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ABSTRACT

DYNAMIC INEQUALITIES ON TIME SCALES

TACYILDIZ, Tuba
M.Sc in Department of Mathematics
Supervisor: Assist. Prof. Dr. Ahmet YANTIR
June 2016, 35 pages

In recent times, the theory and applications of dynamic inequalities on time
scales has attracted great interest. Although many results of differential equations are
similar to the results of difference equations, there are also situations where they are
different. The study of dynamic equations on time scales reveal these differences. The
time scale theory was introduced by Stefan Hilger in his PhD thesis in order to unify
discrete and continuous analysis. In the first part of the thesis, we give basic
definitions about the calculus on time scales. The purpose of this thesis is to give
basic properties of some dynamic inequalities which are Gronwall’s, Holder’s,

Minkowski’s and Jensen’s inequality with their proofs.

Keywords: Time Scale, Dynamic Inequalities, Gronwall’s Inequality, Holder’s
Inequality, Minkowski’s Inequality, Jensen’s Inequality.
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OZET

ZAMAN SKALASINDA DINAMIK ESITSIZLIKLER

Tuba TACYILDIZ
Yiiksek Lisans, Matematik Bolimii
Tez Danigmant: Yrd. Dog¢. Dr. Ahmet YANTIR
Haziran 2016, 35 sayfa

Son zamanlarda zaman skalasindaki dinamik egitsizliklerin teori ve uygulamalar
bilylik ilgi gdérmektedir. Diferensiyel denklemler ile ilgili birgok sonucun fark
denklemleri ile benzer olmasina ragmen farkli oldugu durumlar da bulunmaktadir.
Zaman skalasinda dinamik denklemlerin ¢aligilmasi bu farkliliklart ortaya ¢ikarir.
Zaman skalasi teorisi, Stefan Hilger tarafindan doktora tezinde ayrik ve siirekli
analizi birlestirmek amaciyla tanitilmigtir. Bu tezin ilk béliminde zaman sklasinda
hesaplamalar ile ilgili bazi temel kavramlar verilmistir. Bu tezin amaci Gronwall,
Holder, Minkowski ve Jensen egitsizlikleri gibi bazi dinamik esitsizliklerin

ispatlariyla birlikte bazi temel 6zelliklerinden bahsedilmigtir.

Anahtar sozciikler: Zaman Skalasi, Dinamik Esitsizlikler, Gronwall Esitsizligi,
Holder Esitsizligi, Minkowski Esitsizligi, Jensen Esitsizligi.
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1 INTRODUCTION

Aulbach and Hilger unified and extended the differential equation, difference
equation and quantum equation on time scale as dynamic equations. It provides
unifying framework for difference, differential and quantum equations on discrete
intervals with non-uniform size (q-numbers) and continuous intervals. Therefore, the
notion of time scales can combine the continuous, discrete and g-discrete analysis.
The consideration of differential equations and difference equations as a dynamic
equation states the unification property of time scale while the consideration of a
quantum equation as a dynamic equation states the extention property of time scale.

Inequalities are very practical part of mathematics. They give us an idea about
the size of the quantities and provide an accurate estimate. In many areas of applied
mathematics they also provide us a knowledge about the location of the things. One
of the most practical part of the inequalities that it is usually far easier to satisfy
assumptions involving inequalities that it is for those involving equations.

When derivatives and inequalities are combined, we refer to them as
“differential inequalities” and they are vey useful in the analysis of solutions to
nonlinear differential equations.

In mathematics, Gronwall's inequality (also called Gronwall's lemma or the
Gronwall-Bellman inequality) is a method to bound a function that is known to
satisfy a certain differential or integral inequality by the solution of the corresponding
differential or integral equation. This inequality has two main forms: a differential
form and an integral form. For the latter there are several variants.

In order to obtain various estimates in the theory of ordinary and stochastic
differential equations Gronwall's inequality (It is named for Thomas Hakon Gronwall
(1877-1932).) is one of the most significant tools. In particular, it provides a
comparison theorem that can be used to prove uniqueness of a solution (the Picard—
Lindel6f theorem) to the initial value problem.



