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Oz
Eliptik egri tabanh kriptografi, diger kriptosistemlerkiyaslandiginda ¢ok daha kiiciik anahtarlara ve
dolayisiyla cok daha az bellege ihtiyac duyar. Bu sedeph on yilda elliptik egri tabanl kriptografi
Uzerine yapilan calismalar artmistir. Skalar carpglami eliptik egri tabanli kriptosistemlerin
uygulanmasindaki temel aritmetik islemidir. Yiiksek tgin tasarlanan uygulamalar, skalar carpmanin
mevcut en dusik karmasiklik diizeyine sahip algori@main kullaniimasiyla gerceklestiriimektedir.
Dolayisiyla skalar carpma islemenin minimum karmakilliizeyi d6nemli bir bilimsel arastirma alani

olusturmustur. Bu tez, bilinen en hizli skalar carprngatmalarinin arastiriimasini, uygulanmasini ve

kiyaslanmasini icermektedir.



Abstract

Since elliptic curve cryptology needs smaller keys and mesmory for higher speed than other crypto
systems, elliptic curve cryptography researches increimskast twenty years. Scalar multiplication is
the primitive operation in the implementation of elliptigrge cryptosystems. Implementations, which
are designed for high speed, are realized with scalar nlinétpon algorithms which have minimum
complexity. Because of this reason, minimum complexityoafiar multiplication became an important
research area. This thesis includes review, implememtatiml comparison of known fastest scalar

multiplication algorithms.
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Chapter 1

Introduction

In 1985, Neal Kolbitz [22] and Victor Miller [26] proposed ligtic curve cryptography (ECC)
independently. That proposal was a public-key cryptosgsignich is based on some properties of
a special equation that created from a finite field [2] [13]. Hiplying a point of elliptic curve with

a number will give another point over the elliptic curve buisireally hard to find the number that
was used at the first step even if we know the first point and diet phat we got as the result of
multiplication.

Atthe end of 90’s and the beginning of 00’s the U.S. Nationatitute of Standards and Technology
(NIST) endorsed ECC among their set of recommended algasitifhe U.S. National Security Agency
(NSA) also allowed their use for protecting information alhnis classified up to top secret [31]. With
these improvements ECC algorithms entered wide use.

In 2001, Dan Boneh and Matthew K. Franklin developed idgidsed encryption schemes on
elliptic curves [3]. These schemes perform probabilisticrgption of arbitrary chiphertexts using an
approach like Elgamal.

Beside all of this chronology, ECC used in many differentcpla Since nineteenth century,
algebraists, number theorists and algebraic geometerstizaging elliptic curves. Hendrik Lenstra
described an algorithm to factor integers in subexponktitiee (1985). This algorithm relies on

properties of elliptic curves. Shafi Goldwasser proposedea called elliptic curve primality proving
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(ECPP) which is testing the primality of general number8@)9 Schoof’s algorithm is a deterministic
polynomial time algorithm that counts points on elliptiaeess and published by René Schoof first time
(1985) [33]. Elliptic curve gained more importance with gr@ergence and post of these algorithms
and the discovery of relationships between elliptic curgmplex multiplication, algebraic number
theory and modular forms and elliptic curves.

Whitfield Diffie and Martin Hellman proposed a key exchangapcol, which is also the beginning
of public-key cryptography, in 1976 [12]. It is an asymmeitiyptographic system which is widely
used in secure electronic communication.

The main idea of public-key cryptography is same with one fumctions. Basically, there are
functions whose inverse functions are computed in largeusainof time. If we use such a function to
encrypt, it will be hart to decrypt even if the function is iclknowledge. DH uses Discrete Logarithm
Problem(DLP) as its asymmetric operation. Basically DLBuies finding a logarithm of a number
within a finite field arithmetic system.

In 1977, Ron Rivest, Adi Shamir and Len Adleman proposed R8#ptosystem. The RSA
algorithm is the most popular and best understood publjcdmgptosystem. It is based on the
intractability of the integer factorization problem. Iteéssy to multiply two numbers where thay are
quite large prime numbers, but it is almost impossible todiathe product of two large primes except
if there is some incredible stroke of luck, or bad choice efgphimes.

ECC is also a public-key cryptosystem as RSA with a diffeesi8ecurity of ECC and RSA comes
from the hardness of different problems. Security of ECCadsdu on the hardness of the elliptic
curve discrete logarithm problem (ECDLP). The best algonig known to solve this problem have
exponential running time, in contrast to the subexponktitize algorithms known for the integer
factorization problem. This means we can use shorter keysefrurity levels where RSA would need
much bigger keys and using today’s algorithms and competdmologies it seems possible to factor
700-bit numbers [6] [8] [21] [37]. That is why we prefer to USEC even if RSA is the most popular

and best understood public-key cryptosystem.
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1.1 Motivation

As described above, because elliptic curve scalar mu#pbn constitutes bottleneck of lots of
algorithms, gathering the fastest scalar multiplicatiogtimds has been a good subject for research

[7]. This thesis aims to research and integrate statetofiethods.

1.2 Outline

This thesis contains five chapter. First chapter is the éuetion chapter. After it, chapters built as a
pyramid. Every chapter includes basics for next chapter.

Elliptic curve chapter, chapter 2, gives some basic algedtructures over elliptic curves which we
will need while we are building other chapters using thesecsires like group law and group order,
defines endomorphisms and shows elliptic curve operatiompsajective coordinates.

Chapter 3 is about point multiplication on elliptic curveBhis chapter will show different point
multiplication algorithms, their algebraic backgroundauperficial complexity analysis.

Next chapter, chapter 4, includes more efficient algoritemgfoint multiplications. It has two
main parts. First part explains faster point multiplicatishich uses endomorphisms. Other part gives
special endomorphisms which make this algorithm faster.

And the last chapter, we give the comparisons of algorithnasexplain the implimentations that

we did using MAGMA [4] [1].

1.3 Literature Review

The discrete logarithm problem is defined as follows in thétiplicative groupZ,™; let ¢ be a prime,
let « andb be the given elements of the group then find a nunibguch thate = b* (mod ¢). If we
adapt this to elliptic curves, Idt be an elliptic curve over a finite field. Suppose there aretpdtrand
Q@ on E then findk such that) = [k]P.

Elliptic curves can be represented with couple of differtgpes of equations. We will focus on
simplified Weierstrass equations and group law over thempe&ally, Weierstrass elliptic curves which
are defined over a finite field of characterisi2, 3. Hence elliptic curve discrete logarithm problem,

our focus point i§k] P which is called as point multiplication or scalar multi@ieon. Basically, point
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multiplication is adding two points. If these points arefeliént from each other, we call this as point
addition. If we add same points, we call this as point dowglin

The cost of inversion is more expensive than multiplicati®imce point addition and point doubling
formulas contain inversion, we will use Jacobian or mixedrdinates instead of using only affine
coordinates. This will help to speed up point multiplicatedgorithms little more.

Gallant, Lambert and Vanstone’s method (GLV) speeds uptpoittiplication of elliptic curves
which have an efficiently computable endomorphism. The ogkHiso applies to curves defined over
large prime fields. GLV method uses efficiently computabloenorphismy to rewrite[k] P as[k] P =
[k1]P + [k2]o(P). This method is faster point multiplication technique asg@s chosen curve has
efficiently computable endomorphisms. Hence only speciales can be used with GLV method. At

this point GLS endomorphisms give chance to work over lalggses.

1.4 Aim, Objectives and Deliverables

In this thesis, our aim is gathering faster point multiplica techniques and endomorphisms together
and finding its cost using complexity analysis and operatmmting.

As deliverable, MAGMA [4] implementations of algorithmseain the Appendix.



Chapter 2

Elliptic Curves

2.1 Preliminaries

This thesis focuses on elliptic curves over finite fields. Wakennecessary definitions and provide

theorems to define an elliptic curve over a finite field [14][fE1].

Definition 1. A groupis a setG, closed under a binary operatiof, such that the following axioms

are satisfied;

e The binary operationt is associativesuch thate + (y + z) = (z + y) + z forall z,y, z € G.

e There is an elemeritin G such thatd + 2 = x + 0 = z for all x € G and this element ithe

identity elemenof G for +.

e Foreachz in G, there is ar’, the inverse elementn G with the property that+z’ = 2’ +x = 0.

Example 1. Z, Q, R are some of familiar group examples.
Definition 2. A groupG is abelianif + is commutative property that+ y = y + = forall z,y € G.

Definition 3. Aring is a setR together with additive operatiof and multiplicative operationdefined

on R such that following axioms are satisfied;
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e Ris an abelian group under-.
e Multiplication is associative.

e For all elementsthe distributive lawholds in R for both left and right sides. Thatis: (y+z) =

z-y+x-zforall z,y,z € R.

Definition 4. Let R be aring. If for R, a positive integen exists such thata = 0 for all a € R, then
the least such positive integer is thkaracteristicof the ring R. If there is no such positive integer

exists, ther: is of characteristid.
Note that we shall be using characteristic mostly for fields.

Definition 5. Let R; and Rs be rings and let): Ry — R, be a homomorphism. Then,

¢~'0] = {r € Ru|o(r) = 0}

is thekernel of ¢, denoted bker(¢).

Definition 6. A ring K is afield if the set of non-zero elements &fforms an abelian group under

multiplication.
Example 2. C, R, Q are examples of fields with ordinary and- operations.

A finite field or galois fieldis a field that contains a finite number of elements [24]. Thepsést

example of finite fields is a prime field which is denoted®¥ (p) or F,, wherep is a prime number.

Definition 7. A subfieldis a subset of the field that is a field under induced operatimm the whole

field.

Definition 8. Let L and K fields. L is anextension fieldof K if L is the subfield of{ and denoted
K/L.

Theorem 1. Let K be a field and lef. be an extension field df. Then

K = {a € Ll|ais algebraic overk },

is a subfield of.,, thealgebraic closureof K in L.
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Definition 9. Let K be a field.K is algebraically closedf every nonconstant polynomial iff [«] has

a zero ink.

Definition 10. Let K be a field.E is an elliptic curve overK defined by an equation

E: y2+a1:vy+a3y::C?’+a2x2+a4:v+a6

wherea; € K andA # 0 is the discriminant of2 and is defined as follows:

A

da

i(E)

—d2dg — 8d3 — 27d2% + 9dadyds,

a3 + 4das,

2a4 + azas,

a3 + 4ag,

a%a(; + dasag — ai1asay + agag — ai,
d3 — 24dy,

A/A,

andj(F) is called thg-invariant of E.

Equation 1 is called ®V/eierstrass equation

If L is any extension field oK then the set of.-rational pointson E is

B(L) = {(z,y) € L x L: y* + a1zy + asy — 2> — asa® — asx — ag = 0} U {oo}

whereco is thepoint at infinity .

Example 3. These are elliptic curve examples;

o y2 +8xy + 6y = 2 + 422 + 3 overQ.

° y2 =23 + 132x + 27 overlF57.

° y2 =3 + 36318x + 718621 overFr40931 .
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Definition 11. Let Ry and R, be rings. A map>: R, — Ry is ahomomorphismif the following two

conditions are satisfied for all, b € Ry;
e ¢(a+b)=d(a) + ¢(b),
o ¢(ab) = ¢(a)p(b).

