
YAŞAR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
MASTER THESIS

FASTER POINT ADDITION FORMULAS FOR

HUFF FORM OF ELLIPTIC CURVES

NERIMAN GAMZE ORHON
THESIS ADVISOR: ASST.PROF. HÜSEYIN HIŞIL

COMPUTER ENGINEERING

PRESENTATION DATE: 21.08.2017

BORNOVA / İZMİR
SEPTEMBER 2017



ii





iv



ABSTRACT

FASTER POINT ADDITION FORMULAS FOR HUFF FORM

OF ELLIPTIC CURVES

Orhon, Neriman Gamze

Msc, Computer Engineering

Advisor: Asst.Prof. Hüseyin HIŞIL, Ph.D.

September 2017

Elliptic curves were being used only for mathematical studies until Miller and

Koblitz introduced elliptic curves to crypto-community in 1985 with independent

works. Since then, elliptic curves became one of the most significant tools

in cryptography. Elliptic curve cryptography (ECC) started to be used for

commercial purposes after 1990’s. It provides a better level of security with

the same key size than the widely used public key crypto-systems such as RSA.

Nevertheless, time complexity is not at the desired stage. Hence, there have been

several studies so far that aims to increase the time efficiency.

The curve forms that are being used for speed oriented operations came a

long way in terms of gathering lower degree formulas for scalar multiplication

which is the core operation of ECC. However, one of the curve forms which is

called Huff curve could not get competitive with the other forms such as Twisted

Edwards, Jacobi Quartic, despite the studies have been made so far. This thesis

focuses on increasing the efficiency of Huff form of elliptic curve by making use

of mathematical and computational primitives.

Inversion-free point addition and doubling formulas which are being used in

scalar multiplication algorithms, are proposed for the Huff curve which is defined

as

y(1 + ax2) = cx(1 + dy2).

v



vi



First idea is rather to embed the curve into a different projective space than

the preferred for Huff curve previously. Thus, P1×P1 embedding is used instead of

P
2 embedding. The second idea is to make the use of isogenies in order to obtain

an alternative doubling formula. Thanks to these two ideas, an improvement is

achieved.

The best algorithm for point doubling on Huff curve was computed with 6M+

5S.1 The proposed doubling formula in this thesis can be computed with 8M.

Also, operation count of mixed addition is decreased from 10M to 8M. Both sets

of formulas are leading to an effective cost of 2M. Furthermore, they are shown

to be 4-way parallel.

Key Words: Elliptic curves, 2-isogeny, efficient, scalar multiplication, Huff

curves, inversion-free point addition, parallel computation.

1I, M, S, D, a represents the cost of various field operations. I: inversion, M: multiplication,
S: squaring, D: multiplication by a curve constant, a: addition/subtraction.

vii



viii



ÖZ

HUFF ELİPTİK EĞRİ MODELİ ÜZERİNDE HIZLI NOKTA

TOPLAMA FORMÜLLERİ

Orhon, Neriman Gamze

Yüksek Lisans Tezi, Bilgisayar Mühendisliği

Danışman: Yrd.Doç.Dr. Hüseyin HIŞIL

Eylül 2017

Önceden yalnızca matematiksel amaçlar için kullanılan eliptik eğriler, 1985

yılında Miller ve Koblitz’in yayınladığı ayrı çalışmalar sayesinde kripto dünyasına

giriş yaptı. Bu gelişme ile birlikte eliptik eğriler kriptografinin en önemli

araçlarından biri haline geldi. 1990’lardan sonra eliptik eğri tabanlı kriptografi

ticari amaçlar için kullanılmaya başladı. Eliptik eğri tabanlı kripto-sistemler,

RSA gibi sıkça kullanılan asimetrik kripto sistemlerin sağladığı güvenlik

seviyesini, daha kısa anahtarlar ile sağlayabildiği için, bu denli hızlı bir gelişim

gösterdi. Fakat, sağladığı yüksek seviyeli güvenliğe karşın, verimlilik konusunda

yol kat etmesi gerekmektedir. Bu nedenle, eliptik eğri tabanlı kripto-sistemlerin

verimliliğini arttırmak üzere bir çok çalışma yapılıyor.

Hız amaçlı kullanılan eğri modelleri, eliptik eğri tabanlı kriptografinin temel

işlemi olan, skalar çarpım işlemi için kullanılacak, daha düşük dereceli formüller

elde edilmesi konusunda büyük yol kat etti. Fakat, bu eğri modellerinden

sayılan Huff eğrisi bu vakte kadar yapılan bir çok çalışmaya rağmen, twisted

Edwards, Jacobi Quartic gibi eğrilerle rekabet içinde olmadı. Bu tezin

amacı, matemtaiksel ve bilgisayımsal temelleri kullanarak Huff eğri modelinin

verimliliğini arttırmaktır.

ix



x



Bu amaç çerçevesinde,

y(1 + ax2) = cx(1 + dy2).

olarak ifade edilen Huff eğrisi üzerinde, bölmesiz nokta toplama ve nokta çiftleme

işlemleri önerildi. Bu amaca ulaşmak için kullanılan ilk yöntem, bölmesiz nokta

toplama ve nokta çiftleme işlemleri elde edebilmek için, bu eğri modelinde daha

önceki çalışmalarda tercih edilenden başka bir projektif uzay kullanılmasıdır.

İkinci yöntem ise, alternatif bir nokta çiftleme formülü elde etmek için

isogenilerden faydalanmaktır. Bu iki yöntem sayesinde, dikkate değer bir gelişim

kaydedilmiştir.

Huff eğrisi üzerinde, bilinen en hızlı nokta çiftleme formülü ile, işlem 6M +

5S’de 2 hesaplanabiliyordu. Bu tezde sunulan alternatif nokta çiftleme formülü

sayesinde 8M’de hesaplanabiliyor. Nokta toplama formülünün işlem sayısı da

10M’den 8M’ye düşürüldü. Bu iki formülde de 2M’lik hızlanma sağlanmıştır.

Ayrıca sunulan her iki formül de 4-yönlü paralel olarak işlenebilmektedir.

Anahtar Kelimeler: Eliptik eğriler, 2-isogeny, verimli, skalar çarpım, Huff

eğrisi, ters almasız nokta toplama işlemi, paralel hesaplama.

2I, M, S, D, a çeşitli cisim işlemlerini temsil eder. I: inversion(ters alma), M:
multiplication(çarpım), S: squaring (kare alma), D: multiplication by a curve constant (eğri
sabiti ile çarpım), a: addition/subtraction (toplama/çıkarma).

xi



xii



ACKNOWLEDGEMENTS

First of all, I would like to express my deep gratitude to my advisor Huseyin

Hisil for his endless patience and support. Since the second year of my bachelor

education, he has never stopped helping me for my research. He has always been

a patient mentor for both my academic journey and personal life. Without his

encouragement and mentorship, it would be impossible for me to achieve my goal.

I am grateful to organization committees of EUROCRYPT 2017 and Summer

School on real-world crypto and privacy. They support me financially to attend

their events. Also, they gave me chance to join the community and make

presentation of my studies in these events. Their support is magnificently

important for the road that I would like to pursue.

I would like to thank Yasar University Scientific Research Project Committee

for accepting our project (SRP024) with my advisor Huseyin Hisil and providing

me required hardware and software.

I also express my sincere gratitude to Craig Costello. His help about one of

the most important parts of my study has improved my thesis. I also would like

to thank Peter Schwabe for his advices about my future career. He has always

been very friendly and helpful.

Lastly, I would like to thank my loved ones. My parents always supported me

and believed in me for everything I did. It would not be possible for me to reach

where I stand now, without them. Special thanks to my sister Hande Orhon

Ozdag for being my best friend, understanding me all the time and giving me

thoughtful advices about my research and personal life. Also, Cenk Ozdag and

Mert Can Kilic always encouraged and supported me. I owe much all of them.

Neriman Gamze Orhon

İzmir, 2017

xiii



xiv





xvi



PREVIOUSLY PUBLISHED MATERIALS

This thesis contains material based on the following paper. An extended version

of paper is submitted to Designs, Codes and Crypto Journal, and it is under

review.

Orhon, N.G., Hisil, H. (2017). Speeding up Huff form of elliptic curves.

Cryptology ePrint Archive, Report 2017/320. (https://eprint.iacr.org/

2017/320.pdf)

xvii



xviii



TABLE OF CONTENTS

FRONT MATTER i

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . xiii

TEXT OF OATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

PREVIOUSLY PUBLISHED MATERIALS . . . . . . . . . . . . . . . xvii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

1 INTRODUCTION 1

1.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 ROADMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 BACKGROUND 7

2.1 ELLIPTIC CURVES . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 SHORT WEIERSTRASS FORM . . . . . . . . . . . . . . 9

2.1.2 OTHER FORMS OF ELLIPTIC CURVES . . . . . . . . . 11

2.1.3 HUFF CURVE . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 SCALAR MULTIPLICATION . . . . . . . . . . . . . . . . . . . . 16

2.3 ISOGENIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 VÉLU’S FORMULAS . . . . . . . . . . . . . . . . . . . . 18

2.3.2 KOHEL’S APPROACH . . . . . . . . . . . . . . . . . . . 20

xix



3 EXTENDED HUFF CURVE 21

3.1 DERIVATION OF EXTENDED HUFF CURVE . . . . . . . . . . 21

3.2 AFFINE COORDINATES OF EXTENDED HUFF CURVE . . . 23

3.2.1 GROUP LAW IN AFFINE COORDINATES OF EX-

TENDED HUFF CURVE . . . . . . . . . . . . . . . . . . 24

3.3 PROJECTIVE COORDINATES OF EXTENDED HUFF CURVE 27

3.3.1 EMBEDDING H INTO P2 . . . . . . . . . . . . . . . . . 28

3.3.2 EMBEDDING H INTO P1 × P1 . . . . . . . . . . . . . . . 29

4 2-ISOGENY ON EXTENDED HUFF CURVE 33

4.1 DEFINING ISOGENY WITH KOHEL’S APPROACH . . . . . . 33

4.2 ISOGENY TO EXTENDED HUFF CURVE . . . . . . . . . . . . 35

4.2.1 CONSTRUCTING ISOGENY MAPS BETWEEN 2 DIF-

FERENT EXTENDED HUFF CURVES . . . . . . . . . . 35

4.2.2 2-ISOGENY IN P1 × P1 . . . . . . . . . . . . . . . . . . . 40

4.3 ISOGENY TO TWISTED EDWARDS CURVE . . . . . . . . . . 40

4.3.1 CONSTRUCTING ISOGENY MAPS BETWEEN EX-

TENDED HUFF CURVE AND TWISTED EDWARDS

CURVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.2 2-ISOGENY IN P1 × P1 . . . . . . . . . . . . . . . . . . . 45

5 EFFICIENT IMPLEMENTATION 47

5.1 NOT SO FAST ARITHMETIC ON P2 EMBEDDING . . . . . . 47

5.1.1 POINT ADDITION ON P2 EMBEDDING . . . . . . . . . 47

5.1.2 POINT DOUBLING ON P
2 EMBEDDING . . . . . . . . 48

5.2 FASTER ARITHMETIC ON P1 × P1 EMBEDDING . . . . . . . 49

5.2.1 POINT ADDITION ON P1 × P1 EMBEDDING . . . . . . 49

5.2.2 POINT DOUBLING ON P
1 × P

1 EMBEDDING . . . . . 51

5.2.3 POINT ADDITION AND DOUBLING FOR COFACTOR 4 52

xx



6 COMPARISON AND CONCLUSION 55

6.1 COMPARISON BETWEEN HUFF FORMS . . . . . . . . . . . . 55

6.2 COMPARISON BETWEEN OTHER FORMS OF ELLIPTIC

CURVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.1 GROUP OPERATION COSTS FOR DIFFERENT

CURVE FORMS . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.2 SCALAR MUTLIPLICATION COSTS . . . . . . . . . . . 59

6.2.3 COMPARISON FOR 4-WAY PARALLEL SETTING . . . 61

REFERENCES 63

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

APPENDIX 1- C CODE OF SCALAR MULTIPLICATION 66

xxi



xxii



LIST OF FIGURES

2.1 Short Weierstrass curve y2 = x3 − 10x2 + 2 over R. . . . . . . . . 10

2.2 Huff curve 5x(y2 − 1) = 20y(x2 − 1) over R. . . . . . . . . . . . . 15

3.1 Huff curve y(1 + 23x2) = 10x(1 + 25y2) over R. . . . . . . . . . . 24

3.2 Chord and Tangent Rule on extended Huff curve y(1 + 24x2) =

−3x(1 + 17y2) over R. . . . . . . . . . . . . . . . . . . . . . . . . 25

xxiii



xxiv



LIST OF TABLES

6.1 Speed oriented operation counts for Huff form . . . . . . . . . . . 56

6.2 Operation Counts for Different Curve Forms . . . . . . . . . . . . 58

6.3 Operation Counts with Special Conditions for Different Curve Forms 58

6.4 Cost estimates for 1-NAF variable point scalar multiplication . . . 59

6.5 Cost estimates for sliding window 4-NAF variable point scalar

multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.6 Comparison between twisted Edwards and extended Huff curves

for 4-way parallel setting . . . . . . . . . . . . . . . . . . . . . . . 61

xxv



xxvi



CHAPTER 1

INTRODUCTION

Assurance of confidentiality, integrity, non-repudiation and availability of

information has always a high importance from the beginning of time. But,

the technology era that we live in has the highest dependency on information

security since information is transferred through an open network. Thus, much

more advanced methods are required now than any other ages. One of the ways

that provides the security of information is called cryptography.

Cryptography makes use of mathematical techniques in order to transfer

information securely through an insecure channel. Thanks to the process of

encryption, information becomes unintelligible for parties who does not have the

decryption key, and decryption process restores the encrypted message. Until

20th century, secret key cryptography is used. In secret key crypto-systems, two

parties that want to communicate through an insecure channel use the same secret

key, namely encryption and decryption operations are done by a single key. This

method is fast but has a remarkable problem. The key distribution must be done

in a secure way and both parties must keep the same key secret.

In 1976, Diffie and Hellman (Diffie & Hellman, 1976) came up with a

groundbreaking idea which is called public key cryptography. This crypto-system

is also known as asymmetric cryptography, because encryption and decryption

operations are done by two different keys. Assume that Bob wants to send a

secret message to Alice. Then, Alice generates a key pair. Alice keeps one of the

keys secret and sends the other one to Bob. Bob encrypts the message with Alice’s

public key and sends the encrypted message to Alice. Finally, Alice decrypts the

message with the key that she kept secret. In this scenario, key distribution does

not cause a problem obviously. However, all public key crypto-systems are slower

than the secret key crypto-systems.

1



After the elliptic curve cyrptography (ECC) suggested by the independent

works of Miller (Miller, 1985) and Koblitz (Koblitz, 1987), it is started to be used

for commercial purposes. It is standardized by (FIPS 186-2, 2000), (ANSI X9.63,

2001), (ISO CD 14888-3, 2006), (IEEE-1363, 2000), (ANSI X9.62, 2005).

This crypto-system is being used for encryption, decryption, key distribution

digital signatures given in (Menezes, Van Oorschot, & Vanstone, 1996) and

signature verification. Eventhough the elliptic curve cryptography provides a

good level of security, it needs to be improved with regards to time efficiency

(Hankerson, Menezes, & Vanstone, 2003).

Scalar multiplication, which is composed of addition operations of the points

on an elliptic curve, is one of the most common tools of elliptic curve based

cryptographic operations. Thus, speeding up point addition, automatically

speeds up scalar multiplication and dependent protocols as well.

The following curve forms are the most widely used elliptic curves in speed

oriented implementations:

• Short Weierstrass Form: EW : y2 = x3 + ax+ b

• Extended Jacobi Quartic Form: EQ : y
2 = dx4 + 2ax2 + 1

• Jacobi Intersection Form: EI : bu
2 + v2 = 1, au2 + w2 = 1

• Twisted Hessian Form: EHe : ax
3 + y3 + 1 = dxy

• Twisted Edwards Form: EE : ax2 + y2 = 1 + dx2y2

Besides, there is another curve form known as Huff curve which is introduced

by Huff in 1948 (Huff, 1948). Recently, this curve form is enrolled to cryptography

with the work of Joye, Tibouchi and Vergnaud in (Joye, Tibouchi, & Vergnaud,

2010).

