = F(u0). Then c = µ(u ≡ c) = µ(u0) + µ(c − u0) > µ(u0)

as (c − u0) > 0 . The sufficiency is proved.

Let u0(t) be some functional. We characterize the set of all the supporting

functionals that satisfy the equation F(u0) = µ(u0) . in example 1.6 the case of

continuous functionals, we showed Such functional concentrated on the set of

points t, where x(t) = f (x). For measurable functionals set on which functional

reaches its maximum value, it may be empty. Therefore characteristic of support-

ing functionals satisfying equality µ(u0) = F(u0), is somewhat more complicated,

essentially reflecting the same property. Let δ > 0 . We define Mδ the set as follows

way t ∈ Mδ : if u0(t) > F(u0) - δ. Obviously, Mδ not empty and has positive mea-

sure. We show that in order to supporting functional µ(u) satisfies the equation

µ(u0) = F(u0) it is necessary and sufficient so that, µ(u) = 0 for any functional u(t)

, vanishing on some Mδ.

Let us prove the necessity. Assume that u1(t) such that u1(µδ) ≡ 0 for some

δ > 0 and µ(u1) , 0. We can always assume that µ(u1) > 0 and that ‖u1(t)‖ = 1 .

Consider u(t) = u0(t) +δu1(t). It is easy to see that F(u) = F(u0). On the other hand,

µ(u) > µ(u0) = F(u0) = F(u). The last inequality contradicts the assumption that

µ(u) is a supporting functional. Therefore, the opinion is proved.

Let us prove sufficiency. Let µ(u) be a supporting functional equal zero

for any functional u(t), vanishing on some Mδ. We define functional u1(t), fixing

δ > 0:

u1(t) =

 u0(t) if t ∈Mδ;

F(u0) for others t .

It is easy to see that µ(u1) = µ(u0) > F(u0) − δ. Since δ is an arbitrary number,

µ(u0) = F(u0) . The sufficiency is proved.
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Example 1.8 Consider the space of integrable functionals square on the interval [0,1].

Let x+(t) = max (x(t), 0). Let

f (x) =

√∫ 1

0
[x+(t)]2dt.

Let us prove that f (x) is linear convex functional. In fact, firstly, f (αx) = α f (x) at

α > 0 ; secondly, it is obvious from the boundedness of the functional f (x)(x+(t) 6 |x(t)| ).

Further,

f (x1 + x2) =

√∫ 1

0
[(x1 + x2)+]2dt 6

√∫ 1

0
(x1

+ + x2
+)2dt 6

6

√∫ 1

0
(x1

+)2dt +

√∫ 1

0
(x2

+)2dt = f (x1) + f (x2)

Thus, all the three properties ε0 determine linear convex functional are

satisfied. It is known that the general form of linear functional l(x) in the space

L2(x) have l(x) =
∫
ψ(t)x(t)dt , where ψ(t) ∈ L2 . We describe the class of ψ(t) , for

which
∫
ψ(t)x(t)dt = µ(x). Let ψ0(t) belongs to this class. Let n positive integer.

Let tk = k/n, k = 0, 1, . . . ,n. We now consider R-dimensional subspace Rn space L2

of functionals equal to a constant on each interval between adjacent points tk. If

x(t) ∈ Rn and

f (x) =
1
√

n

√√
n∑

k=1

[x+
k ]2 ,

wherein xh - values x(t) at the k −M interval tk. Consider

F(ξ1, . . . , ξn) = max
ai

(α1ξ1, . . . , αnξn), ai > 0
∑

ai
2 6 1 .

Obviously, f (x) = (1/
√

n)F(x1
+, ..., xn

+) (xi
+ > 0) for x(t) ∈ Rn .

By using Theorem 1.10, we see that on Rn∫
ψ0(t)x(t)dt =

1
√

n

∑
αiµi(x)

where αi > 0,
∑
αi

2 6 1, µi(x), is the supporting to the linear convex functional

x1
+ . Since x1

+ = max [xi, 0] then µi(x) = αixi where 0 6 αi 6 1 . In this way,∫
ψ0(t)x(t)dt =

1
√

n

∑
αiαixi
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Assuming αiαi
√

n = ψi , we get∫
ψ0(t) x(t) dt =

∫
ψ(t) x(t) dt

where ψ(t), x(t) ∈ Rn , ψ(t) > 0,
∫

[ψ(t)]2dt 6 1 . Letting n tend to infinity,

we obtain ψ0(t) is a ”weak” limit of a sequence negative functionals, the norm

which is not exceeding one. It is known that ψ0(t) must also be non-negative and

does not exceed the up to norm one. Thus if,
∫
ψ0(t) x(t) dt = µ(x) , then ψ0(t) > 0

and
∫

[ψ0(t)]2dt 6 1 . It is easy to see that if the functional ψ(t) has such properties,

then
∫
ψ(t)x(t)dt = µ(x) . Indeed, in this case

∫
ψ(t) x(t) dt 6

∫
ψ(t) x+(t) dt 6

√∫
[ψ(t)]2dt×

×

√∫
[x+(t)]2dt 6

√∫
[x+(t)]2dt = f (x)

Consider the case of an arbitrary set. Now let M - some measurable subset

of the interval [0,1] of positive measure. Consider space L(2,M) functionals defined

on M and such that ∫
M

x2(t)dt < ∞

In this space we consider linear convex functional

f (x) =

√√∫
M

[x+(t)]2dt

Almost literally repeating the preceding discussion, we conclude that

µ(x) =

∫
M

ψ(t) x(t) dt, ψ(t) ∈ L2,M

ψ(t) > 0 ,
∫
M

ψ2(t) x(t) dt 6

Example 1.9 Let M be a measurable subset of [0,1] with positive measure. In the space

L2,[0,1], consider linear convex functional

f (x) =

√√∫
M

[x+(t)]2dt.
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By using exactly the same way as we did in the analysis Example 4.6, we obtain

µ(x) =

∫
M

ψ(t) x(t) dt where ψ(t) > 0 and
∫
M

ψ2(t)dt 6 1

Example 1.10 We now consider the space of continuous functionals. In this space we

define a linear convex functional

f (x) =

√∫ 1

0
[x+(t)]2dt.

It is easy to see that this functional linear convex. Check this case subject only to the

boundedness of functional, but it is easily obtained, as the norm in C restricted the top norm

in L2. In the example 1.8 we considered this functional in the space L2, and there found a

common view supporting functionals. Here we consider the functional in a narrower space

and, therefore, we have a greater margin of linear functionals. The question arises whether

the new will not appear to have found earlier (Example 1.8) supporting functional. We

show that, as in the example 1.8, µ(x) =
∫
ψ x(t) dt ψ(t) > 0 and

∫
ψ2 6 1 . For this we

consider the identity embedding of C in the space of L2 . Obviously,that the investment

can be regarded as a linear operator A mapping space C[0,1] in the space L2,[0,1]. Then,

applying the rule 1.5, we obtain the desired result. Thus, when ”narrowing” of the space

no new supporting functionals.

Example 1.11 Let

f (x) =

∫ 1

0
x+(t) dt

It is convenient to consider this functional in the space L1. We would consider this

example as well, as we see an example of 1.8, however, here we use a simple and clear

method. Infact, x+(t) = 1
2x(t) + 1

2 |x(t)| . In this way,

f (x) =
1
2

∫ 1

0
x(t) dt +

1
2

∫ 1

0
|x(t)| dt

By using theorem 1.8, we obtain µ(x) = 1
2µ1(x) + 1

2µ2(x). Here µ1(x) is supporting to the∫ 1

0
x(t)dt and µ2(x) is supporting to the

∫ 1

0
|x(t)| dt. Infact,

∫ 1

0
x(t)dt is a linear functional,

and
∫ 1

0
|x(t)| dt is taken as a rule

µ1(x) =

∫ 1

0
x(t) dt, µ2(x) =

∫ 1

0
β(t) x(t) dt,
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where |β(t) 6 1

