

BORNOVA / İZMİR

AUG 2017

YAŞAR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MASTER THESIS

DATABASE OPTIMIZATION

AND

TUNING ON MS SQL SERVER

SUZAN ARICI

THESIS ADVISOR: ASSOC.PROF.DR. MURAT KOMESLİ

COMPUTER ENGINEERING

PRESENTATION DATE: 18.08.2017

iii

ABSTRACT

DATABASE OPTIMIZATION AND TUNING ON MS SQL SERVER

Arıcı, Suzan

MSc, Computer Engineering

Advisor: Assoc. Prof. Dr. Murat KOMESLİ

Aug, 2017

In the study of MS SQL Server query optimization, index architecture is examined to

understand query structure and execution. Query optimization is important for

database optimization because when users examine the query and try to optimize or

tune the query, they have to check all details of database to understand the reason

decrease. So when fixing problem increase query performance also increase database

performance. Some MS SQL Server features help users to find the problematic queries

and give some advices to fix them. In addition, some Dynamic Management Views,

Dynamic Management Functions and Statistics can help to see the problems on the

queries.

Key Words: MS SQL Server, query optimization, optimization, query optimization,

dynamic management views, dynamic management functions.

iv

ÖZ

MS SQL SUNUMCU ÜZERİNDE VERİTABANI

ENİYİLEŞTİRME VE AYARLAMA

Arıcı, Suzan

Yüksek Lisans, Bilgisayar Mühendisliği

Danışman: Doç.Dr. Murat KOMESLİ

Ağustos 2017

MS SQL Server sorgu iyileştirme çalışmasında, sorguların yapısını ve nasıl çalıştığını

anlayabilmek için indeks mimarisi incelenmektedir. Sorgu iyileştirme veri tabanı

iyileştirme içinde oldukça önemlidir. Kullanıcılar sorguları iyileştirme için hata

araması yaparken sorgunun veri tabanı içerisinde ulaştığı tüm detayları incelerler. Bu

yüzden sorguların yavaşlama sebebi tespit edildikten sonra sorgunun iyileşmesini

sağlamak aynı zamanda veri tabanını da iyileştirir. Bazı MS SQL Server’ın kendine

ait özelliklerini kullanmakta sorunlu olan sorguları bulmaya yardımcı olur. Aynı

zamanda bu kullanılan özellikler sorgular için yararlı tavsiyeler verebilirler. Ayrıca,

dinamik yönetim görünümleri, dinamik yönetim fonksiyonları ve istatistikler de

sorunlu sorguları inceleme ve iyileştirme konusunda yardımcıdırlar.

Anahtar Kelimeler: MS SQL Server, sorgu eniyileştirme, dinamik yönetim

görümleri, dinamik yönetim fonksiyonları.

vii

TABLE OF CONTENTS

ABSTRACT.. iii

 ÖZ .. iv

 ACKNOWLEDGEMENTS .. v

 TEXT OF OATH ... viii

TABLE OF CONTENTS ... vii

LIST OF FIGURES .. ix

SYMBOLS AND ABBREVIATIONS ... xiii

 CHAPTER ONE INTRODUCTION .. 1

1.1 INDEXES ... …2

1.1.1CLUSTERED INDEX ... 5

1.1.2NON-CLUSTERED INDEX ... 6

CHAPTER TWO MS SQL SERVER FEATURES .. 8

2.1 SQL PROFILER ... 9

2.2 DATABASE ENGINE TUNING ADVISOR .. 13

2.3 ACTIVITY MONITOR .. 18

2.4 EXECUTION PLAN .. 22

TEXT PLAN: ... 22

XML PLAN ... 23

2.4.3GRAPHICAL PLAN ... 24

CHAPTER THREE EXAMINATON OF QUERIES WITH RELATIONAL ALGEBRA .. 33

3.1 RELATIONAL ALGEBRA MAIN OPERATORS ... 36

3.2 QUERIES’ RELATIONAL ALGEBRA OPERATIONS AND QUERY TREE

REPRESENTATIONS ... 44

CHAPTER FOUR USING DYNAMIC MANAGEMENT VIEW (DMV) AND DYNAMIC

MANAGEMENT FUNCTIONS (DMF) FOR OPTIMIZATION ... 47

4.1 UNUSED INDEX ... 48

4.2 MISSING INDEX ... 49

4.3 INDEX FRAGMENTATION ... 52

4.4 EXECUTION PLAN ANALYSIS ON CACHE .. 54

viii

4.5 FINDING TOP N MOST EXPENSIVE QUERIES ... 55

4.6 THE MOST CPU CONSUMED QUERIES .. 56

4.7 DISK I/O BOTTLENECK ... 56

4.8 THE MOST EXECUTED QUERIES .. 57

4.9 QUERY OPTIMIZER .. 58

CHAPTER FIVE IMPORTANCE OF STATISTICS .. 59

5.1 DISK I/O STATISTICS ... 60

5.2 EXECUTION TIME STATISTICS ... 61

5.3 MONITORING STATISTICS ... 63

CHAPTER SIX RELATED WORKS .. 66

CHAPTER SEVEN CONCLUSIONS AND RESULTS ... 71

REFERENCES ... 73

APPENDIX 1 – DENTAL CLINIC DATABASE SQL CODE .. 76

ix

LIST OF FIGURES

Figure 1. SQL Server Balanced Tree Index Structure (www.red-gate.com/simple-

talk/sql/database-administration/brads-sure-guide-to-indexes/)............................... 3

Figure 2. B-Tree Structure (Adar, 2016). ... 4

Figure 3. With using Clustered Index, Leaf node has own data row (www.red-

gate.com/simple-talk/sql/database-administration/brads-sure-guide-to-indexes/). .. 5

Figure 4. Non-Clustered index has pointers for locate the data (www.red-gate.com/simple-

talk/sql/database-administration/brads-sure-guide-to-indexes/)............................... 7