EH : ax(y2 − 1) = by(x2 − 1)

However, it could not be as efficient as the other forms of elliptic curves in terms

of group operations.

2



1.1 MOTIVATION

The main goal of this thesis is to increase the efficiency of group operations

on Huff curve. Group operation formulas include elementary operations such

as multiplication, squaring, multiplication by a constant, addition/subtraction

and inversion. Apparently, inversion operation is much more costly than others

(Hankerson et al., 2003). Therefore, eliminating the inversion operation is the

first step of increasing the efficiency of scalar multiplication.

Affine point addition formulas of elliptic curve points involve inversions. But,

in the case that the curve is embedded into a projective space, formulas become

inversion free.

Definition 1.1.1. Let K be a field, c and d ∈ N+. The following equivalence

relation can be defined on K3 − {(0, 0, 0)}:

(X1, Y1, Z1) ∼ (X2, Y2, Z2)

where X1 = λcX2, Y1 = λdY2, Z1 = λZ2 for ∃λ ∈ K∗. The equivalence class is

(X : Y : Z) = {(λcX, λdY, λZ) : λ ∈ K∗}

• (X : Y : Z) is called projective point,

• (X/Zc, Y/Zd, 1) is a representative of the projective point (X : Y : Z),

• The set of all affine points is A(K) = {(x, y) : x, y ∈ K},

• The set of all projective points P(K)0 = {(X : Y : Z) : X, Y, Z ∈ K, Z 6= 0},

• A projective point can be obtained by replacing x by X/Zc and y by

Y/Zd,(Hankerson et al., 2003).

Embedding any form of elliptic curves into projective space leads to obtain

point addition formulas which does not include field inversion. The only inversion

is done at the very end of scalar multiplication, while converting projective points

to affine ones. If we suppose 256 bit scalar multiplication where the point addition

3



and doubling operations are done many times, only one inversion that comes from

this conversion is unessential. Thus, projective space is necessarily useful in terms

of scalar multiplication.

Different projective spaces provide different efficiency for each curve form.

More generally Homogeneous Projective Coordinates are being introduced in

related literature, nevertheless the efficiency diversity is remarkable. The detailed

information can be found in (Hisil, 2010b).

In the previous studies on Huff curve ((Wu & Feng, 2012), (Ciss & Sow,

2011), (Joye et al., 2010)), homogeneous projective coordinates (P2 embedding)

was used. Unfortunately, this does not provide low degree formulas for Huff

curve. So, one of the motivations of this thesis is to try to embed Huff curve into

different coordinate system.

The other motivation is to obtain faster formulas for point addition and

doubling on Huff curve. It is noticed that elliptic curve isogenies can be used

for this purpose.

Isogenies have been used as tool for several elliptic curve based cryptography

operations. In 2005, Doche, Icart and Kohel (Doche, Icart, & Kohel, 2006) showed

that isogenies can be used in order to increase efficiency of scalar multiplication

as well. The composition of a degree 2 isogeny defined between two elliptic curves

and its dual gives doubling map of these elliptic curves (Vélu, 1971). This feature

of isogenies provides alternative doubling formulas. It is considered that isogenies

can also give faster doubling formulas for Huff curves.

The derivation of the several formulas in this work were aided by computer

algebra systems MAGMA (Bosma, Cannon, & Playoust, 1997) and Maple (Inc.,

2008).

1.2 ROADMAP

This thesis contains 6 chapters including this chapter, and an appendix. It is

organized as follows:

4



• Chapter 2 - Background contains background information which is

required by the following chapters of this thesis. The main concept of

elliptic curves, basic features of different curve models which are used by

speed oriented protocols, definition of scalar multiplication and isogenies

can be found in this chapter.

• Chapter 3 - Extended Huff Curves provides the definition of extended

Huff curve equation which is defined in a similar way with the other curve

forms. Also, it includes group law properties of extended Huff curve in

affine and projective spaces (P1 × P1 and P2).

• Chapter 4 - 2-isogeny on Extended Huff Curves provides 2-isogney

maps defined on extended Huff curve. At first, the adoption of Kohel’s

approach of isogenies to extended Huff curve is explained, and then the

construction of 2-isogeny between two extended Huff curves and 2-isogeny

between an extended Huff curve and a twisted Edwards curve are introduced

in detail. Finally, projective formulas of these isogeny maps are given.

• Chapter 5 - Efficient Implementation includes efficient algorithms of

the point addition and doubling formulas given in Chapter 3 and Chapter 4.

These algorithms are derived for both P1 × P1 and P2 embeddings.

• Chapter 6 - Comparison and Conclusion contains comparisons of Huff

curve with previous form of Huff curves and other curve forms. Various

tables are given in order to observe improvement of extended Huff curve.

• Appendix A comprises the C code of 256 bit windowed scalar

multiplication on extended Huff curve. The output of this code is the

operation counts of the scalar multiplication where the window size is 5.

5



6



CHAPTER 2

BACKGROUND

This chapter includes background information which is required by the following

chapters of this thesis. Since the main goal of this work is to speed up one of

the elliptic curve models in terms of group operations, the definition of elliptic

curve is given at first. And then, the curve forms which are used by speed

oriented protocols are shown, and their main features such as discriminant and

j-invariant values, a brief group law information and projective closures of the

each curve form are provided. Huff curve form is covered in more detail than the

other forms, because the main focus is to improve its performance. Reader can

also find the definition and the algorithm of scalar multiplication of a point on

an elliptic curve defined over a finite field, which is used for the implementation

phase of this work. Finally, the definition of elliptic curve isogenies is made and

the formulas which are required to calculate isogenies between elliptic curves are

presented. The following sections make necessary definition calls from ((Cohen

et al., 2005), (Hankerson et al., 2003), (Silverman, 2009)).

2.1 ELLIPTIC CURVES

The definition of an elliptic curve defined over finite field K is given below.

Definition 2.1.1. The general Weierstrass form of elliptic curve E is defined

over K is denoted by:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

where a1, a2, a3, a4, a6 ∈ K together with a single point at infinity.

The curve is non-singular if and only if ∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6 6= 0

7



where

b2 = a21 + 4a4,

b4 = 2a4 + a1a3,

b6 = a23 + 4a6,

b8 = a21a6 − a1a3a4 + 4a2a6 + a2a
2
3 − a

2
4.

In the case of ∆ 6= 0 the j-invariant is defined as j(E) = (b22 − 24b4)
3/∆.

The projective closure of E in P2 is given by the equation

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

The point (X1 : Y1 : Z1) is said to be on E with X1, Y1 ∈ K and Z1 ∈ K\{0}. The

point at infinity is O = (0: 1 : 0). The projective point (X1 : Y1 : Z1) corresponds

to affine point (X1/Z1, Y1/Z1), namely x1 = X1/Z1 and y1 = Y1/Z1.

Definition 2.1.2. Let E1 and E2 are two elliptic curves defined over field K such

as

E1 : y
2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6,

E2 : y
2 + â1xy + â3y = x3 + â2x

2 + â4x+ â6.

The curves E1 and E2 are isomorphic over K if there exists c, r, s, t ∈ K with

c 6= 0 such that â1 = (a1 + 2s)/c, â2 = (a2 − sa1 + 3r − d2)/c2, â3 = (a3 +

ra1 + 2t)/c3, â4 = (a4 − sa3 + 2ra2 − (t + rs)a1 + 3r2 − 2st)/c4, â6 = (a6 +

ra4 + r2a2 + r3 − ta3 − t
2 − rta1)/c

6. Then the isomorphism maps between E1

and E2 are defined as follows:

φ : E1 → E2, (x, y) 7→

(
x− r

c2
,
y − s(x− r)− t

c3

)

,

φ−1 : E2 → E1, (x, y) 7→ (c2x+ r, c3y + c2sx+ t).

8



2.1.1 SHORT WEIERSTRASS FORM

When char(K) 6= 2, 3 the following substitutions lead to obtain simpler forms.

Let b2, b4, b6 defined as above and a, b ∈ K;

• y 7→
1

2
(y − a1x− a3) gives

E ′ : y2 = 4x3 + b2x
2 + 2b4x+ b6,

• (x, y) 7→

(
x− 3b2

36
,
y

108

)

gives

EW : y2 = x3 + ax+ b,

which is called short Weierstrass Form.

Note that the ∆ = −16(4a3 + 27b2) and j(EW ) = −1728(4a3)/∆ for short

Weierstrass curve. The projective closure of EW in P2 is given by the equation

EW : Y 2Z = X3 + aX2Z + bZ3.

The point (X1 : Y1 : Z1) is said to be on EW withX1, Y1 ∈ K and Z1 ∈ K\{0}. The

point at infinity is O = (0: 1 : 0). The projective point (X1 : Y1 : Z1) corresponds

to affine point (X1/Z1, Y1/Z1).

9



0 2 4-6 -4 -2 6

2

4

6

-4

-2

-6

Figure 2.1: Short Weierstrass curve y2 = x3 − 10x2 + 2 over R.

Group Law for Short Weierstrass Form

Let P1 = (x1, y1) and P2 = (x2, y2) be points on EW : y2 = x3 + ax+ b

• The negative of P1 is represented as −P1 = (x1,−y1).

• The double of a point on curve is [2]P1 = (x3, y3)

x3 =

(
3x21 + a

2y1

)2

− 2x1,

y3 =

(
3x21 + a

2y1

)2

(x1 − x3)− y1

where y1 6= 0 (Silverman, 2009).

• The dedicated addition on EW is P1 + P2 = (x3, y3)

x3 =

(
y1 − y2
x1 − x2

)2

− x1 − x2,

y3 =

(
y1 − y2
x1 − x2

)

(x1 − x3)− y1

where x1 − x2 6= 0 and P 6= Q (Silverman, 2009).

10



• The unified addition on EW is P1 + P2 = (x3, y3)

x3 =

(
x21 + x1x2 + x22 + a

y1 + y2

)2

− x1 − x2,

y3 =

(
x21 + x1x2 + x22 + a

y1 + y2

)

(x1 − x3)− y1

where y1 + y2 6= 0 (Brier & Joye, 2002).

2.1.2 OTHER FORMS OF ELLIPTIC CURVES

In the following subsection, K denotes a field with the characteristic different

from 2 and the constants a, b, c, d, e, f ∈ K. The content is collected from several

resources. In particular, for extended Jacobi quartic form ((Billet & Joye, 2003),

(Jacobi, 1829)), for twisted Edwards form ((Bernstein, Birkner, Joye, Lange,

& Peters, 2008), (Bernstein & Lange, 2011), (Hisil, Wong, Carter, & Dawson,

2008)), for twisted Hessian ((Bernstein, Chuengsatiansup, Kohel, & Lange, 2015),

(Joye & Quisquater, 2001), (Smart, 2001)), for twisted Jacobi intersection ((Feng,

Nie, & Wu, 2010)) are studied. Also, Explicit-formulas Database (Bernstein &

Lange, 2017) and (Hisil, 2010b) were very helpful for each curve form.

1. Extended Jacobi Quartic Curve defined over K is represented as follows

EQ : y2 = dx4 + 2ax2 + 1.

• When ∆ = d(a2 − d) 6= 0, the curve is non singular and j(EQ) =

64(a2 + 3d2)

d(a2 − d)2
∈ K.

• Let the point P = (x1, y1) on EQ, the negative of P is −P = (−x1, y1).

• EQ in projective coordinates corresponds to

EQ : Y 2Z2 = dX4 + 2aX2Z2 + Z4.

The projective point (X : Y : Z) corresponds to affine point

(
X

Z
,
Y

Z

)

11



where Z 6= 0. The point O = (0: 1 : 0) is the point at infinity.

• The projective closure of extended Jacobi quartic curve is isomorphic

over K to the Weierstrass curve QW : y2 = x(x2 − 4ax − 4a2 − 4d).

Birational maps are given as follows:

φQ : EQ → QW , (x, y) 7→

(
2y + 2

2x
+ 2a,

4y + 4

x3
+

4a

x

)

φ−1
Q : QW → EQ, (x, y) 7→

(

2
x

y
, 2(x− 2a)

x2

y2
− 1

)

.

2. Twisted Edwards Curve defined over K is represented as follows

EE : ax2 + y2 = 1 + dx2y2.

• When ∆ = ad(a − d) 6= 0, the curve is non singular and j(EE) =

16(a2 + 14ad+ d2)3

ad(a− d)4
∈ K.

• Let the point P = (x1, y1) on E, the negative of P is −P = (−x1, y1).

• EE in projective coordinates corresponds to

EE : aX
2Z2 + Y 2Z2 = Z4 + dX2Y 2.

The projective point (X : Y : Z) corresponds to affine point

(
X

Z
,
Y

Z

)

where Z 6= 0. The point O = (0: 1 : 1) is the point at infinity.

• The projective closure of twisted Edwards form of curve is isomorphic

over K to the Weierstrass curve EW : y2 = x3 +2(a+ d)x2+(a− d)2x.

Birational maps are given as follows:

φE : EE → EW , (x, y) 7→

(

(1 + y)2
1− dx2

x2
, 2(1 + y)2

1− dx2

x3
+

4a

x

)

φ−1
E : EW → EE , (x, y) 7→

(

2
x

y
,

x− a+ d

x+ a− d

)

.

12



3. Twisted Hessian Curve defined over K is represented as follows

EHe : ax
3 + y3 + 1 = dxy.

• When ∆ = a(d3 − 27)3 6= 0, the curve is non singular and j(EHe) =

d3(d3 + 216a)3

a(d3 − 27a)3
∈ K.

• Let the point P = (x1, y1) on EHe, the negative of P is −P =

(−x1/y1, 1/y1).

• EHe in projective coordinates corresponds to

EH : aX3 + Y 3 + Z3 = dXY Z.

The projective point (X : Y : Z) corresponds to affine point

(
X

Z
,
Y

Z

)

where Z 6= 0. The point O = (0: − 1: 1) is the point at infinity.

• Every twisted Hessian form of curve is isomorphic over K to the

Weierstrass curve HW : y2 = x3−
d4 + 216da

48
x+

d6 − 540d3a− 5832a2

864
.

Birational maps are given as follows:

φHe : EHe → HW , (x, y) 7→

(
(d3 − 27a)x

3(3 + 3y + dx)
−

d2

4
,

(d3 − 27a)(1 − y)

23(3 + 3y + dx)

)

φ−1
He : HW → EHe, (x, y) 7→

(
18d2 + 72x

d3 − 12dx− 108a + 24y
,

1−
48y

d3 − 12dx− 108a + 24y

)

.

4. Twisted Jacobi Intersection Curve defined over K is represented as

follows

EI : bu
2 + v2 = 1, au2 + w2 = 1.

• When ∆ = ab(a − b) 6= 0, the curve is non singular and j(EI) =

256(a2 − ab+ b2)

(ab− (a− b))2
∈ K.

• Let the point P = (u1, v1, w1) on EI , the negative of P is −P =

(−U1, V1,W1).

13



• EI in projective coordinates corresponds to

EI : bU
2 + V 2 = Z2, aU2 +W 2 = Z2.

The projective point (U : V : W : Z) corresponds to affine point
(
U

Z
,
V

Z
,
W

Z

)

where Z 6= 0. The point O = (0: 1 : 1 : 1) is the point at

infinity.

• Every twisted Jacobi Intersection form of curve is isomorphic over K

to the Weierstrass curve IW : y2 = x(x − a)(x − b). Birational maps

are given as follows:

φI : EI → IW , (u, v, w) 7→

(
(1 + v)(1 + w)

u2
, −

(1 + v)(1 + w)(v + w)

u3

)

φ−1
I : IW → EI , (x, y) 7→

(
2y

ab− x2
, 2x

b− x

ab− x2
− 1, 2x

a− x

ab− x2
− 1

)

.

