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Öz

Eliptik eğri tabanlı kriptografi, diğer kriptosistemlerle kıyaslandığında çok daha küçük anahtarlara ve

dolayısıyla çok daha az belleğe ihtiyaç duyar. Bu sebeple son on yılda elliptik eğri tabanlı kriptografi

üzerine yapılan çalışmalar artmıştır. Skalar çarpmaişlemi eliptik eğri tabanlı kriptosistemlerin

uygulanmasındaki temel aritmetik işlemidir. Yüksek hıziçin tasarlanan uygulamalar, skalar çarpmanın

mevcut en düşük karmaşıklık düzeyine sahip algoritmalarının kullanılmasıyla gerçekleştirilmektedir.

Dolayısıyla skalar çarpma işlemenin minimum karmaşıklık düzeyi önemli bir bilimsel araştırma alanı

oluşturmuştur. Bu tez, bilinen en hızlı skalar çarpma algoritmalarının araştırılmasını, uygulanmasını ve

kıyaslanmasını içermektedir.
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Abstract

Since elliptic curve cryptology needs smaller keys and lessmemory for higher speed than other crypto

systems, elliptic curve cryptography researches increased in last twenty years. Scalar multiplication is

the primitive operation in the implementation of elliptic curve cryptosystems. Implementations, which

are designed for high speed, are realized with scalar multiplication algorithms which have minimum

complexity. Because of this reason, minimum complexity of scalar multiplication became an important

research area. This thesis includes review, implementation and comparison of known fastest scalar

multiplication algorithms.
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Chapter 1

Introduction

In 1985, Neal Kolbitz [22] and Victor Miller [26] proposed elliptic curve cryptography (ECC)

independently. That proposal was a public-key cryptosystem which is based on some properties of

a special equation that created from a finite field [2] [13]. Multiplying a point of elliptic curve with

a number will give another point over the elliptic curve but it is really hard to find the number that

was used at the first step even if we know the first point and the point that we got as the result of

multiplication.

At the end of 90’s and the beginning of 00’s the U.S. National Institute of Standards and Technology

(NIST) endorsed ECC among their set of recommended algorithms. The U.S. National Security Agency

(NSA) also allowed their use for protecting information which is classified up to top secret [31]. With

these improvements ECC algorithms entered wide use.

In 2001, Dan Boneh and Matthew K. Franklin developed identity-based encryption schemes on

elliptic curves [3]. These schemes perform probabilistic encryption of arbitrary chiphertexts using an

approach like Elgamal.

Beside all of this chronology, ECC used in many different places. Since nineteenth century,

algebraists, number theorists and algebraic geometers arestudying elliptic curves. Hendrik Lenstra

described an algorithm to factor integers in subexponential time (1985). This algorithm relies on

properties of elliptic curves. Shafi Goldwasser proposed anidea called elliptic curve primality proving

1



Chapter 1. Introduction 2

(ECPP) which is testing the primality of general numbers (1986). Schoof’s algorithm is a deterministic

polynomial time algorithm that counts points on elliptic curves and published by René Schoof first time

(1985) [33]. Elliptic curve gained more importance with theemergence and post of these algorithms

and the discovery of relationships between elliptic curve complex multiplication, algebraic number

theory and modular forms and elliptic curves.

Whitfield Diffie and Martin Hellman proposed a key exchange protocol, which is also the beginning

of public-key cryptography, in 1976 [12]. It is an asymmetric cryptographic system which is widely

used in secure electronic communication.

The main idea of public-key cryptography is same with one wayfunctions. Basically, there are

functions whose inverse functions are computed in large amount of time. If we use such a function to

encrypt, it will be hart to decrypt even if the function is public knowledge. DH uses Discrete Logarithm

Problem(DLP) as its asymmetric operation. Basically DLP focuses finding a logarithm of a number

within a finite field arithmetic system.

In 1977, Ron Rivest, Adi Shamir and Len Adleman proposed RSA cryptosystem. The RSA

algorithm is the most popular and best understood public-key cryptosystem. It is based on the

intractability of the integer factorization problem. It iseasy to multiply two numbers where thay are

quite large prime numbers, but it is almost impossible to factor the product of two large primes except

if there is some incredible stroke of luck, or bad choice of the primes.

ECC is also a public-key cryptosystem as RSA with a difference. Security of ECC and RSA comes

from the hardness of different problems. Security of ECC is based on the hardness of the elliptic

curve discrete logarithm problem (ECDLP). The best algorithms known to solve this problem have

exponential running time, in contrast to the subexponential time algorithms known for the integer

factorization problem. This means we can use shorter keys for security levels where RSA would need

much bigger keys and using today’s algorithms and computer technologies it seems possible to factor

700-bit numbers [6] [8] [21] [37]. That is why we prefer to useECC even if RSA is the most popular

and best understood public-key cryptosystem.
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1.1 Motivation

As described above, because elliptic curve scalar multiplication constitutes bottleneck of lots of

algorithms, gathering the fastest scalar multiplication methods has been a good subject for research

[7]. This thesis aims to research and integrate state-of-art methods.

1.2 Outline

This thesis contains five chapter. First chapter is the introduction chapter. After it, chapters built as a

pyramid. Every chapter includes basics for next chapter.

Elliptic curve chapter, chapter 2, gives some basic algebric structures over elliptic curves which we

will need while we are building other chapters using these structures like group law and group order,

defines endomorphisms and shows elliptic curve operations on projective coordinates.

Chapter 3 is about point multiplication on elliptic curves.This chapter will show different point

multiplication algorithms, their algebraic background and superficial complexity analysis.

Next chapter, chapter 4, includes more efficient algorithm for point multiplications. It has two

main parts. First part explains faster point multiplication which uses endomorphisms. Other part gives

special endomorphisms which make this algorithm faster.

And the last chapter, we give the comparisons of algorithms and explain the implimentations that

we did using MAGMA [4] [1].

1.3 Literature Review

The discrete logarithm problem is defined as follows in the multiplicative groupZq
∗; let q be a prime,

let a andb be the given elements of the group then find a numberk such thata ≡ bk (mod q). If we

adapt this to elliptic curves, letE be an elliptic curve over a finite field. Suppose there are pointsP and

Q onE then findk such thatQ = [k]P .

Elliptic curves can be represented with couple of differenttypes of equations. We will focus on

simplified Weierstrass equations and group law over them. Especially, Weierstrass elliptic curves which

are defined over a finite field of characteristic6= 2, 3. Hence elliptic curve discrete logarithm problem,

our focus point is[k]P which is called as point multiplication or scalar multiplication. Basically, point
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multiplication is adding two points. If these points are different from each other, we call this as point

addition. If we add same points, we call this as point doubling.

The cost of inversion is more expensive than multiplication. Since point addition and point doubling

formulas contain inversion, we will use Jacobian or mixed coordinates instead of using only affine

coordinates. This will help to speed up point multiplication algorithms little more.

Gallant, Lambert and Vanstone’s method (GLV) speeds up point multiplication of elliptic curves

which have an efficiently computable endomorphism. The method also applies to curves defined over

large prime fields. GLV method uses efficiently computable endomorphismφ to rewrite[k]P as[k]P =

[k1]P + [k2]φ(P ). This method is faster point multiplication technique as long as chosen curve has

efficiently computable endomorphisms. Hence only special curves can be used with GLV method. At

this point GLS endomorphisms give chance to work over large classes.

1.4 Aim, Objectives and Deliverables

In this thesis, our aim is gathering faster point multiplication techniques and endomorphisms together

and finding its cost using complexity analysis and operationcounting.

As deliverable, MAGMA [4] implementations of algorithms are in the Appendix.



Chapter 2

Elliptic Curves

2.1 Preliminaries

This thesis focuses on elliptic curves over finite fields. We make necessary definitions and provide

theorems to define an elliptic curve over a finite field [14] [9][11].

Definition 1. A group is a setG, closed under a binary operation+, such that the following axioms

are satisfied;

• The binary operation+ is associativesuch thatx+ (y + z) = (x+ y) + z for all x, y, z ∈ G.

• There is an element0 in G such that0 + x = x + 0 = x for all x ∈ G and this element isthe

identity elementofG for +.

• For eachx inG, there is ax′, the inverse element, inGwith the property thatx+x′ = x′+x = 0.

Example 1. Z, Q, R are some of familiar group examples.

Definition 2. A groupG is abelian if + is commutative property thatx+ y = y + x for all x, y ∈ G.

Definition 3. A ring is a setR together with additive operation+ and multiplicative operation· defined

onR such that following axioms are satisfied;

5



Chapter 2. Elliptic Curves 6

• R is an abelian group under+.

• Multiplication is associative.

• For all elements,the distributive lawholds inR for both left and right sides. That isx · (y+z) =

x · y + x · z for all x, y, z ∈ R.

Definition 4. LetR be a ring. If forR, a positive integern exists such thatna = 0 for all a ∈ R, then

the least such positive integer is thecharacteristicof the ringR. If there is no such positive integer

exists, thenR is of characteristic0.

Note that we shall be using characteristic mostly for fields.

Definition 5. LetR1 andR2 be rings and letφ : R1 → R2 be a homomorphism. Then,

φ−1[0] = {r ∈ R1|φ(r) = 0}

is thekernelof φ, denoted byker(φ).

Definition 6. A ring K is a field if the set of non-zero elements ofK forms an abelian group under

multiplication.

Example 2. C, R, Q are examples of fields with ordinary+ and· operations.

A finite field or galois field is a field that contains a finite number of elements [24]. The simplest

example of finite fields is a prime field which is denoted byGF (p) or Fp wherep is a prime number.

Definition 7. A subfieldis a subset of the field that is a field under induced operationsfrom the whole

field.

Definition 8. LetL andK fields.L is anextension fieldofK if L is the subfield ofK and denoted

K/L.

Theorem 1. LetK be a field and letL be an extension field ofK. Then

K̄ = {a ∈ L|a is algebraic overK},

is a subfield ofL, thealgebraic closureofK in L.
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Definition 9. LetK be a field.K is algebraically closedif every nonconstant polynomial inK[x] has

a zero inK.

Definition 10. LetK be a field.E is an elliptic curve overK defined by an equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

whereai ∈ K and∆ 6= 0 is the discriminant ofE and is defined as follows:

∆ = −d22d8 − 8d34 − 27d26 + 9d2d4d6,

d2 = a21 + 4a2,

d4 = 2a4 + a1a3,

d6 = a23 + 4a6,

d8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24,

c = d22 − 24d4,

j(E) = c3/∆,

andj(E) is called thej-invariant ofE.

Equation 1 is called aWeierstrass equation.

If L is any extension field ofK then the set ofL-rational pointsonE is

E(L) = {(x, y) ∈ L× L : y2 + a1xy + a3y − x3 − a2x2 − a4x− a6 = 0} ∪ {∞}

where∞ is thepoint at infinity .

Example 3. These are elliptic curve examples;

• y2 + 8xy + 6y = x3 + 4x2 + 3 overQ.

• y2 = x3 + 132x+ 27 overF157.

• y2 = x3 + 36318x+ 718621 overF742981.
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Definition 11. LetR1 andR2 be rings. A mapφ : R1 → R2 is a homomorphismif the following two

conditions are satisfied for alla, b ∈ R1;

• φ(a+ b) = φ(a) + φ(b),

• φ(ab) = φ(a)φ(b).

Definition 12. Let R1 and R2 be rings. Anisomorphismφ : R1 → R2 from R1 to R2 is a

homomorphism that is one to one and ontoR2. The ringsR1 andR2 are thenisomorphic.

Definition 13. LetE1 andE2 be two elliptic curves over fieldK defined by Weierstrass equations

E1 : y
2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6

E2 : y
2 + ā1xy + ā3y = x3 + ā2x

2 + ā4x+ ā6

ThenE1 andE2 are isomorphic overK if there existu, r, s, t ∈ K, u 6= 0 such that the change of

variables

(x, y) −→ (u2x+ r, u3y + u2sx+ t) (2)

transformsE1 toE2 and this is calledthe admissible change of variables[13].

2.2 Simplified Weierstrass Equations

Section 2.1 gives a generalized form of Weierstrass in Equation 1. But we can simplify a Weierstrass

equation to have less number of terms by applying an admissible changes of variables. We consider

that there are three different cases whereK has characteristic equal to2 or 3 or not equal2 and3 [34]

[35].

