YASAR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
MASTER THESIS

FASTER POINT ADDITION FORMULAS FOR

HUFF FORM OF ELLIPTIC CURVES

NERIMAN GAMZE ORHON
THESIS ADVISOR: ASST.PROF. HUSEYIN HISIL

COMPUTER ENGINEERING

PRESENTATION DATE: 21.08.2017

BORNOVA / iZMIR
SEPTEMBER 2017

We certify that, as the jury, we have read this thesis and that in our opinion it is fully

adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Jury Members: Signature?

4. 03. 201 F

Prof. Urfat NURIYEV, Ph.D.

Ege University

Asst.Prof. Hiiseyin HISIL, Ph.D. . /L, 97 20 /q_
Yagar University

Asst.Prof. Dindar Oz, Ph.D. lL-08. 2003
Yagar University

neyt GUZELIS, PL.D

irector of the Graduate School

iii

ABSTRACT

FASTER POINT ADDITION FORMULAS FOR HUFF FORM
OF ELLIPTIC CURVES

Orhon, Neriman Gamze
Msc, Computer Engineering
Advisor: Asst.Prof. Hiiseyin HISIL, Ph.D.

September 2017

Elliptic curves were being used only for mathematical studies until Miller and
Koblitz introduced elliptic curves to crypto-community in 1985 with independent
works. Since then, elliptic curves became one of the most significant tools
in cryptography. Elliptic curve cryptography (ECC) started to be used for
commercial purposes after 1990’s. It provides a better level of security with
the same key size than the widely used public key crypto-systems such as RSA.
Nevertheless, time complexity is not at the desired stage. Hence, there have been
several studies so far that aims to increase the time efficiency.

The curve forms that are being used for speed oriented operations came a
long way in terms of gathering lower degree formulas for scalar multiplication
which is the core operation of ECC. However, one of the curve forms which is
called Huff curve could not get competitive with the other forms such as Twisted
Edwards, Jacobi Quartic, despite the studies have been made so far. This thesis
focuses on increasing the efficiency of Huff form of elliptic curve by making use
of mathematical and computational primitives.

Inversion-free point addition and doubling formulas which are being used in
scalar multiplication algorithms, are proposed for the Huff curve which is defined
as

y(1 + az?) = cx(1 + dy?).

First idea is rather to embed the curve into a different projective space than
the preferred for Huff curve previously. Thus, P! x P! embedding is used instead of
P? embedding. The second idea is to make the use of isogenies in order to obtain
an alternative doubling formula. Thanks to these two ideas, an improvement is
achieved.

The best algorithm for point doubling on Huff curve was computed with 6M +
5S.! The proposed doubling formula in this thesis can be computed with 8M.
Also, operation count of mixed addition is decreased from 10M to 8M. Both sets
of formulas are leading to an effective cost of 2M. Furthermore, they are shown
to be 4-way parallel.

Key Words: Elliptic curves, 2-isogeny, efficient, scalar multiplication, Huff

curves, inversion-free point addition, parallel computation.

T, M, S, D, a represents the cost of various field operations. I: inversion, M: multiplication,
S: squaring, D: multiplication by a curve constant, a: addition/subtraction.

vil

Oz

HUFF ELIPTIK EGRI MODELI UZERINDE HIZLI NOKTA

TOPLAMA FORMULLERI

Orhon, Neriman Gamze
Yiiksek Lisans Tezi, Bilgisayar Miithendisligi
Danigsman: Yrd.Dog¢.Dr. Hiiseyin HISIL

Eyliil 2017

Onceden yalmzca matematiksel amaclar icin kullamlan eliptik egriler, 1985
yilinda Miller ve Koblitz'in yayinladig1 ayr1 calismalar sayesinde kripto diinyasina
giris yapti. Bu gelisme ile birlikte eliptik egriler kriptografinin en o6nemli
araclarindan biri haline geldi. 1990’lardan sonra eliptik egri tabanlh kriptografi
ticari amaclar i¢in kullanilmaya basladi. Eliptik egri tabanlh kripto-sistemler,
RSA gibi sik¢ga kullamlan asimetrik kripto sistemlerin sagladigi giivenlik
seviyesini, daha kisa anahtarlar ile saglayabildigi i¢in, bu denli hizli bir geligim
gosterdi. Fakat, sagladig yiiksek seviyeli giivenlige karsin, verimlilik konusunda
yol kat etmesi gerekmektedir. Bu nedenle, eliptik egri tabanlh kripto-sistemlerin
verimliligini arttirmak iizere bir ¢ok ¢aligma yapiliyor.

Hiz amach kullanilan egri modelleri, eliptik egri tabanl kriptografinin temel
iglemi olan, skalar carpim islemi i¢in kullanilacak, daha diigiik dereceli formiiller
elde edilmesi konusunda biiyiik yol kat etti. Fakat, bu egri modellerinden
sayillan Huff egrisi bu vakte kadar yapilan bir ¢ok caligmaya ragmen, twisted
Edwards, Jacobi Quartic gibi egrilerle rekabet iginde olmadi. Bu tezin
amacl, matemtaiksel ve bilgisayimsal temelleri kullanarak Huff egri modelinin

verimliligini arttirmaktir.

X

Bu amac cercevesinde,

y(1 + az®) = cx(1 + dy?).

olarak ifade edilen Huff egrisi tizerinde, bélmesiz nokta toplama ve nokta ciftleme
islemleri onerildi. Bu amaca ulagmak icin kullanilan ilk yontem, bélmesiz nokta
toplama ve nokta ciftleme islemleri elde edebilmek i¢in, bu egri modelinde daha
onceki galigmalarda tercih edilenden basgka bir projektif uzay kullanilmasidir.

Ikinci yontem ise, alternatif bir nokta ciftleme formilii elde etmek icin
isogenilerden faydalanmaktir. Bu iki yontem sayesinde, dikkate deger bir gelisim
kaydedilmistir.

Huff egrisi tizerinde, bilinen en hizli nokta ciftleme formiilii ile, islem 6M +
5S’de ? hesaplanabiliyordu. Bu tezde sunulan alternatif nokta ciftleme formiilii
sayesinde 8M’de hesaplanabiliyor. Nokta toplama formiiliiniin iglem sayis1 da
10M’den 8M’ye diigliriildii. Bu iki formiilde de 2M’lik hizlanma saglanmigtir.
Ayrica sunulan her iki formiil de 4-yonlii paralel olarak iglenebilmektedir.

Anahtar Kelimeler: Eliptik egriler, 2-isogeny, verimli, skalar ¢arpim, Huff

egrisi, ters almasiz nokta toplama islemi, paralel hesaplama.

2, M, S, D, a cesitli cisim iglemlerini temsil eder. I: inversion(ters alma), M:
multiplication(¢arpim), S: squaring (kare alma), D: multiplication by a curve constant (egri
sabiti ile garpim), a: addition/subtraction (toplama/gikarma).

X1

ACKNOWLEDGEMENTS

First of all, I would like to express my deep gratitude to my advisor Huseyin
Hisil for his endless patience and support. Since the second year of my bachelor
education, he has never stopped helping me for my research. He has always been
a patient mentor for both my academic journey and personal life. Without his
encouragement and mentorship, it would be impossible for me to achieve my goal.

[am grateful to organization committees of EUROCRYPT 2017 and Summer
School on real-world crypto and privacy. They support me financially to attend
their events. Also, they gave me chance to join the community and make
presentation of my studies in these events. Their support is magnificently
important for the road that I would like to pursue.

I would like to thank Yasar University Scientific Research Project Committee
for accepting our project (SRP024) with my advisor Huseyin Hisil and providing
me required hardware and software.

I also express my sincere gratitude to Craig Costello. His help about one of
the most important parts of my study has improved my thesis. I also would like
to thank Peter Schwabe for his advices about my future career. He has always
been very friendly and helpful.

Lastly, I would like to thank my loved ones. My parents always supported me
and believed in me for everything I did. It would not be possible for me to reach
where I stand now, without them. Special thanks to my sister Hande Orhon
Ozdag for being my best friend, understanding me all the time and giving me
thoughtful advices about my research and personal life. Also, Cenk Ozdag and

Mert Can Kilic always encouraged and supported me. I owe much all of them.

Neriman Gamze Orhon

Izmir, 2017

xiil

TEXT OF OATH

I declare and honestly confirm that my study, titled “FASTER POINT ADDITION
FORMULAS FOR HUFF FORM OF ELLIPTIC CURVES” and presented as a Master’s
Thesis, has been written without applying to any assistance incousistent with scientific
ethics and traditions. I declare, to the best of my knowledge and belief, that all content
and ideas drawn directly or indirectly from external sources are indicated in the text and

listed in the list of references.
Neriman Gamze Orhon

/’/"aaauﬁc,,

September 14, 2017

XV

PREVIOUSLY PUBLISHED MATERIALS

This thesis contains material based on the following paper. An extended version
of paper is submitted to Designs, Codes and Crypto Journal, and it is under
review.

Orhon, N.G., Hisil, H. (2017). Speeding up Huff form of elliptic curves.
Cryptology ePrint ~ Archive, Report 2017/320. (https://eprint.iacr.org/

2017/320. pdf)

xXvii

TABLE OF CONTENTS

FRONT MATTER i
ABSTRACT . . . o v
O7 Y. 4. &Y & & ix
ACKNOWLEDGEMENTS xiii
TEXT OF OATH XV
PREVIOUSLY PUBLISHED MATERIALS xvii
LIST OF FIGURES oo xxiii
LIST OF TABLES XXV

1 INTRODUCTION 1
1.1 MOTIVATION, 3
12 ROADMAP 4

2 BACKGROUND 7
2.1 ELLIPTIC CURVES 7

2.1.1 SHORT WEIERSTRASS FORM 9
2.1.2 OTHER FORMS OF ELLIPTIC CURVES 11
2.1.3 HUFF CURVE 14
2.2 SCALAR MULTIPLICATION 16
2.3 ISOGENIES 18
2.3.1 VELU'S FORMULAS 18
2.3.2 KOHEL'S APPROACH 20

Xix

3 EXTENDED HUFF CURVE 21

3.1 DERIVATION OF EXTENDED HUFF CURVE 21

3.2 AFFINE COORDINATES OF EXTENDED HUFF CURVE . . . 23
3.2.1 GROUP LAW IN AFFINE COORDINATES OF EX-

TENDED HUFF CURVE 24

3.3 PROJECTIVE COORDINATES OF EXTENDED HUFF CURVE 27

3.3.1 EMBEDDING H INTOP? 28

3.3.2 EMBEDDING HINTOP! xP!. 29

4 2-ISOGENY ON EXTENDED HUFF CURVE 33

4.1 DEFINING ISOGENY WITH KOHEL’'S APPROACH 33

4.2 ISOGENY TO EXTENDED HUFF CURVE 35

4.3

4.2.1 CONSTRUCTING ISOGENY MAPS BETWEEN 2 DIF-

FERENT EXTENDED HUFF CURVES 35
422 2JISOGENY INP' xP! 40
[SOGENY TO TWISTED EDWARDS CURVE 40

4.3.1 CONSTRUCTING ISOGENY MAPS BETWEEN EX-
TENDED HUFF CURVE AND TWISTED EDWARDS

CURVE 40

432 2-ISOGENY INP' x P! 45

5 EFFICIENT IMPLEMENTATION 47
5.1 NOT SO FAST ARITHMETIC ON P? EMBEDDING 47
5.1.1 POINT ADDITION ON P2 EMBEDDING 47

5.1.2 POINT DOUBLING ON P? EMBEDDING 48

5.2 FASTER ARITHMETIC ON P! x P! EMBEDDING 49
5.2.1 POINT ADDITION ON P! x P! EMBEDDING 49

5.2.2 POINT DOUBLING ON P! x P! EMBEDDING o1

5.2.3 POINT ADDITION AND DOUBLING FOR COFACTOR 4 52

XX

6 COMPARISON AND CONCLUSION 55
6.1 COMPARISON BETWEEN HUFF FORMS 25
6.2 COMPARISON BETWEEN OTHER FORMS OF ELLIPTIC

CURVES 57
6.2.1 GROUP OPERATION COSTS FOR DIFFERENT

CURVE FORMS 57

6.2.2 SCALAR MUTLIPLICATION COSTS 59

6.2.3 COMPARISON FOR 4-WAY PARALLEL SETTING . .. 61
REFERENCES 63
References 63

APPENDIX 1- C CODE OF SCALAR MULTIPLICATION 66

xxi

2.1
2.2

3.1
3.2

LIST OF FIGURES

Short Weierstrass curve 3% = 2% — 1022 +2over R. 10
Huff curve 5z(y*> — 1) = 20y(z* — 1) over R. 15
Huff curve y(1 + 232%) = 10x(1 + 25y%) over R. 24

Chord and Tangent Rule on extended Huff curve y(1 + 242?) =
=3zx(1+17y*)over R. 25

xxiii

6.1
6.2
6.3
6.4
6.5

6.6

LIST OF TABLES

Speed oriented operation counts for Huff form 56
Operation Counts for Different Curve Forms 58
Operation Counts with Special Conditions for Different Curve Forms 58

Cost estimates for 1-NAF variable point scalar multiplication . . . 59
Cost estimates for sliding window 4-NAF variable point scalar
multiplicationo Lo 60
Comparison between twisted Edwards and extended Huff curves

for 4-way parallel setting 61

XXV

CHAPTER 1

INTRODUCTION

Assurance of confidentiality, integrity, non-repudiation and availability of
information has always a high importance from the beginning of time. But,
the technology era that we live in has the highest dependency on information
security since information is transferred through an open network. Thus, much
more advanced methods are required now than any other ages. One of the ways
that provides the security of information is called cryptography.

Cryptography makes use of mathematical techniques in order to transfer
information securely through an insecure channel. Thanks to the process of
encryption, information becomes unintelligible for parties who does not have the
decryption key, and decryption process restores the encrypted message. Until
20th century, secret key cryptography is used. In secret key crypto-systems, two
parties that want to communicate through an insecure channel use the same secret
key, namely encryption and decryption operations are done by a single key. This
method is fast but has a remarkable problem. The key distribution must be done
in a secure way and both parties must keep the same key secret.

In 1976, Diffie and Hellman (Diffie & Hellman, 1976) came up with a
groundbreaking idea which is called public key cryptography. This crypto-system
is also known as asymmetric cryptography, because encryption and decryption
operations are done by two different keys. Assume that Bob wants to send a
secret message to Alice. Then, Alice generates a key pair. Alice keeps one of the
keys secret and sends the other one to Bob. Bob encrypts the message with Alice’s
public key and sends the encrypted message to Alice. Finally, Alice decrypts the
message with the key that she kept secret. In this scenario, key distribution does
not cause a problem obviously. However, all public key crypto-systems are slower

than the secret key crypto-systems.

After the elliptic curve cyrptography (ECC) suggested by the independent
works of Miller (Miller, 1985) and Koblitz (Koblitz, 1987), it is started to be used
for commercial purposes. It is standardized by (FIPS 186-2, 2000), (ANSI X9.63,
2001), (ISO CD 14888-3, 2006), (IEEE-1363, 2000), (ANSI X9.62, 2005).

