
YAŞAR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MASTER/PHD THESIS

SOFTWARE DEFINED

IMPLEMENTATION OF CYBER ATTACK

DETECTION AND PREVENTION

MERT CAN KILIC

THESIS ADVISOR: ASST. PROF. IBRAHIM ZINCIR

COMPUTER ENGINEERING

PRESENTATION DATE: 10.11.2017

BORNOVA / İZMİR
December 2017

ii

iv

ABSTRACT

SOFTWARE DEFINED IMPLEMENTATION OF CYBER

ATTACK DETECTION AND PREVENTION

Kilic, Mert Can

Msc, Computer Engineering

Advisor: Assist.Prof. Ibrahim Zincir, Ph.D.

December 2017

Computer networks and computational communication technologies have been

improving very fast since the first connection was established between two

computers by ARPANET in 1969. The daily routines are becoming digitalized

day by day. This transformation provides easiness, but at the same time it

causes some security problems. The security mechanisms such as authentication,

authorization and recognition that a human brain can automatically execute, can

be manipulated in digital environments. The people who have the motivation for

stealing information, profiting in illegal ways, blackmailing and so on, use a lot of

manipulative methods by making use of computer networks and the systems that

are based on these networks. These methods are changing and being updated

very rapidly, so it is very difficult to detect and prevent that kind of attacks.

Even the new generation tools that have current electronic control mechanisms

can be exposed to that kind of attacks, so that it is known that this may cause

crucial destructions including death.

The security experts who provide service for defending systems against these

complicated and sophisticated attacks, may be unaware and uninformed about

the security flaws that are being used by the people who have the criminal

v

motivations. The penetration tests that are being conducted periodically, are

mostly for the revealed security flaws. Namely, the security flows are updated

more frequently than the penetration tests.

The systems that are not maintained or operated by the qualified security experts

are very open to the old-fashioned attacks, and these poorly maintained systems

are avoiding the costs of the sophisticated detection and prevention software.

The main goal of this work is to use a x86 based embedded system which hosts a

customized Linux based operating system with the dynamic analysis of the both

remotely and locally gathered/enumerated logs as well as implementing network

security functionalities of the conventional network equipments provide. Thus

allowing to gather and analyze information about the local or remote network

resulting automated reporting for the IT administrators.

vi

ÖZ

SIBER SALDIRI TESPIT ETME VE ONLEME YAZILIM

UYGULAMASI

Kilic, Mert Can

Yüksek Lisans Tezi, Bilgisayar Mühendisliği

Danışman: Yrd.Doç.Dr. Ibrahim Zincir

Aralik 2017

Bilgisayar ağları ve sayısal haberleşme teknolojileri, ilk bilgisayarlar arası

bağlantının 1969 yılında ARPANET ile başlamasından bu yana çok hızlı bir

şekilde gelişmeye devam etmekte. Bir kaç yıl önce toplumun hayatında

karşılaştığı veya bazı rutin işleri halledebilmek adına izlediği genel işler

günbegün değişmekte ve farklı formlara bürünerek hayatları sayısal ortama

taşımaktadır. Bu gelişme veya dönüşüm beraberinde kolaylıkların yanı

sıra bir çok güvenlik problemi getirmektedir. Fiziksel dünyada insan

beyni, diğer duyu organlarından aldığı ve işlediği görüntü, ses vb girdilerle

doğrulama, hatırlama ve yetkilendirme mekanizmalarını kullanmaktayken, bu

mekanizmaların yanıltılabileceği ve manipüle edilebileceği sayısal ortamda benzeri

doğrulamaları sağlamak güçleşmekte. Finansal çıkar, bilgi çalmak, şantaj yapmak

ve benzeri motivasyonu olan kimseler, bu tarz manipülatif yöntemleri hem

bilişim ağlarında hem de bu ağlar üzerinden sağlanan hizmetlere uyarlamak için

çalışmaktalar. Fark edilme sürecine kadar yeni sürümleri geliştirilen karmaşık

saldırıları tespit etmek çok zorlu bir işlem olduğu gibi, daha sınırları belli

olmayan muhtemel saldırılara karşı önlem almak, sonsuz büyüklükteki bir olasılık

kümesindeki tüm çıktılara karşı genel geçer bir yöntem bulmak kadar zordur.

Güncel ve elektronik kontrol mekanizmasına sahip yeni nesil bir araç dahi bu tarz

vii

saldırılara maruz kalabildiği gibi sonucu ölüme varan büyük yıkımlara sebebiyet

verebileceği bilinmektedir.

Bu denli karışık ve kademeli saldırılara karşı profesyonel olarak destek veren

güvenlik uzmanları, ana gayesi kriminal amaçlar veya haksız kazanç sağlamak

olan kimselerin güncel olarak kullandığı ve istismar ettiği güvenlik zaafiyetlerine

karşı habersiz ve bilgisiz olabilmektedir. Belirli aralıklarla uygulanan penetrasyon

testleri, çoğunlukla kullanılması bırakılmış veya ifşa olmuş saldırı vektörlerine

karşı önlem alma amacıyla yapılmaktadır. Günlük mertebede güncellenen

bu saldırı vektörlerinin hedefinde bir şirket veya kuruluşun yer alması, bir

sonraki olağan zaafiyet testine kadar güvenli olarak kabul edilmesi algısını

ortadan kaldırmaktadır. Bu güvenlik zaafiyetlerinin büyük hasarlar verdiği

bir çok örnek ve haber çıkmasına rağmen aylar sonra dahi hala aynı zaafiyeti

taşıyan sistem ve ağlar bulunabilmektedir. Özellikle bu saldırı tekniğinin sahibi

bilgisayar korsanları tarafından paylaşılması üzerine çok daha az teknik bilgiye

sahip kimseler, basitçe aynı saldırıyı kendi iç bilgiye sahip oldukları daha

ufak ve zaafiyete sahip sistemlere yüksek başarı oranıyla uygulayabilmektedir.

Bünyesinde yeterli nitelikte güvenlik uzmanı bulundurmayan sistemler, bir çok

geçmiş saldırıya açık kaldığı gibi, sofistike güvenlik cihazlarının işletimsel ve

güncelleme maliyetlerinden kaçınmaktadırlar.

Bu tezin amacı, özelleştirilmiş tek bir x86 tabanlı gömülü sistem üzerine,

özel derlenmiş ve yazılımsal işlevsellikler eklenmiş bir Linux tabanlı işletim

sistemi kurarak, otonom ve kompleks ilişkilendirmeler kurabilen bir çözümü

denemektir. Geleneksel tüm ağ ve güvenlik işlemlerinin yazılımsal ve işletim

sistemi katmanında kontrol edildiği bu çözümde aynı zamanda savunma odaklı

ve katı bir güvenlik algısından yana saldırgan ve dış ağa bilinçli olarak zayıf

gösterilen sistemler sayesinde olası saldırganları tespit etme ve bilgi toplama

işlemleri yapılmaktadır.

viii

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my advisor Ibrahim Zincir for

all his support and patience during this research project. He has been guiding me

towards the goals that I am willing to achieve. His encouragment and his faith

in this research always inspired and motivated me to pursue even in the most

challenging parts of my projects.

Special thanks to Graeme Hanssen for his mentorship and his enormous design

experience that definetly helped me a lot to overcome many challenges that I

have faced throughout my journey. He spent his time, effort and assets both

personally and his GO Mechatronics Company.

I would like to thank Yasar University Scientific Research Project comittee those

who not only supported my financial and infrastructrual needs, also provided me

with great feedback and brainstorming during the hardware board development

phase.

Many thanks to Minerva Business Incubation Center for providing me my

infrastructrual needs in order to conduct my research and experiments as well as

introducing me with many business professionals allowing me to get very valuable

feedback. I would also like to thank Gediz Electric Inc. for allowing me to test

my research on a live infrastructure as well as providing professional feedback

that helped me to improve some functionalities.

I thank my parents who always supported and motivated me for my goals. They

were always eager to ease out the overwhelming effort that I have been putting.

My friends and colleagues, Burak Kaymaz, Cenk Ozdag, Mecit Selek and Ilter

Yuksel played a huge part in my research with their invaluable contributions, with

ix

their amazing ideas. They never gave up or rejected my brainstorming requests. I

would like to specially thank Gamze Orhon for her guidance and amazing support

during my work.

Many thanks to Offensive Security Inc., creators of Kali-Linux. Their ”OffSec

Philosophy” and ”Try Harder” motto always gave me strength and their vision

allowed me to improvise new approaches towards my goals.

Last but not least, I thank to all anonymous open-source software developers and

their great projects that allowed me to improve my methodologies and techniques.

Those who are free in the mind, as in free-software. Their modesty is a fine

example for those who still believe in individualism and greed.

Mert Can Kilic

İzmir, 2017

x

xii

TABLE OF CONTENTS

FRONT MATTER i

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGEMENTS . ix

TEXT OF OATH . xi

LIST OF FIGURES . xv

LIST OF TABLES . xvii

1 INTRODUCTION 1

1.1 PROBLEM CONTEXT . 2

1.2 THESIS STATEMENT . 3

1.3 ROADMAP . 4

2 TECHNICAL BACKGROUND 7

2.1 COMPUTER NETWORKS CONCEPTS 7

2.2 HARDWARE . 9

2.3 CYBER SECURITY ASPECT 12

3 IMPLEMENTATION 17

3.1 HARDWARE IMPLEMENTATION 18

3.1.1 x86 Architecture For Unified Security Management 21

3.2 SOFTWARE IMPLEMENTATION 22

3.2.1 Operating System Installed On The Prototype 23

3.2.2 S.M.A.R.T . 27

xiii

3.3 ACTIVE PENETRATION TEST BY THE S.M.A.R.T 37

3.4 MERGING THE FUNCTIONALITIES 39

4 EVALUATION 43

4.1 TEST ENVIRONMENT . 43

4.2 STRESS TESTING . 45

4.3 MOBILE SMART TESTER . 45

4.4 COMPARISON . 46

4.5 FEATURE COMPARISON . 47

5 CONCLUSION 49

REFERENCES 52

References . 52

APPENDIX A 56

xiv

LIST OF FIGURES

2.1 ASIC Network Switch’s Mainboard 10

2.2 Conceptual Distributed Denial of Service Scenario 13

3.1 Intel R©PCI-E 1Gb 82583v Specifications 18

3.2 Hardware Platform From Front Port Side 19

3.3 Hardware Platform From Backpane Side 20

3.4 Hardware Platform From Top Interior View 20

3.5 Temperature Airflow Change for the Fans 28

3.6 Flowchart of the Honeypot Sequence 29

3.7 TCP 8085 Honeypot Manual Deployment 30

3.8 Local Interface IP Address . 31

3.9 RAW TCP netcat connection on 8085 Port 31

3.10 Contents of a log file . 31

3.11 Honeypot SSH TCP/22 Example From WAN 32

3.12 Honeypot SSH Manual Deployement 32

3.13 Output of the Terminal App . 33

3.14 Contents of the honeypot’s log file 33

3.15 Raw Netcat TCP connection to listening Loopback Interface . . . 34

3.16 Contents of the Log file after local Malicious connection attempt . 34

3.17 Override the Permanent MAC Address 34

3.18 Customized OpenWRT console connection 38

3.19 Web Interface of smartWRT . 39

3.20 S.M.A.R.T’s Topological Position 40

xv

4.1 Network Cabin Installation of the Platform 44

4.2 Overall Network Cabin Setup . 44

4.3 12x Raspberry Pi 2/3 Traffic Generator Nodes 46

4.4 Raspberry Pi 3 with External Wireless Adapters and a GPS module 46

xvi

LIST OF TABLES

3.1 Hardware Specifications . 21

4.1 Performance and Feature Table. 48

xvii

xviii

CHAPTER 1

INTRODUCTION

Computer networks and digital communication technologies has been advancing

rapidly ever since the first computer-to-computer link was established by the

ARPANET (Advanced Research Projects Agency Network)(Lukasik, 2010) back

in 1969. This advancement has been so fast throughout the years, it is nearly

impossible to avoid or ignore interaction with any form of inter-connected

device during daily lives. post-offices, local stores and even banks evolved into

digitally available and accessible services regardless of the Geo-location on Earth.

Conventional daily chores, duties and even jobs are and has been transforming

into an ”E-” form. Nowadays finding new friends, enrolling a new course or even

sports are transformed into E-Friends, E-Course and E-Sports. Shopping from a

local store considered to be more time consuming than ordering them off of an

online store and often called old-fashioned.

Back in days, special memories were kept in private until they are shared with

legitimate visitors or friends. Nowadays countless visual and written content

and personal information are uploaded to the online world. Precious bank

accounts and credit cards details are traveling back and forth on the realm of

inter-connected computers. Thus causing major privacy and security breaches

daily while easing out the daily lives of individuals and businesses. Regardless

of the motivation, malicious activities targeting corporations, individuals and

governments are and always been a major issue ever since the Internet became

available. This is not only causing massive privacy leaks or unauthorized financial

transactions, there has been recorded countless security breach incidents on major

companies that some lead to their collapse.

1

Even though individuals’ privacy is constantly under a threat on the Internet,

digital security breaches on the corporations and critical infrastructures are

effecting masses and their security as well. Conventional cyber-security

approaches have never been sufficient enough to stop these malicious activities

once and for all since new features are constantly being developed. Every

new feature or an implementation may prevent older malicious techniques, but

also potentially bears new and undetected attack methodologies and techniques,

considered to be a ”new challenge” in cyber criminals realm. Solutions like bug

bounty programs and internal tests of the developed software are not adequate

enough to pin point every possible security flaw on a system, yet most of the

testers are conducting these tests from an engineering point of view where

malicious attackers are abusing even the smallest unturned stones that are either

ignored or never even thought about.

All in all, controversial total attack proof systems and discovered or abused

security flaws on a daily basis are highly dynamic and quite unpredictable.

Major corporations and many critical infrastructures that have any form of inter-

connection such as SCADA systems, are being constantly monitored and patched

for recently discovered security flaws by their security experts. On the other

hand small to medium enterprises are the ones that heavily rely on conventional

security equipment on their networks such as Firewalls, Mitigators, Spam Filters

which are proven to be inadequate in this era where nearly everything is online.

1.1 PROBLEM CONTEXT

Identification procedure of the possible security or implementation flaws on a

network is called Penetration testing. These tests are both performed by internal

IT experts as well as qualified cyber security experts on monthly, quarterly or

yearly basis. Despite the fact that these tests are either overwhelmingly detailed

or in a quick regular check form, security experts are aware of that these tests are

2

designed to prevent well known attacks or to improve previous implementations

that might cause security flaws. Constantly found brand new attack vectors also

known as Zero Days are the biggest threat to nearly all digital entities. Since its

impossible to foresee where and when the next zero-day will emerge, most of these

attack vectors are announced publicly after the attackers took advantage of it or

their technique is discovered by security experts. Thus also points out clearly that

penetration tests and conventional security equipment are not sufficient enough

to protect systems that are not monitored constantly (Bellovin, 1989).

IT Security experts, often called White-Hat hackers, are playing an important role

in analysis and detection of the system logs populated by the network devices.

Most malicious attack techniques are based on manipulation of the legitimate

connection or authorized actions. Conventional network security devices are

not capable of making predictions or analyzing obfuscated data leaks but they

can be considered as just regulators on a system that are enforcing predefined

rules depending on the setup. IT Security experts collect and correlate different

information from various sources in order to prevent or identify possible attacks

and the potential owner of the on-going or prior malicious attack.

Because of the IT security experts are not sharing the same knowledge

background, their professional precautions and methodologies also vary.

Especially against the malicious attackers who are only concerned about to find

a way into their target system with their extremely sophisticated techniques, it is

nearly impossible to protect a system without knowing where the next flaw will

emerge (Portokalidis, Slowinska, & Bos, 2006).

1.2 THESIS STATEMENT

Rapidly increasing computational and functional needs for conventional security

entities, such as Firewall, Mitigator, Sandbox and IPS/IDS, Small-Medium

3

enterprises are not only avoiding to use some of these equipment also extending

the penetration tests frequency in order to reduce operational and upgrade

budgets.

Aim of this work is to overcome some of the problems that are defined previously.

By utilizing technologies and concepts such as Network Function Virtualization

and Software Defined Networking as well as an Offensive-Security approach is

to reduce the hardware and vendor dependency while adding basic penetration

testing check lists that are automatically performed and periodically updated for

the new security flaws that are discovered.

Not only maintaining basic network functionalities from a single hardware or

performing predefined penetration tests, more offensive procedures are aimed to

be pursued in order to achieve high-availability of the services that are behind.

Offensive approach involves adding new software functionalities for the hardware

platform so that it impersonates a malicious attacker both within the local

network as well as outbound connections. By the help of this approach, it

is possible to prevent possible security flaws that may not been discovered or

detected before.

1.3 ROADMAP

In this thesis there are 5 chapters starting with this chapter accompanied by

additional appendix where scripts, outputs and other referenced outcomes are

located.

Structure is as follows:

• Chapter 2 - Background provides some key concepts and technologies

that are required to assemble pieces of their corresponding part/parts

related with the thesis.

4

• Chapter 3 - Implementation contains the actual step by step process

for building a customized Linux distribution as well as the hardware

specifications of the base device that is used as a hardware platform in

order to meet specified functionalities and needs.

• Chapter 4 - Testing includes various test scenarios and their

corresponding results.

• Chapter 5 - Conclusion embodies the actual usability by comparing

security products and solutions that are on the market. As to prove and

analyze the outcome of this work, evaluation in technical aspect and in

financial point of view is provided within.

5

6

CHAPTER 2

TECHNICAL BACKGROUND

This chapter includes background information that is necessary to correlate and

explain the approach that is being pursued in the following chapters. Sections

are there to explain their basic definition and related roles in this thesis. Some

concepts that are located below are not fully covered in detail but after defining

their key role to the reader, it’s relation with this approach is presented.

2.1 COMPUTER NETWORKS CONCEPTS

Software defined networks, network function virtualization and soft-networking

are commonly misunderstood and confuse even professionals today. Many

commercial applications that are available out on the market are utilizing more

then one of these technologies as a foundation, but still there are not many strict

boundaries that differentiates each other because of the emerging and constantly

expanding application areas and new features.

There are variety of Software Defined Networking implementations and usage

areas that are currently in use on live-Networks such as load-balancers, Virtual

Hosts, Traffic generators and many others. But since there are nearly no

boundaries of the Software Defined Network implementations, Unified Security

Manager can be considered as the parent category and the most simple definition

that is given by SDN implementation (Hollabaugh, 2002).

Software Defined Network (SDN)

Software defined networking is the concept that allows administrators to be able

to deploy, initialize and program network functionalities as needed in a flexible

7

manner. Legacy devices are not capable of achieving such tasks since they are

mostly based on ASICs which is defined in 2.2 with re programmable FPGA1 or

NVRAM2 (Han, Gopalakrishnan, Ji, & Lee, 2015).

In the scope of this thesis, Software defined networking concept is deployed in

the Operating system by regulating network flows and rules within the O/S that

is explained in section 3.2.1. By utilizing network interface configuration and

manipulation tools that are available for *NIX based operating systems such

as iptables and ifconfig, achieving software defined networking features in

operating system shell layer became possible with shell scripting (Williams &

Bergmann, 2004).

Virtualization

Virtualization is a concept of utilizing same hardware for sharing multiple

operating systems or applications. Virtualization concept emerged from the

need of allowing mainframes to run multiple applications simultaneously. Before

the virtualization technology, commercial server system utilization considered to

be mostly slack operation. Both commercial and open-source solutions allows

running multiple operating system simultaneously. In the subsequent parts of

this thesis the term ”Host” is used to describe actual hardware that runs virtual

applications or operating systems. Where as the term ”Guest” is to describe

virtual application or operating system that runs on a specific host (Pfaff et al.,

2009).

Apart from the dedicated conventional network equipments, x86 based generic

computing unit is used to utilize different virtual guest operating systems that

is used for various applications like sandboxing incoming executable files and for

small server instances of SMB/NFS (Joshi & Benson, 2016).

1Field Programmable Gate Array
2Non-Volitalie Random Access Memory

8

Network Function Virtualization (NFV)

Network Function Virtualization, known as ”NFV” is the concept that utilizes

hardware virtualization technologies and concepts; in order to virtualize network

nodes in a system that are capable of connecting simultaneously to any other

network node despite the fact that they reside in the same host device or

share same network interfaces (Joshi & Benson, 2016). Leading network

device manufacturers and service providers are providing licenses for well known

embedded O/S and commercially available security solutions that can be deployed

in seconds to a generic hardware board. Those embedded O/S was once can only

be used within its governed company devices. By the help of network function

virtualization, one generic embedded board or a network device can be switched

into full-stack security solution within minutes. By eliminating the need to

update and develop prior devices, a sandbox device with all necessary peripherals

allows manufacturers to only provide licensing and subscription services by

allowing customer to pick variety of generic boards for various computational and

performance needs (Bugnion, Devine, Rosenblum, Sugerman, & Wang, 2012).

Hardware implementation and technical specifications can be found in appendix

section. This generic embedded platform is where network function virtualization

is applied. Number of network interface cards, persistent storage unit, central

processing unit and random access memory are crucial for determining hardware

limitations that can be used for different NFVs (Martins et al., 2014) (Mijumbi

et al., 2016) (Han et al., 2015) (Pfaff et al., 2009).

2.2 HARDWARE

Hardware portion of this research aims to establish a standardized system

configuration on the host board that will be used to run software implementations

that are covered in chapter 3. Regarding this hardware, key concepts and elements

9

are described in the following sections.

Application Specific Integrated Circuit (ASIC)

Application Specific Integrated Circuits also referred as ASICs are designed to

accomplish certain tasks rather than general usage. ASICs are designed to achieve

a certain task with maximum efficiency (Einspruch, 2012).

Network Interface cards on the hardware board are ASICs. They are to encode

and decode the digital transmission in a very strict fashion. Error correction and

data de-capsulation is achieved by a processing unit(Lee et al., 2004).

Figure 2.1: ASIC Network Switch’s Mainboard

Conventional network devices that are build by ASICs are task specific and

capable of performing limited array of actions. By the time that computer central

processing units were not capable of achieving virtualization and simultaneous

tasks, ASIC boards considered to be the only feasible solution. But in order to

achieve aims of this research, general purpose central processing capabilities are

10

required. Regular x86/64 personal computer is a fine example to point out the

difference between ASICs and CPU operations.

Field Programmable Gate Array (FPGA)

FPGA consists of various size of inter-connected programmable logic blocks that

can be customize in order to achieve certain tasks. These array of logic blocks

can be configured by various combinations by the help of hardware description

language also known as HDL (Baker, Asami, Deprit, Ousterhout, & Seltzer,

1992).

Non-Volatile Random Access Memory (NVRAM)

Non-Volatile Random Access Memories main feature is that NVRAM retains its

contents even after power off or system halt. Some examples are included but

not limited to EEPROM and flash memory. Its also known as persistent data

medium. (Baker et al., 1992)

Unified Security Management (USM)

Unified Security Management is an overall solution to handle multiple security

features such as firewall, Sandbox and IPS/IDS all in one. By the help of network

function virtualization USM devices are mostly preferred to reduce MTBF3 and

operational cost of managing different devices in a network (Agham, 2016).

Since the main goal is to provide all in one security solution on a single device

with external update and self penetration testing capabilities, Unified Security

Management and it’s inherited features is the key concept and definition for this

work (Ericsson, 2010).

3Mean Time Between Failure

11

2.3 CYBER SECURITY ASPECT

In this section, frequently used and referred cyber security definitions are

presented. Categories and the effects of these defined attack are provided.

Concepts such as enumeration includes countless techniques as well as their

combination with other attack vectors are nearly impossible to predict and

will vary for each scenario. More refined attack prevention methodologies and

definitions can be located in Chapter 3 (Neuman, 2009) (Liu, Xiao, Li, Liang, &

Chen, 2012) (Ramim & Levy, 2006).

Denial Of Service (DoS)

Denial-Of-Service also known as ”DoS” is a cyber attack concept that is based on

flooding the server side with illegitimate requests. This allows attackers to disrupt

the victim’s target services, such as Web Request or API4 Communications (Senie

& Ferguson, 1998).

Denial of service attacks are unpredictable and they vary on the magnitude of

the attack. Precautions are based on the monitored data of the given network

by analyzing the legitimate network traffic as well as high and low ends of the

network. By the help of this boundaries, any extreme connection attempt or

excessive drop packages compared to normal values can be considered as malicious

and interrupted. But without knowing the extreme values, TCP/IP connections

are flagged as safe and legitimate, therefore understanding an incoming denial of

service attack can be challenging (Martin, 2008).

Distributed Denial of Service (DDoS)

Distributed Denial of Service often known as DDoS, is another form of Denial of

Service attacks that is designed to conduct Denial of Service attack by multiple

clients that are distributed over the network or networks in order to flood target

4Application Programming Interface

12

system or service. Main characteristic of DDoS attack is that most of the workers

or zombies5 are distributed over the networks in a fashion that they all have

different global IP addresses and different network bandwidths. Thus it becomes

much harder for network administrators to differentiate legit connections from

malicious connection requests (Batsell, Rao, & Shankar, 2005). Conceptual of a

distributed Denial Of Service attack topology is as shown in Figure 2.2.

Figure 2.2: Conceptual Distributed Denial of Service Scenario

In Figure 2.2, Slave computer nodes also known as Zombies which are basically

compromised network devices that are commanded by the attacker, in order to

flood target server by utilizing their different network throughput capabilities.

There are various methods to conduct denial of service attacks. All these methods

can be considered in two different kinds.