Thus,

µ(x) =

∫ 1

0

1 + β(t)
2

x(t) dt

Assuming that 1+β(t)
2 = θ(t) , we obtain µ(x) =

∫ 1

0
θ(t) x(t) dt , where 0 6 θ(t) 6 1

f (x) =

∫
M

x+(t) dt;

where M is a measurable subset of positive measure of [0,1] and x(t) ∈ L1,[0,1]. Arguing

as in the analysis of example 1.6, we obtain

µ(x) =

∫
M

θ(t) x(t) dt

where 0 6 θ(t)
t∈M
6 1

Let a(t) is some non-negative bounded measurable functional defined on the inter-

val [0,1]. In the space L1 consider functional

f1(x) =

∫ 1

0
α(t) x+(t) dt

We show that f1(x) is linear convex functional. For this we consider bounded linear

operator A mapping the space L1 to itself as follows:

Ax = a(t) x(t). Then, f1(x) = f (Ax) , where f (x) is the functionality discussed above

in this example. Since f (x) is linear convex functional, then f1(x) is linear convex

functionality for a(t)x+( f ) = [a(t)x(t)]+. Under Rule 4.5, and the result Example 1.11,

µ1(x) = µ(Ax) =

∫ 1

0
θ(t)a(t)x(t)dt

where 0 6 θ(t) 6 1
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CHAPTER 2

SUPPORTING FUNCTIONALS AND LINEAR

CONVEX FUNCTIONAL

2.1. Relation Between Supporting Functionals And Linear Convex

Functional

1. We give a theorem by which the connection is established between

supporting functionals to linear convex functional and functionals included in

the dual cone, in the case where the original cone given by the linear convex

functional. Let f (x) be a linear convex functional and x ∈ Ωx if and only when

f (x) < 0. Let us assume that f (x) is such that the cone Ωx is not empty. Then it

is easy to see that Ωx is an open convex cone. In the fact, the continuity of f (x) it

follows that Ωx is open set and homogeneity of f (x) which Ωx is cone. It remains

to prove convexity. Let x1 ∈ Ω and x2 ∈ Ωx, then f (x1 + x2) 6 f (x1) + f (x2) < 0 ,

and hence, x1 + x2 ∈ Ω. Convexity proved. Let us find dual cone Ωx.

Theorem 2.1 ( Dubovitskii, A.Ya. and Milyutin, A.A. (1971) ) A necessary and

sufficient condition for a linear functional l(x) ∈ Ωx, is that the equality l(x) = −αµ(x),

hold where α > 0 , µ(x) is a supporting functional to the f (x).

2. Suppose now that f1(x) and f2(x) are linear convex functionals. Consider

cone Ωx = f1(x) − f2(x) > 0. This cone usually is not convex, and its complement

also is generally not convex. So, in order to write the Euler equation for that

problem where it occurs cone of this type, we need classifying given cone to the

numbers of convex of convex cones.

Here is an example, explaining said. In four-dimensional space

(ξ1, ξ2, ξ3, ξ4) consider the cone
√
ξ1

2 + ξ2
2 >

√
ξ3

2 + ξ4
2 . It is easy to see that

this cone is not convex; it is sufficient to consider the cross section of the cone

plane ξ2 = 0 and ξ4 = 1. We obtain the inequality ξ1
2 + ξ3

2 > 1 As we know,
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this set is not convex. Additional cone It derived from given by orthogonal

transformation and, therefore also is not convex.

Let Ωx be a cone (Ωx is not empty), determined using the inequality f1(x)−

f2(x) > 0 , where f1(x) and f2(x) are linear convex functional. Let µ1(x) is linear

supporting functional to f1(x) and no supporting to f2(x) andϕµ1(x) = f2(x)−µ1(x).

It is clear , ϕµ1(x) is linear convex functional. We denote by Ωµ,x convex open cone

ϕµ1(x) < 0 (since µ1(x) is not a supporting to f2(x), then the cone Ωµ,x does not

empty). According to Theorem 2.1 and Theorem 1.8, the cone conjunct to Ωµ,x

consent of the functionals type −α(µ2(x)−µ1(x)), where α > 0 µ2(x) supporting to

f2(x) .

We have the following theorem:

Theorem 2.2 ( Dubovitskii, A.Ya. and Milyutin, A.A. (1971) )

Ωx =
⋃
µ1

Ωµ1, x, (2.1)

It means Ωx is union of convex open sets Ωµ1, x

Proof : Let x0 ∈ Ωx . This means that f1(x0) > f2(x0). By Theorem 1.7, there

exists a linear functional µ1(x) , a supporting to the f1(x) f such that µ1(x0) = f1(x0),

therefore, µ1(x0) − f2(x0) > 0 and x ∈ Ωµ1, x, and then we get (2.1).

On the other hand, let

x0 ∈

⋃
µ

Ωµ1, x ;

Then there is a linear functional µ1
0(x), the supporting to the f1(x), that µ1

0(x0) >

f2(x0), but then f1(x0) > f2(x0), therefore,; x0 ∈ Ωx . Therefore way again obtain

theorem (2.1). QED. �
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We can summarize all these result as a table

Convex Cone Ωx Dual Cone

2.1 f (x) < 0 −αµ(x), α > 0

2.2 f1(x) − f2(x) > 0 stratified on the convex , α(µ1(x) − µ2(x)), α > 0

µ1(x) − f2(x) > 0 ,

Table 2.1: Relation between convex cone and dual cone

In table. (2.1) f (x) is a linear convex functionalµ(x) is the linear supporting

functional to f (x), Ωx is assumed to be non empty, µ1(x) is not supporting to f2(x).

Example 2.1 Let us take a cone Ωx = l(x) < 0. Since l(x) is linear convex functional,

according to the rule (2.1) and example (1.2), Ωx
∗ consists of functionals which has a form

−αl(x) , where α > 0.

Example 2.2 Let Ωx is given by the inequalities l1(x) < 0, . . . , ln(x) < 0. Assume that

the Ωx is not empty. Let us take f (x) = max[l1(x), . . . , ln(x)]. Then Ωx is given by the

inequality f (x) < 0 . By using the rule (2.1) and example (1.2), we find that the general

form of a functional Ωx
∗ is

∑
αili(x) , αi > 0

Example 2.3 Let l1(x) and l2(x) are two linear independent functional. Consider the

Ωx, which is given by the inequality |l1(x)| − |l2(x)| > 0. Obviously cone Ωx is not empty

( l1(x), l2(x) are linear independent) and is not convex. Let us separate it into convex

cones in accordance with rule (2.2). In this case a linear functional µ1(x) , a supporting

to the |l1(x)| has the form µ1(x) = γ1l1(x) , where |γ1| 6 1. In order to µ1(x) not to be a

supporting to the |l2(x)| , necessary and sufficient is that γ1 , 0. So, Ωx the cone splits

into convex cones Ωγ which is given by the inequality γl1(x)− |l2(x)| > 0, |γ| 6 1, γ , 0 .

It is easy to see that if γ1 and γ2 are the same sign and |γ1| > |γ2| then Ωγ1 ⊇ Ωγ2 In fact,

the inequality γ2l1(x) > |l2(x)| implies the inequality γ1l1(x) > |l2(x)| . Thus, the cone Ωx

can be represented as the union two open convex Ωγ,x , if γ = 1 and γ = −1 It is easy to

see that these cones have not intersection. We now write, according to the rule (2.1), the

general form of linear functional Ω1,x
∗ and Ω−1,x

∗ . According to the rule (2.1), we have
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 ω1(x) = α(l1(x) − βl2(x)), |β| 6 1, α > 0;

ω−1(x) = α{[−l1(x)] − βl2(x)}, |β| 6 1, α > 0.

Example 2.4 Let l(x) to be a linear functional. Let f (x) = l(x) − ||x|| and consider the

cone Ωx , which is given by the inequality l(x) > ||x|| . We assume that the Ωx is not empty.

In this case, Ωx is an open cone. Next, we will try to show that the Ωx is convex cone.

But the inequality l(x)− ||x|| > 0 is equivalent to the inequality ||x|| − l(x) < 0, and as l(x)

is linear convex functional, then ||x|| − l(x) = ϕ(x) is also linear convex functional. Then,

according to the table (2.1) the rule (2.1), Ωx is convex cone. By using the table (2.1) the

rule (2.2), we obtain the general form of linear functional of Ωx
∗ : ω(x) = α(l(x) − λ(x)),

where ||λ|| 6 1.

Example 2.5 In the space of continuous functions x(t) in the interval [0,1], we consider

linear convex functional f (x) = max x(t). We define cone Ωx by the inequality f (x) < 0.

