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ABSTRACT 

A NOVEL FRAMEWORK TO EVALUATE THE PERFORMANCE OF 

RESPONSIVE KINETIC SHADING DEVICES IN THE EARLY DESIGN 

STAGES 

Teksoy, Mustafa 

M.Sc in Architecture 

Advisor: Prof. Dr.-Ir. I. Sevil Sarıyıldız 

Co-Advisor: Asst. Prof. Dr.-Ing. Onur Dursun 

May 2017 

Computational tools offer a great potential in the conceptual phase of architectural 

design, towards exploring numerous design alternatives that provide better 

environmental impact. Particularly in the domain of solar control with help of kinetic 

shading devices that respond to its environment, the function of computational tools is 

even more significant, since the determination of the control parameters introduces a 

dynamic problem. However, critical review of relevant literature suggests that the 

utilization of computational tools have failed to address some vital aspects. This has 

led exclusion of many design alternatives and weather conditions due to the high 

computational expenses. To this end, the current study aims to investigate the problem 

of adequately exploring the design space and evaluating the performance of 

responsive-kinetic shading devices (RKSD). For this purpose, we proposed a novel 

framework by implementing a surrogate-based technique for multi-objective 

optimization of control parameters of a conceptual RKSD on randomly sampled 

daylight hours. To test the adequacy of the proposed framework, an experimental 

research was designed. In this design, such methods as parameter initiation, variable 

randomization, simulation, database generation, neural networks, optimization, and 

hypothesis test were used in combination. Results revealed that using proposed 

framework one can adequately reach to optimum set of solutions in a fraction of a time 

when compared to traditional simulation-based optimization methods. More, utilizing 

proposed framework one can formally compare the performances between static 

shading and RKSD. In the case of our experimental design, RKSD outperforms the 
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static one in daylighting and view metrics. However, considering indoor temperature 

no significant differences observed. To the best of our knowledge, the current work is 

the first to propose a framework, which allows an end user to conduct a formal 

comparison of selected performance metrics between responsive-kinetic and 

optimized-static shadings. The further works shall focus on the relationships between 

the weather conditions, design parameters, and the performance objectives. Due 

complex interactions among employed techniques, a user-friendly graphical user 

interface establishment shall also be in the agenda. 

Key Words: responsive, kinetic, shading, simulation, artificial neural networks, multi-

objective optimization 
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ÖZ 

TEPKİSEL KİNETİK GÖLGELEME ARAÇLARININ ERKEN TASARIM 

AŞAMALARINDA PERFORMANS DEĞERLENDİRMESİ İÇİN ÖZGÜN 

BİR YAKLAŞIM  

Teksoy, Mustafa 

Yüksek Lisans, Mimarlık 

Danışman: Prof. Dr.-Ir. İ. Sevil Sarıyıldız 

Yardımcı Danışman: Yrd.Doç. Dr.-Ing. Onur Dursun 

Mayıs 2017 

Hesaplama araçları, mimari tasarımın erken aşamasında daha iyi çevresel etki sağlayan 

çok sayıda tasarım alternatifini keşfetmek için büyük bir potansiyel sunmaktadır. 

Özellikle, tepkisel kinetik gölgeleme araçları aracılığıyla günışığı kontrolünde 

hesaplama araçlarının işlevi daha da önemlidir; çünkü, kontrol parametrelerinin 

belirlenmesi dinamik bir problem teşkil eder. Bununla birlikte, konu ilgili literatür 

eleştirel bir gözle incelendiğinde, tasarım hesaplama araçlarının kullanımında bazı 

hayati yönlerin ele alındığını görülmüştür. Uzun hesaplama süreleri, birçok tasarım 

alternatifi ve hava koşullarının gözardı edilmesine neden olmuştur. Bu nedenle, bu 

çalışmada, tasarım alanını yeterince araştırmayı ve tepkisel kinetik gölgeleme 

aygıtlarının (TKGA) performansının değerlendirilmesi sorunu araştırıldı. Bu 

doğrultuda, rasgele seçilen gündüz saatlerinde, kavramsal bir TKGA' nin kontrol 

parametrelerini, denk-model tekniğine dayalı çok amaçlı optimizasyon uygulayarak 

bulan yeni bir yaklaşım önerdik. Önerilen yaklaşımın yeterliliğini test etmek için 

deneysel bir araştırma yapılmıştır. Bu tasarımda, öncül parametrelerin saptanması, 

rastsal değişken üretimi, simülasyon, veritabanı oluşturma, yapay sinir ağları, 

optimizasyon ve hipotez testi gibi yöntemler ardısıra kullanılmıştır. Sonuçlar, önerilen 

yaklaşımı kullanmanın, geleneksel simülasyon tabanlı optimizasyon yöntemlerine 

kıyasla, çok daha kısa bir zaman zarfında optimum çözüm setine ulaşabildiğini ortaya 

koymuştur. Dahası, önerilen yaklaşım kullanılarak statik gölgeleme ve TKGA 

performansları hipotez testi ile kıyaslanmıştır. Oluşturulan deneyde, TKGA, günışığı 

aydınlatması ve manzaraya bakış metriklerinde optimize edilmiş statik olandan daha 

iyi performans göstermiştir. Bununla birlikte, iç sıcaklık dikkate alındığında önemli 
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bir fark gözlenmemiştir. Bildiğimiz kadarıyla bu çalışma, son kullanıcıya, tepki veren 

kinetik ve optimize edilmiş statik gölgeleme arasında seçilmiş performans metriklerini 

resmi bir karşılaştırma yapmasını sağlayan bir çerçeve önermekte olan ilk çalışmadır. 

Gelecekteki çalışmalar, hava koşulları, tasarım parametreleri ve performans hedefleri 

arasındaki ilişkilere odaklanacaktır. Kullanılan teknikler arasındaki karmaşık 

etkileşimler nedeniyle, kullanıcı dostu bir grafik arayüz geliştirilmesi de gündeme 

gelecektir. 

Anahtar Kelimeler: tepkisel tasarım, kinetik-statik gölgeleme sistemleri, simülasyon, 

yapay sinir ağları, çok amaçlı optimizasyon 
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CHAPTER ONE 

INTRODUCTION 

1.1. BACKGROUND 

Solar control has been historically an important strategy in building design, since it is 

highly relevant with the concepts of energy and comfort. A proper control strategy by 

means of shading devices has considerable influence on room temperature and natural 

lighting, accordingly, contributes to energy savings while providing comfort for the 

occupants (Hausladen, de Saldanha, & Liedl, 2008).  

Regulating the sunlight on the exterior of a facade, before solar beams enter the room 

and radiate its energy inside, is a much efficient strategy for sun control. (Fathy, 1986; 

Hausladen et al., 2008; Olgyay & Olgyay, 1977). Conventionally, static shading 

devices are integrated to facades in order to perform this task. However, static devices 

fail in responding to fluctuating environmental and comfort demands. Lechner (2015) 

put forward a critical question:  

“Is it logical that a static system can respond to a dynamic problem?” 

In the midst of 19th century, influenced by the developments in the field of computer 

science, particularly cybernetics, architects began utilizing computation in an 

experimental fashion (Frazer, 1995; Usman, 2007). Thus emerged the idea of a pro-

active built environment that responds, and further, interacts with its dynamic context.   

In the beginning of 21st century, such hardware as microcontrollers, sensors, and 

motors, has become significantly cheaper and easy to access, along with more 

powerful computers and display technologies. These developments paved the way to 

realize once utopian ideas of responsive architectural systems.  

Dynamic shading systems have received increasing interest in the recent years, as they 

have potential for responding to environmental stimuli for energy efficiency. It is well 

acknowledged that kinetic shading devices that can change its configuration due to the 

indoor thermal and comfort goals have the potential for contributing to lower energy 
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consumption and higher thermal/visual comfort. In response, design and construction 

of responsive kinetic shading devices require advanced computational tools and 

techniques. 

Responsive kinetic shading devices has begun to be implemented in large scale 

building projects, as integral components of the facades, with both functional and 

aesthetic concerns. One of the recent examples is the Al-Bahr Towers, which was built 

in Abu Dhabi in 2012. A team of multi-disciplinary design professionals developed a 

custom computer program for design and analysis of the responsive exterior shading 

system (see Figure 1). They simulated performance of responsive kinetic shading 

system prior to its construction in order to reduce energy consumption and increase 

comfort of the building.  

 

Figure 1. Custom program developed for the simulation of responsive kinetic 
shading system and performance for Al-Bahr Towers. (Karanouh & Kerber, 2015) 

1.2. STATEMENT OF THE PROBLEM 

Architectural design problems are inherently complex. When designing a kinetic 

system, which accounts for change in time, the complexity of the design problem 

increases substantially. On the other hand, with the developments in the computer 

technology along with new computational approaches, researchers gained the ability 

to deal with such complexity. Despite availability of tools and techniques, there is a 

lack of acknowledged approach for decision-support in the conceptual design of 

responsive kinetic systems. Therefore, designers and researchers are developing 

custom approaches for handling the complexity of the design problems.  
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Performance integrated parametric design and performance optimization for the early 

design stages help making well-informed design decisions. However, information 

feedback in the design process comes at a price, which is computation time. Most of 

the simulation engines that generate such design information are computationally 

expensive. In the study of solar control with help of kinetic shading devices that 

respond to its environment, the problem of high computational times is even more 

significant. Because the determination of the values for the shading control parameters 

requires to be based on minor fractions of time. A critical review of the literature on 

responsive kinetic shading devices revealed that most of the studies over-simplified 

the design problems due to the high levels of complexity and computational costs (Du 

Montier et al., 2013; Grobman et al., 2016; Kensek and Hansanuwat, 2011; Lee et al., 

2016; Nielsen et al., 2011). Such simplifications may lead to deficiency in the 

exploration of the design space. In two of the studies, researchers employed a meta-

heuristic search method, namely genetic algorithm, towards exploration of design 

alternatives that have better daylight performance (El Sheikh & Gerber, 2011; 

Sharaidin, Burry, & Salim, 2012). To achieve this task, they required running higher 

number of simulations until converging to optimum design alternatives. In their 

approach, computational cost was still high, because meta-heuristic methods require 

longer time to come up with a satisfying solution. In response, Wortmann et al., (2015) 

argued that surrogate model based optimization outperforms simulation-based 

optimization in solving architectural design problems, both at computational cost and 

finding better solutions. In her research, Skavara (2009) implemented artificial neural 

networks for controlling the emergent behavior of an exterior shading system that is 

driven by cellular automata for daylight performance. However, her focus was more 

on the training techniques of the neural networks, than the comfort and energy related 

influence of the responsive-kinetic shading device that she proposed.  

A responsive-kinetic shading device should optimize its movement for the smaller time 

intervals. That is, it is necessary to conduct point in time analysis for investigating its 

performance. However, simulation engine based techniques require longer times to 

predict satisfying results. Therefore, using artificial neural networks, which establish 

functions between input and output parameters, as surrogates for optimization seems 

suitable for the problem of exploring and evaluating the performance of responsive-

kinetic shading devices.  
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There are several studies in the literature that made comparison between static and 

responsive-kinetic shading devices (Kensek & Hansanuwat, 2011; E. S. Lee, 

DiBartolomeo, & Selkowitz, 1998; Nielsen et al., 2011; Wagdy, Fathy, & Altomonte, 

2016). In all of these studies, researchers concluded that kinetic shading devices 

outperform static ones. However, in none of them, the static shading systems that they 

examined was not optimized for better performance. Moreover, in none of the previous 

studies in the literature, view was not considered as a performance objective, along 

with thermal and daylight objectives in the same design problem.  

With this motivation, we investigate the following questions throughout the research: 

 To what extent, can the current work reduce computational cost that is 

required to optimize the performance of hourly responsive shading control 

parameters due to thermal, daylight and view to outside objectives? 

 Is there a significant performance difference between, annually optimized 

static and hourly- optimized responsive-kinetic shading devices with respect 

to thermal, daylight and view to outside objectives? 

1.3. RESEARCH AIMS 

In line with the issues stated in Section 1.2, the current research aims to overcome the 

problem of vast computational expenses that the design process of responsive kinetic 

shading devices necessitates for performance optimization. Therefore, a novel 

framework is proposed for aiding the exploration of design alternatives and the 

decision-making in the early design stages of responsive kinetic shading devices. 

One of the main aims of the current investigation is to develop a novel framework for 

aiding the conceptual design of responsive-kinetic shading devices, which can respond 

to changing environmental conditions for the purpose of energy efficiency and 

improved occupant comfort.  

Another aim of the research is to explore if there is a significant difference between 

performances of annually optimized static and hourly responsive kinetic shading 

devices for the climate of Izmir, Turkey. Thermal, daylight and view to outside are the 

performance objectives, assessed for the two dependent observations. The research 

utilizes a method for performance comparison between optimum static and responsive- 

kinetic shading devices on an hourly basis.  
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1.4. METHODOLOGY OF RESEARCH 

The research employs a quantitative approach for assessing performance of the 

conceptual shading devices. It proposes a novel computational framework for the 

investigation of responsive-kinetic shading devices. The framework is then 

implemented in a case study, in which a formal comparison is performed between 

optimized-static and responsive-kinetic shading types.  

The research utilizes computational tools and techniques for quantifying the potential 

performance of the design alternatives. Such computational tools as Grasshopper (a 

visual algorithm editor plug-in for Rhinoceros, which is solid modeling software), 

Ladybug Analysis Tools (a plug-in for Grasshopper, which allows integrating analysis 

tools and simulation engines, namely EnergyPlus and Radiance), CIDEA (a 

computational decision-support environment for architectural design), Microsoft 

Excel and Minitab (a data analysis and statistics tool) are incorporated in the process. 

The computational tools are utilized for performing data generation, performance 

simulation, model development, surrogate-based optimization and test of hypothesis. 

At first, the parameter initialization process is conducted for a hypothetical space, 

which formed the base case for further investigation. Then, parametric models are 

established for the static and responsive shading devices, which are mounted on the 

south-facing fully glazed façade of the base case. Both shading devices have the same 

shading control parameters, which are rotation angles of horizontal slats in six different 

zones of the shading systems. The variable randomization process updates the 

simulation model iteratively by generating random values for shading control and time 

of year parameters. The impact of the shading types on indoor temperature, daylight 

intensity and view to outside are selected as performance indicators, which are the 

response variables in the study. The values for shading control and response parameters 

of the design alternatives are stored in spreadsheets by coupling parametric models 

with thermal, daylighting and view simulation engines in an automated manner.  

In order to reduce the number of simulations required for the performance optimization, 

the artificial neural networks are utilized for function approximation, which are 

subsequently used in the multi-objective optimization of the control parameters of the 

static and responsive shading devices. While the static shading control parameters are 
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optimized for average annual performance, the responsive shading control parameters 

are optimized on an hourly basis, for the randomly sampled daylight hours. 

It is hypothesized that responsive-kinetic shading devices will outperform annually 

optimized-static shading devices regarding the given performance criteria, for the 

climate of Izmir, Turkey. Paired-T tests are conducted for formal test of hypothesis. 

1.5. SCOPE AND LIMITATIONS 

The thesis examines conceptual design of shading devices from the perspective of solar 

control and comfort. It employs parametric modeling and simulation engines for 

quantifying the performance of the two exterior shading devices. The examined static 

and responsive shading devices have the same shading control parameters. Influence 

of the shading geometries on indoor space is studied. While static shading’s control 

parameters are optimized on an annual basis, responsive shading is optimized for 

reacting hourly fluctuations.  

The impact of the two examples on indoor space is observed on 50 randomly sampled 

daylight hours in a year. The study presents an approach for hourly comparison for the 

sampled hours. In order to drive an annual inference, all of the weather conditions in 

daylight hours should be examined.  

For the study, structural aspects are neglected. Influence of wind on shading devices 

are out of the scope of the thesis.  