• Connection Oriented; The attack occurs once a connection between server

and client has been established under certain standard protocols such as

TCP/IP.

• Connectionless; To conduct the attack, fully established and ensured

connection is not necessary. In this type of attacks, attacker floods the

5Nodes that are intentionally or unintentionally contributing to DDoS Attack

13

traffic regardless of its transmission status. UDP protocol is a fine example

for this type of attacks.

Dividing DDoS attacks into two high level categories from network point of view is

not enough to draw the big picture. There are also three different main categories

where these type of attacks can be identified from Cyber-Security point of view.

• Application Layer (OSI Layer 7) Attacks are mostly connection based

depending on the target application that is being used. The purpose of

the application layer attacks is to monopolize or dominate target service

by establishing low traffic rate and mostly legitimate connections without

actually utilizing the service thus exhausting the targeted service or server.

• TCP State Exhaustion attacks are performed to abuse and disrupt limited

TCP connection states that can be handled by the target. Therefore any

extra TCP connection attempts that is generated as a legitimate connection

will be queued until target device can reply/handle more TCP slots.

• Volumetric Attacks also known as ”flooding” are generating massive loads

of connectionless traffic causing saturation of the traffic or the bandwidth.

(Bellovin, 1989)

Enumeration (Information Gathering)

Enumeration is the process of gathering as much information as possible

about a system in order to conduct more effective penetration testing process.

Enumeration is the key for all cyber-analysis whether intention is offensive or

defensive. In Cyber Security discipline its well known that success rate of a

malicious attack highly depends on how much information is out there and can be

gathered about victim system or company without alerting the target (Martin,

2008). Enumeration also refereed as Information Gathering. Three types of

information gathering or enumeration phases are as follows;

14

Active Information Gathering Active information gathering is the process

of collecting as much information as possible about target. Active information

gathering process includes but not limited to DNS Enumeration, Port Scanning6,

active host scanning7 and vulnerability scanning (Jibao, Huiqiang, & Liang, 2006)

(Xi, Jin, Yun, & Zhang, 2011).

Key distinction of Active Information Gathering then other enumeration

categories is active information gatherings are potentially detectable and/or

traceable. Phone calls, security cameras, firewall logs are always there to conduct

counter correlation attack to figure out the details about the origin (Yin, Yurcik,

& Slagell, 2005).

Passive Information Gathering Passive Information gathering considered as

any act of collecting information about a target without communicating directly

with the target. Whois8, background check and public company information are

some examples of Passive information gathering.

Open Source Intelligence (OSI) Open Source Intelligence often known

as OSI can be considered a subsection of Passive Information Gathering.

OSI mainly involves gathering publicly available information about a target

organization. Attackers tend to browse target organization’s website, look for

organizations economical activities, identify structure of the organization and

contact information in that organization.

6Scanning all 65535 or a subsection of TCP-IP Ports on target to identify running services
or weaknesses

7Identifying live host IP addresses on a network
8Process of checking publicly announced information about a domain name to gather

information like Registration contact, Name Server address and administrative contacts.

15

Exploitation

Any action that enforces another application to misbehave in a way that target

application malfunctions as attacker is configured to be. Thus abusing behavior

of the victim application to accomplish certain task such as remote shell, local

file inclusion or buffer overflow attacks (Portokalidis et al., 2006).

Cyberspace

Cyberspace considered as the online world of computer networks that includes all

interconnected peers as well as the area where all events takes place within those

interconnected nodes (Benedikt, 1991).

Zero-Day / 0Day

Zero Day is a technical term that is used to describe cyber attacks that are

not yet been used before and/or has not been detected before. Zero Days are

usually appear in exploitation format rather than a new technique (Syversen,

2006)(Alazab, Venkatraman, Watters, & Alazab, 2011).

16

CHAPTER 3

IMPLEMENTATION

Computer networks and network security is not a brand new subject yet concepts

that are covered in Chapter 2 can be considered as new approaches to overcome

the current limitations and drawbacks within these fields. Motivation of this

research is to combine these technologies that are described in Chapter 2 and

orchestrate them on a *NIX based operating system that is custom build with

script-hooks. As described ASICs are capable of performing predefined set of

functions whereas *NIX based O/S and its Sandbox nature allows to mimic these

functionalities.

In this chapter, both hardware and software implementations and their

corresponding details are described. The procedures that are followed in

this chapter aims to build a sufficient hardware platform in order to meet

SDN and Virtualization needs as well as additional I/O devices that can be

utilized for different tasks. Since the base hardware platform is a generic x86

architecture, controlling necessary hardware assets within the operating system

became possible. Therefore hardware implementation of this work is to extend

I/O interaction for both hardware interfaces and the software interrupts. Building

the customized O/S for the related or preferred architecture is to utilize the

hardware more effectively compared to a pre-compiled known O/S.

Software implementation phase not only consists of the operating system

customization and building but also implementation and usage of the coded

functionalities that is covered in this thesis.

As mentioned in Chapter 2, possible features or functionalities that can be

17

implemented on the custom USM devices, behaviors such as port scanning,

vulnerability analysis and honeypot deployment are also implemented which are

considered to be offensive actions in cyber security point of view.

3.1 HARDWARE IMPLEMENTATION

The hardware platform that is used in this research is a customized x86 embedded

board with multiple integrated NICs, Fiber Optic SFP slots, integrated SIM

Slot and every other regular personal computer peripheral I/O such as SATA

connection and USB ports etc.

The board is designed as a Yasar University Scientific Research Project 014 and

manufactured in Shenzen.China. Base platform utilizes an Intel R©Atom D525

Dual Core 4 Threads 1.8 Ghz Processor as the central processing unit. 8 GB of

DDR3 RAM and six different embedded 100/1000 Mbps IEEE 802.3 Ethernet

NICs.1. Detailed specifications regarding the NICs can be seen in Figure 3.1

Figure 3.1: Intel R©PCI-E 1Gb 82583v Specifications

Necessity of designing a customized embedded board is to implement SDN based

1https://www.intel.com/content/www/us/en/embedded/products/networking/82583v-
gbe-controller-datasheet.html

18

security solution was emerged by the hardware limitations of regular PCs. End

user network interface cards are usually designed to accelerate certain amount of

sockets at a time, whereas in scope of this project, NICs must be able to handle

server grade sockets and connections simultaneously.

There are many alternative out-of-box embedded boards for many other special

needs and application areas that could have been used as a computational base

platform. Both ensuring hardware reliability of the embedded design of the

scientific project, and manipulating the embedded board interrupt addresses more

freely, the board was gathered from well known integrated circuit groups.

North Bridge and the South Bridge of the embedded board were already in

wide use in other embedded designs and proven to be much more flexible and

compatible with other peripherals. Designing an VLSI embedded SoC2 from

ground up is beyond the scope of both SRP014 project as well as this research

therefore utilizing south-bridge GPIO3 pins for extra peripherals such as NICs

and GSM 900/1800 module is pursued.

Figure 3.2: Hardware Platform From Front Port Side

2System on a Chip
3General Purpose Input Output

19

Input/Output ports are located on front side panel as shown in Figure 3.2.

Console port is in the left hand side of the front panel. Cooling fans and PDU

power socket is shown in Figure 3.3.

Figure 3.3: Hardware Platform From Backpane Side

Figure 3.4: Hardware Platform From Top Interior View

Contents of the Operating system are deployed in the Compact Flash card that

is shown in the Figure 3.4. Available SATA ports on the board also utilized

for cache server and logging features. Logs and outputs that are generated by

20

Component Details Usage
CPU Intel R©Atom D525 Dual Core 4 Threads 1.8 Ghz Main Processing Unit

Chipset Intel R©I/O Controller Hub 8 (Intel R©ICH8M) Chipset Family
RAM 8GB DDR3 1333Mhz SODIMM Random Access Memory

Storage Unit SanDisk R©16GB CF Card Storage Area for OS to Store
Storage Unit 2 SanDisk R©128GB SSD Storage Area for Logs and Software

Network Interface 1 Intel R©PCI-E 1Gb 82583v Ethernet Interface 1
Network Interface 2 Intel R©PCI-E 1Gb 82583v Ethernet Interface 2
Network Interface 3 Intel R©PCI-E 1Gb 82583v Ethernet Interface 3
Network Interface 4 Intel R©PCI-E 1Gb 82583v Ethernet Interface 4
Network Interface 5 Intel R©PCI-E 1Gb 82583v Ethernet Interface 5
Network Interface 6 Intel R©PCI-E 1Gb 82583v Ethernet Interface 6

Power Supply 60W 12V/5A Switching PSU Power Source for entire Device

Table 3.1: Hardware Specifications

the applications such as tcpdump are stored in the secondary storage device that

can be installed on the base-platform. During the boot sequence, if there is not

any secondary storage device available, Log verbosity is reduced and are stored

in the Compact Flash up to allocated storage available. Despite the fact that

logs and network dumps are playing a huge role for the automated penetration

testing phase and further reporting, Lack of logs or unavailable storage space is

not blocking the basic network functionalities.

3.1.1 x86 Architecture For Unified Security Management

Unified Security Management is the concept that allows single network device

to be able to handle multiple security tasks such as; Firewall, IPS4, IDS5, Web

Application Firewall6, DDoS mitigation and many more. Since USM is based on

x86 Generic Architecture, most Unix based Operating system can be installed and

interact with peripheral devices. Thus allowing Security Metric Assessment and

Reporting Tool to utilize more specialized hardware such as IEEE 802.3 Ethernet

Interfaces.(Bugnion et al., 2012) More detailed output and dmidecode output of

the architecture under a unix operating system can be found in Appendix 5

4Intrusion Prevention System
5Intrusion Detection System
6Special firewall based on Web traffic and enforcing rules to clients about how they can

interact with services.

21

3.2 SOFTWARE IMPLEMENTATION

x86 Based Hardware platform that is described above is nothing more than an

ordinary computer with extra network interface’s and other peripherals that is

packed into one small embedded board. In order to achieve all SDN capabilities,

software design of the concept is the key (Cooper, 2010). Time critical and

fully deterministic decision mechanisms are implemented within the software.

This implementation aims to harmonize both hardware platform and the soft-

features that are defined within SDN software. In this work, Software design

and implementation is accomplished by two phases. First phase was to build

a custom Linux-Kernel and configuring proper drivers in order to utilize all

peripherals that are used on the hardware platform. Second phase was to

implement high level functionalities such as automated penetration testing and

raw data analysis(Mazurak & Zdancewic, 2007). Detailed SMBIOS output in an

ASCII format is provided by the help of dmidecode application and is provided

in Appendix 5 dmidecode is a tool for gathering ASCII readable SMBIOS—DMI

of a computer system. SMBIOS stands for System Management BIOS, while

DMI stands for Desktop Management Interface. By the help of dmidecode tool,

detailed hardware information can be gathered on SMART embedded board. This

listing can also be referenced as a hardware configuration of the base platform as

needed (Brown, 2004).

Second phase of the implementation was to harmonize all peripherals and

predefined tasks in a sequential flow. To be able to achieve flexible testing and

preproduction, Bash scripting is used. bash scripting is easy to use and can

maintain complex scripting tasks. Most of the peripheral module management

is coded in Bash scripts and controlling Linux command line applications. Main

bash modules are added as scheduled startup programs or as a cron jobs (Solomon,

2007).

22

3.2.1 Operating System Installed On The Prototype

Operating System development from scratch was way beyond the scope of

this thesis. Therefore Linux-Kernel-3.4.1137 is used as bare-bone operating

system. There is nothing much that can be done with bare-bone Linux-Kernel

thus necessary drivers and utilities are installed accordingly and tested for any

catastrophic driver compatibility issues. Full drivers list can be found in Appendix

5. Further testing and necessary changes is done in testing phase.

Advantages of using *Nix based Operating system as a base are limitless but main

advantages are including but not limited to, Open-Source driver/kernel codes that

can be configured for specific needs easily, Extensive documentation available for

tinkering, Scripting and virtualization technologies are quite powerful on *Nix

based systems (Love, 2005) (Bovet & Cesati, 2005) (Henkel, 2006) (Winter, 2008).

Compilation phase is achieved on a Debian8 based ”Kali Linux Rolling 2.0”9

distribution. Necessary files and drivers were put in custom build .ISO file during

the compilation. Since Kali-Linux is a specifically crafted operating system

that is a well known for penetration testing and cyber security needs, Third

party applications such as; Nmap, Etterape, Wireshark, were included in this

compilation phase. List of the applications and dependencies that are used during

the compilation phase can be located in Appendix 5.

In further testing and development in first Alpha release of the entire

software bundle, There has been major bugs found in basic operating system

functionalities. Especially hardware virtualization and resource handling was not

working properly enough to meet minimum expectations even for proof-of-concept

version.

7Long-Term Support Stable Release
8https://www.debian.org/
9https://www.kali.org/

23

pfSense-CE-2.x10 is an Open-Source firewall and Router operating system

distribution based on FreeBSD 11. Despite the fact that nearly all peripherals

of the hardware platform were automatically detected and utilized by the

pfSense, customized programs and scripts were unable to function properly on

pfSense platform. Therefore as a standalone Firewall/Routing functionalities

were overwhelmingly successful but trying to modify pfSense’s predefined security

precautions and privileges caused pfSense to malfunction beyond recognition

(Williams & Bergmann, 2004)(Hollabaugh, 2002).

Kali-Linux-2016.2 12 is not designed to be used as a permanent operating system

yet it is considered as a full-stack penetration testing tool. But in this scope

of modifying Kali-Linux and building a custom .ISO bundle with networking

capabilities and functionalities as well as hardened linux security kernel was the

picked to execute codes and scripts on.

On a persistent and fully operational Kali-Linux distribution, procedures that

are used to create an .ISO file are shown below.

1 $ apt install curl git live-build cdebootstrap
2 $ git clone git://git.kali.org/live-build-config.git
3 $ cd live-build-config
4 $./build.sh --distribution kali-rolling --verbose

Code 3.1: Building OS From Source

Since this process takes a while even on a high end PC, configuration and script

hooks are specifically designed to ensure healthy boot sequence. In order to create

fast and reliable bootable installation medium for the platform after every release

change, bash functions are shown below.

Some of the bash functions are presented below are used during the disk

10https://www.pfsense.org
11https://freebsd.org
12https://docs.kali.org/introduction/what-is-kali-linux

24

operations where building and cloning of the operating system can be time

consuming. By using these functions, human error during this fragile step

is eliminated. create-disk 3.2.1 function is the main menu where other disk

operations can be used such as privacy wipe 3.2.1 of the storage device. Functions

such as disk-image 3.2.1 is there to standardize the bit by bit file copy and

formatting operations during and after the custom operating system compilation.

1 function create_disk(){
2 echo "${DARKGRAY}"
3 echo "+--+"
4 echo "| ${LIGHTRED}Warning${DEFAULT}${DARKGRAY} ! Please Thinkg Twice of Your Actions ! |"
5 echo "+--+"
6 echo "# [1) List Disks | 2) Format a Disk | 3) Privacy Cleanup | 4)Create Disk |"
7 echo "+--+"
8 echo "${DEFAULT}"
9 echo -en "${bold}${RED}EVE${RESET}${normal}${BLUE}->${RESET} "

10 read t
11 case $t in
12 1) lsblk ;;
13 2) format_disk ;;
14 3) privacy_cleanup ;;
15 4) create_disk_image ;;
16 FF) clear_screen && return 0 ;;
17 ff) clear_screen && return 0 ;;
18 *)
19 echo "Please select a valid option !"
20 esac
21 #echo "Enough Crypt!"
22 pause
23 }

Code 3.2: codes/create disk.sh

1 function format_disk(){
2 echo "${lightyellow}"
3 lsblk | grep disk
4 echo "${DEFAULT}"
5 main_drive=$(lsblk | grep disk | cut -d " " -f1)
6 echo "${RLS}You Should Not be Picking your Resident Drive ${RED}$main_drive${DEFAULT}"
7 echo "${GLS}Please enter your device [NOT Partition if Image] {ie./dev/sdc} = "
8 read padisk
9 echo "${RLS}Are you sure ? Please enter again to confirm = "

10 read pbdisk
11 if [["$padisk" = "$pbdisk"]];
12 then
13 echo "${GLS} Formatting is Commencing in 5, You can Still Unplug it !"
14 sleep_indicator 5
15 dd if=/dev/zero of=$padisk bs=1M status=progress && sync
16 fi
17 }

Code 3.3: codes/format disk.sh

1 function create_disk_image(){
2 echo "${lightyellow}"
3 lsblk | grep disk
4 echo "${DEFAULT}"
5 main_drive=$(lsblk | grep disk | cut -d " " -f1)
6 echo "${RLS}You Should Not be Picking your Resident Drive ${RED}$main_drive${DEFAULT}"
7 echo "${GLS}Please enter your device [NOT Partition if Image] {ie./dev/sdc} = "
8 read iadisk
9 echo "${RLS}Are you sure ? Please enter again to confirm = "

10 read ibdisk
11 echo "${GLS}Please pick a image file"
12 sleep 1
13 image_file=$(pick_single_file)
14 if [! -z "$image_file"];
15 then
16 if [["$iadisk" = "$ibdisk"]];
17 then
18 read -r -p "Are you sure? [y/N] " response
19 case "$response" in
20 [yY][eE][sS]|[yY])
21 #echo "${GLS} "
22 sleep_indicator 5 "Creating the image Commencing in 5, You can Still Unplug it !"
23 echo -ne ""

25

24 dd if=$image_file of=$iadisk bs=1M status=progress && sync
25 ;;
26 *)
27 pause
28 ;;
29 esac
30 fi
31 fi
32 }

Code 3.4: codes/disk image.sh

By utilizing simple yet effective command line tool, dd 13 every custom build

.ISO releases were copied bit by bit to first boot sector of the target medium.

CompactFlash CF cards and 2.5 SATA SSD drives were tested throughout the

development phase. (Code 3.1)

dd if=$image file of=$iadisk bs=1M status=progress && sync

Command takes input of an .IMG or an .ISO file as a source and destination

for the targeted medium that will be installed to the platform.status parameter

is used to ensure total bytes I/O is equivalent to custom build image file.

Following script was used to compare overall hash value for both source and

destination in an automated manner.
1 function hash_em_all() {
2 file_to_hash=$(pick_single_file)
3 if [! -z "$file_to_hash"];
4 then
5 md5sam=‘hash_md5sam "$file_to_hash"‘
6 write_header "This is MD5Sum"
7 printf "\v%s\n" "$md5sam"
8 sha160=‘hash_sha160 "$file_to_hash"‘
9 write_header "This is SHA160"

10 printf "\v%s\n" "$sha160"
11 sha224=‘hash_sha224 "$file_to_hash"‘
12 write_header "This is SHA224"
13 printf "\v%s\n" "$sha224"
14 sha256=‘hash_sha256 "$file_to_hash"‘
15 write_header "This is SHA256"
16 printf "\v%s\n" "$sha256"
17 sha384=‘hash_sha384 "$file_to_hash"‘
18 write_header "This is SHA384"
19 printf "\v%s\n" "$sha384"
20 sha512=‘hash_sha512 "$file_to_hash"‘
21 write_header "This is SHA512"
22 printf "\v%s\n" "$sha512"
23 else
24 echo "Nothing Selected !"
25 fi
26 fi
27 pause
28 }

Code 3.5: Hash Comparision

After confirming a successful power on self test and boot sequence, releases were

checked for crucial basic operating system functionalities. All peripherals and

13http://www.gnu.org/software/coreutils/dd

26

internal mechanisms of the board were checked for any compilation or cloning

mistakes. dmidecode14 command line software provided all peripheral devices’

interrupt request mappings and reserved address spaces on the memory. Since

heavy modifications were made on custom drivers, miscalculated address blocks

were automatically detected as kernel-panic and linux-kernel immediately flagged

it as a possible buffer overflow on system address space.

3.2.2 S.M.A.R.T

S.M.A.R.T stands for ”Security Metric Assessment and Reporting Tool”, which

lays in the very core of the NFV-Based security concept that is being presented.

Main purpose of this module is to orchestrate other peripheral modules in

harmony so that S.M.A.R.T can analyze incoming telemetry logs and take action

based on those logs.

Despite the fact that representation of any generic data or information can

be broken down to bits or bytes, there are no security measurement units to

answer ”How Much” questions. Therefore S.M.A.R.T’s Metric is relative. This

relative unit is derived by collected logs and analysis of security breach logs and

submitted security incident reports to S.M.A.R.T database. Therefore ”metric”

measurement is not a valid statement yet it’s a relative definition to score entries

specifically predefined to analyze and correlate incoming logs.

S.M.A.R.T runs its automated vulnerability and exploitation scenarios based on

a finite state decisions. Each outcome and action analyzed by the S.M.A.R.T by

the predefined procedures and boundaries in order to decide next possible action

on the chart that is presented in Appendix 5

14https://linux.die.net/man/8/dmidecode

27

Administrative Logs Generated by the S.M.A.R.T

IT Administrative logs are one of the must-have in an organization IT

infrastructure. Administrative logs can be gathered in different detail level

depending on the device that produces them. In our scope Administrative logs

will be based on the logs that are generated by the Security Metric Assessment

and Reporting Tool, and mainly involves security flaws, possible impact ratings

and possible solution procedures if applicable.

Implementation of remote log gathering is accomplished by using rsyslog.

Rsyslog allows to gather system logs from remote nodes as well as sending them

over network. All the log message from the kernel and the operating system

applications are distributed to the logs of the related files under the /var/log

directory.

Security metric assessment and reporting tool is capable of collecting logs such

as network traffic, user activity and possible security breaches in a categorized

fashion, where these logs can be set individually in terms of verbosity of

the corresponding task. Maintaining the system health status as well as

environmental changes also under the administrative logs category in the scope of

this research. Example airflow and CPU temperature also is fed to Administrative

logs as can be seen in Figure 3.5

Figure 3.5: Temperature Airflow Change for the Fans

Honeypots

Honeypots are deployed for any reverse search may occur during active

penetration testing phase. Also allowing administrative logs that are generated

by Security Metric Assessment and Reporting Tool to include all malicious and

unauthorized access attempts with detailed information (Zou & Cunningham,

28

2006) (Wang, Wu, Cunningham, & Zou, 2010).

Honeypots that are deployed by S.M.A.R.T is mostly based on well-known ports

but can also be customized to emulate most TCP and UDP services. Because of

that, ports that are not in use will be redirected to a Honey pot with no internal

access yet only for logging all connection attempts with detailed geo-location and

IP address information.

Figure 3.6: Flowchart of the Honeypot Sequence

Context level flow chart is as shown in Figure 3.6. Regardless of the manual and

automated deployment of the honeypot, initial parameters are provided either by

the user or the S.M.A.R.T’s predefined rules. In Figure 3.7, manual deployment

parameters are provided thus honeypot deployed. After this operation, a listener

runs in an infinite loop, until it is interrupted, constantly checking for matching

true positive attempt in order to take further actions. Unless the connection

29

does not match the provided parameters, Cycle continues and pattern matching

is performed. In case of any Malicious connection detection, S.M.A.R.T blocks

the connection easily since its the gateway router, and pushes custom warning

message to the client. After logging the details of the incoming attack, Honeypot

can be configured to halt or keep alive with same configurations.

By the help of deployed honey pots throughout the network, dramatically

improves the identification of possible breach attempts. Custom Honeypot

Deployed on TCP 8085 Port. As shown in Figure 3.8 local ip address of the

wireless network interface is 192.168.1.3 with subnet of 255.255.255.0 under the

192.168.1.0 Network. Outbound connection is performed both within the Local

network and port-mapped WAN attempt.

Figure 3.7: TCP 8085 Honeypot Manual Deployment

30

Figure 3.8: Local Interface IP Address

Customized honeypot can be easily deployed and since it is a Ruby script it also

can be automated within the SMART just like any other script that is being

automatically performed (Weiler, 2002).

Figure 3.9: RAW TCP netcat connection on 8085 Port

Raw TCP connection to 8085 port became available after the honeypot

deployment and even transmitted a custom message to the client. (Figure 3.9)

Figure 3.10: Contents of a log file

In honeypot logs Intrusion attempts and even possible breaches are listed with

their corresponding timestamps. These logs are fed into the Administrative logs

before generating a report file for the IT administrators. As another example for

the legitimate TCP 22 SSH port same manual deployment procedures are shown

in Figure 3.11 (Zhang, Zhou, Qin, & Liu, 2003) (Mairh, Barik, Verma, & Jena,

2011).

31

Figure 3.11: Honeypot SSH TCP/22 Example From WAN

Figure 3.12: Honeypot SSH Manual Deployement

32

Figure 3.13: Output of the Terminal App

Figure 3.14: Contents of the honeypot’s log file

Now incoming TCP 22 SSH connection from loopback interface ’lo’ created a raw

netcat connection (Figure 3.14). Despite the fact that its a virtual interface and

located on the same host device, by the help of *nix based file operations, any

connection attempt regardless of the origin, will be flagged as a malicious attempt

and will perform the same procedures as in any other outbound connection

(Krishnaprasad, 2017).

33

Figure 3.15: Raw Netcat TCP connection to listening Loopback Interface

Figure 3.16: Contents of the Log file after local Malicious connection attempt

Between each operation, Hashing scripts shown in 3.2.1 are executed and store in

a separate checksum file in order to detect any tempering with the log file. These

generated hashes can be secured using various data leak prevention techniques

(Provos et al., 2004) (Teodorczyk, 2013).

MAC Address Disguise

Figure 3.17: Override the Permanent MAC Address

In order to avoid legitimate local users’ antivirus software or any other client

side precautions, MAC address of the network interface where active penetration

34

testing is performed, can rapidly and automatically be manipulated just like many

malicious attackers do by default of actions.