By using the rule (2.1), we can say a general form an element of the conjugate cone is, with

ω(x) = −αµ(x). According to an example (1.6) µ(x) =
∫

x(t)dv , where v is a negative

measure and
∫

dv = 1 . Hence, ω(x) = −
∫

x(t)dv1 , where v1 is a non-negative measures

the cone Ωx can be described as, a cones of the function which is negative in interval. We

denote Ω1,x, cone of positive functionals on an interval. obviously, Ω1,x = −Ωx. Then,

the general form of a linear functional in Ω1,x
∗ has the form ω1(t) =

∫
x(t)dv1 , where v1

is an arbitrary non-negative measure

Example 2.6 Let M be a closed subset of the interval [0,1]. Let

f (x) = max
t∈M

x(t)

Consider the cone Ωx , defined by the inequality f (x) < 0 . According to rule (2.1) and

example (1.6), we can easily obtain

ω(x) = −

∫
M

x(t)dv1 ,

where v1 nonnegative M .

Example 2.7 Consider the space of x(t) is absolutely integrable functionals on the in-

terval [0,1]. Let α(t) is an arbitrary bounded measurable functional not satisfying two
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inequalities 0 6 α(t) 6 1 at the same time on a set of positive measure. Consider cone Ωx

, defined by inequality ∫ 1

0
α(t)x(t)dt −

∫
x+(t)dt > 0

In order to the cone Ωx not to be empty, it is necessary and sufficient that linear functional

l(x) =

∫ 1

0
α(t)x(t)dt

It is not supporting linear convex functional f (x) =
∫

x+(t)dt . But l(x) is a supporting

to f (x) if and only if 0 6 α(t) 6 1 for almost all t (see. Example 1.11). Therefore,

according to our assumption to α(t), l(x) is not a supporting and thus Ωx is not empty.

Let

ϕ(x) =

∫ 1

0
x+(t)dt −

∫ 1

0
α(t)x(t)dt

Obviously, ϕ(x) is linear convex functional and x ∈ Ωx and then only when ϕ(x) < 0.

According to the rule (2.2), the general form of a linear functional from there to Ωx
∗ there

is ω(x) = α[
∫

(α(t) − θ(t)x(t))dt] , where 0 6 θ(t) 6 1 .

Example 2.8 Let M1 and M2 are two measurable subsets of positive measures and

M1 *M2. Consider the cone Ωx , which will define using inequalities

x ∈ Ωx i f
∫
M1

x+(t)dt −
∫
M2

x+(t)dt > 0

Let M′ = M1 − (M1 ∩M2). By hypothesis, M′ is a set of positive measures. Let

f1(x) =

∫
M1

x+(t) dt, f2(x) =

∫
M2

x+(t) dt

Then f1(x) and f2(x) are linear convex functionals (see. Example 1.11) and Ωx the cone

defined by the inequality f1(x) − f2(x) > 0. First of all, it is clear that the cone Ωx is not

empty. In fact, consider the functional x0(t) = XM′(t) , where XM′(t) is the characteristic

functional of M′ . Obviously, f1(x0) > 0, f2(x0) = 0 , and consequently, x0(t) ∈ Ωx .

Notice, that

Ωx is not a convex cone. To show this, consider the case where M1 ⊇M2 , then

f1(x) − f2(x) = ϕ(x) =

∫
M′

x+(t)dt
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is linear convex functional. Let x0(t) be an arbitrary functional, change sign on M′,

when ϕ(−x0) > 0 , ϕ(−x0) > 0 and ϕ(x0 − x0) = ϕ(0) = 0 . Thus, x0 ∈ Ωx ,−x0 ∈ Ωx

and x0 + (−x0) ∈ Ωx We separate the cone into convex cones Ωx , corresponding

to rule (2.2). We obtain cone Ωx =
⋃

Ωµ1,x where µ1(x) is a linear supporting

functional to the f1(x) and supporting to f2(x) and x ∈ Ωµ1,x, if µ1(x) > f2(x).

According to an example (1.11), general form

µ1(x) =

∫ 1

0
θ1(t)x(t)dt,

where 0 6 θ1(t) 6 1 and θ1(t) = 0 if t ∈M1 .

A general form of a linear functional, a supporting to the f2(x) is,

µ2(x) =

∫ 1

0
θ2(t)x(t)dt,

where 0 6 θ2(t) 6 1 and θ2(t) = 0 if t ∈M2 .

In order to µ1(x) not to be a supporting to f2(x), it is necessary and sufficient

condition that θ1(t) . 0 on M′. We denote Ωθ1,x with the cone which satisfies∫ 1

0
θ1(t)x(t)dt −

∫
M2

x+(t)dt > 0

where θ1(t) . 0 on M′ .

So cone Ωx is sum of open convex cones Ωθ1,x. A general form of a linear

functional Ωθ1,x
∗:

ωθ1(x) = α

∫
[θ1(t) − θ2(t)]x(t)dt ,

where θ2(t) is arbitrary functional satisfying the following two conditions:

where 0 6 θ2(t) 6 1 and θ2(t) = 0 if t ∈M2 .

2.2. Some Type Of Functional About Variation

In this section we will consider some type of functional and some examples

which help us variation. at first, we will give some definitions and theorems which

has a common form.

Suppose, X be a normed space x0 ∈ X , x̄ ∈ X ; f (x) be functional. Let

f ′(x0, x̄) =
∂
∂ε

f (x0 + εx̄)|ε=+0
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We say that the functional f (x) is uniformly differentiable to the direction of the

x̄0 if for any η > 0 there is a neighborhood Ux̄ piont x̄0 and ε0 > 0 such that

| f (x0 + εx̄) − f (x0) − ε f ′(x0, x̄)| < ηε, such that for all x̄ ∈ Ux , ε < ε0 . We say that

the functional f (x) is convex, if the following requirements holds:

(1) | f (x1) − f (x2)| 6 c(N)||x1 − x2||, if ||x1||, ||x2|| 6 N

(2) f (α1x1 + α2x1) 6 α1 f (x1) + α2 f (x2), α1, α2 > 0; α1 + α2 = 1

Note that every linear convex functional is convex.We have the following theorem.

Theorem 2.3 ( Dubovitskii, A.Ya. and Milyutin, A.A. (1981) ) Every convex func-

tional f (x) is uniformly differentiable to the respect any direction.

Theorem 2.4 ( Dubovitskii, A.Ya. and Milyutin, A.A. (1981) ) The functional f ′(x, x̄)

for fixed x is linear convex respect to x̄.

Theorem 2.5 ( Dubovitskii, A.Ya. and Milyutin, A.A. (1981) ) Let f (x) be linear

convex functional x0 ∈ X. The set of linear functionals supporting to the functional

f ′(x, x̄), consists of a linear functional µ(x) , the supporting to the functional f (x) and

satisfies µ(x0) = f (x0).

Theorem 2.6 ( Dubovitskii, A.Ya. and Milyutin, A.A. (1981) ) Let f (x) be linear

convex functional. If the set of x such that f (x) < 0 , is not empty, then each point of the

set those x for which f (x) = 0 is a limit for points the set f (x) < 0 and for the points of

f (x) > 0.

We now turn to examples.

Example 2.9 Let an n-dimensional space (ξ1, . . . , ξn) is given continuously differen-

tiable functional F(ξ1, . . . , ξn) and ξ0 is fixed point. Suppose that we want to solve

the problem with restrictions and find the set of prohibited variations. Obviously,

F(ξ0 + εξ̄) − F(ξ0) = εF′ξξ̄ + o(ε, ξ̄) where o(ε, ξ̄) are uniformly small for sufficiently

small ε and the ξ̄. Thus, up to small higher order increment equal to the functional value

linear convex functional εFξ′ ξ̄ (in this case, the functional linear). Thus, if Fξ′ ξ̄ < 0,

then ξ̄ is a prohibited variation. Assuming that Fξ′ , 0 at the point ξ0 , we find that set

of prohibited variations is not empty, and by Theorem (2.6) each variation ξ̄, for which
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Fξ′ ξ̄ = 0 , is a limit point of the variations, for which Fξ′ ξ̄ > 0. Hence the set of prohibited

variations is completely determined by the inequality Fξ′ ξ̄ < 0. We see that a set of prohib-

ited variation is corresponding with the set of type l(ξ̄) < 0, where l is linear functional.