Figure 5. SQL Profiler place. .. 10

Figure 6. Trace file options. .. 10

Figure 7. Necessary performance selection for recorded on trace file 11

Figure 8. Appearance of the Trace file.. 12

Figure 9. Appearance of Database Engine Tuning Advisor.. 13

Figure 10. Tuning Options’ Selections. .. 14

Figure 11. Recommendations Page of Database Engine Tuning Advisor. 14

Figure 12. Analyzing of Third Query. .. 15

Figure 13. The Performance Impact of Index. .. 16

Figure 14. Index recommendation for Query Four. .. 17

Figure 15. The Performance Impact of Index. .. 17

Figure 16. Display of Overview Pane (mssqldude.wordpress.com, 2011) 18

Figure 17. Display of Process Pane. ... 19

Figure 18. Selections of Processes Pane. .. 19

Figure 19. Display of Resources Waits Pane. ... 19

Figure 20. Display of Data File I/O. .. 20

Figure 21. Display of Recent Expensive Queries Pane. .. 21

Figure 22. Right Click Options of Expensive Query. ... 21

Figure 23. Edit Query Selection. ... 21

x

Figure 24. Execution Plan Selection. .. 22

Figure 25. Display of Text Plan. ... 23

Figure 26. XML Plan File. .. 23

Figure 27. Display XML Plan as a Graph. .. 24

Figure 28. Execute Query with Execution Plan Selection. .. 24

Figure 29. Execution Plan of Fourth Query. ... 26

Figure 30. Display of Icons’ Tooltips. ... 26

Figure 31. Recommended Indexes. ... 27

Figure 32. Non-clustered index applied Person.Person table. ... 28

Figure 33. Tooltips After First Index on Person.person table. .. 28

Figure 34. Non-clustered index applied Sales.Customer table. ... 29

Figure 35. Tooltips after Second Applied Index on Sales.Customer table. 29

Figure 36. Execution Plan of Fifth Query. .. 30

Figure 37. Tooltips of Operators of Query five. .. 30

Figure 38. Recommendations of Data Base Engine Tuning Advisor. 31

Figure 39. All Recommendations are Applied on The Query. .. 31

Figure 40. Tooltips of Operators. .. 32

Figure 41. Place of Relational Algebra Query in the Query Optimization (Ricardo, Urban,

2016). .. 34

Figure 42. Class Diagram of Dental Clinic Database. ... 35

Figure 43. ER Diagram of Dental Clinic Database. .. 35

Figure 44. Dental Clinic Database Diagram from MS SQL Server. 36

Figure 45. Representation of Query Result. .. 38

Figure 46. Representation of Query Result. .. 39

Figure 47. Representation of Query Result. .. 40

Figure 48. Representation of Query Result. .. 41

Figure 49. Query Tree of name,surname(age=18 and gender=F(Patient Dentist)) 42

xi

Figure 50. Query Tree of p.name,p.age,d.name,s.description((Patient Dentist

Specialty)(surname(group by surname>1(Patient)))) 42

Figure 51. Query Tree of p.Name,p.Surname,p.Age,p.Gender,a.Description((Patient

Appointment)(DentistID(SpecID=1(Dentist)))) .. 43

Figure 52. Query Tree of name,age,gender(DentistID=654321(Patient)) 43

Figure 53. Query Tree of Query Three. .. 45

Figure 54. Query Tree of Query Four. .. 45

Figure 55. Query Tree of Query Five. .. 46

Figure 56. Querying of Unused Index. ... 48

Figure 57. Querying of Unused index. .. 49

Figure 58. Missing Index Warnings on Query Execution Plan Graph. 50

Figure 59. Missing Index Querying. ... 51

Figure 60. DMV Missing Index Querying. ... 51

Figure 61. Finding Fragmented Index. .. 53

Figure 62. Fixing Fragmentation. ... 53

Figure 63. Execution Plan Analysis on Cached. ... 54

Figure 64. Most Expensive Queries. ... 55

Figure 65. CPU Consumed Queries. ... 56

Figure 66. The most I/O Perform Queries. ... 57

Figure 67. The Most Executed Queries List. .. 58

Figure 68. Optimizer Information. .. 58

Figure 69. Statistics of Person.Person Table. .. 59

Figure 70. Query Four and Query Five I/O Statistics before Index. 60

Figure 71. I/O Statistics after Index. ... 61

Figure 72. Execution Time Statistics before Index. .. 62

Figure 73. Execution Time Statistics after Index Applied. ... 63

Figure 74. Query Four and Five Without Index. ... 64

xii

Figure 75. Query Four and Five With Index. .. 65

Figure 76. Display of RelaX. ... 66

Figure 77. Display of RAT. ... 67

Figure 78. Display of MS SQL Sensor (www.paessler.com/database-monitoring). 67

Figure 79. Display of SQL Assistant on Databases

(www.softtreetech.com/sqlassist/index.htm). ... 68

Figure 80. Display of SolarWinds (www.solarwinds.com/database-performance-

analyzer). .. 69

Figure 81. Display of Free Sql Performance Monitoring Tool (www.manageengine.com/sql-

performance-monitor). .. 70

xiii

SYMBOLS AND ABBREVIATIONS

ABBREVIATIONS:

MS SQL Microsoft Structured Query Language

DMV Dynamic Management Views

DMF Dynamic Management Functions

1

CHAPTER ONE

INTRODUCTION

This study aims that to explain what query optimization is in MS SQL Server with

understandable way and it will provide information on how to use certain features of

the MS SQL Server to improve performance, how to interpret the results, and how to

improve the query.

First, it needs to know why query optimization is necessary. With right optimization,

query result can be reached quickly, but primarily, queries should be monitored and

examined to understand their needs.

Getting fast results from the query is the goal of the query optimizing. In the MS SQL

server, users can use different methods for getting better results. Using indexes can

decrease search time to bring queries’ information, and monitor queries with activity

monitor; it gives recent expensive queries’ informations, disk I/O and CPU usage so

user can interfere these queries. MS SQL profiler can create trace file for query and

then, this file is used by database engine tuning to analysis and then it gives some

recommendations if it is necessary for a given query. In addition, there is an execution

plan option on SQL server, it shows a query execution plan and gives information

about the query.