This implementation can be extended with Link-Layer attacks as well as to deploy

Link-Layer secure frame communication during a more high level attack in a peer

to peer fashion. But in this research, MAC address manipulation is used solely

and can be seen in Figure 3.17.

1 # {*} Function status = Finished
2 # {*} Function Desc = Spoof Mac Adress for any interface
3 # {*} Function To do = None
4 # {*} Priority Stat = @
5 # {*} Note/Bugs/Usg = None
6
7 function change_mac() {
8
9 echo ""

10 echo "+--+"
11 echo "| [Available Interfaces Below] |"
12 echo "+--+"
13 echo -ne "${GLS} "
14 echo ‘ifconfig | grep flags | cut -d ":" -f1‘
15 echo "+--+"
16
17 read -p "Which Interface to change Mac ? (eth0 | wlan0 | tap0) =" chcInf
18
19 if [-z "$chcInf"];
20
21 then
22 echo "${RLS} No Interface Selected !"
23
24 else
25
26 echo -n "Current MAC address for that Device is = "
27 curr_mac=‘ifconfig $chcInf | grep ether | cut -d " " -f 10‘
28 echo "$curr_mac"
29 echo "ALL YOUR CONNECTION WILL BE INTERRUPTED"
30
31 read -p "(1)Randomize 2)Trusted OID 3)Back to Defaults F)Terminate? = " ce
32
33 case "$ce" in
34
35 1) sudo ifconfig $chcInf down; sudo macchanger -r $chcInf; sudo ifconfig $chcInf up;;
36 2) sudo ifconfig $chcInf down; sudo macchanger -e $chcInf; sudo ifconfig $chcInf up;;
37 3) sudo ifconfig $chcInf down; sudo macchanger -p $chcInf; sudo ifconfig $chcInf up;;
38 f|F) echo " Terminated !" ;;
39 *) echo "No Input Provided";;
40
41 esac
42
43 fi
44
45 pause
46
47 }

Code 3.6: codes/mac.sh

Go Turtle

Under an ongoing cyber attack where the attack is identified as a denial of

service attack, legitimate local network traffic even the Web traffic may come

to a stopping point, Especially under the circumstances where possible breach

is confirmed but is not exactly been pinpointed, limiting all network traffic to

80 and 443 TCP/IP ports as well as logging other connection attempts is the

35

approach that S.M.A.R.T will perform.

In case of ongoing cyber attack detected, Running all countermeasures might not

be sufficient. In order to allow HTTP15 and HTTPS16 traffic regardless of the

attacks magnitude, IPTABLES configuration is deployed. Since this configuration

will block all other connection attempts it serves as a last resort to keep LAN17

operational.

1 # {*} Function status = To be Tested
2 # {*} Function Desc = Man gotta protect himself right ?
3 # {*} Function To do = None
4 # {*} Priority Stat = Least[]Avg[]Medium[X]Ab.Avg[]Highest[]Critical[]Extreme[]
5 # {*} Note/Bugs/Usg = None
6
7 function go_turtle() {
8
9 # allow only 1.1.1.0/24 and ports 80,443 and log drops to /var/log/messages

10
11 iptables -A INPUT -s 1.1.1.0/24 -m state --state RELATED,ESTABLISHED,NEW -p tcp -m multiport --dports

80,443 -j ACCEPT
12 iptables -A INPUT -i eth0 -m state --state RELATED,ESTABLISHED,NEW -j ACCEPT
13 iptables -A INPUT DROP
14 iptables -A OUTPUT -o eth0 -j ACCEPT
15 iptables -A INPUT -i lo -j ACCEPT
16 iptables -A OUTPUT -o lo -j ACCEPT
17 iptables -N LOGGING
18 iptables -A INPUT -j LOGGING
19 iptables -A LOGGING -m limit --limit 4/min -J LOG --log_prefix "EVE_DROPPED_CONN "
20 iptables -A LOGGING -j DROP
21
22 }

Code 3.7: codes/go turtle.sh

SMB Null Session Checker

Local networks are configured as a secure location where file sharing and printing

services are presented. During penetration testings in various company networks,

unauthorized file sharing caused by misconfiguration is a fine example for

malicious attacker to gain access to the root file system. SMB null session attacks

can be performed on the network and needs to be checked regularly. Code snippet

that is provided below is to automate the scan on the local network regularly by

conducting the search on the list of IP addresses provided within.

1 # {*} Function status = Finished
2 # {*} Function Desc = SMB Null Session Checker
3 # {*} Function To do = None
4 # {*} Priority Stat = @
5 # {*} Note/Bugs/Usg = None
6
7 function nullmein(){
8
9 if [-z "$1"]; then

10
11 echo "[*] Try SMB Null Session for specific ip or range"

15Hyper Text Transfer Protocol
16Hyper Text Transfer Protocol Secure
17LocalArea Network

36

12 echo "[*] Usage : $0 <file_to_read>"
13
14 exit 0
15 fi
16
17 source_file=$1;
18
19 for ips in $(cat $source_file); do
20
21 printf "Scanning for Null Session @ %s\n""$ips"
22 output=‘bash -c "echo ’srvinfo’ | rpcclient $ips -U%"‘
23 echo $output
24
25 done
26
27 }

Code 3.8: codes/nullmein.sh

Checks any given IP range for SMB18 Null Sessions.

3.3 ACTIVE PENETRATION TEST BY THE

S.M.A.R.T

Code snippets and bash functions that are covered prior to this section is to

emphasize the S.M.A.R.T approach and its possible benefits over the manual

penetration testing phases. Entire system is made of key elements such as

hardware platform, custom operating system and S.M.A.R.T bundle. All these

elements are gathered specifically in order to add autonomous penetration testing

capability to the S.M.A.R.T and chosen as a security approach in this scope.

The concept of active penetration testing that is being presented, is a reference

to describe procedures of a penetration testing pursued by the Security Metric

Assessment and Reporting Tool. This feature aims to achieve basic penetration

testing procedures in an autonomous fashion. These produces are including but

not limited to, Port Scanning, Web Vulnerability analysis and enumeration.

By following these procedures in a customizable list format, Security Metric

Assessment and Reporting Tool is able to perform these tasks with regular periods

that are defined by crontab 19

18Server Message Block
19UNIX utility that allows scheduling tasks for running a script,software or a command within

defined intervals.

37

Predefined set of security checks are utilized in order to conduct and analyze

current well known security flaws of a certain network. These security flaws might

appear on a daily basis in a growing network. In order to prevent the bulky work

that is needed to analyze overall security structure, Active penetration testing

phase allows to conduct these tests without any administrative support.

As a result of Active Penetration testing, at the end an analysis report is presented

and logged to System administrator in order to further investigate or take actions

on the problems that are beyond of the abilities of S.M.A.R.T . These extra

logs or possible security flaws that are not directly fixable, are presented to

Administrators, daily, weekly and monthly.

Peripheral equipments are also can be used to feed external information to main

S.M.A.R.T database. These peripheral equipment can be easily deployed using

customized OpenWRT router to conduct Wireless Grade Security analysis. By

Utilizing customized OpenWRT, small embedded router can be turned into a

mobile penetration testing device with central management system, S.M.A.R.T

(Figure 3.18) (Fainelli, 2008) (Petullo, 2010).

Figure 3.18: Customized OpenWRT console connection

38

Web Interface that is hosted within the embedded device can be utilized to

maintain actions and status of ongoing tasks. Classical and user friendly web UI

is as shown in Figure 3.19. By the help of this management interface, on site tests

and certain configurations of the peripheral device can be configured on the go.

These configurations are including but not limited to; Management IP address,

DHCP server configuration and Wifi Capture options. Also, for configuration of

the OpenWRT box’s system parameters, such as root file system, device drivers

and USB Root Hub; serial connection or SSH connection directly to management

IP will allow direct access to the running terminal session, which is shown in 3.19.

Monitoring live stats such as memory usage, storage usage and network details

are also located in OpenWRT’s default Web interface, in customized version in

smartWRT unrelated monitoring and management options are discarded.

Figure 3.19: Web Interface of smartWRT

3.4 MERGING THE FUNCTIONALITIES

Since both customized operating system instance and the hardware platform are

presented, SMART code is easily deployed just like an ordinary bash script with

chmod 755 privileges for root execution.

39

Figure 3.20: S.M.A.R.T’s Topological Position

S.M.A.R.T’s host device is placed as a Gateway to local network and separating

the LAN and WAN access of any given network. By utilizing network concepts

such as VLANs20 or ACLs 21, S.M.A.R.T can also be utilized within the local

networks but default behavior is configured as a Gateway. (Figure 3.20)

Initial installation of the SMART is not manually achieved yet its a generic update

and dependency file that can be checked from a remote server in order to prevent

any missing dependencies. As an intermediary software during installation and

startup, Genesis.sh script runs every boot of the Operating system and is the

only way to initialize S.M.A.R.T main program. By the help of this intermediary

software certain check sequences and necessary software is verified. Detailed

procedures and steps can be located in Code 3.4.

1 #!/bin/bash
2 ### Needs to have an installation script.
3 #Default directory to store everything in one place.
4 source ∼/smart/toolset/randomize_password.sh
5 source ∼/smart/config/coloring_scheme.conf
6
7 #Introduce Config file
8
9 default_path=∼/smart/config

10 default_config=$default_path/smart_def.conf

20Virtual Local Area Network
21Access Control List

40

11 config_file=$default_path/smart.conf
12
13
14 #Introduce Config Params
15 STEPS=0
16 TOTAL_STEPS=‘cat ∼/smart/config/lilith.list | wc -l ‘
17
18 VPN_DIREC=‘cat $config_file | grep vpn_dir | cut -d"=" -f2 | tr -d ’",’ ‘
19 RUN_CONFIG=‘cat $config_file | grep dont_ask | cut -d"=" -f2 | tr -d ’",’ ‘
20 OUTPUTS_DIR=‘cat $config_file | grep outputs_dir | cut -d"=" -f2 | tr -d ’",’ ‘
21 DEFAULT_PATH=‘cat $config_file | grep default_path | cut -d"=" -f2 | tr -d ’",’ ‘
22 STARTUP_CHECK=‘cat $config_file | grep startup_check | cut -d"=" -f2 | tr -d ’",’ ‘
23 EXPORT_TO_PATH=‘cat $config_file | grep export_to_path | cut -d"=" -f2 | tr -d ’",’ ‘
24 REQUIREMENTS_MET=‘cat $config_file | grep requirements_met | cut -d"=" -f2 | tr -d ’",’ ‘
25
26
27 ###For debuging Purposes
28 #echo "$TOTAL_STEPS"
29 #echo "This is run_config $RUN_CONFIG"
30 #echo "This is OUTPUTS_DIR $OUTPUTS_DIR"
31 #echo "This is DEFAULT_PATH $DEFAULT_PATH"
32 #echo "This is REQUIREMENTS_MET $REQUIREMENTS_MET"
33 clear
34 if [[! $(id -u) == 0]]; then
35 echo -e "${RLS} This script must be run as root"
36 exit 1
37 fi
38
39 if ["$STARTUP_CHECK" == "true"]; then
40 for pc in $(cat ∼/smart/config/lilith.list);do
41 ((STEPS++))
42 bin=‘echo "$pc" | cut -d "#" -f2‘
43 echo -ne "${RLS} ${darkgray} Checking ${lightyellow}$bin${RESET} ${darkgray}[${GREEN}$STEPS${RESET}${

darkgray}/${RED}$TOTAL_STEPS${darkgray}]${RESET}\r"
44 sleep 0.1
45 echo -ne " \r"
46 if [[-z $(which $bin)]]; then
47 echo "${RES} ${RED}Required files are not fully provided SMART will start Installing

Dependencies${RESET}"
48 program_tbi=‘echo "$pc" | cut -d "#" -f1‘
49 #echo "${RQS} ${darkgray}Checking ${lightyellow}$program_tbi${RESET}${darkgray} with ${

lightyellow}bin{RESET} ${darkgray}binary name.${RESET}"
50 #sed -i ’/dont_ask/c\dont_ask="false"’ $config_file
51 #sed -i ’/startup_check/c\startup_check="false"’ $config_file
52 #sed -i ’/requirements_met/c\requirements_met="false"’ $config_file
53 echo -e "${RLS} ${RED}Unable to find ${lightyellow}$program_tbi${RESET}. ${RED}Installing it !${

RESET} "
54 sleep 5
55 apt-get -y -q=2 install $program_tbi 2>/dev/null
56 echo -e "${GLS}${lightgreen}Successfully Installed${RESET} ${darkgray}[${GREEN}$STEPS${RESET}${

darkgray}/${RED}$TOTAL_STEPS${darkgray}]${RESET}${RESET}"
57 ((STEPS++))
58 #read -p "Press any key"
59 #exit 0
60 fi
61 #((STEPS++))
62 echo "${GCS} ${GREEN}Located ${lightyellow}$bin${RESET} ${GREEN}[1]${RESET}${darkgray}[${GREEN}

$STEPS${RESET}${darkgray}/${RED}$TOTAL_STEPS${darkgray}]${RESET}"
63 done
64 echo "${GLS} Succesfully Provided dependencies for SMART !"
65 sed -i ’/requirements_met/c\requirements_met="true"’ $config_file
66 #sed -i ’/startup_check/c\startup_check="true"’ $config_file
67 echo ""
68 #echo "${GCS} Startup Check is completed !"
69 #sed -i ’/requirements_met/c\requirements_met="true"’ $config_file
70 #STEPS=0
71 fi
72
73 if [! -d "$OUTPUTS_DIR"]; then
74 echo " ${RLS}Necessary log directories doesnt exist, Creating them."
75 echo " ${GLS}Creating $OUTPUTS_DIR"
76 mkdir /root/smart_db/
77 echo " ${GLS}Creating $OUTPUTS_DIR/fmr"
78 mkdir /root/smart__db/fmr
79 echo " ${GLS}Creating $OUTPUTS_DIR/motion"
80 mkdir /root/smart_db/motion
81 echo " ${GLS}Creating $OUTPUTS_DIR/bugin"
82 mkdir /root/smart_db/bugin
83 touch /root/smart_db/motion.log
84 echo " ${GLS}Directory Creation Accomplished [${GREEN}$STEPS${RESET}/${RED}$TOTAL_STEPS${RESET}]"
85
86 fi
87
88 if ["$EXPORT_TO_PATH" == "true"]; then
89 env_path="/usr/share/smart"
90 if [! -d "$env_path"]; then
91 echo " ${RLS} Creating Usr Share Folder"
92 mkdir /usr/share/smart
93 echo " ${RLS} Copying \.desktop Extension"
94 cp /root/smart/preprods/startsmart.desktop /usr/share/smart
95 echo " ${RLS} Copying Binary file to usr/bin"
96 cp /root/smart/preprods/smart /usr/bin/
97 echo " ${RLS} Copying Motion Configuration"
98 cp /root/smart/motion.conf /etc/motion/
99 else

100 echo " ${GLS} Which Eve is functional ! Skipping ..."
101 fi
102

41

103
104 fi
105
106 if ["$RUN_CONFIG" == "false"];
107 then
108 echo "Would you like to run tis initial setup next time ? ${GREEN}(T)${RESET}rue/${RED}(F)${RESET}alse ?"
109 echo -en "${bold}${RED}SMART${RESET}${normal}${BLUE}->${RESET} "
110 read dont_ask
111 case $dont_ask in
112 f|F) sed -i ’/dont_ask/c\dont_ask="true"’ $config_file ;;
113 t|T) sed -i ’/dont_ask/c\dont_ask="false"’ $config_file ;;
114 *)
115 echo "${RES}Not Valid Input Terminating !"
116 exit 1
117 esac
118 elif [[! -d "$DEFAULT_PATH/smart/"]]; then
119 echo "Valid Directory passed!"
120 fi
121
122
123
124
125 ((STEPS++))
126 sync_key="$(genpasswd)"
127 echo "${GLS} Sync Key = $sync_key"
128 xfce4-terminal --geometry 80x64+1111+0 --hide-menubar --hide-borders --hide-scrollbar --title=[S.M.A.R.T] --

icon=/root/smart/icon.png -e /root/smart/smart.sh 2>/dev/null &
129 exit 0

Code 3.9: codes/genesis.sh

In the genesis.sh code snippet, global constants and declarations are made prior to

the script. This script checks for required application and drivers and configures

them if needed. Checklist which is provided in Appendix 5 either be local copy

or can be updated over the web. After successful installation and fully met

requirements SMART daemon is spawned to conduct its defined features.

42

CHAPTER 4

EVALUATION

In this section, various test environments and scenarios are explained. Both

physical and computational limitations for the expected outcomes are observed

and logged. Since there are countless scenarios that can be performed, must have

USM features are monitored for any anomalies or malfunctioning.

Optimal network grade physical environmental necessities like a closed and a

constantly cooled room is used to verify basic networking and computational

performance.

Until must have functionalities are confirmed to be working, tests are deployed

in a monitor mode, Where the network flows over the board are not modified yet

only logged as a transparent proxy.

By utilizing multiple network interface cards, 4 different WAN access with

different global IP addresses are connected to the board to identify chaotic traffic

distribution what is also known as load balancing.

4.1 TEST ENVIRONMENT

Device is installed in the 42U network grade cabinet with 6x12cm fan array in a

constantly cooled environment. Wall panels that are distributed inside the test

building are carried with CAT6 infrastructure and terminated in the RJ-45 Patch

Panel inside the network cabin. Additional Layer 2 transparent Switches are also

used to multiplex the network access layer in order to reach out more than single

node. (Figure 4.2)

43

Figure 4.1: Network Cabin Installation of the Platform

Figure 4.2: Overall Network Cabin Setup

44

As a WAN access 4 different 8 Mbps Download and 2 Mbps Upload speed ADSL

connections. These WAN accesses later inter-connected by the help of SDN Load-

Balancing implementation resulting theoretical 32Mbps/8Mbps bandwidth array.

In Figure 4.1, left foremost 4 network interface cards are allocated as a Load

balancing WAN interface where the Right foremost port is distributed to local

network. Local network access is then distributed with the Layer 2 Switches and

transmitted to the wall patch panel that is shown in the lowest mounting points

of the network cabin.

4.2 STRESS TESTING

Since digital devices such as network interface cards may loose their performance

over a saturated usage, necessity for constant traffic generation on the peripheral

ports is emerged.

In order to improvise a flexible but not commercial traffic generator, a cluster

of SoC nodes, known as Raspberry Pi 3s are connected as a single interface

resulting over 10Gbps throughput by using tools like iperf (Figure 4.3).

Specifically located Raspberry PI 1 embedded boards that are running a *NIX

based operating systems are triggered to run the following application that is

used to enforce flood like traffic to the target IP. This allows to conduct denial

of service attacks and is helpful to collect healthy network throughput analysis

that is described in Chapter 2.

4.3 MOBILE SMART TESTER

Specifically crafted embedded design, allows to perform on-site tests and pushes

the collected data to S.M.A.R.T for further analysis. Open-source application

known as kismet is used to capture monitor mode WIFI traffic and can also use

1https://www.raspberrypi.org/

45

Figure 4.3: 12x Raspberry Pi 2/3 Traffic Generator Nodes

Figure 4.4: Raspberry Pi 3 with External Wireless Adapters and a GPS module

the GPS module as an external data source regarding of the captured WIFI node.

Using more than one wireless adapter also provides more accurate results since

wireless signal can be unstable because of the environment and the transmitters

locations. (Figure 4.4)

4.4 COMPARISON

Despite the fact that there are many UTM devices available, most devices are

based on defensive perspective, waiting for a breach attempt or an occurrence to

46

detect possible threats. Where as the solution that is being presented here offers

more offensive and aggressive approach towards common security problems.

Products that are available on the market are a capable of performing a

predefined set of features. But in this research, a flexible platform with limited

computational power can be allocated freely and/or can be stripped down from

any unwanted features. This elasticity of the hardware platform also defines

the efficiency on performing more specific actions such as utilizing the device

just for Deep Package inspection or Cache server. On the other hand, by

the advancements in Software Defined Networks and virtualization, global scale

leading companies announced and released their operational functionalities as a

software bundle where they let their customers decide which platform or server

they want their software to be deployed. Despite the fact that they can be

deployed on any virtual environment, physical access and management of the

peripheral devices by these software bundles are not fully compatible with many

hardware platforms.

4.5 FEATURE COMPARISON

In Table 4.1, cost/performance comparison is shown. Despite the fact that large

scale organizations will require more concurrent network connections as well as

higher firewall throughput. Regulatory logging requires considerable amounts of

data storage area, as can be seen in table 4.1 sandbox hardware platform allows

S.M.A.R.T host device to be vendor independent. Therefore end customer can

easily extend the storage area of the SDN device.

Long-Term support for the commercial products is not only a free-support, rather

it is a trust indicator when it comes to network equipment. Hiring different

technical staff for every network equipment that are being used within the

corporation, is considered to be unfeasible. Therefore, corporations which does

47

Product S.M.A.R.T FG-100D TZ600
New Session/Sec 13700 22000 12000
Concurrent Sessions 150000 2500000 96000
Firewall Throughput 664Mbps 2500Mbps 500Mbps
Memory 4096 MB 2048 MB 1024 MB
O/S Storage 16 GB 32 GB 1 GB
Secondary Storage 256 GB N/A N/A
Power Usage - PEAK 90 Watts/hr 210 Watts/hr 80 Watts/hr
Power Usage - AVRG. 51 Watts/hr 63.1 Watts/hr 40 Watts/hr
Approximate Cost 450 USD (Est.) 2400 USD [Appendix5] 2100 USD [Appendix5]

Table 4.1: Performance and Feature Table.

not have it’s individual IT teams, will often prefer to get their support and 7/24

services by the major manufacturers.

48

CHAPTER 5

CONCLUSION

In this chapter, implementation outcomes and future work that can be done

is discussed. The final conclusions are derived in this chapter. There are

no boundaries that can be implemented to extend functionalities, there is a

computational limitation regarding the combination of these functionalities can

be used simultaneously. Despite the fact that improving hardware specifications

to a higher tier may seem a straight forward solution, functionalities and

limitations need to be designed thoroughly before the implementation.

In Software Defined Network architectures boundaries are quite wide. Possible

future implementation may include Application sandbox features. By the help of

this feature any incoming executable or suspicious file can be run automatically

in multiple Operating system platforms in rapid and automated fashion before

allowing it to recipient. By the help of Sandbox possible internal security flaws

can be prevented drastically.

Scanning available search engines such as Shodan.io it’s possible to implement

nature language processing features may improve detection rates for current or

future data leakages.

Under the circumstance where an array of S.M.A.R.T devices distributed over

the different WANs, can be utilized for conducting Distributed Denial of Service

attacks as a network stress test. These test can be performed to the corresponding

Local Networks in a queue fashion. By the help of this approach, magnitude of the

denial of service attack can be adjusted to certain thresholds. Since the magnitude

of the DDoS attacks are quite unpredictable, limitations and the behavior of the

49

networks under these attacks are also quite unpredictable. But as a future work,

software implementation and orchestration of such a test can also be included.

Physical environment sensors are also quite beneficial for monitoring physical

security as well as climate of the data-center These physical sensors can be hooked

up to board’s general purpose input/output ports for serial communications.

Incident reporting and crisis handling functionalities can be implemented by

establishing a real life Network Operation Center and monitoring the logged

outputs on the live network. These logs can be analyzed within the S.M.A.R.T

during low power consumption periods of work hours. System intensive analysis

and possible actions can be derived during non-working hours.

In Conclusion it’s certain that human-driven approach in penetration testing

especially in offensive security perspective, there are always some unturned stones

in an organization. These unchecked items may cause serious implications in

overall security integrity. Yet most organizations limit their penetration testing

procedures to once a year. There could be hundreds of newly discovered 0-Day

attacks during that period of time. Therefore automating such a process with

daily, weekly and monthly runs are indeed going to harden overall integrity.

By the help of honeypots not only allowing IT administrators to secure their

network also deployment of these honeypots became more easy to activate.

It is clear that some conventional functionalities are under performed by

their SDN implemented clones but optimization and more sophisticated

implementations will close that gap in foreseeable future. Despite the fact that

hardware dependency and the cost of that hardware is reduced, commercial

product quality tests are reliable and trustworthy in regarding the customers

50

perspective.

51

References

Agham, V. (2016). Unified threat management.

Alazab, M., Venkatraman, S., Watters, P., & Alazab, M. (2011). Zero-day

malware detection based on supervised learning algorithms of api call

signatures. In Proceedings of the ninth australasian data mining conference-

volume 121 (pp. 171–182).

Baker, M., Asami, S., Deprit, E., Ousterhout, J., & Seltzer, M. (1992). Non-

volatile memory for fast, reliable file systems. In Proceedings of the 5 th

international conference on architectural support for programming languages

and operating systems.

Batsell, S. G., Rao, N. S., & Shankar, M. (2005). Distributed intrusion detection

and attack containment for organizational cyber security.

Bellovin, S. M. (1989). Security problems in the tcp/ip protocol suite. ACM

SIGCOMM Computer Communication Review , 19 (2), 32–48.

Benedikt, M. (1991). Cyberspace. In M. Benedikt (Ed.), (pp. 119–224).

Cambridge, MA, USA: MIT Press. Retrieved from http://dl.acm.org/

citation.cfm?id=114772.114787

Bovet, D. P., & Cesati, M. (2005). Understanding the linux kernel: from i/o

ports to process management. ” O’Reilly Media, Inc.”.

Brown, A. L. (2004). The state of acpi in the linux kernel. In Linux symposium

(p. 121).