2.1.3 HUFF CURVE

In this subsection, K indicates a field of characteristic 6= 2 and the constants

a, b ∈ K.

Definition 2.1.3. The Huff curve defined over K is shown as

EH : ax(y2 − 1) = by(x2 − 1)

where ab(a−b) 6= 0. The j-invariant of Huff curve is j(EH) =
28(a4 − a2b2 + b4)3

a4b4(a2 − b2)2
.

Let e, f ∈ K, every Huff curve of form EH : ax(y2 − 1) = by(x2 − 1) is

isomorphic over K to the Weierstrass curve of the form WH : y2 = x(x−e)(x−f)

where e = a2 − b2 and f = a2. The change of variables is represented with the

14



21-1

-2

-4

-6

6

4

-2

2

Figure 2.2: Huff curve 5x(y2 − 1) = 20y(x2 − 1) over R.

maps below:

φ : EH → HW , (x, y) 7→

(
a(a+ bxy)

y2
,
−ab(a2 − b2)

(ax− by)

)

φ−1 : HW → EH , (x, y) 7→

(
−bx

y
,
−a(x− a2 + b2)

y

)

.

The projective closure of EH in P
2 is given by the equation

EH : aX(Y 2 − Z2) = bY (X2 − Z2).

The projective point (X : Y : Z) corresponds to affine point (X/Z, Y/Z).

Group Law on Huff Curve

The identity element of Huff curve is O = (0: 0 : 1). There are three points at

infinity such that (1 : 0 : 0), (0 : 1 : 0), (a : b : 0). One can obtain the third point at

15



infinity when they add two of them.

Let P1, P2, P3 be projective points on EH. The group operation of Huff curve refers

P1+P2+P3 = O. The inverse of a point can be found by adding one of the point

at infinity to specified point. More specifically, assume that P1 = (X1 : Y1 : Z1)

then the inverse of P1 is (X1 : Y1 : Z1) + (0 : 1 : 0) = (X1 : Y1 : − Z1) = −P1.

• dedicated addition: P1 + P2 = (x3, y3) =

(
(x1 − x2)(y1 + y2)

(y1 − y2)(1− x1x2)
,
(x1 + x2)(y1 − y2)

(x1 − x2)(1− y1y2)

)

(2.1)

where P1 6= P2.

• unified addition: P1 + P2 = (x3, y3) =

(
(x1 + x2)(1 + y − 1y2)

(1− y1y2)(1 + x1x2)
,
(1 + x1x2)(y1 + y2)

(1− x1x2)(1 + y1y2)

)

. (2.2)

• doubling: [2]P1 = (x3, y3) =

(
2x1(1 + y21)

(y21 − 1)(1 + x21)
,

2y1(1 + x21)

(x21 − 1)(1 + y21)

)

. (2.3)

2.2 SCALAR MULTIPLICATION

The following assumptions are used for below two definitions.

Let K be a field, E be an elliptic curve defined over K, P and Q are points

on E and n ∈ N.

Elliptic curve crypto systems requires to choose one private key and generate

the public key. Given base point P is multiplied by a scalar n and another point

Q is calculated. In this scenario, n is called private and Q is called public key.

Definition 2.2.1. Determining n where Q = nP is called elliptic curve discrete

logarithm problem (Smart, 1999).

16



The security of elliptic curve cryptography relies on intractability of elliptic

curve discrete logarithm problem which is introduced by Miller (Miller, 1985) and

Koblitz (Koblitz, 1987).

To determine n by knowing Q and P is assumed to be intractable. The

method for calculating n is to try every possible n value in the range 0 < n <

#E(K) 1. The methods to find n, such as Pollard’s Rho (Pollard, 1978), Pohling-

Hellman (Pohlig & Hellman, 1978), Baby-step/giant-step (Odlyzko, 1984) have

exponential time complexity for commonly used elliptic curves.

For both setting the public key Q and the attack which tries to determine

secret key n depends on the scalar multiplication.

Definition 2.2.2. The scalar multiplication of P by n is shown below

[n]P = P + P + . . .+ P
︸ ︷︷ ︸

n times

.

This operation which secures the elliptic curve cryptography also dominates

the execution time. Thus, there are several ways to compute scalar multiplication

of a point in terms of time and memory efficiency. One of the efficient methods is

called sliding window scalar multiplication which makes use of pre-computations.

See (Hankerson et al., 2003) for other methods.

1#E(K) denotes the number of points on the given elliptic curve.

17



Algorithm 1: Elliptic curve sliding window scalar multiplication

Input: n, k ∈ N \ {0} such that n = (nl1 , . . . , n0)2, P ∈ E over K and

{[3]P, [5]P, . . . , [2k − 1]P}

Output: [n]P

1 Q← [0]P, i← l− i

2 repeat

3 if ni = 0 then

4 Q← [2]Q, i← i− 1

5 end

6 else

7 s← max(i − k + 1, 0)

8 repeat

9 s← s+ 1

10 until ns 6= 0;

11 for h from 1 to i− s+ 1 do

12 Q← [2]Q

13 end

14 u← (ni, . . . , ns)2, Q← Q+ [u]P , i← s− 1

15 end

16 until i < 0;

17 return Q

2.3 ISOGENIES

In (Vélu, 1971), Vélu introduced formulas for defining isogenies between two

elliptic curves. After that, various researches focused on isogenies in terms of

cryptographic operations. In this section, computing isogenies is explained in

two different ways. First one is Vélu’s formulas which makes use of list of points

that is a finite order subgroup of an elliptic curve defined over a finite field. The

second one is Kohel’s approach (Kohel, 1996) which makes use the kernel of an

isogeny. Both methods define the rational maps of isogenies and find codomain

curve. The notation is obtained from (Silverman, 2009), (Washington, 2008),

(Vélu, 1971) and (Kohel, 1996).

18



Definition 2.3.1. Let E1 and E2 are elliptic curves defined over K. The

morphism φ : E1 → E2 is called to be an isogeny from E1 to E2 that satisfies

φ(O) = O.

If there is an isogeny from E1 to E2 with φ(E1) 6= {O} then E1 and E2 are said

to be isogenous.

Definition 2.3.2. Let φ : E1 → E2 be an isogeny, then there exists its dual

φ̂ : E2 → E1 such that φ̂ ◦ φ gives the map of multiplication by deg φ on E1.

2.3.1 VÉLU’S FORMULAS

The domain and the co-domain of an isogeny can be determined by Vélu’s

formulas as follows.

Let K be a field with a different characteristic than 2 and E1 and E2 be elliptic

curves defined over K.

E1 : y
2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6

where a1, a2, a3, a4, a6 ∈ K.

Let φ be a separable isogeny from E1 to E2 and C = Ker φ. Define Q =

(xQ, yQ) ∈ E1 with Q 6=∞.

gxQ = 3x2 + 2a2xQ + a4 − a1yQ

gyQ = −2yQ − a1xQ − a3

vQ = gxQ where 2Q =∞ or,

vQ = 2gxQ − a1g
y
Q where 2Q 6=∞

uQ = (gyQ)
2

Suppose that C2 is the set of points of order 2 and R is the set of remaining

19



points in C. Now, calculate v and w as follows:

v =
∑

Q∈S

vQ, w =
∑

Q∈S

uQ + xQvQ

where S = R ∪ C2.

The isogeneous curve E2 is defined as below

Y 2 + A1XY + A3Y = X3 + A2X
2 + A4X + A6

where A1 = a1, A2 = a2, A3 = a3, A4 = a4−5v, A6 = a6− (a1
2+4a2)v−

7w.

The isogeny is given with the map φ : E1 → E2, (x, y) 7→ (X, Y ) where

X = x+
∑

Q∈S

(

vQ
x− xQ

+
uQ

(x− xQ)2

)

Y = y −
∑

Q∈S

(

uQ
2y + a1x+ a3
(x− xQ)2

+ vQ
a1(x− xQ + y − yQ)

(x− xQ)2
+
a1 + uQ − g

x
Qg

y
Q

(x− xQ)2

)

.

2.3.2 KOHEL’S APPROACH

The approach introduced by Kohel simplifies the way of calculating isogenies.

Kohel showed that isogenies can be computed with the explicit functions in terms

of the polynomial ψ(X) which defines the ideal sheaf of the subgroup G of curve

E defined over K.

In this subsection, defining an explicit 2-isogeny from the domain curve E1 : y
2+

a1xy + a3y = x3 + a2x
2 + a4x + a6 defined over K is provided. Other scenarios

can be found in (Kohel, 1996).

Let G be a subgroup of E1 and defined by ψ1(x) that contains elements

of order two. The isogeny of the subgroup H of degree 2 defined by ψ2(x) =

gcd(ψ1(x), 4x
3 + b2x

2 + 2b4x+ b6) is determined as follows:

• ψ2(x) = x− x0 is a 2-isogeny from E1 to a curve E2 with the map (x, y) 7→

20



(X, Y ) where

X = x+
3x20 + 2a2x0 + a4 − a1y0

x− x0

Y = y − (3x20 + 2a2x0 + a4 − a1y0)
a1(x− x0) + (y − y0)

(x− x0)2
. (2.4)

y0 defined with y0 = −
a1x0 + a3

2
for characteristic different than 2.

• Let t = 3x20 + 2a2x0 + a4 − a1y0 and w = x0t, then the codomain curve E2

is written in the form

Y 2 + A1XY + A3Y = X3 + A2X
2 + A4X + A6,

where A1 = a1, A2 = a2, A3 = a3, A4 = a4−5t, A6 = a6− (a21+4a2)t−7w.

21



22



CHAPTER 3

EXTENDED HUFF CURVE

After Huff curves were introduced by Huff in 1948, this curve model has started

to be used by crypto community with the work of Joye, Tibouchi and Vergnaud

(Joye et al., 2010) at ANTS-IX. In that work, several interesting features such

as a more general curve model than Huff’s original model, the explicit derivation

of fast group operations, formulas for pairing computation and, an extension to

the even characteristic case were investigated. Wu and Feng (Wu & Feng, 2012)

further extended the coverage to all elliptic curves having three points of order

two.

Despite all the developments, any statement that indicates Huff curve form

being faster than the other widely known forms of elliptic curves, does not exist

in the relevant literature. And also, there is no consensus on how to write the

curve equation for Huff form.

In this chapter, the Huff curve equation which is defined in a similar way with the

other curve forms is presented. Subsequently, affine coordinates and projective

closure of this form are given.

3.1 DERIVATION OF EXTENDED HUFF

CURVE

Previous forms of Huff curves:

• The original Huff form was introduced as ax(y2 − 1) = by(x2 − 1) by Huff

in (Huff, 1948).

• A twisted version to cover more elliptic curves was given as ax(y2 − d) =

by(x2 − d) by Joye, Tibouchi and Vergnaud in (Joye et al., 2010).

23



• In a later work, the curve equation that covers even more elliptic curves

was given as x(ay2−1) = y(bx2−1) by Wu and Feng in (Wu & Feng, 2012)

• Finally, the curve equation that covers equally many elliptic curves as Wu

and Feng’s equation was given in the form ax(y2 − c) = by(x2 − d) by Ciss

and Sow in (Ciss & Sow, 2011)

Due to its extended coverage, Wu and Feng’s equation is a good start.

However, widely known curves like ax2 + y2 = 1+ dx2y2 (twisted Edwards form)

(Bernstein et al., 2008), y2 = dx4+2ax2+1 (extended Jacobi quartic form) (Billet

& Joye, 2003), ax3+y3+1 = dxy (twisted Hessian form) (Bernstein et al., 2015),

y2 = x3 + ax + b (short Weierstrass form), etc. are always written with “+” in

their curve equations in the literature. In order to make Huff curve to compile

better with literature, by making a tweak which does not affect the coverage, the

equation can be written as x(1 + ay2) = y(1 + bx2).

In all speed oriented formulas, both a and b do appear with respect to the

equation x(1 + ay2) = y(1 + bx2). So, keeping a and b as small as possible is

preferable. But, this case cause the number of elliptic curves over some suitable

field to be very limited. In Ciss and Sow’s equation, the constants appear outside

the parentheses. This is very helpful in terms of increase the coverage. But, both

constants clash with a and b of Wu and Feng’s equation. Thus, in order to prevent

the clashing of constants, the curve can be written as cx(1 + ay2) = dy(1 + bx2).

Since a point satisfying this equation also satisfies (c/d)x(1 + ay2) = y(1 + bx2),

having just c is enough. So, one can rename c/d as c and obtain cx(1 + ay2) =

y(1 + bx2).

The last phase is to keep a as is and replace b with d, because the letter a and

d are more common to use in curve forms. The final version of the curve form

is y(1 + ax2) = cx(1 + dy2). In order to prevent ambiguation, this equation is

referred as extended Huff curve where the curve constants appear in alphabetic

order. This form has the same coverage as Wu and Feng’s equation, i.e. extended

Huff form covers all elliptic curves having three points of order two.

24



3.2 AFFINE COORDINATES OF

EXTENDED HUFF CURVE

Definition 3.2.1. Let K be a field with a characteristic different than 2 and

a, c, d ∈ K. An extended Huff curve over K is defined as follows:

Ha,c,d : y(1 + ax2) = cx(1 + dy2). (3.1)

• Ha,c,d is non-singular if and only if the condition acd(a−c2d) 6= 0 is satisfied.

• The j-invariant of Ha,c,d is 256(a2 − ac2d+ c4d2)3/(ac2d(a− c2d))2.

Theorem 3.2.1. Every elliptic curve having three points of order two is

isomorphic over K to an extended Huff curve.

Proof. Let e, f ∈ K and e′ = a − c2d and f ′ = −c2d. An extended Huff curve

Ha,c,d with identity element at (0, 0) is isomorphic over K to a Weierstrass curve

of the form

We,f : y
2 = x(x− e)(x− f)

with identity element at (0 : 1 : 0). The isomorphism maps are given below.

φ : H → W, (x, y) 7→
(

cx
a− c2d

cx− y
, c
a− c2d

cx− y

)

,

φ−1 : W → H, (x, y) 7→
(x

y
, c
x− (a− c2d)

y

)

. (3.2)

Since every elliptic curve having three points of order two is isomorphic over K

to We,f , those curves are also isomorphic over K to Ha,c,d.

Note that, the curve constants a, d can be scaled to small field elements. Let

α, δ, a′, d′ ∈ K and a, d are small elements of the field K, which satisfies a = α2a′

and d = δ2d′. The isomorphism map of the rescaling is as follows:

Ha,c,d → Ha′, δ

α
c, d′ , (x, y) 7→ (αx, δy). (3.3)

25



-2

-4

-6

6

4

2

0 2 4-4 -2

Figure 3.1: Huff curve y(1 + 23x2) = 10x(1 + 25y2) over R.

Furthermore, the curve constant c can be scaled to 1 by substituting x/c to

x. In this case the isomorphism maps in Theorem 3.2.1 take a simpler form. But,

keeping c as it is and scaling a, d to small elements is more advantageous in terms

of faster field operations.

3.2.1 GROUP LAW IN AFFINE COORDINATES OF

EXTENDED HUFF CURVE

A chord and tangent rule can be defined on an extended Huff curve defined over

field K with char 6= 2. This rule is for adding two points on the curve to obtain the

third point (sum of initial two points) on the curve. This set of points constitutes

an abelian group.

The addition of two distinct points P = (x1, y1) and Q = (x2, y2) on extended

Huff curve can be visualized easily by the use of chord and tangent rule. A line

that intersects the points P and Q, must intersect the curve at a third point

by Bézout’s Theorem (Bézout, 1779). The reflection of this point about (0, 0, 1)

26



-1-2-3-4

1

2

3

4

1 2 3 4

-1

-2

-3

-4

0

P=(-4.302, 2.00)

-(P+Q)=(-2.621, 0.049) (P+Q)=(2.621, -0.049)

Q=(-0.006, -3.00)

Figure 3.2: Chord and Tangent Rule on extended Huff curve y(1 + 24x2) =
−3x(1 + 17y2) over R.
As shown in figure, A line passes through point P and Q intersects the curve at
a third point −(P +Q). The reflection of this intersection point about (0, 0, 1)

gives the sum of P and Q. This rule is verified by the Formulas 3.4.

gives P +Q.