The proposed framework is tested by using EnergyPlus weather data (EPW) of Izmir, 

Turkey. However, it can easily applied for diverse climates by using related EPW files. 

1.6. OUTLINE OF THE THESIS 

The thesis is composed of six chapters. After the introduction, Chapter 2 surveys the 

background and literature review for the study. First, development of computational 

design in architecture is reviewed, starting from the foundations of parametric design. 

Then, the implications of computational design in architecture are examined, 

particularly, with respect to the conceptual design of kinetic shading devices.  

In Chapter 3, the methodology of the thesis is explained in detail. The chapter 

demonstrates the computational approach for decision-making of control parameters 

and performance assessment for the conceptual design of responsive-kinetic shading 
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devices. The processes of parameter initialization, data generation, model development, 

surrogate-based optimization and test of hypothesis are revealed in this section. The 

results that are obtained through the processes are demonstrated in Chapter 4. 

Chapter 5 discusses the proposed approach for the conceptual design of responsive-

kinetic shading devices and the results of the computational experiment that is 

designed to compare two diverse type of shadings, which use same shading control 

parameters.  

Finally, in Chapter 6, a summary of the research process and projections for future 

research are illustrated. 
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2CHAPTER TWO 

BACKGROUND AND LITERATURE REVIEW 

The chapter overviews the utilization of computational design approach in architecture, 

as well as, focuses on a specific design problem in architecture, namely the early 

design decision-making of responsive-kinetic shading devices.  

First, a short definition section overviews static and responsive kinetic shading devices. 

Then, parametric design approach is traced back to its origins; and, its definition is 

clarified for grasping the essence of the concept. Then, implications of such 

computational approaches as performance-based design and design exploration, which 

rely on parametric design, in the early design stages are revealed. The use of artificial 

neural networks, a special information processing system, in building design problems 

is examined at the end of the first section.  

The second section overviews the use of the computational design approaches in the 

conceptual design of responsive-kinetic shading for facades. It demonstrates the prior 

studies that utilized parametric design, performance-integration and solution 

exploration in the process of designing environment responsive kinetic shading 

devices.  

The last part of the chapter presents a summary of the literature review and discusses 

the current state of computational design integrated to the conceptual design phase of 

kinetic shading devices.  

2.1. DEFINITION OF STATIC AND RESPONSIVE SHADING 

DEVICES 

Static shading devices are conventional means of passive solar design, which provides 

certain amount of solar control for buildings but cannot react to environmental changes. 

Their type, size, geometry and positioning, varying with respect to the local climate 

that it is present, are constant throughout the year. It is one of the oldest components 

in building design (Fathy, 1986; Olgyay & Olgyay, 1977).  
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With the scientific and technological developments in the 20th Century, advanced 

building components were begun to be integrated to the built environment. Concepts 

such as “intelligent” or “responsive” architecture were no more architectural visions 

of 1960s, but realized building components that define integration of advanced 

computation and mechatronics for responding to real-time environmental data from 

both the interior and the exterior. Responsive architecture marks the change in the built 

environment towards being pro-active in relation to data. Responsive architecture or 

building components are not inert as opposed to static ones. (Kroner, 1997; Wigginton 

& Harris, 2002) Within this scope, responsive kinetic shading devices, which presents 

the focus of the current research, are defined as active shading systems, which consist 

of components with the ability to change themselves due to the change in the 

environment with help of kinetic movement in an automated manner. In order to be 

responsive, a shading device have to be comprise of moving parts, actuators, a control 

system, sensors and be programmed to respond in a certain way due to the sensor data. 

2.2. DEVELOPMENTS IN COMPUTATIONAL DESIGN IN 

ARCHITECTURE  

2.2.1. PARAMETRIC DESIGN: ORIGINS AND DEFINITION  

The term parametric is originally a mathematical term and its use in describing three-

dimensional models dates to first half of the 19th Century. Almost a hundred years later 

in 1940s, the first use of the term in architecture discipline emerged in the writings of 

Luigi Moretti. He coined the term parametric architecture (originally “Architettura 

Parametrica”). This was before the development of computers (Davis, 2013). Antoni 

Gaudi and Frei Otto are other pre-digital precursors of parametric design approach in 

architecture. In their flexible physical models, they both used gravity as a parameter 

that informs the architectural form (Burry, 2016). 

Moretti defined parametric architecture as the study of defining the relationships 

between the dimensions of architectural systems with the various dependent 

parameters. In 1960s, Moretti’s research works of parametric stadiums were presented 

in his Parametric Architecture exhibition as part of the 12th Milan Triennial (Davis, 

2013; Tedeschi, 2014). In his studies, Moretti made use of pseudo isocurves for the 

form-finding process, in which he attempted to optimize the stadium forms regarding 
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such parameters as views and cost. Moretti collaborated with the mathematician Bruno 

De Finetti and made use of computers in his research  (Tedeschi, 2014). 

Few years later, Ivan Sutherland (1963) developed the first interactive Computer-aided 

Design (CAD) program, called the Sketchpad, which was essentially a parametric 

system. The invention was relying on an advanced associative logic and parametric 

change was at the center of the Sketchpad system. Sutherland designed it so that, if 

there is any change in a model's part, it will result in changing the related parts 

automatically (Davis, 2013; Tedeschi, 2014; Woodbury, 2010). 

Despite the promising endeavors in parametric approaches, which utilize computers 

starting from the 1960s, the first commercial computer-aided design programs did not 

employ parametric features. Rather, they aimed at aiding technical drawings and 

representation. It was 1988 when the first commercially successful parametric 

modeling software, Pro/ENGINEER, was released. The aim of the software was to 

enable engineers to consider easily a variety of design alternatives. The parametric 

modeling feature of the software was achieved by recording the operator's command 

steps, which was termed as “history tree”. With use of the recorded history tree, in case 

of any change of parameters, the software would automatically regenerate the model. 

This feature of the program was a time-saver when working on large models  

(Weisberg, 2008). 

In the field of architecture, the influence of parametric modeling started only about the 

year 2000 (Woodbury, 2010)Today, there is a variety of software platforms for 

architects and researchers to work with parametric models. Those softwares vary from 

history-based modelers such as Catia, Solidworks, Pro/ENGINEER, to visual scripting 

platforms such as Generative Components, ParaCloud Modeler, Grasshopper, Dynamo 

and textual programming environments, which are included with most computer-aided 

design programs. (Davis, 2013)  

Parametric design is a computer based design approach that makes use of parametric 

modeling and scripting techniques to deal with the geometric properties of any design. 

In this technique, geometric properties of a design are considered as variables. A 

network of relations and dependencies constructed by the designer, which allows 

continuous design adjustments along with generating options and variations, is called 

a parametric design model. At any time, the parametric model outputs a determinate 
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instance of the design depending on the set of currently chosen values. However, the 

essential characteristic of the parametric design resides in the way in which constituent 

parts of the model are interrelated and arranged. It is the relationships and 

dependencies that is designed, not a single determinate instance.  (Schumacher, 2016) 

Parametric design is a process based on algorithmic thinking, which allows parameters 

and rules to control design variants. These parameters and rules together define the 

logic and the intent of a parametric and associative geometry. The superiority of this 

method lies in its ability to adapt to changes. It is possible to change the associative 

model by changing few parameters (Jabi, 2013). Dino (2012) stated that parametric 

design is a sub-category of algorithmic design. There is a strong relationship between 

parameters and algorithms. While algorithms operate on parameters, on the other hand 

a parametric system graph is an algorithm itself. The essential difference of a 

parametric system is its emphasis on explicit and direct manipulation of the parameters 

in order to change the design geometry (Dino, 2012). 

In parametric design approach, designers compose explicit functions. Then, the 

parametric modeling software handles calculations and displays the resulting 

associative geometric model. Davis (2013) argued that the significance of a parametric 

equation lies in its characteristic of relating parameters to outcomes through explicit 

functions. Because this explicit connection is observable the process becomes 

disambiguate.   

Designers gained the power of generating a range of possibilities with this method. 

They can generate an infinite number of design objects by assigning specific values to 

the parameters in the algorithmic schemata, which they created previously (Kolarevic, 

2003). Thus, a parametric model signifies many possible designs. Different specific 

designs can be produced by changing the inputs. Hudson (2010) made a categorization 

for the parametric design tasks: the process of creating a parametric model and using 

this model to explore better alternatives in the design space. Woodbury et al. (2006) 

put forward that exploring the design space of parametric models is one of the main 

challenges for future parametric modeling researchers. Choosing the best alternative 

gains importance after generating the logic that produces multiple outcomes.  
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2.2.2. PERFORMANCE BASED DESIGN AND SOLUTION 

EXPLORATION 

With the development of parametric and associative geometry, the problem of how to 

evaluate the design alternatives gathered attention. The next phase in the computer-

aided design was coupling analytical simulation tools to simulate solutions that are 

generated by parametric models. This approach brought in new tools that made 

architects, designers and engineers collaborate in an integrated manner for designing 

better performing novel forms (Shea et al., 2005). Integration of performance 

simulations to architectural models and taking performance as the driving notion for 

design is called performance-based design. In this approach, a geometric model is 

formulated in a way that it allows transformation and generation in order to be 

evaluated with criteria from such domains as structural, mechanical, environmental, 

acoustic and so forth (Oxman, 2008). 

Contemporary approaches in the field of performance-based architectural design 

employ generation-evaluation methods in the early conceptual phase of design. In the 

conceptual stage of performance-based design, arranging parametric geometry in 

connection with information about various performances is crucial. The editable 

definitions and associations are determined in the parameterization process. 

Consequently, a hierarchical structure describing a dependency chain is produced. In 

order to explore the goals of parametric modeling, it is necessary to target these goals 

properly from the beginning (Turrin et al., 2013). Turrin et al. (2013) proposed a three-

phase approach for performance-based parameterization, which includes interrelated 

phases of strategy-definition, model building, and solution-assessment.  

Design optimization using performance simulation and functions constitutes the 

framework for the use of computational techniques to solve performance-based 

decision-making problems. In this approach, design is perceived as a goal-oriented 

decision-making process where goals are set by the designers as performance criteria. 

In order to increase the integration of simulation to decision-support environments 

several methods and techniques can be utilized. Specific algorithms have been 

implemented to performance-based exploration in design (Malkawi, 2004). Gagne 

(2011) classified optimization algorithms generally as either gradient-based or 

heuristic and suggested that heuristic search algorithms are more suitable for most the 

problems related with building performance. The reason for this is building 
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performance optimization problems are more complex for being solved by gradient-

based algorithms (Gagne, 2011). Exploration of solution space to find better 

alternatives that satisfy some specified criteria requires iterative evaluations in the 

numerical design optimization model. Although not being widespread, these kind of 

decision-support tools are being used in building design research since 1970s 

(Choudhary & Michalek, 2005). 

2.2.3. COMPUTATIONAL DECISION-SUPPORT TECHNIQUES FOR 

ARCHITECTURAL DESIGN PROBLEMS 

Use of computational decision-support techniques to solve practical problems is a 

long-established method in science and engineering domain. However, its use in 

architecture design is yet developing. In architectural design research, utilizing 

metaheuristic search algorithms are relatively popular techniques in exploration of 

better performing design alternatives. By utilizing those algorithms, researchers aim 

at exploring design alternatives and make better design decisions. For extensive 

reviews, please see Evins (2013) and Nguyen et al (2014). 

Several studies integrated surrogate models into architectural design problems. 

Chatzikonstantinou and Sariyildiz (2016) pointed out that most of these studies, which 

use machine-learning approaches, were intended to prediction of energy-related 

aspects of buildings; but only a limited number of these focused on function 

approximation based on simulation-derived knowledge.  

Kazanasmaz et al. (2009) developed a predictive model by using artificial neural 

networks in order to predict daylight intensity for the office buildings in Izmir, Turkey. 

They made use of multi-layer feedforward artificial neural networks and trained the 

network with backpropagation algorithm. As input variables, they used two time 

variables (date, hour) , 5 weather variables (outdoor temperature, solar radiation, 

humidity, UV index and UV dose) which they acquired from weather data from the 

local weather station and 6 building variables (distance to window, number of windows, 

orientation of the rooms, floor identification, room dimensions and point 

identification). Collected illuminance data for 3 months from the field were used as 

output of the neural network. By using sensitivity analysis, they investigated the 

relationship between the input and the output variables of artificial neural network. 
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Tsanas and Xifara (2012) established a statistical machine learning model in order to 

tackle the relationship between eight input variables (relative compactness, surface 

area, wall area, roof area, overall height, orientation, glazing area, glazing area 

distribution) and two output variables (heating load and cooling load) of residential 

buildings. They investigated for the most influential input variables on the associative 

response variables by using linear regression and non-linear random forest methods. A 

dataset generated by simulation of 768 diverse residential buildings were studied in 

order to predict heating and cooling loads with low mean absolute error deviations. 

2.3. DESIGN COMPUTATION IN RESPONSIVE-KINETIC SHADING 

OF FACADES   

2.3.1. PARAMETRIC APPROACH FOR FAÇADE KINEMATICS 

Without parametric design approach, it is impossible to realize any kinetic design, 

since time parameter is an inseparable aspect of anything that moves. Although there 

are many other parameters that make up a kinetic design, time parameter is the only 

one that every kinetic design problem has in common.  

With the developments in contemporary parametric design in architecture, designers 

gained the freedom to animate, once static, design alternatives. Moloney (2011) 

asserted that the inheritance of modernist free façade and the “digital granularity” of 

contemporary parametric design coincides and suggests the motion in the free façade. 

He conducted an extensive research on exploring kinetic composition for facades. His 

work takes place in between theoretical and practical aspect of motion on facade. In 

the study, the emphasis is on locating the underlying parameters that determine the 

design of motion. According to Moloney, there is strong resemblance between 

parametric design and kinetic design. Both results with a process not a single object. 

In kinetic architectural design, design outcome is the process that determines a 

multiplicity of kinetic pattern. The mode of designing that parametric techniques 

introduced is applicable to designing dynamic systems. Out of most influential design 

variables, Moloney developed the idea of “decision plane” as a way to visualize the 

design space (Figure 2). Diagram of parameters were conceived as a planar continuum 

between two extremes and vertical axis represented time in each of the planes. These 

parameters were used for producing a series of animation studies for dynamic facade 

morphology. A space of possibilities of motion patterns were explored by means of 
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these animations. In his research, Moloney reduced design of kinetic facades to 

abstract diagrams in order to focus on morphology that is the configuration of 

geometric transformations in space, free from scale or materiality. (Moloney, 2011) 

 

Figure 2. Moloney’s decision planes (2011) 

Schleicher et al. (2015) studied bio-inspired flexible shading components, which can 

be applied to curved geometries, from a structural point of view. They implemented 

elastic shading module on conceptual façade surfaces as a parametric component. 

Making use of parametric models allowed them to study elastic kinematics of the 

components on surfaces (Figure 3).  

 
Figure 3. Parametric folding components on diverse geometries Schleicher et al. 

(2015) 

Sharaidin et al. (2012) studied patterns of conceptual kinetic façade components by 

using a parametric approach. Bu utilizing of parametric modeling technique they 

investigated various types of motion patterns (see Figure 4). The types of motion 

patterns that they studied for a conceptual building façade was rotation, elastic, 

retractable, sliding and self-adjusting, for further performance integration and 

selecting the best performing option. 
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Figure 4. Parametric motion study for kinetic façade (Sharaidin et al. 2012) 

In another study, Mahmoud and Elghazi (2016) made use of parametric modeling for 

exploration of folding modules on the façade of a hypothetical office space. 

Modulation type and movement of the modules controlled by parameters helped them 

explore various design alternatives. They divided the façade surface in cells and used 

each cell like a paper to be fold. By doing this, they obtained origami patterns, which 

can be actuated regarding a parameter that contains values for rotation, without any 

surface deformation (see Figure 5).  