This crypto-system is being used for encryption, decryption, key distribution
digital signatures given in (Menezes, Van Oorschot, & Vanstone, 1996) and
signature verification. Eventhough the elliptic curve cryptography provides a
good level of security, it needs to be improved with regards to time efficiency
(Hankerson, Menezes, & Vanstone, 2003).

Scalar multiplication, which is composed of addition operations of the points
on an elliptic curve, is one of the most common tools of elliptic curve based
cryptographic operations. Thus, speeding up point addition, automatically
speeds up scalar multiplication and dependent protocols as well.

The following curve forms are the most widely used elliptic curves in speed

oriented implementations:
e Short Weierstrass Form: Ey : y? = 2% +ax + b
e Extended Jacobi Quartic Form: Fg: y? = dz* + 2ax? + 1
e Jacobi Intersection Form: E;: bu® 4+ v? = 1, au® + w? =1
e Twisted Hessian Form: Fp.: ax® + y® + 1 = day
o Twisted Edwards Form: Eg: ax?® +y? = 1 + da?y?

Besides, there is another curve form known as Huff curve which is introduced
by Huff in 1948 (Huff, 1948). Recently, this curve form is enrolled to cryptography
with the work of Joye, Tibouchi and Vergnaud in (Joye, Tibouchi, & Vergnaud,
2010).

Ey:azx(y? — 1) = by(2* — 1)

However, it could not be as efficient as the other forms of elliptic curves in terms

of group operations.

1.1 MOTIVATION

The main goal of this thesis is to increase the efficiency of group operations
on Huff curve. Group operation formulas include elementary operations such
as multiplication, squaring, multiplication by a constant, addition/subtraction
and inversion. Apparently, inversion operation is much more costly than others
(Hankerson et al., 2003). Therefore, eliminating the inversion operation is the
first step of increasing the efficiency of scalar multiplication.

Affine point addition formulas of elliptic curve points involve inversions. But,
in the case that the curve is embedded into a projective space, formulas become

inversion free.

Definition 1.1.1. Let K be a field, ¢ and d € N*. The following equivalence
relation can be defined on K* — {(0,0,0)}:

(Xla }/17 Zl) ~ (X27 }/27 ZZ)

where X; = XXy, Y] = MY, Z, = \Z, for I\ € K*. The equivalence class is
(X:Y:2)={(\X, Y, \Z): A € K*}

o (X:Y: Z)is called projective point,

(X/Z¢,Y/Z4% 1) is a representative of the projective point (X:Y: Z),

The set of all affine points is A(K) = {(z,y): z,y € K},

The set of all projective points P(K)? = {(X:Y: Z): X,Y,Z € K, Z # 0},

A projective point can be obtained by replacing x by X/Z¢ and y by
Y/Z4 (Hankerson et al., 2003).

Embedding any form of elliptic curves into projective space leads to obtain
point addition formulas which does not include field inversion. The only inversion
is done at the very end of scalar multiplication, while converting projective points

to affine ones. If we suppose 256 bit scalar multiplication where the point addition

3

and doubling operations are done many times, only one inversion that comes from
this conversion is unessential. Thus, projective space is necessarily useful in terms
of scalar multiplication.

Different projective spaces provide different efficiency for each curve form.
More generally Homogeneous Projective Coordinates are being introduced in
related literature, nevertheless the efficiency diversity is remarkable. The detailed
information can be found in (Hisil, 2010b).

In the previous studies on Huff curve ((Wu & Feng, 2012), (Ciss & Sow,
2011), (Joye et al., 2010)), homogeneous projective coordinates (P? embedding)
was used. Unfortunately, this does not provide low degree formulas for Huff
curve. So, one of the motivations of this thesis is to try to embed Huff curve into
different coordinate system.

The other motivation is to obtain faster formulas for point addition and
doubling on Huff curve. It is noticed that elliptic curve isogenies can be used
for this purpose.

[sogenies have been used as tool for several elliptic curve based cryptography
operations. In 2005, Doche, Icart and Kohel (Doche, Icart, & Kohel, 2006) showed
that isogenies can be used in order to increase efficiency of scalar multiplication
as well. The composition of a degree 2 isogeny defined between two elliptic curves
and its dual gives doubling map of these elliptic curves (Vélu, 1971). This feature
of isogenies provides alternative doubling formulas. It is considered that isogenies
can also give faster doubling formulas for Huff curves.

The derivation of the several formulas in this work were aided by computer
algebra systems MAGMA (Bosma, Cannon, & Playoust, 1997) and Maple (Inc.,
2008).

1.2 ROADMAP

This thesis contains 6 chapters including this chapter, and an appendix. It is

organized as follows:

e Chapter 2 - Background contains background information which is
required by the following chapters of this thesis. The main concept of
elliptic curves, basic features of different curve models which are used by
speed oriented protocols, definition of scalar multiplication and isogenies

can be found in this chapter.

e Chapter 3 - Extended Huff Curves provides the definition of extended
Huff curve equation which is defined in a similar way with the other curve
forms. Also, it includes group law properties of extended Huff curve in

affine and projective spaces (P! x P! and P?).

e Chapter 4 - 2-isogeny on Extended Huff Curves provides 2-isogney
maps defined on extended Huff curve. At first, the adoption of Kohel’s
approach of isogenies to extended Huff curve is explained, and then the
construction of 2-isogeny between two extended Huff curves and 2-isogeny
between an extended Huff curve and a twisted Edwards curve are introduced

in detail. Finally, projective formulas of these isogeny maps are given.

e Chapter 5 - Efficient Implementation includes efficient algorithms of
the point addition and doubling formulas given in Chapter 3 and Chapter 4.

These algorithms are derived for both P! x P! and P? embeddings.

e Chapter 6 - Comparison and Conclusion contains comparisons of Huff
curve with previous form of Huff curves and other curve forms. Various

tables are given in order to observe improvement of extended Huff curve.

e Appendix A comprises the C code of 256 bit windowed scalar
multiplication on extended Huff curve. The output of this code is the

operation counts of the scalar multiplication where the window size is 5.

CHAPTER 2

BACKGROUND

This chapter includes background information which is required by the following
chapters of this thesis. Since the main goal of this work is to speed up one of
the elliptic curve models in terms of group operations, the definition of elliptic
curve is given at first. And then, the curve forms which are used by speed
oriented protocols are shown, and their main features such as discriminant and
j-invariant values, a brief group law information and projective closures of the
each curve form are provided. Huff curve form is covered in more detail than the
other forms, because the main focus is to improve its performance. Reader can
also find the definition and the algorithm of scalar multiplication of a point on
an elliptic curve defined over a finite field, which is used for the implementation
phase of this work. Finally, the definition of elliptic curve isogenies is made and
the formulas which are required to calculate isogenies between elliptic curves are
presented. The following sections make necessary definition calls from ((Cohen

et al., 2005), (Hankerson et al., 2003), (Silverman, 2009)).

2.1 ELLIPTIC CURVES

The definition of an elliptic curve defined over finite field K is given below.
Definition 2.1.1. The general Weierstrass form of elliptic curve E is defined
over K is denoted by:

E:y* 4+ ayzy + asy = 2° + aox® + aux + ag

where aq, as, a3, as, ag € K together with a single point at infinity.

The curve is non-singular if and only if A = —b2bg — 8b3 — 2702 + 9babybs # 0

7

where

b2 = a% —+ 4(14,
b4 = 2&4 + aias,
b6 = (lg + 4(16,

2 2 2
bs = ajag — ayasay + 4dasas + asaz; — aj.

In the case of A # 0 the j-invariant is defined as j(F) = (b3 — 24b4)3/A.

The projective closure of E in P? is given by the equation

E: Y’ Z+mXYZ+a3YZ?= X34 ay X?Z + ay X 7% + ag Z°.

The point (X;: Yi: Z;) is said to be on € with X;,Y; € Kand Z; € K\ {0}. The
point at infinity is O = (0: 1: 0). The projective point (X;: Y;: Z;) corresponds
to affine point (X1/71,Y1/Z1), namely zy = X, /Z; and y; = Y1 /7.

Definition 2.1.2. Let E; and E, are two elliptic curves defined over field K such

as

E;: y2 + a2y + aszy = x> + a2x2 + a4x + ag,

Ey: y* + ayzy + Gzy = 2° + Go2” + (47 + Gg.

The curves F;, and E5 are isomorphic over K if there exists ¢,r, s,t € K with
¢ # 0 such that a; = (ay + 2s)/c, as = (ay — sa; + 3r — d?)/c%, az = (a3 +
ray + 2t)/®, a4 = (ag — saz + 2rag — (t + rs)a; + 3r* — 2st)/c*, ag = (ag +
ray + r’ay + 3 — tag — t* — rta;)/c®. Then the isomorphism maps between E;

and FE» are defined as follows:

c2 c3

¢: By — By, (z,y) (x_r y_s(x_r)_t),

¢t By — By, (z,y) = (Po + 71,y + Pso + t).

2.1.1 SHORT WEIERSTRASS FORM

When char(K) # 2,3 the following substitutions lead to obtain simpler forms.
Let by, by, bg defined as above and a,b € K;

1 .
oy §(y — a1x — ag) gives

Ell y2 = 4.1’3 -+ bg.ﬁl]z -+ 2()437 + bﬁ,

x—3by y .
o (z,y)— (26 ’108) gives

Ew:y* =2 +azx+0,
which is called short Weierstrass Form.

Note that the A = —16(4a® + 270?) and j(Ew) = —1728(4a*)/A for short

Weierstrass curve. The projective closure of Ey in P? is given by the equation
Ew:Y?Z = X34+ aX?Z +b23.

The point (X;: Y7: Z;) is said to be on &y with X;,Y; € Kand Z; € K\{0}. The
point at infinity is O = (0: 1: 0). The projective point (X;: Y;: Z;) corresponds
to affine point (X;/71,Y1/21).

Figure 2.1: Short Weierstrass curve y? = 23 — 1022 + 2 over R.
Group Law for Short Weierstrass Form
Let P, = (x1,y1) and Py = (x9,92) be points on Ey : y*> = 2° + ax + b
e The negative of P is represented as —P; = (z1, —¥1).

e The double of a point on curve is [2|P; = (x3, y3)

where y; # 0 (Silverman, 2009).

e The dedicated addition on Ey is P, + P = (3, ys3)

2

Y1 — Y2

T3 = | —— — X1 — To,
X1 — T2

Y1 — Y2
y3=<)($1—$3)—y1

X1 — T2

where x; — 29 # 0 and P # @ (Silverman, 2009).

10

e The unified addition on Ey is P, + Py = (x3,y3)

(x% + 2119 + T2 +a)2
T3 = — T — T2,
Y1+ Y2

(x% + 210+ 72+ a
Ys =
Y1+ Y2

)(1‘1 —23) =

where y; + yo # 0 (Brier & Joye, 2002).

2.1.2 OTHER FORMS OF ELLIPTIC CURVES

In the following subsection, K denotes a field with the characteristic different
from 2 and the constants a, b, c,d, e, f € K. The content is collected from several
resources. In particular, for extended Jacobi quartic form ((Billet & Joye, 2003),
(Jacobi, 1829)), for twisted Edwards form ((Bernstein, Birkner, Joye, Lange,
& Peters, 2008), (Bernstein & Lange, 2011), (Hisil, Wong, Carter, & Dawson,
2008)), for twisted Hessian ((Bernstein, Chuengsatiansup, Kohel, & Lange, 2015),
(Joye & Quisquater, 2001), (Smart, 2001)), for twisted Jacobi intersection ((Feng,
Nie, & Wu, 2010)) are studied. Also, Explicit-formulas Database (Bernstein &

Lange, 2017) and (Hisil, 2010b) were very helpful for each curve form.

1. Extended Jacobi Quartic Curve defined over K is represented as follows
Eg: y* = da* + 2a2® + 1.

e When A = d(a® — d) # 0, the curve is non singular and j(FEg) =
64(a” 4 3d?)
d(a? — d)?

o Let the point P = (z1,y1) on Eg, the negative of P is —P = (—x1,y1).

e K.

e g in projective coordinates corresponds to

Eo: Y2Z% =dX* +2aX? 7% + Z%.

XY
The projective point (X: Y: Z) corresponds to affine point <E, E)

11

where Z # 0. The point O = (0: 1: 0) is the point at infinity.

e The projective closure of extended Jacobi quartic curve is isomorphic
over K to the Weierstrass curve Qw: y* = z(2? — dax — 4a® — 4d).

Birational maps are given as follows:

2y + 2 dy +4 4da
¢Q:EQ_)QW7($>Q)'—>(y + 2a, yx3 +;)
1 xXr xz
83" Qw = Eq. (2.y) H(z—, 2@-2@)_2_1)_
Yy (]

2. Twisted Edwards Curve defined over K is represented as follows

Eg:az? + vy =1+ da*y°.

e When A = ad(a — d) # 0, the curve is non singular and j(Fg) =
16(a® + 14ad + d?)3

K.
ad(a — d)* €

e Let the point P = (z1,y1) on E, the negative of P is —P = (—x1,y1).

e Ep in projective coordinates corresponds to
e aX?Z?2+Y2Z% = 74 + dX?Y2

XY
The projective point (X : Y: Z) corresponds to affine point (E, E)

where Z # 0. The point O = (0: 1: 1) is the point at infinity.
e The projective closure of twisted Edwards form of curve is isomorphic

over K to the Weierstrass curve Ey : y? = 23 +2(a+ d)x* + (a — d)?z.

Birational maps are given as follows:

1 — dax? 1 —dz? 4a
(bE: EE — Ew, (.’L‘,y) |—><(1 +y)2 12 s 2(1 +y)2 23 —+ ;)
—a+d
By o E R §
ng w Ea(xvy))_) y’ x+a—d

12

3. Twisted Hessian Curve defined over K is represented as follows

Epe: az® +y° +1 = dxy.

e When A = a(d® — 27)% # 0, the curve is non singular and j(Ep.) =
B (& + 216a)?
a(d® —27a)3

e Let the point P = (z1,y1) on Epe, the negative of P is —P =
(=z1/y1,1/y1).

e [y, in projective coordinates corresponds to
En: aX?+ Y3+ 77 =dXYZ.

XY
The projective point (X : Y: Z) corresponds to affine point <?, E)
where Z # 0. The point O = (0: — 1: 1) is the point at infinity.

e Every twisted Hessian form of curve is isomorphic over K to the

d* + 216d d® — 540d3a — 5832a>
Weierstrass curve Hyy : y? = 23— +48 ax+ 86?4 a4 .

Birational maps are given as follows:

(d®—27a)x d*> (d®—27a)(1 —vy)
e: E e H 7) PYZ _7
Ore: Brte = Hw, (v y)'_)<3(3+3y+dac) 4 23(3+ 3y + du)
18d% + 72z

d3 — 12dx — 108a + 24y’

gb;]le: HW — EHe, (Cﬂ,y) '_><

1 48y
d3 —12dz — 108a + 24y)

4. Twisted Jacobi Intersection Curve defined over K is represented as
follows
Erbdi> +0v* =100 +w’ =1.
e When A = ab(a — b) # 0, the curve is non singular and j(E;) =

256(a? — ab + b?)

