
YAŞAR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MASTER THESIS

ON THE APPLICABILITY OF SIMULATION AS A
VERIFICATION TOOL FOR MARKOVIAN MODELS

OF PRODUCTION SYSTEMS

DENIZ DURMUŞ

THESIS ADVISOR: PROF. DR. SENCER YERALAN

DEPARTMENT OF INDUSTRIAL ENGINEERING

PRESENTATION DATE: 03.06.2016

BORNOVA / İZMİR
JUNE 2016

ABSTRACT

ON THE APPLICABILITY OF SIMULATION AS A VERIFICATION TOOL

FOR MARKOVIAN MODELS OF PRODUCTION SYSTEMS

DURMUŞ, Deniz

MSc, Department of Industrial Engineering

Advisor: Prof. Dr. Sencer YERALAN

June 2016, 69 Pages

In the study of stochastic models of production and service systems, analytical results

are quite often validated by simulation studies. This study calls into question the the

ontological aspects, let alone the validity, of simulation. This thesis investigates the

claim and its implications, and finally brings a resolution to the seemingly

paradoxical practice, which has been entrenched in the dominant paradigms of

operations research. In doing so, the thesis contributes to the state of the art by

providing additional insights and a deeper understanding.

Key Words: Structure of Scientific Revolution, System's View, Paradoxes,

Production and Service Systems, Simulation, Stochastic Models

iii

ÖZET

BENZETİMİN ÜRETİM SİSTEMLERİNİN MARKOV MODELLERİNDE

DOĞRULAMA YÖNTEMİ OLARAK UYGULANABİLİRLİĞİ

DURMUŞ, Deniz

Yüksek Lisans Tezi, Endüstri Mühendisliği Bölümü

Danışman: Prof. Dr. Sencer YERALAN

Haziran 2016, 69 Sayfa

Üretim ve servis sistemlerinde kullanılan rassal modellerin analitik çözümleri

genellikle benzetim çalışmalarıyla doğrulanmaktadır. Bu çalışma benzetimin

ontolojik açıdan doğruluğunu sorgulamaktadır. Paradoksal görünümüne rağmen

benzetimin neden ve hangi durumlarda başarılı olduğu ve hangi durumlarda da bir

geçerleme yöntemi olarak yetersiz olduğu saptanmıştır.

Anahtar Kelimeler: Benzetim, Servis Sistemleri, Üretim Sistemleri, Rassal

Modeller, Sistem Bakışı

iv

ACKNOWLEDGEMENTS

“Once upon a time there was a young prince who believed in all things but three. He

did not believe in Princesses, he did not believe in islands, he did not believe in God.

His father, the king, told him that such things did not exist. As there were no

princesses or islands in his father's domains, and no sign of God, the prince believed

his father.

But then, one day, the prince ran away from his palace and came to the next land.

There, to his astonishment, from every coast he saw islands, and on these islands,

strange and troubling creatures whom he dared not name. As he was searching for a

boat, a man in full evening dress approached him along the shore.

"Are those real islands?" asked the young prince.

"Of course they are real islands," said the man in evening dress.

"And those strange and troubling creatures?"

"They are all genuine and authentic princesses."

"Then God must also exist!" cried the prince.

"I am God," replied the man in evening dress, with a bow.

The young prince returned home as quickly as he could.

"So, you are back," said his father, the king.

"I have seen islands, I have seen princesses, I have seen God," said the prince

reproachfully.

The king was unmoved.

"Neither real islands, nor real princesses, nor a real God exist."

"I saw them!"

"Tell me how God was dressed."

"God was in full evening dress."

"Were the sleeves of his coat rolled back?"

The prince remembered that they had been. The king smiled.

v

"That is the uniform of a magician. You have been deceived."

At this, the prince returned to the next land and went to the same shore, where once

again he came upon the man in full evening dress.

"My father, the king, has told me who you are," said the prince indignantly. "You

deceived me last time, but not again. Now I know that those are not real islands and

real princesses, because you are a magician."

The man on the shore smiled.

"It is you who are deceived, my boy. In your father's kingdom, there are many islands

and many princesses. But you are under your father's spell, so you cannot see them."

The prince pensively returned home. When he saw his father, he looked him in the

eye.

"Father, is it true that you are not a real king, but only a magician?"

The king smiled and rolled back his sleeves.

"Yes, my son, I'm only a magician."

"Then the man on the other shore was God."

"The man on the other shore was another magician."

"I must know the truth, the truth beyond magic."

"There is no truth beyond magic," said the king.

The prince was full of sadness. He said, "I will kill myself."

The king by magic caused death to appear. Death stood in the door and beckoned to

the prince. The prince shuddered. He remembered the beautiful but unreal islands and

the unreal but beautiful princesses.

"Very well," he said, "I can bear it."

"You see, my son," said the king, "you, too, now begin to be a magician."”

John Fowles (1985)

vi

TABLE OF CONTENTS

ABSTRACT... iii

ÖZET.. iv

ACKNOWLEDGEMENTS...v

TEXT OF OATH...vii

INDEX OF FIGURES...x

INDEX OF TABLES..xi

INDEX OF SYMBOLS...xii

CHAPTER ONE THE SCOPE AND CONTRIBUTION OF THE THESIS...........................1

CHAPTER TWO INTRODUCTION..3

2.1. THE STRUCTURE OF SCIENTIFIC REVOLUTIONS..4

2.2. CRITICAL THINKING AND ITS CONTEXTUAL RELATIONSHIP WITH

PARADOXES...7

2.3. PARADOXES...8

2.3.1. VERIDICAL PARADOXES...8
2.3.2. FALSIDICAL PARADOXES..9
2.3.3. ANTINOMIES..10

2.4. PRODUCTION LINES...11

CHAPTER THREE SIMULATION OF PRODUCTION AND SERVICE SYSTEMS.........13

3.1. THE PARADOX...13

3.2. THE M/M/1 QUEUE..13

3.3. OBSERVATIONS AND CONCLUSIONS..18

CHAPTER FOUR MARKOVIAN MODELS OF PRODUCTION LINES..........................21

4.1. A THREE STATION LINE WITH NO BUFFERS...22

4.2. A TRUNCATED MODEL OF THE THREE STATION PRODUCTION LINE WITH

NO BUFFERS...24

viii

4.3. MORE ACCURATE TRUNCATED MODELS OF PRODUCTION LINES WITH NO

BUFFERS...27

CHAPTER FIVE CONCLUSIONS AND FUTURE RESEARCH..31

REFERENCES..33

APPENDIX 1 – CRITICAL THINKING..37

APPENDIX 2 – M/M/1 SIMULATION IN SCILAB..41

APPENDIX 3 – THE MAXIMUM LENGTH OF THE M/M/1 QUEUE..............................43

APPENDIX 4 – THE ALGORITHM..49

APPENDIX 5 – SOFTWARE DEVELOPMENT..53

ix

INDEX OF FIGURES

Figure 1. Revolution In Science...5

Figure 2. Simulation Run Results..15

Figure 3. The Average Number Of Customers In The System As A Function Of The

Simulation Runtime...15

Figure 4. Server Utilization As A Function Of The Simulation Runtime...............................16

Figure 5. Nmax As A Function Of Runtime, As Obtained By Simulation..............................17

Figure 6. Nmax As A Function Of Runtime, As Computed Theoretically..............................18

Figure 7. Production Rate As A Function Of Breakdown And Repair Probabilities...............23

Figure 8. The State Transition Diagram Of The Truncated Bufferless Three Station Model..26

Figure 9. Absolute Percentage Errors As Functions Of Model Parameters............................27

Figure 10. A Section Of Ascending And Descending By Escher..39

Figure 11. The Probability Distribution Function Of Nmax (l9, M10, T=1000)................45

Figure 12. The Probability Mass Function Of Nmax (=9, =10, T=1000).........................45

Figure 13. A Portion Of The Output Of PLT..53

Figure 14. The Rudimentary Command-Line Help Listing Of SXB0T..................................55

Figure 15. Executing SXB0T...55

Figure 16. Code Generation, Compilation And Linking..56

x

INDEX OF TABLES

Table 1. System States Of The Production Line...22

Table 2. Steady-State Probabilities Of The Production Line Model (q=0.01, R=0.1)............24

Table 3. States With Fewer Than Two Stations Under Repair..25

Table 4. Number Of System States (N/K Models, N Stations, At Most K Down).................28

Table 5. Average Percentage Error Of The N/1 Truncated Models..29

Table 6. The Algorithm..50

xi

INDEX OF SYMBOLS

N Number of stations of the production line.

D Maximum number stations allowed to be down at any given time.

q Breakdown probability.

r Repair probability.

U Station state “Up and operating”.

D Station state “Down and under repair”.

B Station state “Blocked (operational but unable to unload the finished part)”.

S Station state “Starved (operational but waiting for a part)”.

X Station state “Down and blocked (down, under repair but unable to unload the

finished part)”.

xii

1 CHAPTER ONE

THE SCOPE AND CONTRIBUTION OF THE THESIS

We take a rather phenomenological approach to reviewing the various stochastic

models developed within the operations research community over the past half

century. We attempt to distance ourselves from the customary set of assumptions and

hitherto discipline-customary simplifications.

Although the thesis is composed with the engineer community in mind, it is

presented in a format suitable for the non-engineer reader. In particular, we discuss

the fundamental ideas and their logical implications in the body of the thesis, while

computational and analytical details are relegated to the appendices. Moreover, a

rather extensive review of the basic concepts appears in the various sections and in

the literature review. Readers familiar with these supporting fields may freely skip

the literature review.

In this treatise, we examine aspects of stochastic models in production and service

systems. We dwell on the meaning and essence of simulation studies which

ubiquitously accompany most of the published research. Simulation is most often

employed as a verification tool, and occasionally as an investigative tool. We

question the ontological aspects of state-space-based stochastic models (e.g.

Markovian models) and investigate if simulation rises up to the stature of being a

determinant of verification.

Specifically, we address the following conundrum. It is observed that Markovian

models give rise to inordinately large state spaces. Production line models may easily

have state spaces with cardinalities in the order of 10100 or more. How is it then, that

simulation is a justifiable validation tool, when it is obvious that a regular simulation

run may never visit all of the states of the Markovian model?

This conundrum is very seldom address in the literature. Moreover, as simulation

constitutes a fundamental component of the dominant paradigm, it behooves us to

1

scrutinize its role and its limitations. This will not constitute extraordinary science,

but will serve to question the dominant paradigm, and hopefully lead to either the

reinforcement or the degradation of the dominant paradigm. Either way, we submit

that it is valuable research, albeit not in the form of normal science.