Definition 12. Let Ry and Ry be rings. Anisomorphism¢: Ry — Rs from Ry to Ry is a

homomorphism that is one to one and oftn The ringsR; and R, are thenisomorphic

Definition 13. Let £; and FE» be two elliptic curves over fiel&d defined by Weierstrass equations

FEy: y2 + a1y +azy = x> +a2:c2 + a4x + ag

Ey: y? + arzy + asy = 2 + aox® + aux + ag

ThenFE; and E» are isomorphic ovet if there existu,r, s,t € K, u # 0 such that the change of

variables
(z,y) — (v +r,udy + usz + 1) 2

transformsE; to E» and this is calledthe admissible change of variablg¢$3].

2.2 Simplified Weierstrass Equations

Section 2.1 gives a generalized form of Weierstrass in BEgudt But we can simplify a Weierstrass
equation to have less number of terms by applying an adnessitanges of variables. We consider
that there are three different cases whirbas characteristic equal 2oor 3 or not equak and3 [34]
[35].

Case 1.If char(K) # 2 andchar(K) # 3, the admissible change of variables

r—3a3 —12a3 y—3a1z a3 +4dajas — 12(13) 3)

(:v,y)—>( 36 216 24
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transformsE to curve

v =a34+ar+0b

wherea, b € K and the discriminant of this simplified equatiomis= —16(4a3 + 27b%).

Case 2.If char(K) = 2, then there are two different cases that depend on value of

e If a # 0, then the admissible change of variables

2 2

as ajas + a

(:E,y) — | a?zx+ —,a?’—i-g
1 1 3
aq ay

transformsE to curve
v +aoy=a2>+ar?+0b

wherea,b € K and the discriminant of curve iA = b. These kind of curves are called as

non-supersingular.

e If a = 0, then the admissible change of variables
(z,y) — (z +az,y)
transformsE to the curve
y2+cy::103+a:v+b

wherea, b, c € K and the discriminant of curve i& = ¢*. These kind of curves are called as
supersingular.

Case 3.If char(K) = 3, then there are two different cases.

e If a? # —as, then the admissible change of variables

d d
(r,y) — (24 =,y + a1z + a1 — + a3 4)
do do
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whered, = a? + az andd, = a4 — ajas, transformsE to the curve
y?=a3+ax®+b (5)

wherea, b € K. This curve is called ason-supersingularand its discriminant i = —a3b.

e If a2 = —ay, then the admissible change of variables
(,y) — (z,y + a1z + a3)
transformsE to the curve
v =23 +ar+b

wherea, b € K. This curve is called asupersingularand its discriminant i\ = —a?.

2.3 Group Law

Let K be a field. For simplicity, assume thdtar(K) # 2, 3 in the remainder of this thesis. L&t
be an elliptic curve defined ovéf. There is a construction callethord-and-tangent rule for adding
two points inE(K) that give a third point inE'(K). The set of pointd/(K) builds a group with this
point addition rule which also includes as identity of the group.

Let P and@ be points onE(K). If P # Q thenP + Q is defined as follows:

e ConnectP and@ with a linel.

e [intersectsF(K) at a third pointA.

¢ Reflection ofA about ther-axis is the sunk = P + Q.

If P = @, this special case is called psint doubling and the sun®: is defined as follows:

e Draw the tangent liné to E£(K) at P which by definition of a tangent line intersects the curve

two times.

e [intersectsF(K) at a third pointA.
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o Reflection ofA about thex-axis is the sunk = [2]P.

Let’s investigate algebraically.

Group Law for E/K: y* = 2% + ax + b, char(K) # 2,3

Let P = (x1,y1) be a pointinE(K). o is the identity, such that
P+o=0c0+P=P (6)

for all P € E(K). The negative of® point is — P, and satisfie$z1,v1) + (1, —v1) = (z1, —11) +

(l’l, yl) = OQ.
Let @ = (z2,y2) be a point on the elliptic curv€ whereq is not equalP or negative ofP. Then

P+ Q = (z3,y3) where

2
(3,3) = ((%) —$1—$2,(i}z:zll) (171—173)—%) ‘ ()

This is called as point addition. When we want to double atp&iquation (7) is useless because of

vanishing denominators. There exists a special anotheruiar for point doubling. IfP # —P then

[2]P = (x3,y3) where

I2 a 2 I2 a
(73,y3) = ((3 21;1_ ) — 2z, (3 21;1— ) (x1 — x3) —y1> . (8)

Remark 1. Following steps include all possibilities addition of twoipts for E/ K : y? = 2% +ax +b

elliptic curve [5]:
o If x1 = x5 buty; # yathenR =P 4+ Q = cc.
o Ifzy =xz9andy; =0 =y thenR =P+ Q = oc.
o If 1 = z9 andy; = y2 # 0thenR = [2]P.

o Ifxy £xothenR=P+Q
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Example 4. Letp = 31, a = 2, b = 11, and consider the elliptic curve

E:y? =342z +11

defined ovelfs;. We know tha¥ is an elliptic curve because

A

—16(4a® + 27b?)

—16(4-2° +27-11%)

—52784 £ 0

The points inE/(F3; ) are following:

{o0,(1,13), (1,18), (9,13), (9, 18), (10, 15), (10, 16),

(11,0),(13,8), (13,23),(16,4), (16, 27), (18,12), (18, 19),

(
(21,13), (21,18), (22, 15), (22, 16), (23, 14), (23,17), (25,0),
(26,0), (27,1), (27, 30), (28, 3), (28, 28), (30, 15), (30, 16)}

Here is addition and doubling examples for this curve:
(9,13) 4+ (23,14) = (27, 30)

2](9,13) = (9,13) + (9,13) = (27,1)

There are two more group law parts for supersingular andsugersingular elliptic curves but in
this thesis, we will work orE/ K : y? = 2® + ax + b elliptic curve. Therefore, we won't give group
laws for other elliptic curves. In addition, we will contiato work withy? = 2 4 az + b curve in the

next sections.

2.4 Group Order

Let E be an elliptic curve defined ové,. Order of E is the number of points i (F,) and denoted
as#E(F,). Since there are twg € F, for eachz € F, satisfying Equation (3), we can say that

#E(F,) € [1,2¢ + 1].
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Theorem 2 (Hasse) Let E be an elliptic curve defined ovéY,. Then

g+1-2/g<EF,) <qg+1+24q
Theorem 2 gives us tighter bounds, and intefyal 1 — 2,/q, ¢ + 1 + 2,/q] is called the Hasse
interval. There is another denotation for Hasse’s theorem.

Theorem 3. Let E be an elliptic curve defined ovél,. Then#E(F,) = g+ 1 — t where|t| < 2,/g;

t is called thetraceof E overF,.

Here,t is a small relativey so we can say+E(F,) ~ ¢. To know this is important for us because
we would like to a have large prime divisor ¢#E(FF,) to ensure the security of the elliptic curve

cryptosystem. Hasse’s theorem reassures that there axexapptelyq points forE.

Definition 14. Letp be the characteristic af,. An elliptic curveE defined ovet, is supersingular

if p dividest, wheret is the trace. Ifp doesn't dividet, thenFE is non-supersingular

2.5 Endomorphisms

Definition 15. [34] Let K be a field,K its algebraic closure, andZ be an elliptic curve overx.

An endomorphisnof E is a rational mapy: E(K) — E(K) given by rational functions. In other

words, if¢ satisfies following conditions;
e ¢(00) = o0,
* ¢(P+Q)=0¢(P)+¢(Q),

and there are rational functions (i.e quotients of polynais)i R, (z, y), R2(z,y) with coefficients in

K such that for eactP = (z,7) € B(K):

¢(x7y) = (Rl('rvy)v RQ(xvy))a

thenphi is an endomorphism df.
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Example 5. [18] Let E be an elliptic curve an elliptic curve ové,. For eachm € Z multiplication
by mmap[m|: E — E defined byP — [m]P is an endomorphism defined ou&y. A special case

is thenegationmap defined by — —P.

Example 6. [19] Let E be given by? = z® + ax + b, and let¢(P) = 2P (multiplication by 2). Then

¢ is a homomorphism and we have

¢(w,y) =3 (Rl (l’,y), RQ(xvy))

where
2 2
Ri(z,y) = <3x2;a> — 2z
32 4+a
Ray(z,y) = ( 21 ) (1 —23) — 11
Y1

are obtained by using Equatidi8). Since¢ is a homomorphism given by rational functions, it is an

endomorphism of.

Example 7. [19] [38] Let E be an elliptic curve defined ov&,. Then the)-th power mag: £ — E
defined by

o ¢: (z,y) — (27,y7)
® ¢: 0000

is an endomorphism of defined oveif,, called theFrobenius endomorphism The characteristic

polynomial ofp is X? — tX + ¢, wheret = g + 1 — #E(F,).
Example 8. [9] Let ¢ = 1 (mod 4) be a prime, and consider the elliptic curve

E:y? =234 ax

defined ovef,. Leti € F, be an element of ordef. Then the map: £ — E defined by
i ¢: (Iay) = (—CC,’Ly)

® ¢: 0000
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is an endomorphism df defined ovelr,. The characteristic polynomial efis X2 + 1.

Example 9. [9] Let ¢ = 1 (mod 3) be a prime, and consider the elliptic curve

E:y?=a23+b

defined ovefF,. Lets € (F,)* be an element of orde. Then the mag: £ — E defined by
o ¢: (z,y) = (Br,y)
e p: 00 0

is an endomorphism df defined ovef,. The characteristic polynomial efis X2 + X + 1.
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2.6 Projective Coordinates

In section 2.3, we gave point addition and point doublingrfolas for elliptic curveE : y? = 23 +

az + b defined over a field{ ([34]). The formulas 7 and 8 need an inversion and few mudtiions

to make point addition and point doubling. However, the afsnversion in field K can be much
more expensive than multiplication. In this case, usinggmtive coordinates and Jacobian coordinates

eliminates the disadvantage of slow inversions.

Definition 16. Let K be a field and let and d be positive integers. We can define an equivalence

relation ~ on the set3 \ {(0,0,0)} of nonzero triples ovek such that
(Xl,Yl, Zl) ~ (XQ,}/Q7 Zg) if X1 =XXy, Y7 = )\dYVQ, 71 = Ay for some\ € K*.

The equivalence class that includes, Y, Z) € K3\ {(0,0,0)} is denoted by
(X:Y :Z)={(\X2,\2,7Z5) : A € K*}

and(X :Y : Z) is called a projective point,X, Y, Z) is called a representative ¢X : Y : 7).

Notice that if Z # 0 then(X/Z¢,Y/Z%,1) is a representative of the projective pofiif : Y : 7)
because any element of an equivalence class can serve gsrésentative.

Jacobian coordinates is one type of projective coordinstes thatc = 2 andd = 3. Hence
(X : Y : Z) correspond$X/Z2%, X/Y?3) for Z # 0. The projective equation of> = 23 + ax + b

Weierstrass equation as is

Y2 =X3+aXZ*+ 025,

Let(1:1:0)impliesco as the identity of. The negative formofX : Y : Z)is (X : =Y : Z).