Case 1.If char(K) 6= 2 andchar(K) 6= 3, the admissible change of variables

(x, y) −→
(

x− 3a21 − 12a2
36

,
y − 3a1x

216
− a31 + 4a1a2 − 12a3

24

)

(3)
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transformsE to curve

y2 = x3 + ax+ b

wherea, b ∈ K and the discriminant of this simplified equation is∆ = −16(4a3 + 27b2).

Case 2.If char(K) = 2, then there are two different cases that depend on value ofa.

• If a 6= 0, then the admissible change of variables

(x, y) −→
(

a21x+
a3
a1
, a31 +

a21a4 + a23
a31

)

transformsE to curve

y2 + xy = x3 + ax2 + b

wherea, b ∈ K and the discriminant of curve is∆ = b. These kind of curves are called as

non-supersingular.

• If a = 0, then the admissible change of variables

(x, y) −→ (x+ a2, y)

transformsE to the curve

y2 + cy = x3 + ax+ b

wherea, b, c ∈ K and the discriminant of curve is∆ = c4. These kind of curves are called as

supersingular.

Case 3.If char(K) = 3, then there are two different cases.

• If a21 6= −a2, then the admissible change of variables

(x, y) −→
(

x+
d4
d2
, y + a1x+ a1

d4
d2

+ a3

)

(4)
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whered2 = a21 + a2 andd4 = a4 − a1a3, transformsE to the curve

y2 = x3 + ax2 + b (5)

wherea, b ∈ K. This curve is called asnon-supersingularand its discriminant is∆ = −a3b.

• If a21 = −a2, then the admissible change of variables

(x, y) −→ (x, y + a1x+ a3)

transformsE to the curve

y2 = x3 + ax+ b

wherea, b ∈ K. This curve is called assupersingularand its discriminant is∆ = −a3.

2.3 Group Law

Let K be a field. For simplicity, assume thatchar(K) 6= 2, 3 in the remainder of this thesis. LetE

be an elliptic curve defined overK. There is a construction calledchord-and-tangent rule for adding

two points inE(K) that give a third point inE(K). The set of pointsE(K) builds a group with this

point addition rule which also includes∞ as identity of the group.

LetP andQ be points onE(K). If P 6= Q thenP +Q is defined as follows:

• ConnectP andQ with a linel.

• l intersectsE(K) at a third pointA.

• Reflection ofA about thex-axis is the sumR = P +Q.

If P = Q, this special case is called aspoint doubling and the sumR is defined as follows:

• Draw the tangent linel to E(K) atP which by definition of a tangent line intersects the curve

two times.

• l intersectsE(K) at a third pointA.
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• Reflection ofA about thex-axis is the sumR = [2]P .

Let’s investigate algebraically.

Group Law for E/K : y2 = x3 + ax+ b, char(K) 6= 2, 3

Let P = (x1, y1) be a point inE(K).∞ is the identity, such that

P +∞ =∞+ P = P (6)

for all P ∈ E(K). The negative ofP point is−P , and satisfies(x1, y1) + (x1,−y1) = (x1,−y1) +

(x1, y1) =∞.

LetQ = (x2, y2) be a point on the elliptic curveE whereQ is not equalP or negative ofP . Then

P +Q = (x3, y3) where

(x3, y3) =

(

(

y2 − y1
x2 − x1

)2

− x1 − x2,
(

y2 − y1
x2 − x1

)

(x1 − x3)− y1
)

. (7)

This is called as point addition. When we want to double a point, Equation (7) is useless because of

vanishing denominators. There exists a special another formula for point doubling. IfP 6= −P then

[2]P = (x3, y3) where

(x3, y3) =

(

(

3x21 + a

2y1

)2

− 2x1,

(

3x21 + a

2y1

)

(x1 − x3)− y1
)

. (8)

Remark 1. Following steps include all possibilities addition of two points forE/K : y2 = x3+ax+b

elliptic curve [5]:

• If x1 = x2 buty1 6= y2 thenR = P +Q =∞.

• If x1 = x2 andy1 = 0 = y2 thenR = P +Q =∞.

• If x1 = x2 andy1 = y2 6= 0 thenR = [2]P .

• If x1 6= x2 thenR = P +Q
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Example 4. Letp = 31, a = 2, b = 11, and consider the elliptic curve

E : y2 = x3 + 2x+ 11

defined overF31. We know thatE is an elliptic curve because

∆ = −16(4a3 + 27b2)

= −16(4 · 23 + 27 · 112)

= −52784 6= 0

The points inE(F31) are following:

{∞, (1, 13), (1, 18), (9, 13), (9, 18), (10, 15), (10, 16),

(11, 0), (13, 8), (13, 23), (16, 4), (16, 27), (18, 12), (18, 19),

(21, 13), (21, 18), (22, 15), (22, 16), (23, 14), (23, 17), (25, 0),

(26, 0), (27, 1), (27, 30), (28, 3), (28, 28), (30, 15), (30, 16)}

Here is addition and doubling examples for this curve:

(9, 13) + (23, 14) = (27, 30)

[2](9, 13) = (9, 13) + (9, 13) = (27, 1)

There are two more group law parts for supersingular and non-supersingular elliptic curves but in

this thesis, we will work onE/K : y2 = x3 + ax + b elliptic curve. Therefore, we won’t give group

laws for other elliptic curves. In addition, we will continue to work withy2 = x3 + ax+ b curve in the

next sections.

2.4 Group Order

LetE be an elliptic curve defined overFq. Order of E is the number of points inE(Fq) and denoted

as#E(Fq). Since there are twoy ∈ Fq for eachx ∈ Fq satisfying Equation (3), we can say that

#E(Fq) ∈ [1, 2q + 1].
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Theorem 2(Hasse). LetE be an elliptic curve defined overFq. Then

q + 1− 2
√
q ≤ E(Fq) ≤ q + 1 + 2

√
q

Theorem 2 gives us tighter bounds, and interval[q + 1 − 2
√
q, q + 1 + 2

√
q] is called the Hasse

interval . There is another denotation for Hasse’s theorem.

Theorem 3. LetE be an elliptic curve defined overFq. Then#E(Fq) = q + 1 − t where|t| ≤ 2
√
q;

t is called thetraceofE overFq.

Here,t is a small relativeq so we can say#E(Fq) ≈ q. To know this is important for us because

we would like to a have large prime divisor of#E(Fq) to ensure the security of the elliptic curve

cryptosystem. Hasse’s theorem reassures that there are approximatelyq points forE.

Definition 14. Let p be the characteristic ofFq. An elliptic curveE defined overFq is supersingular

if p dividest, wheret is the trace. Ifp doesn’t dividet, thenE is non-supersingular.

2.5 Endomorphisms

Definition 15. [34] Let K be a field,K̄ its algebraic closure, andE be an elliptic curve overK.

An endomorphismof E is a rational mapφ : E(K̄) −→ E(K̄) given by rational functions. In other

words, ifφ satisfies following conditions;

• φ(∞) =∞,

• φ(P +Q) = φ(P ) + φ(Q),

and there are rational functions (i.e quotients of polynomials)R1(x, y), R2(x, y) with coefficients in

K̄ such that for eachP = (x, y) ∈ E(K̄):

φ(x, y) = (R1(x, y), R2(x, y)),

thenphi is an endomorphism ofE.
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Example 5. [18] Let E be an elliptic curve an elliptic curve overFq. For eachm ∈ Z multiplication

by mmap[m] : E −→ E defined byP 7→ [m]P is an endomorphism defined overFq. A special case

is thenegationmap defined byP 7→ −P .

Example 6. [19] Let E be given byy2 = x3 + ax+ b, and letφ(P ) = 2P (multiplication by 2). Then

φ is a homomorphism and we have

φ(x, y) = (R1(x, y), R2(x, y)).

where

R1(x, y) =

(

3x2 + a

2y

)2

− 2x

R2(x, y) =

(

3x21 + a

2y1

)

(x1 − x3)− y1

are obtained by using Equation(8). Sinceφ is a homomorphism given by rational functions, it is an

endomorphism ofE.

Example 7. [19] [38] Let E be an elliptic curve defined overFq. Then theq-th power mapφ : E −→ E

defined by

• φ : (x, y) 7→ (xq, yq)

• φ : ∞ 7→ ∞

is an endomorphism ofE defined overFq, called theFrobenius endomorphism. The characteristic

polynomial ofφ isX2 − tX + q, wheret = q + 1−#E(Fq).

Example 8. [9] Let q ≡ 1 (mod 4) be a prime, and consider the elliptic curve

E : y2 = x3 + ax

defined overFq. Let i ∈ Fq be an element of order4. Then the mapφ : E −→ E defined by

• φ : (x, y) 7→ (−x, iy)

• φ : ∞ 7→ ∞
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is an endomorphism ofE defined overFq. The characteristic polynomial ofφ isX2 + 1.

Example 9. [9] Let q ≡ 1 (mod 3) be a prime, and consider the elliptic curve

E : y2 = x3 + b

defined overFq. Letβ ∈ (Fq)
∗ be an element of order3. Then the mapφ : E −→ E defined by

• φ : (x, y) 7→ (βx, y)

• φ : ∞ 7→ ∞

is an endomorphism ofE defined overFq. The characteristic polynomial ofφ isX2 +X + 1.
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2.6 Projective Coordinates

In section 2.3, we gave point addition and point doubling formulas for elliptic curveE : y2 = x3 +

ax + b defined over a fieldK ([34]). The formulas 7 and 8 need an inversion and few multiplications

to make point addition and point doubling. However, the costof inversion in fieldK can be much

more expensive than multiplication. In this case, using projective coordinates and Jacobian coordinates

eliminates the disadvantage of slow inversions.

Definition 16. Let K be a field and letc and d be positive integers. We can define an equivalence

relation∼ on the setK3 \ {(0, 0, 0)} of nonzero triples overK such that

(X1, Y1, Z1) ∼ (X2, Y2, Z2) if X1 = λcX2, Y1 = λdY2, Z1 = λZ2 for someλ ∈ K∗.

The equivalence class that includes(X,Y, Z) ∈ K3 \ {(0, 0, 0)} is denoted by

(X : Y : Z) = {(λcX2, λ
dY2, λZ2) : λ ∈ K∗}

and(X : Y : Z) is called a projective point,(X,Y, Z) is called a representative of(X : Y : Z).

Notice that ifZ 6= 0 then(X/Zc, Y/Zd, 1) is a representative of the projective point(X : Y : Z)

because any element of an equivalence class can serve as its representative.

Jacobian coordinates is one type of projective coordinatessuch thatc = 2 andd = 3. Hence

(X : Y : Z) corresponds(X/Z2, X/Y 3) for Z 6= 0. The projective equation ofy2 = x3 + ax + b

Weierstrass equation as is

Y 2 = X3 + aXZ4 + bZ6.

Let (1 : 1 : 0) implies∞ as the identity ofE. The negative form of(X : Y : Z) is (X : −Y : Z).

Definition 17 (Point Doubling). LetP = (X1 : Y1 : Z1) ∈ E andP 6= −P . We can write(X1/Z
2
1 :

X1/Y
3
1 : 1) instead of(X1 : Y1 : Z1) for Z1 6= 0. Hence the point doubling formula ofE in affine

coordinates can be used to calculate[2]P = (X
′

3 : Y
′

3 : 1).
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X
′

3 =





3
X2

1

Z4

1

+ a

2 Y1

Z3

1





2

− 2
X1

Z2
1

=
(3X2

1 + aZ4
1)

2 − 8X1Y
2
1

4Y 2
1 Z

2
1

,

Y
′

3 =





3
X2

1

Z4

1

+ a

2 Y1

Z3

1





(

X1

Z2
1

−X3

)

− Y1
Z3
1

=
3X2

1 + aZ4
1

2Y1Z1

(

X1

Z2
1 −X3

)

− Y1
Z3
1

.

To eliminate denominators and to obtain linear formulas, wesetX3 = X
′

3Z
2
3 andY3 = Y

′

3Z
3
3

whereZ3 = 2Y1Z1. This gives

X3 = (3X2
1 + aZ4

1 )
2 − (8X1Y

2
1 ), (9)

Y3 = (X2
1 + aZ4

1 )(4X1Y
2
1 −X3)− 8Y 4

1 , (10)

Z3 = 2Y1Z1. (11)

formulas give the result of[2]P = (X3 : Y3 : Z3) andX3, Y3, Y3 can be computed using following

formulas;

A← Y 2
1

B ← 4X1A

C ← 8A2

D ← 3X2
1 + aZ4

1

X3 ← D2 − 2B

Y3 ← D(B −X3)− C

Z3 ← 2Y1Z1

The cost of point doubling is4M+6S in Jacobian coordinates, whereM means field multiplication

andS means field squaring [10].
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Definition 18 (Point Addition using mixed Jacobian-affine coordinates). LetP = (X1 : Y1 : Z1) ∈ E,

whereZ1, 6= 0 andQ = (X2 : Y2 : 1) whereP 6= ±Q. We know thatP = (X1/Z
2
1 : X1/Y

3
1 : 1).