Datta et al. (2014) investigated conceptual design of a responsive–kinetic facade by 

means of the parametric model that they developed for the design and control of the 

facade components. The algorithm that they created generates pentagonal Cairo 

tessellation on the facade surface of the model and stirs a random rotation movement 

along the rotation points for each of the pentagonal components independently (Figure 

6). 
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Figure 5. Parametric control of folding patterns. (Mahmoud and Elghazi, 2016) 

 

Figure 6. Façade composition based on rotation of random rotations (Datta et 
al.,2014) 

 

Figure 7. Semi-regular tiling pattern that Rossi et al. (2012) used for their prototype 
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Rossi et al. (2012) used a semi regular tiling pattern, which is composed of triangular 

and square panels for distribution of modules, for their kinetic facade prototype (Figure 

7). They suggested that it is not mandatory to design and fabricate complex geometries 

for achieving complex surface patterns, since complexity may emerge because of 

simple components moving independently of each other in response to varying internal 

and external environmental influences. Similarly, Nagy et al., (2016) designed 

autonomous modules with square shape tessellated over the facade forming a diamond 

tiling for the purpose of energy generation, solar control and luminous distribution for 

interior office space (Figure 8).  

 

Figure 8. Orientation parameter drives each of the PV panels. (Nagy et al., 2016) 

Zawidzki (2015) utilized cellular automaton algorithm for generating dynamic shading 

patterns for a building facade. Each of the cells in the facade consists of rotating 

polarized-film modules whose opacity is a function of rotation angle. Regular tiling 

pattern such as triangular, square and hexagonal were examined in this study. 

Zawidzki’s work is a unique sample for the study of shading geometry as it utilized a 

different computational approach in the design process. Rules of the algorithm and 

number of iteration of these rules influence the resultant facade composition (Figure 9 

& Figure 10). Parameters used in this study were type of tiling pattern, rotation angle 

and opacity of each component. 
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Figure 9. Types of façade tilings and application of cellular automaton for shading 
composition on façade. (Zawidzki, 2015) 

 

Figure 10. Visualization of Zawidski’s cellular automaton shading system (2015). 

2.3.2. PERFORMANCE ANALYSIS OF KINETIC SHADING SYSTEMS 

A better understanding of the complex relationship between facade system’s geometry 

and its performance metrics is necessary for designing for adaptive, responsive and 

low-energy architecture (Datta et al., 2014; Hudson, 2010). 

Kensek & Hansanuwat (2011) made use of various software platforms in order to 

simulate and analyze solar thermal, daylighting, ventilation and energy generation 

performances of four types of kinetic shading systems. For simulations, they used 

eQuest, 3ds Max Design, Ecotect and WinAir4, Solar Advisor Model, respectively. In 

their extensive research, kinetic shading systems that they analyzed were overhang, 

folding, horizontal louver and vertical louver with predefined positions. They 
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compared performances of each shading devices. However, they did not take 

advantage of parametric modeling coupled with performance simulation engines for 

their search process. The various programs were not coupled with each other, but 

performed separately. That is, there was a need for developing a 3D model for each of 

the programs, except for the Solar Advisor model, which only accepts numeric values. 

Therefore, they had to keep the search space for kinetic shading devices limited.  

Mahmoud and Elghazi (2016) aimed at developing a method for aiding the early 

design phase of a kinetic shading system by coupling parametric modeling with 

daylight simulation engine. They investigated the impact of rotational and translational 

motions of kinetic exterior shading on the daylighting performance of a south facing 

office room. In this study, parametric models are used for tuning the shading 

configuration manually for specific times in a year and monitoring its daylight 

performance for the interior space. It was intended to keep illuminance values that 

were read from the test points between 300 lx and 3000 lx. However, they did not 

automate the process for finding the better results as in the previous study above. 

Pesenti et al. (2015) also utilized parametric modeling to study the daylight and energy 

analysis of an office space with an origami inspired exterior shading module, which 

has twenty-seven variations (Figure 11). The facade module that they designed was 

kinetic. That is why they pick an origami pattern for the study of kinetic shading, since 

origami patterns work with retractable rigid planes. Incorporating a parametric model 

allowed them to study motion of the facade modules. However, they postulated each 

of twenty-seven pattern variations to be static during the year for the daylight and 

energy simulations that they conducted. They made comparison of predetermined 

variations on a yearly basis.  

 

Figure 11. Pesenti et al. (2015) Parametric study of various shading configurations 
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Nielsen et al. (2011) investigated the potential of kinetic shading by making a 

quantitative comparison between three observations of an office space located in 

Denmark, with no shading, fixed horizontal and responsive kinetic venetian blinds. 

They made use of a tool, called iDbuild, which performs hourly-based calculations of 

total energy demand and daylight simulations for buildings. They used Daylight Factor 

for evaluating daylight performance, which is a static daylight performance metric that 

ignores any change in the sky conditions, location and orientation as well (Glassman, 

Glassman and Reinhart, 2015). The kinetic venetian blind that they offered is 

responsive to indoor air-temperature and risk of glare, as they stated. Nevertheless, 

how it responds to various situations was not revealed in the paper. The operation that 

it carried out is rotating along pivotal axis for blocking the direct sun light and 

retracting for no shading. However, neither rotation angle nor degree of retraction is 

within their variables. Design variables that they stated were orientation of the room 

and window height. According to their findings, dynamic shading case outperforms 

the static one in most of the situations, in both thermal and daylight performance 

criteria.  

Grobman et al. (2016) made use of parametric modeling combined with an 

environmental simulation engine and assessed the performance of no shading, static, 

seasonally adjusted and dynamic exterior shading devices for a hypothetical office 

room in Tel Aviv, Israel. They calculated and recorded associated illuminance values 

for predefined time, orientation and louver angle for a shoebox office model by means 

of using Grasshopper, a visual script editor that works on 3D modeling software 

Rhinoceros and an environmental simulation tool called DIVA. The rotation angle 

variable is defined for horizontal louvers with seven steps between the range of 45° 

and - 45°. Simulations are performed for each of the variables between 9 am and 6 pm 

for every 21st day of each month. By generating a matrix from the results, they aimed 

at monitoring and finding the best performing louver angle and orientation for the 

room. According to their findings from the simulation based quantitative study that 

was conducted by using Tel Aviv weather data, automatically adjusted kinetic shading 

devices performed better than other alternatives.  
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2.3.3. USE OF COMPUTATIONAL SEARCH METHODS IN THE 

DESIGN OF KINETIC SHADING DEVICES 

Use of computational methods in architectural design problems is gaining popularity 

due to the new tools and techniques along with increased computation power. These 

tools and techniques help designers and researchers for evaluating alternatives and 

make better design decisions. Search methods and information systems can further 

help solving complex problems. However, few studies utilized those approaches for 

the early design stages of kinetic shading devices. 

Wagdy et al. (2016) made use of an exhaustive search method and carried out 

simulations for all possible configurations within the predefined range. For assessing 

the performance of kinetic facade system that they developed, they proposed hourly 

adaptations of annual metrics of spatial daylight autonomy and annual sunlight 

exposure. They tested the approach that they proposed for evaluating the daylight 

performance of the dynamic shading system that is consisted of a modular grid of 

hollow boxes, which was mounted on the window of the reference, shoebox office 

model. Parametric modeling and daylight analysis engines were coupled for evaluating 

daylight performance. Variables of the conceptual dynamic screen mechanism that 

they designed were horizontal and vertical axial rotation angles of the screen 

components. For each of the configurations of the shading mechanism, analyses 

performed iteratively in an automated way for each of the occupied and day-lit hours 

in a year. They created a tool for speeding up the calculation process of the simulation 

engine, because their search method was taking too much time. After placing all the 

illuminance values in a list, they sorted the list for finding the best performing 

configuration for each specific moment in time.  

El Sheikh and Gerber (2011) proposed a method for daylight performance optimization 

of an exterior shading system consisting of two independent groups of louvers with 

two different rotation angles. They proposed an early phase decision-support tool for 

the design of the shading system. The autonomous responsive kinetic louver system 

that they designed, responds both changing daylighting conditions and preferences of 

occupants. For their study, they utilized parametric modelling, daylight simulation 

engine and genetic algorithm. In a similar manner, Sharaidin et al., (2012) conducted 

digital experiments in order to tackle daylight performance optimization of different 

kinetic facade systems that have diverse motion behaviors. The types of motions of 
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kinetic facades that they examined are rotation, elastic, retractable, sliding and self-

adjusting. They made parametric models of various types of motions for kinetic 

facades, coupled the models with a daylight simulation engine, and evaluated their 

daylight performances by using genetic algorithm. Both studies were based on daylight 

performance integrated parametric modeling and used single objective optimization, 

with help of Galapagos optimization engine. Galapagos is a component in Grasshopper, 

which solves single objective optimization problems by means of a genetic algorithm. 

Lee et al., (2016) pointed out the crucial role of the operation of shading devices when 

evaluating their performance, and focused on a calculation method, which assesses the 

thermal and lighting energy performance of a drop awning that has 10 operational steps. 

The influence of ten different steps of operations of a single drop awning on the 

thermal and lighting energy consumption of the reference case are simulated and the 

sum of thermal and lighting energy load as a single objective is minimized for each 

hourly moment in time. They concluded their study with the comparison that proves 

the advantage of having in between steps of operation other than just having on/off 

state for the kinetic external shading device. 

There are just two studies in the literature, which integrate artificial neural networks 

(ANNs) in conceptual design of kinetic shading devices. In their study, Hu and Olbina, 

(2011) criticized existing automated shading systems for running short in controlling 

complex blind systems such as split-blinds. They developed a model based on multi-

layer feedforward ANNs, in order to find optimum slat angles of automated interior 

split-blinds for performing a desired indoor illuminance. For training the network 

model, they made use of back-propagation algorithm.  

Skavara (2009) experimented whether a neural network can handle a complex problem, 

which is controlling the emergent behavior of cellular automata (CA) forming a 

shading system on south-facing façade. She aimed at mapping an input layer of an 

array of 11 daylight values to the output layer of the 11 panels on the first row of 

shading system. The other rows in the lattice of shading system would respond to the 

first row by following the deterministic rules of CA. She generated a list of 1000 

random CA patterns in order to find optimum first row for each sun position. Using 

the dataset, she incorporated a feed-forward multi-layer neural network. For adjusting 

the weights in the connections, she employed back propagation and genetic algorithm. 

She tested both training methods for finding the minimum error for the ANN. 
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2.4. SUMMARY AND DISCUSSION 

One of the advances in the contemporary design field was the introduction of 

parametric design approach. By adopting this new approach, designers started to 

construct relationships and dependencies that output a possible design, just like 

constructing an explicit function that outputs a dependent variable. Schumacher (2016) 

underlined the shift in the focus, from the design of final artifact to the design of 

process that generates variations. This idea infers a fundamental change in the design 

thinking. Parametric design approach opens room for thinking about alternatives and 

variation itself. From a philosophical perspective, adopting this approach replaces 

singularity with multiplicity. Furthermore, as Davis (2013) also pointed out, 

parametric design is a process-oriented approach in which dependencies in the logic 

of a design are visible and subject to direct manipulation. This means that the design 

process is not a black box that relies merely on intuition of the designer anymore. The 

relation between input and output are apparent. Another fundamental aspect in this 

approach is that, with a previously created algorithmic schemata, designers can 

generate an infinite number of design objects by assigning values to parameters 

(Kolarevic, 2003). Exploring better solutions is a challenge that is brought out by these 

multiplicity of solutions (Hudson, 2010; Woodbury et al., 2006). This approach leads 

to new research questions about how to explore and select from the set of design 

alternatives that parametric model generates. 

Seeking for answer to the problem of how to evaluate design alternatives and 

environmental concerns gave rise to performance-based design, which is an approach 

driven by information. Parametric models coupled with simulation engines allowed 

for predicting performance of any design instance. Therefore, the designers are 

informed about how possible design solutions perform; thus, make better decisions 

(Oxman, 2008; Shea et al., 2005; Turrin et al., 2013). Integration of performance 

criteria made the endless variations generated by parametric models more meaningful. 

However, searching for better design alternatives, parametrically in a wide design 

space requires more than manually changing values in the design parameters and 

monitoring the associative values of performance indicators. Computer power comes 

into place again for repetitive task of searching for better design alternatives within the 

designer-defined boundaries. Search methods such as optimization algorithms have 

been integrated to performance-based design process in order to evaluate better 
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solutions. This approach generates an automated decision support workflow, which 

makes use of search methods. There are gradient-based and heuristic techniques 

utilized for optimization problems in building design (Choudhary and Michalek, 2005; 

Gagne, 2011; Malkawi, 2004). Meta-heuristic optimization algorithms e.g. genetic 

algorithms and particle swarm optimization are the most commonly used techniques 

implemented to performance-based design of buildings (Nguyen et al., 2014). 

Although meta-heuristic search techniques gained a relative popularity in the field of 

building design research, they have certain drawbacks. Meta-heuristics are generally 

black-box algorithms that does not inform designer about the nature of the problem at 

hand. Furthermore, they have the risk of stacking to a local solution than finding global 

optimum solutions (Nguyen et al., 2014). In computationally expensive design 

problems, simulation-based optimization run short in order to find solutions in a 

feasible time. This is partially caused by long simulation times of the simulation 

engines, and partially by the way, that meta-heuristic algorithm conducts the search. 

Chatzikonstantinou and Sariyildiz, (2016) demostrated that surrogate-based 

optimization models are much more faster than simulation-based optimization. 

Furthermore, as Wortmann et al. (2015)suggested, surrogate-based optimization finds 

better performing design alternatives compared to the ones that are found by meta-

heuristic techniques such as genetic algorithm.  

One of the most complex problems in architectural design is conceptual design of 

responsive-kinetic shading devices. When compared to design of a static system, level 

of complexity increases due to the dynamic nature of the design problem. For this 

reason, most of the studies in the literature on kinetic shading devices either reduced 

the complexity of the problem in a deterministic manner, or used search techniques 

such as parametric search or meta-heuristics such as genetic algorithm. Nevertheless, 

use of advanced design computation techniques in conceptual design of kinetic 

shading devices is far from being satisfactory. A few works tackled daylight or energy 

performance by taking them as a single objective optimization problem (El Sheikh and 

Gerber, 2011; Lee et al., 2016; Sharaidin et al., 2012; Wagdy et al., 2016). None of the 

studies in the literature handled the design problem from a multi-dimensional 

perspective and employed an optimization method for daylight, thermal and visual 

performance in the same problem in order to investigate the influence of dynamic 
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shading devices on energy consumption and improve visual comfort of the interior 

space. 

A responsive-kinetic shading device should optimize its movement for a smaller time 

basis, in order to respond its movement due to the change in the environment. If an 

hourly time interval is chosen for its design investigation, approximately 4400 

different optimization problem should be conducted for each daylight hours in a year. 

Because simulation-based optimization needs a long time to come up with satisfactory 

solutions, it is not an efficient approach. On the other hand, surrogate model based 

optimization methods decrease the necessary amount of simulations. Although the 

nature of the problem is very suitable for using surrogate models, use of the technique 

in conceptual design of complex kinetic shading devices is quite limited in the 

literature. Two studies made use of surrogate models for the design of control for 

responsive-kinetic shading devices. Hu and Olbina (2011) utilized surrogate models 

for predicting the influence interior split-blinds on illuminance levels and achieved 

very low prediction errors. They focused only to daylight performance, by neglecting 

thermal and other visual comfort aspects such as view to the outside environment. 

Moreover, it is a fact that interior shading performs poorly with regard to thermal 

control when compared to exterior shading. In another study, Skavara (2009) 

implemented artificial neural networks for controlling the emergent behavior of an 

exterior shading system that is driven by cellular automata for daylight performance. 

Her focus was more on the training techniques of the network, than the comfort and 

energy related influence of the responsive-kinetic shading devices. 

The review of the literature revealed that technical incompetency of the existing 

methods is leading to limitation in the design of responsive-kinetic shading devices. 