(@b—(a—0) <&

e Let the point P = (uy,v,w;) on Ej, the negative of P is —P =
(_U17‘/17W1)’

13

e F in projective coordinates corresponds to
Er WU+ V2i=2%aU% +W? = 72

The projective point (U: V: W: Z) corresponds to affine point
uv w
(??7

infinity.

) where Z # 0. The point O = (0: 1: 1: 1) is the point at

e Every twisted Jacobi Intersection form of curve is isomorphic over K
to the Weierstrass curve Iy : y? = z(x — a)(z — b). Birational maps

are given as follows:

b1: By — Ty (1, 0,0) ((1+v)(1+w)’ _(1+v)(1+w)(v+w))

u? u
2y b—ux a—x
=
Ay — B — 2 —-1,2 —-1).
or w n(#y) (ab—aj?’ Y-z 7 Tab— a2)

2.1.3 HUFF CURVE

In this subsection, K indicates a field of characteristic # 2 and the constants

a,be K.

Definition 2.1.3. The Huff curve defined over K is shown as

Ey:ax(y®* —1) =by(z* — 1)

28(a4 — a2 + b4)3
atbi(a® — b?)?

where ab(a—b) # 0. The j-invariant of Huff curve is j(Ey) =

Let e, f € K, every Huff curve of form Ey: ax(y* — 1) = by(z? — 1) is
isomorphic over K to the Weierstrass curve of the form Wy : y? = z(z —e)(x — f)

where e = a? — b? and f = a®. The change of variables is represented with the

14

N
=
=
IN)

Figure 2.2: Huff curve 5z(y? — 1) = 20y(z? — 1) over R.

maps below:

. a(a +bxy) —ab(a® —b*)
¢: Ey — Hy, (z,y) — (Y2 ’ (ax — by))

_ _ 2 2
¢_1:HW_>EH7(x’y)'_> (bx) al(x - +b))
Yy Yy

The projective closure of E in P? is given by the equation

Ey:aX(Y? - Z%) =bY(X? — 7).

The projective point (X: Y: Z) corresponds to affine point (X/Z,Y /7).

Group Law on Huff Curve

The identity element of Huff curve is O = (0: 0: 1). There are three points at

infinity such that (1: 0: 0),(0: 1: 0), (a: b: 0). One can obtain the third point at

15

infinity when they add two of them.

Let Py, P, P53 be projective points on £. The group operation of Huff curve refers
P+ P,+ P; = O. The inverse of a point can be found by adding one of the point
at infinity to specified point. More specifically, assume that P, = (X;: Y;: Z3)
then the inverse of Py is (X1:Yy: Z1)+(0: 1: 0) = (Xy: Yy: —Z1) = —P.

e dedicated addition: P, + P, = (z3,y3) =

(1 —22) (Y1 +1y2) (21 + 22)(y1 — Vo)
G S N) @1)
where P, # P,.
e unified addition: P, + P, = (z3,y3) =
(1 +22)(1+y — 1ya) (1 + 2122) (41 + 12)
((0=)1+ 2w2) " (L= aaz)(1+ y1y2>)' 22)
e doubling: [2]P; = (x3,y3) =
21 (1 + i) 2y1(1 + 27)
(o) &3)

2.2 SCALAR MULTIPLICATION

The following assumptions are used for below two definitions.

Let K be a field, EF be an elliptic curve defined over K, P and () are points
on F and n € N.

Elliptic curve crypto systems requires to choose one private key and generate
the public key. Given base point P is multiplied by a scalar n and another point

@ is calculated. In this scenario, n is called private and @) is called public key.

Definition 2.2.1. Determining n where) = nP is called elliptic curve discrete

logarithm problem (Smart, 1999).

16

The security of elliptic curve cryptography relies on intractability of elliptic
curve discrete logarithm problem which is introduced by Miller (Miller, 1985) and
Koblitz (Koblitz, 1987).

To determine n by knowing () and P is assumed to be intractable. The
method for calculating n is to try every possible n value in the range 0 < n <
#F(K) . The methods to find n, such as Pollard’s Rho (Pollard, 1978), Pohling-
Hellman (Pohlig & Hellman, 1978), Baby-step/giant-step (Odlyzko, 1984) have

exponential time complexity for commonly used elliptic curves.

For both setting the public key () and the attack which tries to determine

secret key n depends on the scalar multiplication.

Definition 2.2.2. The scalar multiplication of P by n is shown below

mP=P+P+...+P.

n times

This operation which secures the elliptic curve cryptography also dominates
the execution time. Thus, there are several ways to compute scalar multiplication
of a point in terms of time and memory efficiency. One of the efficient methods is
called sliding window scalar multiplication which makes use of pre-computations.

See (Hankerson et al., 2003) for other methods.

14 F(K) denotes the number of points on the given elliptic curve.

17

Algorithm 1: Elliptic curve sliding window scalar multiplication
Input: n,k € N\ {0} such that n = (n;,,...,n0)2, P € E over K and

{[B]P,[5]P,...,[2* — 1]P}
Output: [n|P
1 Q<+ 0P, i+1—i

2 repeat

3 if n; = 0 then

4 Q+21Q, i+i—1

5 end

6 else

7 s < max(i —k+1,0)

8 repeat

9 s+—s+1

10 until ng # 0;

11 for h from 1 toi—s+1do
12 Qe

13 end

14 w (Niy.oyns)2, Q@+ Q+[uP, i+ s—1
15 end

16 until 7 < 0;

17 return

2.3 ISOGENIES

In (Vélu, 1971), Vélu introduced formulas for defining isogenies between two
elliptic curves. After that, various researches focused on isogenies in terms of
cryptographic operations. In this section, computing isogenies is explained in
two different ways. First one is Vélu’s formulas which makes use of list of points
that is a finite order subgroup of an elliptic curve defined over a finite field. The
second one is Kohel’s approach (Kohel, 1996) which makes use the kernel of an
isogeny. Both methods define the rational maps of isogenies and find codomain
curve. The notation is obtained from (Silverman, 2009), (Washington, 2008),

(Vélu, 1971) and (Kohel, 1996).

18

Definition 2.3.1. Let EF; and FE, are elliptic curves defined over K. The

morphism ¢: F; — FEs is called to be an isogeny from FE; to E, that satisfies
¢(0) = 0.

If there is an isogeny from FE; to Ey with ¢(E;) # {O} then E; and E; are said

to be isogenous.

Definition 2.3.2. Let ¢: £ — FE, be an isogeny, then there exists its dual

é: FEy — F4 such that QBO ¢ gives the map of multiplication by deg ¢ on Ej.

2.3.1 VELU’S FORMULAS

The domain and the co-domain of an isogeny can be determined by Vélu’s
formulas as follows.
Let K be a field with a different characteristic than 2 and F; and E» be elliptic

curves defined over K.
E;: y2 + a1y + asy = x> + ang + asx + ag

where aq, as, as, ay, ag € K.
Let ¢ be a separable isogeny from E; to Fy; and C' = Ker ¢. Define Q) =

(nyyQ) € By with @ 7£ o0.

96 = 322 + 2a00¢ + as — a1yg

96 = —2yq — mrq — a3

vQ = g5 where 2Q =oo or,
vQ =295 — a1gy, where 2Q # o0

u@ = (g4)?

Suppose that C5 is the set of points of order 2 and R is the set of remaining

19

points in C'. Now, calculate v and w as follows:
v:ZvQ, w:ZuQ—l—vaQ
Qes Qes

where S = RU (5.

The isogeneous curve Fs is defined as below

Y24 A XY + A = X2+ A X2+ A X + Ag

where Al = a, A2 = a9, Ag = as, A4 = Q4 — 5’0, AG = Qg — (a12 +4CL2)’U —
Tw.

The isogeny is given with the map ¢: F; — E, (x,y) — (X,Y) where

=z 49
B +Z<x—xQ x—xQ)2>

2y +a1x+a a1z —20 +y— ar + ug — ghge
Y —y— Z(qu 1 3 1(QTY yQ)+ Q QQ)_

S\ YT @ aep (z = 2q)P

2.3.2 KOHEL’S APPROACH

The approach introduced by Kohel simplifies the way of calculating isogenies.
Kohel showed that isogenies can be computed with the explicit functions in terms
of the polynomial ¥ (X) which defines the ideal sheaf of the subgroup G of curve
E defined over K.
In this subsection, defining an explicit 2-isogeny from the domain curve E;: y? +
a1y + azy = 3 + asx? + ayx + ag defined over K is provided. Other scenarios
can be found in (Kohel, 1996).

Let G be a subgroup of E; and defined by v, (z) that contains elements
of order two. The isogeny of the subgroup H of degree 2 defined by i(x) =

ged(y(x), 423 + box® + 2byx + bg) is determined as follows:

e y(x) =z — x0 is a 2-isogeny from F; to a curve Ey with the map (z,y) —

20

(X,Y) where

323 + 2as10 + ag — a1y

X=x+
r — Ig
ar1(x —xo) + (y —
Y = Yy — (3l‘% + QCLQI‘O + ay — alyo) 1< (1‘0> - S:Qy yO) . (24)
— To
Yo defined with yy = —%Jra?’ for characteristic different than 2.

o Lett = 33:% + 2a0xg + a4 — a1yg and w = xot, then the codomain curve Fs

is written in the form

Y24+ A XY + AY = X3+ A, X%+ A X + A,

where Ay = ay, Ay = a9, A = ag, Ay = aq — 5t, Ag = ag — (a? + 4ay)t — Tw.
1

21

CHAPTER 3

EXTENDED HUFF CURVE

After Huff curves were introduced by Huff in 1948, this curve model has started
to be used by crypto community with the work of Joye, Tibouchi and Vergnaud
(Joye et al., 2010) at ANTS-IX. In that work, several interesting features such
as a more general curve model than Huff’s original model, the explicit derivation
of fast group operations, formulas for pairing computation and, an extension to
the even characteristic case were investigated. Wu and Feng (Wu & Feng, 2012)
further extended the coverage to all elliptic curves having three points of order
two.

Despite all the developments, any statement that indicates Huff curve form
being faster than the other widely known forms of elliptic curves, does not exist
in the relevant literature. And also, there is no consensus on how to write the
curve equation for Huff form.

In this chapter, the Huff curve equation which is defined in a similar way with the
other curve forms is presented. Subsequently, affine coordinates and projective

closure of this form are given.

3.1 DERIVATION OF EXTENDED HUFF
CURVE

Previous forms of Huff curves:

e The original Huff form was introduced as ax(y*> — 1) = by(z* — 1) by Huff
in (Huff, 1048).

e A twisted version to cover more elliptic curves was given as ar(y? — d) =

by(x? — d) by Joye, Tibouchi and Vergnaud in (Joye et al., 2010).

23

e In a later work, the curve equation that covers even more elliptic curves

was given as r(ay? —1) = y(bz? — 1) by Wu and Feng in (Wu & Feng, 2012)

e Finally, the curve equation that covers equally many elliptic curves as Wu
and Feng’s equation was given in the form az(y* — ¢) = by(x® — d) by Ciss

and Sow in (Ciss & Sow, 2011)

Due to its extended coverage, Wu and Feng’s equation is a good start.
However, widely known curves like az? + y? = 1 + dz?y? (twisted Edwards form)
(Bernstein et al., 2008), y* = dz*+2az*+1 (extended Jacobi quartic form) (Billet
& Joye, 2003), ax® +y*+1 = dry (twisted Hessian form) (Bernstein et al., 2015),
y? = 13 + ax + b (short Weierstrass form), etc. are always written with “+” in
their curve equations in the literature. In order to make Huff curve to compile
better with literature, by making a tweak which does not affect the coverage, the
equation can be written as x(1 + ay?) = y(1 + bz?).

In all speed oriented formulas, both a and b do appear with respect to the
equation z(1 + ay?) = y(1 + bz?). So, keeping a and b as small as possible is
preferable. But, this case cause the number of elliptic curves over some suitable
field to be very limited. In Ciss and Sow’s equation, the constants appear outside
the parentheses. This is very helpful in terms of increase the coverage. But, both
constants clash with a and b of Wu and Feng’s equation. Thus, in order to prevent
the clashing of constants, the curve can be written as cx(1 + ay?) = dy(1 + bz?).
Since a point satisfying this equation also satisfies (c¢/d)x(1 + ay?) = y(1 + bx?),
having just c is enough. So, one can rename c/d as ¢ and obtain cx(1 + ay?) =
y(1+ ba?).

The last phase is to keep a as is and replace b with d, because the letter a and
d are more common to use in curve forms. The final version of the curve form
is y(1 + az?) = cz(1 + dy?). In order to prevent ambiguation, this equation is
referred as extended Huff curve where the curve constants appear in alphabetic
order. This form has the same coverage as Wu and Feng’s equation, i.e. extended

Huff form covers all elliptic curves having three points of order two.

24

3.2 AFFINE COORDINATES OF
EXTENDED HUFF CURVE

Definition 3.2.1. Let K be a field with a characteristic different than 2 and

a,c,d € K. An extended Huff curve over K is defined as follows:

Hyca: y(1+ax?) = ca(1 + dy?). (3.1)

e M, .4 is non-singular if and only if the condition acd(a—c*d) # 0 is satisfied.
e The j-invariant of H, .4 is 256(a* — ac’d + c*d*)3/(ac’d(a — c*d))>.

Theorem 3.2.1. Every elliptic curve having three points of order two is

isomorphic over K to an extended Huff curve.

Proof. Let e, f € K and € = a — ¢*d and f' = —c?d. An extended Huff curve
H, . q with identity element at (0, 0) is isomorphic over K to a Weierstrass curve

of the form

Wesiy* =a(z—e)(@—f)

with identity element at (0: 1: 0). The isomorphism maps are given below.

—c2d —2d
o: H—W, (:L’,y)l—>(cxa € ,ca €)
cr—y cr—y

T x—(a—ch))

W H = :
W S H () (e (3.2)

Since every elliptic curve having three points of order two is isomorphic over K

to We ¢, those curves are also isomorphic over K to H, . 4. O

Note that, the curve constants a, d can be scaled to small field elements. Let
a,0,a',d € K and a, d are small elements of the field K, which satisfies a = aa’

and d = 6d’. The isomorphism map of the rescaling is as follows:

Hyca— Hy s, g, (2,y) = (az,dy). (3.3)

25

Figure 3.1: Huff curve y(1 + 232?) = 10x(1 + 25y%) over R.

Furthermore, the curve constant ¢ can be scaled to 1 by substituting x/c to
x. In this case the isomorphism maps in Theorem 3.2.1 take a simpler form. But,
keeping c as it is and scaling a, d to small elements is more advantageous in terms

of faster field operations.

3.2.1 GROUP LAW IN AFFINE COORDINATES OF
EXTENDED HUFF CURVE

A chord and tangent rule can be defined on an extended Huff curve defined over
field K with char ## 2. This rule is for adding two points on the curve to obtain the
third point (sum of initial two points) on the curve. This set of points constitutes
an abelian group.