Hence we can use the point addition formula ofE in affine coordinates to calculateP + Q = (X
′

3 :

Y
′

3 : 1).

X
′

3 =

(

Y2 − Y1

Z3

1

X2 − X1

Z2

1

)2

− X1

Z2
1

−X2

=

(

Y2Z
3
1 − Y1

(X2Z2
1 −X1)Z1

)2

− X1

Z2
1

−X2

Y
′

3 =

(

Y2 − Y1

Z3

1

X2 − X1

Z2

1

)

(

X1

Z2
1

−X ′

3

)

− Y1
Z3
1

=

(

Y2Z
3
1 − Y1

(X2Z2
1 −X1)Z1

)(

X1

Z2
1

−X ′

3

)

− Y1
Z3
1

To eliminate the denominators, as in point doubling, we setX3 = X
′

3Z
2
3 andY3 = Y

′

3Z
3
3 where

Z3 = 2(X2Z
2
1 −X1)Z1. As a result the following formulas gives usP +Q = (X3 : Y3 : Z3):

X3 = (Y2Z
3
1 − Y1)2 − (X2Z

2
1 −X1)

2(X1 +X2Z
2
1 ) (12)

Y3 = (Y2Z
3
1 − Y1)(X1(X2Z

2
1 −X1)

2 −X3)− Y1(X2Z
2
1 −X1)

3 (13)

Z3 = 2(X2Z
2
1 −X1)Z1. (14)

X3, Y3, Y3 can be computed using fallowing formulas;
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A← Z2
1

B ← Z1A

C ← X2A

D ← Y2B

E ← C −X1

F ← D − Y1
G← E2

H ← GE

I ← X1G

X3 ← F 2 − (H + 2I)

Y3 ← F (I −X3)− Y1H

Z3 ← Z1E

The point doubling costs8M + 3S [19].

There is a special case wherea = −3 for y2 = x3 + ax + b. We can selecta = −3 without much

loss of generality [19]. In this case point doubling costs3M + 5S [8].

For more about projective and Jacobian coordinates, the reader may consult [23], [27], [8].



Chapter 3

Point Multiplication on Elliptic

Curves

This section considers methods to calculate[k]P over the fieldFq whereq is a prime number.[k]P

denotes addingP point to itselfk times wherek is an integer andP is a point on elliptic curveE

overFq. This operation is called scalar multiplication or scalar multiplication. In these methods, the

computation time of scalar multiplication, in other words cost of scalar multiplication is the important

part for us. Hence we will give details about cots of algorithms during section 3.

There are two main subsections for scalar multiplication methods; base pointP is unknown or

fixed. Under section 3, we will examine point multiplicationmethods just for unknown point. In scalar

multiplication for unknown point, pointP and integerk are selected at the beginning of program. So

we will not know values of bothP andk before the run time.

20
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3.1 Binary Method

This method is the simplest and oldest method to compute[k]P . It uses the binary representation ofk,

k =
l−1
∑

i=0

ki2
i (1)

whereki ∈ 0, 1 for everyi ∈ 0, · · · , l − 1 andl is number of digits of binaryk. Hence,[k]P scalar

multiplication can be computed by

[k]P =

l−1
∑

i=0

[ki2
i]P

= k0P + k12
1P + k22

2P + · · · kl−12
l−1P (2)

= 2(k1P + 2(k2P + · · ·+ 2(kl−2P + 2(kl−1P )))) + k0P (3)

This multiplication can be interpreted with two ways. Theseare called asright-to-left binary

methodandleft-to-right binary method .

Equation (2) shows us the way that we fallow up for right-to-left binary method. It sums the terms

[ki2
i]P for each nonzeroki from k0 to kl−1 and gives[k]P at the end as the result.ki is known term

so the next step is calculating[2i]P . If we know [2i−1]P , the previous term, it can be calculated by

2 · 2i−1P . Fundamentally work of point multiplication is multiplying a point with a scalar and getting

a new point on elliptic curve. So2i−1P is a point and2 · 2i−1P is a point doubling. As a result, in

equation (2), ifki is nonzero then we are multiplyingki with 2iP , which is calculated by doubling the

previous one, and cumulatively adding to the sum for eachi ∈ 0, · · · , l − 1. At this point using point

doubling speeds up the algorithm. Algorithm 1 is the pseudo code of right-to-left binary method.
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Algorithm 1 Right to Left Binary Method Scalar Multiplication [21]

Input: k = (kl−1, . . . , k1, k0)2, P ∈ E(Fq)

Output: [k]P

1: Q←∞

2: for i = 0 to l− 1 do

3: if ki = 1 then

4: Q← P +Q

5: end if

6: P ← [2]P

7: end for

8: return Q

Previous equation processes the bits ofk from right to left, equation 3 processes the bits ofk to

opposite side. We will begin to calculate fromkl−1 and count down tok0. If ki is nonzero we will add

P and we will double the sum for every step independently ofki. There is another difference between

left-to-right and right-to-left methods except starting term. Unlike 1, we don’t need to keep doubled

version ofP . The pseudo code of left-to-right binary method is given as Algorithm 2.

Algorithm 2 Left to Right Binary Method Scalar Multiplication [9]

Input: k = (kl−1, . . . , k1, k0)2, P ∈ E(Fq)

Output: [k]P

1: Q←∞

2: for i from t− 1 downto0 do

3: Q← 2Q

4: if ki = 1 then

5: Q← P +Q

6: end if

7: end for

8: return Q

There is a running time for every operation and if we count operations one by one we can determine

the running time of algorithm. Addition and doubling are theoperations that we used in Algorithm
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1 and algorithm 2. Both algorithms have same operations so there will be an explanation for only

Algorithm 1. Algorithm 1 doing point addition for eachki if ki is nonzero. Sinceki is bit of the

binary representation ofk, expected number of nonzero bits is half of length. Hence there arel/2 point

addition. In the continuation of algorithm, there is a pointdoubling for everyki which meansl point

doubling. LetA represents addition andD represents doubling, then the expected running time of

Algorithm 1 is

l

2
A+ lD. (4)

Here is the toy example to see steps for both of algorithms.

Example 10. Letk = 53 = (110101) andP is a point on elliptic curve.53P can calculate as fallows

with right-to-left binary method;

Algorithm 1: Right-to-Left Binary Method

indexi ki Q P

- - ∞ P

0 1 ∞+ P = P 2P

1 0 P 4P

2 1 P + 4P = 5P 8P

3 0 5P 16P

4 1 5P + 16P = 21P 32P

5 1 21P + 32P = 53P 64P

Here is the calculation of53P with left-to-right binary method;

Algorithm 2: Left-to-Right Binary Method
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indexi ki Q

- - ∞

5 1 2(∞) + P = P

4 1 2(P ) + P = 3P

3 0 2(3P ) = 6P

2 1 2(6P ) + P = 13P

1 0 2(13P ) = 26P

0 1 2(26P ) + P = 53P

3.2 Non-adjacent From

Let P = (x, y) ∈ E(Fq). Then−P = (x,−y) if Fq is a binary field andFq has characteristic more

than3. Hence subtraction of points on an elliptic curve has almostsame running time with addition.

This brings up to use signed binary expansion ofk to speed up.

Theorem 4(Reitwiesner 1960). [32] Let k ∈ Z then there is exactly one signed binary expansion ofk

such that

k =
∑

i=0

ki2
i, ki ∈ {−1, 0, 1}

kiki+1 = 0, ∀i ≥ 0.

Actually, this theorem gives us definition of non-adjacent form (NAF) of a positive integer.

Definition 19. A non-adjacent form (NAF) of a positive integerk is an expressionk =
l−1
∑

i=0

ki2
i where

ki ∈ {−1, 0, 1}, kl−1 6= 0 and no two consecutive digitski are nonzero. The length of the NAF isl.

We can say that running time of algorithm increases in proportional to number of nonzeroki in

the binary methods. Hence less nonzeroki means to speed up. In regular binary representations of

k, expected number of nonzero digits is half of the length. Butwith NAF this, expected number of

nonzero digits, drops to1/3 of all digits. Because of definition 19 each nonzero digit hasto be adjacent

to two zero digits.

Theorem 5(properties of NAFs). [32] [28] Let k be a positive integer.
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(i) k has unique NAF denoted NAF(k).

(ii) NAF(k) has the fewest nonzero digits of any signed digit representation ofk.

(iii) The length of NAF(k) is at most one more than the length of the binary representation ofk.

(iv) If the length of NAF(k) is l, then2l/3 < k < 2l+1/3

(v) The average density of nonzero digits among all NAFs of length l is approximately1/3.

Algorithm 3 shows computing NAF(k) efficiently. Algorithm obtains digits of NAF(k) dividing k

by 2 continuously and collecting remainders which are equal−1, 0 or 1.

Algorithm 3 Computing NAF [28] [32]
Input: k

Output: NAF (k)

1: i← 0

2: while k ≥ 1 do

3: if k (mod 2) = 1 then

4: ki ← 2− k (mod 4)

5: k← k − ki
6: else ifk (mod 2) = 0 then

7: ki ← 0

8: end if

9: k ← k/2

10: i← i+ 1

11: end while

12: return (ki−1, ki−2, . . . , k1, k0)

Here is an example to see how Algorithm 3 computes NAF(k).

Example 11. Letk = 53. Algorithm 3 can calculate NAF(53) as fallows;
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indexi ki k

- - 53

0 2− (53 mod 4) = 1 53− 1 = 54, 54/2 = 27

1 2− (27 mod 4) = −1 27− (−1) = 28, 28/2 = 14

2 0 14/2 = 7

3 2− (7 mod 4) = −1 7− (−1) = 8, 8/2 = 4

4 0 4/2 = 2

5 0 2/2 = 1

6 2− (1 mod 4) = 1 1− 1 = 0, 0/2 = 0

Algorithm 4 looks like similar with Algorithm 2. Actually both algorithms have some step with one

difference; Algorithm 4 uses NAF(k) instead of the binary representation ofk.

Algorithm 4 Binary NAF Method for Scalar Multiplication [19] [28]

Input: k, P ∈ E(Fq)

Output: [k]P

1: Use Algorithm 3 to computeNAF (k) = (kl−1, . . . , k1, k0)

2: Q←∞

3: for i = l − 1 to 0 do

4: Q← 2Q

5: if ki = 1 then

6: Q← P +Q

7: else ifki = −1 then

8: Q← (−P ) +Q

9: end if

10: end for

11: return Q

Expected running time of the algorithm can be calculated by counting additions and doublings of

the algorithm. From(iii) and(v) parts of Theorem 5 there arel/3 addition for nonzero digits andl

doublings for all digits. Therefore, the expected running time of Algorithm 4 is



Chapter 3. Point Multiplication on Elliptic Curves 27

l

3
A+ lD. (5)

3.3 Window Method

ṠInce previous sections, we know that if we have less nonzero digits for representation fok then

algorithm will speed up. If there are some more available memory, we can speed up algorithm. In

section 3.2 we used elements of{−1, 0, 1} set to representk and added or subtractedP . But Window

method is using elements of larger set for representation ofk. In this case, there will be additions or

subtractions of some small scalar multiple ofP .

Definition 20. Let w ≥ 2 be a positive integer. Then a positive integerk has exactly one width-w

non-adjacent form

k =

l−1
∑

i=0

ki2
i

where each nonzero coefficientki is odd,|ki| < 2w−1, kl−1 6= 0, and at most one of anyw consecutive

digits is nonzero. The length of width-w NAF isl.

Theorem 6(properties of width-w NAFs). [29] [19] Let k be a positive integer.

(i) k has a unique width-w NAF denoted NAFw(k).

(ii) NAF2(k) = NAF(k).

(iii) The length of NAFw(k) is at most one more than the length of the binary representation ofk.

(iv) The average density of nonzero digits among all width-w NAFs of lengthl is approximately

1/w + 1.