This work will be done with indexes, SQL Server own features, Dynamic Management

Views and Dynamic Management Functions and statistics. Firstly, indexes and their

architecture will be presented. So, users are expected to know what is an index? How

can SQL Server use them? Moreover, how they work in the query. Then, SQL Server

Features will be introduced and their missions, and Dynamic Management Views,

which are the same functions with these features, but they have only one difference;

they have own queries. This study has seven chapters;

Aim of the study, which MS SQL Server features will be used on this study, and

importance of the index is explained in chapter one. Chapter two examines some

importance MS SQL Server features that are MS SQL Profiler, Database Engine

2

Tuning Advisor, Activity Monitor and Execution Plan and their usage, using

AdventureWorks2014 database’s some queries are created to do performance analysis

and query optimization. To understand query execution on query optimizer, relational

algebra job need to be known, chapter three explains the relational algebra function

and query tree. Dynamic Management Views and Dynamic Management Functions

are important for monitoring performance so chapter four mentioned these two for

optimization. Statistics can be used query and performance optimization some

statistical information give important clues to users, chapter five explains these

statistics. Definitely, there are different tools that can be used with MS SQL Server to

monitor and optimize query performance, chapter six includes these related works. All

of these optimization options are used on queries that have poor performance, and

some results have been reached these optimization jobs and study result mentioned on

in chapter seven.

1.1 INDEXES

Indexes are used to read queries quickly in crowded databases. When running queries

needed to pull data from the table are used to reduce the time required. Maybe indexes

are not necessary for small databases but when working with big databases, indexes

can be lifesaving (Gözüdeli, 2014). By all means, using index cannot always increase

the performance, some usage of indexes can be wrong or unnecessary, so it reduces

query performance.

First, users have to have an idea about the way of work of index. It can be explained

through an example; assume there is a bookstore and a customer wants ‘The Phantom

of the Opera’ bookseller starts scanning all stack without any order, this is table scan,

it is not good for time and customer. If bookseller orders books with their names, when

a customer asks ‘The Phantom of the Opera’, he/she directly goes that bookshelf and

finds the book. So he/she and customer save time, it is a clustered index. However, if

a customer only asks the author name ‘Gaston Leroux- The Phantom of the Opera’

(assume there are some several books of the same name), booksellers system will not

work well against to this want. Nevertheless, if bookseller orders books with author

names, he/she will go the bookshelf that starts with ‘G’ and then he/she will find easily,

it is non-clustered index. Before index type and index architecture, users need to know

some terminology of index:

3

Seek Operation: SQL Server reaches information directly with using B-Tree structure.

It is more preferable, and faster than scan operation.

Scan Operation: It scans all data set to get information. Table scan operation is the

slowest one.

Lookup Operation: When cannot be reached information by using index, lookup

operation reach the information with the help of index and identified key value.

Actually, clearly understand to how the index works B-tree structure need to be learnt.

Therefore, at the beginning, index architecture will be trying to understand.

Index Architecture: Balanced Tree Structure (B-Tree Structure):

To understand index working system Balanced Tree structure will be examined, In

SQL Server indexes are organized into a B-tree structure. Balanced tree comprises of

root level, intermediate level and leaf level. Figure 1 shows SQL Server balanced tree

structure.

Root Level (Level 2): This level (node) keeps all information about our data. SQL

Server starts searching information from here. Also branching starts here by nature of

balanced tree structure.

Intermediate Level (Level 1) (Non-Leaf): Searching continues with intermediate

level this level may have more than one level depends on a number of records and

Figure 1. SQL Server Balanced Tree Index Structure (www.red-gate.com/simple-

talk/sql/database-administration/brads-sure-guide-to-indexes/).

4

index size (Adar, 2016). Therefore, can be said that a root level has one or more

intermediate level.

Leaf Level (Level 0): Data searching ends this level. It starts with root level and

continues with intermediate levels after eliminating it reaches the leaf level it keeps

data in different way depends on index type.

For instance; in the bookseller example, the customer wants to buy ‘Phantom of

Opera’, how bookseller finds this book with a B-Tree structure will be examined with

helping of Figure 2.

Data information searching starts with root level users compare their information with

this root’s information. Is P smaller than L, if it is users will continue their searching

with left intermediate leaf, but it is greater than L, they keep their searching with right

intermediate leaf. It is greater than L, searching moves on the right side. Therefore,

again, they compare P and O, S and W, and users see P is greater than O so they will

look right side and P is smaller than S they look left they get P, Q, R leaf nodes it keeps

related data. Their searching ends, leaf level for B-Tree. Finding data changes

according to index types.

Figure 2. B-Tree Structure (Adar, 2016).

5

Without index, SQL Server search all records without any order and checks all data

even if it finds the data against the situation of having same data it is called Table

Scan (Full Table Scan). Also, It must be known that data records (if not specified)

randomly settled on the table, this structure is called Heap Structure. In parallel with

this structure, table scan may be expensive (time-consuming) for finding a specific

data in the thousands and millions data. In addition to this situation, indexes are used

for find a data easily and save the time.

1.1.1 Clustered Index

 Clustered index is also known as physical index because of data that are physically

sorted according to index defined column. For this reason, only one clustered index

can be defined for a table. In Figure 2 shows how B-tree structure works on SQL Server,

to find data from the example, reaching data at the leaf node that point, if this node has

all information about searching data it is called clustered index. Figure 3 shows

clustered index b-tree structure.

Any changed on the one of clustered index column can cause physically reorganizing

data on the table. That cause loss of performance for big tables (Adar, 2016).

Figure 3. With using Clustered Index, Leaf node has own data row (www.red-

gate.com/simple-talk/sql/database-administration/brads-sure-guide-to-indexes/).

6

If there are any restriction on the query, clustered index used as clustered index seek.

If there are not restriction on the query, clustered index used as clustered index scan.

Creating clustered index with T-SQL:

CREATE CLUSTERED INDEX[Index_Name] ON

[DataBase_Name].[Schema_Name]

(

 [Column_Name] ASC/DESC

)

1.1.2 Non-Clustered Index

 Non-Clustered indexes are ordered by logically, it means that; opposite of the

clustered index, non-clustered index does not have all information about the data on

the leaf node; it has an information about where data is located. Therefore, non-

clustered index cannot reach data directly. Non-clustered index reaches data over the

clustered index and heap.

If non-clustered index defined on a table that has clustered index, this type of index

has key value. Key value is a reference for clustered index (Gözüdeli, 2014). These

are shown on Figure 4.

7

Figure 4. Non-Clustered index has pointers for locate the data (www.red-

gate.com/simple-talk/sql/database-administration/brads-sure-guide-to-indexes/).

Non-clustered index is fast about reaching data but it can be used with clustered index

seek or clustered index scan so its performance is lower than clustered index

(Gözüdeli, 2014).