Furthermore, use of surrogate-model based optimization methods in the conceptual 

design of performance-based responsive-kinetic shading devices is still unexplored. 

The nature of the design problem necessitates a reduction in computational cost, 

without sacrificing the accuracy. With this motivation, a surrogate-based optimization 

method is proposed and tested in the case studies, which will be explained in detail in 

the following chapter. 
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3CHAPTER THREE 

METHODOLOGY 

The current research employed a quantitative approach for assessing the performance 

of shading devices in conceptual design stages. A novel computational framework was 

proposed for investigation of responsive-kinetic shading devices. The framework was 

implemented in a comparative study between annually optimized-static and hourly 

optimized responsive-kinetic shading devices. It was hypothesized that responsive-

kinetic shading devices would outperform optimized-static shading devices in Izmir 

climate with regard to the given performance criteria. To test the hypothesis, an 

experiment was designed using the computational tools and measured the effect of 

quantitative independent variables on dependent performance variables.   

This study was based on computational tools and techniques for the aim of establishing 

a novel framework for predicting and optimizing the working of performance-driven, 

responsive-kinetic shading devices in the real world. Parametric modeling, 

environmental simulation and computational decision-support tools were incorporated 

in an automated workflow for generating and exploring the design space of the kinetic 

shading devices (Figure 12).   

At first, the parameter initialization process was conducted for the base case. Then, 

parametric models were established for the shading devices, which are mounted on the 

south-facing fully glazed façade of the base case. Same design parameters controlled 

both observations, optimized-static and responsive-kinetic, that are rotation angles of 

horizontal slats in six different zones of the shading systems. The variable 

randomization process updated the simulation model iteratively by generating random 

values for shading control and time of year parameters. The impact of the diverse types 

of shadings on indoor temperature, daylight intensity and view to outside were selected 

as performance indicators, which were the response variables in the study. The values 

for the shading control and the response parameters of the design alternatives were 

stored in spreadsheets by coupling parametric models with thermal, daylighting and 

view simulation engines in an automated manner.  
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Exploration for the optimum set of responses of kinetic shading devices to 

environmental conditions for a given time interval is a computationally expensive task, 

due to the requirement of excessive number of simulations.  For this reason, artificial 

neural networks were utilized for function approximation, which were subsequently 

used in the multi-objective optimization problems. This allowed significant reduction 

in computational costs. The computational approach, which is a surrogate model based 

optimization, was implemented in the comparative study between two dependent 

observations. One of them was a static shading device that was optimized for average 

annual performance. The other was a responsive-kinetic shading device, whose 

performance was optimized on an hourly basis. Both observation had the same shading 

control parameters that was rotation angles of horizontal slats in six different zones of 

the shading systems. The static shading was searched for an annually optimized 

configuration regarding to the performance criteria, while the responsive shading 

searched for responding hourly fluctuations of the weather. 
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Figure 12. The computational tools used and the flow-chart of the research process 
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3.1. PARAMETER INITIALIZATION FOR THE BASE CASE 

A test box was defined for the study of the exterior shading devices. At each of the 

cases, the parameters that describe the hypothetical building were kept constant. The 

dependent variables of annually-optimized and responsive-kinetic shading systems on 

the base building were examined by assuming that it is located in Izmir, Turkey. For 

measuring the sole impact of shading device, heat transfer was allowed only from the 

south-facing façade. Furthermore, it was assumed that there were no internal heat loads. 

Other assumptions can be seen at Table 1. 

Table 1. Parameter initiation of the base case 

Parameters Values 

Location   Izmir /Turkey 

Dimensions  

 

 

Width 

Depth 

Height 

3 m 

6 m  

3 m 

Reflectance Floor 

Ceiling 

Walls 

Shading (exterior) 

30 % 

80 % 

50 % 

40 % 

U Values  

 

 

 

Walls (except South) 

Roof 

Floor 

Window 

South Wall 

Adiabatic 

Adiabatic 

Adiabatic 

2.39 W/m2.K 

0.49 W/m2.K 

Internal Loads  

 

 

 

Equipments 

Infiltration Rate 

Lighting Density 

People Density 

0 W/m2 

0.003 m3/s -m2 

0 W/m2 

0  ppl/m2 

Window 

 

 

 

Orientation 

Glazed Area 

Window to Wall Ratio 

Window Construction  

South 

7.84 m2 

0.87  

Double Pane with Low E  

Glass Material 

 

 

Type 

Visible Transmittance 

Refraction Index 

Clear glass 

0.79 

1.52 
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3.2. PARAMETERIZATION OF SHADING DEVICE 

The research is based on parametric modeling and change of variables for performance 

explorations in an automated manner in order to predict the influence of shading 

geometry on indoor environment. The first step was defining the building geometry 

and its materiality. In the next phase, shading device’s parameterization was conducted 

by using Grasshopper, an algorithmic modeling platform. The geometry of the shading 

was generated by subdividing a surface that was 5 cm away from the south façade into 

six parts. This would allow controlling of the conceptual shading system with zones. 

Subsequently, each of these parts was subdivided again into 30 parts. These operations 

generated a data tree with six lists each having 30 items. Each of the surfaces would 

form horizontal slats of the shading devices with a dimension of 0.03 m X 1.49 m. An 

axial rotation operation was defined for all the surfaces in six different lists. Shading 

surfaces in separate lists were controlled by independent rotation parameters, which 

could have a value within the range of 0.00 to 180.00 degree (Figure 13). 

 

  

Figure 13. Exterior shading system with six control zones and the diagram of a 
single shading control parameter 

 

3.3. PERFORMANCE METRICS 

Mathematical combination of measurements, dimensions and conditions, which may 

not be directly measurable in the field, represented in a continuous scale is called a 
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metric (Mardaljevic et al., 2009). Building performance metrics are used to measure 

‘quality’ of spaces with respect to comfort, energy, and safety and so on. Performance 

metrics are quantitative tools, which can be used for comparative studies in building 

design (Glassman and Reinhart, 2015). Choosing the right metric is crucial when 

assessing the performance of a system, because it ensures that performance is 

measured accurately. In this study, instantaneous metrics will be used for performance 

evaluation, because one of the shading devices in question is a kinetic system that 

responds to continuous environmental changes. It is assumed that at each hour, the 

kinetic shading device is steady. The simulations will be run for each hour in order to 

assess the performance.  

As defined by Mardaljevic, climate-based daylight modeling predicts radiant and 

luminous quantities such as irradiance, illuminance and so on, based on annual 

meteorological datasets. Locale climate data, which includes various climatic 

conditions, is considered along with fenestration orientation, geometry and material 

properties in order to predict absolute quantities that are likely to occur in the space. 

These datasets are derived from recorded measures at the field over a period of years 

and are freely available for download from the internet (Mardaljevic et al., 2009). 

For the current study, we used Izmir weather dataset, which can be accessed from 

EnergyPlus webpage. Coordinates of the location is North 38° 30' and East 27° 1’ 

GMT +2.0 Hours. The weather dataset is composed of a data collection from the years 

of 1982, 1984, 1986 and 1988.  

3.4. COMPUTATIONAL TOOLS AND TECHNIQUES 

Moloney (2007) proposed a concept for design software to meet the particular 

requirements for the design of a kinetic facade. He examined particular requirements 

of a digital prototype for the early design stages of a kinetic facade. His general model 

for the design of a kinetic facade is based on two principles: evaluation of performance 

and the calibration of performance. He refined this general approach by adapting a 

method from the discipline of information systems in order to pave the way for a 

software module for the design and simulation of kinetic facades. 

Fotiadou (2007) made a research on existing animation and 3D modeling programs in 

order to evaluate their suitability for animating kinetic structures. She pointed out that 

there is a lack of software dedicated for design of kinetic structures.  She concluded 
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her thesis with a vision of software that will facilitate the detailed design, performance 

analysis and documentation for kinetic architecture. Although there are softwares, such 

as Solidworks, Inventor, etc., for mechanical design and analysis today, these tools are 

not peculiar for architectural design. They are rather used for engineering purposes in 

much smaller scales of design. The lack of design and analysis tools for kinetic 

architecture is, mostly likely, because of the dominance of static buildings in the 

market. However, there is an increasing necessity to employ dynamic components in 

the buildings in order to improve energy efficiency and inhabitants’ comfort. 

Because there is a lack of software package, particular to the design of kinetic facade 

components, researchers are developing custom methodologies by coupling various 

software platforms for the design and analysis of kinetic architectural components. 

In this study, Grasshopper platform were used for generating a custom automated 

workflow, which produce database that contain randomly selected variables and the 

associative performance data. A parametric model of a kinetic shading device that 

operates on a hypothetical box model was created at the first step. Then, Ladybug and 

Honeybee programs were utilized for performing daylight, thermal and view to the 

outside analyses for the model. The simulations were run for each hour by using the 

EPW file for Izmir. The EPW file for Izmir is available on EnergyPlus webpage. A 

custom script is implemented for giving random values iteratively for the independent 

variables of the kinetic shading device. The independent variables and the three 

associative performance variables for each of the example shading configurations were 

stored in a Microsoft Excel file with help of Bumblebee plug-in. The database was 

used for subsequent training of Artificial Neural Networks, which will be explained in 

detail in the following sections. 

3.4.1. PARAMETRIC MODELING 

One of the advances of latest years within the context of algorithmic modeling was the 

release of Grasshopper; a graphical algorithm editor operates on Rhinoceros. It was 

developed by David Rutten at Robert McNeel & Associates. It is a node-based editor, 

which allows visual programming by means of data flow within a network of 

encapsulated functions. One of the main advantages of this platform that it is possible 

to develop and add new plug-ins to Grasshopper. These plugins extend the capacity of 

the program. It is possible to make environmental, structural or physics simulations by 
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means of these plug-ins. These capabilities of Grasshopper make it be suitable for 

form-making as well as form-finding. Furthermore, it is possible two couple it with 

different software and hardware (Tedeschi, 2014). The use of grasshopper opened a 

new perspective in computational design. It has been accepted by both practice and 

academia for their studies. One of the main reasons of this application's popularity in 

the domain architectural design is that it does not require advanced syntaxical 

knowledge for generating parametric models as well as interoperability that it offers 

by means of useful plugins that are freely shared by the community.  

In this study, virtual test box and a parametric model of a shading system that was 

composed of 6 zones, was developed by using Rhino/Grasshopper algorithmic 

modeling platform. Using parametric modeling tools helped controling and exploring 

movement of the shading systems. In the next step, the parametric model was coupled 

with environmental simulation engines for exploration of the performances. 

3.4.2. PERFORMANCE INTEGRATION TO THE PARAMETRIC 

MODEL 

Ladybug and Honeybee are open source plug-ins for Grasshopper, developed for 

aiding the designers to explore and evaluate environmental performance of any design 

alternative at the conceptual design phases. With help of the programs within Ladybug 

toolset, it is possible to import EnergyPlus weather data files (EPW) into Grasshopper, 

make various environmental analyses that rely on previously recorded local time-

series data. Honeybee toolset contains programs that connects visual programming 

environment of Grasshopper with various validated simulation engines such as 

EnergyPlus, Radiance, Daysim and OpenStudio (Roudsari and Pak., 2013). An 

integrated and flexible design approach can easily be utilized in the design process by 

means of these plugins and the visual scripting environment that Grasshopper platform 

provides. By generating a definition on Grasshopper various design variables and 

associative performance data can be created for further research. 

Daylight Performance 

In this study, hourly daylight metric of illuminance was used for assessing daylight 

performance. (Littlefair, 1988) defined the illuminance (lumens/ meter2) as the visual 

part of the radiant energy that is derived from a luminous efficacy model (Mardaljevic, 

1999). Luminous efficacy is the ratio of the total luminous flux (lumens) to the total 
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power (watts). Luminous flux can be defined as the quantity radiant flux falling on a 

unit area of the hypothetical non-reflective sphere’s surface that surrounds the point 

source of radiation. The unit of luminous flux is lumen (lm). Flux density decreases as 

distance from the source increases. Illuminance is the incident luminous flux per unit 

area (lm/m2) of any surface in space (Figure 14). 1 lm/m2 is called 1 lux (lx) (IESNA, 

2000). 

 

Figure 14. The sphere model that shows the relationship between luminous intensity 
(candela), luminous flux (lumen), illuminance (lux or footcandle), (IESNA Lighting 

Handbook (9th Edition), 2010) 

Radiance is a free daylight simulation tool that is validated and accurate (Mardaljevic, 

1999). It performs advanced simulations for calculating luminance and illuminance 

levels in non-empty spaces. It makes use of ray-tracing, a technique originally 

developed for realistic display of geometric models on computer screen, for calculating 

the lighting levels at a point. Radiance relies on both finite element analysis and Monte 

Carlo technique for lighting calculations (Ward & Rubinstein, 1988). Standard 

Radiance release has two sky generator programs called gensky and gendaylit. Gensky 

creates sky models based on CIE (International Commission on Illuminance) standards, 

which are clear or intermediate skies. Gendaylit generates sky models based on the 

Perez All-Weather model. It determines different types of sky conditions based on the 

input parameters, which make it a good choice to be used with time series 

measurements of weather data (Mardaljevic, 1999). 

Air Temperature 

Air temperature is a dominant environmental factor, since it is directly related with 

thermal comfort. ASHRAE (2009) defines thermal comfort as: “that condition of mind 

that express satisfaction with the thermal environment.” Air temperature is one of the 
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environmental conditions that have an impact on metabolic activity of human body, 

along with relative humidity, air movement and mean radiant temperature. The comfort 

range extends from 20°C in winter to 25 °C in summer depending on metabolic rate 

and clothing of the person (Lechner, 2015). Conditioning of a space aims at keeping 

the inside temperature at a level so that the occupants feel pleasant. The load 

calculations are conducted by using design temperatures and sizing of air conditioning 

devices and the energy needed to regulate air temperature is a function of the difference 

between the actual and desired air temperature (ASHRAE, 2009). 

Shading strategies are one of the ways to regulate solar heat gain of an indoor space. 

By shading, excessive heat gain can be prevented, especially in summer. Shading 

devices that are placed on the exterior of a glazing is a more efficient way to control 

solar gain. Because, the directly transmitted solar radiation is blocked before entering 

the space. 

In this study, air temperature inside the test box was used as a response variable to 

assess the performance of shading devices. Therefore, a relationship was established 

between shading device control parameters and their impact on air temperature 

parameter. From the offset temperature value, contribution to energy savings can easily 

be calculated.  

EnergyPlus is an integrated simulation program that performs energy analysis and 

calculates thermal load demands of a building model. Based on a user’s selection of 

the building’s physical setup, it solves building, system and plant parts of the model 

simultaneously, in order to obtain physically realistic simulations. By using 

EnergyPlus, it is possible to study thermal performance of a building, calculate energy 

loads such as heating, cooling and lighting, necessary sizing of plant equipments, etc., 

for buildings in question for a given location. The program relies on the legacy of 

LAST and DOE-2 programs, which are predecessor energy and load simulation tools 

(Energyplus, 2016). 

View to Outside and View Analysis 

View is deemed to be one of the most important aspects in building design. The main 

reason for using glazing in buildings depends mainly on the need to connect the 

indoors to the outside. Excessive use of glassware, however, causes adverse effects on 

comfort and energy consumption. Reinhart et al. (2006) argues that, merely 
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quantitative approach to view to the outside considerations does not bring quality to a 

space. In addition, when the shading device is movable, view to the outside parameter 

was said to be less meaningful; because, the shading devices will be frequently lowered 

due to glare. On the other hand, it is a fact that view is a psychological factor that 

influences the occupants in a positive way. Although people like to see a nature view 

rather than a built environment, having a view in an indoor space is important for 

psychological and physical well-being (Farley & Veitch, 2001). This is even more 

important when a room has only one opening. A shading device capable of responding 

to its environment can incorporate view to the outside, as a parameter to be maximized, 

in accordance with other daylight parameters. 