The paradox is addressed and resolved. The resolution not only provides insights into

the use of simulation as a verification tool, but also presents facilities to develop

novel approximations to the traditional Markovian models. The contribution of this is

thesis should be considered mainly as a study to provide deeper insights and a better

understanding of the use of various analytical and conceptual tools and techniques.

As a direct corollary, we are able to identify when simulation becomes a valid tool

and when it does not. Thus, the study sheds light onto the current practices by

alerting the practitioner when not to rely on simulation as a tool of verification.

It should be noted that, by its nature, the topic required dealing with larger sets of

data, whose exact solutions are needed for the conceptual analysis. Accordingly,

much effort was involved in code development. In particular, it is noteworthy that

some source code are in the order of 1 gigabyte. Clearly, a gigabyte of code is not to

be written manually. The approach here was to write code that in turn generates

source code, later to be incorporated into downstream compiling and linking. The

code development itself may also be considered as a contribution, as it provides a

template or framework to the generation of multi-echelon software.

The following sections give a brief background in the structure of scientific

revolutions critical thinking, paradoxes and production lines. Afterwards, we will

revisit our conundrum and define it more precisely.

2

2 CHAPTER TWO

INTRODUCTION

This thesis strives to investigate fundamental properties of a class of models

commonly used in industrial engineering. Unlike most works that develop extensions

to known models, approaches, or techniques, the emphasis here is to gain insights

and understanding. As a direct consequence of our desiderata, much investigative

work was needed before finally developing the ideas presented here. Clearly, seeking

novelty, by definition, requires that we disengage from the dominant tools and

techniques prescribed for a given subject area. This work, accordingly, required a

considerable amount of self learning in related areas such as the nature of scientific

paradigms, chaos theory, modeling competitiveness in multi-predator multi-prey

models, industrial dynamics, general systems theory, and complexity.

The specific area of research is Markovian models of production and service systems.

Although the area of stochastic models of production and service systems is quite

broad, a specific focus area, namely that of production lines, is sufficient to illustrate

the ideas. Again, our emphasis is not in the extension of existing models, but in

obtaining further insights into, and a deeper understanding of, these models. We

made every effort to keep the examples simple so that the reader is not prevented

from seeing the proverbial forest for the trees. Accordingly, we pick discrete

Markovian models of multi-station production lines with no inter-station buffers.

Some aspects of the work require the use of analytical comparisons. We chose the

simplest queueing model, namely the M/M/1 queue for this purpose. Once again, our

work also relates to the use of simulation as a tool. Here, we wrote the simulation

code in the general engineering computational environment of Scilab.

The computational aspects of our work are also somewhat unusual. Most of the

developed code does not compute, but rather, generate source code for downstream

compiling and execution. In this sense, it is closer to hard AI (artificial intelligence)

3

than it is to computation. It thus follows that we are not much interested in

computation times, other than the practicality of waiting for the code to be so

generated. All code development was done in open-source environments using open-

source tools. Detailed information about the code is given in the appendices.

2.1. THE STRUCTURE OF SCIENTIFIC REVOLUTIONS

It is already stated that the current work aims to develop insights and understanding,

rather than to pursue extensions within the framework of a dominant set of tools and

techniques. Such tools and techniques are called a “paradigm”. The word “paradigm”

was not a popular until it was used by Thomas Kuhn (1970). Kuhn, the physicists and

philosopher, introduces this notion in his 1965 book “The Structure of Scientific

Revolution”. Kuhn introduces the phenomenon of a “Paradigm Shift” to emphasize

the distinction between what he calls “Normal Science” and “Extra-Ordinary

Science”. Before explaining normal and extra-ordinary sciences, let us first dwell

further on what a paradigm is.

The word “paradigm” comes from the Greek word “paradiegma”, which means

“example”. It is used as a guide for a better understanding of a phenomenon. On the

other hand, in its contemporary use, the word “paradigm” is mostly used to describe

the entire whole of a technique or a value in a community. Remarkably, the word

“paradigm” is one of the few words that have both monolithic and holistic notation.

This observation may not be adequate in rigorous philosophical context. However, in

this thesis, any differentiation of the concept of paradigm, between these two

implications is not necessary.

We can basically summarize Kuhn's ideas of a scientific revolution in three stages, as

seen in the figure below.

4

In pre-paradigmatic stage, there are a few ideas that compete with each other, and try

to become a dominant (or alpha) idea. This is then labeled the alpha-paradigm. We

may call this stage, the competition of paradigms in which the scientists are clustered

behind their favorite paradigm, as the process tries to pick one of the paradigms.

After some time, most of the proposed paradigms are eliminated from further

consideration, and just a few of them are left. At the end of this stage, one paradigm

becomes the alpha-paradigm. This represents the conviction of a majority of the

scientists that following the chosen alpha paradigm to be more appropriate and

effective for the development of the field. After the competition ends, and one

paradigm becomes the winner, science is conducted through “normal (ordinary)

science”.

In normal science, the scientists operate within the guidelines of the winning

paradigm, find its limits and try to extend its potential. As time passes, and even

though the community has some problems with the dominant paradigm, trust of, and

a familiarity to the dominant paradigm develops over the years. Often, the

community is blinded and does not accept the paradigm's shortcomings, or is afraid

of what might happen after letting go of the dominant paradigm. This is called

“Paradigm Paralysis”. It is very hard at this point to accept that the existing

5

Figure 1. Revolution in Science.

paradigm is not adequate, to break the chains for a new paradigm, and make a leap.

But eventually the paradigm causes a crisis in the scientific community, and this

leads us to the next phase of the science, that is, what Kuhn names “Extraordinary

Science”.

At this stage, to answer all those unanswered questions, a scientific revolution is

needed. Creating a new paradigm, a methodology, requires more work and patience

compared to normal science. Kuhn's idea of a revolution in science has significant

philosophical ramifications. From the beginning of the 20th century, the beginning of

the logical positivism, it was well accepted that science is a cumulative progress. But

according to Kuhn, science is not cumulative, and we need to make a leap to make a

progress. A crucial fact of extraordinary science, according to Kuhn, is that different

scientific paradigms are incommensurable. If two scientists from different paradigms

try to find a new method on the same subject, they cannot compare their work to each

other. Their experiments and observations depend on the observer, thus one's work

may seem irrational or irrelevant to the other one. In this stage, new proposed

methodologies are conducted and proposed to the community and we get back into

the pre-paradigmatic stage.

We cannot say whether ordinary or extra-ordinary sciences is better. Because these

two phenomena are interconnected. They are co-dependent in a cyclical self-

triggering fashion. Only together as a whole, one can speak of science. But the

question is, since science depends on the paradigm of the experimenter or observer, is

progress in science is arbitrary?

It was stated that this thesis aims to develop understanding and insights. Actually, it

might be more appropriate to say that we wish to work on something other than

normal science. The pursuit of extraordinary science, by definition, is not possible by

a checklist or through an established technique. For this would mean there is already

a paradigm to conduct extraordinary science, which logically is a contradiction. As an

alternative to extraordinary science, however, academic research may be oriented to

investigate and question the dominant paradigms. The hope is that such investigation

may lead to extraordinary science, or at least bring about deeper understanding, either

reinforcing or eroding the dominant paradigm. Parenthetically, let us also divulge

why we want to work outside the dominant paradigm. The survey of the greater

6

literature in philosophy of engineering, philosophy of science leads to the question of

the role of an engineer in academia (Engineering, 2010). A case in point, if the role of

an engineer is to apply science, why is so much academic engineering research

oriented towards basic research, arguably void of any hope for application or

implementation? There are numerous articles that claim that studies in academia are

irrelevant to the extent that they cannot be applied in real world (Anonymous

Academic, 2014; Panda and Gupta, 2014; Boehm, 1980; Economist, 2010 ; Jon

Excell, 2013).

We have to state that this study is not exactly Extraordinary Science. However, we do

not have any references to create a checklist to get results. This study focuses on the

simulation in production lines and queues. Literature review on production lines and

paradoxes are given as a subsection in Chapter 1. The scope of the thesis is explained

in Chapter 2. Analysis in M/M/1 Queue and Production Line are given in Chapter 3,

and Chapter 4, respectively. Lastly, Conclusion and Future Studies is given in

Chapter 5.

2.2. CRITICAL THINKING AND ITS CONTEXTUAL RELATIONSHIP

WITH PARADOXES

Science and technology are what they are now due to the scientists and academicians,

who have been skeptical within a rigorous framework of critical thinking. Costa

(1985) gathered different definitions of critical thinking from different works. Critical

thinking might be defined as thinking which achieves a rational conclusion using

adequate information by analyzing, observation, evaluation, or explanation. The

Critical Thinking Community (Critical Thinking Community, n.d.) also has a

definition which is widely accepted. They define critical thinking to be “the

intellectually disciplined process of actively and skillfully conceptualizing, applying,

analyzing, synthesizing, or evaluating information gathered from, or generated by,

observation, experience, reflection, reasoning, or communication, as a guide to belief

and action” (Critical Thinking Community, n.d.).

According to Paul (1991), there are three groups of mental structures to be

considered as an open-minded thinker. The first one is micro-level skills by which

one distinguishes a subsentence, a skeptical assumption, or inconsistency. At the

7

macro-level, there are skills by which one makes contributions to discussions, creates

theories, and knows how to approach a subject critically. The third group of essential

skills to critical thinking contains the aspects of mind such as intellectual virtues and

moral commitments. Paul (1991) also gives a detailed table of the elements of critical

thinking.

Further examples of critical thinking are given in Appendix 1.

2.3. PARADOXES

The word of “paradox” stems from Greek word “parádoxos” which its root based on

“pará” (“beyond”) and “dóxa” (“expectation”) means contrary to expectation. Felkins

(1995) states that the paradoxes may occur from our lack of understanding which

may caused by the inadequacies of our language. In most of the paradoxes, the

conclusion is seemingly both true and false at the same time, and thus present

unresolved contradictions. Since the paradoxes show us the flaws in our

understanding and the way we think, contradiction is essential to paradoxes.

Paradoxes are also self-referenced and sometimes they include circularity. One of the

most known paradox, “This sentence is a lie” is self-referenced. “A goes to B”, “B

goes to A” are the basic circular paradoxes. However, paradoxes may caused by false

or prejudiced statements which may be come from generalizations.