Definition 17 (Point Doubling) Let P = (X; : Y; : Z1) € EandP # —P. We can write X, /Z? :
X1/Y$ : 1) instead of(X; : Y7 : Z;) for Z; # 0. Hence the point doubling formula & in affine

coordinates can be used to calculd®P = (X, : Y; : 1).
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X
X, B 3Z—%+a 2X1
’ 25 zt
1

(3X2 + aZ})? — 8X, Y2
NGYA ’

3% 4 q
, 7 (Xl X) v;
X)) -

. - LY
° 2% Z3 A
1
3X? + aZt X1 Y
iZy \Zi-X3) Z

To eliminate denominators and to obtain linear formulas,seeX; = X,72 andY; = Y, Z3

whereZ3; = 2Y; 7. This gives

X3 = (3X7+aZ)? — (8X1YY), )
Yz = (X?+aZ))AX1Y? — X3) — 8Y}, (10)
Zs = 2Yi7:. (11)

formulas give the result dR]P = (X3 : Y3 : Z3) and X3, Y3, Y3 can be computed using following

formulas;

A+ Y
B+ 4X,A
C + 8A?
D+ 3X?+aZz}
X5« D2 - 2B
Y3 + D(B — X3) — C
Z3 + 2Y17,
The cost of point doubling i&M + 6.5 in Jacobian coordinates, whefd means field multiplication

and.S means field squaring [10].
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Definition 18 (Point Addition using mixed Jacobian-affine coordinatéstP = (X; : Y1 : Z1) € E,
whereZ;,# 0 andQ = (X3 : Yz : 1) whereP # +Q. We know that® = (X;/Z% : X1 /Y : 1).
Hence we can use the point addition formulaifn affine coordinates to calculate + Q = (X :

Y; i 1).

o }/2_% X1
Xs = == 7%
2 Z% 1
_ ([ ey X
(X222 — X1) Z4 7z 2
Y]
w _ Yo — 2% (Xl_X/> Yi
’ Xz—)Z(—I% Z3 ’ Z3

p YoZ3 - Y, Xi_ \_h
S\ -x)z ) \zz ) 73
To eliminate the denominators, as in point doubling, weXet= X;Z2 andYs = Y; Z3 where

Z3 = 2(X2Z% — X1)Z;. As aresult the following formulas gives Bs+ Q = (X3 : Y3 : Z3):

X3 = (NZd-—Y)? - (X277 — X1)X(X1 + X2 27) (12)
Vs = (Y277 — V1) (X1(XaZf — X1)? — X3) — Y1(X2Z7 — X1)° (13)
Zs = 2(XoZ? - X1)Z). (14)

X3, Y3, Y5 can be computed using fallowing formulas;
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A 73
B+ Z1A
C+— XA
D+ Y>B
E+C-X;
F+—D-Y
G+ E?
H + GFE
I+ X G
X3« F2— (H +2I)
Ys ¢ F(I — X3) —YiH
Zs +— Z1E
The point doubling cos&M + 3.5 [19].
There is a special case where= —3 for y2? = 2 + ax + b. We can seleat = —3 without much

loss of generality [19]. In this case point doubling cast$ + 55 [8].

For more about projective and Jacobian coordinates, tleremay consult [23], [27], [8].



Chapter 3

Point Multiplication on Elliptic

Curves

This section considers methods to calcul@ie® over the fieldF, whereq is a prime number[k] P
denotes adding® point to itselfk times wherek is an integer and® is a point on elliptic curve?
overF,. This operation is called scalar multiplication or scalarltiplication. In these methods, the
computation time of scalar multiplication, in other wordsstof scalar multiplication is the important
part for us. Hence we will give details about cots of algarithduring section 3.

There are two main subsections for scalar multiplicationhwoés; base poinP is unknown or
fixed. Under section 3, we will examine point multiplicatiorethods just for unknown point. In scalar
multiplication for unknown point, poinP and integek are selected at the beginning of program. So

we will not know values of bott® andk before the run time.

20
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3.1 Binary Method

This method is the simplest and oldest method to comife. It uses the binary representationigf

-1
k=> k2 1)
=0
wherek; € 0,1 for everyi € 0,--- ,1 — 1 andl is number of digits of binary.. Hence,[k] P scalar
multiplication can be computed by
-1 .
kP = Y [k2]P
1=0
= koP+k2'P + kg2?P + .- - ky_271P 2)
= 2(k1P +2(keP + -+ 2(kj—oP + 2(ki—1 P)))) + ko P ()

This multiplication can be interpreted with two ways. These called asight-to-left binary
method andleft-to-right binary method .

Equation (2) shows us the way that we fallow up for rightdét-binary method. It sums the terms
[k;2!] P for each nonzeré; from kg to k;_; and givegk] P at the end as the resuk; is known term
so the next step is calculating’]|P. If we know [2¢~1] P, the previous term, it can be calculated by
2 - 2¢=1 P, Fundamentally work of point multiplication is multiplygra point with a scalar and getting
a new point on elliptic curve. S~ P is a point and - 2/~ P is a point doubling. As a result, in
equation (2), ifk; is nonzero then we are multiplyirig with 2° P, which is calculated by doubling the
previous one, and cumulatively adding to the sum for gagh), - - - , [ — 1. At this point using point

doubling speeds up the algorithm. Algorithm 1 is the psewtteof right-to-left binary method.
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Algorithm 1 Right to Left Binary Method Scalar Multiplication [21]
Input: k= (/{171, ey kl, ko)g, P e E(Fq)

Output: [k]P
1. Q<+ o0
2. fori=0tol—1do
3 if k; =1then
4: Q<+ P+Q
5. endif
6: P+« [2]P
7: end for

8: return @

Previous equation processes the bits:dfom right to left, equation 3 processes the bitskab
opposite side. We will begin to calculate frdgn ; and count down té;. If k; is nonzero we will add
P and we will double the sum for every step independentli,;ofThere is another difference between
left-to-right and right-to-left methods except startimgrh. Unlike 1, we don’t need to keep doubled

version of P. The pseudo code of left-to-right binary method is given &go#ithm 2.

Algorithm 2 Left to Right Binary Method Scalar Multiplication [9]
Input: k= (kl—la oo ke, ko)g, Pe E(Fq)

Output: [k]P
1 Q<+ oo
2: for ¢ fromt¢ — 1 downto0 do
3 Q<+ 2Q
4: if k; = 1then
5: Q<+ P+Q
6: endif
7: end for

8: return @

There is a running time for every operation and if we countapens one by one we can determine

the running time of algorithm. Addition and doubling are thgerations that we used in Algorithm
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1 and algorithm 2. Both algorithms have same operations e till be an explanation for only
Algorithm 1. Algorithm 1 doing point addition for eadl if k; is nonzero. Sincé; is bit of the
binary representation @f, expected number of nonzero bits is half of length. Henceetheel /2 point
addition. In the continuation of algorithm, there is a paloubling for everyk; which meang point
doubling. LetA represents addition anB represents doubling, then the expected running time of

Algorithm 1 is

éA +1D. ()

Here is the toy example to see steps for both of algorithms.

Example 10. Letk = 53 = (110101) and P is a point on elliptic curve53 P can calculate as fallows

with right-to-left binary method;

Algorithm 1: Right-to-Left Binary Method

index: | k; Q P
- - 00 P
0 1 c©o+P=P 2P
1 0 P 4P

2 1 P+ 4P =5P 8P

3 0 5P 16P
4 1| 5P+ 16P=21P | 32P
) 1 | 21P +32P =53P | 64P

Here is the calculation o83 P with left-to-right binary method;

Algorithm 2: Left-to-Right Binary Method
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index: | k; Q

- - (0.}

5 1| 20)+P=P

4 1| 2P)+P=3P
3 |0 2(3P) = 6P

2 1| 2(6P)+ P =13P
1 0| 2(13P)=26P

0 1 | 2(26P) + P = 53P

3.2 Non-adjacent From

LetP = (z,y) € E(F,). Then—P = (z, —y) if F, is a binary field andF, has characteristic more
than3. Hence subtraction of points on an elliptic curve has alnsaste running time with addition.

This brings up to use signed binary expansiok td speed up.

Theorem 4(Reitwiesner 1960)[32] Let k& € Z then there is exactly one signed binary expansioh of

such that

k=> k2" k€ {-1,0,1}
1=0
kikiy1 = 0,Vi > 0.

Actually, this theorem gives us definition of non-adjacemtf (NAF) of a positive integer.

-1
Definition 19. A non-adjacent form (NAF) of a positive intedeis an expressiok = > k;2" where

=0
k; € {—1,0,1}, k;—1 # 0 and no two consecutive digits are nonzero. The length of the NAR is
We can say that running time of algorithm increases in pridael to number of nonzerg; in
the binary methods. Hence less nonzkraneans to speed up. In regular binary representations of
k, expected number of nonzero digits is half of the length. Bitlh NAF this, expected number of

nonzero digits, drops tb/3 of all digits. Because of definition 19 each nonzero digittiodse adjacent

to two zero digits.

Theorem 5(properties of NAFs) [32] [28] Let k be a positive integer.
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i) k has uniqgue NAF denoted NAE(
1) NAF(k) has the fewest nonzero digits of any signed digit reprediemt of &.

(
(
(7i1) The length of NAF) is at most one more than the length of the binary represemtaif &.
(4v) If the length of NAF) is [, then2! /3 < k < 2!+1/3

(

v) The average density of nonzero digits among all NAFs of lehigtapproximatelyi /3.

Algorithm 3 shows computing NAK] efficiently. Algorithm obtains digits of NARK) dividing &

by 2 continuously and collecting remainders which are egual) or 1.

Algorithm 3 Computing NAF [28] [32]
Input: £

Output: NAF(k)
1.4+ 0
2: while £ > 1do
3 if & (mod 2) =1then
4: ki < 2—k (mod 4)
5: k+k—Fk
6: elseifk (mod 2) = 0then

7. ki< 0
8: endif
90 k+ k/2

10 1<+ 1+1
11: end while

12: return (kifl, /{i,Q, ey kl, /{0)

Here is an example to see how Algorithm 3 computes MAF(

Example 11. Letk = 53. Algorithm 3 can calculate NAFB@) as fallows;
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index: k; k

- - 53
0 2—(53mod4) =1 | 53—1=>54,54/2=27
1 | 2—(27mod4)=—1|27—(-1)=28,28/2=14

2 0 14/2 =17

3 2 — (7 mod 4) = —1 7—(-1)=28,8/2=4
4 0 4/2 =2

5 0 2/2 =1

6 2 — (1 mod 4) =1 1-1=0,0/2=0

Algorithm 4 looks like similar with Algorithm 2. Actually bith algorithms have some step with one

difference; Algorithm 4 uses NAE] instead of the binary representationiof

Algorithm 4 Binary NAF Method for Scalar Multiplication [19] [28]
Input: k, P € E(Fy)

Output: [k]P
1: Use Algorithm 3 to comput& AF' (k) = (ki—1, ..., k1, ko)
2. Q +— 0
3 fori=0-1to0do
4 Q<+ 2Q
5. if k; = 1then
6: Q+—P+Q
7.  elseifk; = —1 then
8: Q+— (-P)+Q
90 endif

10: end for

11: return @

Expected running time of the algorithm can be calculateddynting additions and doublings of
the algorithm. Fron{ii:) and(v) parts of Theorem 5 there at¢3 addition for nonzero digits ant

doublings for all digits. Therefore, the expected runninggtof Algorithm 4 is
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éA +1D. (5)

3.3 Window Method

Since previous sections, we know that if we have less nonzigitsdfor representation fé then
algorithm will speed up. If there are some more available orgmve can speed up algorithm. In
section 3.2 we used elements{oef1, 0, 1} set to represerit and added or subtracté®l But Window
method is using elements of larger set for representatign i this case, there will be additions or

subtractions of some small scalar multiplefof

Definition 20. Letw > 2 be a positive integer. Then a positive integehas exactly one width:

non-adjacent form

-1
k= Z k; 2
1=0

where each nonzero coefficidntis odd, |k;| < 2@, k;_; # 0, and at most one of any consecutive

digits is nonzero. The length of widthNAF is!.