Ladybug has a view analysis component that allows evaluating the visibility of an 

input geometry from a set of viewing points. The component outputs a percentage of 

view rays, which are not blocked by surrounding geometry. For the current study, a 

point is defined in the center of the interior space at the eye level for evaluating view 

performance of the shading geometry as a barrier that blocks view to the outside. 

3.4.3. DATABASE GENERATION 

For the current research, a performance integrated parametric model was generated for 

exploring the alternatives in the design space and the response variables of the static 

and responsive kinetic shading devices. The previously established parametric model 

had six independent variables, and three response variables that are performance 

indicators (Table 2 & Table 3). The next step was automating the process of generating 

and recording random independent variables for the control of shading zones and their 

associative performance variables in a database. For this purpose, a custom script was 

integrated to the parametric model.  

Nabil and Mardaljevic (2005) stated that sub-sampling the meteorological dataset, 

such as picking only one day from each month, will naturally bring biases because 

different sky and conditions would be excluded. However, in the research presented 

here, the aim is not making an annual inference, but examining the point in time 

situation. For this reason, a random sampling of 50 hours was made from total daylight 

hours of a year, provided that the selected hours were between 9.00 am and 17.00 pm. 
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Table 2. Range of the decision variables 

Variable Description Unit Range 

X1 Rotation angle 1 degree 0.00 – 180.00 

X2 Rotation angle 2 degree 0.00 – 180.00 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
X6 Rotation angle 6 degree 0.00 – 180.00 

Simulations were run on an hourly basis for the randomly sampled times in a year. By 

assigning random values for the decision variables within the range, 500 simulations 

were performed for each of the 50 randomly sampled hour. For the static shading, a 

randomly generated set that contains 500 examples were performed on an annual basis. 

A total of 25500 runs were performed in an automated workflow in order to generate 

51 datasets for further ANN models’ development. At each run, the independent 

variables and their associative variables that contain performance indicator values for 

each hour and a year were stored in separate spreadsheets.  

Table 3. The response variables 

Variable Description Unit 

Y1 Δ Temperature Celsius degree 

Y2 Δ Illuminance Lux 

Y3 View to outside Percentage 

Three response variables were defined for performance evaluation, as can be seen at 

Table 2. Variable Y1 is the difference between the simulated air temperature inside and 

23 °C threshold. Variable Y2 is the difference between the average illuminance what 

was simulated inside and 500 lx thresholds. Finally, Y3 is the average of the view 

percentage from a given point inside to the view frame at the outside. 

The database generation loop for responsive shading followed the steps that are listed 

below: 

 Step 1: Generate 6 random values within the range for shading control 

parameters 

 Step 2: Run daylight, energy and view simulations 
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 Step 3: Write shading independent design variables and dependent response 

variables to spreadsheets 

 Step 4: Iterate the above process for 500 times for each hour 

 Step 5: Change the hour of the year. 

 Step 6: Iterate for 50 times  

With help of the iterative database generation process, 500 variations were written for 

each hour, for 50 random sample hours of year. The data generated for each hour was 

stored in separate spreadsheets. After finishing the database generation procedure, 

each spreadsheet was converted to comma-separated values (CSV) file with help of 

scripting that can be accessed from the reference1. 

3.4.4. DEVELOPMENT OF OBJECTIVE FUNCTIONS 

In this research, three objective functions were defined for the performance 

optimization of responsive-kinetic shading device. These are minimization of the 

difference between average illuminance inside and 500 lx, minimization of the 

difference air temperature inside and 23 °C and maximization of view to the outside. 

The quantities were generated by validated simulation tools and used for developing 

surrogate models for the subsequent use in multi-objective optimization. Feed-forward 

Artificial Neural Networks (FAAN) was used for function approximation of the 

objective functions. The functions were trained by Resilient Back-propagation (RProp) 

algorithm. Root mean square error (RMSE) is the indicator that we used for measuring 

performances of the neural networks.  

Artificial Neural Networks 

Fausett (1994) defined an artificial neural network as an information-processing 

system that has similarities with biological neural networks. Mathematical models of 

human cognition and neural biology have been generalized for developing artificial 

neural networks. The basic assumptions that they both have in common are: 

 Neurons are the simplest elements where information processing happens 

 Signals are transmitted through connection links between neurons 

                                                 
1 https://www.extendoffice.com/documents/excel/2972-excel-save-export-convert-multiple-all-sheets-
to-csv-text.html Retrieved at 13 March 2017.NE 
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 There is an associated weight on each connection link, which multiplies the 

signal transmitted. 

 An activation function is applied by each neuron to sum of weighted input 

signals in order to determine its output signal. 

A collection of simple processing elements called neurons, units, cells or nodes make 

up a neural net. Each neuron has an activation function of the inputs it has received. 

The output of activation function becomes the signal for the other neurons. Thus, the 

input signal propagates until it reaches the output. Each neuron can only send one 

signal at a time to other neurons that it is connected to and each signal is scaled by a 

weight factor. Finding optimal values for the weights is called training, which is done 

by certain methods. The architecture of the network, training algorithm and activation 

function defines a neural network (Fausett, 1994). 

In feedforward neural networks, a connection is allowed only from a node in a layer 

to nodes in the next forward layer. Multi-layer feedforward networks are very popular 

and long-established structures of artificial neural networks, which have been used in 

many applications such as forecasting and function approximation (Zhang, Patuwo, & 

Hu, 1998). This class of neural networks is identified by presence of hidden layers 

between the input and output of the network. Hidden layer contains hidden neurons, 

which are not directly seen from either input or output (Haykin, 2009). 

 

 

Figure 15. Diagram of a multilayer perceptron 



43 

Multi-layer perceptrons (MLPs) are one of the most effective artificial neural network 

models. It is capable of solving many problems such as forecasting, pattern recognition 

and function approximation.  An MLP comprises o layers of neurons (or nodes). 

External information is received in the input layer and the problem solution is obtained 

in an output layer. Between the input layer and layers there are one or more layers that 

are called hidden layer. Acyclic arcs connect nodes in the lower layer to the adjacent 

higher layer (see Figure 15). Inputs are usually independent variables and outputs are 

dependent variables. The functional relation between them can be shown as follows: 

𝑦 = 𝑓(𝑥ଵ , 𝑥ଶ , . . . , 𝑥 ) 

One of the essential features of ANNs is the training, which is the process that 

determines weights on each arc that connect the nodes. ANNs should be trained in 

order to perform a desired task. An ANN performs complex non-linear mappings 

between the input and output neurons by means of the linking arcs. Training of 

multilayer perceptron is a supervised learning, which means that target value for each 

input pattern is always known. In the training process, free parameters of the neural 

network are calculated.  

Training process starts with entering examples of the training set into the input nodes. 

In the first hidden layer, activation values are weighted and summed at each node. The 

sum is then transferred by an activation function into a value in order to be an input 

into the nodes in the next layer. An activation function determines the relationship 

between input and output of a node and a network (Zhang et al., 1998).  In this study, 

sigmoid function was used as activation function. The sigmoid function is shown 

below: 

𝑓(𝑥) = (1 + 𝑒𝑥𝑝(−𝑥))ିଵ 

The training algorithm finds the weights that minimize an overall error metric such as 

the root mean square errors (RMSE). In this metric, the square root of all of the mean 

difference between the actual and predicted values is calculated by the following 

formula: 

𝑅𝑀𝑆𝐸 = ඩ
1

𝑛
(𝑦 − 𝑦పෝ)ଶ



ୀଵ
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One of the most important processes in developing a MLP, which is class of ANNs, is 

model selection. According to Haykin (2009) learning process of a multilayer 

perceptron is to encrypt an input-output mapping into the synaptic weights and 

thresholds with the desire that the network becomes well trained for learning from the 

past to generalize the future. The concept of cross-validation, which is a standard tool 

in statistics, is a key principle in model selection and assessing predictive ability of 

neural networks. In this technique, the dataset is randomly split into training sample 

and test sample. The training sample is further divided into separate subsets. Those are 

estimation subset that is used to select the model and validation subset that is used to 

validate the model. In order to avoid overfitting, the performance of the selected model 

is measured on the test sample, which is a diverse dataset from the validation subset. 

More information about artificial neural networks can be found in Haykin (2009), 

Zhang et al. (1998) and Fausett (1994). 

Development of ANNs 

Three performance criteria were selected for the evaluation of exterior shading devices. 

The first one was the absolute difference between the simulated air temperature inside 

and comfort threshold of 23°C (ΔT). The second one was the absolute difference 

between simulated mean illuminance inside and the threshold value of 500 lx (ΔL). 

The last one was the percentage of view to the outside (V).  

In the database generation process, a total of 500 examples of design variables of 

{X1,…,X6} and the response variables Y1 (ΔT), Y2(ΔL) and Y3 (V) were quantified and 

stored in tables, for further use as data for developing ANN models.  

For creating neural network models, a new tool called CIDEA2 was utilized. CIDEA 

is a computational decision-support environment that was developed by 

Chatzikonstantinou (2016). The program consists of such modules as data analysis, 

predictive model training, optimization, etc. which can be coupled to make surrogate-

based optimization. 

The models that were prepared for the study are in the class of multilayer perceptrons 

(MLP), since they have one hidden layer, other than just having an input and output 

layer. According to the extensive review conducted by Zhang et al. (1998) ANNs with 

                                                 
2 http://www.cidea.io 
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a single hidden layer are sufficient to approximate any complex non-linear function at 

any degree of accuracy. Therefore, number of hidden layers was not a parameter to 

search for in the model selection process that was conducted for finding best 

performing network models and avoiding over-training of the networks.  

Prior to generating MLPs, three model selection operations were executed for three 

objectives to determine the network architectures (see Table 4. Search space, 

evaluation criteria and CV method for the model selection). The operation was 

performed by using datasets of annually optimized static model and hourly responsive 

kinetic model. For network architectures that would be used for responsive kinetic 

shading models, a dataset from a single hour was selected for testing network model, 

other than performing it to all the 50 datasets. The network architectures that 

outperformed remainders for the selected hour were used for developing the networks 

for the rest of hours for kinetic-responsive shading. For annually optimized static 

shading, this was not an issue because the network models used one dataset for annual 

performance. The results of the parameter tuning process are shown in Section 4.2. 

For cross validation, Monte Carlo technique was implemented for both model selection 

and neural network training processes. Using Monte-Carlo, the randomly generated 

data sample was split into two random sub-samples by a factor of 0.1. That is, 450 

random observations (corresponds to 0.9) in the datasets were used for neural network 

training purposes. To assess predictive ability of trained network on the unseen data, 

remaining 50 observations, namely test sample was used. This process was then 

iterated 10 times, generating new training and test partitions at random each time. The 

performance evaluation criteria for cross-validation is root mean square error that is 

subject to minimization. 

Table 4. Search space, evaluation criteria and CV method for the model selection 

No. Nodes in Hidden Layers No. Iterations Performance Criteria Cross Validation 

[4,20] [500,10000] Root Mean Square Error Monte Carlo 

Once the network architectures and number of iterations were determined for the 

models, the networks were trained using the data that contain simulation-derived 

examples. The multilayer perceptrons (MLP) were trained by Resilient Back-

Propagation (RProp) algorithm. RProp is a fast learning algorithm for multilayer 

perceptrons that performs local adaptation of the weight-updates due to the act of the 
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error function. More information on training algorithm used in the current study can 

be found elsewhere (Riedmiller & Braun, 1993).  

In order for developing neural network models, we implemented a procedure, which 

can also be seen at Table 3. For each types of shading devices, diverse ANN models 

were developed for each of the three objectives. For responsive-kinetic shading type, 

we established 50 ANNs for each of the three objectives that aggregated 150 models 

in total. For static shading type, on the other hand, three network models were 

established for each of the three objectives. All the datasets were containing 500 

randomly generated observations. However, 50 of the datasets, used for developing 

hourly ANNs for responsive shading, consisted observations from the 50 randomly 

sampled daylight hours of a year.  A single dataset, used for developing annual ANNs 

for static shading, was a collection of 500 random observations over the course of a 

year (Table 5). The ANNs were used for the following purposes: 

 Surrogate-based optimization: Hourly performance of responsive-kinetic 

shading device and annual performance of static shading device were 

optimized by using the related ANNs. 

 Predictive models: Hourly performances of static shading devices were 

predicted by entering decision variables of annually optimized static shading 

as inputs to the predictive models that were generated for 50 sampled hours. 

Table 5. Objectives and neural network models developed for the shading types 

Shading Type Objective Model 

 

Responsive-Kinetic 

ΔTR NNΔT1 , NNΔT2 , NNΔT3 , … , NNΔT50 

ΔLR NNΔL1 , NNΔL2 , NNΔL3 , … , NNΔL50 

VR NNV1 , NNV2 , NNV3 , … , NNV50 

 

Static 

ΔTs NNΔTs  

ΔLs NNΔLs 

Vs NNVs 

3.4.5. SURROGATE-BASED OPTIMIZATION 

In the research, a surrogate method was employed in order to determine the three 

objective functions for each case. The surrogate models interpolated mathematical 

functions that relate design parameters to performance criteria. CIDEA tool allows 
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referencing an ANN models as an objective function by turning it into a surrogate 

model.  

HypE algorithm was employed for deriving optimal solutions with respect to Y1 (ΔT), 

Y2(ΔL) and Y3(V). Bader and Zitzler (2008) proposed HypE as an evolutionary multi-

objective optimization algorithm that is based on quality measure of hypervolume 

indicator. In their study, they compared the algorithm with other evolutionary 

optimization algorithms such as NSGA-II, SPEA2 and so on. Their results showed that 

HypE outperformed all the others, in multi-objective optimization problems with a 

dimension more than two (Figure 16). Therefore, HypE algorithm was the choice for 

the three-dimensional optimization problem that was formulated for the study of 

exterior shading devices. 

 

Figure 16. Comparison of various optimization algorithms with respect to number of 
objectives (Bader and Zitzler, 2008) 

The objective functions that were used in the optimization problem are listed in Table 

6. According to the problem formulation, while |Tin- 25 °C| and |Avg.Lux -500| was 

being minimized, (V) should be maximized, which formed an obvious conflicting 

situation (see Table 6). In the optimization phase, HypE algorithm was referenced to 

the neural networks for each objective functions.  
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Table 6. Objective functions for optimization problem 

ID Description  

Objective 1 Minimize (Δ Temperature) 

Objective 2 Minimize (Δ Lux ) 

Objective 3 Maximize (View to outside) 

We used the default settings for optimization in order to generate 100 generations each 

having 100 populations. The settings that were used for optimization algorithm are 

listed in Table 7.  

Surrogate-based optimization method was implemented for both types of conceptual 

shading devices in order to find best performing design alternatives. For responsive-

kinetic shading 50 optimization operations were run for each randomly sampled 

daylight hours. For the static shading, only one optimization operation was performed 

to find best performing alternatives on an annual basis. At the end of the process, we 

extracted 100th generation from each of the 51 optimization processes in total, for 

further operations. 

Table 7. Optimization settings for HypE algorithm 

Optimization parameter Value 

Population Size 100 

Iterations 100 

Hypervolume Samples 5000 

Mutation Probability 0.1 

3.4.6. PREDICTIVE MODELS 

In order to study hourly performance of responsive-kinetic shading devices, 50 

different ANN models were developed for each of the three objective functions. The 

models were created for 50 randomly selected hours of a year, between 9:00 am to 

17:00 pm. Datasets for each hour were consisting of 500 examples which are produced 

by assigning random values to design parameters within the range of [0.00,180.00] 

and running simulations for the associative performances. For making comparison 

between annually optimized-static and hourly responsive-kinetic shading devices, we 

needed to find out the hourly performance of the static shading. For this purpose, we 

extracted 100th generation of optimized design variables (rotation angles) of static 

shading. Subsequently, we used them as inputs to the hourly predictive models that we 
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had generated for the responsive-kinetic shading. Because the neural networks already 

generated approximation functions between the same input and output parameters, we 

would use these functions for predicting hourly performance of static shading. Thus, 

we obtained the hourly performances of the static shading devices that were optimized 

for annual performance objectives. 