2 TIME SCALES CALCULUS

In this chapter of this dissertation, we state the concept of time scale, defnitions
forward and backward jump operators, graininess functions. Next by the aid of these
concepts, we give the defnitions and primary theorems of A- and V-derivatives and A-
and V-integrals. We illustrate how the time scale derivatives and integrals differ from
ordinary derivative and integral R and difference derivative and integral on Z by
examples. Also the definition and some basic properties of exponential function on
time scales are given.

2.1 Basic Definitions

After the concept of time scale is introduced by Hilger[11], the time scale
calculus is rapidly developed by many scientists[1-3, 5-14]. The three important
monographs about the time scale calculus and dynamic equations on time scales are
written by Bohner and Peterson[6, 7, 14]. For more details about the concept of time
scales are refer reader to the references above and the references therein.

Definition 2.1 [6] A time scale is an arbitrary nonempty closed subset of the real
numbers. The real numbers R, the integers Z, the naturel numbers N, and the
nonnegative integers Ny, [0,5]U[6,7], [0,1]UN are examples of time scales. The
rational numbers @, the irrational numbers R\Q (since they are not closed), the
complex numbers C (not a subset of R), and the open interval (0,1) (not closed) are
not time scales.

Throughout this thesis, a time scale will be denoted by the symbol T.

Definition 2.2 [6] Let T be a time scale. The forward jump operator ¢ ‘T-T is
defined by

o(t) =inf{s € T:s > t}

in particular o(maxT) = maxT, while the backward jump operator p ‘T-T is
defined by



p(t) = sup{s e T:s < t}
in particular p(minT) = minT.

In order to get rid of pathological cases, it is assumed that inf @ = supT and sup® =
infT.

Definition 2.3 [6] The graininess function p: T—[0,00) is defined by

ut)=oc(t)—t.

. . i < .
elpd)}  plt t aft)  ofofi))

Figure 1.1 Basic operators on time scale

Definition 2.4 [6] Any point of a time scale is classified by means of jump operators.
If o(t) > t, t is right-scattered, while if p(t) <t, then t is lefi-scaitered. If a point is
both left and right scattered, it is called an isolated point. Also, if t <supT and o(t)=t,
then t is called right-dense, and if t>infT and p(t)=t, then t is called left-dense. If a
point is both left and right dense, it is called a dense point.

— &
t, & & 4

Figure 1.2 Classifications of points

As 1llustrated by the Figure 1.2 above:

t; is dense point,

t, is left-dense and right-scattered point,

t; is isolated point,

t, is left-scattered and right dense point.



Example 2.5 For each of the following time scales T, the illustration of jump
operators and classification of the points are given as follows:

iH T=R;
a(t) =inf{s € R:s > t} = inf(t,+0) = t,
p(t) = sup{s € R:s < t} = sup(—oo,t) = t,
put) =c(t)—t=t—t=0,
Hence every point t € R is dense.
(i) T=%
o(t) =inf{seZis>t}=inf{t+1L,t+2,..}=t+1,
p(t) =sup{seZis<t}=sup{t—1,t-2,.}=t—1,
pt) = ct)—t=t+1-t=1,
Hence every point t € Z is isolated.
(iii) T= {g :neNy};

t=g = n=2t € Np,

3 2t+1 2042 2t+1 1
o) = imf {25352, .} =2 = 0],

T
=t—-—,
2 2

r

2t-2 25—1} 2t—1
2 2

p(t) = sup{ ...

ue)=o(®)—t=t+-—t=

SR

2

Hence every point t € N, is isolated.



2.2 Differentiation

Definition 2.6 [6] Let f: T — R is a function and t € T*

T = {']I' — [maxT]; if maxT is left — scattered
- T: otherwise

T. = {']1" — [minT]; if minT is right — scattered
k T; otherwise

If there exist ‘a’ such that Ve > 0 there exist a neighborhood U of t such that
lf(c@®) - f(s) —alo®) —s]| < elo(t) —s| ;¥s€U

then ‘a’ is called the A- derivative of f at the point t, and denoted by & = f2(t)

If(e®) = £(

| o -5 —fi)| s e

. ’ ¥ A 1 f(a(t))_f(s)
which implies f4(t) = Ll_l}g——n e

We say that fis delta differentiable at each point t on T*.

Theorem 2.7 Assume f:T — R is a function and let t € T*. Then we have the

followings:
(i) If f is differentiable at t, then f'is continuous at t.