The addition of two distinct points P = (z1,y;) and Q = (2, y2) on extended
Huff curve can be visualized easily by the use of chord and tangent rule. A line
that intersects the points P and (), must intersect the curve at a third point

by Bézout’s Theorem (Bézout, 1779). The reflection of this point about (0,0, 1)

26

P=(-4.302, 2.00)

-(P+Q)=(-2.621\0.049) (P+Q)=(2.621, -0.049)

-A\JQ=(-0.0086, -3.00)

3 \

Figure 3.2: Chord and Tangent Rule on extended Huff curve y(1 + 242?%) =
—3z(1 + 17y?) over R.

As shown in figure, A line passes through point P and () intersects the curve at

a third point —(P + Q). The reflection of this intersection point about (0,0, 1)
gives the sum of P and @). This rule is verified by the Formulas 3.4.

gives P + Q).
This rule is also applicable for doubling. The tangent line of the point P

intersects the curve at a second point. The reflection of this point about (0,0, 1)

gives [2]P.

e Identity element:

The identity element of H, .4 is O = (0: 1: 0).

e Points at infinity:
There are three points at infinity of the curve H,.q such that
(0:1: 0),(1: 0: 0) and (cd: a: 0). These points respectively correspond to

the three points of order two (0,0), (¢/,0), (f',0) on W, ;.

e Negative of a point:

27

The negative of a point P = (z,y) on H, .4 is shown as —P = (—z, —y).

e Addition on H, .4 : Two different addition formulas are given for H, .4
such that dedicated addition and unified addition. While unified addition
formulas can be used for addition of the identical points on curve, dedicated

addition can only be used for distinct points.

1. Dedicated addition :
Let the points P, = (21,v1), P2 = (22,y2) be on H,.q and Py # Ps.

The affine addition formulas are represented as P+ P, = P3 = (3, y3):

(x1 — 22) (1 + ¥2)
(1+ ax122)(y1 — y2)
(z1 +22)(y1 — ¥2)
(v — 22)(1 + dy1y2)

xr3 =

Ys = (3.4)

2. Unified addition : The alternative addition formulas of the points

P; and P, are represented as P = (x3,y3):

(1 + 22)(1 — dyr1y2)
(1 —amy22)(1 + dy1ya)’
(1 — azi22)(y1 + y2)
(1 + axyz2)(1 — dyiya)

T3 =

Ys = (3.5)

It is assumed that axi;zy # £1 and dy,y2 # £1. Note that this set of

formulas can be used for identical points and as well as doubling.

e Doubling on H, .4 :
The doubling formulas of the point P, = (x1,y;) is represented as

12](z1,y1) = (23,y3) where

2$1(1 - d?/%)
(1 —ax?)(1+dyi)’

2y1 (1 — ax?)
Y3 = 2 a2)
(14 ax?)(1 — dyf)

T3 —

(3.6)

The doubling can be calculated with the assumptions ax? # +1 and dy? #

28

+1.

3.3 PROJECTIVE COORDINATES OF EX-

TENDED HUFF CURVE

This section comprises of both P? and P! x P! embeddings of extended Huff curve.
To embed Huff curve into P! x P! is a quite new concept and it provides the
performance improvement. Unified addition and doubling formulas are of lower
total degree and 4-way parallel by nature when P! x P! embedding is used rather
than P2. In this section, only the formulas are given. Efficient implementations
of each formula can be found in Chapter 5.

Note that, the formulas for P? are derived from (Joye et al., 2010), the
only difference is the curve constants that are located in doubling and addition
formulas. The reason is the different sequence of curve constants in curve

equation, this situation explained detailed at the beginning of the chapter.

3.3.1 EMBEDDING H INTO P?

The projective closure of H, .4 in P2 is defined as follows:
FI:{(X:Y:Z)EIP’z:Y(aX2+ZQ)—cX(dY2+Zz)}. (3.7)

Let A € K and A # 0. In the P? embedding of the curve H, .4, a point

(x,y) is represented with (Az: Ay: \). This point corresponds to the affine point
((Az/A), (Ay /).
Group Law in P? embedding of Extended Huff Curves

e Identity element:

The identity element of H is Ho = (0: 1: 0).

e Points at infinity:

29

There are three points at infinity of the curve H such that (0: 1: 0), (1: 0: 0)

and (cd: a: 0).

e Negative of a point:
The negative of a point P = (X:Y: Z) on H is shown as —P = (—X: —
Y: 7).

e Addition on H : The projective forms of the addition formulas given in

Formula 3.4 and Formula 3.5 are given in the following part.

1. Dedicated addition :
Let the points P, = (X: Yi: Zy), Py, = (Xo: Ys: Z,) be on H and
P, # P,. The dedicated addition formulas are represented as P, + P, =
Py = (X3:Y;: Z3):

X; = (X125 — X221)*(X1Zo + YaZ1)(Z1Z5 + dX1Y5)

Y5 = (Y12, — 3/221)2()(122 + XoZ1)(Z1Z2 4+ aX1X5)

Zs = Y12y — Yo 20)(Z1 2 + a X1 X)) (X122 — X2 Z1)(Z1Z5 + dX1Y5).
(3.8)

2. Unified addition : The alternative addition formulas of the points

Py and P, are represented as Py = (X3: Y3: Z3):

Xy = (X1Zy + XoZ0)(dY1Yo — Z122) (21 Zs + aX1X5))

Yy = Y12y + Yo Zy)(a X1 Xs — Z1Z2)2(Z1Z2 +dY1Y3)

Zy = (aX 1 Xy — Z125)(Z1 Zy + dY1Y2)(Z1Zy + a X1 X)) (dY1Ys — 21 Z5).
(3.9)

Note that this set of formulas can be used for identical points and as

well as doubling.

e Doubling on H:

The doubling formulas of the point P, = (X;: Yi: Z;) is represented as

30

[2]P1 :Plz(Xll }/12 Zl) :<X3: }/32 Z3) where

X3 =2X,(dY? — ZD)?Z,(Z} + aX?)
Yy = 2Y1(aX? — Z2)2Z,(Z} + dY}?)

Zs = (aX{ — Z})(Z{ + dY{')(Z] + aX])(dY] — 7). (3.10)

3.3.2 EMBEDDING H INTO P! x P!

The projective closure of H, .4 in P! x P! is defined as follows:
H={((X:2),(Y:T)) eP' xP": YT(Z* + aX?) = cXZ(T? +dY?*)}. (3.11)

Let \,0 € K and A\,0 # 0. In the P! x P! embedding of the curve H, .4, a
point (x,y) is represented with ((Az: A), (dy: d)). This point corresponds to the
affine point ((Az/\), (dy/0)).

Group Law in P! x P! embedding of Extended Huff Curves

e Identity element:

The identity element of H is Ho = ((0: 1), (0: 1)).

e Points at infinity:
There are three points at infinity of the curve H such that
((0:1),(1:0)),((1: 0),(0: 1)) and ((1: 0), (1: 0)). These points respectively
correspond to the three points of order two (0, 0), (¢’,0), (f,0) on W, s given

in the proof of Theorem 3.2.1.

e Negative of a point:
The negative of a point P = ((X: Z),(Y: T)) on H is shown as —P =
(—=X: 2), (=Y T)).

e Addition on H : The projective forms of the addition formulas given in

Formula 3.4 and Formula 3.5 are given in the following part.

31

1. Dedicated addition :

Let the points P, = ((X1: Z1), (Y1: T1)), Py = ((Xao: Zs),(Ys: T3))
be on H and P; # P,. The dedicated addition formulas are represented
as P1 —|—P2 = P3 = ((Xgl Z3)7(}/:3I Tg))l

X3 = (X122 - 21X2)<Y1T2 -+ T1Y2)
Zg = (lez + CLX1X2)<Y1T2 — T13/2)
Ys = (X1 2y + 21 Xo) (i1 — T'1Y5)

T3 - (X122 - 21X2)<T1T2 + dY1Y2) (312)

2. Unified addition : The alternative addition formulas of the points

P, and P, are represented as Py = ((X3: Z3), (Ys: T3)):

X3 = (X122 + ZlX2)<T1T2 F dY1Y2)
Zg = (leg - CLX1X2)<T1T2 + d}/l}/?)
Y3 = (Z1Zy — aX1 Xo)(ViTh + T1Y2)

T3 = (lez + CLX1X2)<T1T2 - d}/l}/?) (313)

Note that this set of formulas can be used for identical points and as

well as doubling.

e Doubling on H :

The doubling formulas of the point P, = ((X;: Z1), (Y1: T1)) is represented
as [2]P = ((Xi: Z1), (Yi: Th)) = ((X5: Zs), (Y3: T3)) where

Xy = 2X,7,(T? — dY}2)
Zs = (Z7 — aX7) (T} 4 dY?)
Yy = 2V1Th(Z} — aX?)

Ty = (Z7 + aX)(T? — dY}?). (3.14)

32

CHAPTER 4

2-ISOGENY ON EXTENDED HUFF CURVE

Elliptic curve isogenies are very useful in terms of cryptographic implementations.
The cryptographic operations such as point counting, analyzing the difficulty of
elliptic curve discrete logarithm problem, random number generation and hash
functions use isogenies as a tool. One of the most significant feature of elliptic
curve isogenies is that gives the multiplication by n-map which is defined in 2.3.2.
Thus, isogenies are used to optimize doubling map of extended Huff curve in this
work. In the first section, the adoption of Kohel’s approach is explained. And
then, in the second section a 2-isogeny is defined from an extended Huff curve
to another extended Huff curve. The obtained map provides the fastest doubling
map on the curve. In the last section, a 2-isogeny is defined from an extended
Huff curve to twisted Edwards curve. This, gives a doubling map which is almost
fast as the previous map, and also gives an alternative doubling map for twisted

Edwards curve.

4.1 DEFINING ISOGENY WITH KOHEL’S

APPROACH

Kohel’s approach, explained in 2.3.2, shows how to define isogenies between two
Weierstrass form of elliptic curves. An extended Huft curve H, .4 is isomorphic
over K to a Weierstrass curve of the form W, ;: y* = z(z — e)(x — f) = a® —
(e + f)x? + (ef)r with the map given in 3.2. Thus, a 2-isogeny can be easily
defined from an extended Huff curve to a Weierstrass curve by making use of this
isomorphism and Kohel’s approach.

Let K is a field with a characteristic different than 2 and a4, as, as, a4, ag, €, f €

K. Weierstrass curves Ey : y*+ a1y +asy = x° + asx® + agx +ag and W, ;2 y? =

33

3 — (e + f)a? + (ef)x are defined over K.

e The coefficients of Ey, can be written as follows:

(1,1:0, QQZ—(€+f), (l3:0, (l4:€f, a’GZO-

e Point @ = (x9,y0) = (0,0) € ¢ (x) which is the subgroup of Ey that

contains points of order two.

e In this case, the coefficients of the isogenous curve are written as:

A =0, Ay=—(e+f), A3=0, Ay=—def, As=4def(e+f).

e So, the isogenous curve equation is

W' y? =2 — (e + f)a* — defx — def(e+ f).

e Point) corresponds to the point ' = (X,Y) on the codomain curve W’

is expressed as

X:x+g,
x
efy

Y=y -
T

which is computed with the map given in 2.4.

These steps lead to write the isogeny as follows:
The curve W: y* = 23 — (e + f)a? + (ef)z is 2-isogenic to the curve W': y? =
3 — (e + f)z? — defr — def(e + f) with the map

LW =W (x,y)— <x+%, y—ef—y>.

Its dual can be calculated with the same manner.

34

As it is mentioned at the beginning of this section, the domain curve is
isomorphic to the extended Huff curve. It means that an isogeny can be defined
from extended Huff curve to the codomain curve W’ with the composition of
isomorphism and the isogeny maps defined above. Therefore, 2-isogenies can be
defined from extended Huff curve to any curve form which has three points of
order two. It can be obtained by the composition of the isomorphism maps given
in Chapter 2 and the isogeny map defined with Kohel’s approach. In the following

sections it will be explained in detail.

4.2 ISOGENY TO EXTENDED HUFF

CURVE

In (Moody & Shumow, 2001), it is shown that a 2-isogeny can be derived from a
Huff curve to another Huff curve. It is realized that more speed oriented isogenies
can be derived. The detailed instructions to define a 2-isogeny from an extended

Huff curve to another extended Huff curve are given in this section.

4.2.1 CONSTRUCTING ISOGENY MAPS BETWEEN
2 DIFFERENT EXTENDED HUFF CURVES

A degree 2 isogeny can be defined from a Weierstrass curve of the form W: y? =
z(x — e)(z — f) to another Weierstrass curve of the form W: y? = z(z — &)(x —
f) Also, by Theorem 3.2.1, it is known that every extended Huff curve H is
isomorphic over K to W. Thus, the below substitution can be done between the
curve constants of W and H.

Let r € K, 2 = ad, é = —(a — ¢r)2/a and f = —(a + ¢r)?/a. The isogeny from

W to W and its dual are given below:

35

The combination of the isomorphism map ¢ from the Theorem 3.2.1 and p
gives an isogeny from H to . And the combination of ¢~ and i gives its dual.
Some birational transformations help to put W in desired extended Huff curve
form.

First step is to find an isomorphic Legendre form W: 32 = z(x — é)(x — f) to
. By moving the point (f,0) on W to (é,0) leads to obtain the maps between

these two isomorphic curves.

v W= W, (2,y) = (z+ f,y),

where ¢ = —4¢r and f = (a — ¢r)?/a.

Since the aim is to reach another extended Huff curve form, a reverse manner

of Theorem 3.2.1 is used. Let & = —(a+ ¢r)?/a and d = —(a — ¢r)?/a. Then the
extended Huff curve of the form H: y(1+ az?) = (1 + dy?) is isomorphic to W.

The isomorphism map and its inverse is as follows:

r: W= H, (z,y) — (g,%‘t_@),

1 ﬁ]—>W, (z,y) — ((a—d)x’a—d).
r—y Ty

Final step is to rescale the constants in order to obtain isogenic extended Huff

curve
a —cCcr

G:y(l—az®) = ():c(l — ay?)

a—+cr

36

by using the maps below:

Hence,

e the domain curve is H: y(1 + az?) = cx(1 + dy?)

a+cr

e the codomain curve is G: y(1 — az?) = (u)x(l — ay?).

The 2-isogeny map ¢’ from H to G and its dual ¢’ can be derived by

¢/ = (woToypopuog),

¢ = (¢ oo torow™).

The following theorem proves the isogeny map given above.

Theorem 4.2.1. Let a,c,d,r € K, r> = ad and acd(a — c*d) # 0 Then, the curve
H: y(1+ ar?) = cx(1 + dy?)

is 2-isogenous over K to the extended Huff curve

a — cr

G:y(l —az?®) = ()x(l—agf).

a-+cr

The 2-isogeny and its dual are given explicitly as follows:

r+rty v —1=%
p0: H— G, (a:,y)l—>< a¥ “y),

1+rzy 1 —raxy
rT+y r—Y a
l—axy 14azxy r)

o: G— H, (:U,y)»—>(

Proof.

37

e In order G to be an extended Huff curve, first thing to show is that the
Ag # 0.