Creating non-clustered index with T-SQL:

CREATE NONCLUSTERED INDEX[Index_Name] ON

[DataBase_Name].[Schema_Name]

(

[Column_Name] ASC/DESC

)

8

CHAPTER TWO

MS SQL SERVER FEATURES

 MS SQL Server has some own features; users can control and check their SQL query

performances. In this study, SQL Profiler, Database Engine Tuning Advisor, Activity

Monitor and Execution Plan will be examined. With all of these features, queries can

be followed and user can find necessity of query.

First, it needs to known that AdventureWorks2014 Database of MS SQL Server will

be used and following queries related with this database.

Queries and Meanings

Queries are:

1. select *

 from person.Person

This query result shows all information on Person.Person table.

2. select *

 from sales.Customer

This query result shows all information on Sales.Customer table.

3. Select StoreID

 From Sales.Customer

 Where StoreID Is Not Null and AccountNumber like '%17'

9

This query result shows StoreID which is not null and include 17 in AccountNumber

from Sales.Customer with condition of Where

4. Select PersonID,Title,FirstName,LastName

 From Sales.Customer As s Inner Join

 Person.Person As p On p.BusinessEntityID = s.PersonID

 Where PersonID Is Not Null

This query will bring PersonId column from Sales.Customer table and Title, FirstName

and LastName of customers from Person.Person table so it is used Inner Join to

associate two different table and there is a Where condition and it does not want empty

PersonId.

5. Select StoreID, FirstName,MiddleName,LastName

From Sales.Customer as sc join Person.Person as pp on

sc.PersonID=pp.BusinessEntityID

Where StoreID Is Not Null and AccountNumber like '%17' and StoreID<1000

This query result shows StoreID from Sales.Customer table, FirstName, MiddleName,

LastName from Person.Person table so it is used Join to associate two different table

and there is a Where condition and it does not want empty StoreID and will be smaller

than 1000, in addition AccountNumber will include 17.

2.1 SQL PROFILER

 SQL Profiler is the one of the SQL Server’s tools. Profiler monitor events on the SQL

Server. It helps to performance monitoring. Users can analyze the SQL Server

performance and statistics (Gözüdeli, 2014). With SQL Profiler, they can analyze

query plans of most useful queries, and find solution for performance optimization

(Sahtiyan, 2011b).

Showing Usage of SQL Profiler with Pictures

First, SQL Server Profiler should be selected from Tools selection (Figure 5):

10

Figure 5. SQL Profiler place.

Then, user has to choose server after choosing server should be given a name for trace

file (Figure 6):

Figure 6. Trace file options.

It can be selected necessary units from Event Selection part, then click run button

(Figure 7):

11

Figure 7. Necessary performance selection for recorded on trace file

After clicking run button trace file begins to record data, so to get good results trace

file should run and record data at least one day. Some queries will be used for trace

file:

1. Select *

 From person.Person

2. Select *

From sales.Customer

3. Select PersonID,Title,FirstName,LastName

 From Sales.Customer As sc

 Inner Join

 Person.Person As pp On pp.BusinessEntityID = sc.PersonID

 Where PersonID Is Not Null

12

4. Select StoreID

 From Sales.Customer

 Where StoreID Is Not Null and AccountNumber like '%17'

In addition, view of trace file (Figure 8):

Figure 8. Appearance of the Trace file.

EventClass shows the type of query,

TextData shows the query,

Duration shows the cost of query execution,

SPID shows the users code (Gözüdeli, 2014).

Users can find best query for same result with comparing their durations. To stop trace

file, user must click red square button and save as trace file. Because Database Engine

Tuning Advisor tool uses this file for analyze queries.

13

2.2 DATABASE ENGINE TUNING ADVISOR

 The other SQL Server performance-monitoring tool is Database Engine Tuning

Advisor. To use the tool users need to create trace file like created on SQL Profiler or

it can save the query as a trace file. Nevertheless, using SQL Profiler trace file is most

preferable because it records all events when users use database/server for long time

by this way, users can get better recommendations from Database Engine Tuning

Advisor. These recommendations can be; index recommendations, view

recommendations or partitioning recommendations.

Database Engine Tuning Advisor placed at tool button, to use this tool (Figure 9):

 First users should give a name their session,

 Select workload type and select trace file,

 Select Database for workload,

 Choosing Database for tuning,

 Users can make the necessary adjustment from Tuning Options part (Figure 10),

 Finally, click Start Analysis button to start process.

Figure 9. Appearance of Database Engine Tuning Advisor.

14

Figure 10. Tuning Options’ Selections.

After analyzing Database Engine Tuning Advisor displays recommendations page,

recommended indexes and estimated improvement can be seen in this page, also users

can apply directly these recommended indexes (Figure 11):

Figure 11. Recommendations Page of Database Engine Tuning Advisor.

For all trace file, Database Engine Tuning Advisor gives different indexes

recommendations with estimated improvement. It should not forget, it is just estimate

not guarantee improvement.

15

Applying all recommended indexes without control is not useful. Therefore, some

examples will be shown about improving performance. Created two different trace

files which are recorded different queries, it will be shown and explained with pictures,

recommended indexes how effect our performance.

First recommended indexes, for AdventureWorksTrace (Figure5) file which is

previously created on SQL Profiler. Moreover, Tuning Advisor gives some index

recommendations for this file with 46% estimated improvement. However,

AdventureWorksTrace file recorded all four queries that are mentioned on Showing

Usage of SQL Profiler with Pictures part. When Database Engine Tuning Advisor

analyzed this trace file, it gives three different index recommendation for third and

fourth queries. If this recommended indexes applied on these two queries, it may affect

performance negatively because sometime using index can create undesirable results.

Therefore, users have to be sure about the reliability of the result. For this reason, two

different trace files created that are third and fourth queries separated and then these

trace files analyzed with the Database Engine Tuning Advisor (Figure 12 and Figure

14):

Figure 12. Analyzing of Third Query.

After analyzing third query’s trace file Database Engine Tuning Advisor gave two

indexes recommendation with 86% estimated performance improvement. After

applied recommended indexes, users can control query performance from execution

plan. With the help of execution plan’s Tooltip that is a yellow box, it shows up when

the mouse is over the command. Execution Plan and Tooltip will be discussed in detail

16

Execution Plan section. For now to measure of improvement, it will be compared

Estimated Subtree Cost values in the tooltip (Figure 13).