3.4.7. HYPOTHESIS TEST 

First, the selection of the type of hypothesis test was made. The data types that we 

generated are continuous. It was aimed to compare the means of the two processes, 

whether one of them is larger. The same set of items was measured under two different 

conditions (responsive-kinetic and optimized-static). Pair-T Test is the type of 

hypothesis test for our case, because it examines the mean difference between 

dependent observations whether they are significantly different (Minitab, 2016).  

Paired t-tests were carried out for conducting a formal comparison among the 

performance of responsive-kinetic and optimized static shading devices. Initially, it 

was hypothesized that responsive-kinetic shading device would outperform optimized-

static one for each of the three performance criteria. Three hypotheses were considered, 

which are as follows: 

 H1 : ΔTR  -  ΔTS  ≤ 0 

 H2 :  ΔLR -  ΔLS ≤ 0 

 H3 :  VR   -  VS ≥ 0 
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4CHAPTER FOUR 

RESULTS 

The chapter introduces the results of the processes described at Chapter 3. The first 

section overviews the result of the data generation process. The second section 

demonstrates model selection process, which helped us selecting parameters for 

developing the neural network models. At the end of the process, we decided on 

number of hidden layers for concluding the network architecture and number of 

iterations for avoiding over-training of the neural network. The second section outlines 

the performances of each neural network models that were established by using the 

selected values from the previous section. In the following section, comparisons 

between static and responsive-kinetic shading devices for Izmir climate were 

demonstrated with respect to the given performance criteria. The final section outlines 

the test results for the null hypothesis of responsive-kinetic shading outperforms 

optimized-static shading.  

4.1. DESCRIPTIVE STATISTICS OF THE GENERATED DATA 

An automated process generated the data, as it was explained in section 3.4.3. At the 

end of the database generation process, 51 datasets were obtained for the consequent 

neural network development. This section demonstrates the descriptive statistics of the 

generated data. 

Table 8 shows the descriptive statistics of decision variables (Xn) for shading control 

parameters. The generated data showed a normal distribution around the mean of 

approx. 90 with a standard deviation approx. fifty-two.   

Table 8. Descriptive statistics of the decision variables 

 
Date / Hours 

X1 X2 X3 X4 X5 X6 

Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. 

24 JUNE 11:00 90,24 51,91 90,23 52,06 90,27 51,95 90,03 52,06 89,59 52,00 89,35 51,98 

12 FEB. 11:00 90,00 52,08 89,74 51,97 89,91 52,02 89,94 51,86 90,11 51,99 90,59 51,96 

19 DEC. 12:00 89,76 51,89 89,98 51,89 90,27 51,90 89,84 51,98 89,90 52,02 90,04 51,91 

21 MAR. 10:00 90,24 52,07 89,86 52,00 89,91 52,02 90,10 52,04 90,06 51,89 89,84 51,98 
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Table 8 (cont’d). Descriptive statistics of the decision variables 

Date / Hours 
X1 X2 X3 X4 X5 X6 

Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. 

15 JULY 10:00 90,00 51,86 90,09 52,00 89,91 51,89 90,37 51,94 89,86 51,97 90,36 51,92 

4 JULY 16:00 90,48 51,93 89,97 51,90 89,91 52,03 89,55 51,89 90,37 51,96 89,44 51,94 

17 MAY 11:00 89,51 52,03 89,84 51,96 89,91 51,89 90,17 52,01 89,91 52,02 90,33 51,97 

3 JAN. 11:00 90,11 52,06 89,95 51,96 89,91 51,89 90,34 51,90 89,76 51,99 89,93 52,01 

26 FEB. 9:00 89,75 51,99 90,30 52,05 90,27 52,10 90,05 52,03 90,23 51,92 90,78 52,05 
23 DEC.11:00 89,75 51,99 90,30 52,05 90,27 52,10 90,05 52,03 90,23 51,92 90,78 52,05 
19 JAN. 15:00 90,58 52,03 90,18 51,93 89,90 51,94 90,32 51,91 90,03 52,06 89,50 52,03 
13 MAY 14:00 89,62 52,04 90,05 52,03 90,26 52,09 89,86 52,06 89,83 52,01 90,38 52,07 
30 OCT. 10:00 90,10 51,89 89,93 52,07 89,90 51,94 90,12 52,06 89,98 52,06 90,19 52,00 
2 SEP. 12:00 89,86 52,13 90,16 52,00 89,90 52,08 90,03 51,97 89,78 51,91 89,63 52,05 
20 APR. 15:00 89,98 51,95 90,04 51,98 89,90 51,94 89,93 51,97 89,94 52,07 90,51 52,00 
13 DEC. 16:00 90,10 52,11 89,91 52,06 90,26 52,08 89,83 52,07 90,09 52,01 89,59 51,99 
15 APR. 10:00 89,49 51,94 90,15 52,04 89,90 51,95 90,10 52,06 90,25 52,05 90,48 52,03 
19 FEB. 15:00 90,33 51,95 90,02 51,91 90,26 52,07 90,00 51,91 89,69 51,93 89,92 51,96 
27 SEP. 13:00 89,73 52,10 90,26 52,04 89,90 51,95 89,55 52,04 89,84 52,07 90,08 52,02 
25 APR. 12:00 90,21 51,96 89,78 52,06 89,90 52,07 90,17 52,08 90,00 52,00 90,24 51,98 
15 MAR. 15:00 89,61 52,12 90,37 51,98 89,90 51,95 90,43 51,98 90,16 52,04 89,33 51,98 
9 OCT. 14:00 90,09 51,89 89,89 52,00 90,26 52,07 89,98 51,95 89,95 51,94 90,57 52,02 
4 AUG. 14:00 90,56 52,06 90,12 52,06 89,89 51,96 89,88 52,06 90,11 52,07 89,65 51,96 
31 OCT. 16:00 89,60 52,02 90,00 52,03 89,89 52,06 90,14 52,06 89,91 52,02 89,81 52,03 
8 JULY 15:00 90,08 52,01 89,87 51,93 89,89 51,97 90,05 51,94 90,06 52,02 90,34 51,98 
15 MAY 11:00 89,48 52,07 90,11 52,05 89,89 52,07 89,95 52,00 89,86 51,94 89,42 52,01 
22 JAN. 10:00 90,32 51,88 89,99 52,06 90,25 51,97 89,86 52,09 90,01 52,06 90,30 52,04 
28 MAR. 17:00 90,07 52,12 90,22 51,96 89,89 52,06 90,12 52,03 89,81 52,04 89,75 52,00 
12 APR. 10:00 89,83 51,96 89,74 52,01 90,25 51,96 89,66 51,92 90,33 51,99 89,91 52,08 
26 SEP. 13:00 90,31 52,09 90,33 52,06 89,89 52,07 89,93 52,06 89,76 51,97 90,07 52,03 
14 NOV. 16:00 89,71 51,97 89,85 52,02 90,25 51,96 90,19 52,05 90,28 52,05 89,87 52,07 
9 AUG. 12:00 90,55 51,92 90,08 51,95 89,89 52,07 90,09 51,97 90,08 52,06 90,40 52,03 
6 APR. 16:00 89,59 52,12 89,60 52,05 90,25 51,95 90,00 51,97 90,23 51,96 89,84 52,00 
28 AUG. 12:00 90,06 51,95 90,19 52,05 89,88 52,07 89,90 52,08 89,67 52,00 90,36 52,05 
8 DEC. 11:00 90,18 52,13 90,07 51,94 90,24 51,95 90,17 52,05 90,19 52,04 90,16 51,98 
4 OCT. 13:00 89,94 51,90 89,95 52,02 89,88 52,07 90,07 51,91 89,98 52,07 89,61 52,03 
4 JUNE 16:00 90,42 52,02 90,18 52,06 89,88 51,94 89,97 52,05 90,14 51,94 90,49 51,99 
17 SEP. 13:00 89,46 52,05 90,06 52,00 89,88 52,08 89,88 52,08 89,94 52,02 89,93 51,98 
4 AUG. 11:00 90,66 51,98 89,93 51,97 90,24 51,94 90,14 51,97 90,09 52,02 90,09 52,02 
18 APR. 9:00 89,69 52,10 89,81 52,06 89,88 52,08 89,68 51,96 89,89 52,07 89,90 51,96 
3 OCT. 10:00 89,81 51,88 90,40 52,04 89,88 51,94 90,31 52,05 90,05 51,94 89,70 52,02 
9 OCT 16:00 90,29 52,10 89,92 51,93 89,88 52,09 89,85 52,06 89,84 52,04 90,22 51,98 
21 JAN. 12:00 89,69 51,97 90,15 52,03 89,88 51,94 90,48 51,93 90,00 52,00 89,66 51,98 
30 MAR. 9:00 89,21 52,00 90,27 51,99 89,88 51,94 89,92 52,09 90,31 51,92 89,99 51,98 
30 JUNE 17:00 90,04 51,91 89,78 51,99 90,23 52,09 90,19 52,01 89,75 52,06 89,79 52,05 
24 SEP. 13:00 90,16 52,13 90,02 52,06 89,87 51,94 89,73 51,93 89,91 52,01 90,31 52,01 

21 DEC. 10:00 89,92 51,95 89,89 52,04 90,23 52,08 89,99 52,06 90,06 52,06 89,40 52,02 

6 JUNE 17:00 90,04 52,12 89,77 51,91 89,87 51,94 89,90 52,05 89,86 51,91 90,28 52,07 

15 JAN. 15:00 89,80 51,92 90,00 52,04 90,23 52,08 90,16 51,96 90,02 52,07 90,08 52,03 
ANNUAL 
(static) 

89,59 52,01 90,27 51,96 90,10 52,01 89,85 51,95 90,04 52,00 89,64 52,05 

 

Table 9 demonstrates the descriptive statistics of the response variables (Yn) of shading 

control parameters of Xn. Among the response variables, Y1 and Y2 are dynamic 

objectives, air temperature and mean illuminance, respectively; which does not present 

a normal distribution around the means. In addition, simulated air temperatures inside 
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are irresponsive to the outside temperatures. Recall that, the base case described at 

Section 3.1 was an adiabatic construction. That is, the heat transfer was only allowed 

from the south façade through glazing. The data generated for Y3 (view to outside) 

showed a normal distribution around the mean of approx. 36.5 with a standard 

deviation approx. thirteen. 

Table 9. Descriptive statistics of the response variables 

Date / Hours 
Y1 Y2 Y3 

Mean St.Dev. Mean St.Dev. Mean St.Dev. 

24 JUNE. 11:00 13,92 0,86 635,68 622,19 36,59 13,06 

12 FEB. 11:00 12,71 0,31 706,20 470,34 36,56 12,92 

19 DEC. 12:00 5,76 0,02 1722,60 913,58 36,58 13,06 

21 MAR. 10:00 2,32 0,18 471,35 351,41 36,53 13,01 

15 JULY 10:00 14,61 0,61 225,35 226,42 36,64 13,30 

4 JULY 16:00 15,78 0,64 115,41 80,61 36,56 12,89 

17 MAY 11:00 13,94 0,31 385,55 288,16 36,59 13,06 

3 JAN. 11:00 26,28 0,32 3706,70 2001,00 36,59 13,23 

27 FEB. 11:00 6,49 0,29 1468,19 846,42 36,57 13,10 
26 FEB. 9:00 3,30 0,16 159,77 113,69 36,55 12,97 
23 DEC.11:00 3,30 0,16 159,77 113,69 36,55 12,97 
19 JAN. 15:00 33,11 0,48 2209,39 1367,18 36,61 13,19 
13 MAY 14:00 14,22 0,53 120,21 88,24 36,53 13,03 
30 OCT. 10:00 0,79 0,12 160,58 109,48 36,55 13,26 
2 SEP. 12:00 28,42 0,58 2574,17 1970,13 36,57 12,99 
20 APR. 15:00 14,59 0,51 468,10 336,04 36,60 12,96 
13 DEC. 16:00 2,92 0,08 336,21 71,18 36,49 13,11 
15 APR. 10:00 3,00 0,13 159,62 114,46 36,60 13,19 
19 FEB. 15:00 0,66 0,16 492,50 357,27 36,59 12,89 
27 SEP. 13:00 36,33 0,62 3044,82 2309,73 36,59 13,02 
25 APR. 12:00 13,07 0,58 1483,56 1138,10 36,51 12,92 
15 MAR. 15:00 29,32 0,78 2453,53 1945,80 36,62 13,06 
9 OCT. 14:00 32,52 0,50 1765,35 1148,91 36,59 13,16 
4 AUG. 14:00 22,36 0,52 825,41 767,83 36,56 13,06 
31 OCT. 16:00 23,12 0,35 302,99 233,27 36,59 12,88 
8 JULY 15:00 10,86 0,73 263,95 198,86 36,60 12,77 
15 MAY 11:00 13,01 0,50 636,29 624,36 36,58 13,12 
22 JAN. 10:00 0,58 0,13 778,66 523,41 36,53 13,08 
28 MAR. 17:00 12,73 0,45 146,02 102,18 36,63 13,28 
12 APR. 10:00 18,79 0,56 1639,48 1258,15 36,58 12,81 
26 SEP. 13:00 39,92 0,60 3897,65 2758,78 36,52 13,04 
14 NOV. 16:00 20,73 0,34 163,49 116,18 36,60 12,92 
9 AUG. 12:00 21,78 0,52 1612,70 1529,40 36,54 13,33 
6 APR. 16:00 18,36 0,56 313,44 266,18 36,62 13,13 
28 AUG. 12:00 27,91 0,56 2666,55 1817,70 36,49 13,10 
8 DEC. 11:00 22,38 0,40 4502,90 1986,44 36,61 12,86 
4 OCT. 13:00 37,95 0,63 3349,92 2228,83 36,60 13,21 
4 JUNE 16:00 9,83 0,31 201,13 154,68 36,55 13,15 
17 SEP. 13:00 25,73 0,45 2336,26 1693,17 36,60 13,26 
4 AUG. 11:00 20,22 0,49 1026,54 920,89 36,56 13,03 
18 APR. 9:00 9,30 0,44 257,96 198,14 36,59 13,08 
3 OCT. 10:00 31,30 0,56 1355,85 1315,58 36,57 13,13 
9 OCT 16:00 28,90 0,46 251,64 198,67 36,58 13,26 
21 JAN. 12:00 0,77 0,13 355,72 266,33 36,62 13,03 
30 MAR. 9:00 17,40 0,59 225,03 179,82 36,62 13,10 
30 JUNE 17:00 13,36 0,65 152,43 96,31 36,57 13,09 
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Table 9 (cont’d). Descriptive statistics of the response variables  

Date / Hours 
Y1 Y2 Y3 

Mean St.Dev. Mean St.Dev. Mean St.Dev. 

 
24 SEP. 13:00 32,36 0,52 3326,64 2139,35 36,56 13,10 

21 DEC. 10:00 18,75 0,30 2031,19 1142,30 36,58 13,05 

6 JUNE 17:00 11,24 0,65 142,41 95,47 36,52 12,94 

15 JAN. 15:00 22,99 0,37 1005,50 745,91 36,63 12,89 
ANNUAL 
(static) 

14,23 0,33 206,24 151,68 36,52 13,08 

 

4.2. MODEL SELECTION PROCESS FOR ARTIFICIAL NEURAL 

NETWORKS  

The model selection process was conducted in order to determine the optimum number 

of training iterations and the number of neurons in the hidden layers. This process is 

referred to as parameter tuning. The dataset used for the parameter tuning, were 

randomly generated on annual and hourly basis for the static and responsive kinetic 

shadings, respectively. Monte Carlo technique was implemented for cross validation 

purpose. Using Monte-Carlo, the randomly generated sample data was separated into 

two random sub-samples by a factor of 0.1. That is, 450 random observations 

(corresponds to 0.9) in the datasets were used for neural network training purposes. To 

assess predictive ability of trained network on the unseen data, remaining 50 

observations, namely test sample was used. This process was iterated for 10 times and 

cross validation RMSE value of the test sample is stored. Fifteen Neural Network 

alternatives, each housing random number of neurons in hidden layers and training 

iterations, were considered for each objective. The models with minimum RMSE 

values were selected as the final ANN models, which subsequently form objective 

functions.  