Theorem 6 (properties of width-w NAFs)[29] [19] Let & be a positive integer.
i) k has a unique widths NAF denoted NAE (k).
1) NARy (k) = NAF (k).

ii1) The length of NAE(k) is at most one more than the length of the binary represemtaif .

iv) The average density of nonzero digits among all widtiNVAFs of length is approximately

NAF,, (k) can be efficiently compute similar to NAEX. Window method processesdigits of k

at a time.



Chapter 3. Point Multiplication on Elliptic Curves

28

Algorithm 5 Computingw-NAF [19] [36]

Input: w, k

Output: NAF, (k)

1:

2:

3:

4:

5:

8:

9:

10:

11:

12:

140
while £ > 1 do
if & (mod 2) = 1then
k; + k (mod 2%)
k<« k—Fk
else ifk( (mod 2)) = 0 then
ki< 0
end if
k+ k/2
14 1+1
end while
return (k;—1,ki—2,...,k1, ko)

Due to Algorithm 5 the digits of NAE (k) are obtained by repeatedly dividing by 2 and

remainders are if-2%~1 2v~1 — 1], If k is odd and remainder i = k£ (mod 2¥) then(k — k;)/2

will be divisible by2®“~1. This ensures that there are— 1 zero digits after a nonzero digit. Following

example will also show this.

Example 12. Letk = 53. We denote a negative integewr by a. The binary representation @éf is

(110101) and width«w NAFs ofk for 2 < w < 5 are:

w | NAF, (k)
2 | (1707001)
3 | (30031)
4| (30005)
5 | (10000011)

We know that NAR (k) = NAF(k) from Theorem 6 NAF (k) scalar multiplication algorithm is

general version of NAR() (Algorithm 4), only difference is NAE(k) scalar multiplication has a

precomputation step.
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Algorithm 6 Window NAF Method for Scalar Multiplication [19] [36]
Input: w, k, P € E(Fy)

Output: [k]P
1: Use Algorithm 5 to comput&/ AF,, (k) = (ki—1, ..., k1, ko)
2: ComputeP; =iPfori=1,3,5,...,2%v" 1 -1
3 Q + o0
4 fori« [ —1to0do
5 Q« [2Q
6: if k; # 0then

7: if k; > 0then

8: Q<+ Q+ Py,
9: else ifk; < 0then
10: Q<+ Q— Py,
11: end if

12 endif

13: end for

14: return Q@

From (zi7) and(iv) parts of Theorem 6 expected running time of Algorithm 6 isragpmately

[ID+ (2" * - 1)A] + [%HA + ZD] : (6)

There can be thought like if we increasewe can get more speed throughy) of Theorem
6. But in Algorithm 6 there is a cost for precomputation steyl ahis cost increasing, almost,
exponentially. Hence there are optimum valuesdorThe following table shows costs of NAk)
scalar multiplication for some values which are calculated using Formula 6 that expecteding

time of Algorithm 6.
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w Cost

HAA+(1+1)D
BLBA+(+1)D
BE2A+(1+1)D

(=2 B

B 4+ (1+1)D

The window NAF method uses sliding window which has similarwtidth<v window. But
alternatively, sliding window can be used on binary or NApresentation of.. Sliding window
method moves left-to-right and ignores consecutive zegdslafter a nonzero digh; is progressed.
The method works left-to-right over digits of NAF represaitn of k with a window, which has width

at mostw, therefore the value in the window is odd.

The average length of a run of zeros between windows in tdmglwindow method is

SR . A 7
3 3.2w—2 ()

[1D+(w—l) A}+ ' _ L ip. (8)
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Algorithm 7 Sliding Window Method for Scalar Multiplication [19] [2]
Input: w, k, P € E(Fy)

Output: [k]P
1: Use algorithm to comput® AF' (k) = (ki—1,. .., k1, ko)
2: ComputeP;, = iPfori=1,3,5,...,2(2%¥ — (-1)¥)/3 -1
3 Q + o©
4 i+ 1-1
5: while 7 > 0 do
6: if k; = 0then
7: t+1
8: u <0

9: elseifk; # 0then

10: Find the largest < w such thats < (k;, ..., k;—+11) is odd.
11:  endif
12 g+ 2'Q

13:  if u > 0then

14: Q+—Q+ P,
15:  elseifu < 0then
16: Q+—Q—P_,
17 endif

18 41—t

19: end while

20: return @

Before finishing this section let's compare sliding windomdawindow NAF methods slightly.
For a knownw, the sliding window takes larger values in a window than fwdtNAF. This returns
as a higher cost in precomputation step that cd%t8 point operations for sliding window method
(Algorithm 7) and2™ /4 point operations for window NAF method (Algorithm 6). If wemtinue to
compare both algorithms over point operations the windowrNwethod will usually result in fewer

point additions for the optimurw. For more certain comparison, we should take into considera
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coordinate representations.



Chapter 4

Faster Point Multiplication Methods

Until this section, we gave point addition and point doulom elliptic curves in affine coordinates.
Then we transported these point operations formulas tobdatgrojective coordinates. After that
we use these formulas to compute scalar multiplication viiche fundamental operation in elliptic
curve cryptology. We talked about different scalar muitiation methods. In every new method our
aim was getting effective and fast point multiplication@iighms. In this section we will look at faster
and efficient scalar multiplication methods than we gavedoti®n 3 and we will link up with Section

2.5 for that.

4.1 GLV Method

This section briefly restates GLV method. GLV is Gallant, lbert and Vanstone’s method in speeds up
scalar multiplication on elliptic curves using classesltipc curve which have efficiently computable
endomorphisms. As an advantage GLV method allows to worlaayel classes of elliptic curves. For
this special class of curves, [18] says that a speedup of #pficcan be expected over the best general

methods for point multiplication.

33
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4.1.1 Endomorphisms

Let £ be an elliptic curve defined over the finite fielg. Due to Definition 15 an endomorphism bf
is a rational map: E — F that satisfies)(co) = co whereco denotes the point at infinity. Since
the rational map is defined ov&y, the endomorphism is also defined oveF,. Hence¢ is a group
homomorphism oE(F,).

Let P be a point on this curve with ordersuch thath = #E(F,)/n co-factor is a small integer
such thath < 4. Let ¢ be a non trivial and effectively computable endomorphisifinge overl, and
X? +rX + s is characteristic polynomial af. There is\ € [0,n — 1] such haiy(P) = AP where\

is a root of characteristic polynomial? + X + s modulon.

Example 13(Elliptic Curves withj = 1728). [25]

Letp =1 (mod 4) be a prime and consider the elliptic curve

yzzw?’—i—ax

defined oveF ), withp+-1—t points andx € IF,, is an element of ordet, that satisfies the characteristic

equationa? 4+ 1 = 0. Then there is an efficiently computable endomorphism dkfipe

¢ : BE— E7 ('rvy) — (—CC,O[y)-

Let P € E(F,) be a random point of prime ordet such thath = #E/n is a “small” integer;

typically » < 4. Thens(Q) = A\Q for every@ € (P) where) € Z satisfies\? +1 =0 (mod n).

Example 14(Elliptic Curves withj = 0). [20]

Letp =1 (mod 3) be a prime and the elliptic curve is

y2:I3+b

defined oveF, with p-+1—t points. Let3 € F, be an element order gfthat satisfies the characteristic

equations? + 3 + 1 = 0. Theng is an endomorphism defined by

¢ E—E, (v,y) — (Bz,y).
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Let P € E(F,) be a point with prime order such thath = #E/n is a “small” integer; typically
h < 4. Theng(Q) = \Q for everyQ € (P) where) € Z satisfy\> + A+ 1 =0 (mod n).

Example 15(the elliptic curve P-160)[19]

Consider the elliptic curve

E:y?=2%+3

defined over the60—bit prime fieldF,, where

p = 2190229233

1461501637330902918203684832716283019655932313743.

Sincep = 1 (mod 3), the curve is of the type described in Example 14. The grouf), ohtional

points onFE has prime order

#E(F),) =n = 1461501637330902918203687013445034429194588307251.

An element of orde3 in ), is

B = 771473166210819779552257112796337671037538143582

and so the mag: £ — E defined byp: oo — oo and¢: (z,y) — (Bz,y) is an endomorphism of

E defined ovef,. The solution

A =903860042511079968555273866340564498116022318806

to the equatiol\? + A + 1 = 0 (mod n) has the property thap(P) = AP for all P € E(F,,).
This curve is included in the WAP specification of the WiselEmnsport Layer Security (WTLS)
protocol [39].

The way for computing P for selected equally randomfrom [0, n — 1] that given by [18] is the
following. Assume thak = k1 + koA (mod n) whereky, ko < [v/n]. Hence
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kP = (k14 kAP
= kiP+ko(\P)

¢(P) can be computed easily. Sinée and k. are approximately half the length &f applying
Algorithm 6 to k1 P and k2 P will reduce points doublings to half. Sure we don’t forgedttithis is

effective provided when a decomposition at(d®) can be computed efficiently.

4.1.2 Decomposition of the scalar

Letk € (0,n) be an integer constant. We want to wiiite= k1 + koA (mod n) whereky, ks < [\/n].

Let define the group homomorphism

fiZxZ — Z/n

(i,7) +— i+ XAj (modn).

We can say thatk, 0) is a vector that satisfief(k,0) = k. We want to find(k;, k2) = u vector such
that f(u) = k1 + MAka = k. Note that it is easy to find a vectar € Z x Z such thatf(u) = k.
u = (k,0) is this kind of vector. But the problem is finding a vector tfsashort at the same time. In
that point, we should pass some steps to find a propEirst we should find linearly independent short
vectorsvy, vy € Z x Z such thatf (v;) = 0 and f (v2) = 0. After this, we find a vector in the integer
lattice generated by, andv, that close tqk, 0). Thenu = (k,0) — v with f(u) = f((k,0)) — f(v).
Note that using lattice basis reduction algorithms can eesaur problems about finding linearly
independent; and v, vectors, and finding vector generated by; and v, that close to(k, 0).
However, methods are faster which are presented in [18].
Let.# = kerf andv1, v, be linearly independent vectors &f satisfy f(v1) = 0 and f(vs) = 0.