— Ay =acdla—c2d)#0 — a—c*d#0and c#0.
— (a/c)* #£ad=1* — r#+a/c
—ater#0 — (a—cr)/(a+cr)#0.

—r#0anda+cr#0 — (—a)((—a)— ((a—cr)/(a+cr))*(—a) =
2acr/(a+cr) #0

So that, Ag is obtained as nonzero.

] e [0] (RO (= W) P

e Secondly, show that ¢ is an isogeny from from H to G.

T

U
a a

and v with , it is obtained

+ ray 1 —rxy

x
1. By substituting v with

that
a—cr

a—+cr

v(l — au®) — <)u(l —av?) =

—2r(1 — ax?)(a — r?y?)(ay(1 + ax?) — cx(a + r’y?))
a?(a+ cr)(1 — r2a?y?)? '

2. By substituting 7? with ad and organizing the terms, it is obtained

that

—2r(1 — az?)(1 — dy?)
(a+cr)(1 — adx?y?)?”

(y(l + ax?) — cx(1 + dyQ)) .

It means that, ¢ is a rational map from H to G.

3. »((0,0)) = (0,0) shows that ¢ is an isogeny from H to G.

e Next step is to show that ¢ is an isogeny from G to H.

x a —
Y and v with — - i , it is obtained

1. By substituting v with
1 —axy r 1+axy

38

that v(1 + au?) — u(l + dv?) =

— (c(:v +9)(1 — axy)(1 + azxy)?/(r — m2x2y2)2> r’+
(a(:c —) (1 + azy)(1 + ax®)(1 + ay?)/(r — ra2x2y2)2>r—

(a?ed(@ +y)(1 = azy)(@ = y)*/(r = ra*a®y?)?).

2. By substituting d with r%/a and organizing the terms, it is obtained

that

(y(l — ax?) — <a _ cr)xu _ ayz)) (a+er)(1+a2®)(1 + ay?)

a+cr —r(1 — a?a?y?)?

It means that, ¢ is a rational map from G to H.

3. $((0,0)) = (0,0) shows that ¢ is an isogeny from G to H.

e By Definition 2.3.2, it must be shown that composition of the isogeny map

and its dual gives the multiplication map.

oo — —2xy(azx — cdy)(ax? — 2cdry + dy?) —2zy(az — cdy)(acx? — 2axy + cdy?)
o= (ax? — dy?)(acx? — 2azy + cdy?) ~ c(az? — dy?)(az? — 2cdzy + dy?)

By substituting ¢ with
y(1+ax®)/(z(1 + dy?)

in the map above, it can be obtained that ¢ o ¢ = 2]y € K(H)

2. With the same manner above, eliminate ¢ by using the relation

ay(1 — az?) — azx(1 — ay?)

ry(1 —ax?) + ra(1 — ay?)

and eliminate d by using the relation d = r?/a in ¢ o ¢.Then, the

remaining expression gives [2]g € K(FE).

39

4.2.2 2-ISOGENY IN P! x P!
The P! x P! embedding of the curve G is

1—c¢
1+¢

G: YT(Z* —aX?) = ()XZ(T2 —aY?).

The projective Huff curve H is 2-isogeneous over K to G. The 2-isogeny map and

its dual are given as

enMH—G, (X:2),Y:7)—((XT+YZ:TZ+aXY),(XT-YZ:TZ—aXY)),

¢g:G—MH, (X:2),Y:1)— (XT+YZ:TZ—aXY),(XT-YZ:TZ+ aXY)),
(4.1)

Note that, in order to obtain faster arithmetic, a is chosen to be equal to d, and

so r = £a. In Chapter 5, r is assumed to be equal to a.

4.3 ISOGENY TO TWISTED EDWARDS

CURVE

The detailed instructions to define a 2-isogeny from an extended Huff curve to a

twisted Edwards curve are given in this section.

4.3.1 CONSTRUCTING ISOGENY MAPS BETWEEN
EXTENDED HUFF CURVE AND TWISTED
EDWARDS CURVE

A degree 2 isogeny can be defined from a Weierstrass curve of the form W: y? =

z(x —¢)(z — f') to another Weierstrass curve of the form W: 32 = 23+ 2(¢/ +

40

a2 + (¢ — f')%x. The isogeny from W to W and its dual are given below:

x ’ x2

. . 2+2 /+f/ + /_f/2 2 _ /_f/2
oW =W, (a)H(x (e 41: e),yx (86952)).

2 _ (o / 1 gt 2 _ gt
v W =W, (x,y)H(x (€t f)wtef Y= ef>,

The combination of the isomorphism map ¢ from the Theorem 3.2.1 and ~
gives an isogeny from H to W. And the combination of ¢~! and 4 gives its dual.
Some birational transformations help to put W in desired twisted Edwards curve
form.

/

First step is to find an isomorphic Montgomery form M: (¢ — f')y? = 23 +

) 02 |t W

(e'=f")
. T x y
€: W_)My (fE,y)’_) <(e/_f/)’(e/_fl)2)’
— r T x y
€ 1. M — W, (x,y) = ((6/_]0/)1’ (6/_]0/)2)'

Since the aim is to reach a twisted Edwards curve form, put M in twisted
Edwards form
4¢€’ 9

. 2 __

Af'

The isomorphism map and its inverse is as follows: (Bernstein et al., 2008)

—1
i M — E, (z,y)— <x *),

v r+1
_ 1+y 14y
XL E s M, (xy >—>(,)
(@) 1—y a(l—y)

Rescale the constants to get rid of 4/(e/ — f)?,

E: e'x2+y2:1+f'x2y2

41

using the maps from (Bernstein et al., 2008)

¢ B — E, (:U,y)»—>(2 x,y),

G:y(l—az?) = <a — Cr)x(l — ay’)

a-+cr

In order to obtain a common form of a twisted Edwards curve, the following

steps are required. Swap e’ and [’ by

E: f'z? +y? =1+ €z’

using the maps from (Bernstein et al., 2008)

.
.

—E, (2,9)~ (z.y7Y),

™ ES B, (z,y)— (z,y7).
Finally, in order to remove 2, set ¢ = —d and f = a/c* — d.
E:

ex® +y? =1+ faiy?

using the maps from (Bernstein et al., 2008)

n: E—=E, (2,y) (cz,y),

nt E— E, (z,y) — (cflx,y).

Hence,

e the domain curve is H: y(1 + az?) = cx(1 + dy?)

e the codomain curve is E: ex? + y? = 1 + fa?y?

42

The 2-isogeny map ¢’ from H to E and its dual ¢’ can be derived by

a/:(nOWofo)\oeoyoqﬁ),

6 = ((b*l oqo e tollo ffl orlo frfl)

The following theorem will prove the isogeny map given above.

Theorem 4.3.1. Let a,c,d,e, f € K, e = —d, f = a/c* —d and acd(a — c*d) # 0
Then, the curve

H: y(1+ax?) = cx(l + dy?)

is 2-isogenous over K to the twisted Edwards curve

E,¢: ex? +y? =1+ fa2y?

The 2-isogeny and its dual are given explicitly as follows:

2y 1+ ax?
: H— FE —

N Ty x
: E—H —— .

Proof.

e In order E to be an twisted Edwards curve, first thing to show is that the
Ag # 0.

— By the definition of Ay
a,c,d,(a—c*d)#0 — Agp=ef(e—f)=ad(a—c3d)/c* #0.

Thus, E. ; defines a twisted Edwards curve

e Secondly, show that o is an isogeny from from H to E.

1. By substituting v with 2y/(1 — dy?) and v with (1 + az?)/(1 — az?),

43

it is obtained that
eu’ +v? —1— fu*? =

4a(y(1+ az?) + cz(1 + dy?))
—2(1 — az?)2(1 — dy?)?

(y(l +ax?) — cx(1 + dyz)) .
It means that, ¢ is a rational map from H to F.

2. 0((0,0)) = (0,0) shows that o is an isogeny from H to E.

e Next step is to show that & is an isogeny from E to H.

1. By substituting u with zy/(c(1+ dz?)) and v with x/y, it is obtained

that

—X

oLt an?) —eu(l +dv?) = (e” +3” =1~ fo*y?) - 1+ da2)y

It means that, ¢ is a rational map from F to H.
2. 6((0,0)) = (0,0) shows that ¢ is an isogeny from E to H.

e By Definition 2.3.2, it must be shown that composition of the isogeny map

and its dual gives the multiplication map.

Goo = <2y<1 +ar?)(1—dy’) 2y(1— as?))
c(1 — ax?)(1 + dy?)? ’ (1+ az?)(1 — dy?) .

By substituting y(1 + az?) with cz(1 + dy?) in the map above, it can
be obtained that 6 o 0 = [2]y € K(H).

2. With the same manner above,
— replace (1 — ex?)? + (f — e)z?y? with (1 + dz?)(y* + da?),
— replace (1 — ex?)? — (f — e)z?y? with (1 + da?)(2 — y* + dz?)

n

oA—< 2y (l—ex2)2+(f—e):c2y2)
707= y2+ex?’ (1 —ex?)? — (f —e)x2y?)’

Then, the remaining expression gives [2]g € K(E).

44

4.3.2 2-ISOGENY IN P! x P!

The P! x P! embedding of the curve E is
Eepr eXT*+Y?Z? =T?Z% + fX?Y?,

The projective Huff curve H is 2-isogeneous over K to £. The 2-isogeny map and

its dual are given as

((X:2),(v:1)) = ((@VT: T2 = av?), (22 + aX?: 2° - aX?)),

((X:2),(v: 1)) = ((XYZ: eT (2% + dX?), (XT: Y Z)).

Note that, in order to obtain faster arithmetic, d is set to —1 In Chapter 5.

45

CHAPTER 5

EFFICIENT IMPLEMENTATION

This chapter includes efficient implementations of point addition and doubling
operations on Huff curve. Both operations are shown for various cases such as
setting curve constants to special values. Also, 4-way parallel implementation
of doubling formula which is obtained by using isogenies and 4-way parallel
implementation of mixed addition formula can be found. These implementations
are derived for both P? and P! x P! embeddings and the formulas given in 3.3.2

and 3.3.1 are used.

51 NOT SO FAST ARITHMETIC ON P?
EMBEDDING

In this section, K is a field with char(K) # 2, a,d € K, H is the
homogeneous projective form of extended Huff curve defined over K and P, =

(X1:Y1: Zy), P, = (Xy: Yy: Zy) are points on curve H.

5.1.1 POINT ADDITION ON P2 EMBEDDING
Dedicated addition

Recall that the addition of two distinct points P, and P, equals to P; =

(X3: Y3: Z3) can be calculated as follows:

Coi= X, Zo, Cy:=Yi-Zy Cyi=aCy Cs:=Xy- 7,
Oy mdCy. Co =Yy 7,
Ry:=(Zi+a-X1) (Za+X2)—Co—C3, Ry:=(Z1+d-Y1) (Z2+Y2) —Cy—Cs,
Ry :=(Cy—C3)- Ry, R3:=(Cy—C5)- Ry,
X3:=(Co—0C3)-(C1+C5) Ry, Y3:=(Co+C5)-(C1—C5)-Rs, Z3:= Ry-R3.

47

Dedicated addition takes 13M-+4D-14a.

e a =d=1, it can be computed in 13M+14a.

Dedicated mixed addition costs 11M-+4D-12a.

Dedicated mixed addition with ¢ = d = 1 costs 11M+12a.

Unified addition

The alternative addition formulas of the points P, and P,, which can be used for

the case that P, = P, are represented as

Co=X1-Xo, C1:=Y1-Ys, Cy:=24-2Zy, C3:=aC,, C,:=dC,
Ro:=(Xi+21) (X2 +2Z) —Co— Co, Rii=(Vi+71) (Yot 2Zo) — Cr— (o,
Ry = (Cy— Co) - (Co+ C3), Rz:=(C5—C) - (Co+ Cy),
Ry=Ro-(Ci—Cy), Rs:=R-(C3—Cy),

X3:=Ry- Ry, Y3:=R5-R3, Z3:=Ry-R;s.

Unified addition takes 12M-+2D-+14a

a =d =1, it can be computed in 12M+14a.

Unified mixed addition costs 11M-+2D-+12a.

Unified mixed addition with ¢ = d = 1 costs 11M-+12a.

5.1.2 POINT DOUBLING ON P? EMBEDDING

The doubling formulas of the point Py, [2]P; = (X3: Y3: Z3) can be calculated as

Co:=X2, C,=Y2:Cy:=27 Cy:=a-Cy Cyp:=d-Cy,
Ry:= (X1 4+ 21)? = Co— Cy, Ryi= Y1+ 21)? = C1 — Cy,
Ry = (Cy = Cs) - (C2 + C3),
Ry :=(C3—C3) - (Cy+Cy), Ry:=Ry-(Cy—Cy), Rs:=R;-(Cs5—Cy),
X3:=R, Ry, Y3:=Rs-Ry. Z3:=Ry-Rs.

48

e Doubling takes TM+5S+2D+11a.

e Also, for the case a = d = 1, it can be computed in TM+5S+11a.

5.2 FASTER ARITHMETIC ON P! x P! EM-

BEDDING

In this section, K is a field with char(K) # 2, a,¢,d € K, H is the
projective closure of extended Huff curve in P! x P! defined over K and P, =

((Xll Zl); <Y1I TI))7 P2 = ((XQI ZQ), (3/2 Tz)) are points on curve H.

5.2.1 POINT ADDITION ON P! x P EMBEDDING
Dedicated Addition

e The addition of two distinct points P, and P in P! x P! is calculated below:

Co :=aXy, Cy:=Zy — Cy, C1 :=dYs, C1 =Ty, — Cy, Ry =Y, - T,
Ry =T, Y, Ro:=dRy, Ry := Ry + Ry, T3 :=1T, — Y1, T3 :=C; - T3,
T3:=T5+ Ry, Y3:= Ry — Ry, Ry := X, - Zs, Ry := Ry + Ry,

Ry :=27,-X3, Z3 =71 — Xy, Z3:= Cy - Z3, Z3 = Z3+ Ry,

X3: =Ry — Ry, X3:= X3 Ry, Ry :=aR, Ry :=Ry+ Zs3, 3 :=Y5- Ry
Ry:=Ry+ Ry, Y3 :=Y3:- Ry, Ry := Ry — Ry, T3 :=T3- Rs.

— Dedicated addition takes 10M-+4D-+13a.

— Dedicated readdition takes 10M+2D-+11aif Cy = Zy —aXs and C} =
Ty — dY,

e Dedicated mixed addition

Ry:=X,-Cy, R :=27,- Xy, Ry =Y, -Cy, R3:="T1-Ys, Ry .= Z1 + Ry,
Ry = Xi+Ry, Ry . =T1+Ry, Rs . =Y1+Rs, Ry =X, —Ry, R3 :=Y,—Rs,
Z3 = RO : Rg, X3 = Rl : R5, T3 = R2 'Rl, Y:g = Rg 'R4.

49

— Dedicated mixed addition takes SM-+6a.