(i) If f is continuous at t and t is right-scattered (o(t)>t), then f is
differentiable at t with

f(a(®)) - F(t)

A =
PO




(iii) If t is right-dense, then fis differentiable at t iff the limit

i F 8 = F(5)
m—-——-—-—

s—t t—s

exist and is finite. In this case

fice) = i O SO

st t—s

(iv) If f is differentiable at t, then
fe®) = f(&) + p(OfA()
Proof. [1,6,7]

Note that if T=R, then Theorem 2.7 (iii) yields that fiR—> R is delta
differentiable at tER iff the limit exists. We know o(t)=t when T=IR, then

P GiO) Il OB LGl ()

sot  o(t)—s st t—5§

=f'(®)
where f'(t) is the derivative used in standard calculus.

If T=Z, then Theorem 2.7 (ii) yields that f:Z — R is delta differentiable at t€Z with
a(ty=t+1

fle@®)=Ff@® fe+1)=Ff(t)

foe) = o) —t  t+l—t

=ft+1) - f(t) = Af(t)

where A is forward difference operator used in difference calculus.

Example 2.8 For each of the followings let us find f* using Theorem 1.8 for the
function f(t) = t2.



0] T is arbitrary;

A = 1imf(g(t)) —/) _ 11111&2_52

s+t a(t)—s sot o(t)—s

=o(t) +t

(i) T=R;
o(t) =t, vt € R.Hence by (i) f2(t) =t +t = 2t.
(i) T=Z;
a(t) =t+ 1 vt € Z. Therefore
A =0 +t=t+1+t=2t+1=Af(t)

. y
(iv) T=Ny%
o(t) = VtZ + 1 which implies fA(t)=a(®)+t=VtZ+1+t
(V) T= &;

2
o(t) =t+%givesu5f‘“(t) =o(t)+t=t+s+L=20+=.

Theorem 2.9 Assume f, g2 T—R are differentiable at t € T*. Then we have the

followings:
(i) f¥g: T - R is differentiable at t with

(FFP @) = FAOF"(@).
(il)  Forany constant a, af: T — R is differentiable at t with

(af)i(®) = afi(v).
(i)  The product f.g : T = R is differentiable at t with

(. ) = FA). g@®) + f(a(®)). g2(t)

or

(f. 2®) = £(6). g®) + f2(8). g(a ().



(iv) IEf(t).f(o(t)) = 0, then 1/f is differentiable at t with
AP
() © =~ erem:
vy Ifg(t).g(a(t)) # 0, then f/g is differentiable at t with
(5)“ o =290 =g ®)
g g()gle(®)

Proof. We only prove (iii). For the proofs of other statements see[6].

(F9)(e®) - (Fg)(s)

a(t)—s

(f.9)*(t) = lim

_ i f(0(0)-9(a(®) — £(5)9(5)

st a(t)—s

Adding and substracting the term f(s)g(a(t)), we obtain

1 LE@)a(0®) - FDg(o() + FDg(o(8) — F()g )
st o(t)—s

i ICONAe@) - f©)] | f®]g(e(®) - 9(s)]

st a(t)—s st a(t)—s

= g(a(®)F*(®) + F()g°(t)

Remark 2.10 By adding and substracting the term f (a(t))g(s) in the proof, we

obtain the other statements.



Example 2.11 We can use Theorem 2.9 (iii) to find the A-derivative of h(t) = t?e*

on the time scale T = {q" : n € Ny ;g > 1} U {0}.
Let fity=1t*, g(t)=e". Then h(®) =f(1).5(1).
By Theorem 2.9 (jii), we have
RA) = (F@)*(8) = FA D g@®) + f(a (D) g (®)

By Example 2.8 (i) f2(t) = o(t) + t on an arbitrary time scale. Hence since
a(t) =tqon T = qNe, then f2(t) = tq + t.

Similarly by definition of A-derivative (Definition 2.7)

. g(a(®)) —g(s) g0 gt Mgt
9"‘&)_131{,’} e et ot

Hence

tq_et

tgq—t

hA(t) = (tg +t). et + (tq)>.
Example 2.12 We can derive the formula of second derivative of (f2): (£ g)2(t).
(fg)** () = [(F* )]
= [FA©)g9(®) + F(e®)g*®)]"
=[f*g®]* + [f (e g* ()

= FA4(0) (1) + FA(a(0) g (®) + [F(a(®)]"g®) + £ (a(o(®))) g*(t)



2.3 Integration

In this section we give a brief introduction for integration on time scales. For
this purpose we first give preliminary definitions. The readers who are interested in
detailed information about time scale integration can see [1,5-11].