We can write that,

(k,0) = Brv1 + Bave
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whereg; € Q because, v, are linearly independent vectors.THenr= [3;] and letv = byv1 + bavs.
We can compute;, v» linearly independent vectors using Extended Euclidearodtdgm. If we

apply Extended Euclidean Algorithm to find greatest commigisdr of » and )\, we get

wheresg = 1,9 = 0,179 = n,s1 = 0,t; = 1,7, = A, r; > 0 forall i. In a specific step of this

equation algorithm gives us, v, vectors.

Lemma 1. Lets;, t;, r; be the sequence of variables in Equation 1 produced by anicgtigin of
extended Euclidean algorithm to positive integersnd \.
(¢) r; > rip1 > 0foralls > 0.
(%) |si] < |si+1] fora > 1.
(444) |t;] < |tiya] fori > 0.
() ri—1|ti| + ri|ti—1| = nforall i > 1.

Let m be the greatest index for which,, > /n. Due to Lemma 1(iv), we know that
T |tma1| + Tmat|tm| = n. SO|tmi1| < +/n. Then we choose; = (rm41, —tm+1). By Equation
1, f(vi) = (Tm+t1 — tms1A) (mod n) = 0. Sincelt,+1] < v/n and|r,+1] < +/n, we have
[|o1]| = w/7’72n+1 + tan < +/2n which means); is short. Then we also choose to be shorter of
(P, —tm) @nd (142, —tmr2). With similar way that we trace withy, f(v2) = 0 andwvs is also short.

We found two short vectors; andwv, but there is one more condition that they should be linearly

independent. Assume that they are linearly dependentslet(r,,, —t,,) then

Tm+1 _tm+1 tm+1

- = : )

—tm tm

T'm

But, by Lemma 1(:) and (ii%), rm+1/rm < 1 and|t,41/tm| > 1. Thereforep; andw, are linearly

independent.
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Algorithm 8 Extended Euclidean Algorithm for Integers [19]
Input: Positive integera andb with a < b.

Output: d = ged(a,b) and integers;, y satisfyingaz + by = d.
1. u+a,v+<b
2.1 1,290
3 yr < 0,y0 1

4: while u # 0 do

Ul

q+ |v/ul,r+v—qu

6: T < T2 —qgr1,Y < Y2 — qy1
7: VU, UST

8: To < T1,T1 < T

9: Y2 < Y1, Y1 < Y

10: end while

11: d ¢~ v, T ¢ X2, Y < Yo

12: return (d,x,y)

Linearly independent vectoks andwvs can be obtained by using Algorithm 8. If we put inputs as
n and)\, the algorithm produces a sequence of equatignst i\ = r; wheresg = 1,ty = 0,79 = n,
s1=0,t1=1,r1 = A\

Our aim was finding’ = byv; + bovs that close tqk, 0) whereb; = [3;]. The last step is finding
b1 andBs. (k,0) = Brv1+ B2ve equation provides these values. We already calculated (v1,, v14)

andvy = (vag, vg,) Vectors. If we put them in to equation

(k,0) = pivi + fave
= B1(viz, V1y) + B2(V2z, V2y)

= (B1v1a, L1v1y) + (B2v2g, B2vay)

(B1v1z + Bavog, Biviy + Bavay).
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At the end, these steps gives two equation,

k = pivig + Povag,
0 = pBiviy + Pavay.
Hence,
kvo —kv
Y ly
ﬂl = 562 — .
V1zV2y — ViyV2g V1zV2y — ViyV2z

Sinceb; = [B;| and we have = byv; + bave, u = (k,0) — v is the short vector that we need. The

fallowing lemma proves that the vectoiis indeed short.

Lemma 2. [18] The vectoru = (k,0) — v, wherewv is constructed as above, has norm at most

max({[vl; [[va]])-

Proof. We have

u = (k,0)—v
= (Brv1 + Bav2) — (brvr + bava)

= (B1 —b1)vi + (B2 — b2)vs.

Finally, since|8; — b1| < % and|B2 — ba| < % by the Triangle Inequality we have

IN

lul < =l + 2l
u — ||V — ||V
g NFLIET o 12

IN

maz([|vr]; [[oz])-

O

Following algorithm calculates; andk, and uses Extended Euclidean Algorithm (Algorithm 8)
to obtain needed components. It is the summary of the mettrodieicomposing that we explained

above.
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Algorithm 9 Balanced length-two representation of a multiplier [19]

Input: Integersn, A\, k € [0,n — 1].

Output: Integersky, ko such thate = (k1 + k2A) (mod n) and|k: |, |kz2| = /n.

1:

11:

12:

Run the Algorithm 8 with inputs and . The algorithm produces a sequence of equatignst
i\ = r; wheresg = 1,tg = 0,79 = n,s1 = 0,t; = 1, 1 = A, and the remainders and are
non-negative and strictly decreasing. bebe the greatest index for whiah), > /n.
(z1,y1) ¢ (Tma1, —tms1)
if (12, +12,) < (12,45 +t2,,5) then

(z2,y2) < (r1, —t1)
else

(22,y2) < (rmt2, —tm+2)

end if

b1+ |B1]

: bg < \_ﬁgJ

10:

kl — k— b1$1 — bgyg
ko <= —b1y1 — bayo

return (kq1, k2)

Next example shows applying of Algorithm 9 to Example 15.

Example 16(balanced lenght-two representation of a multiplier Consider the elliptic curve P160

defined in Example 15. Since we apply Algorithm 9, we have

(Pm,tm) = (2180728751409538655993509, —186029539167685199353061)
(Pm41,tmy1) = (788919430192407951782190,602889891024722752429129)
(Pmt2,tmy2) = (602889891024722752429129, —1391809321217130704211319)

(x1,y1) = (788919430192407951782190, —602889891024722752429129)

(x2,y2) = (602889891024722752429129,1391809321217130704211319).
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k = 965486288327218559097909069724275579360008398257.

Let
We obtain
b1
be
and
k1

k2

919446671339517233512759

398276613783683332374156

—98093723971803846754077

381880690058693066485147.
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Algorithm 10 Scalar Multiplication with Efficiently Computable Endonpdtisms [19]
Input: Integerk € [1,n — 1], P € E(F,) window widthw; andw,, andA

Output: kP
1: Use Algorithm 9 to findk; andk, such thatc = (k1 + k2\) (mod n).
2. PL+ P
3 Py + ¢(P)
4: Use Algorithm 5 to compute NAE; (|&;|) = mjil k;q2 forall j = 1,2.
5. m = max{mi, ms} y
6: kj; <~ 0form; <i<m,1<35<2
7. if k; < Othen
8 kj; ¢+ —kjs
9: end if
10: ComputeiP; fori € {1,3,---,2%~ 1 - 1,1 <j <2,
11: Q + oo
12: for j =1to2do
13: if k;,; # Othen
14: Q<+ Q+kj P
15:  else
16: Q< Q — [kjq| P
17 endif
18: end for

19: return @

Algorithm 10 calculateg: P using the decompositioh = (k1 + k2A) (mod n) and interleaving
k1P + ko¢p(P) where¢ is a efficient endomorphism of elliptic cunée over a finite fieldF,. The

expected running time of algorithm is approximately

2
- wj72 t 1
D+ @Y = DA+ Ce+ Oy | +5 (DY ———A 3)

Jj=1 Jj=1
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wheret is bitlength ofn, j: w; > 2, k; is written with a NAF-w;, Cj, andC, denotes respectively
the costs of the decompositionfofind findings(P). Lastly, the storage requiremengig: —2 4 2w2~2

points.

4.2 GLS Endomorphism

Section 4.1 gave the Gallant-Lambert-Vanstone (GLV) [18fmod that accelerates elliptic curve scalar
multiplication with efficiently computable endomorphism§ince it requires less point operations
than previous methods GLV method is important tool for fastealar multiplication. However,
there were efficiently computable endomorphism examplesin two cases like curves with special
endomorphism class or groupF,~ ) defined oveff, and if ¢ isn’t very small, these groups don’t
have prime or nearly prime order. Especially, we gave cuwi#s j—invariants) and 1728 for GLV
method. If you want to work with primes (e.g.= 2255 — 19), only special curves can be used with the
GLV. Because if there are small sets of applicable curvediafus, it can be hard to get a good group
order. Hence, for randomly chosen prime order elliptic esrar for special primes GLV method isn’'t
applicable every time. [17] gives endomorphisms for a lanigss of elliptic curves by working over
IF,» that can be applied to GLV method to solve this problem [16][1

Letq be a prime number arig, is a finite field. If we define an elliptic curve over an extemndield
of Iy, [17] guaranties the construction of an efficiently compiggndomorphism. This endomorphism
is then used to speed up scalar multiplication.

Let E be an elliptic curve oveF, with ¢ + 1 — ¢ points. In that case we can also calculate number
of points# E(F,» ) and we can defin&(F, )[r] = {P € E(Fm : [r]P = c0)}. Letd = 1 and¢ be
#~1. Then we can replace 'separable isogeny’ with ’isomorphisin- is a prime,r || N denotes that

r| N butr? { N.

Theorem 7. Let E be an elliptic curve defined ovéf, such that#E(F,) = ¢+ 1 — ¢t and let
¢: E — E be a separable isogeny of degréeefined ovef whereE’ is an elliptic curve defined
overF . withm | k. Letr | #E (F,~) be a prime such that > d and such that || #E' (Fge)

which means | #E’ (F ) butr® H#E (Fgx). Letw be theg-power Frobenius map of’ and let
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¢ : E' — F be the dual isogeny of thie Define
V= ¢me.

Then
(i) ¢ € Ends_, (E').
(it) Forall P € E'(F,) we havep*(P) — [d*]P = oo andy?(P) — [dt|s(P) + [d?q]P = oc.
(#ii) There is a unique\ € Z/rZ such that\* — d* = 0 (mod r) such that)(P) = [\]P for all
P e E' (Fym)[r].

Consider that ifp is an isomorphism the®t’ =~ E implies End(E') =~ End(E) which means
End(E') contains a corresponding endomorphism becdusé E) contains the—power Frobenius
map [17]. Theorem 7 forms the main construction. But in teisti®n we will work oveif' > with more
specific endomorphisms. If we specialise Theorem 7, thefprfothe specialised theorem will shows

that it can applies to any elliptic curve oMEy and it also applies GLV method.

Theorem 8. Letp > 3 be a prime and le be an elliptic curve oveF, with ¢ + 1 — ¢ points. Let
E overF . be the quadratic twist of(F,2). Then#E (F,2) = (¢ — 1) + t>. Lety: E — E be
twisting isomorphism defined ovEp. Letr|#E' (F42) be a prime such that > 2p. Lety) = o .

For P € E'(F,2)[r] we have)?(P) + P = cc.

Proof. LetE: y? = 23 4+-az-+bwitha,b € F,. We knowthatt E' (F2) = (¢—1)%+¢% Letu € F, be
anonsquareiff,.. Thereforeu(?"~1/2 = 1. DefineA = u%a, B = u’bandE: y*> = 23+ Az + B.