— Cy = aXy and C) := dY5 is pre-computed and cached. 4-way
parallel algorithm when similar operations are grouped, with cost

4 x (2M + 2a)

e Dedicated addition with ¢ = d = 1 and Zy = Ty = 1 takes 8M+6a. The
following is a 4-way parallel algorithm when similar operations are grouped,

with cost 4 x (2M + 2a):

RO Z:X1'X2R1 = Zl'XQRQ = Yl'YQRg = Tl'YQ, RO = Zl+R0, R4 =
X1+R1R2 2:T1+R2R5 I:Y1+R3R1 Z:Xl—Rle I:}/l—Rg,
Zg = Ro'Rg, X3 = R1 'R5, Tg o= RQ‘Rl, YEJ, = Rg'R4.

— Dedicated mixed addition takes 8M+6a.

— Cy = aXy and C) := dY; is pre-computed and cached. 4-way
parallel algorithm when similar operations are grouped, with cost

4 x (2M + 2a)

Unified Addition

e Unified readdition takes 10M+2D+10a if Cy and C] are pre-computed and

reused in the below algorithm. Unified addition takes 10M+2D+12a:

Co=Xo+ 725, C:=Yo+Ty, Ry . =X1-Xo, Ri :=Y7 Y5, Ry :=
Zy -y, Ry =Ty - Ty, X3:= X1+ 71, Y3:=Y1+ 14,
Ry := Ry+ Ry, R5 := Ry + R3,
X3:=X3-Cy, Y3:=Y3-C4, Z3:=aRy, T3 := dRy, Ry := R3 + 13, T3 :=
Ry — T3, Ry := Ry + Z3, Z3:= Ry — Z3, X3 := X3 — Ry, Y3:=Y3 — R;s,
X3:=X3-T3, Y3:=Y3-23, Z3:=23-Ry, T3:=7T3 Ry

e Unified readdition with Z, = T, = 1, takes 8M+6a if Cy := aXs and
C} = dY; is pre-computed and cached. The following is a 4-way parallel

algorithm when similar operations are grouped, with cost 4 x (2M + 2a):

50

RO = X1 . Co, R1 = Zl . XQ, R2 = Y1 . Ch R3 = T1 . YQ, R4 = Zl -+ Ro,
Rl = X1+R1, R5 = T1+R2, Rg = }/1+R3, RO = Zl_RO, R2 = Tl—RQ,
Zg = RQ'R5, X3 = R1 'RQ, T3 = RQ'R4, YEJ, = R3'R0.

e Unified addition with a = d = 1 and Zy = T5 = 1 takes 8M+6a. The

following is a 4-way parallel algorithm with cost 4 x (2M + 2a):

Ry := X1 Xy, Ry =71 - Xo, Ry :=Y7 - Yo, Rz =17 - Y5,

Ry:=21+ Ry, Ri:=X1+R, Rs:=T1+Ry, R3:=Y1+Rs,

Ro = Zl — Ro, idle RQ = T1 — RQ, idle

Zg = Ro-R5, X3 = R1 'R27 T3 = RQ-R4, YEJ, = Rg-RQ.

5.2.2 POINT DOUBLING ON P! x P! EMBEDDING

e Doubling takes 4AM+6S+2D-+10a:

Ry:= X2 X3:= X1+ 7y, X3:= X2, X3:= X3 — Ry, Z3 := 7% X3 :=
X3 — 73, Ry := aRy, Ry := Z3+ Ry, Z3 := Z3 — Ry, Ry := Y7,
YV3:=Y14+T, Y3 : =Yy Y3 :=Y5— Ry, Ty :=T¢,
Y;:=Y; - 135, Ry :=dRy, Ry =15+ Ry, T3 :=T5 — Ry,

X3 =X3-13, Y3:=Y5-23, Z3:=7Z3-Ry, T3:=7T5-R;.

e Doubling exploiting the 2-isogeny decomposition, shown in (4.1) with a = d,
takes SM+2D+-8a:

Ry:=aX, X35:=X,-T1, Ry . =Roy-Y1, 15 : =1, - 7y,
Y3:=Y1- 2y, Z3 :=T3+ Ry, T3 := T3 — Ry, Rp := X3+ Y3, Y3:= X3 — Y5,
Xs:=aRy, X3:=X3-Y3, Ry :=Ro-13,T5:=1T5- 43, Ys:=Y3- Zs,
Z3 =Ty — X3, T3 :=T3+ X3, X3:= Ry + Y3, Y3:= Ry — V3.

e Doubling with a = d = 1 via 2-isogeny decomposition shown in (4.1)
takes 8M+8a. The following is a 4-way parallel algorithm with cost
4 x (2M + 2a):

o1

Ry:=X,-T,, Ri:=Yi-Z, Ry:=T,-Zi, Rs:==X, Y,
Xs:=Ry+ R, Yy:=Ry—Ri, Ty:=Ry—Rs, Zy:=Rs+ Ry,
Ry:=Xs-Ty, Ri:=Y3 Zy, Ro:=Ty Zs, Rsi=X;3 Y3
Xs:=Ry+ R, Yy:=Ro—Ri, Zy:=Ry—Rs, Ty:=Ry+Rs.

5.2.3 POINT ADDITION AND DOUBLING FOR CO-
FACTOR 4

Unified addition

Unified addition with a = d = 2 and Zy = T, = 1 takes 8M+8a. The following

is a 4-way parallel algorithm with cost 4 x (2M + 2a):

Ry := X1 - Xy, Ry =71 - Xo, Ry =YYy, R3 =T Y5,

Ry:=Ry+ Ry, Ri=R+X1, Re:=Ry+ Ry, Rs:=R3+Y,

R4 = R0+Zl, R7 = RO_Zl7 RG = RQ—Tl, R5 = RQ"‘Tl,

T3 = R4'R6, YEJ, = R7'R3, X3 :RG'Rl, Zg = R5'R7.
Doubling

Doubling with a d = 2 via 2-isogeny decomposition shown in (4.1) takes

8M+10a. The following is a 4-way parallel algorithm with cost 4 x (2M + 4a):

52

idle

Ry := Xy - Tq,
X3:= Ry + Ry,
idle

Ry := X5 - T5,
X3:= Ry+ Ry,

1dle

Ry =Y 4,
Y3 := Ry — Ry,
dle

Ry :=Ys- Zs,
Y;:= Ry — Ry,

idle

Ry =T - 7y,
T3 := Ry — R3,
idle

Ry =15 - Zs,
Z3 = Ry — R3,

Ry = X1+ X,
R3:= R, - Y1,
Zs3 = Ros + Rs,
Ry = X34+ X3
Rs := Ry - Y3,
T3 := Ry + R3.

23

CHAPTER 6

COMPARISON AND CONCLUSION

Huff curve form was the slowest curve model in terms of group operations. So, it is
more sensible to compare efficiency of extended Huff curve with older Huff forms,
and also with the other curve forms. Because, eventhough the Huff form does not
become the fastest curve model, the efficiency improvement of Huff curve itself
is remarkable. Furthermore, it can get desirable for parallel implementations,
so that Huff curve is almost as fast as twisted Edwards curve in 4-way parallel
environments. The presented formulas are expected to be attractive for parallel
processing (e.g. special hardware, SIMD, video card settings). There is a need
for further investigation in this direction.

The first section makes comparison between Huff forms of elliptic curve. The
second section provides the detailed comparison between different curve models.
Two look up tables for operation counts of different curve models are given.
And, there is also two tables which carry the cost estimates for 1-NAF and
4-NAF variable point scalar multiplication for each model. Finally, parallel

implementation assessment is made.

6.1 COMPARISON BETWEEN HUFF

FORMS

As stated before, the speed oriented group operation algorithms of Huff curve
were embedded into P? in the previous works. In this work, extended Huff curve
is embedded into P! x P!, and it solidly provides lower total degree formulas for
each coordinate. These formulas set the new operation count record for each

group operation in Huff form. Table 6.1 compares the results of Chapter 5 for

25

DBL, muADD, and uADD ! with the literature.

Table 6.1: Speed oriented operation counts for Huff form

Source & the curve equation | 4 |DBL muADD uADD

(Wu & Feng, 2012) b =1,
4 |6M+5S+1D+12a|10M+1D-+14a|11M+1D+14a

X(aY? - 2%) = Y(X? - 72)

(Joye et al., 2010),
8 |6M+5S+13a 10M+14a 11M+14a

aX(Y? = Z%) = bY (X2 — 2?)

This work, 8M+10a 8M+8a

4 10M-+14a
YT(Z% +2X?) = cXZ(T? +2Y?)| |4x(2M+4a) 4% (2M+-2a)
This work, 8M+8a S8M-+6a

8 10M+12a
YT(Z% + X?) = cXZ(T? 4+ Y?) 4% (2M+-2a) 4% (2M+-2a)

e The column h represents the least possible cofactor in the given curve model.

Note that, in the last two entries of Table 6.1, an additional condition T, = 1
for muADD is underlined, since P! x P! embedding is used. Also, it is assumed
that, 22% + 1 € K]z] is irreducible in the case of YT(Z? + 2X?) = ¢XZ(T? +
2Y?). This condition can be obtained from (Joye et al., 2010, Section 3.3). Since
the counts of addition/subtraction (a) were not specified in the reference works,
they are stated in the Table 6.1 without eliminating common subexpressions.
Eventhough, the formulas for the extended Huff curve do not require moving the
identity to a point at infinity, selecting the identity element as (0: 1: 0) gives

the best operation counts for the previous forms, which are reported in reference

'DBL, mADD, muADD, ADD, uADD represent doubling, mixed addition, mixed
unified addition where Zs = 1, addition and unified addition respectively.

56

works. In (Joye et al., 2010), operation counts for twisted Huff curve which
is written in the form aX (Y? — dZ?) = bY (X? — dZ?) are not provided, thus
Table 6.1 does not contain this case.

As it is seen in the table, this work provides 2M faster formulas for both DBL,
muADD and 1M faster formulas for uADD than the fastest so far formulas

given in (Joye et al., 2010).

6.2 COMPARISON BETWEEN OTHER

FORMS OF ELLIPTIC CURVES

It is shown that extended Huff curve is much more efficient than the
previous Huff forms. Nevertheless, Huff form is not fast enough in sequential
implementations compared to others. It can get competitive with Short
Weierstrass and twisted Hessian forms under some conditions. Yet, extended
Huff curve can be preferable for parallel applications, thanks to the 4-way parallel

formulas for doubling and mixed-addition given in Chapter 5.

6.2.1 GROUP OPERATION COSTS FOR DIFFERENT
CURVE FORMS

The following two tables indicates operation counts of DBL, mADD, muADD,
ADD, uADD for the different forms of elliptic curves. The operation counts of
Jacobi quartic, Jacobi intersection, twisted Hessian, twisted Edwards are obtained
from (Hisil, Wong, Carter, & Dawson, 2009), (Hisil, 2010b), (Bernstein et al.,
2015)-(Hisil, 2010b), (Hisil et al., 2008) respectively. While Table 6.2 gives
operation counts for normal case, Table 6.3 gives operation counts of each curve
form with the case where the curve constants are set to small elements such as -1,

1...etc.

o7

Table 6.2: Operation Counts for Different Curve Forms

Form DBL mADD/muADD | ADD/uADD
M-+ 2D+ 6a 10M-+4D+12a
Huff 4AM+6S+2D+10a
SM+ 2D+10a 10M-+2D+12a
] 6M+3S+ 3D+21la | 6M+4S+3D+21a
Jacobi Q. | 2M+5S+1D+ 8a
6M+3S+ 5D+23a T™M+4S+4D+19a
10M+1D+ 9a 11M-+1D+ 9a
Jacobi I. | 2M+5S+2D+ 8a
10M+ 2S+5D+13a | 11M+2S+5D+13a
10M+1D+13a 12M-+1D+ 3a
Hessian 6M-+3S+1D+ 3a
10M-+1D+13a 12M+1D+ 3a
SM-+1D+ 6a IM-+1D+ 6a
Edwards | 3SM+4S+1D+ 7a
SM-+2D+ 6a IM-+2D+ 6a

Table 6.3: Operation Counts with Special Conditions for Different Curve Forms

Form & Condition | DBL mADD/muADD | ADD/uADD

Huff M- 2D+ 6a 10M+4D+12a
SM+ 8a

a=d=1 M-+ 6a 10M-+2D+12a

Jacobi Q. 6M-+ 3S+1D-+19a | 6M+4S+2D+21a
2M+5S+ 7a

a=—1/2 6M-+ 3S+2D+21a | 7TM+4S+3D+19a

Jacobi 1. 10M+ 9a 11M+ 9a
2M+5S+1D+ 7a

b=1 10M+4 1S+2D+15a | 11M+1S+2D+15a

Hessian IM+17a 11M+17a
6M+2S+1D+ 3a

a=1 9M+-17a 11M+17a

Edwards "™+ 8a SM+ 8a
3M-+-4S+1D

a=—1 T™-+1D+ 8a SM-+1D+ 8a

e The curve equations are taken as follows in the above tables.

—Extended Huff : y(1 + az?) = cz(1 + dy?),
—Jacobi Quartic: y? = dz* + 2a2? + 1,
—Jacobi Intersection : as®> +c? = 1,ds* +d* =1,

—Twisted Hessian : az® + y® + 1 = day,

—Twisted Edwards

o8

cax? +y? =1+ day?

6.2.2 SCALAR MUTLIPLICATION COSTS

Single-scalar variable-point multiplication is the operation that this work focuses
on. Therefore, this subsection contains the comparison of scalar multiplication
costs between different curve models. Signed sliding window algorithm is the best
method to make this comparison. Table 6.4 provides 1-NAF (non-adjacent form)
and Table 6.5 provides 4-NAF costs of each curve form. Note that numbers 1

and 4 stands for the window sizes in the mentioned algorithm.

The cost estimation method, given in (Bernstein & Lange, 2007, Section 6) is
used. The costs are deduced for each curve model by using records from Table 6.3
which includes operation counts for the best case of each curve model. Thus, the
fastest values are chosen. The columns (1,1), (.8,.5), and (.8,0) in the Table 6.4

and Table 6.5 shows different S/M and D/M values, respectively.

