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ABSTRACT

ON THE APPLICABILITY OF SIMULATION AS A VERIFICATION TOOL

FOR MARKOVIAN MODELS OF PRODUCTION SYSTEMS

DURMUŞ, Deniz

MSc, Department of Industrial Engineering

Advisor: Prof. Dr. Sencer YERALAN

June 2016, 69 Pages

In the study of stochastic models of production and service systems, analytical results

are quite often validated by simulation studies. This study calls into question the the

ontological aspects, let alone the validity, of simulation. This thesis investigates the

claim  and  its  implications,  and  finally  brings  a  resolution  to  the  seemingly

paradoxical  practice,  which  has  been  entrenched  in  the  dominant  paradigms  of

operations  research.  In  doing so,  the  thesis  contributes  to  the  state  of  the  art  by

providing additional insights and a deeper understanding.

Key  Words: Structure  of  Scientific  Revolution,  System's  View,  Paradoxes,

Production and Service Systems, Simulation,  Stochastic Models
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ÖZET

BENZETİMİN ÜRETİM SİSTEMLERİNİN MARKOV MODELLERİNDE

DOĞRULAMA YÖNTEMİ OLARAK UYGULANABİLİRLİĞİ

DURMUŞ, Deniz

Yüksek Lisans Tezi, Endüstri Mühendisliği Bölümü

Danışman: Prof. Dr. Sencer YERALAN

Haziran 2016, 69 Sayfa

Üretim  ve  servis  sistemlerinde  kullanılan  rassal  modellerin  analitik  çözümleri

genellikle  benzetim  çalışmalarıyla  doğrulanmaktadır.  Bu  çalışma  benzetimin

ontolojik  açıdan  doğruluğunu  sorgulamaktadır.  Paradoksal  görünümüne  rağmen

benzetimin neden ve hangi durumlarda başarılı olduğu ve hangi durumlarda da bir

geçerleme yöntemi olarak yetersiz olduğu saptanmıştır.

Anahtar  Kelimeler: Benzetim,  Servis  Sistemleri,  Üretim  Sistemleri,  Rassal

Modeller, Sistem Bakışı
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“Once upon a time there was a young prince who believed in all things but three. He

did not believe in Princesses, he did not believe in islands, he did not believe in God.

His  father,  the  king,  told  him  that  such  things  did  not  exist.  As  there  were  no

princesses or islands in his father's domains, and no sign of God, the prince believed

his father.

But then, one day, the prince ran away from his palace and came to the next land.

There, to his astonishment, from every coast he saw islands, and on these islands,

strange and troubling creatures whom he dared not name. As he was searching for a

boat, a man in full evening dress approached him along the shore.

"Are those real islands?" asked the young prince.

"Of course they are real islands," said the man in evening dress.

"And those strange and troubling creatures?"

"They are all genuine and authentic princesses."

"Then God must also exist!" cried the prince.

"I am God," replied the man in evening dress, with a bow.

The young prince returned home as quickly as he could.

"So, you are back," said his father, the king.

"I  have  seen  islands,  I  have  seen  princesses,  I  have  seen  God,"  said  the  prince

reproachfully.

The king was unmoved.

"Neither real islands, nor real princesses, nor a real God exist."

"I saw them!"

"Tell me how God was dressed."

"God was in full evening dress."

"Were the sleeves of his coat rolled back?"

The prince remembered that they had been. The king smiled.
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"That is the uniform of a magician. You have been deceived."

At this, the prince returned to the next land and went to the same shore, where once

again he came upon the man in full evening dress.

"My father, the king, has told me who you are," said the prince indignantly. "You

deceived me last time, but not again. Now I know that those are not real islands and

real princesses, because you are a magician."

The man on the shore smiled.

"It is you who are deceived, my boy. In your father's kingdom, there are many islands

and many princesses. But you are under your father's spell, so you cannot see them."

The prince pensively returned home. When he saw his father, he looked him in the

eye.

"Father, is it true that you are not a real king, but only a magician?"

The king smiled and rolled back his sleeves.

"Yes, my son, I'm only a magician."

"Then the man on the other shore was God."

"The man on the other shore was another magician."

"I must know the truth, the truth beyond magic."

"There is no truth beyond magic," said the king.

The prince was full of sadness. He said, "I will kill myself."

The king by magic caused death to appear. Death stood in the door and beckoned to

the prince. The prince shuddered. He remembered the beautiful but unreal islands and

the unreal but beautiful princesses.

"Very well," he said, "I can bear it."

"You see, my son," said the king, "you, too, now begin to be a magician."”

John Fowles (1985)
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1 CHAPTER ONE

THE SCOPE AND CONTRIBUTION OF THE THESIS

We take  a  rather  phenomenological  approach to  reviewing the  various  stochastic

models  developed  within  the  operations  research  community  over  the  past  half

century. We attempt to distance ourselves from the customary set of assumptions and

hitherto discipline-customary simplifications.

Although  the  thesis  is  composed  with  the  engineer  community  in  mind,  it  is

presented in a format suitable for the non-engineer reader. In particular, we discuss

the fundamental ideas and their logical implications in the body of the thesis, while

computational  and analytical  details  are  relegated to the appendices.  Moreover, a

rather extensive review of the basic concepts appears in the various sections and in

the literature review. Readers familiar with these supporting fields may freely skip

the literature review.

In this treatise, we examine aspects of stochastic models in production and service

systems.  We  dwell  on  the  meaning  and  essence  of  simulation  studies  which

ubiquitously accompany most of the published research.  Simulation is  most often

employed  as  a  verification  tool,  and  occasionally  as  an  investigative  tool.  We

question  the  ontological  aspects  of  state-space-based  stochastic  models  (e.g.

Markovian models) and investigate if simulation rises up to the stature of being a

determinant of verification.

Specifically, we address  the  following conundrum. It  is  observed that  Markovian

models give rise to inordinately large state spaces. Production line models may easily

have state spaces with cardinalities in the order of 10100 or more. How is it then, that

simulation is a justifiable validation tool, when it is obvious that a regular simulation

run may never visit all of the states of the Markovian model?

This conundrum is very seldom address in the literature.  Moreover, as simulation

constitutes a fundamental component of the dominant paradigm, it behooves us to
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scrutinize its role and its limitations. This will not constitute extraordinary science,

but will serve to question the dominant paradigm, and hopefully lead to either the

reinforcement or the degradation of the dominant paradigm. Either way, we submit

that it is valuable research, albeit not in the form of normal science.

The paradox is addressed and resolved. The resolution not only provides insights into

the use of simulation as a verification tool,  but also presents facilities to develop

novel approximations to the traditional Markovian models. The contribution of this is

thesis should be considered mainly as a study to provide deeper insights and a better

understanding of the use of various analytical and conceptual tools and techniques.

As a direct corollary, we are able to identify when simulation becomes a valid tool

and  when it  does  not.  Thus,  the  study  sheds  light  onto  the  current  practices  by

alerting the practitioner when not to rely on simulation as a tool of verification.

It should be noted that, by its nature, the topic required dealing with larger sets of

data,  whose  exact  solutions  are  needed  for  the  conceptual  analysis.  Accordingly,

much effort was involved in code development. In particular, it is noteworthy that

some source code are in the order of 1 gigabyte. Clearly, a gigabyte of code is not to

be written manually. The approach here was to  write  code that  in  turn generates

source code, later to be incorporated into downstream compiling and linking. The

code development itself may also be considered as a contribution, as it provides a

template or framework to the generation of multi-echelon software.

The  following  sections  give  a  brief  background  in  the  structure  of  scientific

revolutions  critical  thinking,  paradoxes  and production  lines.  Afterwards,  we will

revisit our conundrum and define it more precisely.
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2 CHAPTER TWO

INTRODUCTION

This  thesis  strives  to  investigate  fundamental  properties  of  a  class  of  models

commonly used in industrial engineering. Unlike most works that develop extensions

to known models, approaches, or techniques, the emphasis here is to gain insights

and understanding. As a direct consequence of our desiderata,  much investigative

work was needed before finally developing the ideas presented here. Clearly, seeking

novelty,  by  definition,  requires  that  we  disengage  from  the  dominant  tools  and

techniques prescribed for a given subject area. This work, accordingly, required a

considerable amount of self learning in related areas such as the nature of scientific

paradigms,  chaos  theory,  modeling  competitiveness  in  multi-predator  multi-prey

models, industrial dynamics, general systems theory, and complexity.

The specific area of research is Markovian models of production and service systems.

Although the area of stochastic models of production and service systems is quite

broad, a specific focus area, namely that of production lines, is sufficient to illustrate

the ideas.  Again,  our emphasis is  not  in  the extension of existing models,  but in

obtaining  further  insights  into,  and a  deeper  understanding of,  these  models.  We

made every effort to keep the examples simple so that the reader is not prevented

from  seeing  the  proverbial  forest  for  the  trees.  Accordingly,  we  pick  discrete

Markovian  models  of  multi-station  production  lines  with  no  inter-station  buffers.

Some aspects of the work require the use of analytical comparisons. We chose the

simplest queueing model, namely the M/M/1 queue for this purpose. Once again, our

work also relates to the use of simulation as a tool. Here, we wrote the simulation

code in the general engineering computational environment of Scilab.

The computational  aspects  of  our  work are  also  somewhat  unusual.  Most  of  the

developed code does not compute, but rather, generate source code for downstream

compiling and execution. In this sense, it is closer to hard AI (artificial intelligence)
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than  it  is  to  computation.  It  thus  follows  that  we  are  not  much  interested  in

computation  times,  other  than  the  practicality  of  waiting  for  the  code  to  be  so

generated. All code development was done in open-source environments using open-

source tools. Detailed information about the code is given in the appendices.