This rule is also applicable for doubling. The tangent line of the point P

intersects the curve at a second point. The reflection of this point about (0, 0, 1)

gives [2]P .

• Identity element:

The identity element of Ha,c,d is O = (0: 1 : 0).

• Points at infinity:

There are three points at infinity of the curve Ha,c,d such that

(0 : 1 : 0), (1 : 0 : 0) and (cd : a : 0). These points respectively correspond to

the three points of order two (0, 0), (e′, 0), (f ′, 0) on We,f .

• Negative of a point:

27



The negative of a point P = (x, y) on Ha,c,d is shown as −P = (−x,−y).

• Addition on Ha,c,d : Two different addition formulas are given for Ha,c,d

such that dedicated addition and unified addition. While unified addition

formulas can be used for addition of the identical points on curve, dedicated

addition can only be used for distinct points.

1. Dedicated addition :

Let the points P1 = (x1, y1), P2 = (x2, y2) be on Ha,c,d and P1 6= P2.

The affine addition formulas are represented as P1+P2 = P3 = (x3, y3):

x3 =
(x1 − x2)(y1 + y2)

(1 + ax1x2)(y1 − y2)
,

y3 =
(x1 + x2)(y1 − y2)

(x1 − x2)(1 + dy1y2)
. (3.4)

2. Unified addition : The alternative addition formulas of the points

P1 and P2 are represented as P3 = (x3, y3):

x3 =
(x1 + x2)(1− dy1y2)

(1− ax1x2)(1 + dy1y2)
,

y3 =
(1− ax1x2)(y1 + y2)

(1 + ax1x2)(1− dy1y2)
. (3.5)

It is assumed that ax1x2 6= ±1 and dy1y2 6= ±1. Note that this set of

formulas can be used for identical points and as well as doubling.

• Doubling on Ha,c,d :

The doubling formulas of the point P1 = (x1, y1) is represented as

[2](x1, y1) = (x3, y3) where

x3 =
2x1(1− dy

2
1)

(1− ax21)(1 + dy21)
,

y3 =
2y1(1− ax

2
1)

(1 + ax21)(1− dy
2
1)
. (3.6)

The doubling can be calculated with the assumptions ax21 6= ±1 and dy21 6=

28



±1.

3.3 PROJECTIVE COORDINATES OF EX-

TENDED HUFF CURVE

This section comprises of both P2 and P1×P1 embeddings of extended Huff curve.

To embed Huff curve into P1 × P1 is a quite new concept and it provides the

performance improvement. Unified addition and doubling formulas are of lower

total degree and 4-way parallel by nature when P1×P1 embedding is used rather

than P2. In this section, only the formulas are given. Efficient implementations

of each formula can be found in Chapter 5.

Note that, the formulas for P2 are derived from (Joye et al., 2010), the

only difference is the curve constants that are located in doubling and addition

formulas. The reason is the different sequence of curve constants in curve

equation, this situation explained detailed at the beginning of the chapter.

3.3.1 EMBEDDING H INTO P
2

The projective closure of Ha,c,d in P2 is defined as follows:

Ĥ =
{
(X : Y : Z) ∈ P

2 : Y (aX2 + Z2)− cX(dY 2 + Z2)
}
. (3.7)

Let λ ∈ K and λ 6= 0. In the P2 embedding of the curve Ha,c,d, a point

(x, y) is represented with (λx : λy : λ). This point corresponds to the affine point

((λx/λ), (λy/λ)).

Group Law in P2 embedding of Extended Huff Curves

• Identity element:

The identity element of Ĥ is ĤO = (0: 1 : 0).

• Points at infinity:

29



There are three points at infinity of the curve Ĥ such that (0 : 1 : 0), (1 : 0 : 0)

and (cd : a : 0).

• Negative of a point:

The negative of a point P = (X : Y : Z) on H is shown as −P = (−X : −

Y : Z).

• Addition on Ĥ : The projective forms of the addition formulas given in

Formula 3.4 and Formula 3.5 are given in the following part.

1. Dedicated addition :

Let the points P1 = (X1 : Y1 : Z1), P2 = (X2 : Y2 : Z2) be on Ĥ and

P1 6= P2. The dedicated addition formulas are represented as P1+P2 =

P3 = (X3 : Y3 : Z3):

X3 = (X1Z2 −X2Z1)
2(X1Z2 + Y2Z1)(Z1Z2 + dX1Y2)

Y3 = (Y1Z2 − Y2Z1)
2(X1Z2 +X2Z1)(Z1Z2 + aX1X2)

Z3 = (Y1Z2 − Y2Z1)(Z1Z2 + aX1X2)(X1Z2 −X2Z1)(Z1Z2 + dX1Y2).

(3.8)

2. Unified addition : The alternative addition formulas of the points

P1 and P2 are represented as P3 = (X3 : Y3 : Z3):

X3 = (X1Z2 +X2Z1)(dY1Y2 − Z1Z2)
2(Z1Z2 + aX1X2))

Y3 = (Y1Z2 + Y2Z1)(aX1X2 − Z1Z2)
2(Z1Z2 + dY1Y2)

Z3 = (aX1X2 − Z1Z2)(Z1Z2 + dY1Y2)(Z1Z2 + aX1X2)(dY1Y2 − Z1Z2).

(3.9)

Note that this set of formulas can be used for identical points and as

well as doubling.

• Doubling on Ĥ :

The doubling formulas of the point P1 = (X1 : Y1 : Z1) is represented as

30



[2]P1 = P1 = (X1 : Y1 : Z1) = (X3 : Y3 : Z3) where

X3 = 2X1(dY
2
1 − Z

2
1)

2Z1(Z
2
1 + aX2

1 )

Y3 = 2Y1(aX
2
1 − Z

2
1 )

2Z1(Z
2
1 + dY 2

1 )

Z3 = (aX2
1 − Z

2
1)(Z

2
1 + dY 2

1 )(Z
2
1 + aX2

1 )(dY
2
1 − Z

2
1 ). (3.10)

3.3.2 EMBEDDING H INTO P1 × P1

The projective closure of Ha,c,d in P
1 × P

1 is defined as follows:

H =
{(

(X : Z), (Y : T )
)
∈ P

1 × P
1 : Y T (Z2 + aX2) = cXZ(T 2 + dY 2)

}
. (3.11)

Let λ, δ ∈ K and λ, δ 6= 0. In the P1 × P1 embedding of the curve Ha,c,d, a

point (x, y) is represented with ((λx : λ), (δy : δ)). This point corresponds to the

affine point ((λx/λ), (δy/δ)).

Group Law in P1 × P1 embedding of Extended Huff Curves

• Identity element:

The identity element of H is HO = ((0 : 1), (0 : 1)).

• Points at infinity:

There are three points at infinity of the curve H such that

((0 : 1), (1 : 0)), ((1 : 0), (0 : 1)) and ((1 : 0), (1 : 0)). These points respectively

correspond to the three points of order two (0, 0), (e′, 0), (f ′, 0) onWe,f given

in the proof of Theorem 3.2.1.

• Negative of a point:

The negative of a point P = ((X : Z), (Y : T )) on H is shown as −P =

((−X : Z), (−Y : T )).

• Addition on H : The projective forms of the addition formulas given in

Formula 3.4 and Formula 3.5 are given in the following part.

31



1. Dedicated addition :

Let the points P1 = ((X1 : Z1), (Y1 : T1)), P2 = ((X2 : Z2), (Y2 : T2))

be onH and P1 6= P2. The dedicated addition formulas are represented

as P1 + P2 = P3 = ((X3 : Z3), (Y3 : T3)):

X3 = (X1Z2 − Z1X2)(Y1T2 + T1Y2)

Z3 = (Z1Z2 + aX1X2)(Y1T2 − T1Y2)

Y3 = (X1Z2 + Z1X2)(Y1T2 − T1Y2)

T3 = (X1Z2 − Z1X2)(T1T2 + dY1Y2). (3.12)

2. Unified addition : The alternative addition formulas of the points

P1 and P2 are represented as P3 = ((X3 : Z3), (Y3 : T3)):

X3 = (X1Z2 + Z1X2)(T1T2 − dY1Y2)

Z3 = (Z1Z2 − aX1X2)(T1T2 + dY1Y2)

Y3 = (Z1Z2 − aX1X2)(Y1T2 + T1Y2)

T3 = (Z1Z2 + aX1X2)(T1T2 − dY1Y2). (3.13)

Note that this set of formulas can be used for identical points and as

well as doubling.

• Doubling on H :

The doubling formulas of the point P1 = ((X1 : Z1), (Y1 : T1)) is represented

as [2]P1 = ((X1 : Z1), (Y1 : T1)) = ((X3 : Z3), (Y3 : T3)) where

X3 = 2X1Z1(T
2
1 − dY

2
1 )

Z3 = (Z2
1 − aX

2
1 )(T

2
1 + dY 2

1 )

Y3 = 2Y1T1(Z
2
1 − aX

2
1 )

T3 = (Z2
1 + aX2

1 )(T
2
1 − dY

2
1 ). (3.14)

32



CHAPTER 4

2-ISOGENY ON EXTENDED HUFF CURVE

Elliptic curve isogenies are very useful in terms of cryptographic implementations.

The cryptographic operations such as point counting, analyzing the difficulty of

elliptic curve discrete logarithm problem, random number generation and hash

functions use isogenies as a tool. One of the most significant feature of elliptic

curve isogenies is that gives the multiplication by n-map which is defined in 2.3.2.

Thus, isogenies are used to optimize doubling map of extended Huff curve in this

work. In the first section, the adoption of Kohel’s approach is explained. And

then, in the second section a 2-isogeny is defined from an extended Huff curve

to another extended Huff curve. The obtained map provides the fastest doubling

map on the curve. In the last section, a 2-isogeny is defined from an extended

Huff curve to twisted Edwards curve. This, gives a doubling map which is almost

fast as the previous map, and also gives an alternative doubling map for twisted

Edwards curve.

4.1 DEFINING ISOGENY WITH KOHEL’S

APPROACH

Kohel’s approach, explained in 2.3.2, shows how to define isogenies between two

Weierstrass form of elliptic curves. An extended Huff curve Ha,c,d is isomorphic

over K to a Weierstrass curve of the form We,f : y
2 = x(x − e)(x − f) = x3 −

(e + f)x2 + (ef)x with the map given in 3.2. Thus, a 2-isogeny can be easily

defined from an extended Huff curve to a Weierstrass curve by making use of this

isomorphism and Kohel’s approach.

Let K is a field with a characteristic different than 2 and a1, a2, a3, a4, a6, e, f ∈

K. Weierstrass curves EW : y2+a1xy+a3y = x3+a2x
2+a4x+a6 and We,f : y

2 =

33



x3 − (e+ f)x2 + (ef)x are defined over K.

• The coefficients of EW can be written as follows:

a1 = 0, a2 = −(e + f), a3 = 0, a4 = ef, a6 = 0.

• Point Q = (x0, y0) = (0, 0) ∈ ψ(x) which is the subgroup of EW that

contains points of order two.

• In this case, the coefficients of the isogenous curve are written as:

A1 = 0, A2 = −(e + f), A3 = 0, A4 = −4ef, A6 = 4ef(e+ f).

• So, the isogenous curve equation is

W ′ : y2 = x3 − (e + f)x2 − 4efx− 4ef(e+ f).

• Point Q corresponds to the point Q′ = (X, Y ) on the codomain curve W ′

is expressed as

X = x+
ef

x
,

Y = y −
efy

x2

which is computed with the map given in 2.4.

These steps lead to write the isogeny as follows:

The curve W : y2 = x3− (e+ f)x2+(ef)x is 2-isogenic to the curve W ′ : y2 =

x3 − (e+ f)x2 − 4efx− 4ef(e+ f) with the map

Γ: W →W ′, (x, y) 7→
(

x+
ef

x
, y −

efy

x2

)

.

Its dual can be calculated with the same manner.

34



As it is mentioned at the beginning of this section, the domain curve is

isomorphic to the extended Huff curve. It means that an isogeny can be defined

from extended Huff curve to the codomain curve W ′ with the composition of

isomorphism and the isogeny maps defined above. Therefore, 2-isogenies can be

defined from extended Huff curve to any curve form which has three points of

order two. It can be obtained by the composition of the isomorphism maps given

in Chapter 2 and the isogeny map defined with Kohel’s approach. In the following

sections it will be explained in detail.

4.2 ISOGENY TO EXTENDED HUFF

CURVE

In (Moody & Shumow, 2001), it is shown that a 2-isogeny can be derived from a

Huff curve to another Huff curve. It is realized that more speed oriented isogenies

can be derived. The detailed instructions to define a 2-isogeny from an extended

Huff curve to another extended Huff curve are given in this section.

4.2.1 CONSTRUCTING ISOGENY MAPS BETWEEN

2 DIFFERENT EXTENDED HUFF CURVES

A degree 2 isogeny can be defined from a Weierstrass curve of the form W : y2 =

x(x − e)(x− f) to another Weierstrass curve of the form Ŵ : y2 = x(x − ê)(x −

f̂). Also, by Theorem 3.2.1, it is known that every extended Huff curve H is

isomorphic over K to W . Thus, the below substitution can be done between the

curve constants of Ŵ and H .

Let r ∈ K, r2 = ad, ê = −(a − cr)2/a and f̂ = −(a + cr)2/a. The isogeny from

W to Ŵ and its dual are given below:

35



µ : W → Ŵ , (x, y) 7→

(
x2 − êx

x− f̂
, y +

f̂(ê− f̂)

(x− f̂)2
y

)

µ̂ : Ŵ →W, (x, y) 7→

(
(x+ ê)2

4x
,
x2 − ê2

8x2
y

)

.

The combination of the isomorphism map φ from the Theorem 3.2.1 and µ

gives an isogeny from H to Ŵ . And the combination of φ−1 and µ̂ gives its dual.

Some birational transformations help to put Ŵ in desired extended Huff curve

form.

First step is to find an isomorphic Legendre form W̃ : y2 = x(x − ẽ)(x − f̃) to

Ŵ . By moving the point (f̃ , 0) on Ŵ to (ẽ, 0) leads to obtain the maps between

these two isomorphic curves.

ψ : Ŵ → W̃ , (x, y) 7→ (x+ f̃ , y),

ψ−1 : W̃ → Ŵ , (x, y) 7→ (x− f̃ , y)

where ẽ = −4cr and f̃ = (a− cr)2/a.

Since the aim is to reach another extended Huff curve form, a reverse manner

of Theorem 3.2.1 is used. Let ã = −(a+ cr)2/a and d̃ = −(a− cr)2/a. Then the

extended Huff curve of the form H̃ : y(1 + ãx2) = x(1 + d̃y2) is isomorphic to W̃ .

The isomorphism map and its inverse is as follows:

τ : W̃ → H̃, (x, y) 7→

(
x

y
,
x− (ã− d̃)

y

)

,

τ−1 : H̃ → W̃ , (x, y) 7→

(
(ã− d̃)x

x− y
,
ã− d̃

x− y

)

.

Final step is to rescale the constants in order to obtain isogenic extended Huff

curve

G : y(1− ax2) =

(
a− cr

a+ cr

)

x(1− ay2)

36



by using the maps below:

ω : H̃ → G, (x, y) 7→

(
(a + cr)x

a
,
(a− cr)y

a

)

,

ω−1 : G→ H̃, (x, y) 7→

(
ax

a + cr
,

ay

a− cr

)

.

Hence,

• the domain curve is H : y(1 + ax2) = cx(1 + dy2)

• the codomain curve is G : y(1− ax2) =

(

a−cr
a+cr

)

x(1− ay2).

The 2-isogeny map ϕ′ from H to G and its dual ϕ̂′ can be derived by

ϕ′ =
(
ω ◦ τ ◦ ψ ◦ µ ◦ φ

)
,

ϕ̂′ =
(
φ−1 ◦ µ̂ ◦ ψ−1 ◦ τ−1 ◦ ω−1

)
.

The following theorem proves the isogeny map given above.