Cantini (2007) wrote in detail the development of paradoxes and contemporary logic.

Cucić (2009) also wrote the development of paradoxes and very well gathered

notable classifications made by other researchers.

There are several types of paradoxes. The classification of paradoxes by Quine

(1966) might be reckoned as a basis for other classifications. According to Quine,

there are three types of paradoxes as described in the following sections.

2.3.1. VERIDICAL PARADOXES

Veridical paradoxes are also known as Truth-Telling or Verification paradoxes. They

lead us to a seemingly absurd conclusion, however when a new premise is included,

it convinces us that the conclusion is valid. This type of paradoxes may occur in

situations where the language we use, or our understanding thereof, is not adequately

8

sufficient for the circumstances. We may need more information or a new point of

view on these paradoxes. Quine gave these examples to explain veridical paradoxes:

The Frederic Paradox: In the opera named Pirates of Penzance, the character Frederic

who works as an apprentice for the pirates, wants to leave because he wants to fell in

love poetically. His friends in the ship fell badly about it, and do not want him to

leave. On his 21st birthday, they tell him that he cannot leave the ship because in his

contract, it is specified that he may leave at the age of 21, but he is currently only 5

years old, and that he has to remain with the pirates for 63 years. Even though it

seems absurd at first, we can easily solve the paradox by saying that he was born in

the leap year.

The Barber Paradox: Another example for veridical paradoxes that Quine gives is the

so-called Barber Paradox. Here, there is a village barber who shaves all and only the

men who cannot shave themselves. The first question comes to mind is that who

shaves the barber. If the barber cannot shave himself, then the barber has to be shave

himself. But, if he can, then he should not. There is an obvious circularity in this

paradox. However, as stated earlier, such paradoxes can be viewed as an indication of

our lack of understanding, or as inadequacies of our language. Thus, Quine's

resolution of Barber Paradox might be the easy way out. After all, it is not stated if

there is any other barber. If there is another barber in the village, then the second

barber can shave our hero, thus the paradox unravels. But if there is no other barber

in the village, we have no argument that only barbers can shave other men. By this

we can conclude that arguments that create paradoxes might narrow our viewpoint.

2.3.2. FALSIDICAL PARADOXES

Falsidical paradoxes are the ones that not only seem false, but are false. The

conclusions established from the falsidical paradoxes are evidently absurd, but the

arguments creating the paradoxes seem true. The causes that create the falsidical

paradoxes are the hidden fallacies in the arguments. Most common falsidical

paradoxes are the mis-proofs of algebra.

The 2=1 proof by Augustus De Morgan: Assume that X=1. If we multiply each side

of the equation by X, we obtain X2 = X. Then we subtract 1 from each side, we get,

X2-1 = X-1. We extend the left side of the equation as, (X-1)(X+1) = X-1. If we

9

simplify the equation by dividing each side by (X-1), we obtain, X+1 = 1. Since X=1,

we get, 2 = 1. The conclusion is obviously wrong, even though we applied reasonable

steps on the equation. However, what is not noticed is, X-1=0. Thus the fallacy in the

argument is dividing the equation by X-1.

Achilles and the Tortoise: Another example that Quine gives is one of the Zeno

Paradoxes, Achilles and the tortoise. As Silagadze writes (2005), Zeno claims that

plurality, motion, and change are illusions, and established paradoxes categorized by

these concepts. Achilles and the tortoise is one of the three paradoxes to defy that the

motion is real. In this paradox, Achilles and the tortoise decides to make a footrace.

Since the tortoise is really slow, Achilles gives him a head start. The paradox

establishes a conclusion at this point, that the fast runner can never overtake the slow

runner. Zeno says that where the fast runner gets after an interval of time, the slow

runner will be further from that point. Thus the motion is just an illusion. However,

what Zeno does not see is that Achilles will overtake the tortoise either in an infinite

or a finite time. The resolution of this paradox and other Zeno Paradoxes are given by

several works (Silagadze, 2005; Dowden, n.d.; Byrd, 2010).

2.3.3. ANTINOMIES

Antinomies are the paradoxes that do not fit in these two categories above. They

create a “crisis in thought” as Quine states (Quine, 1966). If one cannot find a fallacy

in an argument, or cannot be convinced by the conclusion of the paradox, then these

are called antinomies. The following examples are generally accepted as antinomies.

Grelling – Nelson Paradox: Before explaining the Grelling – Nelson Paradox (a.k.a.

Grelling's Paradox), let us first define the adjectives “homological” and

“heterological”. Homological is defined as “describing itself”. “English” is a

homological word, since the word itself is English. “Word” is also homological, since

the “word” is also a word. Heterological, on the other hand, is defined as “not

describing itself”. “German” is a heterological word because it is not a German word.

Long is also a heterological one since “long” it is not a long word, but a short,

monosyllabic word.

What is paradoxical here is whether the word “heterological” is heterological or

homological. The definition of heterological is “not describing itself”. Thus the word

10

“heterological” should not describe itself. But it does, as all words have a meaning.

Thus, we conclude that the word “heterological” is homological. However, if it is a

homological word, heterological defines itself, and thus is a homological word. Thus

there is a contradiction due to self-reference.

The Paradox of Epimenides: This paradox is very similar to Grelling's paradox.

Epimenides was a Cretan who said “All Cretans are liars”. This is also a self-

referencing paradox, which has the same structure as “This sentence is a lie”. If all

Cretans really are liars, then the sentence of Epimenides is true. Therefore, he told

the truth where the contradiction causes a paradox.

If we consider that some aspects of nature cannot be explained in any circumstance,

antinomies are reasonable explanations of paradoxes. However, if we are pioneers in

supporting that nature itself can always be explained but today's knowledge and

experience are insufficient to explain, we can say that antimonies are also the

paradoxes that would be resolved if more information were provided. Thus

antinomies can also be considered as veridical or falsidical paradoxes. Furthermore,

Quine (1966) states that “One man’s antinomy can be another man’s veridical

paradox, and one man’s veridical paradox can be another man’s platitude”, meaning

that defining the type of paradoxes is relative upon one's knowledge and experience.

2.4. PRODUCTION LINES

Production lines are linear arrangements of workstations, where workstations display

some type of randomness. Typically, the randomness may be due to random service

times, or due to station breakdown. Often interstation buffers are employed to

compensate for these sources of randomness. This makes the subsystem of each

station with its preceding buffer look like a simple queueing system. Thus,

production lines may also be regarded as tandem queues. This invites the

generalization of tandem queues to queueing networks.

Production lines have received much attention in the industrial engineering and

operations research literature. Starting from the mid-fifties, considerable work has

been done in both understanding the fundamental mathematical structure of queueing

networks, and in developing computational techniques to predict the performance of

11

production lines. The latter concern underlies the justification of much of the

simulation tools developed in the dawn of the computer age.

Analytical models for multi-station production lines, which are the focus of this

research, are classified in two main categories. These categories depend on whether

time is considered to be continuous or discrete. Discrete models are more suitable for

paced assembly lines, often seen in automotive production. Modeling these systems

is often done by continuous- time and discrete-time Markov models. Continuous-

time models are favored in the process industry where no identification of the

individual units exists, (e.g. chemical industries). In almost all cases, focus is on the

evaluation of two primary performance measures: the production rate, and the

expected number of items in the buffers.

The studies of Schick and Gershwin (1978), Muth (1979), Muth and Yeralan (1981),

and Gershwin and Schick (1983) are early examples of discrete -time Markovian

models. Studies conducted by Yeralan et al. (1986), Yeralan and Tan (1997) provide

examples of continuous-time models.

There are many extensions to these basic models. For instance, Maggio et al.

(Maggio, Matta, Gershwin, and Tolio, 2009) present closed-loop systems. These may

be considered as queueing networks. Such closed-loop systems are seen in industries

where hot pallets are used to hold the workpiece while it progresses through the

manufacturing system. Once the workpiece is completed, the hot pallets are returned

to the beginning of the line. Thus, the models track the hot pallet.

There are several textbooks on the subject, to which the reader is referred for detailed

information (Altiok, 1996; Askin and Standridge, 1993; Buzacott and Shanthikumar,

1993; S.B. Gershwin, 1994; Li and Meerkov, 2009; Papadopolous, Heavey, and

Browne, 1993; Tempelmeier and Kuhn, 1993).

12

3 CHAPTER THREE

SIMULATION OF PRODUCTION AND SERVICE SYSTEMS

It is customary among those studies reported in the literature of stochastic models of

production and service systems to find simulation runs that accompany any given

analytical development. Simulation is most often used as a tool of verification. We do

not question the basic premise that simulation may be used in this capacity. However,

many models are developed in a brute force manner that the meaning of the very

premise of a model becomes vulnerable to criticism. A recent report by Yeralan and

Büyükdağlı (2015) mentions an automotive plant with 168 robotic workstations

arranged in a serial manner. Even without inter-station buffers, given that each

workstation is subject to breakdown, the system modeled as a discrete-time discrete-

space Markov chain has over 1050 states. If we were to visit a different state every

nanosecond, a complete tour of all the states would take 1027 times the age of the

universe. This is an incomprehensible number – so incomprehensible that Yeralan

and Büyükdağlı calls into question the ontology of such a model.

3.1. THE PARADOX

We routinely see simulation models developed and used to analyze stochastic

Markovian models of production and service systems. Given that there are an

inordinate number of system states in typical Markovian models, how is it the case

that simulation gives us answers which would take total enumeration a practically

endless amount of time? We attempt to address and answer that very question in this

thesis.

3.2. THE M/M/1 QUEUE

First, consider a system modeled as a continuous-time, discrete-state Markov

process. We pick a system with the number of states even greater than the 1050

mentioned for the automotive plant model. The continuous-time M/M/1 queue has a

13

single server and an input queue. Customer arrive to the system with a rate of .

Similarly, the service of a customer, provided that the system is not empty (and hence

the server is not idle), is completed with rate . The number of customers in the

system uniquely determines the state of the system. It is clear that the number of

customers in the system is unbounded. Thus, the system state space is unbounded,

with an infinite number of elements. A complete tour of all the states of the system is,

by definition, impossible in a finite amount of time, irrespective of how quickly we

visit each state.

In analyzing the M/M/1 queue, we often investigate two performance measures: the

expected number of customers in the system, and the utilization of the server. The

latter refers to the probability that the server is busy servicing a customer, or

equivalently, that the system is not empty.