2.1. THE STRUCTURE OF SCIENTIFIC REVOLUTIONS

It is already stated that the current work aims to develop insights and understanding,

rather than to pursue extensions within the framework of a dominant set of tools and

techniques. Such tools and techniques are called a “paradigm”. The word “paradigm”

was not a popular until it was used by Thomas Kuhn (1970). Kuhn, the physicists and

philosopher, introduces  this  notion  in  his  1965 book “The Structure  of  Scientific

Revolution”. Kuhn introduces the phenomenon of a “Paradigm Shift” to emphasize

the  distinction  between  what  he  calls  “Normal  Science”  and  “Extra-Ordinary

Science”.  Before explaining normal  and extra-ordinary sciences,  let  us first  dwell

further on what a paradigm is.

The  word  “paradigm”  comes  from the  Greek  word  “paradiegma”,  which  means

“example”. It is used as a guide for a better understanding of a phenomenon. On the

other hand, in its contemporary use, the word “paradigm” is mostly used to describe

the entire whole of a technique or a value in a community. Remarkably, the word

“paradigm” is one of the few words that have both monolithic and holistic notation.

This observation may not be adequate in rigorous philosophical context. However, in

this  thesis,  any  differentiation  of  the  concept  of  paradigm,  between  these  two

implications is not necessary.

We can basically summarize Kuhn's ideas of a scientific revolution in three stages, as

seen in the figure below.
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In pre-paradigmatic stage, there are a few ideas that compete with each other, and try

to become a dominant (or alpha) idea. This is then labeled the alpha-paradigm. We

may call this stage, the competition of paradigms in which the scientists are clustered

behind their  favorite paradigm, as the process tries to pick one of the paradigms.

After  some  time,  most  of  the  proposed  paradigms  are  eliminated  from  further

consideration, and just a few of them are left. At the end of this stage, one paradigm

becomes  the  alpha-paradigm.  This  represents  the  conviction  of  a  majority  of  the

scientists  that  following  the  chosen  alpha  paradigm to  be  more  appropriate  and

effective  for  the  development  of  the  field.  After  the  competition  ends,  and  one

paradigm  becomes  the  winner,  science  is  conducted  through  “normal  (ordinary)

science”.

In  normal  science,  the  scientists  operate  within  the  guidelines  of  the  winning

paradigm, find its limits and try to extend its potential.  As time passes, and even

though the community has some problems with the dominant paradigm, trust of, and

a  familiarity  to  the  dominant  paradigm  develops  over  the  years.  Often,  the

community is blinded and does not accept the paradigm's shortcomings, or is afraid

of  what  might  happen  after  letting  go  of  the  dominant  paradigm.  This  is  called

“Paradigm  Paralysis”.  It  is  very  hard  at  this  point  to  accept  that  the  existing

5
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paradigm is not adequate, to break the chains for a new paradigm, and make a leap.

But  eventually  the paradigm causes a crisis  in  the scientific  community, and this

leads us to the next phase of the science, that is, what Kuhn names “Extraordinary

Science”.

At this  stage,  to answer all  those unanswered questions, a scientific revolution is

needed. Creating a new paradigm, a methodology, requires more work and patience

compared to normal science. Kuhn's idea of a revolution in science has significant

philosophical ramifications. From the beginning of the 20th century, the beginning of

the logical positivism, it was well accepted that science is a cumulative progress. But

according to Kuhn, science is not cumulative, and we need to make a leap to make a

progress. A crucial fact of extraordinary science, according to Kuhn, is that different

scientific paradigms are incommensurable. If two scientists from different paradigms

try to find a new method on the same subject, they cannot compare their work to each

other. Their experiments and observations depend on the observer, thus one's work

may  seem  irrational  or  irrelevant  to  the  other  one.  In  this  stage,  new  proposed

methodologies are conducted and proposed to the community and we get back into

the pre-paradigmatic stage.

We cannot say whether ordinary or extra-ordinary sciences is better. Because these

two  phenomena  are  interconnected.  They  are  co-dependent  in  a  cyclical  self-

triggering  fashion.  Only  together  as  a  whole,  one  can  speak  of  science.  But  the

question is, since science depends on the paradigm of the experimenter or observer, is

progress in science is arbitrary?

It was stated that this thesis aims to develop understanding and insights. Actually, it

might be more appropriate to say that we wish to work on something other than

normal science. The pursuit of extraordinary science, by definition, is not possible by

a checklist or through an established technique. For this would mean there is already

a paradigm to conduct extraordinary science, which logically is a contradiction. As an

alternative to extraordinary science, however, academic research may be oriented to

investigate and question the dominant paradigms. The hope is that such investigation

may lead to extraordinary science, or at least bring about deeper understanding, either

reinforcing or eroding the dominant paradigm. Parenthetically, let  us also divulge

why we want to work outside the dominant paradigm. The survey of the greater
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literature in philosophy of engineering, philosophy of science leads to the question of

the role of an engineer in academia (Engineering, 2010). A case in point, if the role of

an  engineer  is  to  apply  science,  why  is  so  much  academic  engineering  research

oriented  towards  basic  research,  arguably  void  of  any  hope  for  application  or

implementation? There are numerous articles that claim that studies in academia are

irrelevant  to  the  extent  that  they  cannot  be  applied  in  real  world (Anonymous

Academic,  2014;  Panda  and  Gupta,  2014;  Boehm,  1980;  Economist,  2010  ;  Jon

Excell, 2013).

We have to state that this study is not exactly Extraordinary Science. However, we do

not have any references to create a checklist to get results. This study focuses on the

simulation in production lines and queues. Literature review on production lines and

paradoxes are given as a subsection in Chapter 1. The scope of the thesis is explained

in Chapter 2. Analysis in M/M/1 Queue and Production Line are given in Chapter 3,

and  Chapter  4,  respectively.  Lastly,  Conclusion  and  Future  Studies  is  given  in

Chapter 5.

2.2. CRITICAL THINKING AND ITS CONTEXTUAL RELATIONSHIP 

WITH PARADOXES

Science and technology are what they are now due to the scientists and academicians,

who have been skeptical  within  a  rigorous  framework of  critical  thinking.  Costa

(1985) gathered different definitions of critical thinking from different works. Critical

thinking might be defined as thinking which achieves a rational conclusion using

adequate  information  by  analyzing,  observation,  evaluation,  or  explanation.  The

Critical  Thinking  Community  (Critical  Thinking  Community,  n.d.) also  has  a

definition  which  is  widely  accepted.  They  define  critical  thinking  to  be  “the

intellectually disciplined process of actively and skillfully conceptualizing, applying,

analyzing, synthesizing, or evaluating information gathered from, or generated by,

observation, experience, reflection, reasoning, or communication, as a guide to belief

and action” (Critical Thinking Community, n.d.).

According  to  Paul  (1991),  there  are  three  groups  of  mental  structures  to  be

considered as an open-minded thinker. The first one is micro-level skills by which

one  distinguishes  a  subsentence,  a  skeptical  assumption,  or  inconsistency. At  the
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macro-level, there are skills by which one makes contributions to discussions, creates

theories, and knows how to approach a subject critically. The third group of essential

skills to critical thinking contains the aspects of mind such as intellectual virtues and

moral commitments. Paul (1991) also gives a detailed table of the elements of critical

thinking.

Further examples of critical thinking are given in Appendix 1.

2.3. PARADOXES

The word of “paradox” stems from Greek word “parádoxos” which its root based on

“pará” (“beyond”) and “dóxa” (“expectation”) means contrary to expectation. Felkins

(1995) states that the paradoxes may occur from our lack of understanding which

may  caused by the  inadequacies  of  our  language.  In  most  of  the  paradoxes,  the

conclusion  is  seemingly  both  true  and  false  at  the  same  time,  and  thus  present

unresolved  contradictions.  Since  the  paradoxes  show  us  the  flaws  in  our

understanding and the way we think, contradiction is essential to paradoxes.

Paradoxes are also self-referenced and sometimes they include circularity. One of the

most known paradox, “This sentence is a lie” is self-referenced. “A goes to B”, “B

goes to A” are the basic circular paradoxes. However, paradoxes may caused by false

or prejudiced statements which may be come from generalizations.

Cantini (2007) wrote in detail the development of paradoxes and contemporary logic.

Cucić  (2009) also  wrote  the  development  of  paradoxes  and  very  well  gathered

notable classifications made by other researchers.

There  are  several  types  of  paradoxes.  The  classification  of  paradoxes  by  Quine

(1966) might be reckoned as a basis for other classifications. According to Quine,

there are three types of paradoxes as described in the following sections.

2.3.1. VERIDICAL PARADOXES

Veridical paradoxes are also known as Truth-Telling or Verification paradoxes. They

lead us to a seemingly absurd conclusion, however when a new premise is included,

it convinces us that the conclusion is valid. This type of paradoxes may occur in

situations where the language we use, or our understanding thereof, is not adequately
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sufficient for the circumstances. We may need more information or a new point of

view on these paradoxes. Quine gave these examples to explain veridical paradoxes:

The Frederic Paradox: In the opera named Pirates of Penzance, the character Frederic

who works as an apprentice for the pirates, wants to leave because he wants to fell in

love poetically. His friends in the ship fell badly about it, and do not want him to

leave. On his 21st birthday, they tell him that he cannot leave the ship because in his

contract, it is specified that he may leave at the age of 21, but he is currently only 5

years old, and that he has to remain with the pirates for 63 years. Even though it

seems absurd at first, we can easily solve the paradox by saying that he was born in

the leap year.