Definition 2.13 [6,7] A function f: T = R is called regulated if

1) “1}1 f(s) exist at all right-dense points in T.
5=

(i) S]lr{l_ f(s) exist at all left-dense points inT.

Definition 2.14 [6,7] A function f: T — R is called rd-continuous if it is continuous

at right-dense points in T and SIir{l_ f (s) exist for all left-dense points in T. The set of

all rd-continuous function is denoted by C,.4 (T, R) or simply C,,.
Theorem 2.15 Assume f: T = R.

(1)  Iffis continuous, then fis rd-continuous.
(i)  If fis rd-continuous, then fis regulated.
(iii)  The jump operator ¢ is rd-continuous.
(iv)  Iffis regulated or rd-continuous, then so is f°.
(v)  Assume fis continuous. If g: T — R is regulated or rd-continuous, then f o g
has that property too.
Proof. [6]

Definition 2.16 [6,7] A continuous function f:T — R is called pre-differentiable
with region D, if D < T*,T* \ D is countable and contains no right-scattered

elements of T, then fis differentiable at each t € D.

Let us illustrate the above with an example.

10



Example 2.17 For each of the following determine if f is regulated on T, if f is rd-

continuous on T, and if fis pre-differentiable. If f is pre-differentiable, find its region
of differentiability D.

) The function fis defined on T and V't € T is isolated.

* i i
Figure 1.3 Isolated point

5lirp_ fls)=¢t ., lir}:‘;r f(s) = t then any f defined on an isolated time scale is
= 55—

regulated.

Since right-dense points of T is @ and left-dense points of T is @, we can say

that f is continuous on right-dense points of T and lefi-dense points of T.
Then fis rd-continuous.

) 0; ift=0
(1) LetT =Rand f(t)={%; te R\ {0}
lirérl+ f(s) = +o0 ,slir(l]l_ f(s) = —oo limit does not exist then f is not regulated.

Also fis not continuous at t=0 then fis not rd-continuous.

B 1 _ [ 0; ifteN
(i) LetT=Nyu {1 —,'nE N} and (D) = {t; otherwise

T= [0,%,-2-,%, } and right dense points of T is @, also left dense points of
T is @. Then f is regulated. S]ll’{l_ f(s) exist for all points then f is rd-

continuous.

Therorem 2.18 (Mean Value Theorem) Let f, g: T = R be both pre-differentiable
on D. Then

11



IFfA®)| < g%t)  foraliteD
implies
If ()= fFMI < g(s)—g(r) forallr,seT,r<s.
Proof: [6]

Definition 2.19 [6,7] Assume that f: T — R is a regulated function. A function
F: T - R with a region of pre-differentiation D such that F® = f on D is called a

pre-antiderivative of fon T.

Definition 2.20 [6,7] Assume that f: T = R is a regulated function and F'is a pre-
antiderivative of f on T. We define the indefinite integral of a regulated function by

f FOAD = F(E) +c,

where ¢ € R is an arbitrary constant, We define the Cauchy integral by

fsf(t)ﬂ(f) =F(s)—F(@) forall r,seT.

T

Definition 2.21 [6,7] Assume that f:T — R is a regulated function. A function
F:T - R satisfying F* = f on T is called an antiderivative of fon T.

Example 2.22 The indefinite integral [ 3* At on Z, can be found by means of anti-

derivatives.
Let f(t) = 3. Then

fAB) =Af) = f(t+1) - f(t) =31 -3t = 23¢

12



_ e
Hence f(t) = —— - Then we get

ff(t)At = 1(3;)‘5 :%fef)ﬂﬂ.t =%t+ c;

where c is an arbitrary constant.

Theorem 2.23 (Existence of Antiderivatives) Every rd-continuous function has an

antiderivative. In particular if t, € T, then F defined by

F(t) = ftf(‘r)m forteT

is an antiderivative of £
Proof. [6,7].