Figure 13. The Performance Impact of Index.

As shown in the Figure 13; if recommended indexes are not applied on third query,

this query performance will be 3,27966. First index applied on person.person table and

it increased performance 3,27966 to 0,534474. Then second index index applied on

sales.customer table to see how it will affect performance, and it’s result is satisfying

as first index, it increase query performance 0,534474 to 0,23917. So, it can be said

that recommended indexes are useful for this query, as a result of Database Engine

Tuning Advisor recommendation. After this query examination, fourth query

improvement can be examined with same steps; primarily create trace file for fourth

query then analyze this file with Database Engine Tuning Advisor and get some index

recommendations (Figure 14).

17

Figure 14. Index recommendation for Query Four.

Estimated improvement of query performance is 61%, so if recommended index is

applied on the query, performance will increase 61%. After applied index, it will be

seen the difference of performance between two tooltips of query four (Figure 15).

Figure 15. The Performance Impact of Index.

As shown in the Figure 15, performance of fourth query increase 0,113973 to

0,0502692. Therefore, it can be said that performance improvement works have a

positive effect.

18

2.3 ACTIVITY MONITOR

The SQL Server Activity Monitor is a tool in SQL Server that displays information

about SQL Server processes and their effect on SQL Server performance (Petrovic,

2014b). Activity Monitor runs queries on the monitored instance to obtain information

for the Activity Monitor display panes. When the refresh interval is set to less than 10

seconds, the time that is used to run these queries can affect server performance.

Activity monitor consists of some panes: Overview, Processes, Resources Waits, Data

file I/O and Recent Expensive Queries. The Recent Expensive Queries pane will be

the focal point for this study.

i. The Overview Pane

This pane contains four graphs (Figure 16):

 Processor Time: The percentage of elapsed time that the processor spends to

execute non-idle threads for the instance across all CPUs.

 Waiting Tasks: The number of tasks that are waiting for processor, I/O, or

memory resources.

 Database I/O: Information on data and log files for system and user databases.

 Batch Request/sec: The number of SQL Server batches that are received by the

instance.

Figure 16. Display of Overview Pane (mssqldude.wordpress.com, 2011)

With the help of these graphs, Users can make the necessary arrangements.

ii. The Processes Pane

The Processes Pane shows the information about the currently running processes on

the SQL databases, who runs them, and from which application (Figure 17) (Petrovicb,

2014).

19

Figure 17. Display of Process Pane.

Figure 17 shows the all the active users and running processes on the SQL Server.

Users can right click any of the Session IDs that users think are problematic and can

run a SQL Server Profiler Trace to capture all its activities; users can also see

the Session Details or can even kill a process (Figure 18) (Mehta, 2010).

Figure 18. Selections of Processes Pane.

iii. The Resources Waits

This Activity Monitor pane shows the information about waits for resources (Figure

19).

Figure 19. Display of Resources Waits Pane.

 Wait Category: Wait type of Process Pane,

 Wait Time (ms/sec): The time all waiting tasks are waiting for one or more

resources,

 Recent Wait Time (ms/sec): The average time all waiting tasks are waiting for

one or more resources,

20

 Average Waiter Count: Is calculated for a typical point in time in the last

sample interval and represents the number of tasks waiting for one or more

resources,

 Cumulative Wait Time (sec): The total time waiting tasks have waited for one

or more resources since the last SQL Server restart, or DBCC SQLPERF last

execution (Petrovic, 2014b).

iv. The Data File I/O Pane

Contains information about the database files, all database files are listed (Figure 20).

Figure 20. Display of Data File I/O.

 MB/sec Read: Shows recent read activity,

 MB/sec Written: Shows recent write activity,

 Response Time (ms): Average response time for recent read-and-write activity.

v. The Recent Expensive Queries Pane

This pane is more useful to find the most expensive queries that means these queries

consume much more time than others do. For executed queries, users get list the list

shows expensive queries executed in the last 30 seconds. Users can control and edit

these queries. In addition, Execution Plan can be displayed and to see options right

click can be used (Figure 21 and Figure 22):

21

Figure 21. Display of Recent Expensive Queries Pane.

Figure 22. Right Click Options of Expensive Query.

Query can be edited directly; different query can written for same reseult or can be

idenfied an index for this query (Figure 23).

Figure 23. Edit Query Selection.

Or users can reach execution plan of this expensive query; they can see cost of query

and get more information using with tooltips (Figure 24).

22

Figure 24. Execution Plan Selection.

2.4 EXECUTION PLAN

Execution Plan is the most useful feature of SQL Server to measure, monitor and

optimize expensive queries. Execution plan is a graph that shows path of the query

execution. To read it, users should start reading right to left and top to bottom.

Especially it can be used to find query performance problem, firstly problematic

queries found then their Execution Plan examined to find problem. Execution plans

stored at cache and if same query runs again this plan is used. Some changings effects

execution plan so there is some differences will be occurred on execution plan. This

changings can be (Adar, 2016):

 Table changing,

 DROP or CREATE index command,

 Changing of STATISTICS,

 Calling sp_recompile function,

 Using DDL and DML together.

Execution Plan has three different type; Graphical Plan, Text Plan and XML Plan. In

this study graphical plan is examined deeply.

 Text Plan:

Reading text plan of executed query is hard and complex for users. To use text form

of execution plan users should execute; SET STATISTICS PROFILE ON command

23

for display Actual Execution Text Plan and SET SHOWPLAN_ALL ON command

for Estimated Execution Text Plan (Figure 25).

Figure 25. Display of Text Plan.

 XML Plan

Reading XML form of execution plan is easier than Text plan form. Users should

display XML form as a graph. To use xml form of execution plan users should execute;

SET STATISTICS XML ON command for display Actual XML Plan and SET

SHOWPLAN_XML ON command for Estimated Execution XML Plan (Figure 26 and

Figure 27).

Figure 26. XML Plan File.

24

Figure 27. Display XML Plan as a Graph.