The Barber Paradox: Another example for veridical paradoxes that Quine gives is the

so-called Barber Paradox. Here, there is a village barber who shaves all and only the

men who cannot shave themselves.  The first question comes to mind is that who

shaves the barber. If the barber cannot shave himself, then the barber has to be shave

himself. But, if he can, then he should not. There is an obvious circularity in this

paradox. However, as stated earlier, such paradoxes can be viewed as an indication of

our  lack  of  understanding,  or  as  inadequacies  of  our  language.  Thus,  Quine's

resolution of Barber Paradox might be the easy way out. After all, it is not stated if

there is any other barber. If there is another barber in the village, then the second

barber can shave our hero, thus the paradox unravels. But if there is no other barber

in the village, we have no argument that only barbers can shave other men. By this

we can conclude that arguments that create paradoxes might narrow our viewpoint.

2.3.2. FALSIDICAL PARADOXES

Falsidical  paradoxes  are  the  ones  that  not  only  seem  false,  but  are  false.  The

conclusions established from the falsidical paradoxes are evidently absurd, but the

arguments creating the paradoxes seem true.  The causes  that  create  the falsidical

paradoxes  are  the  hidden  fallacies  in  the  arguments.  Most  common  falsidical

paradoxes are the mis-proofs of algebra.

The 2=1 proof by Augustus De Morgan: Assume that X=1. If we multiply each side

of the equation by X, we obtain X2 = X. Then we subtract 1 from each side, we get,

X2-1 = X-1. We extend the left side of the equation as, (X-1)(X+1) = X-1. If  we
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simplify the equation by dividing each side by (X-1), we obtain, X+1 = 1. Since X=1,

we get, 2 = 1. The conclusion is obviously wrong, even though we applied reasonable

steps on the equation. However, what is not noticed is, X-1=0. Thus the fallacy in the

argument is dividing the equation by X-1.

Achilles  and the  Tortoise: Another  example that  Quine  gives  is  one of  the  Zeno

Paradoxes,  Achilles and the tortoise. As Silagadze writes  (2005), Zeno claims that

plurality, motion, and change are illusions, and established paradoxes categorized by

these concepts. Achilles and the tortoise is one of the three paradoxes to defy that the

motion is real. In this paradox, Achilles and the tortoise decides to make a footrace.

Since  the  tortoise  is  really  slow,  Achilles  gives  him  a  head  start.  The  paradox

establishes a conclusion at this point, that the fast runner can never overtake the slow

runner. Zeno says that where the fast runner gets after an interval of time, the slow

runner will be further from that point. Thus the motion is just an illusion. However,

what Zeno does not see is that Achilles will overtake the tortoise either in an infinite

or a finite time. The resolution of this paradox and other Zeno Paradoxes are given by

several works (Silagadze, 2005; Dowden, n.d.; Byrd, 2010).

2.3.3. ANTINOMIES

Antinomies are the paradoxes that do not fit  in these two categories above. They

create a “crisis in thought” as Quine states (Quine, 1966). If one cannot find a fallacy

in an argument, or cannot be convinced by the conclusion of the paradox, then these

are called antinomies. The following examples are generally accepted as antinomies.

Grelling – Nelson Paradox: Before explaining the Grelling – Nelson Paradox (a.k.a.

Grelling's  Paradox),  let  us  first  define  the  adjectives  “homological”  and

“heterological”.  Homological  is  defined  as  “describing  itself”.  “English”  is  a

homological word, since the word itself is English. “Word” is also homological, since

the  “word”  is  also  a  word.  Heterological,  on  the  other  hand,  is  defined  as  “not

describing itself”. “German” is a heterological word because it is not a German word.

Long is  also a  heterological  one since “long” it  is  not  a  long word,  but  a short,

monosyllabic word.

What  is  paradoxical  here  is  whether  the  word “heterological”  is  heterological  or

homological. The definition of heterological is “not describing itself”. Thus the word
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“heterological” should not describe itself. But it does, as all words have a meaning.

Thus, we conclude that the word “heterological” is homological. However, if it is a

homological word, heterological defines itself, and thus is a homological word. Thus

there is a contradiction due to self-reference.

The  Paradox  of  Epimenides: This  paradox  is  very  similar  to  Grelling's  paradox.

Epimenides  was  a  Cretan  who  said  “All  Cretans  are  liars”.  This  is  also  a  self-

referencing paradox, which has the same structure as “This sentence is a lie”. If all

Cretans really are liars, then the sentence of Epimenides is true. Therefore, he told

the truth where the contradiction causes a paradox.

If we consider that some aspects of nature cannot be explained in any circumstance,

antinomies are reasonable explanations of paradoxes. However, if we are pioneers in

supporting  that  nature  itself  can  always  be  explained  but  today's  knowledge and

experience  are  insufficient  to  explain,  we  can  say  that  antimonies  are  also  the

paradoxes  that  would  be  resolved  if  more  information  were  provided.  Thus

antinomies can also be considered as veridical or falsidical paradoxes. Furthermore,

Quine  (1966) states  that  “One  man’s  antinomy  can  be  another  man’s  veridical

paradox, and one man’s veridical paradox can be another man’s platitude”, meaning

that defining the type of paradoxes is relative upon one's knowledge and experience.

2.4. PRODUCTION LINES

Production lines are linear arrangements of workstations, where workstations display

some type of randomness. Typically, the randomness may be due to random service

times,  or  due  to  station  breakdown.  Often  interstation  buffers  are  employed  to

compensate  for  these  sources  of  randomness.  This  makes  the  subsystem of  each

station  with  its  preceding  buffer  look  like  a  simple  queueing  system.  Thus,

production  lines  may  also  be  regarded  as  tandem  queues.  This  invites  the

generalization of tandem queues to queueing networks.

Production  lines  have  received  much  attention  in  the  industrial  engineering  and

operations research literature. Starting from the mid-fifties, considerable work has

been done in both understanding the fundamental mathematical structure of queueing

networks, and in developing computational techniques to predict the performance of
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production  lines.  The  latter  concern  underlies  the  justification  of  much  of  the

simulation tools developed in the dawn of the computer age.

Analytical  models  for  multi-station  production  lines,  which  are  the  focus  of  this

research, are classified in two main categories. These categories depend on whether

time is considered to be continuous or discrete. Discrete models are more suitable for

paced assembly lines, often seen in automotive production. Modeling these systems

is often done by continuous- time and discrete-time Markov models.  Continuous-

time  models  are  favored  in  the  process  industry  where  no  identification  of  the

individual units exists, (e.g. chemical industries). In almost all cases, focus is on the

evaluation  of  two  primary  performance  measures:  the  production  rate,  and  the

expected number of items in the buffers.

The studies of Schick and Gershwin (1978), Muth (1979), Muth and Yeralan (1981),

and Gershwin and Schick  (1983) are early examples of discrete -time Markovian

models. Studies conducted by Yeralan et al. (1986), Yeralan and Tan (1997) provide

examples of continuous-time models.

There  are  many  extensions  to  these  basic  models.  For  instance,  Maggio  et  al.

(Maggio, Matta, Gershwin, and Tolio, 2009) present closed-loop systems. These may

be considered as queueing networks. Such closed-loop systems are seen in industries

where hot  pallets  are used to  hold the workpiece while  it  progresses through the

manufacturing system. Once the workpiece is completed, the hot pallets are returned

to the beginning of the line. Thus, the models track the hot pallet.

There are several textbooks on the subject, to which the reader is referred for detailed

information (Altiok, 1996; Askin and Standridge, 1993; Buzacott and Shanthikumar,

1993;  S.B.  Gershwin,  1994;  Li  and  Meerkov, 2009;  Papadopolous,  Heavey, and

Browne, 1993; Tempelmeier and Kuhn, 1993).
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3 CHAPTER THREE

SIMULATION OF PRODUCTION AND SERVICE SYSTEMS

It is customary among those studies reported in the literature of stochastic models of

production and service systems to find simulation runs that accompany any given

analytical development. Simulation is most often used as a tool of verification. We do

not question the basic premise that simulation may be used in this capacity. However,

many models are developed in a brute force manner that the meaning of the very

premise of a model becomes vulnerable to criticism. A recent report by Yeralan and

Büyükdağlı (2015) mentions  an  automotive  plant  with  168  robotic  workstations

arranged  in  a  serial  manner.  Even  without  inter-station  buffers,  given  that  each

workstation is subject to breakdown, the system modeled as a discrete-time discrete-

space Markov chain has over 1050 states. If we were to visit a different state every

nanosecond, a complete tour of all the states would take 1027 times the age of the

universe. This is an incomprehensible number – so incomprehensible that Yeralan

and Büyükdağlı calls into question the ontology of such a model.

3.1. THE PARADOX

We routinely  see  simulation  models  developed  and  used  to  analyze  stochastic

Markovian  models  of  production  and  service  systems.  Given  that  there  are  an

inordinate number of system states in typical Markovian models, how is it the case

that simulation gives us answers which would take total enumeration a practically

endless amount of time? We attempt to address and answer that very question in this

thesis.

3.2. THE M/M/1 QUEUE

First,  consider  a  system  modeled  as  a  continuous-time,  discrete-state  Markov

process.  We pick  a  system with  the  number  of  states  even greater  than  the  1050

mentioned for the automotive plant model. The continuous-time M/M/1 queue has a
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single server and an input queue. Customer arrive to the system with a rate of  .