NAFw (k) can be efficiently compute similar to NAF(k). Window method processesw digits of k

at a time.
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Algorithm 5 Computingw-NAF [19] [36]
Input: w, k

Output: NAFw(k)

1: i← 0

2: while k ≥ 1 do

3: if k (mod 2) = 1 then

4: ki ← k (mod 2w)

5: k← k − ki
6: else ifk( (mod 2)) = 0 then

7: ki ← 0

8: end if

9: k ← k/2

10: i← i+ 1

11: end while

12: return (ki−1, ki−2, . . . , k1, k0)

Due to Algorithm 5 the digits of NAFw (k) are obtained by repeatedly dividingk by 2 and

remainders are in[−2w−1, 2w−1 − 1]. If k is odd and remainder iski = k (mod 2w) then(k − ki)/2

will be divisible by2w−1. This ensures that there arew− 1 zero digits after a nonzero digit. Following

example will also show this.

Example 12. Let k = 53. We denote a negative integer−a by a. The binary representation ofk is

(110101) and width-w NAFs ofk for 2 ≤ w ≤ 5 are:

w NAFw(k)

2 (1101001)

3 (30031)

4 (30005)

5 (10000011)

We know that NAF2(k) = NAF(k) from Theorem 6 NAFw(k) scalar multiplication algorithm is

general version of NAF(k) (Algorithm 4), only difference is NAFw(k) scalar multiplication has a

precomputation step.
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Algorithm 6 Window NAF Method for Scalar Multiplication [19] [36]

Input: w, k, P ∈ E(Fq)

Output: [k]P

1: Use Algorithm 5 to computeNAFw(k) = (kl−1, . . . , k1, k0)

2: ComputePi = iP for i = 1, 3, 5, . . . , 2w−1 − 1

3: Q←∞

4: for i← l − 1 to 0 do

5: Q← [2]Q

6: if ki 6= 0 then

7: if ki > 0 then

8: Q← Q+ Pki

9: else ifki < 0 then

10: Q← Q− P−ki

11: end if

12: end if

13: end for

14: return Q

From(iii) and(iv) parts of Theorem 6 expected running time of Algorithm 6 is approximately

[

1D + (2w−2 − 1)A
]

+

[

l

w + 1
A+ lD

]

. (6)

There can be thought like if we increasew we can get more speed through(iv) of Theorem

6. But in Algorithm 6 there is a cost for precomputation step and this cost increasing, almost,

exponentially. Hence there are optimum values forw. The following table shows costs of NAFw(k)

scalar multiplication for somew values which are calculated using Formula 6 that expected running

time of Algorithm 6.
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w Cost

3 l+4
4 A+ (l + 1)D

4 l+15
5 A+ (l + 1)D

5 l+42
6 A+ (l + 1)D

6 l+105
7 A+ (l + 1)D

The window NAF method uses sliding window which has similar to width-w window. But

alternatively, sliding window can be used on binary or NAF representation ofk. Sliding window

method moves left-to-right and ignores consecutive zero digits after a nonzero digitki is progressed.

The method works left-to-right over digits of NAF representation ofk with a window, which has width

at mostw, therefore the value in the window is odd.

The average length of a run of zeros between windows in the sliding window method is

v(w) =
4

3
− (−1)w

3 · 2w−2
. (7)

Hence the expected running time of Algorithm 7 is approximately

[

1D +

(

2w − (−1)w
3

− 1

)

A

]

+
l

wTv(w)
+ lD. (8)



Chapter 3. Point Multiplication on Elliptic Curves 31

Algorithm 7 Sliding Window Method for Scalar Multiplication [19] [2]

Input: w, k, P ∈ E(Fq)

Output: [k]P

1: Use algorithm to computeNAF (k) = (kl−1, . . . , k1, k0)

2: ComputePi = iP for i = 1, 3, 5, . . . , 2(2w − (−1)w)/3− 1

3: Q←∞

4: i← l − 1

5: while i ≥ 0 do

6: if ki = 0 then

7: t← 1

8: u← 0

9: else ifki 6= 0 then

10: Find the largestt ≤ w such thatu← (ki, . . . , ki−t+1) is odd.

11: end if

12: q ← 2tQ

13: if u > 0 then

14: Q← Q+ Pu

15: else ifu < 0 then

16: Q← Q− P−u

17: end if

18: i← i− t

19: end while

20: return Q

Before finishing this section let’s compare sliding window and Window NAF methods slightly.

For a knownw, the sliding window takes larger values in a window than width-w NAF. This returns

as a higher cost in precomputation step that costs2w/3 point operations for sliding window method

(Algorithm 7) and2w/4 point operations for window NAF method (Algorithm 6). If we continue to

compare both algorithms over point operations the window NAF method will usually result in fewer

point additions for the optimumw. For more certain comparison, we should take into consideration



Chapter 3. Point Multiplication on Elliptic Curves 32

coordinate representations.



Chapter 4

Faster Point Multiplication Methods

Until this section, we gave point addition and point doubling on elliptic curves in affine coordinates.

Then we transported these point operations formulas to Jacobian projective coordinates. After that

we use these formulas to compute scalar multiplication which is the fundamental operation in elliptic

curve cryptology. We talked about different scalar multiplication methods. In every new method our

aim was getting effective and fast point multiplication algorithms. In this section we will look at faster

and efficient scalar multiplication methods than we gave in Section 3 and we will link up with Section

2.5 for that.

4.1 GLV Method

This section briefly restates GLV method. GLV is Gallant, Lambert and Vanstone’s method in speeds up

scalar multiplication on elliptic curves using classes of elliptic curve which have efficiently computable

endomorphisms. As an advantage GLV method allows to work on larger classes of elliptic curves. For

this special class of curves, [18] says that a speedup of up to%50 can be expected over the best general

methods for point multiplication.

33



Chapter 4. Faster Point Multiplication Methods 34

4.1.1 Endomorphisms

LetE be an elliptic curve defined over the finite fieldFq. Due to Definition 15 an endomorphism ofE

is a rational mapφ : E −→ E that satisfiesφ(∞) = ∞ where∞ denotes the point at infinity. Since

the rational map is defined overFq, the endomorphismφ is also defined overFq. Henceφ is a group

homomorphism ofE(Fq).

Let P be a point on this curve with ordern such thath = #E(Fq)/n co-factor is a small integer

such thath ≤ 4. Letφ be a non trivial and effectively computable endomorphism defined overFq and

X2 + rX + s is characteristic polynomial ofφ. There isλ ∈ [0, n− 1] such hatφ(P ) = λP whereλ

is a root of characteristic polynomialX2 + rX + s modulon.

Example 13(Elliptic Curves withj = 1728). [25]

Letp ≡ 1 (mod 4) be a prime and consider the elliptic curve

y2 = x3 + ax

defined overFp with p+1−t points andα ∈ Fp is an element of order4, that satisfies the characteristic

equationα2 + 1 ≡ 0. Then there is an efficiently computable endomorphism defined by

φ : E −→ E, (x, y) 7−→ (−x, αy).

Let P ∈ E(Fp) be a random point of prime ordern such thath = #E/n is a “small” integer;

typicallyh ≤ 4. Thenφ(Q) = λQ for everyQ ∈ 〈P 〉 whereλ ∈ Z satisfiesλ2 + 1 ≡ 0 (mod n).

Example 14(Elliptic Curves withj = 0). [20]

Letp ≡ 1 (mod 3) be a prime and the elliptic curve is

y2 = x3 + b

defined overFp with p+1−t points. Letβ ∈ Fp be an element order of3 that satisfies the characteristic

equationβ2 + β + 1 ≡ 0. Thenφ is an endomorphism defined by

φ : E −→ E, (x, y) 7−→ (βx, y).



Chapter 4. Faster Point Multiplication Methods 35

LetP ∈ E(Fp) be a point with prime ordern such thath = #E/n is a “small” integer; typically

h ≤ 4. Thenφ(Q) = λQ for everyQ ∈ 〈P 〉 whereλ ∈ Z satisfyλ2 + λ+ 1 ≡ 0 (mod n).

Example 15(the elliptic curve P-160). [19]

Consider the elliptic curve

E : y2 = x3 + 3

defined over the160−bit prime fieldFp, where

p = 2160 − 229233

= 1461501637330902918203684832716283019655932313743.

Sincep ≡ 1 (mod 3), the curve is of the type described in Example 14. The group ofFp-rational

points onE has prime order

#E(Fp) = n = 1461501637330902918203687013445034429194588307251.

An element of order3 in Fp is

β = 771473166210819779552257112796337671037538143582

and so the mapφ : E −→ E defined byφ : ∞ 7→ ∞ andφ : (x, y) 7→ (βx, y) is an endomorphism of

E defined overFp. The solution

λ = 903860042511079968555273866340564498116022318806

to the equationλ2 + λ+ 1 ≡ 0 (mod n) has the property thatφ(P ) = λP for all P ∈ E(Fp).

This curve is included in the WAP specification of the Wireless Transport Layer Security (WTLS)

protocol [39].

The way for computingkP for selected equally randomk from [0, n− 1] that given by [18] is the

following. Assume thatk = k1 + k2λ (mod n) wherek1, k2 ≤ ⌈
√
n⌉. Hence
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kP = (k1 + k2λ)P

= k1P + k2(λP )

= k1P + k2φ(P ).

φ(P ) can be computed easily. Sincek1 andk2 are approximately half the length ofk, applying

Algorithm 6 to k1P andk2P will reduce points doublings to half. Sure we don’t forget that this is

effective provided when a decomposition andφ(P ) can be computed efficiently.

4.1.2 Decomposition of the scalar

Let k ∈ (0, n) be an integer constant. We want to writek = k1 + k2λ (mod n) wherek1, k2 ≤ ⌈
√
n⌉.

Let define the group homomorphism

f : Z× Z −→ Z/n

(i, j) 7−→ i+ λj (mod n).

We can say that(k, 0) is a vector that satisfiesf(k, 0) = k. We want to find(k1, k2) = u vector such

that f(u) = k1 + λk2 = k. Note that it is easy to find a vectoru ∈ Z × Z such thatf(u) = k.

u = (k, 0) is this kind of vector. But the problem is finding a vector thatis short at the same time. In

that point, we should pass some steps to find a properu. First we should find linearly independent short

vectorsv1, v2 ∈ Z× Z such thatf(v1) = 0 andf(v2) = 0. After this, we find a vectorv in the integer

lattice generated byv1 andv2 that close to(k, 0). Thenu = (k, 0)− v with f(u) = f((k, 0))− f(v).

Note that using lattice basis reduction algorithms can be solve our problems about finding linearly

independentv1 and v2 vectors, and findingv vector generated byv1 and v2 that close to(k, 0).

However, methods are faster which are presented in [18].

Let K = kerf andv1, v2 be linearly independent vectors ofK satisfyf(v1) = 0 andf(v2) = 0.

We can write that,

(k, 0) = β1v1 + β2v2
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whereβi ∈ Q becausev1, v2 are linearly independent vectors.Thenbi = ⌈βi⌋ and letv = b1v1 + b2v2.

We can computev1, v2 linearly independent vectors using Extended Euclidean Algorithm. If we

apply Extended Euclidean Algorithm to find greatest common divisor of n andλ, we get

sin+ tiλ = ri (1)

wheres0 = 1, t0 = 0, r0 = n, s1 = 0, t1 = 1, r1 = λ, ri ≥ 0 for all i. In a specific step of this

equation algorithm gives usv1, v2 vectors.

Lemma 1. Let si, ti, ri be the sequence of variables in Equation 1 produced by an application of

extended Euclidean algorithm to positive integersn andλ.

(i) ri > ri+1 ≥ 0 for all ş≥ 0.

(ii) |si| < |si+1| for i ≥ 1.

(iii) |ti| < |ti+1| for i ≥ 0.

(iv) ri−1|ti|+ ri|ti−1| = n for all i ≥ 1.

Let m be the greatest index for whichrm ≥ √n. Due to Lemma 1(iv), we know that

rm|tm+1| + rm+1|tm| = n. So |tm+1| <
√
n. Then we choosev1 = (rm+1,−tm+1). By Equation

1, f(v1) = (rm+1 − tm+1λ) (mod n) = 0. Since|tm+1| <
√
n and |rm+1| <

√
n, we have

‖v1‖ =
√

r2m+1 + t2m+1 <
√
2n which meansv1 is short. Then we also choosev2 to be shorter of

(rm,−tm) and(rm+2,−tm+2). With similar way that we trace withv1, f(v2) = 0 andv2 is also short.

We found two short vectorsv1 andv2 but there is one more condition that they should be linearly

independent. Assume that they are linearly dependent. Letv2 = (rm,−tm) then

rm+1

rm
=
−tm+1

−tm
=
tm+1

tm
. (2)

But, by Lemma 1(i) and(iii), rm+1/rm < 1 and|tm+1/tm| > 1. Therefore,v1 andv2 are linearly

independent.
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Algorithm 8 Extended Euclidean Algorithm for Integers [19]
Input: Positive integersa andb with a ≤ b.