It is a relatively pedantic task to show that the system is stable if the arrival rate  is

less than the service rate . Or the ratio =/, which is also referred to in the

discipline as the traffic intensity, is less than unity. If the traffic intensity is greater

than unity, then the system becomes unstable and the number of customers in the

queue is expected to keep growing over time, never converging to a finite value.

Analytical work quickly reveals that if the traffic intensity is less than unity, then the

expected number of customers in the system is 1/(1-). Similarly, the server is busy

with probability  and idle with probability (1-) (Hillier and Lieberman, 2009).

We next build a simple simulation model for this infinite-state Markov process (see

Appendix 2). A typical result from the simulation runs is given below.

14

 --- simulation parameters ---

Run time: 1000

Arrival rate: 9.00

Service rate: 10.00

Number of arrivals: 9023

--- simulated performance measures ---

Utilization: 0.89

Average number of customers: 7.76

Maximum number of customers: 54

--- computed performance measures ---

traffic_intensity: 0.90

ave_num_in_system: 9.00

Figure 2. Simulation Run Results.

As seen, with a traffic intensity of 0.9, with a total of about 9000 transactions (9023

customers arriving), we obtain fairly good estimates for the performance measures.

The utilization is found to be 0.89 (0.90 theoretical), and the average number of

customers in the system was found to be 7.76 (theoretical 9.00).

Increasing the run time, and hence the number of transitions gives results even closer

to the theoretical values. The graphs below show how the estimated performance

measures are affected by the runtime.

15

Figure 3. The Average Number of Customers in the System
as a Function of the Simulation Runtime.

Now, the question remains, as to how is it possible for a simulation run of only a few

thousand transaction to yield performance measures so close to the theoretical values

(relative errors in the range of a few percent), given that a total enumeration of the

states is impossible. After all, the M/M/1 queue has an infinite number of states.

Since we run the simulation for a limited number of transactions (a limited amount of

simulated time), it is clear that the simulation does not visit all possible states. We

next inquire how many distinct states the simulation run actually visits.

Clearly, the M/M/1 queue may only make a transition to an adjacent state. That is, if

there are N>0 customers in the system, the next transition would be to either state

N+1 or to state N-1. Hence, the number of customers in the system throughout the

simulation run is bounded by a maximum and minimum. It is customary to start the

system at state 0 (empty system). Then the maximum number of customers in the

system, Nmax, during the simulation run is a finite number. Again, it is quite clear that

Nmax is a function of the simulation run. As the simulation run time increases, we may

expect Nmax to also grow, as there is more time for visiting states with a higher

number of customers.

We modify the simulation code given in Appendix 2 and keep track of Nmax. It is then

plotted as a function of the runtime.

16

Figure 4. Server Utilization as a Function of the Simulation
Runtime.

Figure 5 shows the results of the simulation runs. Each simulation run has a service

rate of 10, and a runtime between 100 and 5000 time units. Five different arrival rates

are used: 1, 3, 5, 7, and 9. The simulation was run and the maximum number of

customers in the system (Nmax) throughout the runs were recorded. Each point on the

graph is actually an average of 50 runs with identical parameters. It is interesting to

observe that, in each case, Nmax quickly and asymptotically approaches a constant

long-term value.

It is possible to analytically compute the expected value of Nmax as a function of the

system parameters and the length of time the system is observed. Such computation

falls into the domain of transient analysis. Appendix 3 gives the transient analysis for

an M/M/1 queue which starts with an idle server and runs for a given period of time.

The analytical work shows how Nmax may be computed. Here we will suffice with

simply graphing the theoretical values of Nmax and comparing them to the figure

above.

17

Figure 5. Nmax as a Function of Runtime, as Obtained by
Simulation.

With a simulation runtime of 5000 time units, theoretically, the expected maximum

number of customers in the system is about 65.

3.3. OBSERVATIONS AND CONCLUSIONS

In effect, the simulation runs successfully evaluates the two performance measures,

the utilization probability and the expected number of customers in the system, by

only visiting a handful (say 100) of states out of the possible infinite number of

states. The implications of this observation are quite significant in many ways.

First, it shows that the value of simulation as an investigative tool is not only in its

utility to collect data and obtain statistics, but also in delineating and concentrating

on the more likely states and ignoring (completely) the states which have negligible

effect on the performance measures. In effect, the simulation only considers a

“truncated” system, where among the infinite number of states, only a few hundred

states are dealt with. In other words, if we were to build a simulation model of the

M/M/1 queue and another for a modified M/M/1 queue where arrivals to the system

with 100 customers in it were lost, the two models would give us exactly identical

numerical results.

In a related observation, we see that simulation initial conditions are of importance.

For example, if we were to start the given M/M/1 queue simulation with 1,000,000

18

Figure 6. Nmax as a Function of Runtime,
as Computed Theoretically.

customers in the system and ran it for a few thousand time units, we would always

get the utilization to be 100%, since the simulation run would not be long enough for

the system to reach a steady-state.

A similar case could be made for different performance measures. Suppose the

probability that there are 1000 customers or more in the system is taken as a

performance measure. For the system discussed above, our simulation runs would

always return this value to be zero, since there will never be enough time for the runs

to observe such states with 1000 or more customers. Theoretically, however, these

performance measures are available quite easily.

Finally, and perhaps most importantly, the observations in this chapter point to some

insights concerning the modeling of production and service systems. As discussed,

realistic applications lead to unimaginably large state spaces. Brute force computing

the steady-state probabilities, as it is customarily pursued in the literature, is perhaps

rather superfluous. Inspired by the discussions above, one may attempt to build a

“truncated” model of the system and solve it. Of the 168 stations of the automotive

line, how many of the stations could be down at any given time? Clearly, the state

where all 168 stations are down is very very unlikely. If the probability of breaking

down is in the range [0, 0.01], then in the worst case, the probability that all 168

stations break down is about 10-336. Granted there are more ways to enter the state

where all 168 stations are down, but still, the argument is quite strong that the state

with all 168 stations down will never be observed.

19

4 CHAPTER FOUR

MARKOVIAN MODELS OF PRODUCTION LINES

The preceding chapter provides insights into simulation as a modeling and

computational tool. In particular, we find simulation to be useful in cases where the

performance measures sought are, in some particular sense, commensurate with the

general nature of simulation. It is clear that simulation is not a substitute for exact

models, e.g. computing the steady-state probabilities of a Markovian model, when

unusual performance measures are of interest.

In this chapter, we incorporate the insights gained into models of production lines.

We aim to address and resolve the claim (see Yeralan and Büyükdağlı, 2015)

concerning the validity – in fact, the ontological standing – of Markovian production

line models when the state space is simply telescoped by considering successive

Cartesian products of the station states. Consider that, when there are about 100

stations, each station being in a state down or up, we have at least 2100 system states.

This is an unfathomably large number. No current simulation study can be expected

to visit all of these states. However, we see from inspecting the M/M/1 queue that not

all states need to be considered when seeking the usual performance measures.

In particular, almost all studies start with an investigation into the production rate of

the line. The question is, parallel to the insights regarding the M/M/1 queue, is it

reasonable to consider a truncated state space of the production line and obtain a

good estimate to the production rate. After all, simulation is not expected to visit all

such states, while its results are considered to constitute a benchmark. In order to

address this question, we consider a minimalistic line, as we are interested in the

fundamentals rather than any of the details. The investigation is constructed in the

next section.

21

4.1. A THREE STATION LINE WITH NO BUFFERS

Consider a three-station production line with no buffers. The line is assumed to

operate in discrete time, as explained in (ref MY81). There are five station states: up

and operating (U), up but blocked (B), up but starved (S), down and under repair (D),

down, blocked and under repair (X). With three stations and no buffers, the Markov

chain has 32 states. These states are listed below.

Table 1. System States of the Production Line.

Index
Station

States
Index

Station

States
Index

Station

States
Index

Station

States

0 DDD 8 DSS 16 UUS 24 BDS

1 DDU 9 DBD 17 USD 25 BBD

2 DDS 10 DXD 18 USU 26 BXD

3 DUD 11 UDD 19 USS 27 XDD

4 DUU 12 UDU 20 UBD 28 XDU

5 DUS 13 UDS 21 UXD 29 XDS

6 DSD 14 UUD 22 BDD 30 XBD

7 DSU 15 UUU 23 BDU 31 XXD

Having only 32 states, the Markov chain can be solved exactly for the given

parameters. Given the station breakdown repair probabilities, we easily compute the

steady-state probabilities. The production rate is obtained as the steady-state

probability that the last station is in the state “up and operating”1. In this case, there

are eight such states, marked in bold in Table 1. Appendix 4 gives the C code that

was used to compute the steady-state probabilities and the production rate.

An illustrative simple case is when we have identical stations, each with a breakdown

probability of q and a repair probability of r. The production rate for such a

production line is illustrated by the graphic below.

1 The production rate is also available as functions of the other station probabilities, however, such
details are not the focus of our study. The reader is referred to the literature (see for instance (S.B.
Gershwin, 1994) for these details.

22

The insights into the why simulation works well for the M/M/1 queue led us to

conclude that certain states are never visited. Only those states which are pertinent to

the performance measures are visited. The performance of simulation, of course, also

depends on the initial state. We next list explicitly the steady-state probabilities of

each of the system states to see if there are any states with negligible effects on the

performance measure. We select rather realistic parameters. A breakdown probability

of 0.01 means that the mean time between failures is 100 cycles. The repair

probability is selected to be an order of magnitude larger, corresponding to a mean

time to repair of 10 cycles.

23

Figure 7. Production Rate as a Function of Breakdown and Repair Probabilities

Table 2. Steady-State Probabilities of the Production Line Model (q=0.01, r=0.1).

Index
Station

States

Steady-State

Probability
Index

Station

States

Steady-State

Probability

15 UUU 0.74867172 2 DDS 0.00028882

25 BBD 0.07514296 5 DUS 0.00011103

24 BDS 0.06805575 14 UUD 0.00007917

8 DSS 0.06089789 28 XDU 0.00007585

16 UUS 0.01500090 1 DDU 0.00006823

4 DUU 0.00752210 20 UBD 0.00003962

23 BDU 0.00752203 17 USD 0.00003574

19 USS 0.00676643 13 UDS 0.00003209

7 DSU 0.00676627 12 UDU 0.00000758

18 USU 0.00075181 31 XXD 0.00000280

30 XBD 0.00039688 10 DXD 0.00000252

26 BXD 0.00039618 27 XDD 0.00000228

22 BDD 0.00035895 0 DDD 0.00000204

9 DBD 0.00035656 3 DUD 0.00000065

29 XDS 0.00032296 21 UXD 0.00000028

6 DSD 0.00032170 11 UDD 0.00000023

The states are arranged so that their steady-state probabilities are in decreasing order.