Similarly, the service of a customer, provided that the system is not empty (and hence

the server is not idle), is completed with rate  . The number of customers in the

system uniquely determines the state of the system. It is clear that the number of

customers in the system is unbounded. Thus, the system state space is unbounded,

with an infinite number of elements. A complete tour of all the states of the system is,

by definition, impossible in a finite amount of time, irrespective of how quickly we

visit each state.

In analyzing the M/M/1 queue, we often investigate two performance measures: the

expected number of customers in the system, and the utilization of the server. The

latter  refers  to  the  probability  that  the  server  is  busy  servicing  a  customer,  or

equivalently, that the system is not empty.

It is a relatively pedantic task to show that the system is stable if the arrival rate  is

less  than the service rate  .  Or  the ratio  =/,  which is  also referred to in  the

discipline as the traffic intensity, is less than unity. If the traffic intensity is greater

than unity, then the system becomes unstable and the number of customers in the

queue is expected to keep growing over time, never converging to a finite value.

Analytical work quickly reveals that if the traffic intensity is less than unity, then the

expected number of customers in the system is 1/(1-). Similarly, the server is busy

with probability  and idle with probability (1-) (Hillier and Lieberman, 2009).

We next build a simple simulation model for this infinite-state Markov process (see

Appendix 2). A typical result from the simulation runs is given below.
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 --- simulation parameters ---

Run time:                        1000

Arrival rate:                    9.00

Service rate:                   10.00

Number of arrivals:              9023

--- simulated performance measures ---

Utilization:                     0.89

Average number of customers:     7.76

Maximum number of customers:       54

--- computed performance measures ---

traffic_intensity:               0.90

ave_num_in_system:               9.00

Figure 2. Simulation Run Results.

As seen, with a traffic intensity of 0.9, with a total of about 9000 transactions (9023

customers arriving), we obtain fairly good estimates for the performance measures.

The utilization is  found to be 0.89 (0.90 theoretical),  and the average number of

customers in the system was found to be 7.76 (theoretical 9.00).

Increasing the run time, and hence the number of transitions gives results even closer

to the theoretical values.  The graphs below show how the estimated performance

measures are affected by the runtime.
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Now, the question remains, as to how is it possible for a simulation run of only a few

thousand transaction to yield performance measures so close to the theoretical values

(relative errors in the range of a few percent), given that a total enumeration of the

states is impossible. After all, the M/M/1 queue has an infinite number of states.

Since we run the simulation for a limited number of transactions (a limited amount of

simulated time), it is clear that the simulation does not visit all possible states. We

next inquire how many distinct states the simulation run actually visits.

Clearly, the M/M/1 queue may only make a transition to an adjacent state. That is, if

there are N>0 customers in the system, the next transition would be to either state

N+1 or to state N-1. Hence, the number of customers in the system throughout the

simulation run is bounded by a maximum and minimum. It is customary to start the

system at state 0 (empty system). Then the maximum number of customers in the

system, Nmax, during the simulation run is a finite number. Again, it is quite clear that

Nmax is a function of the simulation run. As the simulation run time increases, we may

expect  Nmax to  also  grow, as  there  is  more  time for  visiting  states  with  a  higher

number of customers.

We modify the simulation code given in Appendix 2 and keep track of Nmax. It is then

plotted as a function of the runtime.
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Figure 5 shows the results of the simulation runs. Each simulation run has a service

rate of 10, and a runtime between 100 and 5000 time units. Five different arrival rates

are used: 1, 3, 5, 7, and 9. The simulation was run and the maximum number of

customers in the system (Nmax) throughout the runs were recorded. Each point on the

graph is actually an average of 50 runs with identical parameters. It is interesting to

observe that, in each case, Nmax quickly and asymptotically approaches a constant

long-term value.

It is possible to analytically compute the expected value of Nmax as a function of the

system parameters and the length of time the system is observed. Such computation

falls into the domain of transient analysis. Appendix 3 gives the transient analysis for

an M/M/1 queue which starts with an idle server and runs for a given period of time.

The analytical work shows how Nmax may be computed. Here we will suffice with

simply graphing the theoretical  values of  Nmax and comparing them to the figure

above.
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With a simulation runtime of 5000 time units, theoretically, the expected maximum

number of customers in the system is about 65.

3.3. OBSERVATIONS AND CONCLUSIONS

In effect, the simulation runs successfully evaluates the two performance measures,

the utilization probability and the expected number of customers in the system, by

only visiting a handful (say 100) of states out of the possible infinite  number of

states. The implications of this observation are quite significant in many ways.

First, it shows that the value of simulation as an investigative tool is not only in its

utility to collect data and obtain statistics, but also in delineating and concentrating

on the more likely states and ignoring (completely) the states which have negligible

effect  on  the  performance  measures.  In  effect,  the  simulation  only  considers  a

“truncated” system, where among the infinite number of states, only a few hundred

states are dealt with. In other words, if we were to build a simulation model of the

M/M/1 queue and another for a modified M/M/1 queue where arrivals to the system

with 100 customers in it were lost, the two models would give us exactly identical

numerical results.

In a related observation, we see that simulation initial conditions are of importance.

For example, if we were to start the given M/M/1 queue simulation with 1,000,000

18

Figure 6. Nmax as a Function of Runtime,
as Computed Theoretically.



customers in the system and ran it for a few thousand time units, we would always

get the utilization to be 100%, since the simulation run would not be long enough for

the system to reach a steady-state.

A similar  case  could  be  made  for  different  performance  measures.  Suppose  the

probability  that  there  are  1000  customers  or  more  in  the  system  is  taken  as  a

performance measure. For the system discussed above, our simulation runs would

always return this value to be zero, since there will never be enough time for the runs

to observe such states with 1000 or more customers. Theoretically, however, these

performance measures are available quite easily.

Finally, and perhaps most importantly, the observations in this chapter point to some

insights concerning the modeling of production and service systems. As discussed,

realistic applications lead to unimaginably large state spaces. Brute force computing

the steady-state probabilities, as it is customarily pursued in the literature, is perhaps

rather superfluous. Inspired by the discussions above, one may attempt to build a

“truncated” model of the system and solve it. Of the 168 stations of the automotive

line, how many of the stations could be down at any given time? Clearly, the state

where all 168 stations are down is very very unlikely. If the probability of breaking

down is in the range [0, 0.01], then in the worst case, the probability that all 168

stations break down is about 10-336. Granted there are more ways to enter the state

where all 168 stations are down, but still, the argument is quite strong that the state

with all 168 stations down will never be observed.
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4 CHAPTER FOUR

MARKOVIAN MODELS OF PRODUCTION LINES

The  preceding  chapter  provides  insights  into  simulation  as  a  modeling  and

computational tool. In particular, we find simulation to be useful in cases where the

performance measures sought are, in some particular sense, commensurate with the

general nature of simulation. It is clear that simulation is not a substitute for exact

models, e.g. computing the steady-state probabilities of a Markovian model, when

unusual performance measures are of interest.

In this chapter, we incorporate the insights gained into models of production lines.

We aim  to  address  and  resolve  the  claim  (see  Yeralan  and  Büyükdağlı,  2015)

concerning the validity – in fact, the ontological standing – of Markovian production

line models  when the  state  space is  simply  telescoped by considering successive

Cartesian products  of  the station states.  Consider  that,  when there  are  about  100

stations, each station being in a state down or up, we have at least 2100 system states.

This is an unfathomably large number. No current simulation study can be expected

to visit all of these states. However, we see from inspecting the M/M/1 queue that not

all states need to be considered when seeking the usual performance measures.

In particular, almost all studies start with an investigation into the production rate of

the line. The question is, parallel to the insights regarding the M/M/1 queue, is it

reasonable to consider a truncated state space of the production line and obtain a

good estimate to the production rate. After all, simulation is not expected to visit all

such states, while its results are considered to constitute a benchmark. In order to

address this question, we consider a minimalistic line, as we are interested in the

fundamentals rather than any of the details. The investigation is constructed in the

next section.
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4.1. A THREE STATION LINE WITH NO BUFFERS

Consider  a  three-station  production  line  with  no  buffers.  The  line  is  assumed to

operate in discrete time, as explained in (ref MY81). There are five station states: up

and operating (U), up but blocked (B), up but starved (S), down and under repair (D),

down, blocked and under repair (X). With three stations and no buffers, the Markov

chain has 32 states. These states are listed below.

Table 1. System States of the Production Line.

Index
Station

States
Index

Station

States
Index

Station

States
Index

Station

States

0 DDD 8 DSS 16 UUS 24 BDS

1 DDU 9 DBD 17 USD 25 BBD

2 DDS 10 DXD 18 USU 26 BXD

3 DUD 11 UDD 19 USS 27 XDD

4 DUU 12 UDU 20 UBD 28 XDU

5 DUS 13 UDS 21 UXD 29 XDS

6 DSD 14 UUD 22 BDD 30 XBD

7 DSU 15 UUU 23 BDU 31 XXD

Having  only  32  states,  the  Markov  chain  can  be  solved  exactly  for  the  given

parameters. Given the station breakdown repair probabilities, we easily compute the

steady-state  probabilities.  The  production  rate  is  obtained  as  the  steady-state

probability that the last station is in the state “up and operating”1. In this case, there

are eight such states, marked in bold in Table 1.  Appendix 4 gives the C code that

was used to compute the steady-state probabilities and the production rate.