Output: d = gcd(a, b) and integersx, y satisfyingax+ by = d.

1: u← a, v ← b

2: x1 ← 1, x2 ← 0

3: y1 ← 0, y2 ← 1

4: while u 6= 0 do

5: q ← ⌊v/u⌋, r ← v − qu

6: x← x2 − qx1, y ← y2 − qy1
7: v ← u, u← r

8: x2 ← x1, x1 ← x

9: y2 ← y1, y1 ← y

10: end while

11: d← v, x← x2, y ← y2

12: return (d, x, y)

Linearly independent vectorsv1 andv2 can be obtained by using Algorithm 8. If we put inputs as

n andλ, the algorithm produces a sequence of equationssin+ iλ = ri wheres0 = 1, t0 = 0, r0 = n,

s1 = 0, t1 = 1, r1 = λ.

Our aim was findingv = b1v1 + b2v2 that close to(k, 0) wherebi = ⌈βi⌋. The last step is finding

β1 andβ2. (k, 0) = β1v1+β2v2 equation provides these values. We already calculatedv1 = (v1x, v1y)

andv2 = (v2x, v2y) vectors. If we put them in to equation

(k, 0) = β1v1 + β2v2

= β1(v1x, v1y) + β2(v2x, v2y)

= (β1v1x, β1v1y) + (β2v2x, β2v2y)

= (β1v1x + β2v2x, β1v1y + β2v2y).
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At the end, these steps gives two equation,

k = β1v1x + β2v2x,

0 = β1v1y + β2v2y.

Hence,

β1 =
kv2y

v1xv2y − v1yv2x
, β2 =

−kv1y
v1xv2y − v1yv2x

.

Sincebi = ⌈βi⌋ and we havev = b1v1 + b2v2, u = (k, 0)− v is the short vector that we need. The

fallowing lemma proves that the vectoru is indeed short.

Lemma 2. [18] The vectoru = (k, 0) − v, wherev is constructed as above, has norm at most

max(‖v1‖, ‖v2‖).

Proof. We have

u = (k, 0)− v

= (β1v1 + β2v2)− (b1v1 + b2v2)

= (β1 − b1)v1 + (β2 − b2)v2.

Finally, since|β1 − b1| ≤ 1
2 and|β2 − b2| ≤ 1

2 , by the Triangle Inequality we have

‖u‖ ≤ 1

2
‖v1‖+

1

2
‖v2‖

≤ max(‖v1‖, ‖v2‖).

Following algorithm calculatesk1 andk2 and uses Extended Euclidean Algorithm (Algorithm 8)

to obtain needed components. It is the summary of the method for decomposingk that we explained

above.
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Algorithm 9 Balanced length-two representation of a multiplier [19]

Input: Integersn, λ, k ∈ [0, n− 1].

Output: Integersk1, k2 such thatk = (k1 + k2λ) (mod n) and|k1|, |k2| ≈
√
n.

1: Run the Algorithm 8 with inputsn andλ. The algorithm produces a sequence of equationssin+

iλ = ri wheres0 = 1, t0 = 0, r0 = n, s1 = 0, t1 = 1, r1 = λ, and the remaindersri and are

non-negative and strictly decreasing. Letm be the greatest index for whichrm ≥
√
n.

2: (x1, y1)← (rm+1,−tm+1)

3: if (r2m + t2m) ≤ (r2m+2 + t2m+2) then

4: (x2, y2)← (r1,−t1)

5: else

6: (x2, y2)← (rm+2,−tm+2)

7: end if

8: b1 ← ⌊β1⌋

9: b2 ← ⌊β2⌋

10: k1 ← k − b1x1 − b2y2
11: k2 ← −b1y1 − b2y2
12: return (k1, k2)

Next example shows applying of Algorithm 9 to Example 15.

Example 16(balanced lenght-two representation of a multiplierk). Consider the elliptic curve P−160

defined in Example 15. Since we apply Algorithm 9, we have

(rm, tm) = (2180728751409538655993509,−186029539167685199353061)

(rm+1, tm+1) = (788919430192407951782190, 602889891024722752429129)

(rm+2, tm+2) = (602889891024722752429129,−1391809321217130704211319)

(x1, y1) = (788919430192407951782190,−602889891024722752429129)

(x2, y2) = (602889891024722752429129, 1391809321217130704211319).
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Let

k = 965486288327218559097909069724275579360008398257.

We obtain

b1 = 919446671339517233512759

b2 = 398276613783683332374156

and

k1 = −98093723971803846754077

k2 = 381880690058693066485147.
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Algorithm 10 Scalar Multiplication with Efficiently Computable Endomorphisms [19]

Input: Integerk ∈ [1, n− 1], P ∈ E(Fq) window widthw1 andw2, andλ

Output: kP

1: Use Algorithm 9 to findk1 andk2 such thatk = (k1 + k2λ) (mod n).

2: P1 ← P

3: P2 ← φ(P )

4: Use Algorithm 5 to compute NAFwj (|kj |) =
mj−1
∑

i=0

kj,i2
i for all j = 1, 2.

5: m = max{m1,m2}

6: kj,i ← 0 formj ≤ i < m, 1 ≤ j ≤ 2

7: if kj < 0 then

8: kj,i ← −kj,i
9: end if

10: ComputeiPj for i ∈ {1, 3, · · · , 2wj−1 − 1, 1 ≤ j ≤ 2.

11: Q←∞

12: for j = 1 to 2 do

13: if kj,i 6= 0 then

14: Q← Q+ kj,iPj

15: else

16: Q← Q− |kj,i|Pj

17: end if

18: end for

19: return Q

Algorithm 10 calculateskP using the decompositionk = (k1 + k2λ) (mod n) and interleaving

k1P + k2φ(P ) whereφ is a efficient endomorphism of elliptic curveE over a finite fieldFq. The

expected running time of algorithm is approximately



|j|D +

2
∑

j=1

(2wj−2 − 1)A+ Ck + Cφ



+
t

2



D +

2
∑

j=1

1

wj + 1
A



 (3)



Chapter 4. Faster Point Multiplication Methods 43

wheret is bitlength ofn, j : wj > 2, kj is written with a NAF−wj ,Ck andCφ denotes respectively

the costs of the decomposition ofk and findingφ(P ). Lastly, the storage requirement is2w1−2+2w2−2

points.

4.2 GLS Endomorphism

Section 4.1 gave the Gallant-Lambert-Vanstone (GLV) [18] method that accelerates elliptic curve scalar

multiplication with efficiently computable endomorphisms. Since it requires less point operations

than previous methods GLV method is important tool for faster scalar multiplication. However,

there were efficiently computable endomorphism examples inonly two cases like curves with special

endomorphism class or groupsE(Fqm) defined overFq and if q isn’t very small, these groups don’t

have prime or nearly prime order. Especially, we gave curveswith j−invariants0 and1728 for GLV

method. If you want to work with primes (e.g.p = 2255−19), only special curves can be used with the

GLV. Because if there are small sets of applicable curves andfields, it can be hard to get a good group

order. Hence, for randomly chosen prime order elliptic curves or for special primes GLV method isn’t

applicable every time. [17] gives endomorphisms for a largeclass of elliptic curves by working over

Fq2 that can be applied to GLV method to solve this problem [15] [16].

Let q be a prime number andFq is a finite field. If we define an elliptic curve over an extension field

of Fq, [17] guaranties the construction of an efficiently computable endomorphism. This endomorphism

is then used to speed up scalar multiplication.

LetE be an elliptic curve overFq with q + 1− t points. In that case we can also calculate number

of points#E(Fqm) and we can defineE(Fqm)[r] = {P ∈ E(Fqm : [r]P =∞)}. Letd = 1 andφ
′

be

φ−1. Then we can replace ’separable isogeny’ with ’isomorphism’. If r is a prime,r || N denotes that

r | N butr2 ∤ N .

Theorem 7. Let E be an elliptic curve defined overFq such that#E(Fq) = q + 1 − t and let

φ : E → E
′

be a separable isogeny of degreed defined overFqk whereE
′

is an elliptic curve defined

overFqm with m | k. Let r | #E′

(Fqm) be a prime such thatr > d and such thatr || #E′

(Fqk)

which meansr | #E′

(Fqk) but r1 ∤ #E
′

(Fqk). Let π be theq-power Frobenius map onE and let
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φ
′

: E
′ → E be the dual isogeny of theφ. Define

ψ = φπφ
′

.

Then

(i) ψ ∈ EndF
qk
(E

′

).

(ii) For all P ∈ E′

(Fqk) we haveψk(P )− [dk]P =∞ andψ2(P )− [dt]ψ(P ) + [d2q]P =∞.

(iii) There is a uniqueλ ∈ Z/rZ such thatλk − dk ≡ 0 (mod r) such thatψ(P ) = [λ]P for all

P ∈ E′

(Fqm)[r].

Consider that ifφ is an isomorphism thenE
′ ∼= E impliesEnd(E

′

) ∼= End(E) which means

End(E
′

) contains a corresponding endomorphism becauseEnd(E) contains thep−power Frobenius

map [17]. Theorem 7 forms the main construction. But in this section we will work overFq2 with more

specific endomorphisms. If we specialise Theorem 7, the proof of the specialised theorem will shows

that it can applies to any elliptic curve overFq and it also applies GLV method.

Theorem 8. Let p > 3 be a prime and letE be an elliptic curve overFq with q + 1 − t points. Let

E
′

overFq2 be the quadratic twist ofE(Fq2). Then#E
′

(Fq2 ) = (q − 1)2 + t2. Letψ : E → E
′

be

twisting isomorphism defined overFq4 . Let r|#E′

(Fq2) be a prime such thatr > 2p. Letψ = φπφ
′

.

For P ∈ E′

(Fq2)[r] we haveψ2(P ) + P =∞.

Proof. LetE : y2 = x3+ax+bwith a, b ∈ Fq. We know that#E
′

(Fq2) = (q−1)2+t2. Letu ∈ Fq2 be

a nonsquare inFq2 . Thereforeu(p
2
−1)/2 = −1. DefineA = u2a,B = u3b andE

′

: y2 = x3+Ax+B.

ThenE
′

is the quadratic twist ofE(Fq2) and

#E
′

(Fq2) = q2 + 1 + (t2 − 2q)

= (q − 1)2 + t2.

The isomorphismψ : E → E
′

is given by

φ(x, y) = (ux,
√
u
3
y)

and is defined overFq4 .
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If r | #E′

(Fq2) is prime such thatr > 2q thenr ∤ #E(Fq2) = (q + 1 − t)(q + 1 + t) and so

r || #E′

(F4
q) = #E(Fq2)#E

′

(Fq2). Hence we may apply Theorem 7. This shows thatψ = φπφ
′

is

a group homomorphism such thatψ(P ) = [λ]P for P ∈ E′

(Fq2)[r] whereλ4 − 1 ≡ 0 (mod r). We

show that, in fact,λ2 + 1 ≡ 0 (mod r),

By definition,ψ(x, y) = (uxq/uq,
√
u
3
yq/
√
u
3q
/
√
u
3q
) whereu ∈ Fq2 (i.e. uq

2

= u) and
√
u ∋

Fq2 (and so
√
u
q2

= −√u). If P = (x, y) ∈ E′

(Fq2) thenxq
2

= x, yq
2

= y and so

ψ2 = (uxq
2

/uq
2

,
√
u
3
yq

2

/
√
u
3q2

)

= (x, (−1)3y)

= −(x, y).

Now we can we can apply the result that we got from proof of Theorem 8 to elliptic curveE over

Fq whereq > 3. GLV method can also be applied. SinceE
′

is defined overFq2 , #E
′

(Fq2) can be

prime. Reader should check [30].

Let q ≡ 5 (mod 8) be a prime andE : y2 = x3+ax+ b be an elliptic curve overFq with q+1− t

points, wheret is trace of Frobenius which can be computed efficiently for all elliptic curves. Letu be

a non-square element inFq2 . LetE
′

: y2 = x3 + Ax + B be the quadratic twist ofE(Fq2) overFq2

such thatA = u2a andB = u3b. Then there is a map defined by

ψ : E
′ −→ E

′

(x, y) 7−→ (xq, iyq)

wherei ∈ Fq2 satisfiesi2 = −1.

Let r | #E(Fq2) be a prime such thath = #E′(Fq2)/r is a small number andP ∈ E′

(Fq2) be a

point order ofr. Thenφ(P ) = λP for someλ ∈ Z satisfyλ2 + 1 ≡ 0 (mod r).