Again, we mark in bold those states where the last machine is productive. It is seen

that the steady-state probabilities display a great range of values. The state with the

largest probability is UUU with a probability of almost 0.75. The state with the least

probability is UDD with a probability of 2.3x10-7. The difference between the largest

and smallest steady-state probability is over six orders of magnitude. That is, the ratio

is on the order of a million to one. Clearly, if a simulation runs shorter than a few

million cycles, the state UDD with the smallest probability is likely never be visited.

This is analogous to not visiting states with more than, say, 100 customers during the

simulation of an M/M/1 queue with a traffic intensity of 0.9.

4.2. A TRUNCATED MODEL OF THE THREE STATION

PRODUCTION LINE WITH NO BUFFERS

Inspired by our findings in Chapter 3 regarding the M/M/1 queue, now we consider a

truncated model of the bufferless three-station line. We truncate the model by

24

disregarding the states in which more than a single station is under repair. In effect,

we are making the seemingly unrealistic assumption that once a station breaks down,

the breakdown probability of the other stations is zero. This may seem unreasonable,

but it does follow the truncated M/M/1 queue case. There, we make the assumption

that once there are some K customers in the system, the arrival rate is zero.

The three-station case can easily be modified to find the production rate of the

truncated model. One approach is to start with the steady-state probabilities as

computed above. Then, we may remove those states with more than one station under

repair, and re-normalize the steady-state vector. Afterwards, we re-compute the

production rate.

The systems states with at most one station under repair are listed below.

Table 3. States with Fewer than Two Stations Under Repair.

Number of

Stations

Under Repair Index

Station

States

Number of

Stations Under

Repair Index

Station

States

0

15 UUU 1 4 DUU

16 UUS 5 DUS

18 USU 7 DSU

19 USS 8 DSS

12 UDU

13 UDS

14 UUD

17 USD

20 UBD

22 BDD

23 BDU

24 BDS

25 BBD

The state transition diagram illustrates the transitions among the systems states of the

truncated model.

25

The states where the last station is operational are marked by bold letters. Note that

of the eight such states, we now have only six. The normalization of the steady-state

probabilities means we add the steady-state probabilities of the seventeen states

shown in Table 3. and then normalize the vector by multiplying it with the reciprocal

of the sum of its elements. The production rate is then computed as the sum of the

normalized steady-state probabilities of the states shown in bold in Table 3.

The production rate of the truncated model will of course differ from that of the

complete model. The question is by how much. We computed the difference for a

series of parameters of a three-station bufferless line with identical stations. The

differences are given as absolute percentage errors (APE). The absolute percentage

error is computed as

APE = 100⋅| (production rate)−(production rateof the truncated model)
(production rate) |. (1)

The absolute percentage errors are plotted below.

26

Figure 8. The State Transition Diagram of the
Truncated Bufferless Three Station Model

Figure 9 is rather remarkable. First, observe that the maximum error is about 5.5%.

This is actually an extreme case, where both the breakdown and the repair

probabilities are 0.1. In this extreme case, the stand-alone availability of a station is

50%. Clearly, in actual implementations, a station would be expected to be

operational more than 50% of the time. For realistic cases, that is, where the stand-

alone availability is around 90%, the error less than 1%. This is a remarkable

phenomenon, that serves not only as an eye-opener, but as motivation to develop

practical approximate production line models which are then to be solved

algebraically.

4.3. MORE ACCURATE TRUNCATED MODELS OF PRODUCTION

LINES WITH NO BUFFERS

Once again, inspired by the results of the preceding section, we now proceed to

construct models of production lines where the number of down machines are

limited. Analogous to the truncated M/M/1 queue (the M/M/1/K queue), we make the

auxiliary assumption that once K of the N stations are down, the remaining stations

27

Figure 9. Absolute Percentage Errors as Functions of Model Parameters

become perfectly reliable. Agreeably, this seems like an unjustifiable and quite

counterintuitive assumption. The justification lies in the insights hitherto developed –

and it is these insights which constitute the contribution of this thesis. In short, we

want to remove some of the system states that have probabilities orders of magnitude

smaller than others. Obviously, there are many ways to do this pruning. The

assumption made here is one approach. It does have the advantage, however, that it is

relatively straightforward to model this truncated system, just as it was relatively

straightforward to implement the truncated M/M/1 queue.

Software was written to automatically generate the states and the transition

probability matrix of bufferless production lines with N stations, but where at most K

of the N stations are allowed to be down. We call this the N/K-Truncated-Model.

Effectively, once K of the stations are down, the remaining N-K stations are assumed

to be perfectly reliable. The states were explicitly obtained by the developed

software. A brief overview of the software is given in Appendix 5.

Table 4. Number of System States (N/K models, N stations, at most K down).

N/K 1 2 3 4 5 6 7 8 9 10

3 15 26 32

4 40 92 116 128

5 103 314 435 488 512

6 257 1027 1594 1882 2000 2048

7 623 3218 5665 7133 7833 8096 8192

8 1476 9656 19454 26389 30267 31992 32576 32768

9 3435 27858 64555 131072

10 7882 77694 524288

As seen in Table 4, the number of system states drop considerably when the

maximum allowed number of down stations (K) is small. In the extreme case of K=1,

we allow only one station to be down at a time. In case of a bufferless production line

with 10 stations (N=10), the number of system states goes from 524288 to 7882. This

is a 66-fold reduction in the number of system states.

The next investigative question, of course, is “how well does the truncated model

approximate the original model?” Here, once again, we develop software to compute

28

not only the transition probability matrices for the N/K truncated models, but also the

production rates. The N/N model gives the production rate of the original models

where the number of system states are several orders of magnitude larger. The N/1

truncated models are the approximations. Numerical results are given in the table

below.

Table 5. Average Percentage Error of the N/1 Truncated Models.

Production Rate (q=0.01, r=0.1)

N N/1 (truncated) N/N (full model) APE

3 0.5166273929 0.5142570532 0.46

4 0.5431647628 0.5388719616 0.80

5 0.5451422158 0.5387804217 1.18

6 0.5375021638 0.5290534472 1.60

As seen from Table 5. the N/1 truncated models provide good approximations to the

production rate. The truncated models seem to always over-estimate the production

rate. Moreover, the error term seems to increase almost linearly with the number of

stations. This can also be used to fine tune the estimates, if our focus were to develop

computational methods for the estimation of the production rate. However, our

interest in this thesis is more on the conceptual side of the methodologies, as we

investigate the ramifications of the models and their use.

29

5 CHAPTER FIVE

CONCLUSIONS AND FUTURE RESEARCH

In summary, the prominent dominant industrial engineering paradigm in stochastic

models of production and service systems calls for the development of various

Markovian models whose validation is relegated to simulation studies. Propelled by a

paradox that appeared in recent literature (Yeralan & Buyukdagli, 2015) we studied

why such simulation gives acceptable results. Our work illustrates that in modeling

such industrial engineering systems, there is an agreement between the performance

measures and simulation. While other performance measures may not be easily

obtained by simulation, measures such as the production rate and the expected

number of in-process inventory are congruent to the simulation approach. The

simulation community has recognized such shortcomings in general. For example,

the topic known as Rare Event Simulation (Bucklew, 2004) dwells on events that

have very little probability. However, such body of knowledge does not negate our

efforts. It remains that whenever a Markovian model is to be validated by simulation,

the applicability and validity of the simulation itself is to be questioned and tested.

Again, the validation of simulation may require effort comparable to the validation of

the Markov model by other (e.g. analytical) means.

The development of the previous chapters, provides a resolution to our paradox.

Indeed, as in the M/M/1 case, simulation does not visit all possible system states.

Rather simulation naturally focuses on the system states that have a greater influence

on the performance measures. Removing the system states which have negligible

effects on the performance measures, we were able to duplicate the results of

simulation.

There are significant conclusions to this observation. First, simulation should not be

seen as the ultimate verification tool. Its applicability and validity depends on how

suitable simulation is to the particular performance measure of interest. For example,

31

the simulation of an N-station production line will not be able to give an accurate

estimate of the probability that all N stations are down, when N is large. In addition,

in the numerical examples conducted, it was observed that simulation and exact

solutions differ typically by a few percent. Such error ranges are prevalent in the

literature. It calls into question that when a study compares its analytical results to

simulation and reports errors of a few percent, it may well be that the error is due to

simulation rather than the analytical models.

Perhaps the most significant conclusion of this work is in the type of research

conducted. The desire to investigate issues other than extensions in the current

dominant paradigm. Although it is unlikely to engage in what Kuhn calls

extraordinary science at will, without the accompanying serendipity, nonetheless,

research is possible to call into question aspects of the dominant paradigm. The major

contribution of this work is in that sense. It develops a deeper understanding of a

major tool (simulation) in the topic area. Admittedly, it does not trigger the crisis that

would challenge the dominant paradigm, it nonetheless provides exploitable avenues

in constructing new analytical models (truncated models) which would be expected

to perform as well as simulation.

Throughout this study, before focusing on the “simulation paradox” we investigated

issues in systems theoretical aspects of manufacturing systems, studied the

applicability of predator-prey models in uncovering aspects of cooperation,

competition, and co-dependence among companies, and investigated if fractal-like

structures in tri-diagonal stochastic matrices could be modeled by use of chaos

theory. All of these preliminary works were in fact toward the same goal of

attempting to work on something other than what Kuhn calls “normal science”.

32

REFERENCES

Altiok, T. (1996). Performance Analysis of Manufacturing Systems. Springer.

Anonymous Academic. (2014). What Do Uni Engineering Departments Need Most?
People in Overalls. Retrieved 3 May 2016, from
http://www.theguardian.com/higher-education-network/2014/nov/21/university-
engineering-departments-overalls-research

Askin, R. G., & Standridge, C. R. (1993). Modeling and Analysis of Manufacturing
Systems (1st ed.). Wiley.