Bugnion, E., Devine, S., Rosenblum, M., Sugerman, J., & Wang, E. Y. (2012).

Bringing virtualization to the x86 architecture with the original vmware

workstation. ACM Transactions on Computer Systems (TOCS), 30 (4),

12.

Cooper, M. (2010). Advanced bash scripting guide 5.3 volume 1 (Vol. 1). Lulu.

com.

Einspruch, N. (2012). Application specific integrated circuit (asic) technology

(Vol. 23). Academic Press.

52

Ericsson, G. N. (2010). Cyber security and power system communica-

tion—essential parts of a smart grid infrastructure. IEEE Transactions

on Power Delivery , 25 (3), 1501–1507.

Fainelli, F. (2008). The openwrt embedded development framework. In

Proceedings of the free and open source software developers european

meeting.

Han, B., Gopalakrishnan, V., Ji, L., & Lee, S. (2015). Network function

virtualization: Challenges and opportunities for innovations. IEEE

Communications Magazine, 53 (2), 90–97.

Henkel, J. (2006). Selective revealing in open innovation processes: The case of

embedded linux. Research policy , 35 (7), 953–969.

Hollabaugh, C. (2002). Embedded linux: hardware, software, and interfacing.

Addison-Wesley Professional.

Jibao, L., Huiqiang, W., & Liang, Z. (2006). Study of network security situation

awareness model based on simple additive weight and grey theory. In

Computational intelligence and security, 2006 international conference on

(Vol. 2, pp. 1545–1548).

Joshi, K., & Benson, T. (2016, Nov). Network function virtualization. IEEE

Internet Computing , 20 (6), 7-9. doi: 10.1109/MIC.2016.112

Krishnaprasad, P. (2017). Capturing attacks on iot devices with a multi-purpose

iot honeypot (Unpublished doctoral dissertation). INDIAN INSTITUTE

OF TECHNOLOGY KANPUR.

Lee, J. W., Lim, D., Gassend, B., Suh, G. E., Van Dijk, M., & Devadas, S. (2004).

A technique to build a secret key in integrated circuits for identification

and authentication applications. In Vlsi circuits, 2004. digest of technical

papers. 2004 symposium on (pp. 176–179).

Liu, J., Xiao, Y., Li, S., Liang, W., & Chen, C. P. (2012). Cyber security and

privacy issues in smart grids. IEEE Communications Surveys & Tutorials ,

14 (4), 981–997.

53

Love, R. (2005). Linux kernel development (novell press). Novell Press.

Lukasik, S. J. (2010). Why the arpanet was built. IEEE Annals of the History

of Computing , 33 , 4-21. doi: doi.ieeecomputersociety.org/10.1109/MAHC

.2010.11

Mairh, A., Barik, D., Verma, K., & Jena, D. (2011). Honeypot in network

security: a survey. In Proceedings of the 2011 international conference on

communication, computing & security (pp. 600–605).

Martin, R. A. (2008). Making security measurable and manageable. In Military

communications conference, 2008. milcom 2008. ieee (pp. 1–9).

Martins, J., Ahmed, M., Raiciu, C., Olteanu, V., Honda, M., Bifulco, R., &

Huici, F. (2014). Clickos and the art of network function virtualization. In

Proceedings of the 11th usenix conference on networked systems design and

implementation (pp. 459–473).

Mazurak, K., & Zdancewic, S. (2007). A bash: finding bugs in bash scripts. In

Proceedings of the 2007 workshop on programming languages and analysis

for security (pp. 105–114).

Mijumbi, R., Serrat, J., Gorricho, J.-L., Bouten, N., De Turck, F., & Boutaba,

R. (2016). Network function virtualization: State-of-the-art and research

challenges. IEEE Communications Surveys & Tutorials , 18 (1), 236–262.

Neuman, C. (2009). Challenges in security for cyber-physical systems. In Dhs

workshop on future directions in cyber-physical systems security (pp. 22–

24).

Petullo, M. (2010). Building custom firmware with openwrt. Linux journal ,

2010 (196), 3.

Pfaff, B., Pettit, J., Amidon, K., Casado, M., Koponen, T., & Shenker, S. (2009).

Extending networking into the virtualization layer. In Hotnets.

Portokalidis, G., Slowinska, A., & Bos, H. (2006). Argos: an emulator for

fingerprinting zero-day attacks for advertised honeypots with automatic

signature generation. In Acm sigops operating systems review (Vol. 40, pp.

54

15–27).

Provos, N., et al. (2004). A virtual honeypot framework. In Usenix security

symposium (Vol. 173, pp. 1–14).

Ramim, M., & Levy, Y. (2006). Securing e-learning systems: A case of insider

cyber attacks and novice it management in a small university. Journal of

Cases on Information Technology (JCIT), 8 (4), 24–34.

Senie, D., & Ferguson, P. (1998). Network ingress filtering: Defeating denial of

service attacks which employ ip source address spoofing. Network .

Solomon, A. (2007). Linuxgym: software to automate formative assessment of

unix command-line and scripting skills. ACM SIGCSE Bulletin, 39 (3),

353–353.

Syversen, J. (2006, March 30). Method and apparatus for defending against zero-

day worm-based attacks. Google Patents. (US Patent App. 11/632,669)

Teodorczyk, M. (2013). Wi-fi mini honeypot. Linux Journal , 2013 (225), 3.

Wang, P., Wu, L., Cunningham, R., & Zou, C. C. (2010). Honeypot detection

in advanced botnet attacks. International Journal of Information and

Computer Security , 4 (1), 30–51.

Weiler, N. (2002). Honeypots for distributed denial-of-service attacks. In

Enabling technologies: Infrastructure for collaborative enterprises, 2002.

wet ice 2002. proceedings. eleventh ieee international workshops on (pp.

109–114).

Williams, J. A., & Bergmann, N. W. (2004). Embedded linux as a platform

for dynamically self-reconfiguring systems-on-chip. In Ersa’04: the 2004

international conference on engineering of reconfigurable systems and

algorithms (pp. 163–169).

Winter, J. (2008). Trusted computing building blocks for embedded linux-based

arm trustzone platforms. In Proceedings of the 3rd acm workshop on scalable

trusted computing (pp. 21–30).

Xi, R., Jin, S., Yun, X., & Zhang, Y. (2011). Cnssa: a comprehensive network

55

security situation awareness system. In Trust, security and privacy in

computing and communications (trustcom), 2011 ieee 10th international

conference on (pp. 482–487).

Yin, X., Yurcik, W., & Slagell, A. (2005). The design of visflowconnect-ip: a

link analysis system for ip security situational awareness. In Information

assurance, 2005. proceedings. third ieee international workshop on (pp. 141–

153).

Zhang, F., Zhou, S., Qin, Z., & Liu, J. (2003). Honeypot: a supplemented active

defense system for network security. In Parallel and distributed computing,

applications and technologies, 2003. pdcat’2003. proceedings of the fourth

international conference on (pp. 231–235).

Zou, C. C., & Cunningham, R. (2006). Honeypot-aware advanced botnet

construction and maintenance. In Dependable systems and networks, 2006.

dsn 2006. international conference on (pp. 199–208).

56

APPENDIX A

This section is to provide detailed overview and technical contents of the research

that is presented. Key scripts are provided in the codes section as well as necessary

dependency and constants are also provided within.

CODES

1 #!/bin/bash
2 ### Needs to have an installation script.
3 #Default directory to store everything in one place.
4 source ∼/smart/toolset/randomize_password.sh
5 source ∼/smart/config/coloring_scheme.conf
6
7 #Introduce Config file
8
9 default_path=∼/smart/config

10 default_config=$default_path/smart_def.conf
11 config_file=$default_path/smart.conf
12
13
14 #Introduce Config Params
15 STEPS=0
16 TOTAL_STEPS=‘cat ∼/smart/config/lilith.list | wc -l ‘
17
18 VPN_DIREC=‘cat $config_file | grep vpn_dir | cut -d"=" -f2 | tr -d ’",’ ‘
19 RUN_CONFIG=‘cat $config_file | grep dont_ask | cut -d"=" -f2 | tr -d ’",’ ‘
20 OUTPUTS_DIR=‘cat $config_file | grep outputs_dir | cut -d"=" -f2 | tr -d ’",’ ‘
21 DEFAULT_PATH=‘cat $config_file | grep default_path | cut -d"=" -f2 | tr -d ’",’ ‘
22 STARTUP_CHECK=‘cat $config_file | grep startup_check | cut -d"=" -f2 | tr -d ’",’ ‘
23 EXPORT_TO_PATH=‘cat $config_file | grep export_to_path | cut -d"=" -f2 | tr -d ’",’ ‘
24 REQUIREMENTS_MET=‘cat $config_file | grep requirements_met | cut -d"=" -f2 | tr -d ’",’ ‘
25
26
27 ###For debuging Purposes
28 #echo "$TOTAL_STEPS"
29 #echo "This is run_config $RUN_CONFIG"
30 #echo "This is OUTPUTS_DIR $OUTPUTS_DIR"
31 #echo "This is DEFAULT_PATH $DEFAULT_PATH"
32 #echo "This is REQUIREMENTS_MET $REQUIREMENTS_MET"
33 clear
34 if [[! $(id -u) == 0]]; then
35 echo -e "${RLS} This script must be run as root"
36 exit 1
37 fi
38
39 if ["$STARTUP_CHECK" == "true"]; then
40 for pc in $(cat ∼/smart/config/lilith.list);do
41 ((STEPS++))
42 bin=‘echo "$pc" | cut -d "#" -f2‘
43 echo -ne "${RLS} ${darkgray} Checking ${lightyellow}$bin${RESET} ${darkgray}[${GREEN}$STEPS${RESET}${

darkgray}/${RED}$TOTAL_STEPS${darkgray}]${RESET}\r"
44 sleep 0.1
45 echo -ne " \r"
46 if [[-z $(which $bin)]]; then
47 echo "${RES} ${RED}Required files are not fully provided SMART will start Installing

Dependencies${RESET}"
48 program_tbi=‘echo "$pc" | cut -d "#" -f1‘
49 #echo "${RQS} ${darkgray}Checking ${lightyellow}$program_tbi${RESET}${darkgray} with ${

lightyellow}bin{RESET} ${darkgray}binary name.${RESET}"
50 #sed -i ’/dont_ask/c\dont_ask="false"’ $config_file
51 #sed -i ’/startup_check/c\startup_check="false"’ $config_file
52 #sed -i ’/requirements_met/c\requirements_met="false"’ $config_file
53 echo -e "${RLS} ${RED}Unable to find ${lightyellow}$program_tbi${RESET}. ${RED}Installing it !${

RESET} "
54 sleep 5
55 apt-get -y -q=2 install $program_tbi 2>/dev/null
56 echo -e "${GLS}${lightgreen}Successfully Installed${RESET} ${darkgray}[${GREEN}$STEPS${RESET}${

darkgray}/${RED}$TOTAL_STEPS${darkgray}]${RESET}${RESET}"
57 ((STEPS++))
58 #read -p "Press any key"
59 #exit 0
60 fi
61 #((STEPS++))
62 echo "${GCS} ${GREEN}Located ${lightyellow}$bin${RESET} ${GREEN}[1]${RESET}${darkgray}[${GREEN}

$STEPS${RESET}${darkgray}/${RED}$TOTAL_STEPS${darkgray}]${RESET}"
63 done
64 echo "${GLS} Succesfully Provided dependencies for SMART !"
65 sed -i ’/requirements_met/c\requirements_met="true"’ $config_file
66 #sed -i ’/startup_check/c\startup_check="true"’ $config_file
67 echo ""
68 #echo "${GCS} Startup Check is completed !"
69 #sed -i ’/requirements_met/c\requirements_met="true"’ $config_file
70 #STEPS=0
71 fi
72
73 if [! -d "$OUTPUTS_DIR"]; then
74 echo " ${RLS}Necessary log directories doesnt exist, Creating them."
75 echo " ${GLS}Creating $OUTPUTS_DIR"

57

76 mkdir /root/smart_db/
77 echo " ${GLS}Creating $OUTPUTS_DIR/fmr"
78 mkdir /root/smart__db/fmr
79 echo " ${GLS}Creating $OUTPUTS_DIR/motion"
80 mkdir /root/smart_db/motion
81 echo " ${GLS}Creating $OUTPUTS_DIR/bugin"
82 mkdir /root/smart_db/bugin
83 touch /root/smart_db/motion.log
84 echo " ${GLS}Directory Creation Accomplished [${GREEN}$STEPS${RESET}/${RED}$TOTAL_STEPS${RESET}]"
85
86 fi
87
88 if ["$EXPORT_TO_PATH" == "true"]; then
89 env_path="/usr/share/smart"
90 if [! -d "$env_path"]; then
91 echo " ${RLS} Creating Usr Share Folder"
92 mkdir /usr/share/smart
93 echo " ${RLS} Copying \.desktop Extension"
94 cp /root/smart/preprods/startsmart.desktop /usr/share/smart
95 echo " ${RLS} Copying Binary file to usr/bin"
96 cp /root/smart/preprods/smart /usr/bin/
97 echo " ${RLS} Copying Motion Configuration"
98 cp /root/smart/motion.conf /etc/motion/
99 else

100 echo " ${GLS} Which Eve is functional ! Skipping ..."
101 fi
102
103
104 fi
105
106 if ["$RUN_CONFIG" == "false"];
107 then
108 echo "Would you like to run tis initial setup next time ? ${GREEN}(T)${RESET}rue/${RED}(F)${RESET}alse ?"
109 echo -en "${bold}${RED}SMART${RESET}${normal}${BLUE}->${RESET} "
110 read dont_ask
111 case $dont_ask in
112 f|F) sed -i ’/dont_ask/c\dont_ask="true"’ $config_file ;;
113 t|T) sed -i ’/dont_ask/c\dont_ask="false"’ $config_file ;;
114 *)
115 echo "${RES}Not Valid Input Terminating !"
116 exit 1
117 esac
118 elif [[! -d "$DEFAULT_PATH/smart/"]]; then
119 echo "Valid Directory passed!"
120 fi
121
122
123
124
125 ((STEPS++))
126 sync_key="$(genpasswd)"
127 echo "${GLS} Sync Key = $sync_key"
128 xfce4-terminal --geometry 80x64+1111+0 --hide-menubar --hide-borders --hide-scrollbar --title=[S.M.A.R.T] --

icon=/root/smart/icon.png -e /root/smart/smart.sh 2>/dev/null &
129 exit 0

Code 5.1: codes/genesis.sh

1 #!/bin/bash -
2 #title :smart.sh
3 #description :SMART NFV APP
4 #author :Mert Kilic
5 #date :17-08-17
6 #version :v0.98d beta(Non-Release)(PoC)(UNDER DEV)
7 #usage :./smart.sh
8 #notes :
9 #bash_version :4.4.0(1)-release

10 #===#
11 ### | Declerations | ==#
12 LSB=/usr/bin/lsb_release
13 zenity="/usr/bin/zenity"
14 # Color Decleratins.
15
16 declare -r RED=$ESC"31m"
17 declare -r BLUE=$ESC"34m"
18 declare -r RESET=$ESC"39m"
19 declare -r GREEN=$ESC"32m"
20 declare -r LBLUE=$ESC"36m"
21
22 declare -r RES=${RED}"[!]"${RESET}
23 declare -r RLS=${RED}"[*]"${RESET}
24 declare -r RQS=${RED}"[?]"${RESET}
25 declare -r BES=${BLUE}"[!]"${RESET}
26 declare -r BLS=${BLUE}"[*]"${RESET}
27 declare -r BQS=${BLUE}"[?]"${RESET}
28 declare -r GES=${GREEN}"[!]"${RESET}
29 declare -r GLS=${GREEN}"[*]"${RESET}
30 declare -r GQS=${GREEN}"[?]"${RESET}
31
32 declare -r dim=‘echo -en "\e[2m"‘
33 declare -r bold=‘echo -en "\e[1m"‘
34 declare -r blink=‘echo -en "\e[5m"‘
35 declare -r normal=‘echo -en "\e[0m"‘
36 declare -r hidden=‘echo -en "\e[8m"‘
37 declare -r rsmartrse=‘echo -en "\e[7m"‘
38 declare -r underline=‘echo -en "\e[4m"‘
39 declare -r strickthru=‘echo -en "\e[9m"‘

58

40
41 AQUA=‘echo -en "\e[46m"‘
42 aqua=‘echo -en "\e[36m"‘
43 GRAY=‘echo -en "\e[47m"‘
44 gray=‘echo -en "\e[37m"‘
45 BLACK=‘echo -en "\e[40m"‘
46 black=‘echo -en "\e[30m"‘
47 WHITE=‘echo -en "\e[107m"‘
48 white=‘echo -en "\e[97m"‘
49 ORANGE=‘echo -en "\e[43m"‘
50 orange=‘echo -en "\e[33m"‘
51 PURPLE=‘echo -en "\e[45m"‘
52 purple=‘echo -en "\e[35m"‘
53 DEFAULT=‘echo -en "\e[49m"‘
54 default=‘echo -en "\e[39m"‘
55 DARKGRAY=‘echo -en "\e[100m"‘
56 darkgray=‘echo -en "\e[90m"‘
57 LIGHTRED=‘echo -en "\e[101m"‘
58 lightred=‘echo -en "\e[91m"‘
59 LIGHTBLUE=‘echo -en "\e[104m"‘
60 lightblue=‘echo -en "\e[94m"‘
61 LIGHTAQUA=‘echo -en "\e[106m"‘
62 lightaqua=‘echo -en "\e[96m"‘
63 LIGHTGREEN=‘echo -en "\e[102m"‘
64 lightgreen=‘echo -en "\e[92m"‘
65 LIGHTYELLOW=‘echo -en "\e[103m"‘
66 lightyellow=‘echo -en "\e[93m"‘
67 LIGHTPURPLE=‘echo -en "\e[105m"‘
68 lightpurple=‘echo -en "\e[95m"‘
69
70
71 source /root/smart/toolset/exifhelper.sh
72 source /root/smart/toolset/randomize_password.sh
73 source /root/smart/toolset/autogen.sh
74 source /root/smart/toolset/4CA.sh
75
76 ### | Functions | ==#
77
78 # {*} Function status = Finished
79 # {*} Function Desc = Timestamp File Name Compatible
80 # {*} Function To do = None
81 # {*} Priority Stat = @
82 # {*} Note/Bugs/Usg = timestamp function can be called as is.
83 function timestamp() {
84 date +’%D_%T’| tr :/ _
85 }
86
87 # {*} Function status = Finished
88 # {*} Function Desc = Changes Terminal Title
89 # {*} Function To do = None
90 # {*} Priority Stat = @
91 # {*} Note/Bugs/Usg = None
92 function set_ttl() {
93 echo -ne ’\033]2;’$1’\007’
94 }
95
96 # {*} Function status = Finished
97 # {*} Function Desc = Fluid Menu Animation
98 # {*} Function To do = None
99 # {*} Priority Stat = @

100 # {*} Note/Bugs/Usg = None
101 function clear_screen() {
102 printf "\033c"
103 }
104
105 # {*} Function status = Finished
106 # {*} Function Desc = $1-> Message (optional)
107 # {*} Function To do = None
108 # {*} Priority Stat = @
109 # {*} Note/Bugs/Usg = None
110 function pause(){
111
112 local message="$@"
113 [-z $message] && message="Press ${lightyellow}[Enter]${normal} key to continue..."
114 read -p "$message" readEnterKey
115 clear_screen
116
117 }
118
119 # {*} Function status = Primitive
120 # {*} Function Desc = Progress indicator of any given job
121 # {*} Function To do = Control-Flow Mechanism
122 # {*} Priority Stat = Least[]Avg[X]Medium[]Ab.Avg[]Highest[]Critical[]Extreme[]
123 # {*} Note/Bugs/Usg = Usage progress_indicator <task> read -p "# " proc_name ; progress_indicator "

$proc_name"
124 function progress_indicator(){
125
126 if [-z "$1"] # Is parameter #1 zero length?
127 then
128 echo "-Parameter #1 is zero length.-" # Or no parameter passed.
129 else
130 echo "-Parameter #1 is \"$1\".-"
131 fi
132 echo
133 pid_pless="$1" # Process Id of the previous running command
134 pid=$(pidof $1)
135 echo -e "pid is $pid"
136 spin=’-\|/’

59

137 i=0
138 while kill -0 $pid 2>/dev/null
139 do
140 i=$(((i+1) %4))
141 printf "\r[${spin:$i:1}] Still Runnin’"
142 sleep .1
143 done
144 pause
145
146 }
147
148
149 # [---]
150 # {*} Function status = Skeleton[]-Alpha[]-Beta[]-Functional[]-Finished[]-Perfections[]
151 # {*} Function Desc =
152 # {*} Function To do =
153 # {*} Priority Stat = Least[]-Avg[X]-Medium[]-Ab.Avg[]-Highest[]-Critical[]-Extreme[]
154 # {*} Note/Bugs/Usg =
155 # [---]
156 function loading_indicator(){
157
158 MAX=${1:-11}
159 TIME="${2:-0.08}"
160 TL="${3:-[}"
161 S="${4:-#####}"
162 TR="${5:-]}"
163 while true; do
164 R=0
165 while [$R -lt $MAX]; do
166 RSP=$(($MAX - $R))
167 if [$RSP -gt $MAX]; then RSP=$MAX ; fi
168 LSP=$(($MAX - ${RSP}))
169 echo -n "$TL"
170 for l in $(seq 1 $LSP); do
171 echo -n " "
172 done
173 echo -n $S
174 for r in $(seq 1 $RSP); do
175 echo -n " "
176 done; echo -ne "$TR\r"
177 sleep $TIME ; ((R++))
178 done
179 while [$R -ne 0]; do
180 RSP=$(($MAX - $R))
181 if [$RSP -ge $MAX]; then RSP=$MAX ; fi
182 LSP=$(($R + 0))
183 if [$LSP -lt 0]; then LSP=0 ; fi
184 echo -n "$TL"
185 for l in $(seq 1 $R); do
186 echo -n " "
187 done
188 echo -n $S
189 for r in $(seq 1 $RSP); do
190 echo -n " "
191 done; echo -ne "$TR\r"
192 sleep $TIME; ((R--))
193 done
194 done
195
196 }
197
198
199 # {*} Function status = Finished
200 # {*} Function Desc = Progress indicator for given sleep time
201 # {*} Function To do = Control-Flow Mechanism
202 # {*} Priority Stat = @
203 # {*} Note/Bugs/Usg = Usage sleep_indicator <seconds>"
204 function sleep_indicator(){
205
206 i=0
207 spin=’-\|/’
208 secs=$(($1 * 1))
209 custom_msg=$2
210 while [$secs -gt 0]; do
211 i=$(((i+1) %4))
212 printf " \r%s[${spin:$i:1}]%s $custom_msg’" "${RED}" "${RESET}"
213 sleep .1
214 sleep 1
215 : $((secs--))
216 done
217
218 }
219
220 # {*} Function status = Finished
221 # {*} Function Desc = sha256 Checksum and hash anythin’
222 # {*} Function To do = None
223 # {*} Priority Stat = @
224 # {*} Note/Bugs/Usg = None
225 function hash_sha256() {
226
227 file_to_hash=$1
228 if [! -z "$file_to_hash"];
229 then
230 sha256sum $file_to_hash | cut -d " " -f1
231 else
232 echo "Nothing Selected !"
233 fi
234

60

235 }
236
237 # {*} Function status = Finished
238 # {*} Function Desc = sha512 Checksum and hash anythin’
239 # {*} Function To do = None
240 # {*} Priority Stat = @
241 # {*} Note/Bugs/Usg = None
242 function hash_sha512() {
243
244 file_to_hash=$1
245 if [! -z "$file_to_hash"];
246 then
247 sha512sum $file_to_hash | cut -d " " -f1
248 else
249 echo "Nothing Selected !"
250 fi
251
252 }
253
254 # {*} Function status = Finished
255 # {*} Function Desc = sha384 Checksum and hash anythin’
256 # {*} Function To do = None
257 # {*} Priority Stat = @
258 # {*} Note/Bugs/Usg = None
259 function hash_sha384() {
260
261 file_to_hash=$1
262 if [! -z "$file_to_hash"];
263 then
264 sha384sum $file_to_hash | cut -d " " -f1
265 else
266 echo "Nothing Selected !"
267 fi
268
269 }
270
271 # {*} Function status = Finished
272 # {*} Function Desc = sha224 Checksum and hash anythin’
273 # {*} Function To do = None
274 # {*} Priority Stat = @
275 # {*} Note/Bugs/Usg = None
276 function hash_sha224() {
277
278 file_to_hash=$1
279 if [! -z "$file_to_hash"];
280 then
281 sha224sum $file_to_hash | cut -d " " -f1
282 else
283 echo "Nothing Selected !"
284 fi
285
286 }
287
288 # {*} Function status = Finished
289 # {*} Function Desc = sha1 Checksum and hash anythin’
290 # {*} Function To do = None
291 # {*} Priority Stat = @
292 # {*} Note/Bugs/Usg = None
293 function hash_sha160() {
294
295 file_to_hash=$1
296 if [! -z "$file_to_hash"];
297 then
298 sha1sum $file_to_hash | cut -d " " -f1
299 else
300 echo "Nothing Selected !"
301 fi
302
303 }
304
305 # {*} Function status = Finished
306 # {*} Function Desc = md5 Checksum and hash anythin’
307 # {*} Function To do = None
308 # {*} Priority Stat = @
309 # {*} Note/Bugs/Usg = None
310 function hash_md5sam() {
311
312 file_to_hash=$1
313 if [! -z "$file_to_hash"];
314 then
315 md5sum $file_to_hash | cut -d " " -f1
316 else
317 echo "Nothing Selected !"
318 fi
319
320 }
321
322 # {*} Function status = Finished
323 # {*} Function Desc = Summary Of All Hash Functions
324 # {*} Function To do = None
325 # {*} Priority Stat = @
326 # {*} Note/Bugs/Usg = None
327 function hash_em_all() {
328
329 auxillary=$1
330 custom_data=$2
331 if ["$auxillary" == "all"];
332 then