If we looked at the problem in the maximum, then the set of prohibited variations would

be determined by the inequality Fξ′ ξ̄ > 0

If the some problem we would restriction F(ξ) 6 c and this would have the equality

F(ξ0) = c, then a lot of variations ξ , admissible this restriction would be determined

entirely by the inequality Fξ′ξ < 0 .

Example 2.10 On space of functionals ( x(t),u(t) ) , defined on [0,1], where x(t) is

continuous functional, u(t) is bounded

measurable functional, let us define functional

I(x,u) =

∫ 1

0
f [x(t),u(t), t]dt,

where f is continuously differentiable functional of its variables. Let ( x0(t),u0(t) ) the

fixed point. We find a set of prohibited variation ¯x(t), ¯u(t) on the assumption that the

problem is solved to a minimum. We have

I(x0 + εx̄,u0 + εū) − I(x0,u0) = ε

∫ 1

0
(
∂ f
∂x

x̄ +
∂ f
∂u

ū)dt + o(ε, x̄, ū).

Here, as above, o(ε, x̄, ū)/ε is sufficiently small and restriction ε and x̄, ū . The derivatives

∂ f/∂x, ∂ f/∂u are taken at the point (xo(t),u(t), t). As in the previous example, we

will see that the increment of the functional which is determined by the linear convex

functional (in this case, linear). Let’s pretend that vector functional ( ∂ f/∂x, ∂ f/∂u) . 0

. In this case the set of prohibited variation is completely determined by the inequality∫
( fx
′x̄ + fu

′ū)dt < 0 . We see that the set of prohibited variations is cross bounded with

the type l(x̄, ū) < 0, where l is a linear functional.

For the problem to the maximum set of prohibited variations are determined by the

inequality
∫

( fx
′x̄ + fu

′ū)dt > 0 .

Example 2.11 Let the functional f (x) = max
t

x(t) is given of a set of functions x(t)

which is continous on [0,1]. Let the functional x0(t) is fixed functional. We find a lot of

prohibited variations for the minimization problem. The functional f (x) is a linear convex

functional and, therefore, convex functional. According to Theorem (2.3), the functional
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f (x) is uniformly differentiable to the any direction. Thus, variations of x̄ satisfying the

inequality f ′(x0, x̄) < 0, are prohibited. Lets find f ′(x0, x̄) < 0. According to Theorem

(2.5) the set of functionals subordinated f ′(x0, x̄) coincides with the set linear functional

depen to the functional f (x) and there are equal f (x) at x = x0. According to Theorem

(1.7),

f ′(x0, x̄) = max
µ
µ(x̄)

where µ(x) is a supporting functional to the f (x), and µ(x0) = f (xo) . Let M be set of

those values of t , for which x0(t) = f (x0). Then, according to above, mentioned opinion

we have

f ′(x0, x̄) = max
∫
M

x̄(t)dv = max x̄(t),

where dv > 0,
∫
M

dv = 1 . If for the set of x̄(t) for which

f ′(x0, x̄) = max
t∈M

x̄(t) < 0,

is not empty, then (see. Theorem (2.6) ), the set of prohibited variations entirely

determined by the inequality f (x0, x̄) < 0. This set is a type of set such that ϕ(x̄) < 0,

where ϕ is linear convex functional.

For the maximum problem for a lot of variations of x̄ prohibited entirely defined

by inequality

f ′(x0, x̄) = max
t∈M

x̄(t) > 0

The set is a set of variations of prohibited types of ϕ(x̄) > 0 , where ϕ is linear convex

functional. This set is not convex.

Example 2.12 In the space of continuous functionals x(t), which is defined on the

interval [0,1], let us define functional

F(x) = max
t

g( x(t), t ),

where g is continuously differentiable functional of its arguments. Let x0(t) is a fixed

point. We will try to find prohibited variation for the given problem in above by using

increment formula we can write

F(x0 + εx̄) = max
t

[g(x0(t), t) + εgx
′x̄ + o(ε, x̄) = max[g(x0(t), t) + εgx

′x̄] + o1(ε, x̄).
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here o(ε, x̄)/ε
(
hence o1(ε, x̄)/ε

)
is small for respect sufficiently small ε and x̄ restricted.

Let us denote g(x0(t), t) by y0(t)andgx
′x̄ by ȳ(t) . We have thus obtained the value of the

functional F a same as the linear convex functional, discussed in the preceding example,

therefore, F(x0 + x̄) = f ′(y, y0) ,where f is functional, considered in the previous example.

From the uniform differentiability of f it takes uniform differentiability of the functional

F. Consequently, x̄ is a prohibited variation, if F′(x0 + x̄) < 0. Then we have,

f ′(y0, ȳ) = max
t∈M

ȳ(t)

(see. the previous example), then

F′(x0, x̄) = max
t∈M

gx
′x̄(t) ,

where M is the set of all values of t, for which y0(t) = f (y0) or, equivalently, g(x0(t), t) =

F(x0). Assume that gx
′ the points of M never vanishes. It is easy to see that in this

case the set prohibited variation is not empty, hence (see. Theorem 2.6) the set prohibited

variations completely determined by the inequality

F′(x0, x̄) = max
t∈M

gx
′x̄(t) < 0

The set of prohibited variations is the set of type of ϕ(x̄) < 0, where ϕ is a linear

convex functional. For the maximum problem prohibited variations is determined by the

inequality

F′(x0, x̄) = max
t∈M

gx
′x̄(t) > 0

This set is a set of the form ϕ(x̄) > 0, where ϕ is a linear convex functional, and it is not

convex.

Example 2.13 In the space of bounded measurable functionals u(t) which is defined on

the interval [0,1], we consider the linear convex functional f (u) = vrai max
t

u(t) . Let

u0(t) be a fixed point and for the minimum problem let us find set of prohibited variations

ū(t). As it is known (see. Theorem (2.3) ), the functional f (u) is uniformly differentiable

for each direction and f ′(u0, ū) is a linear convex functional for ū(t); for this

f ′(u0, ū) = max
µ
µ(ū)

where the maximum is taken over all linear functionals µ supporting to f (u) and coincides

with f (u) to u0(t) (see Theorem (1.7) and (2.5) ). It is obvious that if ū(t) is such that
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f ′(u0, ū) < 0, then ū(t) is a prohibited variation. In order to clarify the issue of the final set

of prohibited variations. Let us find f ′(u0, ū) As we know (see. Example 2.14), in order

to supporting functional µ(u) coincides with f (u) at u0(t), it is necessary and sufficient

to µ(u) = 0 if u(t) = 0 on some Mδ(δ > 0), where the Mδ is a set consisting of all those

values of t, for which the inequality u0(t) > f (u0) − δ. Let ū0(t) is some variation. Let

us find max
µ

(ū0) on the all supporting functional µ . We denote by χδ(t) characteristic

functional for sets Mδ . Obviously, χδ1(t) > χδ2(t) if δ1 > δ2. Let c be a constant, such

that ū0 > c with for all t. Then f [χδ(t)ū0 + c(1 − χδ(t))] is a decreasing functional δ. It

is easy to see that

f [χδ(t)ū0 + c(1 − χδ(t))] = vrai max
t∈Mδ

ū0(t)

Let

m(ū0) = lim
δ→ 0

f [χδ(t)ū0 + c(1 − χδ(t))]

then we have

µ(ū0) = µ(χδ(t)ū0 + c(1 − χδ(t))) 6 f (χδ(t)ū0 + c(1 − χδ(t)))

Letting δ→ 0 , we obtain µ(ū0) 6 m(ū0) ; hence, f ′(u0, ū0) 6 m(ū0). Let us now consider

the functional

m(ū) = lim
δ→ 0

vrai max
t∈Mδ

ū(t)

It is easy to see that the m(ū) is linear convex functional. Besides, the inequality

f (ū) > m(ū) satisfy for any ū(t) , therefore, any linear functional µ(ū) , the supporting

to the functional m(ū) is also a supporting to the functional f (ū) . Let µ0(ū) is a linear

functional, supporting to the m(ū) such that µ0(ū0) = m(ū0). We show that µ0(ū) = 0 if

ū(Mδ) ≡ 0. In fact, m(ū) = 0 if ū(t) is drawn zero for any Mδ , therefore, µ0(ū) 6 0 on such

ū(t), but the set ū(t), endangered at any Mδ , is a linear manifold, the inequality µ0(ū) 6 0

implies that and µ0(ū) = 0, as required prove.But then the µ0(u0) = f (u0) ( see example

(1.7) ), therefore, f ′(u0, ū0) > µ0(ū0) = m(ū0) . Finally, we obtain f ′(u0, ū0) = m(ū0). It

is easy to see that the first set of functionals ū(t) , satisfying the inequality f ′(u0, ū) < 0 is

not empty, hence the set of prohibited variation is completely determined by the inequality

f ′(u0, ū) < 0.