BLAS. (2015). Retrieved 3 April 2016, from http://www.netlib.org/blas/

Boehm, V. R. (1980). Research in the ‘Real World’ - A Conceptual Model. Personnel
Psychology, 33(3), 495–503. http://doi.org/10.1111/j.1744-6570.1980.tb00479.x

Bucklew, J. A. (2004). Introduction to Rare Event Simulation. New York, NY:
Springer New York. http://doi.org/10.1007/978-1-4757-4078-3

Burden, R. L., & Faires, J. D. (2010). Matrix Factorization. In Numerical Analysis
(9th ed., p. 900). Brooks/Cole, Cengage Learning. Retrieved from
http://ins.sjtu.edu.cn/people/mtang/textbook.pdf

Buzacott, J. A., & Shanthikumar, J. G. (1993). Stochastic Models of Manufacturing
Systems. Prentice Hall.

Byrd, D. (2010). Zeno s " Achilles and the Tortoise " Paradox and The ʼ
Infinite Geometric Series. Retrieved from
http://homes.soic.indiana.edu/donbyrd/Teach/Math/Zeno+Footraces+InfiniteSeri
es.pdf

Cantini, A. (2007). Paradoxes and Contemporary Logic. Retrieved 21 October 2015,
from http://plato.stanford.edu/entries/paradoxes-contemporary-logic/#Int

Costa, A. L. (1985). Developing Minds: A Resource Book for Teaching. (A. L. Costa,
Ed.)Educational Leadership (Vol. 1). ASCD.

Critical Thinking Community. (n.d.). Defining Critical Thinking. Retrieved 13
October 2015, from https://www.criticalthinking.org/pages/defining-critical-
thinking/766

Cucic, D. A. (2009). Types of Paradox in Physics. 0912.1864. Retrieved from
http://arxiv.org/abs/0912.1864\nhttp://www.arxiv.org/pdf/0912.1864.pdf

Dowden, B. (n.d.). Zeno’s Paradoxes. In Internet Encyclopedia of Philosophy.
Retrieved from http://www.iep.utm.edu/zeno-par/

33

Economist. (2010). The Disposable Academic. Retrieved 3 May 2016, from
http://www.economist.com/node/17723223

Eliason, J. L. (1996). Using Paradoxes to Teach Critical Thinking in Science. Journal
of College Science Teaching, 15(5), 341–44. Retrieved from http://eric.ed.gov/?
id=EJ520704

Engineering, R. A. of. (2010). Philosophy of Engineering. Philosophy of
Engineering: Proceedings of a Series of Seminars Held at The Royal Academy
of Engineering, 1, 76. http://doi.org/10.1016/B978-0-12-385878-8.00001-X

Felkins, L. (1995). Paradoxes and Dilemmas. Retrieved 21 October 2015, from
http://perspicuity.net/paradox/paradox.html

GCC. (2016). Retrieved 20 March 2016, from https://gcc.gnu.org/

Gershwin, S. B. (1994). Manufacturing Systems Engineering. Prentice Hall.

Gershwin, S. B., & Schick, I. C. (1983). Modeling and Analysis of Three-Stage
Transfer Lines with Unreliable Machines and Finite Buffers. Operations
Research, 31(2), 354–380. http://doi.org/10.1287/opre.31.2.354

GSL. (2009). Retrieved 15 March 2016, from http://www.gnu.org/software/gsl/

Hansen, H. (2015). Fallacies. In Stanford Encyclopedia of Philosophy. Retrieved
from http://plato.stanford.edu/entries/fallacies/#ForAppInfFal

Hillier, F. S., & Lieberman, G. J. (2009). Introduction to Operations Research (9th
ed.). McGraw-Hill Science/Engineering/Math.

John Fowles. (1985). The Magus (Revised). Dell.

Jon Excell. (2013). Academia’s Engineering Skills Shortage. Retrieved 3 May 2016,
from https://www.theengineer.co.uk/issues/december-2013-online/academias-
engineering-skills-shortage/

Kuhn, T. S. (1970). The Structure of Scientific Revolutions. Philosophical Review
(Vol. II). http://doi.org/10.1119/1.1969660

Li, J., & Meerkov, S. M. (2009). Production Systems Engineering. Springer.

Maggio, N., Matta, A., Gershwin, S. B., & Tolio, T. (2009). A decomposition
approximation for three-machine closed-loop production systems with
unreliable machines, finite buffers and a fixed population. IIE Transactions,
41(6), 562–574. http://doi.org/10.1080/07408170802714695

Muth, E. J. (1979). The Reversibility Property of Production Lines. Management
Science, 25(2), 152–158. http://doi.org/10.1287/mnsc.25.2.152

Muth, E., & Yeralan, S. (1981). Effect of buffer size on productivity of work stations

34

that are subject to breakdown. In 1981 20th IEEE Conference on Decision and
Control including the Symposium on Adaptive Processes (pp. 643–648). IEEE.
http://doi.org/10.1109/CDC.1981.269288

Panda, A., & Gupta, R. K. (2014). Making academic research more relevant: A few
suggestions. IIMB Management Review, 26(3), 156–169.
http://doi.org/10.1016/j.iimb.2014.07.008

Papadopolous, H. T., Heavey, C., & Browne, J. (1993). Queueing Theory in
Manufacturing Systems Analysis and Design (1st ed.). Chapman & Hall/CRC.

Paul, R. W. (1991). Teaching Critical Thinking In Strong Sense. In A. L. Costa (Ed.),
Developing Minds: A Resource Book for Teaching Thinking (Revised Ed, pp. 77
– 85). Alexandria, VA: ASCD.

Quine, W. (1966). The Ways of Paradox. The Ways of Paradox and Other Essays, 3–
20.

Schick, I., & Gershwin, S. (1978). Modelling and analysis of unreliable transfer lines
with finite interstage buffers. Complex Material Handling and Assembly
Systems, 6.

Silagadze, Z. K. (2005). Zeno meets modern science. Acta Physica Polonica B,
36(10), 2887–2929.

Tempelmeier, H., & Kuhn, H. (1993). Flexible Manufacturing Systems (1st ed.).
Wiley-Interscience.

Yeralan, S., & Buyukdagli, O. (2015). The Ontology of Large-Scale Markovian
models. In Stochastic Models of Manufacturing and Service Operations.

Yeralan, S., Franck, W. E., & Quasem, M. A. (1986). A continuous materials flow
production line model with station breakdown. European Journal of
Operational Research, 27(3), 289–300. http://doi.org/10.1016/0377-
2217(86)90326-7

Yeralan, S., & Tan, B. (1997). Analysis of multistation production systems with
limited buffer capacity part 1: The subsystem model. Mathematical and
Computer Modelling, 25(7), 109–122. http://doi.org/10.1016/S0895-
7177(97)00052-6

35

APPENDIX 1 – CRITICAL THINKING

Critical thinking helps us to determine whether a given argument is valid or not. An

argument is a set of premises (statements) that together comprise reason for a

conclusion (another statement). This decision mechanism is based upon the logical

and structural validity of the given statements, that is, whether the statements

necessarily lead to the conclusion. When all of the premises are true, the conclusion

must be true for the argument to be valid. For instance, your best friend told you that

he cannot make it to the Broadway show tonight. When you asked him the reason, he

might give these arguments: (a) that it is the end of the month and he ran out of

money, (b) that he broke his arm, and it is casted or (c) that he just found out that the

leading actress on the show is his ex-girlfriend.

The first argument seems possible to you, because you know it is the end of the

month, and your friend does not know how to manage his money. It is a reasonably

good argument which has nothing to do with morality, but directs us to a probable

conclusion.

If your friend broke his arm, it is probably a good argument, which leads to a rational

but not to an absolute conclusion. Even if it is true, your friend may take some pain

killers and make it to the show if it is really important to you. Therefore it is an

ampliative argument.

And the lie that the beautiful, talented, leading actress on the show is your best

friend's ex-girlfriend? It is a very, very bad argument obviously, because he is not that

handsome, or wealthy, or clever. He is probably lying to you because he does not

want you to know the real reason of why he cannot come. So why do you not be a

good friend and treat him to the play by buying the tickets, or if he really broke his

arm, pay him a visit with a bottle of red wine to make a movie night at home.

But sometimes, we can detect an incorrect conclusion from the arguments. Mistakes

that we make unintentional or intentional (unfortunate but abundant examples can be

seen in politics, or commercials, etc.) in critical thought is called fallacies. Dowden

(n.d.) explains that there is an abundance of definitions for the term “fallacy”, since

37

the researchers are picky and do not want to make a fallacy in its definition. There

are two types of fallacies: formal fallacies and informal fallacies.

Formal fallacies are the ones which have invalid logical forms. Formal fallacies are

illustrated by the fallowing example.

Premise 1: Industrial engineering graduates mostly work at production

or service sectors.

Premise 2: Uncle Joe works in a production company.

Conclusion: Uncle Joe is an industrial engineering graduate.

This is an invalid conclusion since not everyone in the production sector is an

industrial engineer. This invalid formal fallacy example also can be stated in a modus

ponens format.

Premise 1: If X, then Y.

Premise 2: Y.

Conclusion: Therefore, X.

This type of fallacy is called a converse error. Besides formal fallacies, informal

fallacies may also have mistakes in their forms, or contain mistakes in their content.

Consider, for instance,

Premise 1: All Broadway show actresses only date handsome,

clever, or wealthy men.

Premise 2: Your best friend is neither handsome, nor clever or

wealthy.

Conclusion: Your best friend is lying about the Broadway actress

being his ex-girlfriend.

Dowden (n.d.) also creates a list of fallacies which includes commonly used ones and

their brief explanations. Hansen (2015) gives a background of fallacies and reviews

the current topics in fallacy theory.

Paradoxes are similar to fallacies. Paradoxes are the cases in which we necessarily

agree with the given arguments, but also disagree with its conclusion. This thesis

38

focuses on such an issue. We discuss a seeming paradox in the field of Markovian

production line models.

Agreeing with the argument but disagreeing with the conclusion could also be a

visual paradox, as shown in Figure 1.

In the figure, are the men go up or down the stairs? The argument can be made that

the men are going both up and down the stairs. While the arguments lead us to a valid

conclusion, at the same time they lead us to an invalid one. According to Eliason

(1996), paradoxes are invalid statements, but still have a value in critical thinking. He

argues that since the paradoxes show that without giving sufficient thought, the

arguments may lead us to a pitfall conclusion. Therefore what we see, think, or

understand is not exact, and sometimes multiple ideas are incompatible with each

other.

39

Figure 10. A Section of Ascending and Descending by
Escher.