ThenE' is the quadratic twist oF (F,2) and

’

#E (Fpe) = ¢ +1+ (2 —2q)

= (@-17+¢
The isomorphism): E — E’ is given by
o(z,y) = (uz, Vu'y)

and is defined oveF .
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If r | #E (Fg2) is prime such that > 2q thenr { #E(Fp) = (¢+1—1t)(¢ +1+¢) and so
r|| #E (F;) = #E(qu)#E/ (F42). Hence we may apply Theorem 7. This shows that oo is
a group homomorphism such thatP) = [\|P for P ¢ E' (F2)[r] whereA* —1 =0 (mod r). We
show that, in factA? + 1 =0 (mod r),

By definition, v (z,y) = (uz?/u?, v/u'y?//u ! /y/u*") whereu € Fp. (i.e. u?’ = u) andy/u >
F,> (and so/i! = —a). f P = (z,y) € E (F,2) thenz?” =z, y9° =y and so

0= ety VT
= (z,(-1)%)

o _(Iv y)

O

Now we can we can apply the result that we got from proof of Taeso8 to elliptic curvel’ over
F, whereqg > 3. GLV method can also be applied. Singe is defined oveir 2, #E' (F42) can be
prime. Reader should check [30].

Letg =5 (mod 8) be aprime and’: y? = 2 + ax + b be an elliptic curve ovef, with g+ 1 —¢
points, where is trace of Frobenius which can be computed efficiently foeltiptic curves. Letu be
a non-square element M. LetE': y> = 2® + Az + B be the quadratic twist oF(F,2) overF.

such thatd = u2q andB = «3b. Then there is a map defined by

v E — E

(x,y) — (29,1y?)

wherei € F» satisfies? = —1.
Letr | #E(F,2) be a prime such thdt = #E'(F,2)/r is a small number ané ¢ E (Fq2) bea
point order ofr. Theng(P) = AP for some\ € Z satisfyA\? + 1 =0 (mod r).

Lemma 3. Let notation be as previous theorem. The vectors — 1), (1 — p), t are orthogonal basis

for a sub latticel,” of L of determinant:E’ (F,2). Given a poinfa, b) € R? there exists a lattice point

(z,y) € L' such that|(a,b) — (z.y)|| < (p +1)/V2.
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Because of Lemma 3, we do not need to calculate linearly ieiégntyv;, vo vectors using
Extended Euclidean Algorithm (Algorithm 8). For GLV methdd, ¢ — 1) and(q — 1, —t) linearly
independent vectors can be usedrasv,. If we want to compute, vo vectors with Algorithm 8, it
will return same results witkt, ¢ — 1) and(q — 1, —t). Therefore, computing coefficients and k.
wherel|k;|, |ka| < (¢ +1)/+/2is easy in this case.

Following algorithm is a summary of this section. It genesa primey (¢ > 3) and the quadratic
twist of E(IF2), calculates\, and define efficient endomorphismto use in GLV method for more

speeding up.

Algorithm 11 Key Generation for Quadratic Twist Construction [17]
Output: gq, E', P, A

1: Choose a primg =5 (mod 8)

2: Setu =2 €Fp

3: SetA = -3anda=A/2 €T,

4: repeat

5. Chooserandorhe F, and letE: y? = 23 + az + b
6: Computet =p+1— #E(F,)

7. until (¢ — 1)? + 2 = hr wherer is prime anch = 1 orh = 4
8 SetB =bu® € FppandE : y? = 2% + Az + B

9: SetA =t"1(¢—1) (mod r)

10: Computei € F, so thati? = —1

11: Definey(z,y) = (—x9,iy?)

12: return ¢ (A, B), ¥, A

We used Algorithm 11 to define very simple mapand to generate an elliptic cunée : y2 =
23 + Az + B overF 2, whereq > 3 is a prime which has coefficient = —3. Using coefficient
A = —3 makes the curve convenient for efficient implementationwye use Jacobian coordinates

(Section 2.6). We don't forget that the algorithm can be usedore general cases.



Chapter 5

Implementation, Evaluation and

Comparison

In previous sections, we gave various scalar multiplicatityorithms and we always aimed to reach
the fastest scalar multiplication algorithm ever known. tid end Gallant, Lambert and Vanstone’s
(GLV) method gave the speed up for scalar multiplicationt #8is method gave us narrow space to
work. At that moment, Galbraith, Lin and Scott (GLS) endopiosms gave larger classes.

In this section we will examine the magma implementation afVGnethod which fortified
with GLS endomorphisms. During the section we will @g-bit primes for examples, algorithm

implementations and comparisons.

NOOAWNE

p := NextPrime(Random([4..2°256]));
repeat
p := NextPrime(p);
- = GF(p);
until (p mod 8) eq 5;
_<x> := PolynomialRing(F);
K<u> := ext<F|x"2-2>;

Code 5.1: MAGMA/smul-ec—we—-GLS

Let p be a256-bit prime number and I€F is a prime field withp. we need to find a such that
p =5 (mod 8). This is one of the most important steps of algorithm. Thige lallows to find at least

one root fori2 + 1 polynomial inFF and at the same time there isn’t anyalue that makes zere® — 2

47
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polynomial inF.
After we found the propep prime and built asF,, prime field, the next step is extendifigo .2
asF,: by usingz? — 2 polynomial. Creating extension fiel#” usingz? — 2 will make the algorithm

faster when we compare other extension fields. Now it's tioneréate our elliptic curve ovéf.

repeat
a Random(F);
b Random(F);
E1 := EllipticCurve([a, b]);
nl = #E1;
E2 := BaseExtend(E1l, K);
t 1= p+1-nl;
ad = Kl(u"2) ~*a;
bd := Kl(u™3) *b;
E2d := EllipticCurve([ad, bd]);
assert IsQuadraticTwist(E2,E2d);
n2d = (p-1)2 + t'2;
assert #E2d eq n2d;
S := Factorization(n2d);

r = S[#S][1];
h := n2d div r;
until h le 4;

Code 5.2: MAGMA/smul-ec—we—-GLS

Let a andb be random scalars ifi. We can built elliptic curve®1 using coefficients andb over
F. nl is number of points oF'1 overF which is represented FE1(F). Now we have elliptic curve
E'1 and extension field?”. We can extenE'1 while we go fromF to .%".

Let E£2 be extended of’1 over.% . t is the trace of Frobenius. Since number of points can cdkeula
with p — ¢ + 1 for E'1 thant satisfies:1 = p — t + 1 and we can calculatewith usingt = p — ¢ + 1
equation. GLS uses curves which are quadretic twist of elgeicurve over extension field. Now we
need to create an elliptic curve using directions from [httwill give quadratic twist ofF2. This
guadratic twist will be over extension field”. Hence coefficientad andbd are elements of2” such
thatad = u2a andbd = u3b. Since we have have coefficients we can créztd over.#” which is the
quadratic twist ofEy2.

Using points that have prime order is important for secuBiyt it's hard to find a point with prime
order randomly. Therefore will find a point that has primeesrdith the help of a random point.
Factors of number of an elliptic curve includes prime oréénst we need to calculate number of points
of F2d and it can compute with2d = (p — 1)? + t2. Because of previous steps we knovso we
can also findh2d using this equation. If we factorize2d, the biggest factor is the prime orderBut

taking the biggest is not enough in this case, we also need Wave 4 wheren2d = h.r [17].

R := Random(E2d);
= h*R;

P =
assert Order(P) eq r;
e = E2d![0,1,0];

assert r *P eq e;

Code 5.3: MAGMA/smul-ec—we—-GLS
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Let R be a random point oveE2d. If we multiply R with &, the result will be a poinP over E2d
with prime order. If we check order d?, the result will ber and if multiply P with r, the result will

be identity of £24.

1|1 = (Modinv(t,r) *(p-1)) mod r;
2|1 = Sart(F!-1);

3| T = E2d![-P[1]p, i =(P[2'p)];

4

5| //Select the correct square root of -1.
6lassert T eq| *P orTeq-l *P;
7|if T ne | =P then

8| assert T eq -l =*P;

9| Q=i

0| end if;

Code 5.4: MAGMA/smul-ec—we—-GLS

¢ represents GLS endomorphisms that (&) = [I]Q wherel is root of/? +1 = (mod r). Since
we choose a prime whege= (mod 8) we know there is at least orieand also twa values which
are the roots of characteristic equatiént- 1 = (mod 7). i values are negative of each other. Hence

we need a small test to be sure we take prép@ve can learn it easily using contentsipfmap.

Psifunc := functlon(P E2d, i)
return E2d![-P[1]p *(P[ 1"p)];
end function;

WN =

Code 5.5: MAGMA/smul-ec—we—-GLS

1 is the map that does the main work [17], defined/ds, y) = (—aP?,iy?). Before the end, the

last step is decomposing scakar

k := Random([0..r]);
B = (p 12 + t72
1 = (k *(1)/B;
= (k *(p-1))B
Round(b1) o+ Round(b2) *(p-1);
Round(bl) *(p-1) - Round(b2) *t;
k-v1;
0-v2;

OCO~NOUOAWNPE
< <
NN
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10| [p2, 1, k, k1, K2;

12| assert k *P eq (k1 *xP+k2x| *P);
13| Q := Psifunc(P, E2d, p, i);

14| assert k *P eq (kl * P+k2* Q);
15| assert | *P eq Q

Code 5.6: MAGMA/smul-ec—we—-GLS

Let ¥ be a random scalar if0,r] and we can decompose it fal and k2 scalars that satisfy
(k1,k2) = (k,0) — (v1,v2) wherevl andv?2 linearly independent vectors. Usiigl]P + [k2]y[P]
will be faster way to calculatg] P

In this algorithm we findk1, k2, ¢[P] but at the end we have calculatgd|P + [k2][P] to
MAGMA. Fallowing algorithm also calculatd&1] P + [k2]y[P] besidek1, k2, [ P].