For the problem the maximum set of prohibited variations determined by the

inequality f ′(u0, ū) > 0.
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Example 2.14 In the space of functionals (x(t),u(t)), where x(t) is a continuous func-

tional, u(t) is bounded and measurable functional defined on the interval [0,1], we consider

the functional

F(x,u) = vrai max
t

g(x(t),u(t), t) ,

where g is a continuously differentiable functional of its arguments. Let (x0(t),u0(t)) is

some point of the space. We find a set of prohibited variations for the minimum problem.

We have

F(x0 + εx̄,u0 + εū) = vrai max
t
{g(x0(t),u0(t), t) + ε[gx

′x̄(t) + gu
′ū(t)] + 0(ε, x̄, ū)}

= vrai max
t
{g(x0(t),u(t), t) + ε[gx

′x̄(t) + gu
′ū(t)]} + 01(ε, x̄, ū) ,

where the derivatives are taken at the point (x0(t),u0(t)). Because of the continuous

differentiation differentiability of g implies that there exists a functional η(ε) > 0, η(ε)→

0 for ε → 0 that (vrai max |o(ε, x̄, ū)|)/ε < η(ε) for all x̄, ū, limited by a constant ε .

From |o1(ε, x̄, ū)|)/ε < η(ε) for all x̄, ū, limited by a constant ε Let g(x0(t),u0(t), t) =

y0(t), gx
′x̄ + gu

′ū = ȳ(t). In this way F(x0 + εx̄,u0 + εū) = f [y0(t) + εȳ(t)] + o1(ε, x̄, ū) ,

where f functional considered in the example (2.13). We see that the value of the functional

F is different order than ε from the value of the functional f on infinitesimal higher order.

From the uniform differentiable of the functional f for each direction of the uniform

differentiability of the functional F for each direction and

F′(x0,u0, x̄, ū) = f ′(y0, ȳ) = m(ȳ) = m(gx
′x̄ + gu

′ū) = lim
δ→ 0

vrai max
t∈M

(gx
′x̄ + gu

′ū)

where Mδ is a set consisting of all those t, for which g(x0,u0, t) > F(x0,u0) − δ. Suppose

that |gu′ | > c > 0 for almost all t. In that event set of x̄, ū that satisfy the inequality

F′(x0,u0, x̄, ū) < 0 , certainly not empty, so in this case the set of prohibited variation is

completely determined by the inequality

F′(x0,u0, x̄, ū) = max(gx
′x̄ + gu

′ū) < 0

It is clear that this set is a set of type ϕ(x̄, ū) < 0 , where ϕ is a linear convex functional.

For the maximum problem for a set of prohibited variations completely determined by the

inequality m(gx
′x̄ + gu

′ū) > 0. This set is not convex.
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CHAPTER 3

EXTREMUM PROBLEM WITH THE CONSTRAINTS

In this chapter by using Dubovitskiy Milyutin theorem we will try to solve

such problem

Problem 3.1 Let us extremize the functional

I(x,u) =

∫ t1

t0

F(x,u, t)dt,

where x(t) is a continuous functional defined on the interval [t0, t1] with values from

En; u(t) is a bounded measurable functional defined on the interval [t0, t1] with values of

Er; F(x,u, t) is bounded on the any bounded set of (x,u, t), its has partial derivatives Fx

and Fu′ are bounded and equicontinuous for each fixed t by each bounded set of values

(x,u, t). It is required to find x0(t),u0(t), giving a minimum of functional I with the

following restrictions:

(1) g(x) 6 0 ;

(2) ϕ(x) 6 0 ;

(3) dx/dt = f (x,u, t), x(t0) = x0 ; (3.1)

(4) x(t1) = x1 .

There g(x), ϕ(x) are continuously differentiable functionals of their arguments;

gx
′ , 0, if g(x) = 0; ϕu′ , 0; if ϕ(u) = 0. The functional f (x,u, t) is bounded on each

bounded set (x,u, t), has partial fx
′ and fu

′ , which is bounded and equicontinuous for each

fixed on each bounded t the set of values (x,u, t), and takes the value of En. We assume

and that g(x0) 6 0 and g(x1) 6 0. In chapter one it is considered some difficult problem.

Problem rather than limiting ϕ(u) 6 0 required to value u and belonged to a set of Er,

and time t1 is fixed. Here we consider the problem in this formulation. However, it seems
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more helpful to consider first simple task, in which the lower auxiliary constructions and

all the essential features of the method are the clear.

Let us analyze the problem. In a space of variation we introduce the space W pairs

of functionals x̄(t), ū(t), where x̄(t) is continuous on the interval [t0, t1] and takes values

from En,ū(t) is bounded and measurable on the interval [t0, t1] and takes the value of Er.

1. Let us investigate the structure of the set of prohibited variations. Such type of

functionals we have seen in example (2.10) we considered the functional with the values

of E1, instead of En and Er, which these opinion does not change the substance of the

matter. Thus, the set of prohibited variations is not empty and it coincides with the set of

variations of x̄(t) and ū(t) , that satisfy inequality∫ t1

t0

[Fx
′(x0,u0, t)x̄ + Fu

′(x0,u0, t)ū] dt < 0

Assume first that the Fx
′(x0,u0, t) or Fu

′(x0,u0, t) is not identically zero. In this case the

set of prohibited variations not empty and a convex open cone in W, given one linear

inequality. We denote it by Ω0

10. We now investigate to the restriction g(x) 6 0 . If g[x0(t)] < 0 for every t

in the interval [t0, t1] , the set of variations which is prohibited for this restriction

that coincides with the whole space. Suppose that g[x0(l)] = 0 on a set of M

values of t. In this case, the set of prohibited variations coincides with the set of

prohibited variations in the problem at the minimum of the functional

ϕ(x,u) = max
t

g(x).

This functional has been considered in example 2.12. In the case of gx
′[x0(t)] , 0

for t ∈ M , the set of prohibited variations in the problem on minimum coincides

with many variations in x̄(t), ū(t), satisfying inequality gx
′[x0(t)]x̄(t) < 0 for t ∈ M

, consequently, the set of admissible variations to limit g(x) 6 0 defined by the

inequality

max
t∈m

gx
′[x0(t)]x̄(t) < 0

Thus the set of admissible variations is not empty open convex cone in the space

W, given the inequality r(x̄, ū) < 0, where r(x̄, ū) linear convex functional. Let this

cone through Ω1 .
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20. If

vrai max
t
ϕ[u0(t)] < 0

the set of variations of x̄(t), ū(t), which is admissible to restrict the ϕ(u) 6 0 is the

whole space. If vrai max
t
ϕ[u0(t)] = 0 , then set of allowable variation coincides

with the set of prohibited variation for the following minimum problem

σ(x,u) = vrai max
t
ϕ(u).

Functional of this type has been considered in example (2.14). Let δ > 0. We define

the set of Mδ values of t with following way: t ∈ Mδ if and only if ϕ[u0(t)] > −δ.

In the case where |ϕu
′
| > β > 0 on the set Mδ , the set of prohibited variations as

we have seen, is determined by the inequality m(x̄, ū) < 0 , where

m(x̄, ū) = lim
δ→ 0

vrai max
t∈Mδ

ϕu
′[u0(t)]ū(t).

Thus, the set of prohibited variations determined by the inequality m(x̄, ū) < 0 .

Since m(x̄, ū) is a linear convex functional and set of prohibited variations is not

empty (by assumptionϕu
′[u0(t)] , 0 ifϕ(u) = 0 ), the inequality m(x̄, ū) < 0 defines

open convex cone in the space of pairs of x̄(t), ū(t). Let us denote this cone by Ω2 .