Theorem 2.24 Assume that a,b,c €T, a € R, and f, g € C,4(T, R). Then we have

the followings:

@ S +g®lat =[] fOAL + [ g(®)AL;

@ [, af (At =af, FOLD);

(i) [, FO)AL == J; F(£)AL;

) [f, fOnt = [; F©)at+ [ F0)AE;

W . Flo®)g? OAt = F®) - Fo)@) - f7 F2 (Dg@)At;
W) [ F©g B8t = (Fg)(B) - )@ — [F FADg(a(®))At;
i) if IF(®)] < g(&) on [a,b), then |[} F(t)At| < [P g ()t

The formulas (v) and (vi) are known as integration by parts formulas on time scales.
Proof. [6,7]

13



The following result is a direct consequence of mean value theorem (Theorem 2.18).
Theorem 2.25 If f2 > 0, then fis increasing.
Proof. [6,7] m|

The following result is very useful tool for evaluation of definite integrals on time

scales.

Theorem 2.26 Let f € C,4(T,R) and t € T, then
a(t)
[ rom=6o-ore
= u)f ()
where f12) is lower bound.
Proof. [6]

Theorem 2.27 Leta,b € T and f € C,4.

(i) IfT=R,then f; f(t)At = f; f(t)dt , where the right side of integral is
Riemann integral .

(i)  If [a, b] consist of only isolated points, then

) Y o ifa<b

te[a,b)
ff(t)At: 0 ifa=b
@ ) wF®  ife>b
telb,a)

(i) If T=hZ = {hk:k € Z},where h > 0, then

14



( %—1 _

) Zkz% FkRR  ifa<b
ff(t)/_‘.t=< 0 ifa=bh
‘ —ZT: fkR)h  if a > b.

\ k=g
(iv) IfT =Z,then

. e ifi < b

t=a

ff(t)m: {0 ifa=b
“ - a_lf(t) if a>b.

t=b

Proof. (ii) Let [a,b] = {t,,t;, ..., t,, }, then

b %) tq tn
freosem [+ +mt [
a £q 3 tn—1

= f(t)(t; —t) + f(t)(t3 — tp) + -+ ftn-1)(tn — ty_y)
= Zf(ti)(tHl ~t;)
= > u®F®.
tela.b)

(i) Leta=hk and k = % where k € Z, then

b h(k+1)  h(k+2) k(k+n)
ff(t)At= f + f +oet f
a hk k(k+1) h(k+n—1)

= hf(hk) + hf (hk + h) + hf (hk + 2h) + -+ + hf (hk + (n — 1)h)

15



Example 2.28 We can evaluate fot sAs for t €T, forT=R, for T =1Z, and for
T =[0,1] U [2,3].

i [)sAs = (t —0)f(0) = £.0 = 0 (by Theorem 2.26)

i T:R:f;sAs = fotsds =§

iii. T=Z= fot sAs = EE:_::([J k= (t—zl)t
iv. T= [0,1] U [2‘3]

. t=0=f;sAs=foosAs=0

t 4 £
e 0<t=1> [ sAs= [ sds==

. t=2:[;5'12\5:folsds+flzsﬂs=%+(2—1)1=%

e 2<t<3 =>f0ts/_\s = fulsds+flzsAs+f;sds=§—%

Theorem 2.29 (Substitution) Assume a,b € T, g € C.4(T, R) is strictly increasing
and T := g(T) is a time scale, and f € C, (T, R). Then

b g(b)
f (f o 9)(®) g (DAt = f f()As.

g(a)

Proof. [6]

16



2.4 Exponential Function on Time Scales

In this subsection, we give a brief information about the generalized A-
exponential functions which we use in the rest of the thesis. In order to define the
generalized A-exponential function in the following definitions.

Definition 2.30 [6,7] For h > 0, the Hilger’s complex numbers is defined by

1
(Ch={z€(E.z % _E}'
Forh=0,wesetCy, =C.

Definition 2.31 [6,7] The cylinder transformation &,:Cy, = Zj, is defined by
1
&n(2) = ELog(l + hz)

where

Zy = {z € (E:—%S Im(z) < %}
Forh>0andZ, = C.If h = 0, then we set §,(2) =z forz € C.
Definition 2.32 [6,7] A function p: T — R is said to be regressive provided that
1+ u(t)p(t) # 0,t € Tk,
The set of all rd-continuous and regressive functions is denoted by R.
Definition 2.33 [6,7] If p € R, then the first order linear dynamic equation

yA(t) = p()y(t)

is said to be regressive dynamic equation.