2.4.3 Graphical Plan

Graphical Plan is the most useful and understandable Execution Plan form. Because

graphs show all necessary information about query operators and their tooltips that

have all information about operators. With using this information, users can find the

problem of their query. Query plan graphs can be displayed as Estimated Execution

Plan or Actual Execution Plan. Estimated execution plan represent an estimated query

plan that created from query optimizer before query execution. Nevertheless, actual

execution plan represent real plan that occurs after executed query.

Users can select execution plan form from the top of SQL Server than execute the

query (Figure 28):

Figure 28. Execute Query with Execution Plan Selection.

25

As is seen in the Figure 28, query execute with execution plan selection, SQL Server

displays graphical plan of query execution plan. With using this plan, users can check

costs of operators and which index operations (index seek or index scan) are used for

finding result. If there is index scan or table scan, it means it should be started here to

optimize this query. Because, scanning all data to find the data that the query wants, is

a time wasting and performance killer. So, seek operator is the preferable for quick

result and performance improving.

The other advantage is tooltips, each icon on the graphical plan has an own tooltip. It

can be said that these tooltips are lifesaving, because they have a lot of information

about icons if users read right this given informations they can make an improvement

on expensive queries. Two different queries will be used to show different tooltip

contents with using execution plan tooltips.

As stated from Activity Monitor part, users can find expensive queries that means these

queries consume much more time to execute than others, so Recent Expensive Queries

Pane gives users them. After identifying expensive query users should examine their

execution plan graph to find any problematic look.

Initially, fourth query will be examined in Figure 29; graph shows clustered index scan

is used for bring result and server spends 87% of time. At first appearance, users think

that index should be used for this query but before apply index, tooltips must be

checked first. To make sure how intervention will be applied on query. Thus they have

to know the meanings of expressions of tooltips (Figure 30).

26

Figure 29. Execution Plan of Fourth Query.

Figure 30. Display of Icons’ Tooltips.

Some important expressions can be explained;

 Physical Operation shows the actual operation when the query is executed.

 Logical Operation shows the estimated operation when the query is executed.

 Estimated Operator Cost shows the all-time that spends on this operation.

 Estimated Subtree Cost shows the total time the SQL Server spent.

27

 Estimated Number of Rows shows The number of affected records.

 Ordered shows if the query has order by operation TRUE, has not FALSE. It

should not be used if query is not too complex.

 Node ID transforms the execution plan into a tree structure and displays the

level of the corresponding node.

 Index Scan means that all the data is read line by line.

 Index Seek means that an index that is clustered or non-clustered is detected

and only the desired data is reached (Adar, 2016).

As stated previous Database Engine Tuning Advisor part, estimated subtree cost as a

measure of improvement. In Figure 29 the query operation is Clustered Index Scan,

effected rows are 19972 and Estimated Subtree Cost is 2,84673 to improve this query;

query operation should be index seek, effected rows should be decreased and

Estimated Subtree Cost has a lower value.

If users cannot decide which index will apply on the query, they can use Database

Engine Tuning Advisor to get some recommendation like this query. After applying

recommended indexes and it observed in the previous Database Engine Tuning

Advisor section that improvement of performance with using SELECT operator

tooltips to see all improvement. However, in this section it will be observed how

indexes effect other index scan operators (Figure 31).

Figure 31. Recommended Indexes.

The first intervention for Person.Person table because its cost has higher value, so users

can apply index on this table like Figure 31. After applying non-clustered index on

Person.Person table (Figure 32):

28

Figure 32. Non-clustered index applied Person.Person table.

Cost is decreased by using index, person.person table does index scan again but

tooltips should be examined before. And there is a new complication on sales.customer

table as is seen, using index increase its cost, so this table needs an another index. Can

be looked at the Figure 33 to understand difference of tooltips:

Figure 33. Tooltips After First Index on Person.person table.

There is not difference on clustered index scan operator. However, in index scan

operator estimated subtree cost has a huge difference. It can be said that second index

can be applied on sales.customer table (Figure 34).

29

Figure 34. Non-clustered index applied Sales.Customer table.

After applying non-clustered index on sales.customer table person.person table does

index scan with 42% cost. But, in sales.customer table does index seek with 20% cost.

With this schema on Figure 34 users may think these indexes are not useful for

improvement but if they check tooltips; they will see the difference and improvement

of performance.

Figure 35. Tooltips after Second Applied Index on Sales.Customer table.

Both two indexes applied on query and there is really big difference about performance.

So it can be said that the query performance is improved, person.person table estimated

30

subtree cost was 2,84673 now 0,100807 and sales.customer table cost was 0,113973

now 0,0487573.

Fifth query examined with same way (Figure 36 and Figure 37):

Figure 36. Execution Plan of Fifth Query.

Figure 37. Tooltips of Operators of Query five.

31

Figure 38. Recommendations of Data Base Engine Tuning Advisor.

For this query estimated subtree costs do not have very high value but yet Database

Engine Tuning Advisor is used to see recommended index and improvement (Figure

38). Database Engine Tuning Advisor recommendations shown in the Figure 38. Three

different statistics are recommended for improvement of performance on

sales.customer table that means statistics also effect query performance so all

recommendations applied on this query (Figure 39).

Figure 39. All Recommendations are Applied on The Query.

32

Figure 40. Tooltips of Operators.

In the new execution plan there are two index seek with 5% and 95% costs. Users need

to examine tooltips to measure performance changing (Figure 40). After applying all

recommended command, the difference can be seen between Figure 37 and Figure 40;

person.person table estimated subtree cost was 0,116159 now 0,100049 and

sales.customer table cost was 0,113973 now 0,0047641 and with index seek on

sales.customer table effected row numbers decreased 19820 to 674. At the result of

this example, it can be said that query performance is improved.

33

CHAPTER THREE

EXAMINATON OF QUERIES WITH RELATIONAL ALGEBRA

Relational algebra is the basis of the SQL to understand query execution steps it must

to known. Queries in relational algebra are applied to relation instances, result of a

query is again a relation instance. It is useful for query execution it describes queries

in the relational database. It can said relational algebra is a mathematical expression

of query.

Relational algebra has operators that describes queries and DBMS uses these

expressions in query optimizing (Figure 41).

When any query comes to SQL Server to execute, some processes are passed to get

result. These steps are;

 First SQL Server parse the query that means it checks syntax of query.

 Than after validation of query (assuming the query is valid) that means verifies

objects referred to are database objects and requested operations are valid, it

translate query into a relational algebra to use it in query optimization process.