1| dec := function(k, p, E)
2| ni= #E;
3| t = ptln;




Chapter 5. Implementation, Evaluation and Comparison

50

B = (p-1)2 + t2 ;

bl = (k *(1)/B;

b2 := (k *(p-1))/B;

vl := Round(bl) *t + Round(b2) =(p-1);
V2 = Round(bl) *(p-1) - Round(b2)  *t;
k1l := k-vi;

k2 = 0-v2;
return k1, k2;
end function;

phi := function(P, E, p, j)
return E![-P[1]p, j *(P2]'p)];
end function;

wNaf := function(w, k)

t =
while (k ge 1) do
if (k mod 2) eq 1 then
t[|] =k mod (2°w);
k

ti
elif (k mod 2) eq 0 then
tli] :== 0O;
end if;
k = k div 2;
=0+ 1
end while;
return t;
end function;

mul : nctlon(w k, P, E, p, )

— =

~0 0
PNoRNE
;U'U |:u:—'—':

= dec(k, p, E);
I(P E p, J)
everse(wNaf(w k1));
#t1,

INER=Ye)
L .
(T i AL

= Reverse(wNaf(w k2));
m2 = #t2;
m: MaX|mum(m1 m2);
if m1 eq m then
for i:=(m2+1) to m do
t2[i]:=0;
end for;
elif m2 eq m then
for i:=(m1+1) to m do
t1[i]:=0;
end for;
end if;
if k1 It O then
for i:=1 to ml do
ta[i]:=-t1[i];
end for;
end if;
if k2 It O then
for i:=1 to m2 do
t2[i]:=-t2[i];
end for;
end fif;
for i:=1 to (2w1) by 2 do
sifi] = *P
s2[i] = *Q
end for
R := E!0,1,0];
for iz=m to 1 by -1 do
R = 2*R;
if t1[i] ne 0 then
if t1[i] gt O then
R = R + s1Jt1][i]];
else
R := R - s1[Abs(t1[i])];
end if;
end if;
if t2[i] ne 0 then
if t2[i] gt O then
R = R + s2[t2[i]];
else
R := R - s2[Abs(t2[i])];
end if;
end if;
end for;
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return R, k1, k2, Q;
end function;

p := NextPrime(Random([4..2°32]));

repeat
p := NextPrime(p);
F := GF(p);

until (p mod '8) eq 5;
_<x> := PolynomialRing(F);
K<u> := ext<F|x"2-2>;

repeat
a := Random(F);
b := Random(F);

E1 := EllipticCurve([a, b]);
nl = #EI1;
E2 := BaseExtend(El, K);

t 1= p+l-nl;
ad := Kl(u2) *a;
bd = K!I(u"3) *b;
E2d := EllipticCurve([ad, bd]);
assert IsQuadraticTwist(E2,E2d);
n2d = (p-1)°2 + t'2;
assert #E2d eq n2d;
S := Factorization(n2d);
r := S[#S]1];
h := n2d div r;
until h le 4;

P = h*R
assert Order(P) eq r;
e := E2d![0,1,0];
assert r *P eq e;
i = Sqart(F!-1);
:= Random([0..2°50]);
=3

R := Random(E2d);
— hxR-

K
w ;
R, k1, k2, Q := mul(w, k, P, E2d, p, i);
R

aésert k *P eq R;

Code 5.7: MAGMA/gls—point—mul

Following table compare scalar multiplication algorithmve eximine in this thesis. Létis 256-bit
scalar. Multiplication counts scalar multiplication optons that is used by algorithms, square counts
taking square of a point, doubling counts point doublingrapens, addition counts point addition

operations and total part gives the sum of equivalents &liatpns to multiplication.

Comparisons of Scalar Multiplication Algorithms

Algorithm Multiplication | Square| Addition Total
Binary Right to Left 2543 1527 4458 26741M
Binary Left to Right 2541 1527 4457 26734M

Binary NAF 2036 1358 4159 24528M




Chapter 6

Conclusion

In this thesis we studied efficient scalar multiplicationheiques Elliptic Curve Cryptography and
their implementations. We gave algebraic background fitiel curves and some fundamental elliptic
curve background. With all these tools we aimed to reachdkges$t scalar multiplication algorithm
ever known. We made mathematical and computational asatysundamental scalar multiplication
methods and their algorithms from the slowest to faster.

We gave mathematical analysis of the fastest scalar muohlipgpn method deeply. We made
computational analysis of it, compared it with other scataittiplication method. We discussed prons
and cons of each method. Then we talked about efficiently céatyle endomorphism which improves
the fastest scalar multiplication method and eliminatefopmance disadvantages of the methods.

The implementation of all algorithms made using by MAGMA hilgvel language and put to the

appendix.
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AddPoint := function(X1, Y1, Z1, X2, Y2, Z2, a, cntM, cntS, cn tD, cntA, E)
if (Z2 eq 0) then
X3 = X1; Y3 = Y1; Z3 = Z1;
elif (Zl eq 0) then
X3 X2, Y3 = Y2; Z3 = Z2;
elif (X1 *72°2 eq X2 »Z1" 2) and (Y1 %Z2°3 ne Y2 xZ1°3) then
X3 :=0;, Y3 :=0; Z3:=0
elif (X1 x7272 eq X2 xZ1" 2) and (Y1 *Z2°3 eq Y2 *Z1°3) then //doubling
if Y1 eq O then
X3 :=0; Y3 :=0; Z3 := 0;

else
A = Y12 cntS+:=1;
B = 4+ X1xA; cntM+:=1; cntA+:=2;
C = 8*(A2); cntS+:=1; cntA+:=3;
if a eq O then
D = 3% (X12); cntS+:=1; cntA+:=2;

elif a eq -3 then
D 3% (X1-Z2172) *(X1+Z1°2); cntM+:=1; cntS+:=1; cntA+:=4;

else
D = 3*(X1"2)+a *Z1%4,; cntS+:=3; cntA+:=3; cntD+:=1;

end |f;
X3 = D"2-2 *B; cntS+:=1; cntA+: 2
Y3 := D*(B-X3)-C; cntM+:=1; cntA+:=2;
Z3 = (2 *Y1)*Z1; cntA+:=1; cntM+: —1

end if;

elif (X1 *22 2 ne X2 *Z1°2) then //addition

A = Z172; cntS+:=1;

B = 72°2;

C = X1*B;

D = X2xA;

E = Y1xZ2+B

F = Y2+Z1xA;

G := D-C;

H = G2;

I == G *H;,

J = F-E;

K = CxH,; =1,

X3 = J2-1-2 *K; cntS+:=1; cntA+:=3;

Y3 = J *(K-X3)-E =1, cntM+:=2; cntA+:=2;

Z3 = Z1 *xZ2+G; cntM+:=2;

end if;

return X3, Y3, Z3, cntM, cntS, cntD, cntA;
end function;

Code A.1: MAGMA/smul-ec—we—point—add

RTLPointMul := function(k, X1, Y1, a, E)
cntM = 0; cntS :=0; cntD:=0; cntA:=0;
X2 :=0; Y2 :=0; Z2 = 0; Z1 := 1;
k:=IntegerToSequence(k, 2);

t = #k;
fori:=1tot do
if (k[i] eq 1) then
X2, Y2, Z2, cntM, cntS, cntD, cntA := AddPoint(X1, Y1, Z1, X2, Y2, Z2, a, cntM, cntS, cntD,
cntA, E);
end if;
X1, Y1, Z1, cntM, cntS, cntD, cntA := AddPoint(X1, Y1, Z1, X1, Y1, 71, a, cntM, cntS, cntD,
cntA, E);
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end for;

if Z2 eq O then
return 0,0,0,0,0,0;

else

return X2/Z22, Y2/Z2°3, cntM, cntS, cntD, cntA;
end if;

end function;

Code A.2: MAGMA/smul-ec—we—binary—RtoL

LTRPointMul := function(k, X1, Y1, a, E)
cntM = 0; cntS :=0; cntD:=0; cntA:=0;
X2 :=0; Y2 :=0;, Z2 :=0; 21 = 1,
k:=Reverse(IntegerToSequence(k, 2));

t = #k;
fori ;== 1tot do
X2, Y2, Z2, cntM, cntS, cntD, cntA := AddPoint(X2, Y2, Z2, X2, Y2, Z2, a, cntM, cntS, cntD,
cntA, E);
if (k[i] eq 1) then
X2, Y2, Z2, cntM, cntS, cntD, cntA := AddPoint(X1, Y1, Z1, X2, Y2, Z2, a, cntM, cntS, cntD,
cntA, E);
end if;
end for;

if Z2 eq O then
return 0,0,0,0,0,0;

else

return X2/Z22°2, Y2/Z2°3, cntM, cntS, cntD, cntA;
end if;

end function;

Code A.3: MAGMA/smul-ec—we—binary—LtoR

(k ge 1) do

end while;
return t;
end function;

Code A.4: MAGMA/smul-ec—we—computing—NAF

NAFMul := function(k, X1, Y1, a, E)
t=

t := Reverse(Naf(k));
= #Ht

X2 :=0; Y2 :=0; 22 = 0;

Z1 = 1;
cntM = 0; cntS :=0; cntD:=0; cntA:=0;
for i := 1 to | do
X2, Y2, Z2, cntM, cntS, cntD, cntA := AddPoint(X2, Y2, Z2, X2, Y2, Z2, a, cntM, cntS, cntD,
cntA, E);
if tfi] eq 1 then
X2, Y2, Z2, cntM, cntS, cntD, cntA := AddPoint(X1, Y1, Z1, X2, Y2, Z2, a, cntM, cntS, cntD,
cntA, E);
elif tfi] eq -1 then
X2, Y2, Z2, cntM, cntS, cntD, cntA := AddPoint(X1, -Y1, Z1, X2 , Y2, Z2, a, cntM, cntS, cntD
, cntA, E);
end if;
end for;
if Z2 eq O then
return 0, O;
else
return X2/Z22°2, Y2/Z2"3, cntM, cntS, cntD, cntA;
end if;

end function;

Code A.5: MAGMA/smul-ec—we—binary—NAF
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wNaf := function(w, k)
i=1
t =
while (k ge 1) do
if (k mod 2) eq 1 then
tli] := k mod (2°'w);
k = k - tfi;
else
tli] := O;
end if;
k = k div 2;
=i+ 1
end while;
return t;
end function;

Code A.6: MAGMA/smul-ec—we—computing—wNAF

wNafMul := function(w, k, X1, Y1, a, E)
t = [f; s=[;
cntM = 0; cntS :=0; cntD:=0; cntA:=0;
K);

i=1to (_2AW). by 2 do
X,.Y, Z, cntM, cntS, cntD, cntA = AddPoint(X, Y, Z, X1, Y1, Z1,
E);

end for;

s[i] == <X)Y,Z>;
end for;
X2 = 0; Y2 := 0; Z2 = 0
for i:=l to 1 by -1 do

for ;=1 to w do
X2, Y2, Z2, cntM, cntS, cntD, cntA := AddPoint(X2, Y2, Z2, X2,
cntA, E);
end for;
if tfi] ne O then
if tfi] gt O then
X2, Y2, Z2, cntM, cntS, cntD, cntA:= AddPoint(X2, Y2, Z2, s[t
1,3], a, cntM, cntS, cntD, cntA, E);
elif tfi] It O then
X2, Y2, Z2, cntM, cntS, cntD, cntA := AddPoint(X2, Y2, 72, s[-
i,3], a, cntM, cntS, cntD, cntA, E);
end if;
end if;
end for;
return X2/Z2°2, Y2/Z2°3, cntM, cntS, cntD, cntA;

end function;

a, cntM, cntS, cntD, cntA,

Y2, Z2, a, cntM, cntS, cntD,

(111, s[tfil.2], s[tli

t[il,1], -s[-t[il.2], s[-t[

Code A.7: MAGMA/smul-ec—we—wNAF

p := NextPrime(Random([0..2°256]));
repeat
p = NextPrime(p);

F = p);
ntil IsSquare(F!-1) eq true;
:= Random(F);

c

o

EllipticCurve([a, b]);
Modsqrt(-1, p);

= #E;

1-n;
ax(Factorization(n));

[0) )
":*§+

=
Q=
<
-

Random(E);
h*R;

0 @i
sy

Order(P) eh r;
e = E!0,1,0];
r~P eq e;

g := r0 div r1;
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r2 =10 -q *rl;
0 = rl;
rl = r2;
s2 :=s0 - q =*sl;
sO := sl;
sl = s2;
2 =10 -q ~*ti;
t0 = t1;
t1 = t2;

end while;

vlia = rl;

vlb = -t1;

v2a = r0;

v2b = -t0;

return vla, vlb, v2a, v2b, sl1, sO;
end function;

rl, t1, r0, t0, s1, sO := EGCD(r, u);
sl*r - t1 *u eq rl;

sO*r - t0 *u eq ro;