An illustrative simple case is when we have identical stations, each with a breakdown

probability  of  q  and  a  repair  probability  of  r.  The  production  rate  for  such  a

production line is illustrated by the graphic below.

1 The production rate is also available as functions of the other station probabilities, however, such
details are not the focus of our study. The reader is referred to the literature (see for instance  (S.B.
Gershwin, 1994) for these details.
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The insights into the why simulation works  well  for the M/M/1 queue led us  to

conclude that certain states are never visited. Only those states which are pertinent to

the performance measures are visited. The performance of simulation, of course, also

depends on the initial state. We next list explicitly the steady-state probabilities of

each of the system states to see if there are any states with negligible effects on the

performance measure. We select rather realistic parameters. A breakdown probability

of  0.01  means  that  the  mean  time  between  failures  is  100  cycles.  The  repair

probability is selected to be an order of magnitude larger, corresponding to a mean

time to repair of 10 cycles.
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Table 2. Steady-State Probabilities of the Production Line Model (q=0.01, r=0.1).

Index
Station

States

Steady-State

Probability
Index

Station

States

Steady-State

Probability

15 UUU 0.74867172 2 DDS 0.00028882

25 BBD 0.07514296 5 DUS 0.00011103

24 BDS 0.06805575 14 UUD 0.00007917

8 DSS 0.06089789 28 XDU 0.00007585

16 UUS 0.01500090 1 DDU 0.00006823

4 DUU 0.00752210 20 UBD 0.00003962

23 BDU 0.00752203 17 USD 0.00003574

19 USS 0.00676643 13 UDS 0.00003209

7 DSU 0.00676627 12 UDU 0.00000758

18 USU 0.00075181 31 XXD 0.00000280

30 XBD 0.00039688 10 DXD 0.00000252

26 BXD 0.00039618 27 XDD 0.00000228

22 BDD 0.00035895 0 DDD 0.00000204

9 DBD 0.00035656 3 DUD 0.00000065

29 XDS 0.00032296 21 UXD 0.00000028

6 DSD 0.00032170 11 UDD 0.00000023

The states are arranged so that their steady-state probabilities are in decreasing order.

Again, we mark in bold those states where the last machine is productive. It is seen

that the steady-state probabilities display a great range of values. The state with the

largest probability is UUU with a probability of almost 0.75. The state with the least

probability is UDD with a probability of 2.3x10-7. The difference between the largest

and smallest steady-state probability is over six orders of magnitude. That is, the ratio

is on the order of a million to one. Clearly, if a simulation runs shorter than a few

million cycles, the state UDD with the smallest probability is likely never be visited.

This is analogous to not visiting states with more than, say, 100 customers during the

simulation of an M/M/1 queue with a traffic intensity of 0.9.

4.2. A TRUNCATED MODEL OF THE THREE STATION 

PRODUCTION LINE WITH NO BUFFERS

Inspired by our findings in Chapter 3 regarding the M/M/1 queue, now we consider a

truncated  model  of  the  bufferless  three-station  line.  We truncate  the  model  by
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disregarding the states in which more than a single station is under repair. In effect,

we are making the seemingly unrealistic assumption that once a station breaks down,

the breakdown probability of the other stations is zero. This may seem unreasonable,

but it does follow the truncated M/M/1 queue case. There, we make the assumption

that once there are some K customers in the system, the arrival rate is zero.

The  three-station  case  can  easily  be  modified  to  find  the  production  rate  of  the

truncated  model.  One  approach  is  to  start  with  the  steady-state  probabilities  as

computed above. Then, we may remove those states with more than one station under

repair,  and  re-normalize  the  steady-state  vector.  Afterwards,  we  re-compute  the

production rate.

The systems states with at most one station under repair are listed below.

Table 3. States with Fewer than Two Stations Under Repair.

Number of

Stations

Under Repair Index

Station

States

Number of

Stations Under

Repair Index

Station

States

0

15 UUU 1 4 DUU

16 UUS 5 DUS

18 USU 7 DSU

19 USS 8 DSS

12 UDU

13 UDS

14 UUD

17 USD

20 UBD

22 BDD

23 BDU

24 BDS

25 BBD

The state transition diagram illustrates the transitions among the systems states of the

truncated model.
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The states where the last station is operational are marked by bold letters. Note that

of the eight such states, we now have only six. The normalization of the steady-state

probabilities  means  we  add  the  steady-state  probabilities  of  the  seventeen  states

shown in Table 3. and then normalize the vector by multiplying it with the reciprocal

of the sum of its elements. The production rate is then computed as the sum of the

normalized steady-state probabilities of the states shown in bold in Table 3.

The production rate of the truncated model will  of course differ from that of the

complete model. The question is by how much. We computed the difference for a

series  of  parameters  of  a  three-station  bufferless  line  with  identical  stations.  The

differences are given as absolute percentage errors (APE). The absolute percentage

error is computed as

APE = 100⋅| ( production rate )−( production rateof the truncated model)
( production rate) |. (1)

The absolute percentage errors are plotted below.
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Figure 9 is rather remarkable. First, observe that the maximum error is about 5.5%.

This  is  actually  an  extreme  case,  where  both  the  breakdown  and  the  repair

probabilities are 0.1. In this extreme case, the stand-alone availability of a station is

50%.  Clearly,  in  actual  implementations,  a  station  would  be  expected  to  be

operational more than 50% of the time. For realistic cases, that is, where the stand-

alone  availability  is  around  90%,  the  error  less  than  1%.  This  is  a  remarkable

phenomenon, that serves not only as an eye-opener, but as motivation to develop

practical  approximate  production  line  models  which  are  then  to  be  solved

algebraically.

4.3. MORE ACCURATE TRUNCATED MODELS OF PRODUCTION 

LINES WITH NO BUFFERS

Once again,  inspired by the results  of the preceding section,  we now proceed to

construct  models  of  production  lines  where  the  number  of  down  machines  are

limited. Analogous to the truncated M/M/1 queue (the M/M/1/K queue), we make the

auxiliary assumption that once K of the N stations are down, the remaining stations

27

Figure 9. Absolute Percentage Errors as Functions of Model Parameters



become  perfectly  reliable.  Agreeably,  this  seems  like  an  unjustifiable  and  quite

counterintuitive assumption. The justification lies in the insights hitherto developed –

and it is these insights which constitute the contribution of this thesis. In short, we

want to remove some of the system states that have probabilities orders of magnitude

smaller  than  others.  Obviously,  there  are  many  ways  to  do  this  pruning.  The

assumption made here is one approach. It does have the advantage, however, that it is

relatively straightforward to model this truncated system, just  as it  was relatively

straightforward to implement the truncated M/M/1 queue.

Software  was  written  to  automatically  generate  the  states  and  the  transition

probability matrix of bufferless production lines with N stations, but where at most K

of the N stations are allowed to be down. We call this the N/K-Truncated-Model.

Effectively, once K of the stations are down, the remaining N-K stations are assumed

to  be  perfectly  reliable.  The  states  were  explicitly  obtained  by  the  developed

software. A brief overview of the software is given in Appendix 5.

Table 4. Number of System States (N/K models, N stations, at most K down).

N/K 1 2 3 4 5 6 7 8 9 10

3 15 26 32

4 40 92 116 128

5 103 314 435 488 512

6 257 1027 1594 1882 2000 2048

7 623 3218 5665 7133 7833 8096 8192

8 1476 9656 19454 26389 30267 31992 32576 32768

9 3435 27858 64555 131072

10 7882 77694 524288

As  seen  in  Table  4,  the  number  of  system  states  drop  considerably  when  the

maximum allowed number of down stations (K) is small. In the extreme case of K=1,

we allow only one station to be down at a time. In case of a bufferless production line

with 10 stations (N=10), the number of system states goes from 524288 to 7882. This

is a 66-fold reduction in the number of system states.

The next investigative question, of course, is “how well does the truncated model

approximate the original model?” Here, once again, we develop software to compute
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not only the transition probability matrices for the N/K truncated models, but also the

production rates. The N/N model gives the production rate of the original models

where the number of system states are several orders of magnitude larger. The N/1

truncated models are the approximations. Numerical results  are given in the table

below.

Table 5. Average Percentage Error of the N/1 Truncated Models.

Production Rate (q=0.01, r=0.1)

N N/1 (truncated) N/N (full model) APE

3 0.5166273929 0.5142570532 0.46

4 0.5431647628 0.5388719616 0.80

5 0.5451422158 0.5387804217 1.18

6 0.5375021638 0.5290534472 1.60

As seen from Table 5. the N/1 truncated models provide good approximations to the

production rate. The truncated models seem to always over-estimate the production

rate. Moreover, the error term seems to increase almost linearly with the number of

stations. This can also be used to fine tune the estimates, if our focus were to develop

computational  methods  for  the  estimation  of  the  production  rate.  However,  our

interest in this thesis is more on the conceptual side of the methodologies, as we

investigate the ramifications of the models and their use.
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5 CHAPTER FIVE

CONCLUSIONS AND FUTURE RESEARCH

In summary, the prominent dominant industrial engineering paradigm in stochastic

models  of  production  and  service  systems  calls  for  the  development  of  various

Markovian models whose validation is relegated to simulation studies. Propelled by a

paradox that appeared in recent literature (Yeralan & Buyukdagli, 2015) we studied

why such simulation gives acceptable results. Our work illustrates that in modeling

such industrial engineering systems, there is an agreement between the performance

measures  and  simulation.  While  other  performance  measures  may  not  be  easily

obtained  by  simulation,  measures  such  as  the  production  rate  and  the  expected

number  of  in-process  inventory  are  congruent  to  the  simulation  approach.  The

simulation community has recognized such shortcomings in general. For example,

the topic known as Rare Event Simulation  (Bucklew, 2004) dwells on events that

have very little probability. However, such body of knowledge does not negate our

efforts. It remains that whenever a Markovian model is to be validated by simulation,

the applicability and validity of the simulation itself is to be questioned and tested.