 Relational algebra in SQL Server likes logical query tree and the tree occurs

with logical operators of relational algebra.

 Recompose relational algebra operations to find most useful query plan.

 The next step is to choose a plan that is less costly, estimate the cost of query

with using relational algebra operations and the Query Optimizer creates the

optimal execution plan for the query.

34

Figure 41. Place of Relational Algebra Query in the Query Optimization (Ricardo,

Urban, 2016).

Therefore, Relational Algebra is important to understand and optimize the query in

relational database. Also, designing the tables in the database correctly is important in

terms of query performance. To understand relational algebra simply will be created a

new simple relational database and will be some query executions with relational

algebra operators and then all query trees and algebraically expressions of queries

(Query one, two, three, four and five) that used previous chapter will be shown.

The example database name is Dental Clinic. Class diagram and ER diagram of

database are shown in Figure 42 and Figure 43:

35

Figure 42. Class Diagram of Dental Clinic Database.

Figure 43. ER Diagram of Dental Clinic Database.

Additionally, a diagram can be created with using MS SQL Server (Figure 44).

36

Figure 44. Dental Clinic Database Diagram from MS SQL Server.

As seen in Figure 44, database has dentist, patient, specialty, prescription,

appointment, paymentoftreatment, medication, and invoice tables. To understand

relational algebra operators these tables will be used. Before do some example the

operations of relational algebra can be defined.

3.1 RELATIONAL ALGEBRA MAIN OPERATORS

a. SELECT Operation :

It fetches all the information (subsets) on the table or just the desired part from relation.

This operation result can be the input for another relational algebra operation

(Ramakrishnan, Gehrke).

b. PROJECT Operation :

Projection operation deletes attributes that are not in projection list. Duplicate rows are

removed from result because relations are sets. So, it fetches certain columns on the

selection operation.

37

c. CARTESIAN PRODUCT Operation :

Each row of table 1 is paired each row of table 2. Result schema has all information of

relational tables of table 1 and table 2.

d. UNION Operation :

Returns all the tuples from two different relational tables. The two relations must be

union compatible.

e. DIFERENCE Operations :

For two relational tables to be applicable tables must have the same arity and Attribute

domains must be compatible.

f. RENAME Operation ρ :

Returns an identical result to R except that in all tuples attribute

A is renamed to B (McBrien, 2010). It used to rename the table after Cartesian product

operation or join operations.

g. INTERSECTION Operation :

Fetches common tuples between two relational tables. Tables must be compatible.

h. JOIN Operation :

Returns tuples from the Cartesian product where common attributes between relational

tables have the same values and removes duplicated columns (McBien, 2010). When

more than one table information is available, a single table can be presented it like one

table.

All SQL queries can be shown as relational expressions. It can be explained with some

examples:

 List all 18 years old and female patients Name and Surname which are patient

of Dr.O’Sullivan. Figure 45 represents the result of query.

SQL:

Select p.Name, p.Surname

From Patient p join Dentist d on p.DentistID=d.DentistID

Where p.Age=18 and p.Gender='F'

38

Relational Algebra:

name,surname(age=18 and gender=F(Patient Dentist))

Figure 45. Representation of Query Result.

 List all patients whom are have same Surname and their ages, their doctors’

name and specialties. Figure 46 represents the result of query.

SQL:

Select p.Name,p.age,d.Name, s.description

From patient p inner join Dentist d on p.DentistID=d.DentistID inner join

Specialty s on s.SpecID=d.SpecID

Where p.surname in (SELECT Surname

 FROM patient

 GROUP BY Surname

 HAVING

 COUNT(Surname) > 1)

 Relational Algebra:

p.name,p.age,d.name,s.description((Patient Dentist

Specialty)(surname(group by surname>1(Patient))))

39

Figure 46. Representation of Query Result.

 List all Orthodontics patient and their treatment. Figure 47 represents the result

of query.

SQL:

Select p.Name,p.Surname,p.Age,p.Gender,a.description

From patient p join Appointment a on p.SSN=a.SSn

Where a.DentistID in (Select DentistID

 From Dentist

 Where SpecID='1')

Relational Algebra:

p.Name,p.Surname,p.Age,p.Gender,a.Description((Patient

Appointment)(DentistID(SpecID=1(Dentist))))

40

Figure 47. Representation of Query Result.

 List Dr. Gru Frederick’s patients’ name, gender and ages. Figure 48 represents

the result of query.

SQL:

Select Name,Age,Gender

From patient

Where DentistID = '654321'

Relational Algebra:

name,age,gender(DentistID=654321(Patient))

41

Figure 48. Representation of Query Result.

The simple database and simple queries are created to understand how operation

works. Talked about relational algebra place in query optimization. Query tree of

queries of Dental Clinic Database (Figure 49, Figure 50, Figure 51 and Figure 52) will

be created to show how tree will be created. The reason for the creation of the query

tree is to make it easier to understand how the relational algebra is constructed. Query

Tree occurs with leaf nodes that are relations. Reading the expressions begin bottom

and ends root node (top).

42

Figure 49. Query Tree of name,surname(age=18 and gender=F(Patient Dentist))

 Figure 50. Query Tree of p.name,p.age,d.name,s.description((Patient Dentist

Specialty)(surname(group by surname>1(Patient))))

Name,Surname

Age=18

Gender=F

p.DentistI=d.DentistID

Patient Dentist

43

Figure 51. Query Tree of p.Name,p.Surname,p.Age,p.Gender,a.Description(

(Patient Appointment)(DentistID(SpecID=1(Dentist))))

Figure 52. Query Tree of name, age, gender(DentistID=654321(Patient))

p.Name,p.Surname,p.Age,p.Gender,a

.Description

a.SSN=p.SSN

Appointment Patient

Dentist

specID=1

dentistID

name,age,gender

dentistID=6

54321

Patient

44

3.2 QUERIES’ RELATIONAL ALGEBRA OPERATIONS AND

QUERY TREE REPRESENTATIONS

These study’s queries will be examined as relational algebra operations and their query

tree representations.

1. SQL:

Select *

 From person.Person

 Relational Algebra:

 (Person.person)

2. SQL:

Select *

 From sales.Customer

 Relational Algebra:

 (sales.customer)

3. SQL:

Select StoreID

 From Sales.Customer

 Where StoreID Is Not Null and AccountNumber like '%17'

 Relational Algebra:

 StoreID(StoreID Is Not Null AND AccountNumber

like ’%17’(sales.customer))

45

Figure 53. Query Tree of Query Three.