Table 6.4: Cost estimates for 1-NAF variable point scalar multiplication

cost per scalar bit || cost for 256 bit scalar

Curve model h
(L,1) | (.8,.:5) | (.8,0) || (1, 1)] (.8,.5) (.8,0)

Huff, 4|l 15.67 | 14.00 | 13.33 || 4011 | 3584 3413
(Joye et al., 2010)

Huff a=d =2 411 10.67 | 10.67 | 10.67 || 2731 | 2731 2731
this work
Hessian , a = +1 3 11.00 | 10.80 | 10.60 || 2816 | 2765 2714

(Hisil, 2010b), (Bernstein et al., 2015)

Weierstrass a = —3 1| 11.67 | 10.40 | 10.40 || 2987 | 2662 2662

Jacobi Intersection , b =1 4 || 10.33 9.53 | 9.33 || 2645 | 2441 2389
(Hisil, 2010b)

Jacobi Quartic , a = —1/2 21 10.33 8.97 | 8.80 || 2645 | 2295 2253
(Hisil et al., 2009)

Twisted Edwards , a = —1 4 933] 853| 853 2389 | 2185 | 2185
(Hisil et al., 2008)

29

Table 6.5: Cost estimates for sliding window 4-NAF wvariable point scalar
multiplication

cost per scalar bit || cost for 256 bit scalar

Curve model h
(1,1) | (:8,.5) | (:8,0) || (1, 1) | (:8,5) | (.8,0)

Huff, 41 14.09 | 12.52| 11.93 || 3608 | 3206 3055
(Joye et al., 2010)

Huff a=d =2 4 9.75 9.75 | 9.75 || 2496 | 2496 2496
this work
Hessian , a = +1 3 9.94 9.75 | 9.55 || 2546 | 2496 2445

(Hisil, 2010b), (Bernstein et al., 2015)

Weierstrass a = —3 1 || 10.51 9.37 | 9.37 | 2690 | 2399 2399

Jacobi Intersection , b = 1 4] 916 8.29| 8.00| 2344 | 2121 | 2049
(Hisil, 2010b)

Jacobi Quartic , a = —1/2 2 8.99 7.79 | 7.69 || 2301 | 1994 1970
(Hisil et al., 2009)

Twisted Edwards , a = —1 4 840| 7.62| 762 2152 | 1950 | 1950
(Hisil et al., 2008)

The calculation of n-bit scalar multiplication costs n doublings and n/3 mixed
additions when 1-NAF algorithm is used.

When 4-NAF is used, it costs n — 4.5 doublings, 7n/48 + 5.2 readditions,
b/48 4+ 0.9 mixed additions, and 0.9 non-mixed additions.

Tables are ordered by the values of the column (.8,0). For this case Huff form
saves its place in the order. But, efficiency increase of Huff curve itself is obvious,
it is in a range from 1.22x to 1.47x.

Huff curve can also get competitive with twisted Hessian and short Weierstrass
curves in single-base scalar multiplications depending on the S/M and D/M
values. Also, double-base scalar multiplication cost estimates for twisted Hessian
curves in (Bernstein et al., 2015) must be considered.

In the sequential implementations, especially in windowed scalar multiplica-

60

tions, Huff curve cannot be faster than the P? embeddings of twisted Edwards,
Jacobi quartic, and Jacobi intersection curves. However, Huff form is very

competitive in 4-way parallel environments.

6.2.3 COMPARISON FOR 4-WAY PARALLEL SET-
TING

The most common group operations, doubling and mixed addition, are shown
in Chapter 5, are to be 4-way parallelizable for extended Huff curve. Thus, it
is tempting to compare the performance of the new formulas with the fastest
formulas developed for twisted Edwards curves for which efficient 4-way parallel
algorithms are given in (Hisil et al., 2008). The following table states the
operation counts of both twisted Edwards and extended Huff curves for 4-way
parallel setting.

Table 6.6: Comparison between twisted Edwards and extended Huff curves for
4-way parallel setting

Curve model h DBL muADD

Extended Huff, a =d =2 | 4 4 x (2M) 4 x (2M)

Twisted Edwards, a = —1 | 4 | 4 x (IM+18S) | 4 x (2M)

Both forms should give similar performance if M = S. The fastest 4-way
parallel mixed addition takes 4 x 2M in both forms. Both curve models are
expected to give similar performances when double-and-add or 1-NAF scalar
multiplication algorithm is used where M = S. Huff form is slower yet close in
performance when the window size is chosen to be greater than 1. Because, 4-way
parallel full addition on twisted Edwards curve takes 4 x (2M), but Huff slows
down to 4 x (3M).

There is another advantage of twisted Edwards curves. Conversion of a

projective point is slightly faster for the embedding used by twisted Edwards

61

curve. The conversion of a projective point (X: Y: T: Z) to the affine point
(X/Z,Y/Z) takes I+ 2M. The conversion of a projective point ((X: Z), (Y : T))
on an extended Huff curve to the affine point (X/Z,Y/T) takes I + 5M using
Montgomery’s simultaneous inversion technique (Hankerson et al., 2003). Since I
is many times more costly than M, the performance difference is not remarkable.
P! x P! embedding of twisted Edwards curves and explicit group law formulas
are given in (Bernstein & Lange, 2011) in rather a different context, without

operation counts. Therefore, it is not clear how the two compare with each other.

62

References

Bernstein, D. J., Birkner, P., Joye, M., Lange, T., & Peters, C. (2008). Twisted
Edwards curves. In AFRICACRYPT 2008 proceedings (Vol. 5023, pp. 389—
405). Springer.

Bernstein, D. J., Chuengsatiansup, C., Kohel, D., & Lange, T. (2015). Twisted
Hessian curves. In Progress in cryptology LATINCRYPT 2015 proceedings
(Vol. 9230, pp. 269-294). Springer International Publishing. Retrieved
from http://dx.doi.org/10.1007/978-3-319-22174-8_15 doi: 10.1007/
978-3-319-22174-8_15

Bernstein, D. J., & Lange, T. (2007). Faster addition and doubling on elliptic
curves. In ASIACRYPT 2007 (Vol. 4833, pp. 29-50). Springer.

Bernstein, D. J., & Lange, T. (2011). A complete set of addition laws for
incomplete Edwards curves. Journal of Number Theory, 131(5), 858-872.
Retrieved from http://www.sciencedirect.com/science/article/pii/
S0022314X10002155 doi: http://dx.doi.org/10.1016/j.jnt.2010.06.015

Bernstein, D. J., & Lange, T. (2017). Ezplicit-formulas database. http://
www.hyperelliptic.org/EFD.

Bézout, E. (1779). Théorie générale des équations algébriques; par m. bézout...
de 'imprimerie de Ph.-D. Pierres, rue S. Jacques.

Billet, O., & Joye, M. (2003). The Jacobi model of an elliptic curve and
side-channel analysis. In Applied algebra, algebraic algorithms and error-
correcting codes: 15th international symposium, aaecc-15, toulouse, france,
may 12-16, 2003 proceedings (Vol. 2643, pp. 34-42). Springer Berlin
Heidelberg. Retrieved from http://dx.doi.org/10.1007/3-540-44828-4
-5 doi: 10.1007/3-540-44828-4.5

Bosma, W., Cannon, J., & Playoust, C. (1997). The Magma algebra system. I.
The user language. J. Symbolic Comput., 24 (3-4), 235-265. Retrieved from
http://dx.doi.org/10.1006/jsco.1996.0125 (Computational algebra

and number theory (London, 1993)) doi: 10.1006/jsc0.1996.0125

63

Brier, E., & Joye, M. (2002). Weierstra$ elliptic curves and side-channel attacks.
In International workshop on public key cryptography (pp. 335-345).

Ciss, A. A., & Sow, D. (2011). On a new generalization of Huff curves. Cryptology
ePrint Archive, Report 2011/580. (http://eprint.iacr.org/2011/580)

Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., &
Vercauteren, F. (2005). Handbook of elliptic and hyperelliptic curve
cryptography. United Kingdom: Chapman and Hall/CRC.

Diffie, W., & Hellman, M. (1976). New directions in cryptography. I[EFEE
transactions on Information Theory, 22(6), 644-654.

Digital signature standard (DSS) (Tech. Rep.). (2000). National Institute of
Standards and Technology (NIST).

Doche, C., Icart, T., & Kohel, D. R. (2006). Efficient scalar multiplication by
isogeny decompositions. In Public key cryptography (Vol. 3958, pp. 191-
206).

Feng, R., Nie, M., & Wu, H. (2010). Twisted jacobi intersections curves. In
TAMC (pp. 199-210).

Hankerson, D., Menezes, A. J., & Vanstone, S. A. (2003). Guide to elliptic curve
cryptography. Secaucus, NJ, USA: Springer-Verlag New York, Inc.

Hisil, H. (2010a). ecfp256: A crypto_dh application for SUPERCOP. Retrieved
2017-07-20, from http://hhisil.yasar.edu.tr/

Hisil, H. (2010b). FElliptic curves, group law, and efficient computation
(Unpublished doctoral dissertation). Queensland University of Technology.

Hisil, H., Wong, K. K.-H., Carter, G., & Dawson, E. (2008). Twisted Edwards
curves revisited. In ASTACRYPT 2008 proceedings (Vol. 5350, pp. 326-343).
Springer.

Hisil, H., Wong, K. K.-H., Carter, G., & Dawson, E. (2009). Jacobi quartic curves
revisited. In ACISP 2009 proceedings (Vol. 5594, pp. 452-468). Springer.

Huff, G. B. (1948, 06). Diophantine problems in geometry and elliptic ternary
forms. Duke Mathematical Journal, 15(2), 443-453. Retrieved from

64

http://dx.doi.org/10.1215/S0012-7094-48-01543-9 doi: 10.1215/
S0012-7094-48-01543-9

Inc., W. M. (2008). Maple 12. http://wuw.maplesoft.com/.

Information technology - security techniques - digital signatures with appendiz -
part 3: logarithm based mechanisms (Tech. Rep.). (2006). International
Organization for Standards (ISO).

Jacobi, C. G. J. (1829). Fundamenta nova theoriae functionum ellipticarum.
auctore d. carolo gustavo iacobo iacobi.. sumtibus fratrum Borntraeger.

Joye, M., & Quisquater, J. J. (2001). Hessian elliptic curves and side-channel
attacks. In CHES (Vol. 2001, pp. 402-410).

Joye, M., Tibouchi, M., & Vergnaud, D. (2010). Huff’s model for elliptic
curves. In Algorithmic number theory: 9th international symposium, ants-
iz, nancy, france, july 19-23, 2010 proceedings (Vol. 6197, pp. 234-250).
Springer Berlin Heidelberg. Retrieved from http://dx.doi.org/10.1007/
978-3-642-14518-6_20 doi: 10.1007/978-3-642-14518-6_20

Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of computation,
48(177), 203-209.

Kohel, D. (1996). Endomorphism rings of elliptic curves over finite fields
(Unpublished doctoral dissertation). University of California, Berkley.
Menezes, A. J., Van Oorschot, P. C.; & Vanstone, S. A. (1996). Handbook of

applied cryptography. CRC press.

Miller, V. S. (1985). Use of elliptic curves in cryptography. In Conference on the
theory and application of cryptographic techniques (pp. 417-426). Springer,
Berlin, Heidelberg.

Moody, D., & Shumow, D. (2001). Analogues of Velu’s formulas for isogenies
on alternate models of elliptic curves. Cryptology ePrint Archive, Report
2011/430. (http://eprint.iacr.org/2011/430)

Odlyzko, A. M. (1984). Discrete logarithms in finite fields and their cryptographic

significance. In Workshop on the theory and application of of cryptographic

65

techniques (pp. 224-314). Springer, Berlin, Heidelberg.

Pohlig, S., & Hellman, M. (1978). An improved algorithm for computing
logarithms over GF (p) and its cryptographic significance (corresp.). IEEE
Transactions on information Theory, 24 (1), 106-110.

Pollard, J. M. (1978). Monte carlo methods for index computation (mod p).
Mathematics of computation, 32(143), 918-924.

Public key cryptography for the financial services industry, key agreement and key
transport using elliptic curve cryptography (Tech. Rep.). (2001). American
National Standards Institute (ANSI).

Public key cryptography for the financial services industry - the elliptic curve
digital signature algorithm (ECDSA) (Tech. Rep.). (2005). Accredited
Standards Committee X9, Incorporated.

Silverman, J. H. (2009). The arithmetic of elliptic curves (Vol. 106). Springer
Science & Business Media.

Smart, N. P. (1999). The discrete logarithm problem on elliptic curves of trace
one. Journal of cryptology, 12(3), 193-196.

Smart, N. P. (2001). The hessian form of an elliptic curve. In CHES (Vol. 2162,
pp. 118-125).

Standard Specifications For Public-Key Cryptography (Tech. Rep.). (2000).
Institute of Electrical and Electronics Engineers (IEEE).

Vélu, J. (1971). Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér.
AB, 273(A238-A241), 238-241.

Washington, L. C. (2008). Elliptic curves: number theory and cryptography. CRC
press.

Wu, H., & Feng, R. (2012). Elliptic curves in Huff’s model. Wuhan University
Journal of Natural Sciences, 17(6), 473-480. Retrieved from http://dx

.doi.org/10.1007/s11859-012-0873-9 doi: 10.1007/s11859-012-0873-9

66

I e e el el e
QOO UREWNHFOOOTIOD UL WN -

N DN
N =

DD DN DN
DU W

27

[N}
¢

APPENDIX 1- C CODE OF SCALAR

MULTIPLICATION

This appendix provides the C code of Sliding window scalar multiplication on
extended Huff curve which is adapted from (Hisil, 2010a).

Main Loop includes the code of the main operation which calls the scalar
multiplication function and calculates the operation counts for 256-bit base
points. In Group Operations part, the C codes of sliding window scalar
multiplication, each group operation that is used in scalar multiplication on
extended Huff curve and next window functions are provided. The window size

is set to 5, because it is the optimal window size for extended Huff curve.