61

333 file_to_hash=$(pick_single_file)
334 if [! -z "$file_to_hash"];
335 then
336
337 md5sam=‘hash_md5sam "$file_to_hash"‘
338 write_header "This is MD5Sum"
339 printf "\v%s\n" "$md5sam"
340 sha160=‘hash_sha160 "$file_to_hash"‘
341 write_header "This is SHA160"
342 printf "\v%s\n" "$sha160"
343 sha224=‘hash_sha224 "$file_to_hash"‘
344 write_header "This is SHA224"
345 printf "\v%s\n" "$sha224"
346 sha256=‘hash_sha256 "$file_to_hash"‘
347 write_header "This is SHA256"
348 printf "\v%s\n" "$sha256"
349 sha384=‘hash_sha384 "$file_to_hash"‘
350 write_header "This is SHA384"
351 printf "\v%s\n" "$sha384"
352 sha512=‘hash_sha512 "$file_to_hash"‘
353 write_header "This is SHA512"
354 printf "\v%s\n" "$sha512"
355
356 else
357 echo "Nothing Selected !"
358 fi
359 fi
360 if ["$auxillary" == "manual"];
361 then
362 file_to_hash=$custom_data
363 if [! -z "$file_to_hash"];
364 then
365 md5sam=‘hash_md5sam "$file_to_hash"‘
366 write_header "This is MD5Sum"
367 printf "\v%s\n" "$md5sam"
368 sha160=‘hash_sha160 "$file_to_hash"‘
369 write_header "This is SHA160"
370 printf "\v%s\n" "$sha160"
371 sha224=‘hash_sha224 "$file_to_hash"‘
372 write_header "This is SHA224"
373 printf "\v%s\n" "$sha224"
374 sha256=‘hash_sha256 "$file_to_hash"‘
375 write_header "This is SHA256"
376 printf "\v%s\n" "$sha256"
377 sha384=‘hash_sha384 "$file_to_hash"‘
378 write_header "This is SHA384"
379 printf "\v%s\n" "$sha384"
380 sha512=‘hash_sha512 "$file_to_hash"‘
381 write_header "This is SHA512"
382 printf "\v%s\n" "$sha512"
383 else
384 echo "Nothing Selected !"
385 fi
386 fi
387 pause
388
389 }
390
391 # {*} Function status = Finished
392 # {*} Function Desc = Hash Oil’
393 # {*} Function To do = None
394 # {*} Priority Stat = @
395 # {*} Note/Bugs/Usg = None
396 function hash_oil() {
397
398 echo "+--+"
399 echo "# [1) Checksum File | 2) Manual Input | 3) Terminate] |"
400 echo "+--+"
401 echo -en "${bold}${RED}SMART${RESET}${normal}${BLUE}->${RESET} "
402 read t
403 case $t in
404 1) hash_em_all "all" ;;
405 2) temp_file=$(make_temp_file); read -p "Input Text=" custom_data ; echo "$custom_data" >>

$temp_file ; hash_em_all "manual" "$temp_file" ;;
406 3) echo " Terminated" ; pause ;;
407 FF) clear_screen && return 0 ;;
408 ff) clear_screen && return 0 ;;
409 *)
410 echo "Please select a valid option !"
411 pause
412 esac
413
414 }
415
416 # {*} Function status = Finished
417 # {*} Function Desc = Generic mktemp func
418 # {*} Function To do =
419 # {*} Priority Stat = @
420 # {*} Note/Bugs/Usg = None
421 function make_temp_file() {
422 #TFILE="/tmp/$(basename $0).$$.tmp"
423 #$TFILE
424 #echo "$TFILE"
425 mktemp
426 }
427
428
429 # {*} Function status = Finished

62

430 # {*} Function Desc = Check all rules in IPTABLES
431 # {*} Function To do = Generic set of rules to control iptables
432 # {*} Priority Stat = @
433 # {*} Note/Bugs/Usg = None
434 function iptables_check_rules() {
435 iptables -L -v
436 pause
437 }
438
439 # {*} Function status = Not Started
440 # {*} Function Desc = Check any given port activity within iptables
441 # {*} Function To do = Generic set of rules to control iptables
442 # {*} Priority Stat = Least[]Avg[]Medium[X]Ab.Avg[]Highest[]Critical[]Extreme[]
443 # {*} Note/Bugs/Usg = None
444 function iptables_check_port() {
445 echo "iptables_check_port"
446 }
447
448 # {*} Function status = Not Started
449 # {*} Function Desc = Check any given ip activity within iptables
450 # {*} Function To do = None
451 # {*} Priority Stat = Least[]Avg[]Medium[X]Ab.Avg[]Highest[]Critical[]Extreme[X]
452 # {*} Note/Bugs/Usg = None
453 function iptables_check_ip() {
454 echo "iptables_check_ip"
455 }
456
457 # {*} Function status = Not Started
458 # {*} Function Desc = Ban Single IP adress for any egress/ingress comm.
459 # {*} Function To do = iptables mambojambo
460 # {*} Priority Stat = Least[]Avg[]Medium[X]Ab.Avg[]Highest[]Critical[]Extreme[]
461 # {*} Note/Bugs/Usg = None
462 function ip_ban() {
463 echo " ban ip adress "
464 }
465
466 # {*} Function status = Not Started
467 # {*} Function Desc =
468 # {*} Function To do = None
469 # {*} Priority Stat = Least[]Avg[]Medium[X]Ab.Avg[]Highest[]Critical[]Extreme[]
470 # {*} Note/Bugs/Usg = None
471 function port_forward() {
472 echo "1" > /proc/sys/net/ipv4/ip_forward
473 }
474
475
476 # {*} Function status = Beta Usage
477 # {*} Function Desc = Clear exif data off of .jpg and .jpeg files
478 # {*} Function To do = Functionality to add entire folder and detect all files that matches the extension ||

has exif data
479 # {*} Priority Stat = Least[]Avg[]Medium[]Ab.Avg[X]Highest[]Critical[]Extreme[]
480 # {*} Note/Bugs/Usg = None
481 function exif_tools(){
482
483 local t
484 echo "+--+"
485 echo "# [1) View Exif Data | 2) Clear Exif Data | 3)Terminate] |"
486 echo "+--+"
487 #echo -e "What to do now; 1) Check Browser | 2) New Identity | 3) Kill Tor "
488 echo -en "${bold}${RED}SMART${RESET}${normal}${BLUE}->${RESET} "
489 read t
490 case $t in
491 1) view_exif ;;
492 2) clear_exif ;;
493 3) clear_screen && return 0 ;;
494 ff) clear_screen && return 0 ;;
495 *)
496 echo "Please select a valid option !"
497 pause
498 esac
499
500 }
501
502 # [---]
503 # {*} Function status = Skeleton[]-Alpha[]-Beta[]-Functional[]-Finished[]-Perfections[]
504 # {*} Function Desc =
505 # {*} Function To do =
506 # {*} Priority Stat = Least[]-Avg[X]-Medium[]-Ab.Avg[]-Highest[]-Critical[]-Extreme[]
507 # {*} Note/Bugs/Usg =
508 # [---]
509 function view_exif(){
510 file_to_exif="$(pick_single_file)"
511 exif_view "$file_to_exif"
512 pause
513 }
514
515 # [---]
516 # {*} Function status = Skeleton[]-Alpha[]-Beta[]-Functional[]-Finished[]-Perfections[]
517 # {*} Function Desc =
518 # {*} Function To do =
519 # {*} Priority Stat = Least[]-Avg[X]-Medium[]-Ab.Avg[]-Highest[]-Critical[]-Extreme[]
520 # {*} Note/Bugs/Usg =
521 # [---]
522 function clear_exif(){
523 file_to_clear="$(pick_single_file)"
524 exif_clean "$file_to_clear"
525 pause
526 }

63

527
528
529 # [---]
530 # {*} Function status = Skeleton[]-Alpha[]-Beta[]-Functional[]-Finished[]-Perfections[]
531 # {*} Function Desc =
532 # {*} Function To do =
533 # {*} Priority Stat = Least[]-Avg[X]-Medium[]-Ab.Avg[]-Highest[]-Critical[]-Extreme[]
534 # {*} Note/Bugs/Usg =
535 # [---]
536 function one_time_pad(){
537 xfce4-terminal --geometry 56x24+530+0 --hide-menubar --zoom=0.80 -x ∼/smart/toolset/otp.sh 2>/dev/null &
538 pause
539 }
540
541 # {*} Function Stat = Finished
542 # {*} Function Desc = Regex for correct IPv4 definition before passing to funcs.
543 # {*} Function ToDo = None
544 # {*} Priority Stat = @
545 # {*} Note/Bugs/Usg = None
546 function validate_ip(){
547
548 local ip=$1
549 local stat=1
550 if [[$ip =∼ ^[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}$]]; then
551 OIFS=$IFS
552 IFS=’.’
553 ip=($ip)
554 IFS=$OIFS
555 [[${ip[0]} -le 255 && ${ip[1]} -le 255 \
556 && ${ip[2]} -le 255 && ${ip[3]} -le 255]]
557 stat=$?
558 fi
559 return $stat
560
561 }
562
563 # {*} Function status = Finished
564 # {*} Function Desc = Peeling off the Onion
565 # {*} Function To do = None
566 # {*} Priority Stat = @
567 # {*} Note/Bugs/Usg = None
568 function start_tor(){
569
570
571 local t
572 if [-z ‘pidof tor‘];
573 then
574 #tor 2>/dev/null & ### -> For Debugging TOR Connection
575 tor --quiet 2>/dev/null &
576 echo "${GLS} Tor Has started !"
577 echo "${GLS} Waiting for link!"
578 sleep_indicator "23" "Handshaking With The Onion Routing"
579 echo " ${GREEN}Completed ! ${RESET} "
580 pause
581 else
582 echo "Tor is running Please, Proceed.."
583 tor_ops
584 fi
585
586 }
587
588
589 # [---]
590 # {*} Function status = Skeleton[]-Alpha[]-Beta[]-Functional[]-Finished[]-Perfections[]
591 # {*} Function Desc =
592 # {*} Function To do =
593 # {*} Priority Stat = Least[]-Avg[X]-Medium[]-Ab.Avg[]-Highest[]-Critical[]-Extreme[]
594 # {*} Note/Bugs/Usg =
595 # [---]
596 function tor_ops(){
597
598 echo "+--+"
599 echo "# [1) Check Browser | 2) New Identity | 3) Kill Tor] |"
600 echo "+--+"
601 #echo -e "What to do now; 1) Check Browser | 2) New Identity | 3) Kill Tor "
602 echo -en "${bold}${RED}SMART${RESET}${normal}${BLUE}->${RESET} "
603 read t
604 case $t in
605 1) check_browser ;;
606 2) new_identity ;;
607 3) kill_tor ;;
608 FF) clear_screen && return 0 ;;
609 ff) clear_screen && return 0 ;;
610 *)
611 echo "Please select a valid option !"
612 pause
613 esac
614
615 }
616
617 # {*} Function status = Finished
618 # {*} Function Desc = Checks if Tor is running in bg
619 # {*} Function To do = None
620 # {*} Priority Stat = @
621 # {*} Note/Bugs/Usg = None
622 function check_tor(){
623
624 pidof tor > /dev/null && echo "Tor Is Running !"

64

625 pidof tor > /dev/null || echo "Tor Is NOT Running !"
626 pause
627
628 }
629
630 # {*} Function status = Finished
631 # {*} Function Desc = Sends Interrupt to TOR service for a new identity
632 # {*} Function To do = None
633 # {*} Priority Stat = @
634 # {*} Note/Bugs/Usg = None
635 function new_identity() {
636 pidof tor | xargs sudo kill -HUP 2>/dev/null
637 pause
638 }
639
640 # {*} Function status = Finished
641 # {*} Function Desc = Kills BG Tor Process
642 # {*} Function To do = None
643 # {*} Priority Stat = @
644 # {*} Note/Bugs/Usg = None
645 function tor_killa(){
646 kill -9 ‘pidof tor‘
647 }
648
649 # {*} Function status = Finished
650 # {*} Function Desc = Kills Tor Running in the Background
651 # {*} Function To do = None
652 # {*} Priority Stat = @
653 # {*} Note/Bugs/Usg = None
654 function kill_tor() {
655
656 read -p "Are you sure want to viciously kill tor ? (y/n)" chc0
657 case $chc0 in
658 y|Y) usg=1 ;;
659 n|N) usg=0 ;;
660 *) echo "No Input Provided";;
661 esac
662 if ["$usg" == "1"];
663 then
664 kill -9 ‘pidof tor‘ 2>/dev/null
665 if [-z ‘pidof tor‘];
666 then
667 echo "Tor Has been disconnected *(ENFORCED)*"
668 hev "deactivated"
669 notify-send "Tor Has been disconnected *(ENFORCED)*"
670 else
671 read -p "Process is still running ! Try Again ? (y/n)" yn
672 echo "Process is still running "
673 case "$yn" in
674 y|Y) ;;
675 n|N) clear_screen ; main_menu ;;
676 *) echo "No Input Provided";;
677 esac
678 fi
679 fi
680 pause
681
682 }
683
684 # {*} Function status = Finished
685 # {*} Function Desc = Display Public and Proxychained IP
686 # {*} Function To do = Maybe add michealbay effects
687 # {*} Priority Stat = @
688 # {*} Note/Bugs/Usg = Could be better with a blocking operation
689 function check_GIP() {
690
691 PUBLIC_IP=$(wget http://ipecho.net/plain -O - -q 2>/dev/null)
692 echo -n "${RED}Public IP${RESET} = "
693 echo $PUBLIC_IP | cut -d" " -f 3
694 DNSLEAKTEST=$(curl https://www.dnsleaktest.com 2>/dev/null | grep "Hello" | cut -d">" -f 2 | cut -d " " -

f2 | cut -d"<" -f1)
695 echo -n "${RED}DNS Query IP${RESET} = "
696 echo $DNSLEAKTEST
697 Proxy_IP=$(proxychains wget http://ipecho.net/plain -O - -q 2>/dev/null)
698 echo -n "${GREEN}Proxyd IP${RESET} = "
699 echo $Proxy_IP | cut -d" " -f 3
700 PROXYDNSLEAKTEST=$(proxychains curl https://www.dnsleaktest.com 2>/dev/null | grep "Hello" | cut -d">" -f

2 | cut -d " " -f2 | cut -d"<" -f1)
701 echo -n "${GREEN}ProxyDNS IP${RESET} = "
702 echo $PROXYDNSLEAKTEST
703 pause
704
705 }
706
707 # {*} Function status = Finished
708 # {*} Function Desc = Remotely Check proxy access
709 # {*} Function To do = None
710 # {*} Priority Stat = @
711 # {*} Note/Bugs/Usg = None
712 function check_browser() {
713
714 echo -ne " Waiting for ${lightyellow}ESTABLISHED${normal} signal ...\033[0K\r"
715 reta=‘curl --socks5 localhost:9050 --socks5-hostname localhost:9050 -s https://check.torproject.org/ |

cat | grep -m 1 Congratulations | xargs‘
716 if [! -z "$reta"];
717 then
718 echo " Successfully ${GREEN}ESTABLISHED${RESET} the Link with TOR"
719 else

65

720 echo " Connection was ${RED}NOT${RESET} made !"
721 fi
722 pause
723
724 }
725
726 # {*} Function status = Finished
727 # {*} Function Desc = Checks if Tor Installed
728 # {*} Function To do = None
729 # {*} Priority Stat = @
730 # {*} Note/Bugs/Usg = None
731 function check_tor_installed() {
732
733 echo -e "Checking if Tor is installed...\n"
734 TOR="/etc/init.d/tor"
735 if [-f $TOR];
736 then
737 echo -e "Tor is Installed!\n"
738 echo -e "Starting Tor :-)\n"
739 systemctl start tor
740 else
741 echo -e "Tor is not installed! apt-get update and then apt-get install tor\n"
742 exit
743 fi
744
745 }
746
747 # {*} Function status = Finished
748 # {*} Function Desc = Check if Proxychains Installed
749 # {*} Function To do = None
750 # {*} Priority Stat = @
751 # {*} Note/Bugs/Usg = None
752 function check_proxychains_installed() {
753
754 echo -e "Checking if Proxychains is installed...\n"
755 PC="/etc/proxychains.conf"
756 if [-f $PC];
757 then
758 echo -e "Proxychains is Installed!\n"
759 else
760 echo -e "Proxychains is not installed! apt-get update and then apt-get install proxychains\n"
761 exit
762 fi
763
764 }
765
766 # {*} Function status = Beta
767 # {*} Function Desc = Cover Local Tracks a bit
768 # {*} Function To do = None
769 # {*} Priority Stat = Least[]Avg[X]Medium[]Ab.Avg[X]Highest[]Critical[]Extreme[]
770 # {*} Note/Bugs/Usg = None
771 function cover_tracks() {
772
773 echo "Follow me =)" > /var/log/auth.log
774 history -c
775 history -w
776 echo "I am sorry =)" > ∼/.bash_history
777 rm ∼/.bash_history -rf
778 history -c
779 history -w
780
781 }
782
783 # {*} Function status = To be Tested
784 # {*} Function Desc = Man gotta protect himself right ?
785 # {*} Function To do = None
786 # {*} Priority Stat = Least[]Avg[]Medium[X]Ab.Avg[]Highest[]Critical[]Extreme[]
787 # {*} Note/Bugs/Usg = None
788 function go_turtle() {
789 # allow only 1.1.1.0/24 and ports 80,443 and log drops to /var/log/messages
790
791 iptables -A INPUT -s 1.1.1.0/24 -m state --state RELATED,ESTABLISHED,NEW -p tcp -m multiport --dports

80,443 -j ACCEPT
792 iptables -A INPUT -i eth0 -m state --state RELATED,ESTABLISHED,NEW -j ACCEPT
793 iptables -A INPUT DROP
794 iptables -A OUTPUT -o eth0 -j ACCEPT
795 iptables -A INPUT -i lo -j ACCEPT
796 iptables -A OUTPUT -o lo -j ACCEPT
797 iptables -N LOGGING
798 iptables -A INPUT -j LOGGING
799 iptables -A LOGGING -m limit --limit 4/min -J LOG --log_prefix "SMART_DROPPED_CONN "
800 iptables -A LOGGING -j DROP
801
802 }
803
804 # {*} Function status = Finished
805 # {*} Function Desc = Spoof Mac Adress for any interface
806 # {*} Function To do = None
807 # {*} Priority Stat = @
808 # {*} Note/Bugs/Usg = None
809 function change_mac() {
810
811 echo ""
812 echo "+--+"
813 echo "| [Available Interfaces Below] |"
814 echo "+--+"
815 echo -ne "${GLS} "
816 echo ‘ifconfig | grep flags | cut -d ":" -f1‘

66

817 echo "+--+"
818 read -p "Which Interface to change Mac ? (eth0 | wlan0 | tap0) =" chcInf
819 if [-z "$chcInf"];
820 then
821 echo "${RLS} No Interface Selected !"
822 else
823 echo -n "Current MAC address for that Device is = "
824 curr_mac=‘ifconfig $chcInf | grep ether | cut -d " " -f 10‘
825 echo "$curr_mac"
826 echo "ALL YOUR CONNECTION WILL BE INTERRUPTED"
827 read -p "(1)Randomize 2)Trusted OID 3)Back to Defaults F)Terminate? = " ce
828 case "$ce" in
829 1) sudo ifconfig $chcInf down; sudo macchanger -r $chcInf; sudo ifconfig $chcInf up;;
830 2) sudo ifconfig $chcInf down; sudo macchanger -e $chcInf; sudo ifconfig $chcInf up;;
831 3) sudo ifconfig $chcInf down; sudo macchanger -p $chcInf; sudo ifconfig $chcInf up;;
832 f|F) echo " Terminated !" ;;
833 *) echo "No Input Provided";;
834 esac
835 fi
836 pause
837
838 }
839
840
841
842 # {*} Function status = Finished
843 # {*} Function Desc = SMB Null Session Checker
844 # {*} Function To do = None
845 # {*} Priority Stat = @
846 # {*} Note/Bugs/Usg = None
847 function nullmein(){
848
849 if [-z "$1"]; then
850 echo "[*] Try SMB Null Session for specific ip or range"
851 echo "[*] Usage : $0 <file_to_read>"
852 exit 0
853 fi
854
855 source_file=$1;
856
857 for ips in $(cat $source_file); do
858 printf "Scanning for Null Session @ %s\n""$ips"
859 output=‘bash -c "echo ’srvinfo’ | rpcclient $ips -U%"‘
860 echo $output
861 done
862
863 }
864
865 # {*} Function status = Finished
866 # {*} Function Desc = Remote Information Sub-Menu Items
867 # {*} Function To do = None
868 # {*} Priority Stat = @
869 # {*} Note/Bugs/Usg = None
870 function remote_menu(){
871
872 local c
873 clear_screen
874 figlet -ctf small "S.M.A.R.T"
875 echo ""
876 echo "+--+"
877 echo "| [Auxillary Toolset] |"
878 echo "+--+"
879 echo " [0x01] - Zenity Ping | [0x09] - [smarttool]Ping sweep "
880 echo " [0x02] - Zenity Whois | [0x1A] - [smarttool]Exiftools "
881 echo " [0x03] - xxxxxxxxxxxxxxxxxxxxx | [0x1B] - [smarttool]Generate Bash "
882 echo " [0x04] - xxxxxxxxxxxxxxxxxxxxx | [0x1C] - [smarttool]4CHA "
883 echo " [0x05] - xxxxxxxxxxxxxxxxxxxxx | [0x1D] - Extract File Archives "
884 echo " [0x06] - xxxxxxxxxxxxxxxxxxxxx | [0x1E] - TCPTRACK Interface "
885 echo " [0x07] - xxxxxxxxxxxxxxxxxxxxx | [0x1F] - SHA256 CheckSum Files "
886 echo " [0x08] - xxxxxxxxxxxxxxxxxxxxx | [0xFF] - Back To Main Menu "
887 echo "+--+"
888 echo ""
889 echo -en "${bold}${RED}SMART${RESET}${normal}${BLUE}->${RESET} "
890 read c
891 case $c in
892 1) zen_ping ;;
893 2) zen_whois ;;
894 3) make_temp_file ;;
895 4) echo "Custom Data" ;;
896 5) echo "Custom Data" ;;
897 6) echo "Custom Data" ;;
898 7) echo "Custom Data" ;;
899 8) echo "Custom Data" ;;
900 9) ping_sweep ;;
901 1A) exif_tools ;;
902 1a) exif_tools ;;
903 1B) generate_shell ; pause ;;
904 1b) generate_shell ; pause;;
905 1C) 4cha_main ; pause ;;
906 1c) 4cha_main ; pause ;;
907 1D) extract_file ;;
908 1d) extract_file ;;
909 1E) display_tcptrack ;;
910 1e) display_tcptrack ;;
911 1f) hash_oil ;;
912 1F) hash_oil ;;
913 FF) clear_screen && return 0 ;;
914 ff) clear_screen && return 0 ;;

67

915 *)
916 echo "Please select a valid option !"
917 pause
918 esac
919
920 }
921
922 # {*} Function status = Finished
923 # {*} Function Desc = Information Sub-Menu Items
924 # {*} Function To do = None
925 # {*} Priority Stat = @
926 # {*} Note/Bugs/Usg = None
927 function info_menu(){
928
929 local c
930 clear_screen
931 figlet -ctf small "S.M.A.R.T"
932 echo ""
933 echo "+--+"
934 echo "| [Information Menu] |"
935 echo "+--+"
936 echo " [0x01] - Operating system info | [0x09] - Check Proxy GIP "
937 echo " [0x02] - Hostname and dns info | [0x1A] - Check USB Syslog "
938 echo " [0x03] - Network info | [0x1B] - Check NT OEM keys "
939 echo " [0x04] - Who is online | [0x1C] - Common Ports List "
940 echo " [0x05] - Last logged in users | [0x1D] - Iptables Rules Sum "
941 echo " [0x06] - Free/used memory info | [0x1E] - Iptables Check IPP "
942 echo " [0x07] - Watch Netstat Ops | [0x1F] - Iptables Check Port"
943 echo " [0x08] - Check TOR Status | [0xFF] - Back To Main Menu "
944 echo "+--+"
945 echo ""
946 echo -en "${bold}${RED}SMART${RESET}${normal}${BLUE}->${RESET} "
947 read c
948 case $c in
949 1) os_info ;;
950 2) host_info ;;
951 3) net_info ;;
952 4) user_info "who" ;;
953 5) user_info "last" ;;
954 6) mem_info ;;
955 7) display_netstat ;;
956 8) check_tor ;;
957 9) check_GIP ;;
958 1A) check_usb_log ;;
959 1a) check_usb_log ;;
960 1B) check_oem_key ;;
961 1b) check_oem_key ;;
962 1C) common_portlist ;;
963 1c) common_portlist ;;
964 1D) iptables_check_rules ;;
965 1d) iptables_check_rules ;;
966 1E) iptables_check_ip ;;
967 1e) iptables_check_ip ;;
968 1f) iptables_check_port ;;
969 1F) iptables_check_port ;;
970 FF) clear_screen && return 0 ;;
971 ff) clear_screen && return 0 ;;
972 *)
973 echo "Please select a valid option !"
974 pause
975 esac
976
977 }
978
979 # {*} Function status = Finished
980 # {*} Function Desc = Writes a Header with passed arg. $1 is the Message
981 # {*} Function To do = Change fckin echoes to printf
982 # {*} Priority Stat = @
983 # {*} Note/Bugs/Usg = Usage : write_header " System information "
984 function write_header(){
985
986 local h="$@"
987 echo "+--+"
988 echo "#[${h}]"
989 echo "+--+"
990
991 }
992
993 # {*} Function status = Finished
994 # {*} Function Desc = Display a list of users currently/recently logged on
995 # {*} Function To do = None
996 # {*} Priority Stat = @
997 # {*} Note/Bugs/Usg = None
998 function os_info(){
999