Again, the validation of simulation may require effort comparable to the validation of

the Markov model by other (e.g. analytical) means.

The development  of  the  previous  chapters,  provides  a  resolution  to  our  paradox.

Indeed, as in the M/M/1 case, simulation does not visit all possible system states.

Rather simulation naturally focuses on the system states that have a greater influence

on the performance measures.  Removing the system states which have negligible

effects  on  the  performance  measures,  we  were  able  to  duplicate  the  results  of

simulation.

There are significant conclusions to this observation. First, simulation should not be

seen as the ultimate verification tool. Its applicability and validity depends on how

suitable simulation is to the particular performance measure of interest. For example,
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the simulation of an N-station production line will not be able to give an accurate

estimate of the probability that all N stations are down, when N is large. In addition,

in  the  numerical  examples  conducted,  it  was  observed that  simulation  and exact

solutions differ typically by a few percent. Such error ranges are prevalent in the

literature. It calls into question that when a study compares its analytical results to

simulation and reports errors of a few percent, it may well be that the error is due to

simulation rather than the analytical models.

Perhaps  the  most  significant  conclusion  of  this  work  is  in  the  type  of  research

conducted.  The  desire  to  investigate  issues  other  than  extensions  in  the  current

dominant  paradigm.  Although  it  is  unlikely  to  engage  in  what  Kuhn  calls

extraordinary  science  at  will,  without  the  accompanying  serendipity, nonetheless,

research is possible to call into question aspects of the dominant paradigm. The major

contribution of this work is in that sense. It develops a deeper understanding of a

major tool (simulation) in the topic area. Admittedly, it does not trigger the crisis that

would challenge the dominant paradigm, it nonetheless provides exploitable avenues

in constructing new analytical models (truncated models) which would be expected

to perform as well as simulation.

Throughout this study, before focusing on the “simulation paradox” we investigated

issues  in  systems  theoretical  aspects  of  manufacturing  systems,  studied  the

applicability  of  predator-prey  models  in  uncovering  aspects  of  cooperation,

competition, and co-dependence among companies, and investigated if fractal-like

structures  in  tri-diagonal  stochastic  matrices  could  be  modeled  by  use  of  chaos

theory.  All  of  these  preliminary  works  were  in  fact  toward  the  same  goal  of

attempting to work on something other than what Kuhn calls “normal science”.
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APPENDIX 1 – CRITICAL THINKING

Critical thinking helps us to determine whether a given argument is valid or not. An

argument  is  a  set  of  premises  (statements)  that  together  comprise  reason  for  a

conclusion (another statement). This decision mechanism is based upon the logical

and  structural  validity  of  the  given  statements,  that  is,  whether  the  statements

necessarily lead to the conclusion. When all of the premises are true, the conclusion

must be true for the argument to be valid. For instance, your best friend told you that

he cannot make it to the Broadway show tonight. When you asked him the reason, he

might give these arguments: (a) that it is the end of the month and he ran out of

money, (b) that he broke his arm, and it is casted or (c) that he just found out that the

leading actress on the show is his ex-girlfriend.

The first  argument seems possible to you, because you know it  is the end of the

month, and your friend does not know how to manage his money. It is a reasonably

good argument which has nothing to do with morality, but directs us to a probable

conclusion.

If your friend broke his arm, it is probably a good argument, which leads to a rational

but not to an absolute conclusion. Even if it is true, your friend may take some pain

killers and make it to the show if it is really important to you. Therefore it is an

ampliative argument.

And the  lie  that  the  beautiful,  talented,  leading actress  on the show is  your  best

friend's ex-girlfriend? It is a very, very bad argument obviously, because he is not that

handsome, or wealthy, or clever. He is probably lying to you because he does not

want you to know the real reason of why he cannot come. So why do you not be a

good friend and treat him to the play by buying the tickets, or if he really broke his

arm, pay him a visit with a bottle of red wine to make a movie night at home.

But sometimes, we can detect an incorrect conclusion from the arguments. Mistakes

that we make unintentional or intentional (unfortunate but abundant examples can be

seen in politics, or commercials, etc.) in critical thought is called fallacies. Dowden

(n.d.) explains that there is an abundance of definitions for the term “fallacy”, since
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the researchers are picky and do not want to make a fallacy in its definition. There

are two types of fallacies: formal fallacies and informal fallacies.

Formal fallacies are the ones which have invalid logical forms. Formal fallacies are

illustrated by the fallowing example.

Premise 1: Industrial engineering graduates mostly work at production

or service sectors.

Premise 2: Uncle Joe works in a production company.

Conclusion: Uncle Joe is an industrial engineering graduate.

This  is  an  invalid  conclusion  since  not  everyone  in  the  production  sector  is  an

industrial engineer. This invalid formal fallacy example also can be stated in a modus

ponens format.

Premise 1: If X, then Y.

Premise 2: Y.

Conclusion: Therefore, X.

This  type of fallacy is  called a converse error. Besides formal fallacies,  informal

fallacies may also have mistakes in their forms, or contain mistakes in their content.

Consider, for instance,

Premise 1: All  Broadway  show  actresses  only  date  handsome,

clever, or wealthy men.

Premise 2: Your  best  friend  is  neither  handsome,  nor  clever  or

wealthy.

Conclusion: Your best friend is lying about the Broadway actress

being his ex-girlfriend.

Dowden (n.d.) also creates a list of fallacies which includes commonly used ones and

their brief explanations. Hansen (2015) gives a background of fallacies and reviews

the current topics in fallacy theory.

Paradoxes are similar to fallacies. Paradoxes are the cases in which we necessarily

agree with the given arguments, but also disagree with its conclusion. This thesis
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focuses on such an issue. We discuss a seeming paradox in the field of Markovian

production line models.

Agreeing with the  argument  but  disagreeing with the conclusion  could also be a

visual paradox, as shown in Figure 1.

In the figure, are the men go up or down the stairs? The argument can be made that

the men are going both up and down the stairs. While the arguments lead us to a valid

conclusion, at the same time they lead us to an invalid one. According to Eliason

(1996), paradoxes are invalid statements, but still have a value in critical thinking. He

argues  that  since  the  paradoxes  show that  without  giving  sufficient  thought,  the

arguments  may lead  us  to  a  pitfall  conclusion.  Therefore  what  we see,  think,  or

understand is not exact, and sometimes multiple ideas are incompatible with each

other.

39

Figure 10. A Section of Ascending and Descending by
Escher.





APPENDIX 2 – M/M/1 SIMULATION IN SCILAB

A simple discrete-event simulation of the M/M/1 queue is implemented in Scilab.

clc
clear

tRunTime=1000;    // hours
rArrive =  9;     // rate: arrival per hour
rService= 10;     // rate: service completion per hour

// ------------------------------------------------------------
// generate arrival times and service (processing) times
arrivalTimes=[grand(1, 1, "exp", 1.0/rArrive)];
serviceTimes=[grand(1, 1, "exp", 1.0/rService)];

while (arrivalTimes($)<tRunTime),
// printf("%4d  %8.4f  %8.4f\n", length(arrivalTimes), 
arrivalTimes($), serviceTimes($));
 arrivalTimes($+1)=arrivalTimes($)+grand(1, 1, "exp", 1.0/rArrive);
 serviceTimes($+1)=grand(1, 1, "exp", 1.0/rService);
end
nTotalArrivals=length(arrivalTimes);

// generate service completion times
waitTime=0;
lastCompletionTime=0;
departureTimes=[];
for n=1:nTotalArrivals
 waitTime=max(0, lastCompletionTime-arrivalTimes(n));
 departureTimes(n)=arrivalTimes(n)+waitTime+serviceTimes(n);
 lastCompletionTime=departureTimes(n);

// printf("%4d  %8.4f  %8.4f  %8.4f  %8.4f\n", n, arrivalTimes(n), 
serviceTimes(n), waitTime, departureTimes(n));
end

// run simulation collect data

nCustomers=0;    // number of customers in the system
nMaxCustomers=0; // max number of customers in the system

tEmpty=0;
tCustomerTime=0;
indexArrive=1;
indexDepart=1;
time=0;
while (indexArrive<nTotalArrivals),
// printf("%4d  %4d  %4d  %8.4f  %8.4f  %8.4f\n", indexArrive, 
indexDepart, nCustomers, arrivalTimes(indexArrive), 
serviceTimes(indexArrive), departureTimes(indexDepart));

 if(arrivalTimes(indexArrive)<departureTimes(indexDepart)) then
     // next event is an arrival
     elapsedTime=arrivalTimes(indexArrive)-time;
     if(nCustomers==0) then tEmpty=tEmpty+elapsedTime;
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      else
      tCustomerTime=tCustomerTime+elapsedTime*nCustomers;
     end;
     nCustomers=nCustomers+1;
     time=arrivalTimes(indexArrive);
     indexArrive=indexArrive+1;
   else
     // next event is a departure
     elapsedTime=departureTimes(indexDepart)-time;
     tCustomerTime=tCustomerTime+elapsedTime*nCustomers;
     nCustomers=nCustomers-1;
     time=departureTimes(indexDepart);
     indexDepart=indexDepart+1;
  end
  if(nCustomers>nMaxCustomers) then nMaxCustomers=nCustomers; end;:
end

 fUtilization=1.0-(tEmpty/tRunTime);
 fAveCustomers=tCustomerTime/tRunTime;

 printf("--- simulation parameters ---\n");
 printf("Run time:                    %8d\n", tRunTime);
 printf("Arrival rate:                %8.2f\n", rArrive);
 printf("Service rate:                %8.2f\n", rService);
 printf("Number of arrivals:          %8d\n\n", nTotalArrivals);

 printf("--- simulated performance measures ---\n");
 printf("Utilization:                 %8.2f\n", fUtilization);
 printf("Average number of customers: %8.2f\n", fAveCustomers);
 printf("Maximum number of customers: %8d\n\n",   nMaxCustomers);

 traffic_intensity=rArrive/rService;
 ave_num_in_system=traffic_intensity/(1.0-traffic_intensity);

 printf("--- computed performance measures ---\n");
 printf("traffic_intensity:           %8.2f\n", traffic_intensity);
 printf("ave_num_in_system:           %8.2f\n", ave_num_in_system);
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APPENDIX 3 – THE MAXIMUM LENGTH OF THE M/M/1 QUEUE