Theorem 4.2.1. Let a, c, d, r ∈ K, r2 = ad and acd(a−c2d) 6= 0 Then, the curve

H : y(1 + ax2) = cx(1 + dy2)

is 2-isogenous over K to the extended Huff curve

G : y(1− ax2) =

(
a− cr

a+ cr

)

x(1− ay2).

The 2-isogeny and its dual are given explicitly as follows:

ϕ : H → G, (x, y) 7→

(
x+ r

a
y

1 + rxy
,
x− r

a
y

1− rxy

)

,

ϕ̂ : G→ H, (x, y) 7→

(
x+ y

1− axy
,
x− y

1 + axy
·
a

r

)

.

Proof.

37



• In order G to be an extended Huff curve, first thing to show is that the

∆G 6= 0.

– ∆H = acd(a− c2d) 6= 0 → a− c2d 6= 0 and c 6= 0.

– (a/c)2 6= ad = r2 → r 6= ±a/c.

– a± cr 6= 0 → (a− cr)/(a+ cr) 6= 0.

– r 6= 0 and a+ cr 6= 0 → (−a)((−a) − ((a− cr)/(a+ cr))2(−a) =

2acr/(a+ cr) 6= 0

So that, ∆G is obtained as nonzero.

∆G = (−a)

(
a− cr

a+ cr

)

(−a)

(

(−a)−

(
a− cr

a + cr

)2

(−a)

)

6= 0.

• Secondly, show that ϕ is an isogeny from from H to G.

1. By substituting u with
x+ r

a
y

1 + rxy
and v with

x− r
a
y

1− rxy
, it is obtained

that

v(1− au2)−

(
a− cr

a+ cr

)

u(1− av2) =

−2r(1− ax2)(a− r2y2)(ay(1 + ax2)− cx(a + r2y2))

a2(a+ cr)(1− r2x2y2)2
.

2. By substituting r2 with ad and organizing the terms, it is obtained

that

(

y(1 + ax2)− cx(1 + dy2)
)

·
−2r(1− ax2)(1− dy2)

(a + cr)(1− adx2y2)2
.

It means that, ϕ is a rational map from H to G.

3. ϕ((0, 0)) = (0, 0) shows that ϕ is an isogeny from H to G.

• Next step is to show that ϕ̂ is an isogeny from G to H .

1. By substituting u with
x+ y

1− axy
and v with

a

r
·
x− y

1 + axy
, it is obtained

38



that v(1 + au2)− u(1 + dv2) =

−
(

c(x+ y)(1− axy)(1 + axy)2/(r − ra2x2y2)2
)

r2+

(

a(x− y)(1 + axy)(1 + ax2)(1 + ay2)/(r − ra2x2y2)2
)

r−

(

a2cd(x+ y)(1− axy)(x− y)2/(r − ra2x2y2)2
)

.

2. By substituting d with r2/a and organizing the terms, it is obtained

that

(

y(1− ax2)−

(
a− cr

a+ cr

)

x(1− ay2)

)

·
(a+ cr)(1 + ax2)(1 + ay2)

−r(1− a2x2y2)2

It means that, ϕ̂ is a rational map from G to H .

3. ϕ̂((0, 0)) = (0, 0) shows that ϕ̂ is an isogeny from G to H .

• By Definition 2.3.2, it must be shown that composition of the isogeny map

and its dual gives the multiplication map.

1.

ϕ̂◦ϕ =

(
−2xy(ax− cdy)(ax2 − 2cdxy + dy2)

(ax2 − dy2)(acx2 − 2axy + cdy2)
,
−2xy(ax− cdy)(acx2 − 2axy + cdy2)

c(ax2 − dy2)(ax2 − 2cdxy + dy2)

)

.

By substituting c with

y(1 + ax2)/(x(1 + dy2)

in the map above, it can be obtained that ϕ̂ ◦ ϕ = [2]H ∈ K(H)

2. With the same manner above, eliminate c by using the relation

−
ay(1− ax2)− ax(1 − ay2)

ry(1− ax2) + rx(1− ay2)

and eliminate d by using the relation d = r2/a in ϕ ◦ ϕ̂.Then, the

remaining expression gives [2]G ∈ K(E).

39



4.2.2 2-ISOGENY IN P1 × P1

The P1 × P1 embedding of the curve G is

G : Y T (Z2 − aX2) =

(
1− c

1 + c

)

XZ(T 2 − aY 2).

The projective Huff curve H is 2-isogeneous over K to G. The 2-isogeny map and

its dual are given as

ϕH : H → G,
(
(X : Z), (Y : T )

)
7→
(
(XT + Y Z : TZ + aXY ), (XT − Y Z : TZ − aXY )

)
,

ϕ̂G : G → H,
(
(X : Z), (Y : T )

)
7→
(
(XT + Y Z : TZ − aXY ), (XT − Y Z : TZ + aXY )

)
,

(4.1)

Note that, in order to obtain faster arithmetic, a is chosen to be equal to d, and

so r = ±a. In Chapter 5, r is assumed to be equal to a.

4.3 ISOGENY TO TWISTED EDWARDS

CURVE

The detailed instructions to define a 2-isogeny from an extended Huff curve to a

twisted Edwards curve are given in this section.

4.3.1 CONSTRUCTING ISOGENY MAPS BETWEEN

EXTENDED HUFF CURVE AND TWISTED

EDWARDS CURVE

A degree 2 isogeny can be defined from a Weierstrass curve of the form W : y2 =

x(x− e′)(x− f ′) to another Weierstrass curve of the form Ŵ : y2 = x3 +2(e′ +

40



f ′)x2 + (e′ − f ′)2x. The isogeny from W to Ŵ and its dual are given below:

γ : W → Ŵ , (x, y) 7→

(
x2 − (e′ + f ′)x+ e′f ′

x
, y
x2 − e′f ′

x2

)

,

γ̂ : Ŵ →W, (x, y) 7→

(
x2 + 2(e′ + f ′)x+ (e′ − f ′)2

4x
, y
x2 − (e′ − f ′)2

8x2

)

.

The combination of the isomorphism map φ from the Theorem 3.2.1 and γ

gives an isogeny from H to Ŵ . And the combination of φ−1 and γ̂ gives its dual.

Some birational transformations help to put Ŵ in desired twisted Edwards curve

form.

First step is to find an isomorphic Montgomery form M : (e′ − f ′)y2 = x3 +

2 (e′+f ′)
(e′−f ′)

x2 + x to Ŵ .

ǫ : Ŵ →M, (x, y) 7→

(
x

(e′ − f ′)
,

y

(e′ − f ′)2

)

,

ǫ−1 : M → Ŵ , (x, y) 7→

(
x

(e′ − f ′)−1
,

y

(e′ − f ′)−2

)

.

Since the aim is to reach a twisted Edwards curve form, put M in twisted

Edwards form

E ′ :
4e′

(e′ − f ′)2
x2 + y2 = 1 +

4f ′

(e′ − f ′)2
x2y2

The isomorphism map and its inverse is as follows: (Bernstein et al., 2008)

λ : M → E ′, (x, y) 7→

(
x

y
,
x− 1

x+ 1

)

,

λ−1 : E ′ →M, (x, y) 7→

(
1 + y

1− y
,

1 + y

x(1 − y)

)

.

Rescale the constants to get rid of 4/(e′ − f ′)2,

Ẽ : e′x2 + y2 = 1 + f ′x2y2

41



using the maps from (Bernstein et al., 2008)

ξ : E ′ → Ẽ, (x, y) 7→

(
2

e′ − f ′
x, y

)

,

ξ−1 : Ẽ → E ′, (x, y) 7→

(
e′ − f ′

2
x, y

)

.

G : y(1− ax2) =

(
a− cr

a+ cr

)

x(1− ay2)

In order to obtain a common form of a twisted Edwards curve, the following

steps are required. Swap e′ and f ′ by

Ê : f ′x2 + y2 = 1 + e′x2y2

using the maps from (Bernstein et al., 2008)

π : Ẽ → Ê, (x, y) 7→
(
x, y−1

)
,

π−1 : Ê → Ẽ, (x, y) 7→
(
x, y−1

)
.

Finally, in order to remove c2, set e = −d and f = a/c2 − d.

E : ex2 + y2 = 1 + fx2y2

using the maps from (Bernstein et al., 2008)

η : Ê → E, (x, y) 7→
(
cx, y

)
,

η−1 : E → Ê, (x, y) 7→
(
c−1x, y

)
.

Hence,

• the domain curve is H : y(1 + ax2) = cx(1 + dy2)

• the codomain curve is E : ex2 + y2 = 1 + fx2y2.

42



The 2-isogeny map σ′ from H to E and its dual σ̂′ can be derived by

σ′ =
(
η ◦ π ◦ ξ ◦ λ ◦ ǫ ◦ γ ◦ φ

)
,

σ̂′ =
(
φ−1 ◦ γ̂ ◦ ǫ−1 ◦ λ−1 ◦ ξ−1 ◦ π−1 ◦ η−1

)

The following theorem will prove the isogeny map given above.

Theorem 4.3.1. Let a, c, d, e, f ∈ K, e = −d, f = a/c2− d and acd(a− c2d) 6= 0

Then, the curve

H : y(1 + ax2) = cx(1 + dy2)

is 2-isogenous over K to the twisted Edwards curve

Ee,f : ex
2 + y2 = 1 + fx2y2.

The 2-isogeny and its dual are given explicitly as follows:

σ : H → E, (x, y) 7→

(
2y

1− dy2
,
1 + ax2

1− ax2

)

,

σ̂ : E → H, (x, y) 7→

(
xy

c(1 + dx2)
,
x

y

)

.

Proof.

• In order E to be an twisted Edwards curve, first thing to show is that the

∆E 6= 0.

– By the definition of ∆H ;

a, c, d, (a− c2d) 6= 0 → ∆E = ef(e− f) = ad(a− c2d)/c4 6= 0.

Thus, Ee,f defines a twisted Edwards curve

• Secondly, show that σ is an isogeny from from H to E.

1. By substituting u with 2y/(1 − dy2) and v with (1 + ax2)/(1 − ax2),

43



it is obtained that

eu2 + v2 − 1− fu2v2 =

(

y(1 + ax2)− cx(1 + dy2)
)

·
4a
(
y(1 + ax2) + cx(1 + dy2)

)

−c2(1− ax2)2(1− dy2)2
.

It means that, σ is a rational map from H to E.

2. σ((0, 0)) = (0, 0) shows that σ is an isogeny from H to E.

• Next step is to show that σ̂ is an isogeny from E to H .

1. By substituting u with xy/(c(1 + dx2)) and v with x/y, it is obtained

that

v(1 + au2)− cu(1 + dv2) =
(

ex2 + y2 − 1− fx2y2
)

·
−x

(1 + dx2)2y
.

It means that, σ̂ is a rational map from E to H .

2. σ̂((0, 0)) = (0, 0) shows that σ̂ is an isogeny from E to H .

• By Definition 2.3.2, it must be shown that composition of the isogeny map

and its dual gives the multiplication map.

1.

σ̂ ◦ σ =

(
2y(1 + ax2)(1− dy2)

c(1− ax2)(1 + dy2)2
,

2y(1− ax2)

(1 + ax2)(1− dy2)

)

.

By substituting y(1 + ax2) with cx(1 + dy2) in the map above, it can

be obtained that σ̂ ◦ σ = [2]H ∈ K(H).

2. With the same manner above,

– replace (1− ex2)2 + (f − e)x2y2 with (1 + dx2)(y2 + dx2),

– replace (1− ex2)2 − (f − e)x2y2 with (1 + dx2)(2− y2 + dx2)

in

σ ◦ σ̂ =

(
2xy

y2 + ex2
,
(1− ex2)2 + (f − e)x2y2

(1− ex2)2 − (f − e)x2y2

)

.

Then, the remaining expression gives [2]E ∈ K(E).

44



4.3.2 2-ISOGENY IN P1 × P1

The P1 × P1 embedding of the curve E is

Ee,f : eX2T 2 + Y 2Z2 = T 2Z2 + fX2Y 2,

The projective Huff curve H is 2-isogeneous over K to E . The 2-isogeny map and

its dual are given as

((
X : Z

)
,
(
Y : T

))

7→
((

2Y T : T 2 − dY 2
)
,
(
Z2 + aX2 : Z2 − aX2

))

,

((
X : Z

)
,
(
Y : T

))

7→
((
XY Z : c T (Z2 + dX2)

)
,
(
XT : Y Z

))

.

Note that, in order to obtain faster arithmetic, d is set to −1 In Chapter 5.

45



46



CHAPTER 5

EFFICIENT IMPLEMENTATION

This chapter includes efficient implementations of point addition and doubling

operations on Huff curve. Both operations are shown for various cases such as

setting curve constants to special values. Also, 4-way parallel implementation

of doubling formula which is obtained by using isogenies and 4-way parallel

implementation of mixed addition formula can be found. These implementations

are derived for both P2 and P1 × P1 embeddings and the formulas given in 3.3.2

and 3.3.1 are used.

5.1 NOT SO FAST ARITHMETIC ON P
2

EMBEDDING

In this section, K is a field with char(K) 6= 2, a, d ∈ K, Ĥ is the

homogeneous projective form of extended Huff curve defined over K and P1 =

(X1 : Y1 : Z1), P2 = (X2 : Y2 : Z2) are points on curve Ĥ .

5.1.1 POINT ADDITION ON P2 EMBEDDING

Dedicated addition

Recall that the addition of two distinct points P1 and P2 equals to P3 =

(X3 : Y3 : Z3) can be calculated as follows:

C0 := X1 · Z2, C1 := Y1 · Z2, C2 := aC0, C3 := X2 · Z1,

C4 := dC1, C5 := Y2 · Z1,

R0 := (Z1+a ·X1) · (Z2+X2)−C2−C3, R1 := (Z1+d ·Y1) · (Z2+Y2)−C4−C5,

R2 := (C0 − C3) · R1, R3 := (C1 − C5) · R0,

X3 := (C0−C3) · (C1+C5) ·R2, Y3 := (C0+C3) · (C1−C5) ·R3, Z3 := R2 ·R3.

47



• Dedicated addition takes 13M+4D+14a.

• a = d = 1, it can be computed in 13M+14a.

• Dedicated mixed addition costs 11M+4D+12a.

• Dedicated mixed addition with a = d = 1 costs 11M+12a.

Unified addition

The alternative addition formulas of the points P1 and P2, which can be used for

the case that P1 = P2 are represented as

C0 := X1 ·X2, C1 := Y1 · Y2, C2 := Z1 · Z2, C3 := aC0, C4 := dC1,

R0 := (X1 + Z1) · (X2 + Z2)− C0 − C2, R1 := (Y1 + Z1) · (Y2 + Z2)− C1 − C2,

R2 := (C4 − C2) · (C2 + C3), R3 := (C3 − C2) · (C2 + C4),

R4 := R0 · (C4 − C2), R5 := R1 · (C3 − C2),

X3 := R4 · R2, Y3 := R5 · R3, Z3 := R2 · R3.

• Unified addition takes 12M+2D+14a

• a = d = 1, it can be computed in 12M+14a.

• Unified mixed addition costs 11M+2D+12a.

• Unified mixed addition with a = d = 1 costs 11M+12a.

5.1.2 POINT DOUBLING ON P
2 EMBEDDING

The doubling formulas of the point P1, [2]P1 = (X3 : Y3 : Z3) can be calculated as

C0 := X2
1 , C1 := Y 2

1 : C2 := Z2
1 , C3 := a · C0, C4 := d · C1,

R0 := (X1 + Z1)
2 − C0 − C2, R1 := (Y1 + Z1)

2 − C1 − C2,

R2 := (C4 − C2) · (C2 + C3),

R3 := (C3 − C2) · (C2 + C4), R4 := R0 · (C4 − C2), R5 := R1 · (C3 − C2),

X3 := R4 · R2, Y 3 := R5 · R3, Z3 := R2 · R3.

48



• Doubling takes 7M+5S+2D+11a.

• Also, for the case a = d = 1, it can be computed in 7M+5S+11a.