30 We now turn to the study of inequality constraints. We have two types

of restrictions (see. (3.1), restrictions (3) and (4) ). The first one is in that a pair

of x(t),u(t) is related by the equation dx/dt = f (x,u, t) with the initial conditions

x(t0) = x0 . The second restrictions is that that x(t1) = x1 at t = t1. It is easy to find

a lot of admisible variations for each of these restrictions. Indeed, if x̄(t), ū(t) is

riding variation of the first of these constraints (constraint 3)), then, by definition,

there is a sequence εn, x̃n, ũn , tends to zero as n→∞, such that

d
dt

[x0 + εn(x̄ + x̃n)] = f [x0 + εn(x̄ + x̃n),u0 + εn(ū + +ũn), t],

[x0 + εn(x̄ + x̃n)]|t=t0 = x0

Expanding the powers of, and the left and right-hand side, we obtain

dx̄
dt

= fx
′x̄ + fu

′ū, x̄(t0) = 0, (3.2)

where fx
′ and fu

′ are taken at the points x0(t), u0(t), t. On the other hand,each

variation of x̄(t), ū(t) , satisfying the system (3.2) is admissible variation. To see
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this, it is enough to consider solution of (3.1) with u(t) = u0(t)+εū(t) and x(t0) = x0.

Setting x(t) = x0(t)+ε(x̄+ x̃), and using the theorems on differentiation solutions to

the parameter that x̃→ 0 as ε→ 0. Thus,set of admissible variations of x̄(t), ū(t) of

the first restriction is entirely determined by the requirement that x̄(t), ū(t) satisfies

the system (3.2). Many variations satisfying the system (3.2) is a subspace in

the space W. We denote it by L1. The second restriction (4) investigated quite

simple. If the variation of x̄(t), ū(t) is valid this restriction, it is obvious that

x̄(t1) = 0. This condition completely characterizes the variation admissible for

the second restriction. Variations of x̄(t), ū(t), satisfying the condition x̄(t1) = 0,

form a subspace in the space W. We denote it by L2. It’s obvious that variation of

x̄(t), ū(t), admissible respect restriction and satisfy the system

dx̄
dt

fx
′x̄ + fu

′ū, x̄(t0) = 0, x̄(t1) = 0. (3.3)

There is, however, question whether any variation of x̄(t), ū(t), satisfying system

(3.3) is admissible for the restriction (3) and (4). Here sufficient conditions which

guarantee that opinion. Let ψ(t) is a solution of the system

−
dψ
dt

= ( fx
′)∗ψ(t), (3.4)

determined at [t0, t1]. Under ( fx
′)∗ understand the transpose of the matrix fx

′ .

In order for any variation of x̄(t), ū(t), satisfying the system (3.3), it would be

admissible respect restrictions of intersection (3) and (4) it is sufficient existence

r-dimensional vector functional (ψ, fu
′) . 0 which is satisfies

(ψ, fu
′) =

n∑
i=1

ψi(t)( fi)u′.

Further we will call this condition as the condition of nonsingular system

(3.1) in the neighborhood of x0(t),u0(t) . The proof of this statements can be found

in [1]. Let us first assume that there is a non-degeneracy condition; then set of

variations allowed for restrictions (3) and (4), fully characterized by a system

(3.3). set of variations satisfying System (3.3) is a subspace, which we denote by

L. Obviously, L = (L1 ∩ L2).

So, we looked at each constraint separately and found the structure of the

sets of prohibited and admissible variations. In this case all these sets are convex
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cones. We now find each obtained from cones general form of a linear functional

in the dual cone.

2. Since the cone Ω0 is defined by a linear inequality∫ t1

t0

(Fx
′x̄ + Fu

′ū)dt < 0 ,

then, in corresponding to the rule (2.1) and example (2.1), the general form of

linear functional is Ω0
∗

−α

∫
t0

(Fx
′x̄ + Fu

′ū)dt.

10. Let us find the general form of linear functional Ω1
∗ . Cone Ω1 is defined

by the inequality

r(x̄, ū) = max
t∈M

gx
′x̄ < 0 ,

where r(x̄, ū) is a linear convex functional. In order to find a general form of linear

functional, belonging to Ω1
∗ , it is necessary, corresponding to rule (2.1) (a cone

Ω1 is not empty), to find primarily general form linear functional supporting to

the functional r(x̄, ū). We use the following method. Assume A(x̄, ū) = gx
′x̄ = ȳ(t).

Consider a bounded linear operator A mapping the space of pairs of x̄(t), ū(t) in

the space of continuous functionals on the interval [t0, t1], it is clear,

r(x̄, ū) = max
t∈M

ȳ(t) = r1(ȳ).

Linear convex functional r1(ȳ) is considered by the example (1.6). General form

of a linear functional, a supporting to the functional r1(ȳ), is∫
t0

ȳ(t)dv

where the measure v has the following properties: dv > 0;
∫ t1

t0
dv = 1; measure v

and concentrated on the set M.

Hence, in according to rule (1.11), we obtain the general form of a linear

functional supporting to the r(x̄, ū), is

−

∫ t1

t0

gx
′x̄dv,

where the measure v has the properties listed above. Using rule 5.1, we find that

the general form of linear functional belonging Ω1
∗, is

−α

∫ t1

t0

gx
′x̄dv, α > 0 .
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Put αv = µ, then any linear functional belonging to Ω1
∗, can be written in the form

−

∫ t1

t0

gx
′x̄dµ,

where the measure µ has the following two properties: dµ > 0, the measure µ

focus on the set M.

20. We now find the general form of linear functional Ω2∗. As the cone Ω2

is not empty and is given by the inequality

m(x̄, ū) = lim
δ→ 0

vrai max
t∈Mδ

ϕu
′ū < 0 then

m(x̄, ū) is a linear convex functional, then to find the general form of a linear

functional in Ω2
∗, it is necessary first to find the general form linear functional

supporting to the m(x̄, ū) (see. Rule (2.1) ). Let us use the following method:

Putting A(x̄, ū) = ϕu
′ū = ȳ. Let us introduce a linear bounded operator A,

a mapping space pairs x̄(t), ū(t) into the space bounded measurable functionals

defined on [t0, t1],

m1(ȳ) = lim
δ→ 0

vrai max
t∈Mδ

ȳ,

Then m(x̄, ū) = m1(ȳ). Let us find the general form of linear functional supporting

to the functional m1(ȳ). For this we introduce another linear convex functional:

s(y) = vrai max
t∈[t0,t1]

y.

Let y0(t) = ϕ(u0). According to example (1.5) m1(ȳ) = s′(y0, ȳ). The func-

tional s′(y0, ȳ) has been investigated in detail in the same example. A general

form of a linear functional, a supporting to s′(y0, ȳ), there is l(ȳ), where func-

tional l has the following properties: l(ȳ) > 0 if y > 0. About almost everywhere;

l(ȳ ≡ 1) = 1; l(ȳ) = 0 if ȳ = 0 almost everywhere on Mδ.

By using the rule (1.11), it is not difficult to find a general form of a linear

functional, a supporting to the functional m(x̄, ū) . We find that the general form

linear functional supporting to the functionals m(x̄, ū) is a l(ϕu
′ū). Hence (see.

rule (2.1) ) the general form of linear functional belonging Ω2
∗, is −αl(ϕu

′ū) where

a > 0. Let αl(ϕu
′ū) = λ(ū). It is clear

but λ(ū) is completely characterized by the following properties: λ(ū) > 0

if ϕu
′ū > 0 almost everywhere; λ(ū) = 0 if ϕu

′ū = 0 almost everywhere on Mδ
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Thus, the general form of linear functional belonging Ω2
∗ , is −λ(ū).

30. Now we find the set of linear functionals L∗. Since L is subspace then

linear functionals of the L∗ vanish on L. We use the fact that L = (L1
⋂

L2). Since

there L2 there is∞ −n− dimensional subspace of pairs x̄(t), ū(t) , then, according to

Theorem (1.6), L∗ = L1
∗+L2

∗.A general form of a linear functional of L1
∗ , according

to theorem (1.5), is a l[x̄ − x′(ū)] where x′(ū) satisfy the system (3.2). (7.2). It is not

easy to see that general form of a linear functional L2
∗ is (cx̄)t=tl

,

(cx̄) =

n∑
i=1

cix̄i,

where ci is fixed numbers, but the general form of linear functional L∗ is

l[x̄ − x′(u)] + (cx̄)t=t1
. We have found, therefore, a general form of the linear

functional, within the cones dual cone obtained by varying problems.