We consider the M/M/1 queue which starts from state 0 (empty system) at time 0 and

runs for a  given duration T. The number of customers  in  the system in the time

interval [0, T] will vary as a function of the system parameters. We are interested in

the  distribution  and  the  expected  value  of  Nmax(T),  the  maximum  number  of

customers in the M/M/1 queue during the time interval [0, T], given that the system

is empty at time 0.

The transition rate matrix of the M/M/1 queue with an arrival rate of  and a service

rate of  is given below.

Λ = [
−λ λ
μ −(λ+μ) λ

μ −(λ+μ) λ

⋱
] (2)

Note  that   is  a  square  matrix  of  infinite  size.  The  rows   and  columns  of  

correspond to the states. Specifically, element (j, k) of   is the transition rate from

state j to state k, where j differs from k. The diagonal elements of  are set to -(+)

so that the rows sum to zero.. With this arrangement, the steady state probability row

vector  is computed as the normalized solution to the linear equation

ΠΛ=[0,0,0,. ....] (3)

Normalization refers to setting the length of the vector  so that its elements sum to

unity. In vector notation, we may write,

Πu=1 (4)

where u is a column vector consisting of all ones as shown below.

u=[
1
1
1
.
.
.
] (5)
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The transient solution is easily obtained for the general Markov process. Let (t) be

the state row probability vector at time t. Then,

Π(t)=Π(0)eΛ t (6)

Given that the process starts  in a state between 0 and N, the probability that the

process stays with this range ([0, N]) is easily computed using the truncated state

transition matrix. Let

ΛN = [
−λ λ
μ −(λ+μ) λ

μ −(λ+μ) λ

⋱

μ −(λ+μ)
] (7)

be a square matrix corresponding to the states 0 to N. Hence N has dimension N+1.

Now the probability that the system is in state k where k is in the range [0, N] at time

t is given as

Π(t)=Π(0)eΛN t (8)

In particular, let us assume that

Π(0)=Θ=[1,0,0,...] (9)

Then, the probability that the system is still in the range [0, N] at time t, given that it

started in state 0 at time 0 is given by

Θ eΛN t u (10)

where u is the column vector of ones as described above. This probability is the same

as the probability that the state with the maximum index visited, Nmax is in the range

[0, N]. In other words,

P[N max(t )≤N ]=ΘeΛ N t u (11)

which is the probability distribution function of the random variable Nmax. Succssive

differences of the distribution function yields the probability mass function of Nmax.

We compute the probability distribution and probability mass functions of Nmax(t)

using the matrix exponentiation functions in Scilab. The code is given at the end of
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this appendix. Below are the graphs showing the probability distribution and mass

functions for the case

As expected, the probability mass function of Nmax is skewed to the right, since the

maximum has a lower bound of 0, but no upper bound.
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Figure 12. The Probability Mass Function of Nmax (=9,
=10, t=1000).

Figure 11. The Probability Distribution Function of  Nmax

(=9, =10, t=1000).



The  expected  value  of  Nmax is  easily  computed,  as  the  probability  distribution

function is evaluated. Since Nmax is a nonnegative random variable, its expected value

is simply the integral of its reliability function. Thus, keeping a tally of successive

values of

P[N max(t )>N ]=1−ΘeΛ N tu (12)

for N=1, 2, … until the value reaches a threshold (say, 10-10) gives the first moment

of the random variable.

The code written in Scilab is given next.

clc
clear
 // get the distribution of max customers
function p=getProbMax(rArrive, rService, t, n)
 p0=zeros(1,n);
 p0(1,1)=1.0;
 u=ones(n,1);

 Q=zeros(n,n);
 Q(1,1)=-rArrive;
 Q(1,2)=rArrive;
 for k=2:n-1
  Q(k, k-1)=rService;
  Q(k, k)  =-(rArrive+rService);
  Q(k, k+1)=rArrive;
 end
 Q(n,n-1)=rService;
 Q(n,n)=-(rArrive+rService); // truncated
 p=p0*expm(t*Q)*u;
endfunction

rService=10;     // rate: service completion per hour
rArrive=  9;     // rate: arrival per hour
tRunTime=1000;
dist_function=[0];
prob_mass_function=[0];
for n=2:100
 f=getProbMax(rArrive, rService, tRunTime, n)
 dist_function(n)=f
 prob_mass_function(n)=f-dist_function(n-1);
end

scf(0);             // figure window 0
xtitle("m/m/1 queue "+sprintf("(arrival rate%4.2f,  ", rArrive)
+sprintf("service rate %4.2f,  ", rService)+sprintf("run time %d)", 
tRunTime));
plot(dist_function)
xlabel("n");
ylabel("P[max customers < n]");

scf(1);             // figure window 1
xtitle("m/m/1 queue "+sprintf("(arrival rate%4.2f,  ", rArrive)
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+sprintf("service rate %4.2f,  ", rService)+sprintf("run time %d)", 
tRunTime));
plot(prob_mass_function)
xlabel("n");
ylabel("P[max customers = n]");

As  seen,  the  matrix  exponentiation  is  handled  by  the  built-in  Scilab  function

expm(). This greatly reduces the computational effort in evaluating the distribution

and its first moment.
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APPENDIX 4 – THE ALGORITHM

The algorithm to generate the states and the state transitions is rather straightforward.

It relies on the notion of what we call “intrinsic” or “direct” state transitions and

“indirect”  station  transitions.  Station  state  changes  due  to  breakdown  or  repair

constitute  direct  transitions.  State  transitions  due  to  state  changes  of  neighboring

stations are called indirect transitions. As an example, consider a two station line,

where the system state makes a transition from UU to DU. Here, the transition of the

first station is a direct transition, since the station experiences a breakdown. Note that

the second station does not change its state. However, the system state transition from

US to UU displays a indirect station transition of station 2. Here, the state of station 1

does not change. The state of station 2 changes because a part is now available. This

is an example of indirect transitions.

At an step of the algorithm, we keep a set of possible system states. We step through

these  system states,  considering  breakdowns  and repairs.  These  give  rise  to  new

system states. If the new system state is not already in our list, it is appended to the

list we step through. As expected, the list initially grows quite rapidly, but then settles

into its final set. Since there are a finite number of stations and station states, there

are a finite number of system states. When we step through all of the system states

and there are no new system states to append to the list the algorithm terminates.

The algorithm is modified for the truncated systems. Here we put an artificial limit

on the total number of stations that are allowed to be down at any given time. This

additional constraint, although complicates bookkeeping, does not pose any further

intellectual challenges.

Below is a summary of the algorithm steps for a three station line. The first column

shows the iteration (step) number. We start with the known system state UUU at step

0. The second column shows, for each iteration, the system state we inspect at that

step. This is the state from which we generate transitions to other destination states.

The third column lists these destination states. Of these, some may be already in the

list, and some may be new states. The new states to be appended to the list are given
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in column 4. The last column gives the cardinality of the set of states evaluated so far.

It is the number of elements in the list.

Note that the list grow quite rapidly. At step 14, the entire set of states is already at

hand. From step 15 to 32, no new system states are appended to the list.