5.2 FASTER ARITHMETIC ON P
1 × P

1 EM-

BEDDING

In this section, K is a field with char(K) 6= 2, a, c, d ∈ K, H is the

projective closure of extended Huff curve in P1 × P1 defined over K and P1 =

((X1 : Z1), (Y1 : T1)), P2 = ((X2 : Z2), (Y2 : T2)) are points on curve H.

5.2.1 POINT ADDITION ON P1 × P1 EMBEDDING

Dedicated Addition

• The addition of two distinct points P1 and P2 in P1×P1 is calculated below:

C0 := aX2, C0 := Z2 − C0, C1 := dY2, C1 := T2 − C1, R0 := Y1 · T2,

R1 := T1 · Y2, R2 := dR1, R2 := R2 +R0, T3 := T1 − Y1, T3 := C1 · T3,

T3 := T3 +R2, Y3 := R0 −R1, R2 := X1 · Z2, R0 := R0 +R1,

R1 := Z1 ·X2, Z3 := Z1 −X1, Z3 := C0 · Z3, Z3 := Z3 +R2,

X3 := R2 − R1, X3 := X3 · R0, R0 := aR1, R0 := R0 + Z3, Z3 := Y3 · R0

R0 := R2 +R1, Y3 := Y3 · R0, R2 := R2 − R1, T3 := T3 ·R2.

– Dedicated addition takes 10M+4D+13a.

– Dedicated readdition takes 10M+2D+11a if C0 = Z2−aX2 and C1 =

T2 − dY2

• Dedicated mixed addition

R0 := X1 · C0, R1 := Z1 ·X2, R2 := Y1 · C1, R3 := T1 · Y2, R0 := Z1 +R0,

R4 := X1+R1, R2 := T1+R2, R5 := Y1+R3, R1 := X1−R1, R3 := Y1−R3,

Z3 := R0 · R3, X3 := R1 · R5, T3 := R2 · R1, Y3 := R3 · R4.

49



– Dedicated mixed addition takes 8M+6a.

– C0 := aX2 and C1 := dY2 is pre-computed and cached. 4-way

parallel algorithm when similar operations are grouped, with cost

4× (2M+ 2a)

• Dedicated addition with a = d = 1 and Z2 = T2 = 1 takes 8M+6a. The

following is a 4-way parallel algorithm when similar operations are grouped,

with cost 4× (2M+ 2a):

R0 := X1 ·X2R1 := Z1 ·X2R2 := Y1 ·Y2R3 := T1 ·Y2, R0 := Z1+R0, R4 :=

X1 +R1R2 := T1 +R2R5 := Y1 +R3R1 := X1 − R1R3 := Y1 − R3,

Z3 := R0 ·R3, X3 := R1 · R5, T3 := R2 · R1, Y3 := R3 · R4.

– Dedicated mixed addition takes 8M+6a.

– C0 := aX2 and C1 := dY2 is pre-computed and cached. 4-way

parallel algorithm when similar operations are grouped, with cost

4× (2M+ 2a)

Unified Addition

• Unified readdition takes 10M+2D+10a if C0 and C1 are pre-computed and

reused in the below algorithm. Unified addition takes 10M+2D+12a:

C0 := X2 + Z2, C1 := Y2 + T2, R0 := X1 ·X2, R1 := Y1 · Y2, R2 :=

Z1 · Z2, R3 := T1 · T2, X3 := X1 + Z1, Y3 := Y1 + T1,

R4 := R0 +R2, R5 := R1 +R3,

X3 := X3 · C0, Y3 := Y3 · C1, Z3 := aR0, T3 := dR1, R0 := R3 + T3, T3 :=

R3 − T3, R1 := R2 + Z3, Z3 := R2 − Z3, X3 := X3 − R4, Y3 := Y3 − R5,

X3 := X3 · T3, Y3 := Y3 · Z3, Z3 := Z3 · R0, T3 := T3 · R1.

• Unified readdition with Z2 = T2 = 1, takes 8M+6a if C0 := aX2 and

C1 := dY2 is pre-computed and cached. The following is a 4-way parallel

algorithm when similar operations are grouped, with cost 4× (2M+ 2a):

50



R0 := X1 · C0, R1 := Z1 ·X2, R2 := Y1 · C1, R3 := T1 · Y2, R4 := Z1 +R0,

R1 := X1+R1, R5 := T1+R2, R3 := Y1+R3, R0 := Z1−R0, R2 := T1−R2,

Z3 := R0 · R5, X3 := R1 · R2, T3 := R2 · R4, Y3 := R3 · R0.

• Unified addition with a = d = 1 and Z2 = T2 = 1 takes 8M+6a. The

following is a 4-way parallel algorithm with cost 4× (2M+ 2a):

R0 := X1 ·X2, R1 := Z1 ·X2, R2 := Y1 · Y2, R3 := T1 · Y2,

R4 := Z1 +R0, R1 := X1 +R1, R5 := T1 +R2, R3 := Y1 +R3,

R0 := Z1 −R0, idle R2 := T1 −R2, idle

Z3 := R0 ·R5, X3 := R1 ·R2, T3 := R2 ·R4, Y3 := R3 ·R0.

5.2.2 POINT DOUBLING ON P
1 × P

1 EMBEDDING

• Doubling takes 4M+6S+2D+10a:

R0 := X2
1 , X3 := X1 + Z1, X3 := X2

3 , X3 := X3 − R0, Z3 := Z2
1 , X3 :=

X3 − Z3, R0 := aR0, R1 := Z3 +R0, Z3 := Z3 − R0, R0 := Y 2
1 ,

Y3 := Y1 + T1, Y3 := Y 2
3 , Y3 := Y3 −R0, T3 := T 2

1 ,

Y3 := Y3 − T3, R0 := dR0, R2 := T3 +R0, T3 := T3 − R0,

X3 := X3 · T3, Y3 := Y3 · Z3, Z3 := Z3 · R2, T3 := T3 · R1.

• Doubling exploiting the 2-isogeny decomposition, shown in (4.1) with a = d,

takes 8M+2D+8a:

R0 := aX1, X3 := X1 · T1, R0 := R0 · Y1, T3 := T1 · Z1,

Y3 := Y1 · Z1, Z3 := T3 +R0, T3 := T3 − R0, R0 := X3 + Y3, Y3 := X3 − Y3,

X3 := aR0, X3 := X3 · Y3, R0 := R0 · T3, T3 := T3 · Z3, Y3 := Y3 · Z3,

Z3 := T3 −X3, T3 := T3 +X3, X3 := R0 + Y3, Y3 := R0 − Y3.

• Doubling with a = d = 1 via 2-isogeny decomposition shown in (4.1)

takes 8M+8a. The following is a 4-way parallel algorithm with cost

4× (2M+ 2a):

51



R0 := X1 · T1, R1 := Y1 · Z1, R2 := T1 · Z1, R3 := X1 · Y1,

X3 := R0 +R1, Y3 := R0 − R1, T3 := R2 − R3, Z3 := R2 +R3,

R0 := X3 · T3, R1 := Y3 · Z3, R2 := T3 · Z3, R3 := X3 · Y3,

X3 := R0 +R1, Y3 := R0 − R1, Z3 := R2 −R3, T3 := R2 +R3.

5.2.3 POINT ADDITION AND DOUBLING FOR CO-

FACTOR 4

Unified addition

Unified addition with a = d = 2 and Z2 = T2 = 1 takes 8M+8a. The following

is a 4-way parallel algorithm with cost 4× (2M+ 2a):

R0 := X1 ·X2, R1 := Z1 ·X2, R2 := Y1 · Y2, R3 := T1 · Y2,

R0 := R0 +R0, R1 := R1 +X1, R2 := R2 +R2, R3 := R3 + Y1,

R4 := R0 + Z1, R7 := R0 − Z1, R6 := R2 − T1, R5 := R2 + T1,

T3 := R4 · R6, Y3 := R7 · R3, X3 := R6 ·R1, Z3 := R5 · R7.

Doubling

Doubling with a = d = 2 via 2-isogeny decomposition shown in (4.1) takes

8M+10a. The following is a 4-way parallel algorithm with cost 4× (2M+ 4a):

52



idle idle idle R4 := X1 +X1

R0 := X1 · T1, R1 := Y1 · Z1, R2 := T1 · Z1, R3 := R4 · Y1,

X3 := R0 +R1, Y3 := R0 − R1, T3 := R2 − R3, Z3 := R2 +R3,

idle idle idle R4 := X3 +X3

R0 := X3 · T3, R1 := Y3 · Z3, R2 := T3 · Z3, R3 := R4 · Y3,

X3 := R0 +R1, Y3 := R0 − R1, Z3 := R2 −R3, T3 := R2 +R3.

53



54



CHAPTER 6

COMPARISON AND CONCLUSION

Huff curve form was the slowest curve model in terms of group operations. So, it is

more sensible to compare efficiency of extended Huff curve with older Huff forms,

and also with the other curve forms. Because, eventhough the Huff form does not

become the fastest curve model, the efficiency improvement of Huff curve itself

is remarkable. Furthermore, it can get desirable for parallel implementations,

so that Huff curve is almost as fast as twisted Edwards curve in 4-way parallel

environments. The presented formulas are expected to be attractive for parallel

processing (e.g. special hardware, SIMD, video card settings). There is a need

for further investigation in this direction.

The first section makes comparison between Huff forms of elliptic curve. The

second section provides the detailed comparison between different curve models.

Two look up tables for operation counts of different curve models are given.

And, there is also two tables which carry the cost estimates for 1-NAF and

4-NAF variable point scalar multiplication for each model. Finally, parallel

implementation assessment is made.

6.1 COMPARISON BETWEEN HUFF

FORMS

As stated before, the speed oriented group operation algorithms of Huff curve

were embedded into P
2 in the previous works. In this work, extended Huff curve

is embedded into P1 × P1, and it solidly provides lower total degree formulas for

each coordinate. These formulas set the new operation count record for each

group operation in Huff form. Table 6.1 compares the results of Chapter 5 for

55



DBL, muADD, and uADD 1 with the literature.

Table 6.1: Speed oriented operation counts for Huff form

Source & the curve equation h DBL muADD uADD

(Wu & Feng, 2012) b = 1,

4 6M+5S+1D+12a 10M+1D+14a 11M+1D+14a

X(aY 2 − Z2) = Y (X2 − Z2)

(Joye et al., 2010),

8 6M+5S+13a 10M+14a 11M+14a

aX(Y 2 − Z2) = bY (X2 − Z2)

This work,

4

8M+10a 8M+8a

10M+14a

Y T (Z2 + 2X2) = cXZ(T 2 + 2Y 2) 4×(2M+4a) 4×(2M+2a)

This work,

8

8M+8a 8M+6a

10M+12a

Y T (Z2 +X2) = cXZ(T 2 + Y 2) 4×(2M+2a) 4×(2M+2a)

•The column h represents the least possible cofactor in the given curve model.

Note that, in the last two entries of Table 6.1, an additional condition T2 = 1

for muADD is underlined, since P1 × P1 embedding is used. Also, it is assumed

that, 2x2 + 1 ∈ K[x] is irreducible in the case of Y T (Z2 + 2X2) = cXZ(T 2 +

2Y 2). This condition can be obtained from (Joye et al., 2010, Section 3.3). Since

the counts of addition/subtraction (a) were not specified in the reference works,

they are stated in the Table 6.1 without eliminating common subexpressions.

Eventhough, the formulas for the extended Huff curve do not require moving the

identity to a point at infinity, selecting the identity element as (0 : 1 : 0) gives

the best operation counts for the previous forms, which are reported in reference

1DBL, mADD, muADD, ADD, uADD represent doubling, mixed addition, mixed
unified addition where Z2 = 1, addition and unified addition respectively.

56



works. In (Joye et al., 2010), operation counts for twisted Huff curve which

is written in the form aX(Y 2 − dZ2) = bY (X2 − dZ2) are not provided, thus

Table 6.1 does not contain this case.

As it is seen in the table, this work provides 2M faster formulas for both DBL,

muADD and 1M faster formulas for uADD than the fastest so far formulas

given in (Joye et al., 2010).

6.2 COMPARISON BETWEEN OTHER

FORMS OF ELLIPTIC CURVES

It is shown that extended Huff curve is much more efficient than the

previous Huff forms. Nevertheless, Huff form is not fast enough in sequential

implementations compared to others. It can get competitive with Short

Weierstrass and twisted Hessian forms under some conditions. Yet, extended

Huff curve can be preferable for parallel applications, thanks to the 4-way parallel

formulas for doubling and mixed-addition given in Chapter 5.

6.2.1 GROUP OPERATION COSTS FOR DIFFERENT

CURVE FORMS

The following two tables indicates operation counts of DBL, mADD, muADD,

ADD, uADD for the different forms of elliptic curves. The operation counts of

Jacobi quartic, Jacobi intersection, twisted Hessian, twisted Edwards are obtained

from (Hisil, Wong, Carter, & Dawson, 2009), (Hisil, 2010b), (Bernstein et al.,

2015)-(Hisil, 2010b), (Hisil et al., 2008) respectively. While Table 6.2 gives

operation counts for normal case, Table 6.3 gives operation counts of each curve

form with the case where the curve constants are set to small elements such as -1,

1 . . . etc.

57



Table 6.2: Operation Counts for Different Curve Forms

Form DBL mADD/muADD ADD/uADD

Huff 4M+6S+2D+10a
8M+ 2D+ 6a 10M+4D+12a

8M+ 2D+10a 10M+2D+12a

Jacobi Q. 2M+5S+1D+ 8a
6M+3S+ 3D+21a 6M+4S+3D+21a

6M+3S+ 5D+23a 7M+4S+4D+19a

Jacobi I. 2M+5S+2D+ 8a
10M+1D+ 9a 11M+1D+ 9a

10M+ 2S+5D+13a 11M+2S+5D+13a

Hessian 6M+3S+1D+ 3a
10M+1D+13a 12M+1D+ 3a

10M+1D+13a 12M+1D+ 3a

Edwards 3M+4S+1D+ 7a
8M+1D+ 6a 9M+1D+ 6a

8M+2D+ 6a 9M+2D+ 6a

Table 6.3: Operation Counts with Special Conditions for Different Curve Forms

Form & Condition DBL mADD/muADD ADD/uADD

Huff
8M+ 8a

8M+ 2D+ 6a 10M+4D+12a

a = d = 1 8M+ 6a 10M+2D+12a

Jacobi Q.
2M+5S+ 7a

6M+ 3S+1D+19a 6M+4S+2D+21a

a = −1/2 6M+ 3S+2D+21a 7M+4S+3D+19a

Jacobi I.
2M+5S+1D+ 7a

10M+ 9a 11M+ 9a

b = 1 10M+ 1S+2D+15a 11M+1S+2D+15a

Hessian
6M+2S+1D+ 3a

9M+17a 11M+17a

a = 1 9M+17a 11M+17a

Edwards
3M+4S+1D

7M+ 8a 8M+ 8a

a = −1 7M+1D+ 8a 8M+1D+ 8a

•The curve equations are taken as follows in the above tables.

– Extended Huff : y(1 + ax2) = cx(1 + dy2),

– Jacobi Quartic : y2 = dx4 + 2ax2 + 1,

– Jacobi Intersection : as2 + c2 = 1, ds2 + d2 = 1,

–Twisted Hessian : ax3 + y3 + 1 = dxy,

–Twisted Edwards : ax2 + y2 = 1 + dx2y2.

58



6.2.2 SCALAR MUTLIPLICATION COSTS

Single-scalar variable-point multiplication is the operation that this work focuses

on. Therefore, this subsection contains the comparison of scalar multiplication

costs between different curve models. Signed sliding window algorithm is the best

method to make this comparison. Table 6.4 provides 1-NAF (non-adjacent form)

and Table 6.5 provides 4-NAF costs of each curve form. Note that numbers 1

and 4 stands for the window sizes in the mentioned algorithm.

The cost estimation method, given in (Bernstein & Lange, 2007, Section 6) is

used. The costs are deduced for each curve model by using records from Table 6.3

which includes operation counts for the best case of each curve model. Thus, the

fastest values are chosen. The columns (1,1), (.8,.5), and (.8,0) in the Table 6.4

and Table 6.5 shows different S/M and D/M values, respectively.