Lemma 3. Let notation be as previous theorem. The vectors(t, p− 1), (1− p), t are orthogonal basis

for a sub latticeL
′

ofL of determinant#E
′

(Fq2). Given a point(a, b) ∈ R2 there exists a lattice point

(x, y) ∈ L′

such that||(a, b)− (x.y)|| ≤ (p+ 1)/
√
2.
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Because of Lemma 3, we do not need to calculate linearly independentv1, v2 vectors using

Extended Euclidean Algorithm (Algorithm 8). For GLV method, (t, q − 1) and(q − 1,−t) linearly

independent vectors can be used asv1, v2. If we want to computev1, v2 vectors with Algorithm 8, it

will return same results with(t, q − 1) and(q − 1,−t). Therefore, computing coefficientsk1 andk2

where|k1|, |k2| ≤ (q + 1)/
√
2 is easy in this case.

Following algorithm is a summary of this section. It generates a primeq (q > 3) and the quadratic

twist of E(Fq2), calculatesλ, and define efficient endomorphismψ to use in GLV method for more

speeding up.

Algorithm 11 Key Generation for Quadratic Twist Construction [17]

Output: q,E
′

, ψ, λ

1: Choose a primeq = 5 (mod 8)

2: Setu =
√
2 ∈ Fq2

3: SetA = −3 anda = A/2 ∈ Fq

4: repeat

5: Choose randomb ∈ Fq and letE : y2 = x3 + ax+ b

6: Computet = p+ 1−#E(Fq)

7: until (q − 1)2 + t2 = hr wherer is prime andh = 1 or h = 4

8: SetB = bu3 ∈ Fq2 andE
′

: y2 = x3 +Ax+B

9: Setλ = t−1(q − 1) (mod r)

10: Computei ∈ Fq so thati2 = −1

11: Defineψ(x, y) = (−xq, iyq)

12: return q (A,B), ψ, λ

We used Algorithm 11 to define very simple mapψ and to generate an elliptic curveE
′

: y2 =

x3 + Ax + B overFq2 , whereq > 3 is a prime which has coefficientA = −3. Using coefficient

A = −3 makes the curve convenient for efficient implementation when we use Jacobian coordinates

(Section 2.6). We don’t forget that the algorithm can be usedin more general cases.



Chapter 5

Implementation, Evaluation and

Comparison

In previous sections, we gave various scalar multiplication algorithms and we always aimed to reach

the fastest scalar multiplication algorithm ever known. Atthe end Gallant, Lambert and Vanstone’s

(GLV) method gave the speed up for scalar multiplication. But this method gave us narrow space to

work. At that moment, Galbraith, Lin and Scott (GLS) endomorphisms gave larger classes.

In this section we will examine the magma implementation of GLV method which fortified

with GLS endomorphisms. During the section we will use256-bit primes for examples, algorithm

implementations and comparisons.

1 p := NextPrime(Random([4..2ˆ256]));
2 repeat
3 p := NextPrime(p);
4 F := GF(p);
5 until (p mod 8) eq 5;
6 _<x> := PolynomialRing(F);
7 K<u> := ext<F|xˆ2-2>;

Code 5.1: MAGMA/smul–ec–we–GLS

Let p be a256-bit prime number and letF is a prime field withp. we need to find ap such that

p ≡ 5 (mod 8). This is one of the most important steps of algorithm. This line allows to find at least

one root fori2 +1 polynomial inF and at the same time there isn’t anyx value that makes zerox2 − 2

47
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polynomial inF.

After we found the properp prime and builtF asFp prime field, the next step is extendingF to K

asFp2 by usingx2 − 2 polynomial. Creating extension fieldK usingx2 − 2 will make the algorithm

faster when we compare other extension fields. Now it’s time to create our elliptic curve overF.
1 repeat
2 a := Random(F);
3 b := Random(F);
4 E1 := EllipticCurve([a, b]);
5 n1 := #E1;
6 E2 := BaseExtend(E1, K);
7 t := p+1-n1;
8 ad := K!(uˆ2) * a;
9 bd := K!(uˆ3) * b;

10 E2d := EllipticCurve([ad, bd]);
11 assert IsQuadraticTwist(E2,E2d);
12 n2d := (p-1)ˆ2 + tˆ2;
13 assert #E2d eq n2d;
14 S := Factorization(n2d);
15 r := S[#S][1];
16 h := n2d div r;
17 until h le 4;

Code 5.2: MAGMA/smul–ec–we–GLS

Let a andb be random scalars inF. We can built elliptic curveE1 using coefficientsa andb over

F. n1 is number of points ofE1 overF which is represented as#E1(F). Now we have elliptic curve

E1 and extension fieldK . We can extentE1 while we go fromF to K .

LetE2 be extended ofE1 overK . t is the trace of Frobenius. Since number of points can calculate

with p− t+ 1 for E1 thant satisfiesn1 = p− t+ 1 and we can calculatet with usingt = p− t+ 1

equation. GLS uses curves which are quadretic twist of extended curve over extension field. Now we

need to create an elliptic curve using directions from [17] that will give quadratic twist ofE2. This

quadratic twist will be over extension fieldK . Hence coefficientsad andbd are elements ofK such

thatad = u2a andbd = u3b. Since we have have coefficients we can createE2d overK which is the

quadratic twist ofE2.

Using points that have prime order is important for security. But it’s hard to find a point with prime

order randomly. Therefore will find a point that has prime order with the help of a random point.

Factors of number of an elliptic curve includes prime order.First we need to calculate number of points

of E2d and it can compute withn2d = (p − 1)2 + t2. Because of previous steps we knowt, so we

can also findn2d using this equation. If we factorizen2d, the biggest factor is the prime orderr. But

taking the biggestr is not enough in this case, we also need haveh ≤ 4 wheren2d = h.r [17].
1 R := Random(E2d);
2 P := h * R;
3 assert Order(P) eq r;
4 e := E2d![0,1,0];
5 assert r * P eq e;

Code 5.3: MAGMA/smul–ec–we–GLS
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LetR be a random point overE2d. If we multiplyR with h, the result will be a pointP overE2d

with prime order. If we check order ofP , the result will ber and if multiplyP with r, the result will

be identity ofE2d.

1 l := (Modinv(t,r) * (p-1)) mod r;
2 i := Sqrt(F!-1);
3 T := E2d![-P[1]ˆp, i * (P[2]ˆp)];
4
5 //Select the correct square root of -1.
6 assert T eq l * P or T eq -l * P;
7 if T ne l * P then
8 assert T eq -l * P;
9 i:=-i;

10 end if;

Code 5.4: MAGMA/smul–ec–we–GLS

φ represents GLS endomorphisms that isφ(Q) = [l]Q wherel is root ofl2 +1 ≡ (mod r). Since

we choose a prime wherep ≡ (mod 8) we know there is at least onel and also twoi values which

are the roots of characteristic equationi2 + 1 ≡ (mod r). i values are negative of each other. Hence

we need a small test to be sure we take properi. We can learn it easily using contents ofψ map.

1 Psifunc := function(P, E2d, p, i)
2 return E2d![-P[1]ˆp,i * (P[2]ˆp)];
3 end function;

Code 5.5: MAGMA/smul–ec–we–GLS

ψ is the map that does the main work [17], defined asψ(x, y) = (−xp, iyp). Before the end, the

last step is decomposing scalark.

1 k := Random([0..r]);
2 B := (p-1)ˆ2 + tˆ2 ;
3 b1 := (k * (t))/B;
4 b2 := (k * (p-1))/B;
5 v1 := Round(b1) * t + Round(b2) * (p-1);
6 v2 := Round(b1) * (p-1) - Round(b2) * t;
7 k1 := k-v1;
8 k2 := 0-v2;
9

10 [pˆ2, r, k, k1, k2];
11
12 assert k * P eq (k1 * P+k2* l * P);
13 Q := Psifunc(P, E2d, p, i);
14 assert k * P eq (k1 * P+k2* Q);
15 assert l * P eq Q;

Code 5.6: MAGMA/smul–ec–we–GLS

Let k be a random scalar in[0, r] and we can decompose it tok1 and k2 scalars that satisfy

(k1, k2) = (k, 0) − (v1, v2) wherev1 andv2 linearly independent vectors. Using[k1]P + [k2]ψ[P ]

will be faster way to calculate[k]P .

In this algorithm we findk1, k2, ψ[P ] but at the end we have calculated[k1]P + [k2]ψ[P ] to

MAGMA. Fallowing algorithm also calculates[k1]P + [k2]ψ[P ] besidek1, k2, ψ[P ].

1 dec := function(k, p, E)
2 n:= #E;
3 t := p+1-n;
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4 B := (p-1)ˆ2 + tˆ2 ;
5 b1 := (k * (t))/B;
6 b2 := (k * (p-1))/B;
7 v1 := Round(b1) * t + Round(b2) * (p-1);
8 v2 := Round(b1) * (p-1) - Round(b2) * t;
9 k1 := k-v1;

10 k2 := 0-v2;
11 return k1, k2;
12 end function;
13
14 phi := function(P, E, p, j)
15 return E![-P[1]ˆp, j * (P[2]ˆp)];
16 end function;
17
18 wNaf := function(w, k)
19 i := 1;
20 t := [];
21 while (k ge 1) do
22 if (k mod 2) eq 1 then
23 t[i] := k mod (2ˆw);
24 k := k - t[i];
25 elif (k mod 2) eq 0 then
26 t[i] := 0;
27 end if;
28 k := k div 2;
29 i := i + 1;
30 end while;
31 return t;
32 end function;
33
34 mul := function(w, k, P, E, p, j)
35 t1 := [];
36 t2 := [];
37 s1 := [];
38 s2 := [];
39 k1, k2 := dec(k, p, E);
40 Q := phi(P, E, p, j);
41 t1 := Reverse(wNaf(w, k1));
42 m1 := #t1;
43 t2 := Reverse(wNaf(w, k2));
44 m2 := #t2;
45 m:=Maximum(m1, m2);
46 if m1 eq m then
47 for i:=(m2+1) to m do
48 t2[i]:=0;
49 end for;
50 elif m2 eq m then
51 for i:=(m1+1) to m do
52 t1[i]:=0;
53 end for;
54 end if;
55 if k1 lt 0 then
56 for i:=1 to m1 do
57 t1[i]:=-t1[i];
58 end for;
59 end if;
60 if k2 lt 0 then
61 for i:=1 to m2 do
62 t2[i]:=-t2[i];
63 end for;
64 end if;
65 for i:=1 to (2ˆw-1) by 2 do
66 s1[i] := i * P;
67 s2[i] := i * Q;
68 end for;
69 R := E![0,1,0];
70 for i:=m to 1 by -1 do
71 R := 2 * R;
72 if t1[i] ne 0 then
73 if t1[i] gt 0 then
74 R := R + s1[t1[i]];
75 else
76 R := R - s1[Abs(t1[i])];
77 end if;
78 end if;
79 if t2[i] ne 0 then
80 if t2[i] gt 0 then
81 R := R + s2[t2[i]];
82 else
83 R := R - s2[Abs(t2[i])];
84 end if;
85 end if;
86 end for;
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87 return R, k1, k2, Q;
88 end function;
89
90 p := NextPrime(Random([4..2ˆ32]));
91 repeat
92 p := NextPrime(p);
93 F := GF(p);
94 until (p mod 8) eq 5;
95 _<x> := PolynomialRing(F);
96 K<u> := ext<F|xˆ2-2>;
97
98 repeat
99 a := Random(F);

100 b := Random(F);
101 E1 := EllipticCurve([a, b]);
102 n1 := #E1;
103 E2 := BaseExtend(E1, K);
104 t := p+1-n1;
105 ad := K!(uˆ2) * a;
106 bd := K!(uˆ3) * b;
107 E2d := EllipticCurve([ad, bd]);
108 assert IsQuadraticTwist(E2,E2d);
109 n2d := (p-1)ˆ2 + tˆ2;
110 assert #E2d eq n2d;
111 S := Factorization(n2d);
112 r := S[#S][1];
113 h := n2d div r;
114 until h le 4;
115
116 R := Random(E2d);
117 P := h * R;
118 assert Order(P) eq r;
119 e := E2d![0,1,0];
120 assert r * P eq e;
121 i := Sqrt(F!-1);
122 k := Random([0..2ˆ50]);
123 w := 3;
124
125 R, k1, k2, Q := mul(w, k, P, E2d, p, i);
126 R;
127 assert k * P eq R;

Code 5.7: MAGMA/gls–point–mul

Following table compare scalar multiplication algorithms, we eximine in this thesis. Letk is256-bit

scalar. Multiplication counts scalar multiplication operations that is used by algorithms, square counts

taking square of a point, doubling counts point doubling operations, addition counts point addition

operations and total part gives the sum of equivalents all operations to multiplication.