1000 write_header " System information "
1001 echo "Operating system : $(uname)"
1002 [-x $LSB] && $LSB -a || echo "$LSB command is not insalled (set \$LSB variable)"
1003 pause
1004
1005 }
1006
1007 # {*} Function status = Finished
1008 # {*} Function Desc = Get info about host such as dns, IP, and hostname
1009 # {*} Function To do = None
1010 # {*} Priority Stat = @
1011 # {*} Note/Bugs/Usg = None
1012 function host_info(){

68

1013
1014 local dnsips=$(sed -e ’/^$/d’ /etc/resolv.conf | awk ’{if (tolower($1)=="nameserver") print $2}’)
1015 write_header " Hostname and DNS information "
1016 echo "Hostname : $(hostname -s)"
1017 echo "DNS domain : $(hostname -d)"
1018 echo "Fully qualified domain name : $(hostname -f)"
1019 echo "Network address (IP) : $(hostname -i)"
1020 echo "DNS name servers (DNS IP) : ${dnsips}"
1021 pause
1022
1023 }
1024
1025 # {*} Function status = Finished
1026 # {*} Function Desc = Network inferface and routing info
1027 # {*} Function To do = None
1028 # {*} Priority Stat = @
1029 # {*} Note/Bugs/Usg = None
1030 function net_info(){
1031
1032 devices=$(netstat -i | cut -d" " -f1 | egrep -v "^Kernel|Iface|lo")
1033 write_header " Network information "
1034 echo "Total network interfaces found : $(wc -w <<< ${devices})"
1035 echo "*** IP Addresses Information ***"
1036 ip -4 address show
1037 echo "+--+"
1038 echo "| [Network Routing] |"
1039 echo "+--+"
1040 netstat -nr
1041 echo "+--+"
1042 echo "| [Interface traffic information] |"
1043 echo "+--+"
1044 netstat -i
1045 pause
1046
1047 }
1048
1049
1050 # [---]
1051 # {*} Function status = Skeleton[]-Alpha[]-Beta[]-Functional[]-Finished[]-Perfections[]
1052 # {*} Function Desc =
1053 # {*} Function To do =
1054 # {*} Priority Stat = Least[]-Avg[X]-Medium[]-Ab.Avg[]-Highest[]-Critical[]-Extreme[]
1055 # {*} Note/Bugs/Usg =
1056 # [---]
1057 function check_inet_connectivity(){
1058
1059 res=‘ping -c 1 -w 1 8.8.8.8 | grep ttl‘
1060 if [-z "$res"];
1061 then
1062 echo "Internet Connection is ${RED}DOWN${RESET}"
1063 exit 0
1064 fi
1065
1066 }
1067
1068
1069 # [---]
1070 # {*} Function status = Skeleton[]-Alpha[]-Beta[]-Functional[]-Finished[]-Perfections[]
1071 # {*} Function Desc =
1072 # {*} Function To do =
1073 # {*} Priority Stat = Least[]-Avg[X]-Medium[]-Ab.Avg[]-Highest[]-Critical[]-Extreme[]
1074 # {*} Note/Bugs/Usg =
1075 # [---]
1076 function check_dependencies_file(){
1077
1078 if [! -f "$dependencies"];
1079 then
1080 check_inet_connectivity
1081 curl https://pastebin.com/raw/fk7JdRb4 > /home/pi/zulfikar/dependencies.list
1082 exit 0
1083 fi
1084
1085 }
1086
1087 #[Function Name] =
1088 #[Function Desc] =
1089 #[Function Prio] =
1090 #[Function Stat] = !R
1091 #[Function Note] = Code Needs an Improvement on Config builder as well.
1092 function kill_app(){
1093
1094 app_name=$1
1095 app_cmd="pidof $app_name"
1096 if [! -z ‘$app_cmd‘];
1097 then
1098 sudo kill -9 ‘$app_cmd‘ 2>/dev/null
1099 else
1100 echo "$app_name Is Not Running "
1101 fi
1102
1103 }
1104 #[Function Name] =
1105 #[Function Desc] =
1106 #[Function Prio] =
1107 #[Function Stat] = !R
1108 #[Function Note] = Code Needs an Improvement on Config builder as well.
1109 function start_app(){
1110

69

1111 app_name=$1
1112 app_cmd="pidof $app_name"
1113 if [-z ‘$app_cmd‘];
1114 then
1115 sudo $app_name 2>/dev/null &
1116 else
1117 echo " $app_name is Already Running "
1118 fi
1119
1120 }
1121 #[Function Name] =
1122 #[Function Desc] =
1123 #[Function Prio] =
1124 #[Function Stat] = !R
1125 #[Function Note] = Code Needs an Improvement on Config builder as well.
1126 function start_service(){
1127
1128 service_name=$1
1129 service_cmd="service $service_name start"
1130 service_status=$(check_service $service_name)
1131 if ["$service_status" == "inactive"];
1132 then
1133 sudo $service_cmd 2>/dev/null
1134 else
1135 echo " $service_name is Currently up or Broken Package "
1136 fi
1137
1138 }
1139
1140 #[Function Name] =
1141 #[Function Desc] =
1142 #[Function Prio] =
1143 #[Function Stat] = !R
1144 #[Function Note] = Code Needs an Improvement on Config builder as well.
1145 function stop_service(){
1146
1147 service_name=$1
1148 service_cmd="service $service_name stop"
1149 service_status=$(check_service $service_name)
1150 if ["$service_status" == "active"];
1151 then
1152 sudo $service_cmd 2>/dev/null
1153 else
1154 echo " $service_name is not Running || Installed "
1155 fi
1156
1157 }
1158
1159 #[Function Name] =
1160 #[Function Desc] =
1161 #[Function Prio] =
1162 #[Function Stat] = !R
1163 #[Function Note] = Code Needs an Improvement on Config builder as well.
1164 function check_service(){
1165 service_name=$1
1166 service_stat=‘service $service_name status | grep Active | cut -d ":" -f2 | tr -d ’ ’ | cut -d "(" -f1‘
1167 echo "$service_stat"
1168 }
1169
1170 #[Function Name] =
1171 #[Function Desc] =
1172 #[Function Prio] =
1173 #[Function Stat] =
1174 #[Function Note] = Code Needs an Improvement on Config builder as well.
1175 function intfChg(){
1176 intfName=$1
1177 intfOpt=$2
1178 sudo ifconfig $intfName $intfOpt
1179 }
1180
1181 # {*} Function status = Finished
1182 # {*} Function Desc = Display a list of users currently/recently logged on
1183 # {*} Function To do = None
1184 # {*} Priority Stat = @
1185 # {*} Note/Bugs/Usg = None
1186 function user_info(){
1187
1188 local cmd="$1"
1189 case "$cmd" in
1190 who) write_header " Who is online "; who -H; pause ;;
1191 last) write_header " List of last logged in users "; last ; pause ;;
1192 esac
1193
1194 }
1195
1196 # {*} Function status = Finished
1197 # {*} Function Desc = Free Used and Memory Usage
1198 # {*} Function To do = None
1199 # {*} Priority Stat = @
1200 # {*} Note/Bugs/Usg = None
1201 function mem_info(){
1202
1203 echo "+--+"
1204 echo "| [Free and used memory] |"
1205 echo "+--+"
1206
1207 free -m
1208

70

1209 echo "+--+"
1210 echo "| [Virtual memory statistics] |"
1211 echo "+--+"
1212
1213 vmstat
1214
1215 echo "+--+"
1216 echo "| [Top 5 memory eating process] |"
1217 echo "+--+"
1218
1219 ps auxf | sort -nr -k 4 | head -5
1220
1221 echo "+--+"
1222
1223 pause
1224
1225 }
1226
1227 # {*} Function status = Alpha
1228 # {*} Function Desc = Displays Common Ports In a New Terminal
1229 # {*} Function To do = Echo bunch of stuff and put it in a tidy terminal with --zoom=0.75, Make a config

file to select personal favorites.
1230 # {*} Priority Stat = Least[]Avg[]Medium[X]Ab.Avg[]Highest[]Critical[]Extreme[]
1231 # {*} Note/Bugs/Usg = None
1232 function common_portlist() {
1233 xfce4-terminal --geometry 35x30+547+0 --hide-menubar --zoom=0.80 -x ∼/smart/toolset/port_list.sh 2>/dev/

null &
1234 pause
1235 }
1236
1237 # {*} Function status = Primitive
1238 # {*} Function Desc = Last USB Syslog activities.
1239 # {*} Function To do = Compare Files
1240 # {*} Priority Stat = Least[X]Avg[]Medium[]Ab.Avg[]Highest[]Critical[]Extreme[]
1241 # {*} Note/Bugs/Usg = None
1242 function check_usb_log(){
1243 cat /var/log/syslog | grep "USB" | grep "usb" | tail -5
1244 pause
1245 }
1246
1247 # {*} Function status = Finished
1248 # {*} Function Desc = Checks MSDM for OEM key embedded in the Chipset , ACPI
1249 # {*} Function To do = None
1250 # {*} Priority Stat = @
1251 # {*} Note/Bugs/Usg = None
1252 function check_oem_key(){
1253 sudo xxd /sys/firmware/acpi/tables/MSDM 2>/dev/null
1254 pause
1255 }
1256
1257 # {*} Function Stat = Finished
1258 # {*} Function Desc = Duh !
1259 # {*} Function ToDo = Proxychainableility!
1260 # {*} Priority Stat = @
1261 # {*} Note/Bugs/Usg = None
1262 function bring_terminal(){
1263 proxychains xfce4-terminal --geometry 100x25+0+480 --hide-menubar 2>/dev/null &
1264 xfce4-terminal --geometry 100x25+0+0 --hide-menubar -e "bash -c \"proxychains wget http://ipecho.net/

plain -O - -q 2>/dev/null ; exec bash\"" 2>/dev/null &
1265 pause
1266 }
1267
1268 # {*} Function Stat = Finished
1269 # {*} Function Desc = Whois for a given Domain
1270 # {*} Function ToDo = Save to File option, Multiple search options
1271 # {*} Priority Stat = @
1272 # {*} Note/Bugs/Usg = None
1273 function zen_whois(){
1274
1275 _zenity="/usr/bin/zenity"
1276 #_out="/tmp/whois.output.$$"
1277 _out=$(make_temp_file)
1278 domain=$(${_zenity} --title "Enter domain" --entry --text "Enter the domain you would like to see whois

info" 2>/dev/null)
1279
1280 if [$? -eq 0]
1281 then
1282 # Display a progress dialog while searching whois database
1283 whois $domain 2>/dev/null | tee 2>/dev/null >(${_zenity} 2>/dev/null --width=200 --height=100 --title="

whois" --progress --pulsate --text="Searching domain info..." --auto-kill --auto-close --percentage
=10) >${_out} 2>/dev/null

1284
1285 # Display back output
1286 ${_zenity} --width=800 --height=600 --title "Whois info for $domain" --text-info 2>/dev/null --filename="

${_out}"
1287 else
1288 ${_zenity} --error --text="No input provided" 2>/dev/null
1289 fi
1290 clear_screen
1291
1292 }
1293
1294 # {*} Function Stat = Finished
1295 # {*} Function Desc = Ping Scan of ip/range
1296 # {*} Function ToDo = Specify Options
1297 # {*} Priority Stat = @
1298 # {*} Note/Bugs/Usg = None
1299 function zen_ping(){

71

1300
1301 _zenity="/usr/bin/zenity"
1302 #_out="/tmp/ping.output.$$"
1303 _out=$(make_temp_file)
1304 echo " temp file is $_out"
1305 ip=$(${_zenity} --title "Enter IP to Ping" --entry --text "Enter the ip address you would like to ping"

2>/dev/null)
1306
1307 if [$? -eq 0]
1308 then
1309 ping -c 4 $ip 2>/dev/null | tee 2>/dev/null >(${_zenity} 2>/dev/null --width=200 --height=100 --title="

Probing" --progress --pulsate --text="Ping Probing..." --auto-kill --auto-close --percentage=10) >>
${_out} 2>/dev/null

1310
1311 ${_zenity} --width=400 --height=240 --title "Probing info for $ip" --text-info 2>/dev/null --filename="${

_out}"
1312 else
1313 ${_zenity} --error --text="No input provided" 2>/dev/null
1314 fi
1315 clear_screen
1316
1317 }
1318
1319 # {*} Function Stat = Finished
1320 # {*} Function Desc = Ping sweep a Network for up hosts.
1321 # {*} Function ToDo = Format Output and Save/Log
1322 # {*} Priority Stat = Least[]Avg[]Medium[X]Ab.Avg[]Highest[]Critical[]Extreme[]
1323 # {*} Note/Bugs/Usg = Converted to understand any CIDR format within range. Can be used by selecting nic to

scan.
1324 function ping_sweep(){
1325
1326 printf "%s" "${GLS}Enter Your Network Address in CIDR or Pick an Interface ie.{wlan0} = "${RESET} ; read

-r ip
1327 sip_param="-i $ip"
1328
1329 end_1=‘sipcalc $sip_param | grep "Usable range" | cut -d " " -f 5 | cut -d"." -f 1‘
1330 end_2=‘sipcalc $sip_param | grep "Usable range" | cut -d " " -f 5 | cut -d"." -f 2‘
1331 end_3=‘sipcalc $sip_param | grep "Usable range" | cut -d " " -f 5 | cut -d"." -f 3‘
1332 end_4=‘sipcalc $sip_param | grep "Usable range" | cut -d " " -f 5 | cut -d"." -f 4‘
1333
1334 start_1=‘sipcalc $sip_param | grep "Usable range" | cut -d " " -f 3 | cut -d"." -f 1‘
1335 start_2=‘sipcalc $sip_param | grep "Usable range" | cut -d " " -f 3 | cut -d"." -f 2‘
1336 start_3=‘sipcalc $sip_param | grep "Usable range" | cut -d " " -f 3 | cut -d"." -f 3‘
1337 start_4=‘sipcalc $sip_param | grep "Usable range" | cut -d " " -f 3 | cut -d"." -f 4‘
1338
1339 for octet_1 in $(seq $start_1 $end_1);do
1340 for octet_2 in $(seq $start_2 $end_2);do
1341 for octet_3 in $(seq $start_3 $end_3);do
1342 for octet_4 in $(seq $start_4 $end_4);do
1343 #echo " Trying ${octet_1}.${octet_2}.${octet_3}.${octet_4} "
1344 ping -c 1 ${octet_1}.${octet_2}.${octet_3}.${octet_4} | grep "ttl=" | cut -d ’ ’ -f4 | cut

-d ":" -f1 2>/dev/null &
1345 #echo " Done Running Command ${octet_1}.${octet_2}.${octet_3}.${octet_4}"
1346 done
1347 done
1348 done
1349 done
1350 wait
1351 # sleep 5
1352 echo "Waiting for Ping Probes to Finish"
1353 pidof_ping=‘pidof ping‘
1354 if [-z "$pidof_ping"];
1355 then
1356 pause
1357 else
1358 echo "Still Running Ping Probes in the Background"
1359 echo "Sleeping $(sleep_indicator "5") 5 Secs"
1360 pause
1361 fi
1362
1363 }
1364
1365 #pingres=$(ping -c 4 $ipa)
1366 #grep rtt | cut -d "/" -f 5
1367 #echo "$pingres" | grep rtt | cut -d "/" -f 5
1368
1369 # [---]
1370 # {*} Function status = Skeleton[]-Alpha[]-Beta[]-Functional[]-Finished[]-Perfections[]
1371 # {*} Function Desc =
1372 # {*} Function To do =
1373 # {*} Priority Stat = Least[]-Avg[X]-Medium[]-Ab.Avg[]-Highest[]-Critical[]-Extreme[]
1374 # {*} Note/Bugs/Usg =
1375 # [---]
1376 function vpn_quality_checker(){
1377
1378 vpn_list=$(make_temp_file)
1379 ls /root/smart_vpn/ > $vpn_list
1380 echo "$vpn_list"
1381 fastest="N/A"
1382 fastest_ttl="9999"
1383 protocol="N/A"
1384 for ovpn in $(cat $vpn_list);do
1385
1386 echo "+------------------------------+"
1387 echo "Fastest VPN = ${fastest} ${protocol} "
1388 echo "TTL Rate = ${fastest_ttl} "
1389 echo "+------------------------------+"
1390 ipa=$(cat /root/smart_vpn/$ovpn | grep "remote" | head -1 | cut -d " " -f2)

72

1391 proto=$(cat /root/smart_vpn/$ovpn | grep "proto" | head -1 | cut -d " " -f2)
1392 pingres=$(ping -c 4 $ipa)
1393 avg_ttl=$(echo "$pingres" | grep rtt | cut -d "/" -f 5 | cut -d "." -f1)
1394 #echo "$ovpn"
1395 base_vpn_name=$(echo "$ovpn" | cut -d"." -f1)
1396
1397
1398 if [$avg_ttl -ge $fastest_ttl];
1399
1400 then
1401 echo "${RLS}$base_vpn_name AVG TTL is higher Skipping..."
1402 #sleep .2
1403 else
1404 echo "${GLS}$base_vpn_name has Avg TTL time of $avg_ttl"
1405 echo "${GLS}Assigning New Fastest --> $base_vpn_name with $avg_ttl ms."
1406 fastest_ttl="$avg_ttl"
1407 fastest="$base_vpn_name"
1408 protocol="$proto"
1409
1410
1411 fi
1412 clear_screen
1413 main_menu
1414 done
1415 pause
1416
1417 }
1418
1419
1420
1421 # {*} Function Stat = Finished
1422 # {*} Function Desc = Spawn Netstat -antp with watch command in different terminal
1423 # {*} Function ToDo = Coloring Maybe , Kill remanining terminal after HALT
1424 # {*} Priority Stat = @
1425 # {*} Note/Bugs/Usg = None
1426 function display_netstat(){
1427 xfce4-terminal --geometry 100x25+0+0 --hide-menubar --zoom=0.80 -e "bash -c \"watch netstat -antp; exec

bash\"" 2>/dev/null &
1428 pause
1429 }
1430
1431 # {*} Function Stat = Finished
1432 # {*} Function Desc = Spawn TCPTRACK in different Window
1433 # {*} Function ToDo = Coloring Maybe , Kill remanining terminal after HALT
1434 # {*} Priority Stat = @
1435 # {*} Note/Bugs/Usg = None
1436 function display_tcptrack(){
1437
1438 echo " List of Available Interfaces "
1439 devices=$(netstat -i | cut -d" " -f1 | egrep -v "^Kernel|Iface|lo")
1440 read -p "Which Interface to change Mac ? (eth0 | wlan0 | tap0) =" chcInf
1441 if [-z "$chcInf"];
1442 then
1443 echo "${RLS} No Interface Selected !"
1444 else
1445 intf=$chcInf
1446 xfce4-terminal --geometry 80x25+0+0 --hide-menubar --zoom=0.80 -e "bash -c \"tcptrack -i $intf; exec

bash\"" 2>/dev/null &
1447 fi
1448 pause
1449
1450 }
1451
1452 # {*} Function Stat = Finished
1453 # {*} Function Desc = Run Proxychained Firefox with running tor backbone
1454 # {*} Function ToDo = Check if Firefox Running, List Webbrowser and Apps
1455 # {*} Priority Stat = @
1456 # {*} Note/Bugs/Usg = Still needs sanitization for outputs, Need to kill the terminal afterwards
1457 function proxy_browse(){
1458
1459 echo "+--+"
1460 echo "# [1) Midori | 2) Firefox | 3) Lynx | 4)Terminate] |"
1461 echo "+--+"
1462 echo -en "${bold}${RED}SMART${RESET}${normal}${BLUE}->${RESET} "
1463 read pb
1464 case "$pb" in
1465 1) browser="midori";;
1466 2) browser="firefox --private";;
1467 3) browser="lynx";;
1468 4) browser="terminate" ;;
1469 *) echo "No Input Provided";;
1470 esac
1471
1472 if ["$pb" == "4"]; then
1473 echo "${RLS} Terminated !"
1474 pause
1475 else
1476 _zenity="/usr/bin/zenity"
1477 url_to_visit=$(${_zenity} --title "Enter domain" --entry --text "Enter an URL to VISIT with

proxychains" 2>/dev/null)
1478 xfce4-terminal --geometry 64x16+310+720 --hide-menubar -e "bash -c \"proxychains $browser

$url_to_visit ; exec bash\"" 2>/dev/null
1479 pause
1480 fi
1481
1482 }
1483
1484 # {*} Function status = Finished

73

1485 # {*} Function Desc = Sends Interrupt to TOR service for a new identity
1486 # {*} Function To do = None
1487 # {*} Priority Stat = @
1488 # {*} Note/Bugs/Usg = None
1489 function spawn_proxy_app(){
1490 _zenity="/usr/bin/zenity"
1491 app_param=$(${_zenity} --title "Enter Custom Command" --entry --text "Enter a command to use with

proxychains" 2>/dev/null)
1492 xfce4-terminal --geometry 100x16+0+0 --hide-menubar -e "bash -c \"proxychains $app_param 2>/dev/null ;

exec bash\"" 2>/dev/null
1493 pause
1494 }
1495
1496 # {*} Function status = Finished
1497 # {*} Function Desc = Pick Single File with Zenity pass the path
1498 # {*} Function To do =
1499 # {*} Priority Stat = @
1500 # {*} Note/Bugs/Usg =
1501 function pick_single_file() {
1502
1503 OLDIFS="$IFS"
1504 IFS=’-’
1505 single_file=$(zenity --file-selection --multiple --separator=’-’ --title "Pick a file" 2>/dev/null)
1506 IFS="$OLDIFS"
1507 echo $single_file
1508
1509 }
1510
1511 # {*} Function status = Finished
1512 # {*} Function Desc = Pick Multiple Files with Zenity pass the paths
1513 # {*} Function To do =
1514 # {*} Priority Stat = @
1515 # {*} Note/Bugs/Usg =
1516 function pick_multiple_file() {
1517
1518 FILES=’-’
1519 OLDIFS="$IFS"
1520 IFS=’-’
1521 FILES=($(zenity --file-selection --multiple --separator=’-’ --title "Pick a file" 2>/dev/null))
1522 IFS="$OLDIFS"
1523 for multi_file in "${FILES[@]}"
1524 do
1525 echo $multi_file
1526 done
1527
1528 }
1529
1530 # {*} Function status = Finished
1531 # {*} Function Desc = Extract Files
1532 # {*} Function To do = Nothing to implement
1533 # {*} Priority Stat = @
1534 # {*} Note/Bugs/Usg =
1535 function extract_file() {
1536
1537 OLDIFS="$IFS"
1538 IFS=’-’
1539 single_file=$(zenity --file-selection --multiple --separator=’-’ --title "Pick a file" 2>/dev/null)
1540 IFS="$OLDIFS"
1541 echo $single_file
1542 if [[-f "$single_file"]]; then
1543 case "$single_file" in
1544 *.tar.bz2) tar xjf "$single_file" ;;
1545 *.tar.gz) tar xzf "$single_file" ;;
1546 *.bz2) bunzip2 "$single_file" ;;
1547 *.rar) rar x "$single_file" ;;
1548 *.7z) 7z x "$single_file" ;;
1549 *.gz) gunzip "$single_file" ;;
1550 *.tar) tar xf "$single_file" ;;
1551 *.tbz2) tar xjf "$single_file" ;;
1552 *.tgz) tar xzf "$single_file" ;;
1553 *.zip) unzip "$single_file" ;;
1554 *) echo "$single_file cannot be extracted" ;;
1555 esac
1556 else
1557 echo "$single_file is not a valid file"
1558 fi
1559 pause
1560
1561 }
1562
1563
1564 # {*} Function status = Beta
1565 # {*} Function Desc = Do FoolProof (kinda..) Disk Imaging tool to gather all iso
1566 # {*} Function To do = Need a control flow mechanism. 5 sec termination sequence does not listen.
1567 # {*} Priority Stat =
1568 # {*} Note/Bugs/Usg = There can also be another type of file picker option from smart_image
1569 function create_disk(){
1570
1571 echo "${DARKGRAY}"
1572 echo "+--+"
1573 echo "| ${LIGHTRED}Warning${DEFAULT}${DARKGRAY} ! Please Think Twice of Your Actions !

|"
1574 echo "+--+"
1575 echo "# [1) List Disks | 2) Format a Disk | 3) Privacy Cleanup | 4)Create Disk |"
1576 echo "+--+"
1577 echo "${DEFAULT}"
1578 echo -en "${bold}${RED}SMART${RESET}${normal}${BLUE}->${RESET} "
1579 read t