17



By the above definitions we are going to define the generalized A-exponential
function.

Definition 2.34 [6,7] If p € R, then for all s,t € T the generalized A-exponential
Sfunction is defined by

4
eo(6:5) = exp | [ fuey @@ |

i Theorem 2.35 If ty € T and y2(t) = p(t)y(t) is a regressive dynamic equation,
then e, (., ty) is the unique solution of the initial value problem

yA®) =pt)y(t),  y(to) =1
Proof. [6] -
Forp, g € R, let the binary operations @ and © be defined by

(» ® () =p(t) + q(t) + p(L)p(t)q(t),

p(t)

© )= —ﬁm,

O ) = (p ® (© D))
The generealized A-exponential function satisfies the following properties:

1. eo(t,s) =1ande,(t,t) =1,
2. ey(a(t),s) = (1+pu®)p(t))e,(t,s),

1

1
3. = fon(6:5), ep(6:5) = = egp(s,t),
4. ep(t,s)e,(s,1) = ey(t,1), ey(t,s)ey(t,s) = epaq(t s),
ep(ts) _
> eq(ts) epoq(t:s),

18



6 ( 1 )“=_ p(®)
T \ep(L9) eg ()

Example 2.36 We are giving some examples about the generalized A-exponential

function for different time scales.

e T =~hZforh>0.Ifa €Ris aconstant, then

e,(t,0) = (1 + ah)7n,
e T = N3 = {n%n € N,} In this case,

e; (t,0) = 2V¢(VE)!.

More detaled infirmation on the exponential function on time scales can be

found in [1,6,7] and references therein.

19



3 DYNAMIC INEQUALITIES

3.1 Gronwall’s Inequality

Gronwall inequality which 1s given below is one of the most useful inequality that is
used in the theory of differential equations [15].

Theorem 3.1 Let B and u are real valued continuos defined on L
u'(t) < B(t)u(t),t € I° then u(t) < u(a)exp f;b’(s)ds.

In order to adapt the Gronwall’s inequality to time scales, we need to give the

following Comparison result:

Theorem 3.2 (Comparison Theorem) Let y, f € C,4 and p € R*. (R*: regressive
and C,4 functions). Then

yA®) <p(®y(®) +f(t),VLtET
implies
t
Y®) < ¥eo)ep(t ) + | ep(to@)far.
to
Proof . By using the product rule for A-derivatives(Theorem 2.10), we obtain

[YeanCrto] (&) = ¥2(Begy(a(), to) + ¥y (®)[eap(t to)]"
= y2(t)egp(a(t), to) + y(E)(O p)(B)eay(t. to)

€op (O'(t), tﬂ)

— y“(t)eep(a(t)' ty) + v (B P)(f) 1+ ,u(t)(e p)(t)
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©pni
1+ u(®)(©p)(t)

= egy(a(t), to) [¥2 () + ¥(t)

= egp (0 (), L) Y2 () + () © (6 p(t)].

Integrating both side of the equation leads us

L
y(®eay(t ta) = ¥(to) = f [yA(2) = ¥D)p()lew, (0(0) to)AT
to

& ff(r)eep(a(r),to)Ar

t
= J- ep(to, a(t))f(r)m:
Therefore

y(t)eep (t, tO) = J/(to) + J’ ep(tﬂfo-(t))f(T)AT'

£y
Multiplying both sides by e, (£, to) finishes the proof. a
The following two theorems are consequences of comparison theorem (Theorem 3.2).
Theorem 3.3 (Bernoulli Inequality) Let @ € R with @ € R*. Then for all t = s;
ex(t,s) =1+ a(t — s).

Proof. Since a € R*, we have e,(t,s) >0 forallt,s € T.Let t = s and
y(t) = a(t — s). Then
21



ay(t) +a =a?(t—s)+a = a=y2(t)

Since y(s) = 0, we have by Theorem 2.2
b

y(t) < fep(t,cr(t))cmr = —1+ e.(t,s)

s

So that e, (t,s) = 1 + a(t — s) follows.