Table 6.4: Cost estimates for 1-NAF variable point scalar multiplication

Curve model h
cost per scalar bit cost for 256 bit scalar

(1,1) (.8,.5) (.8,0) (1, 1) (.8,.5) (.8,0)

Huff, 4 15.67 14.00 13.33 4011 3584 3413
(Joye et al., 2010)

Huff a = d = 2 4 10.67 10.67 10.67 2731 2731 2731
this work

Hessian , a = ±1 3 11.00 10.80 10.60 2816 2765 2714
(Hisil, 2010b), (Bernstein et al., 2015)

Weierstrass a = −3 1 11.67 10.40 10.40 2987 2662 2662

Jacobi Intersection , b = 1 4 10.33 9.53 9.33 2645 2441 2389
(Hisil, 2010b)

Jacobi Quartic , a = −1/2 2 10.33 8.97 8.80 2645 2295 2253
(Hisil et al., 2009)

Twisted Edwards , a = −1 4 9.33 8.53 8.53 2389 2185 2185
(Hisil et al., 2008)

59



Table 6.5: Cost estimates for sliding window 4-NAF variable point scalar
multiplication

Curve model h
cost per scalar bit cost for 256 bit scalar

(1,1) (.8,.5) (.8,0) (1, 1) (.8,.5) (.8,0)

Huff, 4 14.09 12.52 11.93 3608 3206 3055
(Joye et al., 2010)

Huff a = d = 2 4 9.75 9.75 9.75 2496 2496 2496
this work

Hessian , a = ±1 3 9.94 9.75 9.55 2546 2496 2445
(Hisil, 2010b), (Bernstein et al., 2015)

Weierstrass a = −3 1 10.51 9.37 9.37 2690 2399 2399

Jacobi Intersection , b = 1 4 9.16 8.29 8.00 2344 2121 2049
(Hisil, 2010b)

Jacobi Quartic , a = −1/2 2 8.99 7.79 7.69 2301 1994 1970
(Hisil et al., 2009)

Twisted Edwards , a = −1 4 8.40 7.62 7.62 2152 1950 1950
(Hisil et al., 2008)

The calculation of n-bit scalar multiplication costs n doublings and n/3 mixed

additions when 1-NAF algorithm is used.

When 4-NAF is used, it costs n − 4.5 doublings, 7n/48 + 5.2 readditions,

b/48 + 0.9 mixed additions, and 0.9 non-mixed additions.

Tables are ordered by the values of the column (.8,0). For this case Huff form

saves its place in the order. But, efficiency increase of Huff curve itself is obvious,

it is in a range from 1.22x to 1.47x.

Huff curve can also get competitive with twisted Hessian and short Weierstrass

curves in single-base scalar multiplications depending on the S/M and D/M

values. Also, double-base scalar multiplication cost estimates for twisted Hessian

curves in (Bernstein et al., 2015) must be considered.

In the sequential implementations, especially in windowed scalar multiplica-

60



tions, Huff curve cannot be faster than the P3 embeddings of twisted Edwards,

Jacobi quartic, and Jacobi intersection curves. However, Huff form is very

competitive in 4-way parallel environments.

6.2.3 COMPARISON FOR 4-WAY PARALLEL SET-

TING

The most common group operations, doubling and mixed addition, are shown

in Chapter 5, are to be 4-way parallelizable for extended Huff curve. Thus, it

is tempting to compare the performance of the new formulas with the fastest

formulas developed for twisted Edwards curves for which efficient 4-way parallel

algorithms are given in (Hisil et al., 2008). The following table states the

operation counts of both twisted Edwards and extended Huff curves for 4-way

parallel setting.

Table 6.6: Comparison between twisted Edwards and extended Huff curves for
4-way parallel setting

Curve model h DBL muADD

Extended Huff, a = d = 2 4 4× (2M) 4× (2M)

Twisted Edwards, a = −1 4 4× (1M+ 1S) 4× (2M)

Both forms should give similar performance if M = S. The fastest 4-way

parallel mixed addition takes 4 × 2M in both forms. Both curve models are

expected to give similar performances when double-and-add or 1-NAF scalar

multiplication algorithm is used where M = S. Huff form is slower yet close in

performance when the window size is chosen to be greater than 1. Because, 4-way

parallel full addition on twisted Edwards curve takes 4× (2M), but Huff slows

down to 4× (3M).

There is another advantage of twisted Edwards curves. Conversion of a

projective point is slightly faster for the embedding used by twisted Edwards

61



curve. The conversion of a projective point (X : Y : T : Z) to the affine point

(X/Z, Y/Z) takes I+2M. The conversion of a projective point ((X : Z), (Y : T ))

on an extended Huff curve to the affine point (X/Z, Y/T ) takes I + 5M using

Montgomery’s simultaneous inversion technique (Hankerson et al., 2003). Since I

is many times more costly than M, the performance difference is not remarkable.

P1 × P1 embedding of twisted Edwards curves and explicit group law formulas

are given in (Bernstein & Lange, 2011) in rather a different context, without

operation counts. Therefore, it is not clear how the two compare with each other.

62



References

Bernstein, D. J., Birkner, P., Joye, M., Lange, T., & Peters, C. (2008). Twisted

Edwards curves. In AFRICACRYPT 2008 proceedings (Vol. 5023, pp. 389–

405). Springer.

Bernstein, D. J., Chuengsatiansup, C., Kohel, D., & Lange, T. (2015). Twisted

Hessian curves. In Progress in cryptology LATINCRYPT 2015 proceedings

(Vol. 9230, pp. 269–294). Springer International Publishing. Retrieved

from http://dx.doi.org/10.1007/978-3-319-22174-8 15 doi: 10.1007/

978-3-319-22174-8 15

Bernstein, D. J., & Lange, T. (2007). Faster addition and doubling on elliptic

curves. In ASIACRYPT 2007 (Vol. 4833, pp. 29–50). Springer.

Bernstein, D. J., & Lange, T. (2011). A complete set of addition laws for

incomplete Edwards curves. Journal of Number Theory , 131 (5), 858–872.

Retrieved from http://www.sciencedirect.com/science/article/pii/

S0022314X10002155 doi: http://dx.doi.org/10.1016/j.jnt.2010.06.015

Bernstein, D. J., & Lange, T. (2017). Explicit-formulas database. http://

www.hyperelliptic.org/EFD.

Bézout, E. (1779). Théorie générale des équations algébriques; par m. bézout...

de l’imprimerie de Ph.-D. Pierres, rue S. Jacques.

Billet, O., & Joye, M. (2003). The Jacobi model of an elliptic curve and

side-channel analysis. In Applied algebra, algebraic algorithms and error-

correcting codes: 15th international symposium, aaecc-15, toulouse, france,

may 12-16, 2003 proceedings (Vol. 2643, pp. 34–42). Springer Berlin

Heidelberg. Retrieved from http://dx.doi.org/10.1007/3-540-44828-4

5 doi: 10.1007/3-540-44828-4 5

Bosma, W., Cannon, J., & Playoust, C. (1997). The Magma algebra system. I.

The user language. J. Symbolic Comput., 24 (3-4), 235–265. Retrieved from

http://dx.doi.org/10.1006/jsco.1996.0125 (Computational algebra

and number theory (London, 1993)) doi: 10.1006/jsco.1996.0125

63



Brier, E., & Joye, M. (2002). Weierstraß elliptic curves and side-channel attacks.

In International workshop on public key cryptography (pp. 335–345).

Ciss, A. A., & Sow, D. (2011). On a new generalization of Huff curves. Cryptology

ePrint Archive, Report 2011/580. (http://eprint.iacr.org/2011/580)

Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., &

Vercauteren, F. (2005). Handbook of elliptic and hyperelliptic curve

cryptography. United Kingdom: Chapman and Hall/CRC.

Diffie, W., & Hellman, M. (1976). New directions in cryptography. IEEE

transactions on Information Theory , 22 (6), 644–654.

Digital signature standard (DSS) (Tech. Rep.). (2000). National Institute of

Standards and Technology (NIST).

Doche, C., Icart, T., & Kohel, D. R. (2006). Efficient scalar multiplication by

isogeny decompositions. In Public key cryptography (Vol. 3958, pp. 191–

206).

Feng, R., Nie, M., & Wu, H. (2010). Twisted jacobi intersections curves. In

TAMC (pp. 199–210).

Hankerson, D., Menezes, A. J., & Vanstone, S. A. (2003). Guide to elliptic curve

cryptography. Secaucus, NJ, USA: Springer-Verlag New York, Inc.

Hisil, H. (2010a). ecfp256: A crypto dh application for SUPERCOP. Retrieved

2017-07-20, from http://hhisil.yasar.edu.tr/

Hisil, H. (2010b). Elliptic curves, group law, and efficient computation

(Unpublished doctoral dissertation). Queensland University of Technology.

Hisil, H., Wong, K. K.-H., Carter, G., & Dawson, E. (2008). Twisted Edwards

curves revisited. In ASIACRYPT 2008 proceedings (Vol. 5350, pp. 326–343).

Springer.

Hisil, H., Wong, K. K.-H., Carter, G., & Dawson, E. (2009). Jacobi quartic curves

revisited. In ACISP 2009 proceedings (Vol. 5594, pp. 452–468). Springer.

Huff, G. B. (1948, 06). Diophantine problems in geometry and elliptic ternary

forms. Duke Mathematical Journal , 15 (2), 443–453. Retrieved from

64



http://dx.doi.org/10.1215/S0012-7094-48-01543-9 doi: 10.1215/

S0012-7094-48-01543-9

Inc., W. M. (2008). Maple 12. http://www.maplesoft.com/.

Information technology - security techniques - digital signatures with appendix -

part 3: logarithm based mechanisms (Tech. Rep.). (2006). International

Organization for Standards (ISO).

Jacobi, C. G. J. (1829). Fundamenta nova theoriae functionum ellipticarum.

auctore d. carolo gustavo iacobo iacobi.. sumtibus fratrum Borntræger.

Joye, M., & Quisquater, J. J. (2001). Hessian elliptic curves and side-channel

attacks. In CHES (Vol. 2001, pp. 402–410).

Joye, M., Tibouchi, M., & Vergnaud, D. (2010). Huff’s model for elliptic

curves. In Algorithmic number theory: 9th international symposium, ants-

ix, nancy, france, july 19-23, 2010 proceedings (Vol. 6197, pp. 234–250).

Springer Berlin Heidelberg. Retrieved from http://dx.doi.org/10.1007/

978-3-642-14518-6 20 doi: 10.1007/978-3-642-14518-6 20

Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of computation,

48 (177), 203–209.

Kohel, D. (1996). Endomorphism rings of elliptic curves over finite fields

(Unpublished doctoral dissertation). University of California, Berkley.

Menezes, A. J., Van Oorschot, P. C., & Vanstone, S. A. (1996). Handbook of

applied cryptography. CRC press.

Miller, V. S. (1985). Use of elliptic curves in cryptography. In Conference on the

theory and application of cryptographic techniques (pp. 417–426). Springer,

Berlin, Heidelberg.

Moody, D., & Shumow, D. (2001). Analogues of Velu’s formulas for isogenies

on alternate models of elliptic curves. Cryptology ePrint Archive, Report

2011/430. (http://eprint.iacr.org/2011/430)

Odlyzko, A. M. (1984). Discrete logarithms in finite fields and their cryptographic

significance. In Workshop on the theory and application of of cryptographic

65



techniques (pp. 224–314). Springer, Berlin, Heidelberg.

Pohlig, S., & Hellman, M. (1978). An improved algorithm for computing

logarithms over GF (p) and its cryptographic significance (corresp.). IEEE

Transactions on information Theory , 24 (1), 106–110.

Pollard, J. M. (1978). Monte carlo methods for index computation (mod p).

Mathematics of computation, 32 (143), 918–924.

Public key cryptography for the financial services industry, key agreement and key

transport using elliptic curve cryptography (Tech. Rep.). (2001). American

National Standards Institute (ANSI).

Public key cryptography for the financial services industry - the elliptic curve

digital signature algorithm (ECDSA) (Tech. Rep.). (2005). Accredited

Standards Committee X9, Incorporated.

Silverman, J. H. (2009). The arithmetic of elliptic curves (Vol. 106). Springer

Science & Business Media.

Smart, N. P. (1999). The discrete logarithm problem on elliptic curves of trace

one. Journal of cryptology , 12 (3), 193–196.

Smart, N. P. (2001). The hessian form of an elliptic curve. In CHES (Vol. 2162,

pp. 118–125).

Standard Specifications For Public-Key Cryptography (Tech. Rep.). (2000).

Institute of Electrical and Electronics Engineers (IEEE).

Vélu, J. (1971). Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér.

AB , 273 (A238-A241), 238–241.

Washington, L. C. (2008). Elliptic curves: number theory and cryptography. CRC

press.

Wu, H., & Feng, R. (2012). Elliptic curves in Huff’s model. Wuhan University

Journal of Natural Sciences , 17 (6), 473–480. Retrieved from http://dx

.doi.org/10.1007/s11859-012-0873-9 doi: 10.1007/s11859-012-0873-9

66



APPENDIX 1- C CODE OF SCALAR

MULTIPLICATION

This appendix provides the C code of Sliding window scalar multiplication on

extended Huff curve which is adapted from (Hisil, 2010a).

Main Loop includes the code of the main operation which calls the scalar

multiplication function and calculates the operation counts for 256-bit base

points. In Group Operations part, the C codes of sliding window scalar

multiplication, each group operation that is used in scalar multiplication on

extended Huff curve and next window functions are provided. The window size

is set to 5, because it is the optimal window size for extended Huff curve.