Comparisons of Scalar Multiplication Algorithms

Algorithm Multiplication Square Addition Total

Binary Right to Left 2543 1527 4458 26741M

Binary Left to Right 2541 1527 4457 26734M

Binary NAF 2036 1358 4159 24528M
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Conclusion

In this thesis we studied efficient scalar multiplication techniques Elliptic Curve Cryptography and

their implementations. We gave algebraic background for elliptic curves and some fundamental elliptic

curve background. With all these tools we aimed to reach the fastest scalar multiplication algorithm

ever known. We made mathematical and computational analysis of fundamental scalar multiplication

methods and their algorithms from the slowest to faster.

We gave mathematical analysis of the fastest scalar multiplication method deeply. We made

computational analysis of it, compared it with other scalarmultiplication method. We discussed prons

and cons of each method. Then we talked about efficiently computable endomorphism which improves

the fastest scalar multiplication method and eliminates performance disadvantages of the methods.

The implementation of all algorithms made using by MAGMA high level language and put to the

appendix.
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1 AddPoint := function(X1, Y1, Z1, X2, Y2, Z2, a, cntM, cntS, cn tD, cntA, E)
2 if (Z2 eq 0) then
3 X3 := X1; Y3 := Y1; Z3 := Z1;
4 elif (Z1 eq 0) then
5 X3 := X2; Y3 := Y2; Z3 := Z2;
6 elif (X1 * Z2ˆ2 eq X2 * Z1ˆ2) and (Y1 * Z2ˆ3 ne Y2 * Z1ˆ3) then
7 X3 := 0; Y3 := 0; Z3 := 0;
8 elif (X1 * Z2ˆ2 eq X2 * Z1ˆ2) and (Y1 * Z2ˆ3 eq Y2 * Z1ˆ3) then //doubling
9 if Y1 eq 0 then

10 X3 := 0; Y3 := 0; Z3 := 0;
11 else
12 A := Y1ˆ2; cntS+:=1;
13 B := 4 * X1* A; cntM+:=1; cntA+:=2;
14 C := 8 * (Aˆ2); cntS+:=1; cntA+:=3;
15 if a eq 0 then
16 D := 3 * (X1ˆ2); cntS+:=1; cntA+:=2;
17 elif a eq -3 then
18 D := 3 * (X1-Z1ˆ2) * (X1+Z1ˆ2); cntM+:=1; cntS+:=1; cntA+:=4;
19 else
20 D := 3 * (X1ˆ2)+a * Z1ˆ4; cntS+:=3; cntA+:=3; cntD+:=1;
21 end if;
22 X3 := Dˆ2-2 * B; cntS+:=1; cntA+:=2;
23 Y3 := D * (B-X3)-C; cntM+:=1; cntA+:=2;
24 Z3 := (2 * Y1) * Z1; cntA+:=1; cntM+:=1;
25 end if;
26 elif (X1 * Z2ˆ2 ne X2 * Z1ˆ2) then //addition
27 A := Z1ˆ2; cntS+:=1;
28 B := Z2ˆ2; cntS+:=1;
29 C := X1 * B; cntM+:=1;
30 D := X2 * A; cntM+:=1;
31 E := Y1 * Z2* B; cntM+:=2;
32 F := Y2 * Z1* A; cntM+:=2;
33 G := D-C; cntA+:=1;
34 H := Gˆ2; cntS+:=1;
35 I := G * H; cntM+:=1;
36 J := F-E; cntA+:=1;
37 K := C * H; cntM+:=1;
38 X3 := Jˆ2-I-2 * K; cntS+:=1; cntA+:=3;
39 Y3 := J * (K-X3)-E * I; cntM+:=2; cntA+:=2;
40 Z3 := Z1 * Z2* G; cntM+:=2;
41 end if;
42 return X3, Y3, Z3, cntM, cntS, cntD, cntA;
43 end function;

Code A.1: MAGMA/smul–ec–we–point–add

1 RTLPointMul := function(k, X1, Y1, a, E)
2 cntM := 0; cntS :=0; cntD:=0; cntA:=0;
3 X2 := 0; Y2 := 0; Z2 := 0; Z1 := 1;
4 k:=IntegerToSequence(k, 2);
5 t := #k;
6 for i := 1 to t do
7 if (k[i] eq 1) then
8 X2, Y2, Z2, cntM, cntS, cntD, cntA := AddPoint(X1, Y1, Z1, X2, Y2, Z2, a, cntM, cntS, cntD,

cntA, E);
9 end if;

10 X1, Y1, Z1, cntM, cntS, cntD, cntA := AddPoint(X1, Y1, Z1, X1, Y1, Z1, a, cntM, cntS, cntD,
cntA, E);
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11 end for;
12 if Z2 eq 0 then
13 return 0,0,0,0,0,0;
14 else
15 return X2/Z2ˆ2, Y2/Z2ˆ3, cntM, cntS, cntD, cntA;
16 end if;
17 end function;

Code A.2: MAGMA/smul–ec–we–binary–RtoL

1 LTRPointMul := function(k, X1, Y1, a, E)
2 cntM := 0; cntS :=0; cntD:=0; cntA:=0;
3 X2 := 0; Y2 := 0; Z2 := 0; Z1 := 1;
4 k:=Reverse(IntegerToSequence(k, 2));
5 t := #k;
6 for i := 1 to t do
7 X2, Y2, Z2, cntM, cntS, cntD, cntA := AddPoint(X2, Y2, Z2, X2, Y2, Z2, a, cntM, cntS, cntD,

cntA, E);
8 if (k[i] eq 1) then
9 X2, Y2, Z2, cntM, cntS, cntD, cntA := AddPoint(X1, Y1, Z1, X2, Y2, Z2, a, cntM, cntS, cntD,

cntA, E);
10 end if;
11 end for;
12 if Z2 eq 0 then
13 return 0,0,0,0,0,0;
14 else
15 return X2/Z2ˆ2, Y2/Z2ˆ3, cntM, cntS, cntD, cntA;
16 end if;
17 end function;

Code A.3: MAGMA/smul–ec–we–binary–LtoR

1 Naf := function(k)
2 i := 1;
3 t := [];
4 while (k ge 1) do
5 if (k mod 2) eq 1 then
6 t[i] := 2 - (k mod 4);
7 k := k - t[i];
8 elif (k mod 2) eq 0 then
9 t[i] := 0;

10 end if;
11 k := k div 2;
12 i := i + 1;
13 end while;
14 return t;
15 end function;

Code A.4: MAGMA/smul–ec–we–computing–NAF

1 NAFMul := function(k, X1, Y1, a, E)
2 t := [];
3 t := Reverse(Naf(k));
4 l := #t;
5 X2 := 0; Y2 := 0; Z2 := 0;
6 Z1 := 1;
7 cntM := 0; cntS :=0; cntD:=0; cntA:=0;
8 for i := 1 to l do
9 X2, Y2, Z2, cntM, cntS, cntD, cntA := AddPoint(X2, Y2, Z2, X2, Y2, Z2, a, cntM, cntS, cntD,

cntA, E);
10 if t[i] eq 1 then
11 X2, Y2, Z2, cntM, cntS, cntD, cntA := AddPoint(X1, Y1, Z1, X2, Y2, Z2, a, cntM, cntS, cntD,

cntA, E);
12 elif t[i] eq -1 then
13 X2, Y2, Z2, cntM, cntS, cntD, cntA := AddPoint(X1, -Y1, Z1, X2 , Y2, Z2, a, cntM, cntS, cntD

, cntA, E);
14 end if;
15 end for;
16 if Z2 eq 0 then
17 return 0, 0;
18 else
19 return X2/Z2ˆ2, Y2/Z2ˆ3, cntM, cntS, cntD, cntA;
20 end if;
21 end function;

Code A.5: MAGMA/smul–ec–we–binary–NAF
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1 wNaf := function(w, k)
2 i := 1;
3 t := [];
4 while (k ge 1) do
5 if (k mod 2) eq 1 then
6 t[i] := k mod (2ˆw);
7 k := k - t[i];
8 else
9 t[i] := 0;

10 end if;
11 k := k div 2;
12 i := i + 1;
13 end while;
14 return t;
15 end function;

Code A.6: MAGMA/smul–ec–we–computing–wNAF

1 wNafMul := function(w, k, X1, Y1, a, E)
2 t := []; s:=[];
3 cntM := 0; cntS :=0; cntD:=0; cntA:=0;
4 t := Reverse(wNaf(w, k));
5 l := #t;
6 Z1 := 1;
7 X := 0; Y :=0; Z:=0;
8 for i:= 1 to (2ˆw) by 2 do
9 for j:=1 to i do

10 X, Y, Z, cntM, cntS, cntD, cntA := AddPoint(X, Y, Z, X1, Y1, Z1, a, cntM, cntS, cntD, cntA,
E);

11 end for;
12 s[i] := <X,Y,Z>;
13 end for;
14 X2 := 0; Y2 := 0; Z2 := 0;
15 for i:=l to 1 by -1 do
16 for j:=1 to w do
17 X2, Y2, Z2, cntM, cntS, cntD, cntA := AddPoint(X2, Y2, Z2, X2, Y2, Z2, a, cntM, cntS, cntD,

cntA, E);
18 end for;
19 if t[i] ne 0 then
20 if t[i] gt 0 then
21 X2, Y2, Z2, cntM, cntS, cntD, cntA:= AddPoint(X2, Y2, Z2, s[t [i],1], s[t[i],2], s[t[i

],3], a, cntM, cntS, cntD, cntA, E);
22 elif t[i] lt 0 then
23 X2, Y2, Z2, cntM, cntS, cntD, cntA := AddPoint(X2, Y2, Z2, s[- t[i],1], -s[-t[i],2], s[-t[

i],3], a, cntM, cntS, cntD, cntA, E);
24 end if;
25 end if;
26 end for;
27 return X2/Z2ˆ2, Y2/Z2ˆ3, cntM, cntS, cntD, cntA;
28 end function;

Code A.7: MAGMA/smul–ec–we–wNAF

1 p := NextPrime(Random([0..2ˆ256]));
2 repeat
3 p := NextPrime(p);
4 F := GF(p);
5 until IsSquare(F!-1) eq true;
6 a := Random(F);
7 b := 0;
8 E := EllipticCurve([a, b]);
9 u := Modsqrt(-1, p);

10 n := #E;
11 t := p+1-n;
12 S := Max(Factorization(n));
13 r := S[1];
14 h := n div r;
15 h le 4;
16 R := Random(E);
17 P := h * R;
18 Order(P) eq r;
19 e := E![0,1,0];
20 r * P eq e;
21
22 EGCD := function(r, u)
23 s0 := 1; s1 := 0;
24 t0 := 0; t1 := 1;
25 r0 := r; r1 := u;
26 while (r0ˆ2 ge r) do
27 q := r0 div r1;
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28 r2 := r0 - q * r1;
29 r0 := r1;
30 r1 := r2;
31 s2 := s0 - q * s1;
32 s0 := s1;
33 s1 := s2;
34 t2 := t0 - q * t1;
35 t0 := t1;
36 t1 := t2;
37 end while;
38 v1a := r1;
39 v1b := -t1;
40 v2a := r0;
41 v2b := -t0;
42 return v1a, v1b, v2a, v2b, s1, s0;
43 end function;
44
45 r1, t1, r0, t0, s1, s0 := EGCD(r, u);
46 s1 * r - t1 * u eq r1;
47 s0 * r - t0 * u eq r0;
48 Log(2, p);
49 Log(2, h);
50 Log(2, r);

Code A.8: MAGMA/EGCD

1 p := NextPrime(Random([0..2ˆ32]));
2 repeat
3 p := NextPrime(p);
4 until (p mod 4) eq 1;
5 F := GF(p);
6 a := Random(F);
7 b := 0;
8 E := EllipticCurve([a, b]);
9 n := #E;