Euler equation. A necessary condition for an extremum is that there are

linear functionals of each one of the conjugate cone, not all simultaneously zero

but their sum is equal to zero. Euler equation, therefore, has the form

−α

∫ t1

t0

(Fx
′x̄ + Fu

′ū)dt −
∫ t1

t0

gx′x̄dµ − λ(ū) + l[x̄ − x̄′(ū)] + (cx̄)t=t1
= 0 .

The equality holds for all x̄(t), ū(t), and α, µ, λ , 0 at the same time we

investigate the Euler equation. Let take x̄(t) = x′(ū) then we can obtain

−α

∫ t1

t0

(Fx
′x′(ū) + Fu

′(ū))dt −
∫ t1

t0

gx
′x′(ū)dµ − λ(ū) + (cx′(ū))t=t1

= 0 .

This expression can be written as follows:∫ t1

t0

[(ψ, fu
′) − αFu

′]ūdt − λ(ū) = 0 .

where ψ(t) satisfies

−
dψ
dt

= ( fx)∗ψ − αFx
′
− gx

′
dµ
dt
, ψ(t1) = c. (3.5)

Here dµ/dt is understood in the sense of generalized functionals. Finally we get

λ(ū) =

∫ t1

t0

[(ψ(t), f ) − αF]u′ūdt ,

First of all show that ψ and is not identically equal to zero at the same time
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From ψ ≡ 0 and α ≡ 0, it follows that the measure µ ≡ 0, on the set M,

which focuses measure µ, does not include the endpoints [t0, t1], and λ(ū) ≡ 0.

But then α,u, and λ vanishes simultaneously, contradicts the hypothesis. Let

H(t,u) = (ψ(t), f ) − αF . The Euler equation can then be written as∫ t1

t0

∂H
∂u

ūdt = λ(ū).

This equation implies that ∂H/∂u = 0 almost everywhere on any a set of positive

measure on which ϕ(u0) < γ < 0. In fact, λ(ū) = 0, whatever the functional ū(t),

focused on such set. Hence it is easy to get that ∂H/∂u = 0 almost everywhere

on any set where ϕ(u0) < 0, consequently, any set positive measure on which

|∂H/∂u| > 0, ϕ(u0) = 0 almost everywhere. Finally, if ū(t) is such that ϕu
′ū < 0

for any Mδ then (∂H/∂u)ū 6 0 almost everywhere on this set. This fact implies

from the fact that −λ(ū) in this case is a non-negative value. Easily see also that if

∂H/∂u possesses all the above properties, then

−

∫ t1

t0

∂H
∂u

ūdt

is a functional, included in Ω2
∗. Thus, a necessary condition extremum is that

there is a measure µ concentrated on M, a functionalψ, satisfying the system (3.5),

and is α > 0, that ∂H/∂u has the above properties. These necessary conditions

we obtained under the assumption that the cone Ω0 is not empty and that System

(3.1) is non-degenerate in the neighborhood of the solution x0(t),u0(t). We show

In these cases, the formulation of the necessary conditions in the term of H(t,u)

remains the same:

a) The cone Ω0 is empty. This means that, no matter what variation of

x̄(t), ū(t) ∫ t1

t0

(Fx
′x̄ + Fu

′ū)dt = 0 ,

therefore, Fx
′
≡ 0, Fu

′
≡ 0 Suppose in this case α = 1, µ ≡ 0, ψ ≡ 0. Obviously,

ψ ≡ 0 satisfies the system (3.5). In this case, H = −F and ∂H/∂u = 0 almost

everywhere;

b) the system (3.1) is singular the neighborhood of x0(t),u0(t). In this case

there is a nontrivial solution ψ(t) of (3.4) that (ψ fu
′) = 0 almost everywhere. Let

α = 0 and µ = 0, then ψ is also a solution of (3.5). In this case, H = (ψ, f ) and is

easily seen that ∂H/∂u = 0 almost everywhere.
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Problem 3.2 Consider the functional

I(x,u) = max
t

g(x), t0 6 t 6 t1.

Assume that x0(t), u0(t), t1 provide at least one functional I(x,u) with the following

limitations:

(1) value of u(t) belong to some set D of space Er;

(2) dx/dt = f (x,u) , x(t0) = x0;

(3) x(t1) = x1.

Regarding the functional g(x) assume continuous differentiability with re-

spect to x. Let g0 = I(x0,u0). We assume that gx′ , 0 if g(x) = g0. Furthermore, for

simplicity we require g(x0) < g0, g(x1) < g0 .

Assumptions regarding the functionals x(t),u(t) and f (x,u) are the same

(2). Reduction this problem to problem 1 by using control v(τ) is made the same

way as in the problem (2). In this case prohibited variation now the Ω1 cone

problem (1). The rest of the cones remain unchanged. In the Euler equation (3)

will therefore one member less than the Euler equation (2). We obtain

−

∫ 1

0
gx
′x̄ dµτ − λ(v̄) + l[x̄ − x′(v̄)] + (c, x̄)τ=1 = 0 ,

where µτ and λ have the same meaning as in task 2, and does not vanish simul-

taneously. Repeating the arguments that we have used to address Problem 2, we

obtain the following maximum principle:

There exists a measure µ > 0, concentrated on the set of values t , for which

the g[x(t)] = g0 then (ψ(t), f [x0(t),u(t)]) 6 0 and equality holds for almost all t if

u(t) = u0(t) . The functional ψ(t) . 0 and satisfies

−
dψ
dt

= ( fx
′) ∗ ψ − gx

′
dµ
dt
.

Problem 3.3 Given functional

I(x,u) = vrai max
t06t6t1

g[x(t), u(t)].

The functional x(t) is continuous on the interval [t0, t1] and takes values from En.

The functional u(t) is measurable, bounded, with values of En. Let x0(t) , u0(t), t1

give at least functional I(x,u) under the following restrictions::
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(1) dx/dt = f (x,u) , x(t0) = x0;

(2) x(t1) = x1.

Regarding the functional g(x,u) and the functionals f (x,u) we assumed contin-

uously differentiable in both arguments. Required to find conditions that are

satisfied by x0(t),u0(t), t1. put g0 = I[x0(t),u0(t)]. We assume for simplicity that

each x(t) the set of those values of u(t), for which g(x,u) 6 g0, restricted gu′ , 0

in the points x(t),u(t) , where g(x,u) = g0 . To obtain corresponding maximum

principle, as well as in problems 2 and 3, we introduce a new control v(τ). How-

ever, in this problem we will be considered along with the control v(τ) and control

u(τ). Here design, by which we move from task to task (4) Type (1), i.e. to the

problem in which we confine ourselves to small variations or what is the same,

considering the weak extremum. Let v0(τ) be a functional that takes two values,

one of which is zero, and ∫ 1

0
v0(τ)dτ = t1 − t0 .

We will also assume that a zero value is taken on the system intervals. put

t = t0 +

∫ τ

0
v0(τ)dτ, x0(τ) = x0[t(τ)].

We define the functional ũ0(τ) as follows:

ũ0(τ) = u0[t(τ)] , if v0(τ) , 0. At each interval, where v0(τ) = 0, we assume

that ũ0(τ) takes on a constant value. These values we chosen arbitrarily with

only one restriction g[x0(τ), ũ0(τ)] < g0 (on any interval where v0(τ) = 0, x0(τ) is

constant). Obviously, the triple functionals x0(τ), ũ0(τ), v0(τ) is a point of minimum

of functional

I′(x,u, v) = vrai max
06τ61

g[x(c),u(τ)]

with constraints

1′) dx/dτ = v(τ) f [x(τ),u(τ)], x(0) = x0 ;

2′) x(1) = x1;

3′) v(τ) > 0 .