MAIN LOOP

1 #include <stdio.h>
2 #include "crympix.h"
3 #include "finite256.h"
4 #include "ec_fp_256h.h"
5

6 #ifdef TEST_BOX
7 #include <stdlib.h>
8 #include <math.h>
9 #include <sys/time.h>

10 #include "test.h"
11 #include "timer.h"
12 #else
13 #include <string.h>
14 #include <stdarg.h>
15 #include <math.h>
16 #endif
17

18 #define SECRETKEY_BYTES 32
19 #define PUBLICKEY_BYTES 64
20 #define SHAREDSECRET_BYTES 32
21

22 #ifdef TEST_BOX
23 static
24 #endif
25 int crypto_dh_keypair(unsigned char* pk, unsigned char *sk)
26 {
27 unsigned char zzn[32];
28 unsigned char ttn[32];
29 EC_FP_SMULBASE_256H_CACHE;
30 unsigned int i;
31

32 /*Secret key (To be replaced with a secure pseudorandom number generator).*/
33 for (i = 0; i < SECRETKEY_BYTES; i++) sk[i] = rand();
34

35 #if EC_FP_SMULBASE_SLICE == 0
36 ec_fp_smul_256h_u((uni)pk, (uni)zzn, (uni)(pk + (PUBLICKEY_BYTES/2)), (uni)ttn, (uni)sk, (uni)xn0, (uni)

yn0);
37 #else
38

39 #endif
40

41 /*Normalization.*/
42 fp_inv_256((uni)zzn, (uni)zzn);
43 fp_inv_256((uni)ttn, (uni)ttn);
44 fp_mul_256((uni)pk, (uni)pk, (uni)zzn);
45 fp_mul_256((uni)(pk + (PUBLICKEY_BYTES/2)), (uni)(pk + (PUBLICKEY_BYTES/2)), (uni)ttn);
46

47 return 0;
48 }
49

50 #ifdef TEST_BOX
51 static
52 #endif
53 int crypto_dh(unsigned char *s, const unsigned char* pk, const unsigned char *sk){
54 uni_t zzn[FP_LEN], yyn[FP_LEN], ttn[FP_LEN];
55 unsigned char result[32];
56

57 /*scalar multiplication*/
58 ec_fp_smul_256h_u((uni)result, zzn, yyn, ttn, (uni)sk, (uni)pk, (uni)(pk + (PUBLICKEY_BYTES/2)));

67



59

60 /*normalization*/
61 fp_inv_256((uni)zzn, (uni)zzn);
62 fp_mul_256((uni)result, (uni)result, (uni)zzn);
63

64 memcpy(s,result,32);
65

66 return 0;
67 }
68

69 #ifdef TEST_BOX
70 static
71 #endif
72 int copyrightclaims(){
73 return 0;
74 }
75

76 #ifdef TEST_BOX
77 static
78 #endif
79 int timingattacks(){
80 return 100;
81 }
82

83 #ifdef TEST_BOX
84 static
85 #endif
86 int patentclaims(){
87 return 0;
88 }
89 void main()
90 {
91 unsigned char pk1[PUBLICKEY_BYTES], sk1[SECRETKEY_BYTES];
92 unsigned char pk2[PUBLICKEY_BYTES], sk2[SECRETKEY_BYTES];
93 unsigned char ss1[PUBLICKEY_BYTES], ss2[SECRETKEY_BYTES];
94 long count, i;
95

96 COUNT_MLD=0;
97 COUNT_ADD=0;
98 COUNT_MUL=0;
99 COUNT_SQR=0;

100

101 printf("\nExtenden Huff (a=d=1) H (fixedbase)\n");
102

103 for(count = 0; count < 10000; count++){
104 crypto_dh_keypair(pk1, sk1);
105 crypto_dh_keypair(pk2, sk2);
106 crypto_dh(ss1, pk1, sk2);
107 crypto_dh(ss2, pk2, sk1);
108

109 for(i = 0; i < 32; i++){
110 if(ss1[i] != ss2[i]){
111 printf("Error! Secret does not match. (@ %lu)\n", count);
112 exit(1);
113 }
114 }
115 if((count%10000) == 0){
116 printf("%lu\n", count);
117 }
118 }
119

120 printf("count_COUNT_MLD %lf\n",(double)COUNT_MLD/40000);
121 printf("count_COUNT_ADD %lf\n",(double)COUNT_ADD/40000);
122 printf("count_COUNT_MUL %lf\n",(double)COUNT_MUL/40000);
123 printf("count_COUNT_SQR %lf\n",(double)COUNT_SQR/40000);
124

125

126 copyrightclaims();
127 timingattacks();
128 patentclaims();
129 }

algorithm 6.1: Codes/p1Huff/try ec fp 256h.c

68



GROUP OPERATIONS

1 /**
2 * Scalar multiplication on extended Huff curves with a = d = 1.
3 *
4 * d*Y*T*(Z^2+a*X^2)=c*X*Z*(T^2+b*Y^2).
5 *
6 **/
7 #include <stdio.h>
8 #include "crympix.h"
9 #include "finite256.h"

10 #include "ec_fp_256h.h"
11

12 #define WINDOW_SIZE_LTR 5
13

14 #define TABLE_SIZE_LTR (1 << (WINDOW_SIZE_LTR - 2))
15

16 static void ec_fp_cpy_256H_u(uni X3, uni Z3, uni Y3, uni T3, const uni X1, const uni Z1, const uni Y1, const
uni T1){

17 fp_cpy_256(X3, X1);
18 fp_cpy_256(Y3, Y1);
19 if(Z1 == NULL && T1 == NULL){
20 fp_set_1_256(Z3, 1);
21 fp_set_1_256(T3, 1);
22 }
23 else{
24 fp_cpy_256(Z3, Z1);
25 fp_cpy_256(T3, T1);
26 }
27 }
28

29 static void ec_fp_neg_256H_u(uni X3, uni Z3, uni Y3, uni T3, const uni X1, const uni Z1, const uni Y1, const
uni T1){

30 fp_sub_2_256(X3, 0, X1);
31 fp_sub_2_256(Y3, 0, Y1);
32 if(Z1 == NULL && T1 == NULL){
33 fp_set_1_256(Z3, 1);
34 fp_set_1_256(T3, 1);
35 }
36 else{
37 fp_cpy_256(Z3, Z1);
38 fp_cpy_256(T3, T1);
39 }
40 }
41

42 /*Cost: 5M + 8a.*/
43 static void ec_fp_mdbl_256H_u(uni X3, uni Z3, uni Y3, uni T3, const uni X1, const uni Y1){
44 uni_t r0[FP_LEN], r1[FP_LEN], r2[FP_LEN], r3[FP_LEN], r4[FP_LEN];
45

46 fp_mul_256(r4, X1, Y1);
47 fp_add_256(X3, X1, Y1);
48 fp_sub_256(Y3, X1, Y1);
49 fp_sub_2_256(T3, 1, r4);
50 fp_add_1_256(Z3, r4, 1);
51

52 fp_mul_256(r0, X3, T3);
53 fp_mul_256(r1, Y3, Z3);
54 fp_mul_256(r2, T3, Z3);
55 fp_mul_256(r3, X3, Y3);
56

57 fp_add_256(X3, r0, r1);
58 fp_sub_256(Y3, r0, r1);
59 fp_sub_256(Z3, r2, r3);
60 fp_add_256(T3, r2, r3);
61

62 }
63

64 /*Cost: 8M + 8a */
65 inline static void ec_fp_dbl_256H_u(uni X3, uni Z3, uni Y3, uni T3, const uni X1, const uni Z1, const uni Y1

, const uni T1){
66 uni_t r0[FP_LEN], r1[FP_LEN], r2[FP_LEN], r3[FP_LEN];
67

68 fp_mul_256(r0, X1, T1);
69 fp_mul_256(r1, Y1, Z1);
70 fp_mul_256(r2, T1, Z1);
71 fp_mul_256(r3, X1, Y1);
72

73 fp_add_256(X3, r0, r1);
74 fp_sub_256(Y3, r0, r1);
75 fp_sub_256(T3, r2, r3);
76 fp_add_256(Z3, r2, r3);
77

78 fp_mul_256(r0, X3, T3);
79 fp_mul_256(r1, Y3, Z3);
80 fp_mul_256(r2, T3, Z3);
81 fp_mul_256(r3, X3, Y3);
82

83 fp_add_256(X3, r0, r1);
84 fp_sub_256(Y3, r0, r1);
85 fp_sub_256(Z3, r2, r3);
86 fp_add_256(T3, r2, r3);
87

88 }
89

90 /*Cost: 8M + 6a. */
91 static void ec_fp_madd_256H_u(uni X3, uni Z3, uni Y3, uni T3, const uni X1, const uni Z1, const uni Y1,

const uni T1, const uni X2, const uni Y2){
92

69



93 uni_t r0[FP_LEN], r1[FP_LEN], r2[FP_LEN], r3[FP_LEN], r4[FP_LEN], r5[FP_LEN];
94

95 fp_mul_256(r0, X1, X2);//t1=A
96 fp_mul_256(r1, Z1, X2);//t3=C
97 fp_mul_256(r2, Y1, Y2);//t2=B
98 fp_mul_256(r3, T1, Y2);//t4=D
99

100 fp_add_256(r4, Z1, r0);//t5=E
101 fp_add_256(r1, X1, r1);//t6=F
102 fp_add_256(r5, T1, r2);//t1=G
103 fp_add_256(r3, Y1, r3);//t2=H
104

105 fp_sub_256(r0, Z1, r0);//t3=I
106 fp_sub_256(r2, T1, r2);//t4=J
107

108 fp_mul_256(Z3, r0, r5);
109 fp_mul_256(X3, r1, r2);
110 fp_mul_256(T3, r2, r4);
111 fp_mul_256(Y3, r3, r0);
112

113 }
114 /*Cost: 8M + 6a. */
115 static void ec_fp_msub_256H_u(uni X3, uni Z3, uni Y3, uni T3, const uni X1, const uni Z1, const uni Y1,

const uni T1, const uni X2, const uni Y2){
116

117 uni_t r0[FP_LEN], r1[FP_LEN], r2[FP_LEN], r3[FP_LEN], r4[FP_LEN], r5[FP_LEN];
118

119 fp_mul_256(r0, X1, X2);//t1=A -
120 fp_mul_256(r1, Z1, X2);//t3=C -
121 fp_mul_256(r2, Y1, Y2);//t2=B -
122 fp_mul_256(r3, T1, Y2);//t4=D -
123

124 fp_sub_256(r4, Z1, r0);//t5=E
125 fp_sub_256(r1, X1, r1);//t6=F
126 fp_sub_256(r5, T1, r2);//t1=G
127 fp_sub_256(r3, Y1, r3);//t2=H
128

129 fp_add_256(r0, Z1, r0);//t3=I
130 fp_add_256(r2, T1, r2);//t4=J
131

132 fp_mul_256(Z3, r0, r5);
133 fp_mul_256(X3, r1, r2);
134 fp_mul_256(T3, r2, r4);
135 fp_mul_256(Y3, r3, r0);
136

137 }
138

139 /*Cost: 10M+10a. */
140 static void ec_fp_add_256H_u(uni X3, uni Z3, uni Y3, uni T3, const uni X1, const uni Z1, const uni Y1, const

uni T1, const uni X2, const uni Z2, const uni Y2, const uni T2){
141

142 uni_t t1[FP_LEN], t2[FP_LEN], t3[FP_LEN], t4[FP_LEN], t5[FP_LEN], t6[FP_LEN], t7[FP_LEN], t8[FP_LEN], t9[
FP_LEN], t10[FP_LEN];

143

144 fp_add_256(t1, X2, Z2);
145 fp_add_256(t2, T2, Y2);
146 fp_mul_256(t3, X1, X2);
147 fp_mul_256(t4, Y1, Y2);
148 fp_mul_256(t5, Z1, Z2);
149 fp_mul_256(t6, T1, T2);
150

151 fp_add_256(t7, Z1, X1);
152 fp_add_256(t8, T1, Y1);
153 fp_add_256(t9, t3, t5);
154 fp_add_256(t10, t4, t6);
155

156 fp_mul_256(t1, t7, t1);
157 fp_mul_256(t2, t8, t2);
158

159 fp_sub_256(t8, t6, t4);
160 fp_add_256(t6, t6, t4);
161 fp_sub_256(t7, t5, t3);
162 fp_add_256(t5, t5, t3);
163 fp_sub_256(t1, t1, t9);
164 fp_sub_256(t2, t2, t10);
165

166 fp_mul_256(X3, t1, t8);
167 fp_mul_256(Z3, t7, t6);
168 fp_mul_256(Y3, t2, t7);
169 fp_mul_256(T3, t5, t8);
170

171 }
172

173 inline static void fp_cnt_256_u(int *bc, const uni an, const uni_t al){
174 uni_t w, i, j;
175

176 for(i = al - 1; (an[i] == 0) && (i > 0); i--);
177 w = an[i];
178 for(j = 0; w != 0; j++){
179 w >>= 1;
180 }
181 (*bc) = j + i*UNIT_LEN;
182 }
183

184 inline static void find_nextwindow_u(int *v, int *k, int *wd, const uni en, const int i){
185 int t, u2, s, b, sl, sr;
186 uni_t n;
187

70



188 b = i/UNIT_LEN;
189 sr = (i + 1) - (b*UNIT_LEN);
190 sl = UNIT_LEN - sr;
191 if(b < FP_LEN){
192 n = en[b] << sl;
193 }
194 else{
195 n = 0;
196 }
197 if((b != 0) && (sl != 0)){
198 n |= (en[b - 1] >> sr);
199 }
200 t = n >> (UNIT_LEN - 1);
201 if(((n >> (UNIT_LEN - 2)) & 0x1) == t){
202 *v = 0; *k = i; *wd = 1;
203 }
204 else{
205 if(WINDOW_SIZE_LTR < (i + 1)){
206 *wd = WINDOW_SIZE_LTR;
207 }
208 else{
209 *wd = i + 1;
210 }
211 n <<= 1;
212 n >>= (UNIT_LEN - *wd);
213 if((i - *wd + 1) < 1){
214 u2 = 0;
215 }
216 else{
217 u2 = n & 0x1;
218 }
219 *v = -(t << (*wd - 1)) + (n >> 1) + u2;
220 s = 0;
221 for(; (*v & 0x1) == 0; s++, *v = *v >> 1);
222 *k = i - (*wd - 1) + s + 1;
223 }
224 }
225

226 void ec_fp_smul_256h_u(uni X1, uni Z1, uni Y1, uni T1, const uni kn, const uni X2, const uni Y2)
227 {
228 uni_t X[TABLE_SIZE_LTR][FP_LEN], Y[TABLE_SIZE_LTR][FP_LEN], Z[TABLE_SIZE_LTR][FP_LEN], T[TABLE_SIZE_LTR][

FP_LEN];
229 int i, j, ni, k, wd;
230

231 fp_cnt_256_u(&i, kn, FP_LEN);
232 if(i == 0){
233 fp_set_1_256(X1, 0);
234 fp_set_1_256(Z1, 1);
235 fp_set_1_256(Y1, 0);
236 fp_set_1_256(T1, 1);
237 }
238 else{
239 ec_fp_mdbl_256H_u(X[0], Z[0], Y[0], T[0], X2, Y2); /* 2P. */
240 ec_fp_madd_256H_u(X[1], Z[1], Y[1], T[1], X[0], Z[0],Y[0], T[0], X2, Y2); /* 3P. */
241 for(j = 2; j < TABLE_SIZE_LTR; j++){
242 ec_fp_add_256H_u(X[j], Z[j], Y[j], T[j], X[j - 1], Z[j - 1], Y[j - 1], T[j - 1], X[0], Z[0], Y[0], T

[0]);
243 }
244 find_nextwindow_u(&ni, &k, &wd, kn, i);
245 i -= wd;
246 if(ni > 0){
247 ni >>= 1;
248 if(ni == 0){
249 ec_fp_cpy_256H_u(X1, Z1, Y1, T1, X2, NULL, Y2, NULL);
250 }
251 else{
252 ec_fp_cpy_256H_u(X1, Z1, Y1, T1, X[ni], Z[ni], Y[ni], T[ni]);
253 }
254 }
255 else{
256 ni = (-ni) >> 1;
257 if(ni == 0){
258 ec_fp_neg_256H_u(X1, Z1, Y1, T1, X2, NULL, Y2, NULL);
259 }
260 else{
261 ec_fp_neg_256H_u(X1, Z1, Y1, T1, X[ni], Z[ni], Y[ni], T[ni]);
262 }
263 }
264 for(j = k - 1; i >= 0; j--){
265 find_nextwindow_u(&ni, &k, &wd, kn, i);
266 i -= wd;
267 if(ni == 0){
268 ec_fp_dbl_256H_u(X1, Z1, Y1, T1, X1, Z1, Y1, T1); //DBL1++;
269 }
270 else{
271 for(; j > k; j--){
272 ec_fp_dbl_256H_u(X1, Z1, Y1, T1, X1, Z1, Y1, T1); //DBL2++;
273 }
274 ec_fp_dbl_256H_u(X1, Z1, Y1, T1, X1, Z1, Y1, T1); //DBL2++;
275 if(ni > 0){
276 ni >>= 1;
277 if(ni == 0){
278 ec_fp_madd_256H_u(X1, Z1, Y1, T1, X1, Z1, Y1, T1, X2, Y2); //DBL3++; ADD++;
279 }
280 else{
281 ec_fp_add_256H_u(X1, Z1, Y1, T1, X1, Z1, Y1, T1, X[ni], Z[ni], Y[ni], T[ni]); //DBL3++; ADD++;
282 }
283 }

71



284 else{
285 ni = (-ni) >> 1;
286 if(ni == 0){
287 ec_fp_msub_256H_u(X1, Z1, Y1, T1, X1, Z1, Y1, T1, X2, Y2); //ADD++;
288 }
289 else{
290 ec_fp_add_256H_u(X1, Z1, Y1, T1, X1, Z1, Y1, T1, X[ni], Z[ni], Y[ni], T[ni]); //ADD++;
291 }
292 }
293 }
294 }
295 for(; j >= 1; j--){
296 ec_fp_add_256H_u(X1, Z1, Y1, T1, X1, Z1, Y1, T1, X1, Z1, Y1, T1);
297 };
298

299 }
300 }

algorithm 6.2: Codes/p1Huff/ec fp 256h u.c

72