10 //t := p+1-n;
11 S := Max(Factorization(n));
12 r := S[1];
13 h := n div r;
14 h le 4;
15 R := Random(E);
16 P := h * R;
17 Order(P) eq r;
18 e := E![0,1,0];
19 r * P eq e;
20 u := Modsqrt(-1, p);
21 l := Modsqrt(-1, r);
22
23 EGCD := function(r, l)
24 / * s0 :=smul-ec-we-GLV-c1-v03.m 1; s1 := 0; * /
25 t0 := 0; t1 := 1;
26 r0 := r; r1 := l;
27 while (r0ˆ2 ge r) do
28 q := r0 div r1;
29 r2 := r0 -smul-ec-we-GLV-c1-v03.m q * r1;
30 r0 := r1;
31 r1 := r2;
32 / * s2 := s0 - q * s1; s0 := s1; s1 := s2; * /
33 t2 := t0 - q * t1;
34 t0 := t1;
35 t1 := t2;
36 end while;
37 v1a := r1;
38 v1b := -t1;
39 v2a := r0;
40 v2b := -t0;
41 return v1a, v1b, v2a, v2b/ * , s1, s0 * /;
42 end function;
43
44 Phifunc := function(u, P, E)
45 Q := E![-P[1],u * P[2]];
46 return Q;
47 end function;
48
49 v1a, v1b, v2a, v2b := EGCD(r, l);
50 k := Random([0..r]);
51 B := v1a * v2b - v1b * v2a;
52
53 b1 := Round((k * v2b)/B);
54 b2 := Round((k * v1b)/-B);
55
56 va := b1 * v1a + b2 * v2a;
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57 vb := b1 * v1b + b2 * v2b;
58 k1 := k-va;
59 k2 := 0-vb;
60
61 f := function(i, j, l)
62 return (i+ l * j) mod r;
63 end function;
64
65 f(v1a, v1b, l);
66 f(v2a, v2b, l);
67
68 Q := Phifunc(u, P, E);
69
70 if (Q ne l * P) then
71 u := (-u) mod p;
72 Q := Phifunc(u, P, E);
73 end if;
74
75 k* P eq (k1 * P+k2* l * P);
76 k* P eq (k1 * P+k2* Q);
77
78 k;
79 k1;
80 k2;

Code A.9: MAGMA/smul–ec–we–GLV–j1728

1 while (true) do
2 p := NextPrime(Random([0..2ˆ32]));
3 repeat
4 p := NextPrime(p);
5 until (p mod 3) eq 1;
6 F := GF(p);
7 a := 0;
8 b := Random(F);
9 E := EllipticCurve([a, b]);

10 n := #E;
11 t := p+1-n;
12 S := Max(Factorization(n));
13 r := S[1];
14 h := n div r;
15 h le 4;
16 R := Random(E);
17 P := h * R;
18 assert Order(P) eq r;
19 e := E![0,1,0];
20 assert r * P eq e;
21 x := Modsqrt(-3, p);
22 y := Modsqrt(-3, r);
23 u := ((-1 + x) * Modinv(2,p)) mod p;
24 l := ((-1 + y) * Modinv(2,r)) mod r;
25 T := l * P;
26 if ((u * P[1]) ne T[1]) or (P[2] ne T[2]) then
27 u := ((-1 - x) * Modinv(2,p)) mod p;
28 if ((u * P[1]) ne T[1]) or (P[2] ne T[2]) then
29 l := ((-1 - y) * Modinv(2,r)) mod r;
30 if ((u * P[1]) ne T[1]) or (P[2] ne T[2]) then
31 u := ((-1 + x) * Modinv(2,p)) mod p;
32 end if;
33 end if;
34 end if;
35
36 EGCD := function(r, l)
37 / * s0 := 1; s1 := 0; * /
38 t0 := 0; t1 := 1;
39 r0 := r; r1 := l;
40 while (r0ˆ2 ge r) do
41 q := r0 div r1;
42 r2 := r0 - q * r1;
43 r0 := r1;
44 r1 := r2;
45 / * s2 := s0 - q * s1; s0 := s1; s1 := s2; * /
46 t2 := t0 - q * t1;
47 t0 := t1;
48 t1 := t2;
49 end while;
50 v1a := r1;
51 v1b := -t1;
52 v2a := r0;
53 v2b := -t0;
54 return v1a, v1b, v2a, v2b/ * , s1, s0 * /;
55 end function;
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56
57 Phifunc := function(u, P, E)
58 Q := E![u * P[1],P[2]];
59 return Q;
60 end function;
61
62 v1a, v1b, v2a, v2b := EGCD(r, l);
63 k := Random([0..r]);
64 B := v1a * v2b - v1b * v2a;
65 b1 := Round((k * v2b)/B);
66 b2 := Round((k * v1b)/-B);
67 va := b1 * v1a + b2 * v2a;
68 vb := b1 * v1b + b2 * v2b;
69 k1 := k-va;
70 k2 := 0-vb;
71
72 Q := Phifunc(u, P, E);
73 assert k * P eq (k1 * P+k2* l * P);
74 assert k * P eq (k1 * P+k2* Q);
75 end while;

Code A.10: MAGMA/smul–ec–we–GLV–j0

1 p := NextPrime(Random([4..2ˆ256]));
2 repeat
3 p := NextPrime(p);
4 F := GF(p);
5 until (p mod 8) eq 5;
6 _<x> := PolynomialRing(F);
7 K<u> := ext<F|xˆ2-2>;
8
9 repeat

10 a := Random(F);
11 b := Random(F);
12 E1 := EllipticCurve([a, b]);
13 n1 := #E1;
14 E2 := BaseExtend(E1, K);
15 t := p+1-n1;
16 ad := K!(uˆ2) * a;
17 bd := K!(uˆ3) * b;
18 E2d := EllipticCurve([ad, bd]);
19 assert IsQuadraticTwist(E2,E2d);
20 n2d := (p-1)ˆ2 + tˆ2;
21 assert #E2d eq n2d;
22 S := Factorization(n2d);
23 r := S[#S][1];
24 h := n2d div r;
25 until h le 4;
26
27 R := Random(E2d);
28 P := h * R;
29 assert Order(P) eq r;
30 e := E2d![0,1,0];
31 assert r * P eq e;
32 l := (Modinv(t,r) * (p-1)) mod r;
33 i := Sqrt(F!-1);
34 T := E2d![-P[1]ˆp, i * (P[2]ˆp)];
35
36 //Select the correct square root of -1.
37 assert T eq l * P or T eq -l * P;
38 if T ne l * P then
39 assert T eq -l * P;
40 i:=-i;
41 end if;
42
43 Psifunc := function(P, E2d, p, i)
44 return E2d![-P[1]ˆp,i * (P[2]ˆp)];
45 end function;
46
47 k := Random([0..r]);
48 B := (p-1)ˆ2 + tˆ2 ;
49 b1 := (k * (t))/B;
50 b2 := (k * (p-1))/B;
51 v1 := Round(b1) * t + Round(b2) * (p-1);
52 v2 := Round(b1) * (p-1) - Round(b2) * t;
53 k1 := k-v1;
54 k2 := 0-v2;
55
56 [pˆ2, r, k, k1, k2];
57
58 assert k * P eq (k1 * P+k2* l * P);
59 Q := Psifunc(P, E2d, p, i);
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60 assert k * P eq (k1 * P+k2* Q);
61 assert l * P eq Q;

Code A.11: MAGMA/smul–ec–we–GLS

1 dec := function(k, p, E)
2 n:= #E;
3 t := p+1-n;
4 B := (p-1)ˆ2 + tˆ2 ;
5 b1 := (k * (t))/B;
6 b2 := (k * (p-1))/B;
7 v1 := Round(b1) * t + Round(b2) * (p-1);
8 v2 := Round(b1) * (p-1) - Round(b2) * t;
9 k1 := k-v1;

10 k2 := 0-v2;
11 return k1, k2;
12 end function;
13
14 phi := function(P, E, p, j)
15 return E![-P[1]ˆp, j * (P[2]ˆp)];
16 end function;
17
18 wNaf := function(w, k)
19 i := 1;
20 t := [];
21 while (k ge 1) do
22 if (k mod 2) eq 1 then
23 t[i] := k mod (2ˆw);
24 k := k - t[i];
25 elif (k mod 2) eq 0 then
26 t[i] := 0;
27 end if;
28 k := k div 2;
29 i := i + 1;
30 end while;
31 return t;
32 end function;
33
34 mul := function(w, k, P, E, p, j)
35 t1 := [];
36 t2 := [];
37 s1 := [];
38 s2 := [];
39 k1, k2 := dec(k, p, E);
40 Q := phi(P, E, p, j);
41 t1 := Reverse(wNaf(w, k1));
42 m1 := #t1;
43 t2 := Reverse(wNaf(w, k2));
44 m2 := #t2;
45 m:=Maximum(m1, m2);
46 if m1 eq m then
47 for i:=(m2+1) to m do
48 t2[i]:=0;
49 end for;
50 elif m2 eq m then
51 for i:=(m1+1) to m do
52 t1[i]:=0;
53 end for;
54 end if;
55 if k1 lt 0 then
56 for i:=1 to m1 do
57 t1[i]:=-t1[i];
58 end for;
59 end if;
60 if k2 lt 0 then
61 for i:=1 to m2 do
62 t2[i]:=-t2[i];
63 end for;
64 end if;
65 for i:=1 to (2ˆw-1) by 2 do
66 s1[i] := i * P;
67 s2[i] := i * Q;
68 end for;
69 R := E![0,1,0];
70 for i:=m to 1 by -1 do
71 R := 2 * R;
72 if t1[i] ne 0 then
73 if t1[i] gt 0 then
74 R := R + s1[t1[i]];
75 else
76 R := R - s1[Abs(t1[i])];
77 end if;
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78 end if;
79 if t2[i] ne 0 then
80 if t2[i] gt 0 then
81 R := R + s2[t2[i]];
82 else
83 R := R - s2[Abs(t2[i])];
84 end if;
85 end if;
86 end for;
87 return R, k1, k2, Q;
88 end function;
89
90 p := NextPrime(Random([4..2ˆ32]));
91 repeat
92 p := NextPrime(p);
93 F := GF(p);
94 until (p mod 8) eq 5;
95 _<x> := PolynomialRing(F);
96 K<u> := ext<F|xˆ2-2>;
97
98 repeat
99 a := Random(F);

100 b := Random(F);
101 E1 := EllipticCurve([a, b]);
102 n1 := #E1;
103 E2 := BaseExtend(E1, K);
104 t := p+1-n1;
105 ad := K!(uˆ2) * a;
106 bd := K!(uˆ3) * b;
107 E2d := EllipticCurve([ad, bd]);
108 assert IsQuadraticTwist(E2,E2d);
109 n2d := (p-1)ˆ2 + tˆ2;
110 assert #E2d eq n2d;
111 S := Factorization(n2d);
112 r := S[#S][1];
113 h := n2d div r;
114 until h le 4;
115
116 R := Random(E2d);
117 P := h * R;
118 assert Order(P) eq r;
119 e := E2d![0,1,0];
120 assert r * P eq e;
121 i := Sqrt(F!-1);
122 k := Random([0..2ˆ50]);
123 w := 3;
124
125 R, k1, k2, Q := mul(w, k, P, E2d, p, i);
126 R;
127 assert k * P eq R;

Code A.12: MAGMA/gls–point–mul

1 p := 115792089210356248762697446949407573530086143415 290314195533631308867097853951; //
NextPrime(Random([4..2ˆ256]));

2 F := GF(p);
3 a := F!-3;
4 b := F!0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53 b0f63bce3c3e27d2604b;
5 E := EllipticCurve([a, b]);
6
7 TcntM := 0;
8 TcntS := 0;
9 TcntD := 0;

10 TcntA := 0;
11 if (-16) * (4 * (aˆ3)+27 * (bˆ2)) ne 0 then
12 R := Random(E);
13 if R ne E!0 then
14 for i:=1 to 1000 do
15 k := Random(11579208921035624876269744694940757352999 6955224135760342422259061068512044369)

;
16 t := k * R;
17 x, y, cntM, cntS, cntD, cntA:=RTLPointMul(k, R[1], R[2], a, E);
18 if (t[1] ne x) or (t[2] ne y) then
19 t[1] eq x;
20 t[2] eq y;
21 Order(R);
22 print a, b, k, R;
23 else
24 print x, y, cntM, cntS, cntD, cntA;
25 print "---------------";
26 TcntM := TcntM+cntM;
27 TcntS := TcntS+cntS;
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28 TcntD := TcntD+cntD;
29 TcntA := TcntA+cntA;
30 end if;
31 end for;
32 end if;
33 end if;
34 print"END";
35 TcntM/1000 + 0.0; TcntS/1000 + 0.0; TcntD/1000 + 0.0; TcntA/ 1000 + 0.0;

Code A.13: MAGMA/test–code
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