We will not give here the proof of this assertion, since we conducted a proof

of example which is closer to the Problem (2). In what follows we consider, as
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well as Problem (1), small variations of the functionals x(τ)u(τ), v(τ), but since v(τ)

included linearly, the local conditions necessary for the minimum of the functional

I′(x,u, v) will give the maximum principle for the functional I(x,u), similar to just as

it was in problems (2) and (3). We find the cone prohibited variations. Functional

of the same type, and functionality that I(x,u), we examined Example (2.14). Since

gu
′ , 0, if g(x,u) = g0, the set prohibited variation x̄(τ), ū(τ), v̄(τ) is not empty and

is given the inequality m(x̄, ū, v̄) < 0, where m is linear convex functional that we

introduced in (2.13). Recall that

m(x̄, ū, v̄) = lim
δ→0

vrai max
τ∈Mδ

(gx
′x̄ + gu

′ū),

where Mδ be the set of all values of τ, such that g[x0(τ),u0(τ)] > g0
− δ, hence the

set of prohibited variations is open convex cone, which we denote by Ω0. Let us

find the general form of a linear functional from Ω0
∗. For this rule (2.1) to find the

general form of linear functional reference to the functional m. Using arguments

similar to the arguments in paragraph. (20) for the problem (1), we find that

the linear functional µ(x̄, ū, v̄), the supporting to the functional m is completely

determined by the following properties:

µ(x̄, ū, v̄) = µ′(gx
′x̄ + gu

′ū), where µ′ be linear functional in the space bounded

measurable functionals defined on the interval [0,1]; µ′[ȳ(τ)] > 0 if ȳ(τ) > 0;

µ′[ȳ(τ) ≡ 1] = 1; µ′[ȳ(τ)] = 0, if ȳ(τ) = 0 almost everywhere at any Mδ

According to Rule (2.1), the general form of linear functional has Ω0
∗ if

αµ′(gx
′x̄+ gu

′ū), where α > 0. Restrictions (1′) and (2′) are investigated completely

same as well as in the problem 1 is investigated restriction (3) and (4). At first we

assume that the system (3.1) is non-degenerate in the neighborhood of the solution

x0(τ), ũ0(τ), v0(τ). In this case, the set of admissible variations of x̄(τ), ū(τ), v̄(τ) is

defined by the following equations:

dx̄
dτ

= v0(τ)( fx
′x̄ + fx

′ū) + v̄(τ) f [x0(τ), ũ0(τ)], (3.6)

x̄(0) = x̄(1) = 0.

As can be seen from (3.6), admissible variations restrictions on (1′) and

(2′), form a subspace of x̄(τ), ū(τ), v̄(τ). Let us denoted it by L. A general form

of a linear functional of L∗ is l[x̄ − x́(ū, v̄)] + (cx̄)τ=1 (see problem 1), where x′(ū, v̄)
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satisfies

dx′

dτ
= v0(τ)( fx

′x̄ + fu
′ū) + v̄(τ) f [x0(τ), ũ0(τ)], x′(τ = 0) = 0.

Restriction (3′) varies in the same manner as in task (2′). A linear functional from

the corresponding conjugate cone is denoted by λ(v̄). Recall that the functional λ

properties characterized by λ(v̄) > 0 if v̄ > 0; λ(v̄) = 0 if v̄ = 0 everywhere where

v0(τ) = 0.

Euler’s equation:

There exist α > 0 µ′, l, c, λ that

− αµ′[gx
′x̄ + gu

′ū] + l[x̄ − x′(ū, v̄)] + (cx̄)τ=1 + λ(v̄) = 0, (3.7)

wherein α and λ are not zero simultaneously. Equation 3.7 holds for all x̄, ū, v̄. Let

x̄ = x′(ū, v̄) and write separately equality with the first ū and v̄. We get

−αµ′[gx
′x′(ū) + gu

′ū] + (cx′(ū) )τ=1 = 0

−αµ′[gx
′x′(v̄)] + (cx′(v̄))τ=1 + λ(v̄) = 0

(3.8)

Where x′(ū) (respectively, x′(v̄) ) is a solution of 3.8 with v̄ (respectively, ū) equal

to zero. Now let R(τ) be an arbitrary functional with values in En, and x′(R) is a

solution of system of equations

dx′

dτ
= v0(τ) fx

′x′ + R, x′(τ = 0) = 0 .

We have

λ[gx
′x′(R)] =

∫ 1

0
(ψ,R)dτ,

where ψ(τ) be a bounded functional with values in En, clearly defined According

to the equation. In fact, it is easy to verify that the expression −αµ′[gx
′x′(R)] is a

continuous normal L1 linear functional by R.

Considering the terms v(τ), we obtain∫ 1

0
(ψ, f )v̄dτ + (cx′(v̄))τ=1 + λ(v̄) = 0,

or ∫ 1

0
(ψ + ψ1, f )v̄dτ + λ(v̄) = 0, (3.9)
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where ψ1 satisfies the system of equations

−
dψ1

dτ
= v0(τ)( fx

′)∗ψ1, ψ1(τ = 1) = c.

Considering the terms with ū(τ), we obtain∫ 1

0
v0(τ)(ψ + ψ1, fu

′)ūdτ = αµ′(gu
′ū), (3.10)

ū =
gu
′

|gu
′|2

gx
′x′(R)

This equality obviously makes matter on some Mδ, namely, Mδ is where |gu
′
| >

β > 0, where β be a constant. Other form functional for ū of τ tons due to the

functional properties of µ′ does not matter. In this way,

αµ′[gx
′x′(R)] =

∫ 1

0
v0(τ)(ψ + ψ1, fu

′)
gu
′

|gu
′|2

gx
′x′(R)dτ .

But

αµ′[gx
′x′(R)] = −

∫ 1

0
(ψ,R)dτ ,

therefore, for any absolutely integrable on [0,1] functional R(τ) we have the equal-

ity ∫ 1

0
(ψ,R)dτ = −

∫ 1

0
v0(τ)(ψ + ψ1, fu

′)
gu
′

|gu
′|2

gx
′x′(R)dτ .

But then the ψ is a solution of

−
dψ
dτ

= v0(τ)( fx
′)∗ψ − v0(τ)[(ψ + ψ1, fu

′)
gu
′

|gu
′|2

gx
′], ψ(1) = 0

Now we put ψ + ψ1 = ψ0, we obtain

−
dψ0

dτ
= v0(τ)( fx

′)∗ψ0 − v0(τ)[(ψ0 + fu
′)

gu
′

|gu
′|2

gx
′], ψ0(1) = c

In addition, we have (see. (3.9) )∫ 1

0
(ψ0, f )v̄dτ + λ(v̄) = 0.

Let H(τ) = (ψ0(τ), f (x0(τ), ũo(τ))) As∫ 1

0
H(τ)v̄dτ + λ(v̄) = 0.

then H(τ) = 0 almost everywhere on the set of τ for which v0(τ) , 0 , and H(τ) 6 0

for those t for which v0(τ) = 0. Let ψ(t) = ψ0[τ(t)]. Then ψ0(τ) be a continuous
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functional of τ and does not change at any interval, where v0(τ) = 0, the ψ(t)

is determined by this equation is uniquely and is a continuous functional of t.

Obviously, ψ(t) satisfies system

−
dψ
dt

= ( fx
′)∗ψ − (ψ, fu

′)
gu
′

|gu
′|2

gx
′ (3.11)

Let π(t,u) = (ψ(t), f [x0(t),u]) then π[t,u0(t)] almost everywhere equal zero, and

π(tk,uk) 6 0. Recall that tk is the image of the interval, at which v0(τ) = 0;

uk = ũ0(τ) in this interval. Now choose the point tk,uk, so that g[x0(tk),uk] <

g0, and any point t,u and such that g[x0(t),u] < g0, was to limit to tk,uk.

We obtain the following maximum principle:

There exists a functional ψ(t) satisfies the system 3.11 that

π(t,u) = (ψ(t), f [x0(t),u]) = 0 (3.12)

almost everywhere when u = u0(t) andπ(t,u) 6 0 for the t,u, for which g[x0(t),u] <

g0.
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CONCLUSION

In this thesis we solved optimal control problem

I(x,u) =

∫ t1

t0

F(x,u, t)dt

with constraints. We obtained necessary optimality condition for this problem.

In future this problem can be extended to the problem which has mini-

mization functional

I(x,u) = s(x(t1),u(t1) ) +

∫ t1

t0

F(x,u, t)dt,

and some extra constraints g(x,u) 6 0. For this problem it can be consider neces-

sary optimality condition.
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