Gronwall’s inequality on time scales is as follows:

Theorem 3.4 (Gronwall’s Inequality on Time Scales) Let y, f € C.4(T,R),p €
R*(T,R),p = 0. Then

t

y(t) < f(t) + fy('c)p(t)f.\r, VtET

Lo
implies
L

y(t) < f(t) + f e, (t, o (D)) f(Dp(r)Ar, vt € T.

to

Proof. Define z(t) = fti y(©)p(r)At. Then

z8(t) = y(®)p() < [f () + 2()]p(t)
z4(t) < p(®)z(t) + p)f(t)

Then by Comparison theorem (Theorem 3.2), we obtain
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L

2(t) < 2(to)e, (8, to) + ] e, (t, 0 (D) F(Dp(r)AT

Lo

t

2(t) < f ot 0 (D) FOP(R)AT

Lo

Since y(t) £ f(t) + z(t)

<f)+ ftz ey (t,J(t))f(I)p(T)AT.

Example 3.5 Let T = hZ n [0, ) . If y and fare functions defined on T and y > 0 is
constant such that

i
71

y@&) <f@) +y Z y(th), Vvt € T, then

L)

R
t-h(T+1)

y(©) < F(©) + yz Fh)(A +yhy—F— VEET.
=0
T = (0,1, 21, 3.} = {hl:k € Ny}

=
From previous theorem we have y(t) < f(t) + z(t) then z(t) = ¥ ZL; y(th)
14

zZ(t) =y f y(t) = z8t) =y y(t) S y[F () + z(t)]

Lo
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YO <@ +y [y®

Corollary 3.6 Let y € C4(T,R),peER*,p=0anda € R. Then y(t) <a+

f;y(r)p(r)l_‘.t, vt € T implies y(t) < ae,(t,ty),Vt € T.

Proof. In basic Gronwall’s inequality theorem let f(t)=a. . Then by this theorem;

t
y(t) <a+ fep (t,o(®))ap(v)ar

=a [1 + f ep(t, a(t))p(D)AT

= a1 + (ey(t, to) — ey(t, t)]
= a1 +e,(t t) — 1]

y(t) < aey(t, to)

Corollary 3.7 Lety € C,4(T,R) and a, 8,y € Rwithy > 0. Then

y(8) < a + Bt — to) +v J, y(D)Ar, Vt € T implies

B B
y(t) < (a + ;) eyt tg) — SIVEE T.
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Proof. In Gronwall’s inequality theorem, let f(t) = a + B(t — t,) and p(z) =
y. Then note that w(t) = e,(t,t;) we have wi(t) = —ye,(t,o(r)) by using

exponential function rule.

By using these facts,

t

y(®) < F(6) + j e, (t,0(2))yf(@)AT

to

= FOW(E) - f WA f ()t

to

t

= f(to)w(to) + f w(o(D)f2 (v)AT

o

4

= ae,(t,ty) + f ey(t, a(1))fAr

to

t
= ae,(t, t;) +§ f ve, (t,o(7))At

= aey(t, t[)) -+ % [—ey(t, t) + E},(t, fg)]

= ae,(t ) + g(ey(t, to) — 1)

y(t) < e, (t,ty) [a + g] _g
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Theorem 3.8 Let g TX R— R be a function with g(t,x;) < g(t,x,)vVte T
whenever x; < x,. Let v,w: T—R be differentiable with v2(t) < g(t,v(t)) and
wi(t) = g(t,w()) vt € T*\ {t,} where t, € T. Then wv(ty) <w(ty) implies
v(t) < w(t),Vt = t,.

Proof. [6]

3.2 Holder’s and Minkowski’s Inequalities

The followings are one of the most famous inequalities of mathematical analysis.

Theorem 3.9 (Holder’s Imequality) Let f,g:[a,b] = R where i+% =1 with
p,q > 1. Then

1

b b b
[reewiax <|[ir@pa | [l

Theorem 3.10 (Hélder’s Imequality om Time Scales) Let ab€ T. For rd-
continuous functions f, g:[a, b] = R we have

b b ; b
f IF(Og®)IAL < j TORY f PO
where p > 1 and g =p—?;.

Proof. For nonnegative real numbers o and [, the basic inequality

¥
q

2R

3 1
arfa < % + = holds. Then integrate both side of this inequality between a and b:
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b

f %B%At< 1f (t) At + lfﬁ(c)m
(14 — | & =
a _pa qa

Apply
IF (NP
) =—F—"
T @A
q
B(t) = lg(®)|

[ lg@lan

then we have

F®) 9© . _1[_f®P

f

LIf@parl (f1g@leac)?