Table 6. The Algorithm

Iteration (n) S(n) D(n) A(n) Ω(n) Iteration (n) S(n) D(n) A(n) Ω(n)

0 UUU UUU 1

6 XBD

UUU

24

1 UUU

UUU

8

DUU

DUU DUU BBD

BDU BDU XBD

BBD BBD

7 BXD

UUU

24
XDU XDU BDU

XBD XBD BBD

BXD BXD BXD

XXD XXD

8 XXD

UUU

24

2 DUU

DSU DSU

16

DUU

USU USU BDU

UDU UDU BBD

UBD UBD XDU

UXD UXD XBD

DDU DDU BXD

DBD DBD XXD

DXD DXD

9 DSU

DSS DSS

28

3 BDU

BDS BDS

20

USS USS

UUS UUS USD USD

UUD UUD DSD DSD

BDD BDD

10 USU

UUS

284 BBD
UUU

20
UUD

BBD DUS

5 XDU

BDS

24

DUD

BDD

UUS

UUD

XDS XDS

XDD XDD

DUS DUS

DUD DUD
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Table 6. The Algorithm (cont'd)

Iteration (n) S(n) D(n) A(n) Ω(n) Iteration (n) S(n) D(n) A(n) Ω(n)

11 UDU

BDS

28 16 DXD

DSU

32

DUS DDU

UUS DBD

UUD DXD

XDS USU

XDD UDU

BDD UBD

DUD UXD

12 UBD

UUU

28

17 BDS
BDS

32
DUU UUS

BBD

18 UUS

UUU

32
XBD BDU

13 UXD

UUU

28

DUU

DUU XDU

BDU

19 UUD

UUU

32

BBD DUU

XDU BDU

XBD BBD

BXD XDU

XXD XBD

14 DDU

USS

32

BXD

USD XXD

DSS

20 BDD

BDS

32
DSD BDD

DDS DDS UUS

DDD DDD UUD

UDS UDS

21 XDS

BDS

32
UDD UDD UUS

15 DBD

USU

32

XDS

DSU DUS

DBD

UBD
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Table 6. The Algorithm (cont'd)

Iteration (n) S(n) D(n) A(n) Ω(n) Iteration (n) S(n) D(n) A(n) Ω(n)

22 XDD BDS 32 28 DSD DSS 32

BDD DSD

UUS USS

UUD USD

XDS 29 DDS DSS 32

XDD USS

DUS DDS

DUD UDS

23 DUS DSU 32 30 DDD DSS 32

USU DSD

UDU USS

DDU USD

24 DUD DSU 32 DDS

DDU DDD

DBD UDS

DXD UDD

USU 31 UDS BDS 32

UDU UUS

UBD DUS

UXD XDS

25 DSS DSS 32 32 UDD BDS 32

USS BDD

26 USS USS 32 UUS

DUS UUD

27 USD UUS 32 XDS

UUD XDD

DUS DUS

DUD DUD
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APPENDIX 5 – SOFTWARE DEVELOPMENT

The  C  code  that  was  used  to  compute  the  steady-state  probabilities  and  the

production rate of a bufferless three-station production line is given below. The code

also computes the production rate of the truncated model, as described in Chapter 4.

The software consists of two major components, both written in C for performance

regarding  both  memory  management  and  execution  speed.  All  software  were

developed in Linux using open-source tools and libraries. Specifically, the GNU C

Compiler  (‘GCC’,  2016)  was  used  along  with  GNU  Scientific  Library  (‘GSL’,

2009) and the Basic Linear Algebra Subprograms (‘BLAS’, 2015).

The  first  program  (PLT)  generates  transition  probability  matrices  and  auxiliary

vectors. PLT stands for “Production Line Truncated”. The input to PLT consists of N

and K, where N is the number of stations and K is the maximum number of stations

allowed to be down. The output of PLT is actually C code that is readily incorporated

as source code to the other program, SXB0T. PLT is run in a loop to generate source

code for N/K models, where N=3,4,..9 and K=1,2,..N. A portion of the output of PLT

is given below.

 gsl_matrix_set(pm, UUU, UUU, fgQb1*fgQb2*fgQb3);

 gsl_matrix_set(pm, UUU, BBD, fgQb1*fgQb2* fgQ3);

 gsl_matrix_set(pm, UUU, BDU, fgQb1* fgQ2*fgQb3);

 gsl_matrix_set(pm, UUU, DUU,  fgQ1*fgQb2*fgQb3);

 gsl_matrix_set(pm, UUU, BXD, fgQb1* fgQ2* fgQ3);

 gsl_matrix_set(pm, UUU, XBD,  fgQ1*fgQb2* fgQ3);

 gsl_matrix_set(pm, UUU, XDU,  fgQ1* fgQ2*fgQb3);

 gsl_matrix_set(pm, UUU, XXD,  fgQ1* fgQ2* fgQ3);

Figure 13. A Portion of the Output of PLT.

Here, the output is a text file (C source code). The function gsl_matrix_set() is a

BLAS function. The generated source code is then used as a component of SXB0T.

PLT has  a  re-entrant  architecture  to  implement  a  recursive  algorithm.  The  key

function that generates the system states starts with the known state (all stations up

and running).  At  any given time, there is  a set  of states that  are  discovered.  For

example, say we have a three-station line. We start from the state UUU. For each
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station state, we know if there is a possible intrinsic transition. Stations in states U

(up and running), D (down and under repair), or X (down and under repair while

blocked) may breakdown or be repaired. Stations in states S (starved) or B (blocked)

may not break down. Stations in state X may transition to B as well. The key function

inspects each station state. If there is the possibility of an intrinsic transition, a new

state is generated. For example, from state UUU, if the first station breaks down and

the other two do not, we have state D()(). The other station states are then computed

by logic. In this case, the computation, mostly relying on table look-ups, gives the

system state DSU. DSU is then added to the list of generated states. The key function

then calls itself, hence the re-entrant architecture, to generate states reachable from

the newly generated state DSU. The set of generated states is global, so that each re-

entrant invocation of the key function adds to the pool of states. The code terminates

when all possible intrinsic transitions are exhausted.

The moniker SXB0T is short for “Station X Buffer 0 Truncated”. SXB0T takes the

outputs from PLT and solves for the steady-state probabilities and the production

rate.  SXB0T  is  a  relatively  straightforward  program.  The  transition  probability

matrices are already generated and provided by PLT. SXB0T simply solves the linear

equations to find the steady-state transition probabilities.

SXB0T  uses  the  GNU  Scientific  Library  (GSL)  and  the  Basic  Linear  Algebra

Subprograms (BLAS). The L-U decomposition method is used to solve the linear

equations (Burden and Faires, 2010). The choice of the method follows the fact that

our matrices are relatively sparse. During the debugging phase, we also kept track of

the determinants of the defining coefficient matrices to make sure that our matrices

were  not  ill-behaved.  Since  BLAS  uses  dynamic  memory,  the  code  can  handle

relatively large matrices.

SXB0T runs from the command line. There is rudimentary help as the standard “-h”

or “-?” switch is used. The help list shown below.
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deniz@deniz-755:~/Code/Gnome/sxb0t$ ./sxb0t -h

Version 0.00, April 2016

Command line options:

 -h      this help

 -s      suppress intermediate messages

 -w      write (record) the output (default FALSE)

 -q [f]  breakdown probability

 -r [f]  repair probability

 -n [n]  number of stations

 -d [n]  max number of down stations

deniz@deniz-755:~/Code/Gnome/sxb0t$

Figure 14. The Rudimentary Command-Line Help Listing of SXB0T.

The code is invoked by specifying the relevant parameters, as shown below.

deniz@deniz-755:~/Code/Gnome/sxb0t$ ./sxb0t -q.01 -r.1 
-d1 -n6

6 1 0.010000 0.100000

compute.

  6   1 0.010000 0.100000 0.5375021638

deniz@deniz-755:~/Code/Gnome/sxb0t$

Figure 15. Executing SXB0T.

Here, the parameters are specified as q=0.01 (breakdown probability), r=0.1 (repair

probability), d=1 (K=1, of the N/K truncated model), and n=6 (N=6, the number of

stations). The output shows the parameters and the production rate (0.5375021638).

It  is noteworthy that some source code are in the order of 1 gigabyte.  Clearly, a

gigabyte of code is not to be written manually. The approach here was to write code

that  in  turn  generates  source  code,  later  to  be  incorporated  into  downstream

compiling and linking.
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Figure 16. Code Generation, Compilation and Linking.

The generated code contains among other things, functions getTPM_N_D() where N

indicates the number of stations and D, the maximum number of stations allowed to

be down at any given time. These functions generate the exact transition probability

matrices. The sizes of the code that generates the transition probability matrices are

given below. Again, this code is generated by PLT and not written by hand. In fact, 1

1GB file would take approximately 3 years if  written by hand, assuming that the

programmer writes one line of code per second, 24 hours a day, 365 days a year.

For the larger files, since we only compare the exact (N/N) models and the truncated

(N/1)  models,  for  longer  lines  the  intermediate  models.  That  is,  (N/K)  for

K=2,3,...,N-1, are not included to save compilation time and disk memory.
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File Functions Size File Function Size

tpmt_3.c

getTPM_3_1

23.8 KB tmpt_7.c

getTPM_7_1

132.0 MB

getTPM_7_2

getTPM_7_3
getTPM_3_2 getTPM_7_4

getTPM_7_5

getTPM_3_3 getTPM_7_6

getTPM_7_7

tpmt_4.c

getTPM_4_1

206.7 KB tmpt_8.c

getTPM_8_1

1.1

GB

getTPM_8_

1

getTPM_8_

8

1.3 MB

getTPM_8_2

getTPM_4_2 getTPM_8_3

getTPM_8_4

getTPM_4_3 getTPM_8_5

getTPM_8_6

getTPM_4_4 getTPM_8_7

getTPM_8_8

tpmt_5.c

getTPM_5_1

1.8 MB tpmt_9.c

getTPM_9_1

1.1

GB

getTPM_9_

1

getTPM_9_

9

8.1 MB

getTPM_9_2getTPM_5_2

getTPM_9_3getTPM_5_3

getTPM_9_4getTPM_5_4

getTPM_9_5

getTPM_5_5
getTPM_9_9

tmpt_6.c

getTPM_6_1

15.7 MB

getTPM_6_2

getTPM_6_3

getTPM_6_4

getTPM_6_5

getTPM_6_6

The code development strategy itself may also be considered as a contribution, as it

provide a template or framework to the generation of multi-echelon software. We

also note that the matrices could be generated upon request (on the fly). This would

save disk memory requirements to store the code, but would significantly increase

compilation  times.  In  addition,  the  stepwise  development  strategy  adopted  here

facilitates debugging efforts.
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