Log(2, p);

Log(2, h);

Log(2, r);

Code A.8: MAGMA/EGCD

p := NextPrime(Random([0..2°32]));
repeat
p = NextPrime(p);
until (p mod 4) eq 1;
GF(p);
Random(F);

0;
ElllptlcCurve([a b]);
#E

?m
e
E

ax(Factonzatlon(n))

g ) IRTHCAl
:'?3.92'0
o
3
=

andom(E);
h *

@)wr
Emlm

eq e
Modsqrt( 1, p);
Modsqrt(-1, r);

—c=o
.. *
1l ||'U

EGCD := function(r, I)
/*sO :=smul-ec-we-GLV-c1-v03.m 1; sl := 0; */
t0 := 0; tl :: 1;
0= =
wh|le (r02 ge r) do
r0 div r1;
rO -smul-ec-we-GLV-c1-v03.m q *rl;

,.
[S)

TR
-
Lo

@D
>
o
W=
=
&

-t0;
return vla, vilb, v2a, v2b/ * sl, sO */;
end function;

Phifunc := function(u, P, E)
Q = EI[-P[1lu  *P[2]];
return Q;

end function;

vla, vlb, v2a, v2b := EGCD(r, l);
k := Random([0..r]);

B := vla *v2b - vlb *v2a;

b

b

1 := Round((k *v2b)/B);
= Round((k *v1b)/-B);

va = bl *vla + b2xv2a;
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vb := bl *vlb + b2 xv2b;
kl = k-va;
k2 := 0-vb;
f := function(i, j, 1)

return (i+ | *j) mod ;
end function;
f(vla, vib, I);
f(v2a, v2b, I);
Q := Phifunc(u, P, E);
if (Q ne | *P) then

= (u) m

Q = Phlfunc(u P E);
end |f
k*P eq (k1 *P+k2x| *P);

k*P eq (k1 *P+k2*Q);
k;
k1,
k2;
Code A.9: MAGMA/smul-ec—we—-GLV—j1728
while (true) do
p := NextPrime(Random([0..2°32]));
repeat
p = NextPrime(p);
until (p mod 3) eq 1;
F = GF(p);
a:= 0
b := Random(F);
E := El |pt|cCurve([a b]);
n = #E
t = p+1
S = Max(Factonzatlon(n))
r = S[1];
h = ndiv r
h le 4;
R := Random(E);
P := h*R;
assert Order(P) eq r;
e := E![0,1,0];
assert r *P eq e;
X = Modsqrt(-3, p);
y := Modsqrt(-3, r);
u:= (-1 + x) *Modinv(2,p)) mod p;
| = ((1 +y) * Modinv(2,r)) mod r;
T:=1*P;
if ((u

*P[l]) ne T[1]) or (P[2] ne T[2]) then
X) * Modinv(2,p)) mod p

|f ((u *P[1]) ne T[1]) or (P[2] ne T[2]) then
y * Modinv(2,r)) mod r

|f ((u *P[1]) ne T[1]) or (P[2] ne T[2]) then
= (-1 + x) *Modinv(2,p)) mod p;

end if;

end if;

end if;
EGCD := fun ct|on(r I)

/*s0 = 1; sl : */

t0 == 0; t1 := l;

0 :=rrl:=1

while (r0°2 ge r) do
g := r0 div ri;
12 =10 - q *ri;
0 = rl;
rl = r2;
/*52 =80 - g *sl; sO := s1; sl = s2; */
2 =10 - q *tl,
to :: t1;
tl = t2;

end while;

vla = rl;

vib = -t1;

v2a := 10;

v2b = -t0;

return vla, vilb, v2a, v2b/ *, s1, sO x/;

end function;
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Phifunc := function(u, P, E)

OCO~NOUODWNE

= Ellu »P[1],P[2]];
return Q;

end function;

vla, vlb, v2a, v2b := EGCD(r, l);

k := Random([0..r]);

B := vila *v2b - vlb *v2a;

bl := Round((k *v2b)/B);

b2 := Round((k *v1b)/-B);

va = bl *vla + b2*v2a;

vb = bl *vib + b2 *v2b;

kl := k-va;

k2 := 0-vb;

Q := Phifunc(u, P, E);

assert k *P eq (kl * P+k2x| * P);

assert k *P eq (k1 *P+k2+*Q);
end while;

Code A.10: MAGMA/smul-ec—we—-GLV—j0

p := NextPrime(Random([4..2°256)));
repeat

p := NextPrime(p);

F = GF(p);
until (p mod 8) eq 5;
_<x> := PolynomialRing(F);
K<u> = ext<F|x"2-2>;
repeat

a := Random(F);

b := Random(F);

El :
nl :
E2 :
t =

ElllptlcCurve([a b]);
#HE

BaseExtend(El K);
+1-nl;

ad K!(uA2) *a;

bd := KI(u™3) «b;

E2d := EllipticCurve([ad, bd]);
assert IsQuadraticTwist(E2,E2d);
n2d = (p-1)2 + t'2;

assert #E2d eq n2d;

S := Factorization(n2d);

r = S[HS[1];

h =

unti

1 Ilu [TRLLT]

= n2d div r;
il hle 4;

Random(E2d);
h*R;

rt Order(P) eq r;

E2d![0,1,0];

ssert r *P eq e;

= (Modinv(t,r) *(p-1)) mod ;
= Sart(F!-1);

T = E2d![-P[1]'p, i *(P2I'p)];

TTRe2 T
||(D i

//Select the correct square root of -1.
assert T eq| *P orTeq-l *P;

if T nel =P then
assert T eq -| *P;
ii=-i;
end if;
Psifunc := function(P, E2d, p, i)

return E2d![-P[1]p,i *(P[2]p)];

end function;

k := Random([0..r]);

B = (p-1)2 + t2 ;

bl = (k *(1)/B;

b2 := (k *(p-1))/B;

vl := Round(bl) Wt o+ Round(b2) *(p-1);
v2 := Round(bl) *(p-1) - Round(b2) *t;
kl = k-vi;

k2 := 0-v2;

P2, r, k, K1, k2];

assert k *P eq (k1 »P+k2*| *P);
Q := Psifunc(P, E2d, p, i);




Appendix A.

60| assert k *P eq (k1 xP+k2xQ);
61| assert | *P eq Q;

Code A.11: MAGMA/smul-ec—we—-GLS

o
N
[T

Round(b1) o+ Round(b2) *(p-1);
Round(bl) *(p-1) - Round(b2) *t;
k1l = k-vi;

10| k2 := 0v2

11 return k1, k2;

12| end function;

1| dec := function(k, p, E)
2| n= E;

3 t = p+1-n;

4 = (p-1)y2 + t2 ;
5 bl = (k *(1))/B;

6 (k *(p-1))/B;

7

8

9

13

14| phi := function(P, E, p, j)

15| return E![-P[1]p, j * (P[2]'p)];
16| end function;

17

18| wNaf := function(w, k)

19| i = 1;

20| t =

= I;
21| while (k ge 1) do
22 if (k mod 2) eq 1 then

23 tli] := k mod (2°'w);

24 k = k - t[il;

25 elif (k mod 2) eq O then
26 ti] := 0;

27 end if;

28 k = k div 2;

29 =0+ 1

30| end while;

31| return t;
32| end function;

33

34| mul : unctlon(w k, P, E, p, j)
35 t1:

36| t2

37| s1

38| s2 =

39| ki, k2 := dec(k, p, E)

40| Q := phl(P E, p,

41 t1 = Reverse(wNaf(w k1));

421 ml = #t1,

43| t2 : Reverse(wNaf(w k2));
44| m2 = #t2;

45 m: MaX|mum(m1 m2);

46| if m1l eq m then

47 for i:=(m2+1) to m do
48 t2[i]:=0;

49 end for;

50| elif m2 eq m then

51 for i:=(m1+1) to m do

52 t1[i]:=0;
53 end for;
54| end if;

55| if k1 It O then
56 for =1 to ml do

57 tA[i]:=-t1[il;
58 end for;
59| end if;

60| if k2 It O then
61 for i:=1 to m2 do

62 t2[i]:=-t2[i];

63 end for;

64 end if;

65| for i:=1 to (2'w-1) by 2 do
66 sifi] = i *P;

67 s2[i] =i *Q;

68| end for;

69| R := EI[0,1,0];
70 for |—m to 1 by -1 do
R;

71 = 2%

72 |f tl[l] ne O then

73 if t1[i] gt O then

74 R = R + sl[t1][i]];

75 else

76 R := R - s1[Abs(t1[i])];

77 end if;
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end if;
if t2[i] ne 0 then

if t2[i] gt O then
R = R + s2[t2[i]];
else
R = R - s2[Abs(t2[i])];
end if;
end if;
end for;

return R, k1, k2, Q;
end function;

p := NextPrime(Random([4..2°32]));
repeat
p := NextPrime(p);
F = GF(p);
until (p mod 8) eq 5;
_<x> := PolynomialRing(F);
K<u> = ext<F|x"2-2>;

repeat

Random(F);
Random(F);
ElllptlcCurve([a b]);

a =
b =
E1l
BaseExtend(El K);
+1-nl;

Kl(u2) *a;

KI(u"3) «b;

E2d := EllipticCurve([ad, bd]);
assert IsQuadraticTwist(E2,E2d);
n2d = (p-1)°2 + t'2;

assert #E2d eq n2d;

S := Factorization(n2d);

= S[S|[1];

h := n2d div r;
until h le 4;

,_,
BRI
i Iluu [1IT]

R := Random(E2d);
= h*R;
sert Order(P) eq r;
= E2d![0,1,0];
*P eq e;
(FL-1);

ass
e :
assert r

Sqrt
: Random([O .2750]);

asser
i =

k :
w
R, k1, k2, Q := mul(w, k, P, E2d, p, i);
R;

OCO~NOTOAWN =

assert k *P eq R;
Code A.12: MAGMA/gls—point—-mul
p := 115792089210356248762697446949407573530086143415 290314195533631308867097853951; //
NextPrime(Random([4..2°256]));
F = GF(p);
a = FI-3;
b := FlOx5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53 b0f63bce3c3e27d2604b;
E := EllipticCurve([a, b]);
TentM = 0;
TentS = 0;
TentD = 0
TentA = 0;
if (-16) *(4+(@3)+27 =(b"2)) ne O then

R := Random(E);
if R ne E!O then
for i:=1 to 1000 do
k := Random(11579208921035624876269744694940757352999 6955224135760342422259061068512044369)

t = k *R;
X, y, cntM, cntS, cntD, cntA:=RTLPointMul(k, R[1], R[2], a, E);
if (1] ne x) or (t[2] ne y) then
1] eq x;
2] eq y;
Order(R);
print a, b, k, R;
else
print XY, cntM, cntS cntD, cntA;

TcntM+cntM
TcntS+centS;

4
o
=1
==
<
i

TentS :
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28 TentD = TentD+cntD;
29 TcntA = TcntA+cntA,
30 end if;

31 end for;

32| end if;

33| end if;

34| print"END";

35| TentM/1000 + 0.0; TcntS/1000 + 0.0; TentD/1000 + 0.0; TcntA/ 1000 + 0.0;

Code A.13: MAGMA/test—code
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