APPENDIX 2 – M/M/1 SIMULATION IN SCILAB

A simple discrete-event simulation of the M/M/1 queue is implemented in Scilab.

clc
clear

tRunTime=1000; // hours
rArrive = 9; // rate: arrival per hour
rService= 10; // rate: service completion per hour

// --
// generate arrival times and service (processing) times
arrivalTimes=[grand(1, 1, "exp", 1.0/rArrive)];
serviceTimes=[grand(1, 1, "exp", 1.0/rService)];

while (arrivalTimes($)<tRunTime),
// printf("%4d %8.4f %8.4f\n", length(arrivalTimes),
arrivalTimes($), serviceTimes($));
 arrivalTimes($+1)=arrivalTimes($)+grand(1, 1, "exp", 1.0/rArrive);
 serviceTimes($+1)=grand(1, 1, "exp", 1.0/rService);
end
nTotalArrivals=length(arrivalTimes);

// generate service completion times
waitTime=0;
lastCompletionTime=0;
departureTimes=[];
for n=1:nTotalArrivals
 waitTime=max(0, lastCompletionTime-arrivalTimes(n));
 departureTimes(n)=arrivalTimes(n)+waitTime+serviceTimes(n);
 lastCompletionTime=departureTimes(n);

// printf("%4d %8.4f %8.4f %8.4f %8.4f\n", n, arrivalTimes(n),
serviceTimes(n), waitTime, departureTimes(n));
end

// run simulation collect data

nCustomers=0; // number of customers in the system
nMaxCustomers=0; // max number of customers in the system

tEmpty=0;
tCustomerTime=0;
indexArrive=1;
indexDepart=1;
time=0;
while (indexArrive<nTotalArrivals),
// printf("%4d %4d %4d %8.4f %8.4f %8.4f\n", indexArrive,
indexDepart, nCustomers, arrivalTimes(indexArrive),
serviceTimes(indexArrive), departureTimes(indexDepart));

 if(arrivalTimes(indexArrive)<departureTimes(indexDepart)) then
 // next event is an arrival
 elapsedTime=arrivalTimes(indexArrive)-time;
 if(nCustomers==0) then tEmpty=tEmpty+elapsedTime;

41

 else
 tCustomerTime=tCustomerTime+elapsedTime*nCustomers;
 end;
 nCustomers=nCustomers+1;
 time=arrivalTimes(indexArrive);
 indexArrive=indexArrive+1;
 else
 // next event is a departure
 elapsedTime=departureTimes(indexDepart)-time;
 tCustomerTime=tCustomerTime+elapsedTime*nCustomers;
 nCustomers=nCustomers-1;
 time=departureTimes(indexDepart);
 indexDepart=indexDepart+1;
 end
 if(nCustomers>nMaxCustomers) then nMaxCustomers=nCustomers; end;:
end

 fUtilization=1.0-(tEmpty/tRunTime);
 fAveCustomers=tCustomerTime/tRunTime;

 printf("--- simulation parameters ---\n");
 printf("Run time: %8d\n", tRunTime);
 printf("Arrival rate: %8.2f\n", rArrive);
 printf("Service rate: %8.2f\n", rService);
 printf("Number of arrivals: %8d\n\n", nTotalArrivals);

 printf("--- simulated performance measures ---\n");
 printf("Utilization: %8.2f\n", fUtilization);
 printf("Average number of customers: %8.2f\n", fAveCustomers);
 printf("Maximum number of customers: %8d\n\n", nMaxCustomers);

 traffic_intensity=rArrive/rService;
 ave_num_in_system=traffic_intensity/(1.0-traffic_intensity);

 printf("--- computed performance measures ---\n");
 printf("traffic_intensity: %8.2f\n", traffic_intensity);
 printf("ave_num_in_system: %8.2f\n", ave_num_in_system);

42

APPENDIX 3 – THE MAXIMUM LENGTH OF THE M/M/1 QUEUE

We consider the M/M/1 queue which starts from state 0 (empty system) at time 0 and

runs for a given duration T. The number of customers in the system in the time

interval [0, T] will vary as a function of the system parameters. We are interested in

the distribution and the expected value of Nmax(T), the maximum number of

customers in the M/M/1 queue during the time interval [0, T], given that the system

is empty at time 0.

The transition rate matrix of the M/M/1 queue with an arrival rate of  and a service

rate of  is given below.

Λ = [
−λ λ
μ −(λ+μ) λ

μ −(λ+μ) λ

⋱
] (2)

Note that  is a square matrix of infinite size. The rows and columns of 

correspond to the states. Specifically, element (j, k) of  is the transition rate from

state j to state k, where j differs from k. The diagonal elements of  are set to -(+)

so that the rows sum to zero.. With this arrangement, the steady state probability row

vector  is computed as the normalized solution to the linear equation

ΠΛ=[0,0,0,.] (3)

Normalization refers to setting the length of the vector  so that its elements sum to

unity. In vector notation, we may write,

Πu=1 (4)

where u is a column vector consisting of all ones as shown below.

u=[
1
1
1
.
.
.
] (5)

43

The transient solution is easily obtained for the general Markov process. Let (t) be

the state row probability vector at time t. Then,

Π(t)=Π(0)eΛ t (6)

Given that the process starts in a state between 0 and N, the probability that the

process stays with this range ([0, N]) is easily computed using the truncated state

transition matrix. Let

ΛN = [
−λ λ
μ −(λ+μ) λ

μ −(λ+μ) λ

⋱

μ −(λ+μ)
] (7)

be a square matrix corresponding to the states 0 to N. Hence N has dimension N+1.

Now the probability that the system is in state k where k is in the range [0, N] at time

t is given as

Π(t)=Π(0)eΛN t (8)

In particular, let us assume that

Π(0)=Θ=[1,0,0,...] (9)

Then, the probability that the system is still in the range [0, N] at time t, given that it

started in state 0 at time 0 is given by

Θ eΛN t u (10)

where u is the column vector of ones as described above. This probability is the same

as the probability that the state with the maximum index visited, Nmax is in the range

[0, N]. In other words,

P[N max(t)≤N]=ΘeΛ N t u (11)

which is the probability distribution function of the random variable Nmax. Succssive

differences of the distribution function yields the probability mass function of Nmax.

We compute the probability distribution and probability mass functions of Nmax(t)

using the matrix exponentiation functions in Scilab. The code is given at the end of

44

this appendix. Below are the graphs showing the probability distribution and mass

functions for the case

As expected, the probability mass function of Nmax is skewed to the right, since the

maximum has a lower bound of 0, but no upper bound.

45

Figure 12. The Probability Mass Function of Nmax (=9,
=10, t=1000).

Figure 11. The Probability Distribution Function of Nmax

(=9, =10, t=1000).

The expected value of Nmax is easily computed, as the probability distribution

function is evaluated. Since Nmax is a nonnegative random variable, its expected value

is simply the integral of its reliability function. Thus, keeping a tally of successive

values of

P[N max(t)>N]=1−ΘeΛ N tu (12)

for N=1, 2, … until the value reaches a threshold (say, 10-10) gives the first moment

of the random variable.

The code written in Scilab is given next.

clc
clear
 // get the distribution of max customers
function p=getProbMax(rArrive, rService, t, n)
 p0=zeros(1,n);
 p0(1,1)=1.0;
 u=ones(n,1);

 Q=zeros(n,n);
 Q(1,1)=-rArrive;
 Q(1,2)=rArrive;
 for k=2:n-1
 Q(k, k-1)=rService;
 Q(k, k) =-(rArrive+rService);
 Q(k, k+1)=rArrive;
 end
 Q(n,n-1)=rService;
 Q(n,n)=-(rArrive+rService); // truncated
 p=p0*expm(t*Q)*u;
endfunction

rService=10; // rate: service completion per hour
rArrive= 9; // rate: arrival per hour
tRunTime=1000;
dist_function=[0];
prob_mass_function=[0];
for n=2:100
 f=getProbMax(rArrive, rService, tRunTime, n)
 dist_function(n)=f
 prob_mass_function(n)=f-dist_function(n-1);
end

scf(0); // figure window 0
xtitle("m/m/1 queue "+sprintf("(arrival rate%4.2f, ", rArrive)
+sprintf("service rate %4.2f, ", rService)+sprintf("run time %d)",
tRunTime));
plot(dist_function)
xlabel("n");
ylabel("P[max customers < n]");

scf(1); // figure window 1
xtitle("m/m/1 queue "+sprintf("(arrival rate%4.2f, ", rArrive)

46

+sprintf("service rate %4.2f, ", rService)+sprintf("run time %d)",
tRunTime));
plot(prob_mass_function)
xlabel("n");
ylabel("P[max customers = n]");

As seen, the matrix exponentiation is handled by the built-in Scilab function

expm(). This greatly reduces the computational effort in evaluating the distribution

and its first moment.

47

APPENDIX 4 – THE ALGORITHM

The algorithm to generate the states and the state transitions is rather straightforward.

It relies on the notion of what we call “intrinsic” or “direct” state transitions and

“indirect” station transitions. Station state changes due to breakdown or repair

constitute direct transitions. State transitions due to state changes of neighboring

stations are called indirect transitions. As an example, consider a two station line,

where the system state makes a transition from UU to DU. Here, the transition of the

first station is a direct transition, since the station experiences a breakdown. Note that

the second station does not change its state. However, the system state transition from

US to UU displays a indirect station transition of station 2. Here, the state of station 1

does not change. The state of station 2 changes because a part is now available. This

is an example of indirect transitions.

At an step of the algorithm, we keep a set of possible system states. We step through

these system states, considering breakdowns and repairs. These give rise to new

system states. If the new system state is not already in our list, it is appended to the

list we step through. As expected, the list initially grows quite rapidly, but then settles

into its final set. Since there are a finite number of stations and station states, there

are a finite number of system states. When we step through all of the system states

and there are no new system states to append to the list the algorithm terminates.

The algorithm is modified for the truncated systems. Here we put an artificial limit

on the total number of stations that are allowed to be down at any given time. This

additional constraint, although complicates bookkeeping, does not pose any further

intellectual challenges.

Below is a summary of the algorithm steps for a three station line. The first column

shows the iteration (step) number. We start with the known system state UUU at step

0. The second column shows, for each iteration, the system state we inspect at that

step. This is the state from which we generate transitions to other destination states.

The third column lists these destination states. Of these, some may be already in the

list, and some may be new states. The new states to be appended to the list are given

49

in column 4. The last column gives the cardinality of the set of states evaluated so far.

It is the number of elements in the list.

Note that the list grow quite rapidly. At step 14, the entire set of states is already at

hand. From step 15 to 32, no new system states are appended to the list.