4.2.1. MODEL SELECTION FOR HOURLY OBJECTIVE FUNCTIONS 

An hourly set of observations was used in the model selection process for hourly 

objective functions. According to the results that is shown at Table 10, Table 11 and 

Table 12, neural network models with the IDs of NNH-∆T13, NNH-∆L8 and NNH-V10 

outperformed other options. Therefore, these network models were selected for 

training the datasets in order to develop the hourly objective functions. 
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Table 10. Results of the model selection for hourly ∆T objective for responsive-
kinetic shading 

ID No. Training Iterations No. Nodes in Hidden Layer RMSE 

NNH-∆T1 3078 7 0.10 

NNH-∆T2 6507 9 0.08 

NNH-∆T3 5943 6 0.11 

NNH-∆T4 7559 4 0.15 

NNH-∆T5 4320 10 0.09 

NNH-∆T 6 3676 7 0.10 

NNH-∆T 7 4204 6 0.11 

NNH-∆T 8 5431 4 0.15 

NNH-∆T 9 9030 11 0.08 

NNH-∆T 10 7941 11 0.08 

NNH-∆T 11 1840 9 0.11 

NNH-∆T 12 6855 4 0.17 

NNH-∆T 13 8142 11 0.07 

NNH-∆T 14 4731 5 0.10 

NNH-∆T 15 9128  11 0.08 

Table 11. Results of the model selection process for hourly ∆L objective for 
responsive-kinetic shading 

ID No. Training Iterations No. Nodes in Hidden Layer RMSE 

NNH-∆L1 1132 7 207.04 

NNH-∆L2 1797 7 202.06 

NNH-∆L3 7552 4 254.40 

NNH-∆L4 2930 6 210.44 

NNH-∆L5 6542 8 188.97 

NNH-∆L6 6195 8 197.28 

NNH-∆L7 5720 9 175.29 

NNH-∆L8 8994 11 134.19 

NNH-∆L9 8880 4 244.48 

NNH-∆L10 2337 7 203.12 

NNH-∆L11 2006 9 183.29 

NNH-∆L12 4036 5 251.06 

NNH-∆L13 1686 6 214.26 

NNH-∆L14 9546 10 186.47 

NNH-∆L15 2734 4 254.02 
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Table 12. Results of the model selection process for hourly V objective for 
responsive shading 

ID No. Training Iterations No. Nodes in Hidden Layer RMSE 

NNH-V1 9598 8 5.19 

NNH-V2 6297 7 7.22 

NNH- V3 8757 9 4.19 

NNH-V4 7891 5 9.64 

NNH-V5 6877 4 10.52 

NNH-V6 5958 10 4.31 

NNH-V7 6314 6 8.55 

NNH-V8 5993 4 10.70 

NNH-V9 7331 7 7.26 

NNH-V10 5018 10 3.72 

NNH-V11 5013 5 9.10 

NNH-V12 5140 6 7.67 

NNH-V13 9827 10 3.89 

NNH-V14 984 5 10.22 

NNH-V15 7336 8 5.01 

4.2.2. MODEL SELECTION FOR ANNUAL OBJECTIVE FUNCTIONS 

The annual objective functions were developed for assessing the performance of static 

shading device. For these objectives, a randomly collected dataset over the course of 

the year were used for parameter-tuning process. According to the results that is shown 

at Table 13, Table 14 and Table 15, neural network models with the IDs of NNA-∆T2, 

NNA-∆L14 and NNA-V3 outperformed other options. Therefore, these network models 

were selected for training the datasets in order to develop the annual objective 

functions. 

Table 13. Results of the model selection for the annual mean ∆T objective for static 
shading 

ID  No. Training Iterations No. Nodes in Hidden Layer RMSE 

NNA-∆T1 8764 6 0.16 

NNA-∆T2 6563 10 0.13 

NNA-∆T3 9174 11 0.14 

NNA-∆T4 1616 11 0.16 

NNA-∆T5 6372 6 0.16 

NNA-∆T6 8317 8 0.16 



56 

Table 13 (cont’d). Results of the model selection for the annual mean ∆T objective 
for static shading 

ID No. Training Iterations No. Nodes in Hidden Layer RMSE 

NNA-∆T7 7635 6 0.15 

NNA-∆T8 3388 4 0.21 

NNA-∆T9 7280 5 0.18 

NNA-∆T10 5186 5 0.19 

NNA-∆T11 7873 9 0.15 

NNA-∆T12 5253 7 0.15 

NNA-∆T13 5747 4 0.21 

NNA-∆T14 3492 7 0.16 

NNA-∆T15 7893 8 0.14 

Table 14. Results of the model selection for annual mean ∆L objective for static 
shading 

ID  No. Training Iterations No. Nodes in Hidden Layer RMSE 

NNA-∆L1 3244 11 108.88 

NNA-∆L2 5288 9 105.00 

NNA-∆L3 2351 4 125.76 

NNA-∆L4 4149 4 114.43 

NNA-∆L5 6179 6 118.53 

NNA-∆L6 5807 8 106.56 

NNA-∆L7 3988 6 113.87 

NNA-∆L8 6247 5 105.48 

NNA-∆L9 1301 6 113.79 

NNA-∆L10 4675 8 107.89 

NNA-∆L11 892 8 104.79 

NNA-∆L12 3919 6 110.92 

NNA-∆L13 5493 4 117.86 

NNA-∆L14 2947 11 100.16 

NNA-∆L15 9061 8 109.98 
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Table 15. Results of the model selection for annual mean V objective for static 
shading 

ID  No. Training Iterations No. Nodes in Hidden Layer RMSE 

NNA-V1 9657 9 5.59 

NNA-V2 5495 10 4.78 

NNA-V3 9746 11 3.88 

NNA-V4 6417 8 5.55 

NNA-V5 3568 6 8.18 

NNA-V6 2596 6 8.54 

NNA-V7 2627 9 6.84 

NNA-V8 2868 8 6.56 

NNA-V9 2130 8 6.75 

NNA-V10 2993 9 5.91 

NNA-V11 6058 9 5.86 

NNA-V12 6265 4 9.84 

NNA-V13 3197 9 5.77 

NNA-V14 4072 6 8.52 

NNA-V15 821 9 8.23 

4.3. TRAINING RESULTS FOR HOURLY AND ANNUAL 

OBJECTIVE FUNCTIONS 

The selected model parameters in Section 4.2 were used for training hourly and annual 

datasets for establishing artificial neural network models (ANNs). The performance 

statistics of hourly based and annually based ANNs are demonstrated respectively at 

Table 16 and Table 17. Training and cross-validation results are given in the same 

table in order to outline the predictive strength of the models.  

Table 16. Performance of the neural networks for responsive kinetic shading 

ID 

ΔT (°C) ΔL(Lux) V(%) 

RMSE 

(Training) 

RMSE 

(CV) 

RMSE 

(Training) 

RMSE 

(CV) 

RMSE 

(Training) 

RMSE 

(CV) 

NN-01 0.08 0.09 108.72 177.65 3.09 4.26 

NN-02 0.07 0.08 117.30 127.32 3.17 3.75 

NN-03 0.03 0.05 220.15 174.11 4.48 4.96 

NN-04 0.04 0.06 85.07 137.42 5.79 5.58 

NN-05 0.31 0.42 100.46 202.54 5.10 4.59 
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Table 16 (cont’d). Performance of the neural networks for responsive kinetic 
shading 

ID 

ΔT (°C) ΔL(Lux) V (%) 

RMSE 

(Training) 

RMSE 

(CV) 

RMSE 

(Training) 

RMSE 

(CV) 

RMSE 

(Training) 

RMSE 

(CV) 

NN-06 0.32 0.44 47.99 77.07 2.94 5.69 

NN-07 0.10 0.14 99.27 134.11 2.89 4.93 

NN-08 0.06 0.09 268.50 381.63 3.12 5.15 

NN-09 0.09 0.12 179.67 277.30 2.86 4.64 

NN-10 0.02 0.03 10.74 13.92 4.69 4.89 

NN-11 0.05 0.06 62.32 96.64 3.07 5.64 

NN-12 0.07 0.11 351.41 451.16 4.48 4.49 

NN-13 0.29 0.37 49.61 72.09 3.42 4.80 

NN-14 0.03 0.04 63.71 95.01 3.86 4.77 

NN-15 0.15 0.19 404.90 744.74 6.57 4.79 

NN-16 0.16 0.22 84.35 137.00 3.32 5.04 

NN-17 0.02 0.03 15.07 10.20 3.13 3.91 

NN-18 0.04 0.05 62.81 94.55 5.34 4.31 

NN-19 0.04 0.06 109.34 166.63 4.66 5.41 

NN-20 0.11 0.15 691.99 780.94 4.05 5.60 

NN-21 0.19 0.26 411.94 520.35 3.25 6.38 

NN-22 0.16 0.22 296.06 464.95 4.28 5.13 

NN-23 0.11 0.15 386.04 485.67 3.02 5.18 

NN-24 0.19 0.27 279.17 487.76 4.34 4.27 

NN-25 0.08 0.10 97.80 146.79 4.38 5.60 

NN-26 0.36 0.53 84.30 131.36 3.30 4.42 

NN-27 0.24 0.33 347.25 387.87 3.28 4.51 

NN-28 0.03 0.04 131.68 187.61 3.38 7.09 

NN-29 0.11 0.15 53.22 73.48 4.56 5.99 

NN-30 0.14 0.19 295.58 531.87 3.05 5.06 

NN-31 0.11 0.14 469.29 654.62 4.01 4.19 

NN-32 0.06 0.08 76.25 106.18 3.01 5.05 

NN-33 0.21 0.27 382.91 768.77 2.81 4.94 

NN-34 0.14 0.17 106.98 155.75 2.89 5.30 

NN-35 0.16 0.20 415.13 632.68 3.21 5.33 

NN-36 0.05 0.08 425.33 509.40 4.95 6.17 

NN-37 0.10 0.14 469.56 707.46 4.76 5.37 
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Table 16 (cont’d). Performance of the neural networks for responsive kinetic 
shading 

ID 

ΔT (°C) ΔL(Lux) V(%) 

RMSE 

(Training) 

RMSE 

(CV) 

RMSE 

(Training) 

RMSE 

(CV) 

RMSE 

(Training) 

RMSE 

(CV) 

 
NN-38 0.16 0.21 76.17 111.30 3.39 5.04 

NN-39 0.11 0.12 258.92 392.58 3.84 5.79 

NN-40 0.21 0.36 355.21 564.56 4.74 4.91 

NN-41 0.13 0.19 88.83 136.89 5.02 5.13 

NN-42 0.11 0.13 329.78 770.06 3.28 6.51 

NN-43 0.11 0.14 92.21 144.46 3.15 5.47 

NN-44 0.03 0.04 109.27 138.94 3.17 4.30 

NN-45 0.15 0.20 82.58 147.22 3.24 5.09 

NN-46 0.35 0.44 29.93 50.98 4.45 5.21 

NN-47 0.11 0.13 477.74 659.09 4.62 4.83 

NN-48 0.08 0.07 157.08 246.23 3.01 6.47 

NN-49 0.07 0.07 226.39 355.04 3.09 5.36 

NN-50 0.07 0.08 193.45 286.04 3.04 5.16 

Table 17. Performance of the neural networks for static shading 

ID 

ΔT (°C) ΔL(Lux) V (%) 

RMSE 

(Training) 

RMSE 

(CV) 

RMSE 

(Training) 

RMSE 

(CV) 

RMSE 

(Training) 

RMSE 

(CV) 

NNs-01 0.10 0.14 72.35 105.35 3.04 3.85 

4.4. OPTIMIZATION OF SHADING CONTROL PARAMETERS 

Performance optimization process for both types of shading devices were performed 

as it was explained Section 3.4.5. Objective functions developed by training the related 

datasets, were used as surrogates for optimization process for both static and 

responsive-kinetic shading types. For the responsive-kinetic shading type, 50 

surrogate-based optimizations were performed for the three objectives, in order to find 

best-performing shading control parameters for the randomly sampled hours. On the 

other hand, the static shading was optimized by using objective functions that were 

developed on an annual basis. 
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At the end of the process, we obtained 50 sets of optimized decision variables for 50 

randomly selected daylight hours for the responsive shading and one set of optimized 

decision variables for the static shading. Each of the 51 decision variable sets is 

consisted of 100 optimized design alternatives. Samples of the optimized shading 

configurations for both type of shadings are displayed in Figure 17 and Figure 18.  

 
Figure 17. Visualizations of some optimized static shading configurations 
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Figure 18. Visualizations of some responsive kinetic shading configurations 

 

4.5. COMPARISON OF STATIC AND RESPONSIVE-KINETIC 

SHADING DEVICES 

One of the aims of the research was making a formal comparison of the performances 

between an annually optimized static shading device, and a kinetic shading device 
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whose movement was optimized on an hourly basis. So far, we obtained hourly 

performance values of the responsive shading and annual performance values of the 

static shading. For performing a comparison between the two types of shadings, it was 

required to find out how the annually optimized shading type performs at each of the 

hours. For this purpose the ANNs, developed for hourly objective functions, were used 

as predictive models. In order for making a prediction of hourly performances of the 

static shadings, the sets of decision variables that were obtained from the optimization 

process of the static shading device were used as inputs for the hourly predictive 

models. Thus, hourly performance values of the static shading device alternatives, 

which were actually optimized on an annual basis, were obtained. 

Finally, the comparison was performed between the means of the identical 

performance values that belong to the two types of shading systems for the randomly 

sampled daylight hours. The comparisons of the optimized-static and responsive-

kinetic shading devices with regard to performance criteria of temperature difference 

(ΔT), mean illuminance difference (ΔL) and percentage of view to outside (V) are 

reported in Figure 19, Figure 20 and Figure 21, respectively. The lower the ΔT and ΔL 

values the better, since the objective was minimizing these values. That is, the 

difference between the simulated performances and the threshold values of 23°C and 

500lx, respectively, should converge to zero. On the other hand, the third objective was 

maximizing view to outside (V) from the given point placed at the center of the indoor 

space. Therefore, higher V values are meaning a better performance for this objective. 
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Figure 19. Comparison of mean (ΔT) between static and responsive-kinetic shadings 
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Figure 20. Comparison of mean (ΔL) between static and responsive-kinetic shadings 
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Figure 21. Comparison of mean (V) between static and responsive-kinetic shadings 
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4.6. TEST OF HYPOTHESES  

In order to conduct a formal comparison among the performance criteria, we 

implemented Paired-T Tests. Initially, we hypothesized that responsive-kinetic shading 

device would outperform optimized static one for each of the three performance 

criteria. Three hypotheses were considered which were as follows: 

 H1 : ΔTR  -  ΔTS  ≤ 0 

 H2 :  ΔLR -  ΔLS ≤ 0 

 H3 :  VR   -  VS ≥ 0 

4.6.1. RESULTS FOR (ΔT) PERFORMANCE OBJECTIVE 

According to the paired t- test for ΔT criteria, there is not enough evidence to conclude 

that the mean of responsive-kinetic shading is less than static shading at the 0.05 level 

of significance (Table 18). The distribution of differences can see seen at Figure 22. 