74

1580 case $t in
1581 1) lsblk ;;
1582 2) format_disk ;;
1583 3) privacy_cleanup ;;
1584 4) create_disk_image ;;
1585 FF) clear_screen && return 0 ;;
1586 ff) clear_screen && return 0 ;;
1587 *)
1588 echo "Please select a valid option !"
1589 esac
1590 pause
1591
1592 }
1593
1594 # [---]
1595 # {*} Function status = Skeleton[]-Alpha[]-Beta[]-Functional[]-Finished[]-Perfections[]
1596 # {*} Function Desc =
1597 # {*} Function To do =
1598 # {*} Priority Stat = Least[]-Avg[X]-Medium[]-Ab.Avg[]-Highest[]-Critical[]-Extreme[]
1599 # {*} Note/Bugs/Usg =
1600 # [---]
1601 function format_disk(){
1602
1603 echo "${lightyellow}"
1604 lsblk | grep disk
1605 echo "${DEFAULT}"
1606 main_drive=$(lsblk | grep disk | cut -d " " -f1)
1607 echo "${RLS}You Should Not be Picking your Resident Drive ${RED}$main_drive${DEFAULT}"
1608 echo "${GLS}Please enter your device [NOT Partition if Image] {ie./dev/sdc} = "
1609 read padisk
1610 echo "${RLS}Are you sure ? Please enter again to confirm = "
1611 read pbdisk
1612 if [["$padisk" = "$pbdisk"]];
1613 then
1614 echo "${GLS} Formatting is Commencing in 5, You can Still Unplug it !"
1615 sleep_indicator 5
1616 dd if=/dev/zero of=$padisk bs=1M status=progress && sync
1617 fi
1618
1619 }
1620
1621 # [---]
1622 # {*} Function status = Skeleton[]-Alpha[]-Beta[]-Functional[]-Finished[]-Perfections[]
1623 # {*} Function Desc =
1624 # {*} Function To do =
1625 # {*} Priority Stat = Least[]-Avg[X]-Medium[]-Ab.Avg[]-Highest[]-Critical[]-Extreme[]
1626 # {*} Note/Bugs/Usg =
1627 # [---]
1628 function create_disk_image(){
1629
1630 echo "${lightyellow}"
1631 lsblk | grep disk
1632 echo "${DEFAULT}"
1633 main_drive=$(lsblk | grep disk | cut -d " " -f1)
1634 echo "${RLS}You Should Not be Picking your Resident Drive ${RED}$main_drive${DEFAULT}"
1635 echo "${GLS}Please enter your device [NOT Partition if Image] {ie./dev/sdc} = "
1636 read iadisk
1637 echo "${RLS}Are you sure ? Please enter again to confirm = "
1638 read ibdisk
1639 echo "${GLS}Please pick a image file"
1640 sleep 1
1641 image_file=$(pick_single_file)
1642 if [! -z "$image_file"];
1643 then
1644 if [["$iadisk" = "$ibdisk"]];
1645 then
1646 read -r -p "Are you sure? [y/N] " response
1647 case "$response" in
1648 [yY][eE][sS]|[yY])
1649 #echo "${GLS} "
1650 sleep_indicator 5 "Creating the image Commencing in 5, You can Still Unplug it !"
1651 echo -ne ""
1652 dd if=$image_file of=$iadisk bs=1M status=progress && sync
1653 ;;
1654 *)
1655 pause
1656 ;;
1657 esac
1658
1659 fi
1660 fi
1661
1662 }
1663
1664 # [---]
1665 # {*} Function status = Skeleton[]-Alpha[]-Beta[]-Functional[]-Finished[]-Perfections[]
1666 # {*} Function Desc =
1667 # {*} Function To do =
1668 # {*} Priority Stat = Least[]-Avg[X]-Medium[]-Ab.Avg[]-Highest[]-Critical[]-Extreme[]
1669 # {*} Note/Bugs/Usg =
1670 # [---]
1671 function are_you_sure(){
1672
1673 read -r -p "Are you sure? [y/N] " response
1674 case "$response" in
1675 [yY][eE][sS]|[yY])
1676 do_something
1677 ;;

75

1678 *)
1679 do_something_else
1680 ;;
1681 esac
1682
1683 }
1684
1685 # {*} Function status = Finished
1686 # {*} Function Desc = GPA and GPG options to use
1687 # {*} Function To do = BACKUP PGP CONFIGS
1688 # {*} Priority Stat = @
1689 # {*} Note/Bugs/Usg = timestamp, can be used as is.
1690 function pgp_ops() {
1691
1692 echo "+--+"
1693 echo "# [1) List Keys | 2) Encrypt File | 3) Decrypt File | 4)Import Key] |"
1694 echo "+--+"
1695 echo -en "${bold}${RED}SMART${RESET}${normal}${BLUE}->${RESET} "
1696 read t
1697 case $t in
1698 1) list-public-keys ;;
1699 2) encrypt_gpg ;;
1700 3) decrypt_gpg ;;
1701 4) import_pubkey ;;
1702 FF) clear_screen && return 0 ;;
1703 ff) clear_screen && return 0 ;;
1704 *)
1705 echo "Please select a valid option !"
1706 esac
1707 pause
1708
1709 }
1710
1711 # {*} Function Stat = Finished
1712 # {*} Function Desc = Import Public Keys Directly To Chain
1713 # {*} Function ToDo = None
1714 # {*} Priority Stat = @
1715 # {*} Note/Bugs/Usg = None
1716 function import_pubkey(){
1717
1718 path_to_file="$(pick_single_file)"
1719 if [-z "$path_to_file"]; then
1720 echo "${RLS} Nothing Selected !"
1721 pause
1722 else
1723 echo "Path to file is $path_to_file"
1724 gpg --import $path_to_file
1725 fi
1726
1727 }
1728
1729 # {*} Function Stat = Finished
1730 # {*} Function Desc = Encrypt with public
1731 # {*} Function ToDo = None
1732 # {*} Priority Stat = @
1733 # {*} Note/Bugs/Usg = None
1734 function encrypt_gpg(){
1735
1736 #query_users=‘gpg --list-public-keys | grep "@" | cut -d"]" -f2 | cut -d" " -f2-3‘
1737 query_users=‘gpg --list-public-keys | grep "@" | cut -d"]" -f2 | cut -d" " -f2-3 | cut -d"<" -f2 | cut -d

">" -f1‘
1738 #echo "$query_users"
1739 publicArray=($query_users)
1740 #echo "$publicArray"
1741 total_users=${#publicArray[@]}
1742 echo "${GLS} $total_users keys found ! "
1743 diff_val=1
1744 for scp in $(seq 0 $((total_users - diff_val)));do
1745 index=‘printf "[%02d]" $scp‘
1746 printf "${RES} $index ${publicArray[$scp]} \n"
1747 done
1748 #echo "${RLS} Would you like to perform a scan ?"
1749 read -p "${GLS} Pick user as recipient or q to quit " choice
1750
1751 if ["$choice" == "q"]; then
1752 echo "${RLS} Terminated !"
1753 pause
1754 else
1755 recipient="${publicArray[$choice]}"
1756 #echo "${publicArray[$choice]}" | xclip -i # TR d is to cut return key problem with new line input
1757 path_to_file="$(pick_single_file)"
1758 if [! -z "$path_to_file"];then
1759 echo "Path to file is $path_to_file"
1760 gpg --encrypt --recipient $recipient $path_to_file
1761 else
1762 echo "${RLS} Nothing Selected !"
1763 pause
1764 fi
1765 fi
1766
1767 }
1768
1769 # {*} Function Stat = Finished
1770 # {*} Function Desc = !Encrypt
1771 # {*} Function ToDo = None
1772 # {*} Priority Stat = @
1773 # {*} Note/Bugs/Usg = None
1774 function decrypt_gpg(){

76

1775
1776 path_to_file="$(pick_single_file)"
1777 if [-z "$path_to_file"];then
1778 echo "${RLS} Nothing Selected !"
1779 pause
1780 else
1781 echo "Path to file is $path_to_file"
1782 gpg --decrypt $path_to_file
1783 fi
1784
1785 }
1786
1787 # {*} Function Stat = Finished
1788 # {*} Function Desc = List and Order Public keys
1789 # {*} Function ToDo = None
1790 # {*} Priority Stat = @
1791 # {*} Note/Bugs/Usg = None
1792 function list-public-keys(){
1793
1794 #query_users=‘gpg --list-public-keys | grep "@" | cut -d"]" -f2 | cut -d" " -f2-3‘
1795 query_users=‘gpg --list-public-keys | grep "@" | cut -d"]" -f2 | cut -d" " -f2-3 | cut -d"<" -f2 | cut -d

">" -f1‘
1796 #echo "$query_users"
1797 publicArray=($query_users)
1798 #echo "$publicArray"
1799 total_users=${#publicArray[@]}
1800 echo "${GLS} $total_users keys found ! "
1801 diff_val=1
1802 for scp in $(seq 0 $((total_users - diff_val)));do
1803 index=‘printf "[%02d]" $scp‘
1804 printf "${RES} $index ${publicArray[$scp]} \n"
1805 done
1806
1807 }
1808
1809 # {*} Function status = Finished
1810 # {*} Function Desc = $1-> Message (optional)
1811 # {*} Function To do = None
1812 # {*} Priority Stat = @
1813 # {*} Note/Bugs/Usg = None
1814 function check_pastebin(){
1815
1816 #https://pastebin.com/NsnAJ8Ev
1817
1818 }
1819
1820 # [---]
1821 # {*} Function status = Skeleton[]-Alpha[]-Beta[]-Functional[]-Finished[]-Perfections[]
1822 # {*} Function Desc =
1823 # {*} Function To do =
1824 # {*} Priority Stat = Least[]-Avg[X]-Medium[]-Ab.Avg[]-Highest[]-Critical[]-Extreme[]
1825 # {*} Note/Bugs/Usg =
1826 # [---]
1827 function ffiat_curr(){
1828
1829 echo "${GLS}Check Time @ $(timestamp)"
1830
1831 temp_price=$(make_temp_file)
1832 curl_raw=‘curl https://api.coinmarketcap.com/v1/ticker/monero/ 2>/dev/null‘
1833 echo "$curl_raw" >> $temp_price
1834 symbol=‘cat $temp_price | grep "symbol" | cut -d ":" -f2 | cut -d "\"" -f2 ‘
1835 price_usd=‘cat $temp_price | grep "price_usd" | cut -d ":" -f2 | cut -d "\"" -f2‘
1836 percent_change_1h=‘cat $temp_price | grep "percent_change_1h" | cut -d ":" -f2 | cut -d "\"" -f2‘
1837 percent_change_24h=‘cat $temp_price | grep "percent_change_24h" | cut -d ":" -f2 | cut -d "\"" -f2‘
1838 percent_change_7d=‘cat $temp_price | grep "percent_change_7d" | cut -d ":" -f2 | cut -d "\"" -f2‘
1839 echo -e "${BES}Currencysym = ${BLUE}$symbol${RESET}"
1840 echo -e "${BES}Current USD = $price_usd"
1841 echo -e "${BES}1 Hr Change = $percent_change_1h %"
1842 echo -e "${BES}1 Da Change = $percent_change_24h %"
1843 echo -e "${BES}1 We Change = $percent_change_7d %"
1844 echo -e ""
1845 #echo -e "$(timestamp)"
1846
1847 temp_price=$(make_temp_file)
1848 curl_raw=‘curl https://api.coinmarketcap.com/v1/ticker/ethereum/ 2>/dev/null‘
1849 echo "$curl_raw" >> $temp_price
1850 symbol=‘cat $temp_price | grep "symbol" | cut -d ":" -f2 | cut -d "\"" -f2‘
1851 price_usd=‘cat $temp_price | grep "price_usd" | cut -d ":" -f2 | cut -d "\"" -f2‘
1852 percent_change_1h=‘cat $temp_price | grep "percent_change_1h" | cut -d ":" -f2 | cut -d "\"" -f2‘
1853 percent_change_24h=‘cat $temp_price | grep "percent_change_24h" | cut -d ":" -f2 | cut -d "\"" -f2‘
1854 percent_change_7d=‘cat $temp_price | grep "percent_change_7d" | cut -d ":" -f2 | cut -d "\"" -f2‘
1855 echo -e "${RES}Currencysym = ${RED}$symbol${RESET}"
1856 echo -e "${RES}Current USD = $price_usd"
1857 echo -e "${RES}1 Hr Change = $percent_change_1h %"
1858 echo -e "${RES}1 Da Change = $percent_change_24h %"
1859 echo -e "${RES}1 We Change = $percent_change_7d %"
1860 echo -e ""
1861 #echo -e "$(timestamp)"
1862
1863 temp_price=$(make_temp_file)
1864 curl_raw=‘curl https://api.coinmarketcap.com/v1/ticker/bitcoin/ 2>/dev/null‘
1865 echo "$curl_raw" >> $temp_price
1866 symbol=‘cat $temp_price | grep "symbol" | cut -d ":" -f2 | cut -d "\"" -f2‘
1867 price_usd=‘cat $temp_price | grep "price_usd" | cut -d ":" -f2 | cut -d "\"" -f2‘
1868 percent_change_1h=‘cat $temp_price | grep "percent_change_1h" | cut -d ":" -f2 | cut -d "\"" -f2‘
1869 percent_change_24h=‘cat $temp_price | grep "percent_change_24h" | cut -d ":" -f2 | cut -d "\"" -f2‘
1870 percent_change_7d=‘cat $temp_price | grep "percent_change_7d" | cut -d ":" -f2 | cut -d "\"" -f2‘
1871 echo -e "${GES}Currencysym = ${GREEN}$symbol${RESET}"

77

1872 echo -e "${GES}Current USD = $price_usd"
1873 echo -e "${GES}1 Hr Change = $percent_change_1h %"
1874 echo -e "${GES}1 Da Change = $percent_change_24h %"
1875 echo -e "${GES}1 We Change = $percent_change_7d %"
1876 echo -e ""
1877 #echo -e "$(timestamp)"
1878
1879 temp_price=$(make_temp_file)
1880 curl_raw=‘curl https://api.coinmarketcap.com/v1/ticker/siacoin/ 2>/dev/null‘
1881 echo "$curl_raw" >> $temp_price
1882 symbol=‘cat $temp_price | grep "symbol" | cut -d ":" -f2 | cut -d "\"" -f2‘
1883 price_usd=‘cat $temp_price | grep "price_usd" | cut -d ":" -f2 | cut -d "\"" -f2‘
1884 percent_change_1h=‘cat $temp_price | grep "percent_change_1h" | cut -d ":" -f2 | cut -d "\"" -f2‘
1885 percent_change_24h=‘cat $temp_price | grep "percent_change_24h" | cut -d ":" -f2 | cut -d "\"" -f2‘
1886 percent_change_7d=‘cat $temp_price | grep "percent_change_7d" | cut -d ":" -f2 | cut -d "\"" -f2‘
1887 echo -e "${GES}Currencysym = ${GREEN}$symbol${RESET}"
1888 echo -e "${GES}Current USD = $price_usd"
1889 echo -e "${GES}1 Hr Change = $percent_change_1h %"
1890 echo -e "${GES}1 Da Change = $percent_change_24h %"
1891 echo -e "${GES}1 We Change = $percent_change_7d %"
1892 echo -e ""
1893 pause
1894
1895 }
1896
1897 # [---]
1898 # {*} Function status = Skeleton[]-Alpha[]-Beta[]-Functional[]-Finished[]-Perfections[]
1899 # {*} Function Desc =
1900 # {*} Function To do =
1901 # {*} Priority Stat = Least[]-Avg[X]-Medium[]-Ab.Avg[]-Highest[]-Critical[]-Extreme[]
1902 # {*} Note/Bugs/Usg =
1903 # [---]
1904 function deploy_honeypot(){
1905 xfce4-terminal --geometry 56x24+530+0 --hide-menubar --zoom=0.80 -x ∼/smart/toolset/pbox/smart_hp.rb 2>/

dev/null &
1906 pause
1907 }
1908
1909 # [---]
1910 # {*} Function status = Skeleton[]-Alpha[]-Beta[]-Functional[]-Finished[]-Perfections[]
1911 # {*} Function Desc =
1912 # {*} Function To do =
1913 # {*} Priority Stat = Least[]-Avg[X]-Medium[]-Ab.Avg[]-Highest[]-Critical[]-Extreme[]
1914 # {*} Note/Bugs/Usg =
1915 # [---]
1916 function non_exists(){
1917
1918 echo -e " \ /"
1919 echo -e " \ /"
1920 echo -e " \ This page does /"
1921 echo -e "] not exist yet! [,’|"
1922 echo -e "] [/ |"
1923 echo -e "]___ ___[,’ |"
1924 echo -e "]]\ /[[|: |"
1925 echo -e "]] \ / [[|: |"
1926 echo -e "]]] [[[|: |"
1927 echo -e "]]]__ __[[[|: |"
1928 echo -e "]]]]\ _ /[[[[|: |"
1929 echo -e "]]]] (#) [[[[:====’"
1930 echo -e "]]]_].nHn.[_[[["
1931 echo -e "]]] HHHHH. [[["
1932 echo -e "]] / ’HH(N \ [["
1933 echo -e "]__]/ HHH * \[__["
1934 echo -e "] NNN ["
1935 echo -e "] N/7 ["
1936 echo -e "] N H ["
1937 echo -e " / N |"
1938 echo -e " / q, |"
1939 echo -e " / |"
1940 pause
1941
1942 }
1943
1944 # {*} Function Stat = Finished
1945 # {*} Function Desc = Main Menu Items
1946 # {*} Function ToDo = Fill remaining place holders,
1947 # {*} Priority Stat = @
1948 # {*} Note/Bugs/Usg = None
1949 function main_menu(){
1950 #echo -e "${DARKGRAY}${bold}"
1951 #figlet SMART\’s ARSENAL
1952 echo -e "+--+"
1953 figlet -ctf small "S.M.A.R.T"
1954 echo -e "+--+"
1955 echo -e "+---------------Security Metric Assesment And Reporting Tool-----------------+"
1956 #echo -e "${RESET}${normal}"
1957 echo -e "${DARKGRAY}"
1958 echo -e "${DARKGRAY}+--+${

normal}"
1959 echo -e "${DARKGRAY}| ${BLUE}${bold}[MAIN Chest]${RESET}${DARKGRAY}

|${normal}"
1960 echo -e "${DARKGRAY}+---------------------------------------+------------------------------------+${

normal}"
1961 echo -e "${DARKGRAY}| ${bold}${BLACK}${RED}[0x01]${RESET}${DARKGRAY} - ${RED}The Onion || Identity${

normal}${DARKGRAY} | ${bold}${BLACK}${RED}[0x09]${RESET}${DARKGRAY} - ${purple}Physical Security ${
RESET}${DARKGRAY} |${normal}"

1962 echo -e "${DARKGRAY}| ${bold}${BLACK}${RED}[0x02]${RESET}${DARKGRAY} - ${RED}Global PrxyChainedIP${
normal}${DARKGRAY} | ${bold}${BLACK}${RED}[0x1A]${RESET}${DARKGRAY} - ${purple}PGP Operations

78

Center${RESET}${DARKGRAY} |${normal}"
1963 echo -e "${DARKGRAY}| ${bold}${BLACK}${RED}[0x03]${RESET}${DARKGRAY} - ${RED}Change IntMAC Address${

normal}${DARKGRAY} | ${bold}${BLACK}${RED}[0x1B]${RESET}${DARKGRAY} - ${purple}Create Disk
Templates${RESET}${DARKGRAY} |${normal}"

1964 echo -e "${DARKGRAY}| ${bold}${BLACK}${RED}[0x04]${RESET}${DARKGRAY} - ${GREEN}ProxyChained Commands$
{normal}${DARKGRAY} | ${bold}${BLACK}${RED}[0x1C]${RESET}${DARKGRAY} - ${lightyellow}VPN Quality
Tester ${RESET}${DARKGRAY} |${normal}"

1965 echo -e "${DARKGRAY}| ${bold}${BLACK}${RED}[0x05]${RESET}${DARKGRAY} - ${GREEN}ProxyChained WBrowser$
{normal}${DARKGRAY} | ${bold}${BLACK}${RED}[0x1D]${RESET}${DARKGRAY} - ${lightyellow}OneTimePad
Generator ${RESET}${DARKGRAY} |${normal}"

1966 echo -e "${DARKGRAY}| ${bold}${BLACK}${RED}[0x06]${RESET}${DARKGRAY} - ${GREEN}ProxyChained Terminal$
{normal}${DARKGRAY} | ${bold}${BLACK}${RED}[0x1E]${RESET}${DARKGRAY} - ${lightyellow}Blockchain
Currencies${RESET}${DARKGRAY} |${normal}"

1967 echo -e "${DARKGRAY}| ${bold}${BLACK}${RED}[0x07]${RESET}${DARKGRAY} - ${BLUE}Information Sub-Menu${
normal}${DARKGRAY} | ${bold}${BLACK}${RED}[0x1F]${RESET}${DARKGRAY} - ${lightyellow}Deploy Quick
Honeypot${RESET}${DARKGRAY} |${normal}"

1968 echo -e "${DARKGRAY}| ${bold}${BLACK}${RED}[0x08]${RESET}${DARKGRAY} - ${BLUE}Auxillary Sub-Menu${
normal}${DARKGRAY} | ${bold}${BLACK}${RED}[0xFF]${RESET}${DARKGRAY} - ${bold}Terminate -[HALT]- ${
RESET}${DARKGRAY} |${normal}"

1969 echo -e "${DARKGRAY}+---------------------------------------+------------------------------------+${
normal}"

1970 echo ""
1971 }
1972 ### | Main Flow | ==#
1973
1974 #Require Root Priv.
1975 if [[! $(id -u) == 0]]; then
1976 echo -e "${RED}[!]${RESET} This script must be run as root"
1977 exit 1
1978 fi
1979 trap ’’ SIGINT SIGQUIT SIGTSTP #Trap CTRL Z / X / C Interrupts
1980 set_ttl "| < =] --------{ SMART }--------- [= > |"
1981 selection=
1982 until ["$selection" = "0"]; do
1983 main_menu
1984 echo -en "${bold}${RED}SMART${RESET}${normal}${BLUE}->${RESET} "
1985 read selection
1986 case $selection in
1987 1) start_tor ;;
1988 2) check_GIP ;;
1989 3) change_mac;;
1990 4) spawn_proxy_app ;;
1991 5) proxy_browse;;
1992 6) bring_terminal;;
1993 7) info_menu;;
1994 8) remote_menu;;
1995 9) afk_paranoia ;;
1996 1A) pgp_ops;;
1997 1a) pgp_ops;;
1998 1B) create_disk;;
1999 1b) create_disk;;
2000 1C) vpn_quality_checker;;
2001 1c) vpn_quality_checker;;
2002 1D) one_time_pad;;
2003 1d) one_time_pad;;
2004 1E) ffiat_curr;;
2005 1e) ffiat_curr;;
2006 1F) deploy_honeypot;;
2007 1f) deploy_honeypot;;
2008 fi) non_exists;;
2009 FI) non_exists;;
2010 FF) exit ;;
2011 ff) exit ;;
2012 backup) echo "Backup Script" ;;
2013 *) echo "Nothing Selected !" ; pause ;;
2014 esac
2015 done
2016 #
2017 #===#
2018 #>EOF<
2019 #===#

Code 5.2: codes/smart.sh

1 #!/bin/bash -
2 #title :iperf.sh
3 #description :IPERF CHECKER
4 #author :Mert Kilic
5 #date :29-08-17
6 #version :v0.98d beta(Non-Release)(PoC)(UNDER DEV)
7 #usage :./iperf.sh
8 #notes :
9 #bash_version :4.4.0(1)-release

10 #===#
11 if ! [-x "$(type -P iperf3)"]; then
12 echo "ERROR: script requires iperf"
13 echo "For Debian and friends get it with ’apt-get install iperf’"
14 echo "If you have it, perhaps you don’t have permissions to run it, try ’sudo $(basename $0)’"
15 exit 1
16 fi
17
18 if ["$#" -ne "2"]; then
19 echo "ERROR: script needs four arguments, where:"
20 echo
21 echo "1. Number of times to repeat test (e.g. 10)"
22 echo "2. Host running ’iperf3 -s’ (e.g. somehost)"
23 echo

79

24 echo "Example:"
25 echo " $(basename $0) 10 somehost"
26 echo
27 echo "The above will run ’iperf3 -c’ 10 times on the client and report totals and average."
28 exit 1
29 else
30 runs=$1
31 host=$2
32 fi
33
34 log=iperf.$host.log
35
36 if [-f $log]; then
37 echo removing $log
38 rm $log
39 fi
40
41 echo "=="
42 echo " Results"
43 echo "=="
44 echo " target host $host"
45 echo "--"
46
47 for run in $(seq 1 $runs); do
48 iperf3 -c - R $host -f m >> $log
49 echo -e " run $run: \t $(awk ’/Bandwidth/ {getline}; END{print $7, $8}’ $log)"
50 done
51
52 avg=$(awk -v runs=$runs ’/Bandwidth/ {getline; sum+=$7; avg=sum/runs} END {print avg}’ $log)
53
54
55 echo "--"
56 echo " average $avg Mbits/sec"
57 echo
58 echo "see $log for details"

Code 5.3: codes/iperf.sh

1 #!/bin/bash -
2 #title :smart_fetch.sh
3 #description :SMART Web Search
4 #author :Mert Kilic
5 #date :10-05-17
6 #version :v0.98d beta(Non-Release)(PoC)(UNDER DEV)
7 #usage :./smart_fetch.sh
8 #notes :
9 #bash_version :4.4.0(1)-release