MAIN LOOP

#include <stdio.h>
#include "crympix.h"
#include "finite256.h"
#include "ec_fp_256h.h"

#ifdef TEST_BOX
#include <stdlib.h>
#include <math.h>
#include <sys/time.h>
#include "test.h"
#include "timer.h"
#else

#include <string.h>
#include <stdarg.h>
#include <math.h>
#endif

#define SECRETKEY_BYTES 32
#define PUBLICKEY_BYTES 64
#define SHAREDSECRET_BYTES 32

#ifdef TEST_BOX

static

#endif

int crypto_dh_keypair(unsigned char* pk, unsigned char *sk)
{

unsigned char zzn[32];
unsigned char ttn[32];
EC_FP_SMULBASE_256H_CACHE;
unsigned int i;

/*Secret key (To be replaced with a secure pseudorandom number generator).x/
for (i = 0; i < SECRETKEY_BYTES; i++) sk[i] = rand();

#if EC_FP_SMULBASE_SLICE ==
ec_fp_smul_256h_u((uni)pk, (uni)zzn, (uni)(pk + (PUBLICKEY_BYTES/2)), (uni)ttn, (uni)sk, (uni)xnO, (uni)
yno) ;
#else

#endif

/*Normalization.*/

fp_inv_256((uni)zzn, (uni)zzn);

fp_inv_256((uni)ttn, (uni)ttn);

fp_mul_256((uni)pk, (uni)pk, (uni)zzn);

fp_mul_256((uni) (pk + (PUBLICKEY_BYTES/2)), (uni)(pk + (PUBLICKEY_BYTES/2)), (uni)ttn);

return 0;

}

#ifdef TEST_BOX

static

#endif

int crypto_dh(unsigned char *s, const unsigned char* pk, const unsigned char *sk){
uni_t zzn[FP_LEN], yyn[FP_LEN], ttn[FP_LEN];
unsigned char result[32];

/*scalar multiplication*/
ec_fp_smul_256h_u((uni)result, zzn, yyn, ttn, (uni)sk, (uni)pk, (uni)(pk + (PUBLICKEY_BYTES/2)));

67

60 /*normalizationx/
61 fp_inv_256((uni)zzn, (uni)zzn);
62| fp_mul_256((uni)result, (uni)result, (uni)zzn);

63

64| memcpy(s,result,32);
65

66 return 0;

67|}

68

69| #ifdef TEST_BOX

70| static

71| #endif

72| int copyrightclaims(){
73 return 0;
}

76| #ifdef TEST_BOX
77| static
78| #endif
79| int timingattacks(){
80 return 100;
}

83| #ifdef TEST_BOX

84| static

85| #endif

86| int patentclaims(){
87 return O;

89| void main()

91 unsigned char pki1[PUBLICKEY_BYTES], sk1[SECRETKEY_BYTES];
92 unsigned char pk2[PUBLICKEY_BYTES], sk2[SECRETKEY_BYTES];
93 unsigned char ss1[PUBLICKEY_BYTES], ss2[SECRETKEY_BYTES];
94 long count, ij;

96 COUNT_MLD=0;
97 COUNT_ADD=0;
98 COUNT_MUL=0;
99 COUNT_SQR=0;

100

101| printf("\nExtenden Huff (a=d=1) H (fixedbase)\n");
102

103 for(count = 0; count < 10000; count++){

104 crypto_dh_keypair(pkl, ski);

105 crypto_dh_keypair(pk2, sk2);

106 crypto_dh(ssl, pkl, sk2);

107 crypto_dh(ss2, pk2, skil);

108

109 for(i = 0; i < 32; i++){

110 if(ss1[i] !'= ss2[i]){

111 printf("Error! Secret does not match. (@ %lu)\n", count);
112 exit(1);

113 }

114 }

115 if ((count%10000) == 0){

116 printf ("%lu\n", count);

117 }

118 }

119

120 printf ("count_COUNT_MLD %1f\n", (double)COUNT_MLD/40000) ;
121 printf ("count_COUNT_ADD %1f\n", (double)COUNT_ADD/40000) ;
122 printf ("count_COUNT_MUL %1f\n", (double)COUNT_MUL/40000) ;
123 printf ("count_COUNT_SQR %1f\n", (double)COUNT_SQR/40000) ;
124
125
126| copyrightclaims();
127| timingattacks();
128 patentclaims();
129}

algorithm 6.1: Codes/p1Huff/try_ec_fp_256h.c

68

OO U WN =

GROUP OPERATIONS

/%%

* Scalar multiplication on extended Huff curves with a =d = 1.
*

* A*xY*T* (Z"2+a*X"2) =c*X*Z* (T 2+b*Y"2) .

*

*k/

#include <stdio.h>

#include "crympix.h"

#include "finite256.h"

#include "ec_fp_256h.h"

#define WINDOW_SIZE_LTR 5
#define TABLE_SIZE_LTR (1 << (WINDOW_SIZE_LTR - 2))

static void ec_fp_cpy_256H_u(uni X3, uni Z3, uni Y3, uni T3, const uni X1, const uni Z1, const uni Y1, const
uni T1){
fp_cpy_256(X3, X1);
fp_cpy_256(Y3, Y1);
if(Z1 == NULL && T1 == NULL){
fp_set_1_256(Z3, 1);
fp_set_1_256(T3, 1);

}
else{
fp_cpy_256(Z3, Z1);
fp_cpy_256(T3, T1);
}

}

static void ec_fp_neg_256H_u(uni X3, uni Z3, uni Y3, uni T3, const uni X1, const uni Z1, const uni Y1, const
uni T1){
fp_sub_2_256(X3, 0, X1);
fp_sub_2_256(Y3, 0, Y1);
if(Z1 == NULL && T1 == NULL){
fp_set_1_256(Z3, 1);
fp_set_1_256(T3, 1);

else{
fp_cpy_256(Z3, Z1);
fp_cpy_256(T3, T1);
}

}

/*Cost: 5M + 8a.*/
static void ec_fp_mdbl_256H_u(uni X3, uni Z3, uni Y3, uni T3, const uni X1, const uni Y1){
uni_t rO[FP_LEN], ri[FP_LEN], r2[FP_LEN], r3[FP_LEN], r4[FP_LEN];

fp_mul_256(r4, X1, Y1);
fp_add_256(X3, X1, Y1);
fp_sub_256(Y3, X1, Y1);
fp_sub_2_256(T3, 1, r4);
fp_add_1_256(Z3, r4, 1)

fp_mul_256(r0, X3, T3);
fp_mul_256(r1, Y3, Z3);
fp_mul_256(r2, T3, Z3);
fp_mul_256(r3, X3, Y3);

fp_add_256(X3, r0, ril);
fp_sub_256(Y3, r0, ril);
fp_sub_256(Z3, r2, r3);
fp_add_256(T3, r2, r3);

}

/*Cost: 8M + 8a */
inline static void ec_fp_dbl_256H_u(uni X3, uni Z3, uni Y3, uni T3, const uni X1, const uni Z1, const uni Y1
, const uni T1){
uni_t rO[FP_LEN], ri[FP_LEN], r2[FP_LEN], r3[FP_LEN];

fp_mul_256(r0, X1, T1);
fp_mul_256(r1, Y1, Z1);
fp_mul_256(r2, T1, Z1);
fp_mul_256(r3, X1, Y1);

fp_add_256(X3, r0, rl);
fp_sub_256(Y3, r0, rl);
fp_sub_256(T3, r2, r3);
fp_add_256(Z3, r2, r3);

fp_mul_256(r0, X3, T3);
fp_mul_256(r1, Y3, Z3);
fp_mul_256(r2, T3, Z3);
fp_mul_256(r3, X3, Y3);

fp_add_256(X3, r0, rl);
fp_sub_256(Y3, r0, rl);
fp_sub_256(Z3, r2, r3);
fp_add_256(T3, r2, r3);

}
/*Cost: 8M + 6a. */

static void ec_fp_madd_256H_u(uni X3, uni Z3, uni Y3, uni T3, const uni X1, const uni Z1, const uni Y1,
const uni T1, const uni X2, const uni Y2){

69

93 uni_t rO[FP_LEN], ri[FP_LEN], r2[FP_LEN], r3[FP_LEN], r4[FP_LEN], r5[FP_LEN];

95| fp_mul_256(r0, X1, X2);//tl=A
96| fp_mul_256(r1l, Z1, X2);//t3=C
97| fp_mul_256(r2, Y1, Y2);//t2=B
98| fp_mul_256(r3, T1, Y2);//t4=D

100| fp_add_256(r4, Z1, r0);//t5=E
101| fp_add_256(r1, X1, rl);//t6=F
102| fp_add_256(r5, T1, r2);//t1=G
103| fp_add_256(r3, Y1, r3);//t2=H

105| £fp_sub_256(r0, Z1, r0);//t3=I
106| fp_sub_256(r2, T1, r2);//t4=J

108 fp_mul_256(Z3, r0, r5);
109 fp_mul_256(X3, ril, r2);
110 fp_mul_256(T3, r2, rd);
111 fp_mul_256(Y3, r3, r0);
112
113(%}

114| /#Cost: 8M + 6a. */

115| static void ec_fp_msub_256H_u(uni X3, uni Z3, uni Y3, uni T3, const uni X1, const uni Z1, const uni Y1,
const uni T1, const uni X2, const uni Y2){

116
117| wni_t rO[FP_LEN], ri[FP_LEN], r2[FP_LEN], r3[FP_LEN], r4[FP_LEN], r5[FP_LEN];
118
119| fp_mul_256(r0, X1, X2);//t1=A -
120| fp_mul_256(rl, Z1, X2);//t3=C -
121| fp_mul_256(r2, Y1, Y2);//t2=B -
122| fp_mul_256(r3, T1, Y2);//t4=D -
123
124| fp_sub_256(r4, Z1, r0);//t5=E
125| fp_sub_256(r1, X1, rl);//t6=F
126| fp_sub_256(r5, T1, r2);//t1=G
127| fp_sub_256(r3, Y1, r3);//t2=H
128
129| fp_add_256(r0, Z1, r0);//t3=I
130| £fp_add_256(r2, T1, r2);//t4=J
131
132 fp_mul_256(Z3, r0, r5);
133 fp_mul_256(X3, ril, r2);
134 fp_mul_256(T3, r2, rd);
135 fp_mul_256(Y3, r3, r0);
136
137| }
138
139| /#Cost: 10M+10a. */

140| static void ec_fp_add_256H_u(uni X3, uni Z3, uni Y3, uni T3, const uni X1, const uni Z1, const uni Y1, const
uni T1, const uni X2, const uni Z2, const uni Y2, const uni T2){

141
142 uni_t t1[FP_LEN], t2[FP_LEN], t3[FP_LEN], t4[FP_LEN], t5[FP_LEN], t6[FP_LEN], t7[FP_LEN], t8[FP_LEN], t9[
FP_LEN], t10[FP_LEN];

143
144| fp_add_256(t1, X2, Z2);
145 fp_add_256(t2, T2, Y2);
146 fp_mul_256(t3, X1, X2);
147 fp_mul_256(t4, Y1, Y2);
148 fp_mul_256(t5, Z1, Z2);
149 fp_mul_256(t6, T1, T2);
150
151 fp_add_256(t7, Z1, X1);
152 fp_add_256(t8, T1, Y1);
153| fp_add_256(t9, t3, t5);
154 fp_add_256(t10, t4, t6);
155
156| fp_mul_256(t1, t7, t1);
157 fp_mul_256(t2, t8, t2);
158
159| fp_sub_256(t8, t6, t4);
160 fp_add_256(t6, t6, t4);
161 fp_sub_256(t7, t5, t3);
162| fp_add_256(t5, t5, t3);
163 fp_sub_256(t1, t1, t9);
164 fp_sub_256(t2, t2, t10);
165
166 fp_mul_256(X3, t1, t8);
167| fp_mul_256(Z3, t7, t6);
168| fp_mul_256(Y3, t2, t7);
169 fp_mul_256(T3, t5, t8);
170
171) }
172
173| inline static void fp_cnt_256_u(int *bc, const uni an, const uni_t al){
174 uni_t w, i, j;

175
176 for(i = al - 1; (an[i] == 0) & (1 > 0); i--);
177 w = an[il;

178 for(j = 0; w != 0; j++){

179 w>>=1;

180|

181| (*bc) = j + i*UNIT_LEN;
182| }

183

184 | inline static void find_nextwindow_u(int *v, int *k, int *wd, const uni en, const int i){
185 int t, u2, s, b, sl, sr;

186 uni_t n;

187

70

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

b = i/UNIT_LEN;

= (i + 1) - (b*UNIT_LEN);
= UNIT_LEN - sr;

(b < FP_LEN){

n = en[b] << sl;

r
sl
if

else{
n = 0;

}

if((b != 0) && (sl !'= 0)){
n |= (en[b - 1] >> s1);

}

t =mn > (UNIT_LEN - 1);

if (((n >> (UNIT_LEN - 2)) & O0x1) == t){
*v = 0; *k = i; *wd = 1;

}

else{

if (WINDOW_SIZE_LTR < (i + 1)){
*wd = WINDOW_SIZE_LTR;

}

else{
*wd = 1 + 1;

}

n <<= 1;

n >>= (UNIT_LEN - *wd);

if((1 - *wd + 1) < 1){
u2 = 0;

}

else{
u2 = n & 0x1;

}

*v = =(t << (*wd - 1)) + (n >> 1) + u2;

s = 0;

for(; (xv & 0x1) == 0; s++, *xv = xv >> 1);

¥k =i - (xwd - 1) + s + 1;

}
¥

void ec_fp_smul_256h_u(uni X1, uni Z1, uni Y1, uni T1, const uni kn, const uni X2, const uni Y2)

227 4{

228

229
230
231
232
233
234
235
236
237
238
239
240
241
242

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

uni_t X[TABLE_SIZE_LTR] [FP_LEN], Y[TABLE_SIZE_LTR] [FP_LEN], Z[TABLE_SIZE_LTR] [FP_LEN], T[TABLE_SIZE_LTR][
FP_LEN];
int i, j, ni, k, wd;

fp_cnt_256_u(&i, kn, FP_LEN);
if(i == 0){
fp_set_1_256(X1, 0);
fp_set_1_256(Z1, 1);
fp_set_1_256(Y1, 0);
fp_set_1_256(T1, 1);

}
else{
ec_fp_mdbl_256H_u(X[0], Z[0], Y[0], T[O], X2, Y2); /* 2P. */
ec_fp_madd_256H_u(X[1], Z[1], Y[1], T[1], X[0], Z[0]l,Y[0], T[Ol, X2, Y2); /* 3P. x/
for(j = 2; j < TABLE_SIZE_LTR; j++){
ec_fp_[ac%c;_QSGH_u(X[j], z[3], Y031, T3], X[§ - 11, z[j - 11, Y[j - 11, T[j - 11, X[0], Z[0], Y[O], T
01);
}

find_nextwindow_u(&ni, &k, &wd, kn, i);
i -= wd;
if(ni > 0){
ni >>= 1;
if(ni == 0){
ec_fp_cpy_256H_u(X1, Z1, Yi, T1, X2, NULL, Y2, NULL);

else{
ec_fp_cpy_256H_u(X1, Z1, Y1, T1, X[nil, Z[nil, Y[nil, T[nil);

}
else{
ni = (-ni) > 1;
if(ni == 0){
ec_fp_neg_QSGH_u(Xl, Z1, Y1, T1, X2, NULL, Y2, NULL);

else{
ec_fp_neg_256H_u(X1, Z1, Y1, T1, X[nil, Z[nil, Y[nil, T[nil);

}
for(j =k - 1; i >= 0; j--){
find_nextwindow_u(&ni, &k, &wd, kn, i);
i -= wd;
if(ni == 0){
ec_fp_dbl_256H_u(X1, Z1, Y1, T1, X1, Z1, Y1, T1); //DBL1++;

else{
for(; j > k; j—){
ec_fp_dbl_256H_u(X1, Z1, Y1, T1, X1, Z1, Y1, T1); //DBL2++;

¥
ec_fp_dbl_256H_u(X1, Z1, Y1, T1, X1, Z1, Y1, T1); //DBL2++;
if(ni > 0){
ni >= 1;
if(ni == 0){
ec_fp_madd_256H_u(X1, Z1, Y1, T1i, X1, Z1, Y1, T1, X2, Y2); //DBL3++; ADD++;

else{
ec_fp_add_256H_u(X1, Z1, Y1, T1, X1, 21, Y1, T1, X[nil], Z[nil], Y[nil, T[nil); //DBL3++; ADD++;

71

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

else{
ni = (-ni) > 1;
if(ni == 0){
ec_fp_msub_256H_u(X1, Zz1, Y1, T1, X1, Z1, Y1, T1, X2, Y2); //ADD++;

else{
ec_fp_add_256H_u(X1, Z1, Y1, T1, X1, z1, Y1, T1, X[nil, Z[nil, Y[nil, T[nil); //ADD++;

}
}
}
for(; j >= 1; j—-){
ec_fp_add_256H_u(X1, z1, Y1, T1, X1, Z1, Y1, T1, X1, Z1, Y1, T1);

algorithm 6.2: Codes/p1Huff/ec_fp_256h_u.c

72