Table 18. Pair t-test statistics for ΔT 

 N Mean St. Dev. SE Mean 

ΔTR 50 16,77 10,58 1,50 

ΔTS 50 16,60 10,61 1,50 

Difference 50 -0,1698 0,6237 0,0882 

mean difference = 0 (vs > 0):   t-Value = -1,93    P(t) = 0,970 

 

Figure 22. Distribution of differences for H1 : ΔTR  - ΔTS ≤ 0 
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4.6.2. RESULTS FOR (ΔL) PERFORMANCE OBJECTIVE 

Paired t-test for ΔL criteria suggests that at the 0.05 level of significance, we can 

conclude that the mean of responsive-kinetic shading is less than static shading (Table 

19). The distribution of differences can see seen on the histogram at Figure 23. 

Table 19. Pair t-test statistics for ΔL 

 N Mean St. Dev. SE Mean 

ΔLR 50 420 513 73 

ΔLS 50 1277 1696 240 

Difference 50 857 1474 208 

mean difference = 0 (vs > 0):     t-Value = 4.11                P(t) = 0.000 

 

Figure 23. Distribution of differences for H1 : ΔLR  - ΔLS ≤ 0 
 

4.6.3. RESULTS FOR (V) PERFORMANCE OBJECTIVE 

According to the results of the paired t-test for (V) objective, we can conclude that the 

mean of VR is significantly greater than the mean of VS. That is responsive-kinetic 

shading performs better than the static shading (Table 20, Figure 24). 
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Table 20. Pair t-test statistics for V 

 N Mean St. Dev. SE Mean 

VR 50 64.22 11.98 1.69 

VS 50 48.45 5.22 0.74 

Difference 50 15.76 12.77 1.81 

mean difference = 0 (vs > 0):     t-Value = 8.73                P(t) = 0.000 

 

Figure 24. Distribution of differences for H1 : VR  - VS ≥ 0 
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5CHAPTER FIVE 

DISCUSSION 

The current research initially introduced the aim of reducing computational costs of 

the performance-based investigation of responsive kinetic shading devices. We 

achieved this goal by integrating surrogate models to the design process. Prior to 

implementing surrogate-based optimization, several tests were conducted by using 

multi-criteria optimization method for the conceptual design of responsive shadings 

for arbitrarily selected daylight hours. In these tests, satisfactory solutions for a single 

hour of a year emerged only after a process that last for more than 24 hours. On the 

other hand, when utilizing surrogate models the computational costs reduced 

significantly. The investigation of the performance for the responsive kinetic shading 

device, at 50 randomly sampled daylight hours lasted for about 105 hours. The 

computer conducted most of the process in an automated fashion. 

The research established a novel framework for adequately exploring design 

alternatives and optimizing performance of control parameters of responsive-kinetic 

shading devices with respect to the proposed objectives. The urge for developing a 

framework stemmed from the absence of an efficient method for exploring and 

evaluating the performance of responsive-kinetic shading devices in the early design 

phases. Furthermore, a formal comparison of annually optimized static and hourly 

responsive-kinetic shading devices was presented. To our knowledge, there is no 

formal comparison in the literature between static and responsive-kinetic shadings 

whose performances are optimized with consideration of thermal, daylight and view 

objectives in the same design problem. 

Parametric design approach offers a great potential for investigating variations in 

design process. When coupled with performance simulation tools, the approach 

becomes even more powerful. Although the nature of performance-based parametric 

design approach is very suitable for kinetic design of façade components, after a 

comprehensive review of the literature, we had the opinion that there is a lack in 

utilizing the full potential of the approach in conceptual design of responsive-kinetic 
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shading devices. Some of the studies regarding the conceptual design of responsive-

kinetic shading devices in literature run short at utilizing these powerful techniques for 

their purpose, mainly because of technical inadequacies in dealing with the complexity 

of the problem at hand. Therefore, they needed to over-simplify the design problem. 

For instance, Kensek and Hansanuwat (2011), Nielsen et al. (2011), Du Montier et al., 

(2013), Lee et al. (2016) and Grobman et al., (2016) examined performances of the 

responsive kinetic shading devices with a limited number of shading control variations 

that they previously determined. Thus, they had better control over their investigations. 

What they found out was best performing alternatives within the set of limited options 

within the ranges. However, they would have a much broader design space to operate 

on, if they had enhanced the parametric approach with computation.  

In 2006, Beesley et al. anticipated the challenge for future researchers about how to 

explore design space of parametric models. Today, this challenge is still valid in the 

field of design research, more particularly in the conceptual design of responsive-

kinetic shading devices. In order to achieve a better exploration of design space, 

researchers have implemented computational problem-solving techniques in the 

design problems.  

Utilization of computational problem-solving techniques in the research of responsive 

kinetic shading systems is far from satisfactory. There are very few studies in the 

literature that made use of computational decision support techniques. El Sheikh and 

Gerber (2011) and Sharaidin et al. (2012) offered simulation-based optimization 

approaches for the design exploration of shading configurations, which would respond 

to dynamic conditions. They both used of a genetic algorithm for daylight performance 

exploration. However, they could only investigate limited number of weather 

conditions that they previously determined. This must have been due to the longer 

simulation times, which constitutes a bottleneck effect in the search process, and the 

nature of the search algorithm they used, which requires longer time for converging to 

satisfactory solutions. Furthermore, in another type of architectural design problem 

about daylighting, Wortmann et al. (2016) showed that surrogate-based optimization 

outperforms genetic algorithms.  

Using artificial neural networks as surrogate models offers a time-efficient way for 

performance assessment of shading systems. The reason for this is not just because 

surrogate-based optimization provides better results, but also the technique has a much 
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lower computational cost. Solutions can be obtained in a much faster manner. 

Therefore, surrogate-based optimization techniques can offer an even broader 

exploration potential in the conceptual design of responsive-kinetic shading devices. 

However, there is a gap in the literature about the use of surrogate-based optimization 

technique in the conceptual design of responsive-kinetic shading devices.  

The current research utilized a surrogate-based optimization technique for 

investigating performance of the proposed responsive-kinetic shading device. By 

doing this, we were able to explore the performance of the shading at the design hours 

in an efficient manner. Most notable, this is the first study to our knowledge that 

investigates thermal, daylight and view objectives in the same optimization problem 

for the conceptual design of responsive-kinetic shading devices. The approach that was 

used for this purpose consisted of the following main phases for each hour: 

1. Parameter initialization 

2. Database generation 

3. Neural network development 

4. Surrogate-based optimization  

Within the scope the research, we examined 50 daylight hours of a year. However, the 

method can easily be applied to all of the daylight hours over the course of a year. In 

this way, the annual performance of a responsive-kinetic shading device can be 

observed.  

Some studies in the literature, aimed at obtaining annual performance of the responsive 

shadings by using Useful Daylight Illuminance (UDI) metric (Hu and Oblina, 2011; 

Grobman et al., 2016). However, UDI is a metric to assess daylight performance on an 

annual basis. It is calculated by averaging the occurrence of daylight illuminance at 

each daylight hours within a year. In order to use this metric, one should have all of 

the illuminance values at each hour. The studies that presented annual reports with 

inadequate sampling are prone to big errors, since most of the weather conditions will 

be out of consideration. We believe that the performance of a kinetic shading device 

that can respond to environmental changes requires to be examined for each single 

time point, because of the dynamic character of weather conditions. For this reason, 

working with smaller time steps such as hours, seemed appropriate for our purpose. 

Therefore, such point in time performance metrics as illuminance and hourly air 
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temperature were employed for the dynamic metrics. Another performance metric that 

we used was the percentage of view to the outside, which is not a dynamic metric as 

the others. Reinhart et al. (2006) mentioned that view to outside consideration is less 

meaningful for movable shading devices, because it will lower itself to avoid glare. 

However, in an optimization problem that aims at maximizing view for psychological 

and physical well-being, this objective becomes an issue for trade-off. 

The second aim of the research was conducting a formal comparison of performances 

between optimized-static and responsive-kinetic shading devices in a controlled 

experiment. The performance criteria were examined for the responsive-kinetic 

shading and optimized static shading types at 50 randomly sampled daylight hours 

with this motivation. The means of the two conditions were compared to find out 

whether the responsive-kinetic option has a better contribution to the performance 

objectives. The same base was measured under the influence of two different 

conditions. With the paired t-test, mean differences between the dependent 

observations were compared if they are significantly different. The tests were 

conducted for each of the three performance objectives. 

The first performance objective function was minimization of ΔT. Therefore, we 

expected lower ΔT values for responsive-kinetic shading type. However, our findings 

suggested the opposite, that there was not enough evidence to conclude that the mean 

of responsive-kinetic shading is less than static shading at the 0.05 level of significance. 

We found out that the mean of ΔTR is 16.77 °C, while the mean of ΔTS is 16.60 °C. In 

an indoor space with a solely southern-exposure to the sun in Izmir climate, 

responsive-shading devices may not contribute to thermal comfort and energy 

efficiency better than an optimized static shading device. It is important to notice that 

we had other objective functions in the optimization problems for both observations. 

The function of view to outside maximization might have influenced this result, since 

it is an obviously conflicting objective in most of the weather conditions.  

The second performance objective function was minimization of ΔL, that is, the 

difference of simulated mean illuminance inside and the threshold value of 500 lx. As 

in the first objective we aimed at minimizing it in order to make the average daylight 

intensity as close to 500 lx as possible. In the comparison test for ΔL objective, we 

found that, the responsive-kinetic shading performs significantly better than optimized 

the static shading at the 0.05 level of significance. We found out that the mean of ΔLR 
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is 420 lx, while the mean of ΔLS is 1277 lx. The daylight performance of responsive-

kinetic shading is almost three times better than the optimized static shading according 

to the findings. However, it must be noticed that five of the paired differences were 

unusual, that is the difference between the pair is much more than the trend (see Figure 

20).  This situation contributed to the increase in the total mean difference. Nonetheless, 

we can be 95 % confident that the true mean difference is less than 507 lx and 90 % 

percent confident that it is between 507 and 1206 lx.  

The final objective function for the performance evaluation was percentage of view to 

outside (V). Maximization was intended for this function, therefore the more the V 

values, the better for our purpose. The findings suggest that the mean of VR and VS is 

64.2 and 48.4, respectively. As reported in the results, we can conclude that the mean 

of responsive-kinetic shading is significantly greater than the mean of optimized static 

shading at the 0.05 level of significance. We can be 95% confident that true mean 

difference is greater than 12.7, and 90% confident that it is between 12.7 and 18.7.  

In the experiment, three hypotheses were put forward, that were H1, H2 and H3. At each 

of these, it was hypothesized that the responsive-kinetic shading type would 

outperform the optimized static one. However, the results of Paired-T Tests showed 

that, while H2 and H3 are true, H1 is false. That is, while responsive kinetic shading 

outperformed optimized static with respect to daylight intensity and view to outside, 

there was no significant difference in the comparison of the impacts of the two types 

of shadings on indoor air temperature. The reason for this result may be related with 

the formulation of the experiment. The controlled experiment was designed for 

investigation of sole impact of sunlight on the interior environment. The solar beams 

has two diverse but related aspects, namely thermal and daylight. Heat energy cannot 

reflect but radiate. Both of the shading devices intercepted the heat energy of solar 

beams on the outside in a similar manner. However, daylight aspect of solar beams 

were managed much better by responsive kinetic shading type. Performance objective 

about view in the design problem statement, which is not a dynamic measure that 

conflicts with the other objectives, must have contributed to this situation.   

Our results provide compelling evidence in the comparison of the two types of shading 

devices with respect to the given performance objectives that are based on air 

temperature, illuminance and percentage of view. However, more experiments should 

be conducted in order to have a grasp of the true nature of the problem. Future work, 
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therefore, may be designed to evaluate temperature & view and daylight & view 

objectives paired with each other. 
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6CHAPTER SIX 

CONCLUSIONS 

The research examined the problem of exploring and evaluating the performance of 

responsive-kinetic shading devices, and comparing the performance with the 

optimized static version of the same shading system that uses identical shading control 

parameters. For this purpose, a framework was developed for aiding the decision-

making in a time-efficient way. The framework consisted of a computational workflow 

with several main phases. In the first phase, a database was generated by simulating 

and recording the input and output values of 500 examples in an automated manner 

for each of the 50 randomly selected daylight hours for responsive shading. For the 

static shading 500 random examples were generated over the course of a year. In the 

second step, artificial neural network models were developed by using the database. 

In the last step, the neural networks were used as surrogates for the multi-objective 

optimization process. The optimizations were run for 100 times for each case and 100th 

generations were extracted for further investigation. Thus obtained the optimized sets 

of input and output values for each of the 50 randomly sampled daylight hours 

(responsive) and a year (static). Using surrogate-based optimization approach in the 

workflow provided us to conduct a broader design exploration in a time-efficient 

manner. Most notably, this is the first study to our knowledge to investigate a multi-

dimensional design problem of responsive-kinetic shading devices by utilizing a 

surrogate-based optimization approach.   

The current study employed the proposed framework in an experimental case that was 

designed for comparing the performance of optimized static and responsive-kinetic 

shading types. It was hypothesized that responsive kinetic shading would outperform 

optimized static shading at all of the performance objectives. Hourly optimum 

responses for the kinetic shading were found by using hourly data in the surrogate 

models, which were used in the subsequent multi-objective optimization process. In 

order to optimize rotation angles for static shading, we made use of surrogate-based 

optimization technique again with the same objectives; but this time, it was based on 
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the data consisting of 500 random examples generated for the course of a year. Thus, 

we generated optimum decision variables for the static shading. However, for the 

comparison between the two types of shadings, it was required to find out hourly 

performance of the static type as well. For making the comparison with hourly 

responsive-kinetic shading device, we extracted 100th generation of optimized design 

variables (rotation angles) of the static shading, and used them as inputs to the 

predictive models that we had generated for the responsive-kinetic shading type. 

Because the neural networks already generated functions between the same input and 

output parameters, we would use these functions for predicting hourly performance of 

static shading. Thus, we obtained hourly performances of optimized set of static 

shading control variables. After having hourly performance values of both types of 

shading systems, we conducted hypothesis tests for each of the performance objectives.  

A surprising outcome of the comparative study was the result that the optimized static 

shading outperformed the responsive-kinetic one in the objective of ΔT (simulated air 

temperature – 23°C) with a small mean difference. In ΔL (simulated mean daylight 

intensity – 500 lx) and V (view to outside) objectives, the responsive-kinetic shading 

significantly outperformed the optimized-static shading. Thereby, we presented a 

novel approach for comparison of performances between optimized static and 

responsive kinetic shading devices in the conceptual design phase.  

The thesis examined conceptual design of shading devices from the perspective of 

solar control and comfort. It employed parametric modeling and simulation engines 

for quantifying the performance of the two types of exterior shading devices. The 

impact of the two examples on a hypothetical indoor space was observed for 50 

randomly sampled daylight hours in a year. The study presented an approach for hourly 

comparison for the sampled hours. In order to drive an annual inference, all of the 

weather conditions in daylight hours should be examined. For the study, structural 

aspects were neglected. Influence of wind on shading devices were out of the scope of 

the thesis. The proposed framework was tested by using EnergyPlus weather data 

(EPW) of Izmir, Turkey. However, it can easily applied for diverse climates by using 

related EPW files. 

In the future works, the relationships between weather conditions, design variables and 

performance objectives should further be examined. Certain weather parameters, such 

as global illuminance, global radiation, are required to be extracted from the weather 
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file and match with the design and response parameters, to picture the relationships 

between them. Along with that, ANN models may be developed for various weather 

scenarios. Therefore, the problem will not be dependent on time parameter and 

responsive-kinetic shading device will not need to be optimized on the time basis; but 

it will be based on the response to various environmental conditions. In addition, 

optimization may be run with hard constraints, and with fewer objectives. Most 

importantly, physical prototypes may be developed in order to validate the results. 

Real-time prediction and optimization for the prototype is on the agenda as well. 
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