10 #===#
11 clear
12 echo ""
13 echo ".===."
14 echo "| S.M.A.R.T |"
15 echo "| COMMAND LINE WWW SEARCH |"
16 echo "| --- |"
17 echo "| |"
18 echo "| Version: 1.0 |"
19 echo "| Security Metric Assesment And Reporting Tool |"
20 echo "| |"
21 echo "| |"
22 echo "| Usage: ./smart_fetch.sh <search strings> |"
23 echo "| Example: ./smart_fetch.sh New Java Vulnerabilities |"
24 echo "| |"
25 echo ".===."
26 echo ""
27
28 if [-z $1]
29 then
30 echo "ERROR: No search string supplied."
31 echo "USAGE: ./smart_fetch.sh <search string>"
32 echo ""
33 echo -n "Search: "
34 read SEARCH
35 else
36 SEARCH=$@
37 fi
38
39 URL="http://google.com/search?hl=en&safe=off&q="
40 STRING=‘echo $SEARCH | sed ’s/ /%20/g’‘
41 URI="$URL%22$STRING%22"
42
43 lynx -dump $URI > gone.tmp
44 sed ’s/http/\^http/g’ gone.tmp | tr -s "^" "\n" | grep http| sed ’s/\ .*//g’ > gtwo.tmp
45 rm gone.tmp
46 sed ’/google.com/d’ gtwo.tmp > urls
47 rm gtwo.tmp
48
49 echo "SUCCESS: Extracted ‘wc -l urls‘ and listed them in ’‘pwd‘/urls’ file for reference."
50 echo ""
51 cat urls
52 echo ""

Code 5.4: codes/smart fetch.sh

Reference Content

80

FGT100D - Fortigate 100D Firewall UTM - http://a.co/dkuy91t

TZ600 - SonicWall TZ600 SOHO Firewall UTM http://a.co/fTAsv4S

81

Dependency List

1 tcptrack#tcptrack
2 figlet#figlet
3 alsa-utils#arecord
4 locate#locate
5 zenity#zenity
6 motion#motion
7 streamer#streamer
8 libnotify-bin#notify-send
9 tor#tor

10 sipcalc#sipcalc
11 proxychains#proxychains
12 xxd#xxd
13 nmap#nmap
14 rar#rar
15 bunzip2#bunzip2
16 gunzip#gunzip
17 tar#tar
18 unzip#unzip
19 p7zip-full#7z
20 meld#meld
21 remmina#remmina
22 gpg#gpg
23 mktemp#mktemp
24 iptables#iptables
25 exiftool#exiftool
26 curl#curl
27 lynx#lynx
28 midori#midori
29 macchanger#macchanger
30 iperf3#iperf3
31 kleopatra#kleopatra

Code 5.5: codes/lilith.list

Global Constants and Declerations

Smart Configuration File

1 #!/bin/bash
2 #####DO NOT DELETE THE DEFAULT FILE !
3 dont_ask="true"
4 outputs_dir="/root/smart/"
5 default_path="/root"
6 vpn_dir="/root/smart/"
7 requirements_met="true"
8 startup_check="false"
9 export_to_path="true"

Code 5.6: codes/smart.conf

Default Configuration File

1 #!/bin/bash
2 dont_ask="false"
3 outputs_dir="/root"
4 default_path="/root"
5 requirements_met="false"
6 startup_check="false"
7 export_to_path="false"

Code 5.7: codes/smart def.conf

Coloring definitions for the CLI Terminal

1 #!/bin/bash
2 declare -r RES=${RED}"[!]"${RESET}
3 declare -r RLS=${RED}"[*]"${RESET}
4 declare -r RQS=${RED}"[?]"${RESET}
5 declare -r BES=${BLUE}"[!]"${RESET}
6 declare -r BLS=${BLUE}"[*]"${RESET}
7 declare -r BQS=${BLUE}"[?]"${RESET}
8 declare -r GLS=${GREEN}"[*]"${RESET}
9 declare -r GES=${GREEN}"[!]"${RESET}

10 declare -r GQS=${GREEN}"[?]"${RESET}
11
12 declare -r dim=‘echo -en "\e[2m"‘
13 declare -r bold=‘echo -en "\e[1m"‘
14 declare -r blink=‘echo -en "\e[5m"‘
15 declare -r normal=‘echo -en "\e[0m"‘
16 declare -r hidden=‘echo -en "\e[8m"‘
17 declare -r reverse=‘echo -en "\e[7m"‘
18 declare -r underline=‘echo -en "\e[4m"‘
19 declare -r strickthru=‘echo -en "\e[9m"‘
20
21 AQUA=‘echo -en "\e[46m"‘

82

22 aqua=‘echo -en "\e[36m"‘
23 GRAY=‘echo -en "\e[47m"‘
24 gray=‘echo -en "\e[37m"‘
25 BLACK=‘echo -en "\e[40m"‘
26 black=‘echo -en "\e[30m"‘
27 WHITE=‘echo -en "\e[107m"‘
28 white=‘echo -en "\e[97m"‘
29 ORANGE=‘echo -en "\e[43m"‘
30 orange=‘echo -en "\e[33m"‘
31 PURPLE=‘echo -en "\e[45m"‘
32 purple=‘echo -en "\e[35m"‘
33 DEFAULT=‘echo -en "\e[49m"‘
34 default=‘echo -en "\e[39m"‘
35 DARKGRAY=‘echo -en "\e[100m"‘
36 darkgray=‘echo -en "\e[90m"‘
37 LIGHTRED=‘echo -en "\e[101m"‘
38 lightred=‘echo -en "\e[91m"‘
39 LIGHTBLUE=‘echo -en "\e[104m"‘
40 lightblue=‘echo -en "\e[94m"‘
41 LIGHTAQUA=‘echo -en "\e[106m"‘
42 lightaqua=‘echo -en "\e[96m"‘
43 LIGHTGREEN=‘echo -en "\e[102m"‘
44 lightgreen=‘echo -en "\e[92m"‘
45 LIGHTYELLOW=‘echo -en "\e[103m"‘
46 lightyellow=‘echo -en "\e[93m"‘
47 LIGHTPURPLE=‘echo -en "\e[105m"‘
48 lightpurple=‘echo -en "\e[95m"‘

Code 5.8: codes/coloring scheme.conf

RPI Health Check
1 #!/bin/bash
2 # SMART RPI node, Temperature check
3 cpuTempC=$(($(cat /sys/class/thermal/thermal_zone0/temp)/1000))
4 cpuTempF=$(($cpuTempC*9/5+32))
5
6 gpuTempC=$(/opt/vc/bin/vcgencmd measure_temp)
7 gpuTempC=${gpuTempC:5:2}
8 gpuTempF=$(($gpuTempC*9/5+32))
9

10 echo "CPU Temp: $cpuTempC C or $cpuTempF F"
11 echo "GPU Temp: $gpuTempC C or $gpuTempF F"

Code 5.9: codes/temp.sh

OUTPUTS

Dmidecode
1 # dmidecode 3.0
2 Getting SMBIOS data from sysfs.
3 SMBIOS 2.8 present.
4 42 structures occupying 2980 bytes.
5 Table at 0x87EB0000.
6
7 Handle 0x0000, DMI type 0, 24 bytes
8 BIOS Information
9 Vendor: American Megatrends Inc.

10 Version: F.2F
11 Release Date: 12/15/2015
12 Address: 0xF0000
13 Runtime Size: 64 kB
14 ROM Size: 6144 kB
15 Characteristics:
16 PCI is supported
17 BIOS is upgradeable
18 BIOS shadowing is allowed
19 Boot from CD is supported
20 Selectable boot is supported
21 EDD is supported
22 5.25"/1.2 MB floppy services are supported (int 13h)
23 3.5"/720 kB floppy services are supported (int 13h)
24 3.5"/2.88 MB floppy services are supported (int 13h)
25 Print screen service is supported (int 5h)
26 8042 keyboard services are supported (int 9h)
27 Serial services are supported (int 14h)
28 Printer services are supported (int 17h)
29 ACPI is supported
30 USB legacy is supported
31 Smart battery is supported
32 BIOS boot specification is supported
33 Function key-initiated network boot is supported
34 Targeted content distribution is supported
35 UEFI is supported
36 BIOS Revision: 15.47
37 Firmware Revision: 33.35
38
39 Handle 0x0001, DMI type 1, 27 bytes
40 System Information
41 Manufacturer: HP

83

42 Product Name: HP Spectre x360 Convertible
43 Version:
44 Serial Number: 5CD543BL6S
45 UUID: 35444335-3334-4C42-3653-534C33344435
46 Wake-up Type: Power Switch
47 SKU Number: P5P85EA#AB8
48 Family: 103C_5335KV G=N L=CON B=HP S=SPT
49
50 Handle 0x0002, DMI type 2, 15 bytes
51 Base Board Information
52 Manufacturer: HP
53 Product Name: 804E
54 Version: 33.23
55 Serial Number: PFLJH028J9M02I
56 Asset Tag: Base Board Asset Tag
57 Features:
58 Board is a hosting board
59 Board is replaceable
60 Location In Chassis: Base Board Chassis Location
61 Chassis Handle: 0x0003
62 Type: Motherboard
63 Contained Object Handles: 0
64
65 Handle 0x0003, DMI type 3, 25 bytes
66 Chassis Information
67 Manufacturer: HP
68 Type: Notebook
69 Lock: Not Present
70 Version: Chassis Version
71 Serial Number: Chassis Serial Number
72 Asset Tag: Not Specified
73 Boot-up State: Safe
74 Power Supply State: Safe
75 Thermal State: Safe
76 Security Status: None
77 OEM Information: 0x00000000
78 Height: Unspecified
79 Number Of Power Cords: 1
80 Contained Elements: 1
81 <OUT OF SPEC> (0)
82 SKU Number: Not Specified
83
84 Handle 0x0004, DMI type 8, 9 bytes
85 Port Connector Information
86 Internal Reference Designator: J1A1
87 Internal Connector Type: None
88 External Reference Designator: PS2Mouse
89 External Connector Type: PS/2
90 Port Type: Mouse Port
91
92 Handle 0x0005, DMI type 8, 9 bytes
93 Port Connector Information
94 Internal Reference Designator: J1A1
95 Internal Connector Type: None
96 External Reference Designator: Keyboard
97 External Connector Type: PS/2
98 Port Type: Keyboard Port
99

100 Handle 0x0006, DMI type 8, 9 bytes
101 Port Connector Information
102 Internal Reference Designator: J2A1
103 Internal Connector Type: None
104 External Reference Designator: TV Out
105 External Connector Type: Mini Centronics Type-14
106 Port Type: Other
107
108 Handle 0x0007, DMI type 8, 9 bytes
109 Port Connector Information
110 Internal Reference Designator: J2A2A
111 Internal Connector Type: None
112 External Reference Designator: COM A
113 External Connector Type: DB-9 male
114 Port Type: Serial Port 16550A Compatible
115
116 Handle 0x0008, DMI type 8, 9 bytes
117 Port Connector Information
118 Internal Reference Designator: J2A2B
119 Internal Connector Type: None
120 External Reference Designator: Video
121 External Connector Type: DB-15 female
122 Port Type: Video Port
123
124 Handle 0x0009, DMI type 8, 9 bytes
125 Port Connector Information
126 Internal Reference Designator: J3A1
127 Internal Connector Type: None
128 External Reference Designator: USB1
129 External Connector Type: Access Bus (USB)
130 Port Type: USB
131
132 Handle 0x000A, DMI type 8, 9 bytes
133 Port Connector Information
134 Internal Reference Designator: J3A1
135 Internal Connector Type: None
136 External Reference Designator: USB2
137 External Connector Type: Access Bus (USB)
138 Port Type: USB
139

84

140 Handle 0x000B, DMI type 9, 17 bytes
141 System Slot Information
142 Designation: J6B2
143 Type: x16 PCI Express
144 Current Usage: In Use
145 Length: Long
146 ID: 0
147 Characteristics:
148 3.3 V is provided
149 Opening is shared
150 PME signal is supported
151 Bus Address: 0000:00:01.0
152
153 Handle 0x000C, DMI type 11, 5 bytes
154 OEM Strings
155 String 1: HP
156 String 2: ABS 70/71 79 7A 7B 7C
157 String 3: FBYTE#6b7N7R7W8AaBaHapaqarauawbVbhbnbzdUdXdpdq.fD;BUILDID#15WW3K
158 String 4: PT603#SAB8#DAB8;
159 String 5:
160 String 6:
161 String 7:
162 String 8:
163 String 9:
164 String 10:
165 String 11:
166 String 12:
167 String 13:
168
169 Handle 0x000D, DMI type 22, 26 bytes
170 Portable Battery
171 Location: Primary
172 Manufacturer: 3332C
173 Name: PK03056XL
174 Design Capacity: 56540 mWh
175 Design Voltage: 11400 mV
176 SBDS Version: 1.1
177 Maximum Error: Unknown
178 SBDS Serial Number: 063C
179 SBDS Manufacture Date: 2015-09-15
180 SBDS Chemistry: LION
181 OEM-specific Information: 0x000A070C
182
183 Handle 0x000E, DMI type 32, 20 bytes
184 System Boot Information
185 Status: No errors detected
186
187 Handle 0x000F, DMI type 41, 11 bytes
188 Onboard Device
189 Reference Designation: Onboard IGD
190 Type: Video
191 Status: Enabled
192 Type Instance: 1
193 Bus Address: 0000:00:02.0
194
195 Handle 0x0010, DMI type 7, 19 bytes
196 Cache Information
197 Socket Designation: L1 Cache
198 Configuration: Enabled, Not Socketed, Level 1
199 Operational Mode: Write Back
200 Location: Internal
201 Installed Size: 64 kB
202 Maximum Size: 64 kB
203 Supported SRAM Types:
204 Synchronous
205 Installed SRAM Type: Synchronous
206 Speed: Unknown
207 Error Correction Type: Parity
208 System Type: Data
209 Associativity: 8-way Set-associative
210
211 Handle 0x0011, DMI type 7, 19 bytes
212 Cache Information
213 Socket Designation: L1 Cache
214 Configuration: Enabled, Not Socketed, Level 1
215 Operational Mode: Write Back
216 Location: Internal
217 Installed Size: 64 kB
218 Maximum Size: 64 kB
219 Supported SRAM Types:
220 Synchronous
221 Installed SRAM Type: Synchronous
222 Speed: Unknown
223 Error Correction Type: Parity
224 System Type: Instruction
225 Associativity: 8-way Set-associative
226
227 Handle 0x0012, DMI type 7, 19 bytes
228 Cache Information
229 Socket Designation: L2 Cache
230 Configuration: Enabled, Not Socketed, Level 2
231 Operational Mode: Write Back
232 Location: Internal
233 Installed Size: 512 kB
234 Maximum Size: 512 kB
235 Supported SRAM Types:
236 Synchronous
237 Installed SRAM Type: Synchronous

85

238 Speed: Unknown
239 Error Correction Type: Single-bit ECC
240 System Type: Unified
241 Associativity: 4-way Set-associative
242
243 Handle 0x0013, DMI type 7, 19 bytes
244 Cache Information
245 Socket Designation: L3 Cache
246 Configuration: Enabled, Not Socketed, Level 3
247 Operational Mode: Write Back
248 Location: Internal
249 Installed Size: 4096 kB
250 Maximum Size: 4096 kB
251 Supported SRAM Types:
252 Synchronous
253 Installed SRAM Type: Synchronous
254 Speed: Unknown
255 Error Correction Type: Multi-bit ECC
256 System Type: Unified
257 Associativity: 16-way Set-associative
258
259 Handle 0x0014, DMI type 4, 48 bytes
260 Processor Information
261 Socket Designation: U3E1
262 Type: Central Processor
263 Family: Core i7
264 Manufacturer: Intel(R) Corporation
265 ID: E3 06 04 00 FF FB EB BF
266 Signature: Type 0, Family 6, Model 78, Stepping 3
267 Flags:
268 FPU (Floating-point unit on-chip)
269 VME (Virtual mode extension)
270 DE (Debugging extension)
271 PSE (Page size extension)
272 TSC (Time stamp counter)
273 MSR (Model specific registers)
274 PAE (Physical address extension)
275 MCE (Machine check exception)
276 CX8 (CMPXCHG8 instruction supported)
277 APIC (On-chip APIC hardware supported)
278 SEP (Fast system call)
279 MTRR (Memory type range registers)
280 PGE (Page global enable)
281 MCA (Machine check architecture)
282 CMOV (Conditional move instruction supported)
283 PAT (Page attribute table)
284 PSE-36 (36-bit page size extension)
285 CLFSH (CLFLUSH instruction supported)
286 DS (Debug store)
287 ACPI (ACPI supported)
288 MMX (MMX technology supported)
289 FXSR (FXSAVE and FXSTOR instructions supported)
290 SSE (Streaming SIMD extensions)
291 SSE2 (Streaming SIMD extensions 2)
292 SS (Self-snoop)
293 HTT (Multi-threading)
294 TM (Thermal monitor supported)
295 PBE (Pending break enabled)
296 Version: Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz
297 Voltage: 1.0 V
298 External Clock: 100 MHz
299 Max Speed: 3100 MHz
300 Current Speed: 3100 MHz
301 Status: Populated, Enabled
302 Upgrade: Other
303 L1 Cache Handle: 0x0011
304 L2 Cache Handle: 0x0012
305 L3 Cache Handle: 0x0013
306 Serial Number: To Be Filled By O.E.M.
307 Asset Tag: To Be Filled By O.E.M.
308 Part Number: To Be Filled By O.E.M.
309 Core Count: 2
310 Core Enabled: 2
311 Thread Count: 4
312 Characteristics:
313 64-bit capable
314 Multi-Core
315 Hardware Thread
316 Execute Protection
317 Enhanced Virtualization
318 Power/Performance Control
319
320 Handle 0x0015, DMI type 16, 23 bytes
321 Physical Memory Array
322 Location: System Board Or Motherboard
323 Use: System Memory
324 Error Correction Type: None
325 Maximum Capacity: 16 GB
326 Error Information Handle: Not Provided
327 Number Of Devices: 2
328
329 Handle 0x0016, DMI type 17, 40 bytes
330 Memory Device
331 Array Handle: 0x0015
332 Error Information Handle: Not Provided
333 Total Width: 64 bits
334 Data Width: 64 bits
335 Size: 4096 MB

86

336 Form Factor: Row Of Chips
337 Set: None
338 Locator: Bottom - on board
339 Bank Locator: BANK 0
340 Type: LPDDR3
341 Type Detail: Synchronous
342 Speed: 1600 MHz
343 Manufacturer: Elpida
344 Serial Number: Not Available
345 Asset Tag: 0
346 Part Number: EDFB164A1MA-JD-F
347 Rank: 2
348 Configured Clock Speed: 1600 MHz
349 Minimum Voltage: Unknown
350 Maximum Voltage: Unknown
351 Configured Voltage: 1.2 V
352
353 Handle 0x0017, DMI type 17, 40 bytes
354 Memory Device
355 Array Handle: 0x0015
356 Error Information Handle: Not Provided
357 Total Width: 64 bits
358 Data Width: 64 bits
359 Size: 4096 MB
360 Form Factor: Row Of Chips
361 Set: None
362 Locator: Bottom - on board
363 Bank Locator: BANK 2
364 Type: LPDDR3
365 Type Detail: Synchronous
366 Speed: 1600 MHz
367 Manufacturer: Elpida
368 Serial Number: Not Available
369 Asset Tag: 0
370 Part Number: EDFB164A1MA-JD-F
371 Rank: 2
372 Configured Clock Speed: 1600 MHz
373 Minimum Voltage: Unknown
374 Maximum Voltage: Unknown
375 Configured Voltage: 1.2 V
376
377 Handle 0x0018, DMI type 19, 31 bytes
378 Memory Array Mapped Address
379 Starting Address: 0x00000000000
380 Ending Address: 0x001FFFFFFFF
381 Range Size: 8 GB
382 Physical Array Handle: 0x0015
383 Partition Width: 2
384
385 Handle 0x0019, DMI type 221, 12 bytes
386 HP BIOS iSCSI NIC PCI and MAC Information
387 NIC 1: PCI device 01:00.1, MAC address 00:01:06:00:00:00
388
389 Handle 0x001A, DMI type 20, 35 bytes
390 Memory Device Mapped Address
391 Starting Address: 0x00000000000
392 Ending Address: 0x000FFFFFFFF
393 Range Size: 4 GB
394 Physical Device Handle: 0x0016
395 Memory Array Mapped Address Handle: 0x0018
396 Partition Row Position: 1
397
398 Handle 0x001B, DMI type 20, 35 bytes
399 Memory Device Mapped Address
400 Starting Address: 0x00100000000
401 Ending Address: 0x001FFFFFFFF
402 Range Size: 4 GB
403 Physical Device Handle: 0x0017
404 Memory Array Mapped Address Handle: 0x0018
405 Partition Row Position: 1
406
407 Handle 0x001C, DMI type 221, 26 bytes
408 HP BIOS iSCSI NIC PCI and MAC Information
409 NIC 1: PCI device 01:00.3, MAC address 00:01:06:00:00:00
410 NIC 2: PCI device 00:00.2, MAC address 00:00:00:33:00:03
411
412 Handle 0x001D, DMI type 221, 26 bytes
413 HP BIOS iSCSI NIC PCI and MAC Information
414 NIC 1: PCI device 01:00.3, MAC address 00:01:06:00:00:00
415 NIC 2: PCI device 00:00.2, MAC address 0A:00:00:01:00:03
416
417 Handle 0x001E, DMI type 221, 68 bytes
418 HP BIOS iSCSI NIC PCI and MAC Information
419 NIC 1: PCI device 01:01.1, MAC address 00:01:06:00:00:00
420 NIC 2: PCI device 03:00.2, MAC address FF:FF:FF:FF:FF:04
421 NIC 3: PCI device ff:00.0, MAC address FF:FF:21:00:05:00
422 NIC 4: Not Installed
423 NIC 5: Not Installed
424 NIC 6: Disabled
425 NIC 7: Disabled
426 NIC 8: PCI device 0a:00.0, MAC address 00:34:00:00:00:00
427
428 Handle 0x001F, DMI type 221, 54 bytes
429 HP BIOS iSCSI NIC PCI and MAC Information
430 NIC 1: PCI device 01:00.7, MAC address 00:01:06:00:00:00
431 NIC 2: PCI device 00:00.2, MAC address 01:06:00:01:00:03
432 NIC 3: PCI device 01:00.0, MAC address 06:00:00:00:04:05
433 NIC 4: Not Installed

87

434 NIC 5: Not Installed
435 NIC 6: PCI device 08:1f.7, MAC address 00:08:00:FF:FF:FF
436
437 Handle 0x0020, DMI type 41, 11 bytes
438 Onboard Device
439 Reference Designation: Intel Stone Peak 2 7265 Combo /NON-vPro NGFF Combo Wireless-AC 7265
440 Type: Other
441 Status: Enabled
442 Type Instance: 1
443 Bus Address: 0000:02:00.0
444
445 Handle 0x0021, DMI type 41, 11 bytes
446 Onboard Device
447 Reference Designation: Realtek PCIE CardReader
448 Type: Other
449 Status: Enabled
450 Type Instance: 1
451 Bus Address: 0000:01:00.0
452
453 Handle 0x0022, DMI type 221, 96 bytes
454 HP BIOS iSCSI NIC PCI and MAC Information
455 NIC 1: PCI device 01:01.5, MAC address 00:00:00:00:FF:00
456 NIC 2: PCI device 00:00.2, MAC address FF:FF:FF:FF:FF:03
457 NIC 3: PCI device ff:00.4, MAC address FF:FF:FF:FF:05:06
458 NIC 4: Not Installed
459 NIC 5: Not Installed
460 NIC 6: Disabled
461 NIC 7: Not Installed
462 NIC 8: PCI device 0c:00.0, MAC address 00:FF:FF:FF:FF:FF
463 NIC 9: PCI device 00:01.5, MAC address 02:00:00:00:00:0E
464 NIC 10: PCI device ff:00.0, MAC address FF:FF:FF:FF:0F:00
465 NIC 11: Not Installed
466
467 Handle 0x0023, DMI type 8, 9 bytes
468 Port Connector Information
469 Internal Reference Designator: Ctrl0Port1
470 Internal Connector Type: SAS/SATA Plug Receptacle
471 External Reference Designator: Primary HDD Bay
472 External Connector Type: SAS/SATA Plug Receptacle
473 Port Type: SATA
474
475 Handle 0x0024, DMI type 136, 6 bytes
476 OEM-specific Type
477 Header and Data:
478 88 06 24 00 00 00
479
480 Handle 0x0025, DMI type 14, 23 bytes
481 Group Associations
482 Name: Firmware Version Info
483 Items: 6
484 0x0019 (<OUT OF SPEC>)
485 0x001C (<OUT OF SPEC>)
486 0x001D (<OUT OF SPEC>)
487 0x001E (<OUT OF SPEC>)
488 0x001F (<OUT OF SPEC>)
489 0x0022 (<OUT OF SPEC>)
490
491 Handle 0x0026, DMI type 14, 8 bytes
492 Group Associations
493 Name: $MEI
494 Items: 1
495 0x0000 (<OUT OF SPEC>)
496
497 Handle 0x0027, DMI type 219, 81 bytes
498 HP ProLiant Information
499 Power Features: 0x45010301
500 Omega Features: 0x06900002
501 Misc. Features: 0x00000000
502 iCRU: No
503 UEFI: No
504
505 Handle 0x0028, DMI type 13, 22 bytes
506 BIOS Language Information
507 Language Description Format: Long
508 Installable Languages: 5
509 en|US|iso8859-1
510 fr|FR|iso8859-1
511 es|ES|iso8859-1
512 zh|TW|unicode
513 zh|CN|unicode
514 Currently Installed Language: en|US|iso8859-1
515
516 Handle 0x0029, DMI type 127, 4 bytes
517 End Of Table

Code 5.10: logs/dmidecode.log

88