Table 6. The Algorithm

Iteration (n) S(n) D(n) A(n) Ω(n) Iteration (n) S(n) D(n) A(n) Ω(n)

0 UUU UUU 1

6 XBD

UUU

24

1 UUU

UUU

8

DUU

DUU DUU BBD

BDU BDU XBD

BBD BBD

7 BXD

UUU

24
XDU XDU BDU

XBD XBD BBD

BXD BXD BXD

XXD XXD

8 XXD

UUU

24

2 DUU

DSU DSU

16

DUU

USU USU BDU

UDU UDU BBD

UBD UBD XDU

UXD UXD XBD

DDU DDU BXD

DBD DBD XXD

DXD DXD

9 DSU

DSS DSS

28

3 BDU

BDS BDS

20

USS USS

UUS UUS USD USD

UUD UUD DSD DSD

BDD BDD

10 USU

UUS

284 BBD
UUU

20
UUD

BBD DUS

5 XDU

BDS

24

DUD

BDD

UUS

UUD

XDS XDS

XDD XDD

DUS DUS

DUD DUD

50

Table 6. The Algorithm (cont'd)

Iteration (n) S(n) D(n) A(n) Ω(n) Iteration (n) S(n) D(n) A(n) Ω(n)

11 UDU

BDS

28 16 DXD

DSU

32

DUS DDU

UUS DBD

UUD DXD

XDS USU

XDD UDU

BDD UBD

DUD UXD

12 UBD

UUU

28

17 BDS
BDS

32
DUU UUS

BBD

18 UUS

UUU

32
XBD BDU

13 UXD

UUU

28

DUU

DUU XDU

BDU

19 UUD

UUU

32

BBD DUU

XDU BDU

XBD BBD

BXD XDU

XXD XBD

14 DDU

USS

32

BXD

USD XXD

DSS

20 BDD

BDS

32
DSD BDD

DDS DDS UUS

DDD DDD UUD

UDS UDS

21 XDS

BDS

32
UDD UDD UUS

15 DBD

USU

32

XDS

DSU DUS

DBD

UBD

51

Table 6. The Algorithm (cont'd)

Iteration (n) S(n) D(n) A(n) Ω(n) Iteration (n) S(n) D(n) A(n) Ω(n)

22 XDD BDS 32 28 DSD DSS 32

BDD DSD

UUS USS

UUD USD

XDS 29 DDS DSS 32

XDD USS

DUS DDS

DUD UDS

23 DUS DSU 32 30 DDD DSS 32

USU DSD

UDU USS

DDU USD

24 DUD DSU 32 DDS

DDU DDD

DBD UDS

DXD UDD

USU 31 UDS BDS 32

UDU UUS

UBD DUS

UXD XDS

25 DSS DSS 32 32 UDD BDS 32

USS BDD

26 USS USS 32 UUS

DUS UUD

27 USD UUS 32 XDS

UUD XDD

DUS DUS

DUD DUD

52

APPENDIX 5 – SOFTWARE DEVELOPMENT

The C code that was used to compute the steady-state probabilities and the

production rate of a bufferless three-station production line is given below. The code

also computes the production rate of the truncated model, as described in Chapter 4.

The software consists of two major components, both written in C for performance

regarding both memory management and execution speed. All software were

developed in Linux using open-source tools and libraries. Specifically, the GNU C

Compiler (‘GCC’, 2016) was used along with GNU Scientific Library (‘GSL’,

2009) and the Basic Linear Algebra Subprograms (‘BLAS’, 2015).

The first program (PLT) generates transition probability matrices and auxiliary

vectors. PLT stands for “Production Line Truncated”. The input to PLT consists of N

and K, where N is the number of stations and K is the maximum number of stations

allowed to be down. The output of PLT is actually C code that is readily incorporated

as source code to the other program, SXB0T. PLT is run in a loop to generate source

code for N/K models, where N=3,4,..9 and K=1,2,..N. A portion of the output of PLT

is given below.

 gsl_matrix_set(pm, UUU, UUU, fgQb1*fgQb2*fgQb3);

 gsl_matrix_set(pm, UUU, BBD, fgQb1*fgQb2* fgQ3);

 gsl_matrix_set(pm, UUU, BDU, fgQb1* fgQ2*fgQb3);

 gsl_matrix_set(pm, UUU, DUU, fgQ1*fgQb2*fgQb3);

 gsl_matrix_set(pm, UUU, BXD, fgQb1* fgQ2* fgQ3);

 gsl_matrix_set(pm, UUU, XBD, fgQ1*fgQb2* fgQ3);

 gsl_matrix_set(pm, UUU, XDU, fgQ1* fgQ2*fgQb3);

 gsl_matrix_set(pm, UUU, XXD, fgQ1* fgQ2* fgQ3);

Figure 13. A Portion of the Output of PLT.

Here, the output is a text file (C source code). The function gsl_matrix_set() is a

BLAS function. The generated source code is then used as a component of SXB0T.

PLT has a re-entrant architecture to implement a recursive algorithm. The key

function that generates the system states starts with the known state (all stations up

and running). At any given time, there is a set of states that are discovered. For

example, say we have a three-station line. We start from the state UUU. For each

53

station state, we know if there is a possible intrinsic transition. Stations in states U

(up and running), D (down and under repair), or X (down and under repair while

blocked) may breakdown or be repaired. Stations in states S (starved) or B (blocked)

may not break down. Stations in state X may transition to B as well. The key function

inspects each station state. If there is the possibility of an intrinsic transition, a new

state is generated. For example, from state UUU, if the first station breaks down and

the other two do not, we have state D()(). The other station states are then computed

by logic. In this case, the computation, mostly relying on table look-ups, gives the

system state DSU. DSU is then added to the list of generated states. The key function

then calls itself, hence the re-entrant architecture, to generate states reachable from

the newly generated state DSU. The set of generated states is global, so that each re-

entrant invocation of the key function adds to the pool of states. The code terminates

when all possible intrinsic transitions are exhausted.

The moniker SXB0T is short for “Station X Buffer 0 Truncated”. SXB0T takes the

outputs from PLT and solves for the steady-state probabilities and the production

rate. SXB0T is a relatively straightforward program. The transition probability

matrices are already generated and provided by PLT. SXB0T simply solves the linear

equations to find the steady-state transition probabilities.

SXB0T uses the GNU Scientific Library (GSL) and the Basic Linear Algebra

Subprograms (BLAS). The L-U decomposition method is used to solve the linear

equations (Burden and Faires, 2010). The choice of the method follows the fact that

our matrices are relatively sparse. During the debugging phase, we also kept track of

the determinants of the defining coefficient matrices to make sure that our matrices

were not ill-behaved. Since BLAS uses dynamic memory, the code can handle

relatively large matrices.

SXB0T runs from the command line. There is rudimentary help as the standard “-h”

or “-?” switch is used. The help list shown below.

54

deniz@deniz-755:~/Code/Gnome/sxb0t$./sxb0t -h

Version 0.00, April 2016

Command line options:

 -h this help

 -s suppress intermediate messages

 -w write (record) the output (default FALSE)

 -q [f] breakdown probability

 -r [f] repair probability

 -n [n] number of stations

 -d [n] max number of down stations

deniz@deniz-755:~/Code/Gnome/sxb0t$

Figure 14. The Rudimentary Command-Line Help Listing of SXB0T.

The code is invoked by specifying the relevant parameters, as shown below.

deniz@deniz-755:~/Code/Gnome/sxb0t$./sxb0t -q.01 -r.1
-d1 -n6

6 1 0.010000 0.100000

compute.

 6 1 0.010000 0.100000 0.5375021638

deniz@deniz-755:~/Code/Gnome/sxb0t$

Figure 15. Executing SXB0T.

Here, the parameters are specified as q=0.01 (breakdown probability), r=0.1 (repair

probability), d=1 (K=1, of the N/K truncated model), and n=6 (N=6, the number of

stations). The output shows the parameters and the production rate (0.5375021638).

It is noteworthy that some source code are in the order of 1 gigabyte. Clearly, a

gigabyte of code is not to be written manually. The approach here was to write code

that in turn generates source code, later to be incorporated into downstream

compiling and linking.

55

Figure 16. Code Generation, Compilation and Linking.

The generated code contains among other things, functions getTPM_N_D() where N

indicates the number of stations and D, the maximum number of stations allowed to

be down at any given time. These functions generate the exact transition probability

matrices. The sizes of the code that generates the transition probability matrices are

given below. Again, this code is generated by PLT and not written by hand. In fact, 1

1GB file would take approximately 3 years if written by hand, assuming that the

programmer writes one line of code per second, 24 hours a day, 365 days a year.

For the larger files, since we only compare the exact (N/N) models and the truncated

(N/1) models, for longer lines the intermediate models. That is, (N/K) for

K=2,3,...,N-1, are not included to save compilation time and disk memory.

56

File Functions Size File Function Size

tpmt_3.c

getTPM_3_1

23.8 KB tmpt_7.c

getTPM_7_1

132.0 MB

getTPM_7_2

getTPM_7_3
getTPM_3_2 getTPM_7_4

getTPM_7_5

getTPM_3_3 getTPM_7_6

getTPM_7_7

tpmt_4.c

getTPM_4_1

206.7 KB tmpt_8.c

getTPM_8_1

1.1

GB

getTPM_8_

1

getTPM_8_

8

1.3 MB

getTPM_8_2

getTPM_4_2 getTPM_8_3

getTPM_8_4

getTPM_4_3 getTPM_8_5

getTPM_8_6

getTPM_4_4 getTPM_8_7

getTPM_8_8

tpmt_5.c

getTPM_5_1

1.8 MB tpmt_9.c

getTPM_9_1

1.1

GB

getTPM_9_

1

getTPM_9_

9

8.1 MB

getTPM_9_2getTPM_5_2

getTPM_9_3getTPM_5_3

getTPM_9_4getTPM_5_4

getTPM_9_5

getTPM_5_5
getTPM_9_9

tmpt_6.c

getTPM_6_1

15.7 MB

getTPM_6_2

getTPM_6_3

getTPM_6_4

getTPM_6_5

getTPM_6_6

The code development strategy itself may also be considered as a contribution, as it

provide a template or framework to the generation of multi-echelon software. We

also note that the matrices could be generated upon request (on the fly). This would

save disk memory requirements to store the code, but would significantly increase

compilation times. In addition, the stepwise development strategy adopted here

facilitates debugging efforts.

57