: : PJ I

b
: : [ rogon:
(L1r@irac)? (f21g@le) @

[y

10 lg@®l
q) [llg(o)laar

b b
1 11 pal
< f (F@Pay @+ f (1g(D)17At)

b b
= % j (IF Pty +% [a@reney
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The special case p= q =2 leads as to have the Cauchy Schwarz Inequality:

Suppose that fand g are continuous on [a, b]. Then

2

b b b
[ rg@ac | < [ 2o [ gerae

The time scale version of Cauchy Scahwarz inequality is as follows:

Theorem 3.11 (Cauchy Schwarz Inequality) Let a,b € T. For rd-continuous
f,g:[a,b] = R we have

b b b
f [f(t)g)|at < f If ()% At f lg(t)|? At

Theorem 3.12 (Minkowski’s Inequality) Let f,g:[a,b] = Rwithp > 1 then
Minkowski’s inequality for integrals states that

b b b
lf F() + g@Pdx| < f FPdx| + f 1900 Pdx

The time scale version of Minkowski inequality is as follows:

Theorem 3.13 (Minkowski’s Inequality on Time scales) Let a,b € T and p > 1.
For rd-continuous f, g: [a, b] = R we have

1

b b b
[0+ @prac) <( [iromwa | +{ [1s@ma:
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Proof. Apply Hélder’s inequality with g = ﬁ .

b b
f I(f + 9)(®)[PAt = f I(F + OIS + D D)lAt

b b
< f FON + 9O P-at + f 9O + ) (Ot

1

b % b q
[T [ —

a

b rlv b %
¥ ( [ Ig(t)I”At) ( f If + g)(t)|@~1)w)

1

b il /b -y g
= ( f I(f+g)(t)l”At) (j FOP At) +(f |g(r)|w)

1

Dividing both side of the equation with ( [ ‘f |(f + g)(t)l?’ﬂu:)E . Then we have

1
;e
q

b b % b %
( f I + g)(tnw) < ( f If(t)l"ﬂt) + ( ] |g(t)|w)

where 1 —i =p.
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3.3 Jensen’s Inequality

Definition 3.14 (Convex Set) Let X be a vector space and CcX, C is said to be a
convex set if

tx+(1—-t)yeC,vx,yeC ,t €[0,1]

Definition 3.15 (Convex Function) Let i X — X be a function. fis called convex if
Vx,,x, € X,Vt € [0,1]

f(tx; + (1= )xy) < tf(xy) + (1= £)f(xy).

Theorem 3.16 Suppose y is convex function on real line and g is an integrable real

valued function we have
b b
r( [aeax )< [vgenax
a a

Theorem 3.17 (Jensen’s Inequality) Leta,b € T and c,d € R. If g: [a, b] = (c,d)
is rd-continuous and F: (¢, d) — R is continuous and convex, then

b b
FCQMGM)SLF@anM
b—a b—a

Proof. Let x; € (c,d). Then there exists f € R with

F(x) — F(xy) = B(x — xg),Vx € (c,d).

b
Since g € Crq, X9 = fu f_(_?m is well-defined. Apply Bernoulli inequality with
x = g(t)
[} g
Flg®) - F(T—T = B(g(t) — x,)
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And integrate from a to b to obtain:

f [F(g(®)at] — (b - a)F (L‘#) = f [F(g(t)) — F(x,)] At

a

b
> 1o - %12

=B[ﬁﬂﬂM—W&b—®w

22

Dividing both side with (5-a)
o-or(£222)
— @
IACION i
b—a — b—a

ﬁF@@DEF(ﬁg@Mj
b—a b—a

Example 2.18 Let T=R. F(x) = —logx is convex and continuous on (0, ), so we
apply Jensen’s inequality with a=0 and b=1 to obtain

1 1
logf g(t)dt = J log g(t)dt.
0 0

From Jensen’s inequality,

. (fb g(t)dt) S L F(g(®)de
b—a b—a
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~log (fﬂ fﬁt())dt) o f —log(g(t))dt

0

1 1
log([ g(t)dt) = flog(g(t))dt.
0 0
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