4. SQL:

Select PersonID,Title,FirstName,LastName

 From Sales.Customer As sc Inner Join

 Person.Person As pp On pp.BusinessEntityID = sc.PersonID

 Where PersonID Is Not Null

 Relational Algebra:

 personID,Title,FirstName,LastName(personID Is Not Null (sales.customer

|X| Person.Person))

Figure 54. Query Tree of Query Four.

 StoreID

StoreID Not

Null

AccountNumbe

r

Like %17

Sales.Customer

 personID,

Title,FirstName,LastName

personID Not Null

Person.Person
Sales.Customer

|X| BusinessEntityID =

PersonID

46

5. SQL:

Select StoreID, FirstName,MiddleName,LastName

From Sales.Customer as sc join Person.Person as pp on

sc.PersonID=pp.BusinessEntityID

Where StoreID Is Not Null and AccountNumber like '%17' and

StoreID<1000

Relational Algebra:

 StoreID,FirstName,MiddleName,LastName(StoreID Is Not Null AND

AccountNumber like ’%17’ AND StoreID < 1000(sales.customer |X| Person.Person))

Figure 55. Query Tree of Query Five.

StoreID, FirstName, MiddleName,

LastName

 StoreID Not Null

Person.Person Sales.Customer

|X| BusinessEntityID =
PersonID

AccountNumber Like

%17

StoreID<1000

47

CHAPTER FOUR

USING DYNAMIC MANAGEMENT VIEW (DMV) AND DYNAMIC

MANAGEMENT FUNCTIONS (DMF) FOR OPTIMIZATION

Dynamic management views and functions return server state information that can be

used to monitor the health of a server instance, diagnose problems, and tune

performance. With using DMV and DMFs, users can scan all necessary information

to manage the database. DMV has querying structure, DMF returns table with using

parameter. Users can find useful information with using DMV and DMF like missing

index, most expensive index, least used index, most expensive queries, and most used

queries. DMV has spell dictionary, all DMVs are drawn from system table and this

system table shows on our DMV as a sys.dm_ and after this notation db_, exec_, io_,

os_, are followed. They refer groups of what users looking for. Mostly sys.dm_db_

and sys.dm_exec_ DMVs will be used in this study.

sys.dm_db_: It quotes chapter and verse about database and index.

sys.dm_exec_: They inform directly or indirectly about the relevant elements by the

execution of user codes (Acungil, 2016).

There will be shown and explained some useful DMV and DMFs to optimize queries.

Users can find slow queries, running queries, missing index and execution plan of

queries, fragmentation of index, most CPU consuming queries and most I/O performed

queries. After finding and fixing all of these problems, the query performance will be

probably improved.

As stated previously, index and their importance for query performance previous

chapter, let’s remember how index were used; profiler can be used to trace query or

activity monitor can be used to find expensive queries and users can directly use

database engine tuning administer on query to get recommendation and apply directly

or examine recommended indexes. When users do some DML operation on queries it

effects index and add or drop operations may effect query performance so users need

to control index, which are unused, missing, or there is any fragmentation on index.

48

So, to control these query problems DMV and DMF querying can be used.

4.1 UNUSED INDEX

Finding unused index increases the performance because all deletion and addition

operations also effects index. For this reason, these indexes should be controlled

periodically. To find unused or rarely used index users can run

sys.dm_db_index_usage_stats DMV.

With this query, users can get more information about our database’s indexes

situations. After running this query, users will get some information columns and rows

about user seeks, user scans and user updates (Figure 56).

Figure 56. Querying of Unused Index.

With using this output of query, users can control last index usage information.

However, most important one is UserUpdates, if column has very high value and index

did not use, users must do some operation on this index, because this situation can

cause of low performance.

It could get similar result with using different DMV querying (Figure 57). With using

this querying, users can get name of unused index. Using these information users can

eliminate some of unused indexes.

49

Figure 57. Querying of Unused index.

4.2 MISSING INDEX

Creating index is very important to database and its performance because it can be said

that index is a shortcut of reaching query results. If index is created correctly, it will

be work fast. Previously talked about query execution previous chapter when users run

the query, optimizer will try to find short and fast way to bring the result and it does

this with indexes. So, when optimizer try to find short and fast way to query and there

is no index to use it will identify index to speed up to performance, and users see this

recommended index as a missing index on our screen. It can be also seen this warning

on query execution plan graph (Figure 58). Finding and applying missing index can

increase the query performance of course it can be checked before apply permanently

with wrong usage it will effect negatively the performance.

50

DMV and DMF can be used to identify missing indexes. There are three DMV, one

DMF.

 sys.dm_db_missing_index_details: This DMV shows which chosen index

will be use on which table and column by optimizer.

 sys.dm_db_missing_index_group_stats: This DMV shows summary

information of groups of missing index.

 sys.dm_db_missing_index_groups: This DMV is a kind of bridge between

sys.dm_db_missing_index_details and

sys.dm_db_missing_index_group_stats. These two DMVs create a meaningful

whole with this DMV.

 sys.dm_db_missing_index_columns: a DMF that accepts an index_handle

parameter and returns a table providing details of columns that would comprise

the

suggested missing index (Davidson & Ford, 2010). It shows information about

database table columns that are missing index, excluding spatial indexes.

Figure 58. Missing Index Warnings on Query Execution Plan Graph.

51

Figure 59. Missing Index Querying.

Figure 60. DMV Missing Index Querying.

Finding missing index with DMV and DMF helps (Figure 59 and Figure 60). Total

cost column shows the cost of missing index, Table Name column shows the table that

needs to be applied to the index, equality and inequality columns shows key columns

of index, included column shows the column that needs to adding to the index, last

user seek and scan column the last time that seek and scan operations might have used

52

the index., average total user cost column shows average cost saving for the queries

that could have been

helped by the index in the group (Davidson & Ford, 2010), index advantage total

benefit of recommended index. To optimize query performance users should check

periodically missing index and their effects.

4.3 INDEX FRAGMENTATION

Index fragmentation is a serious performance problem. When index data deleted,

inserted or updated index fragmentation can occur, when data is deleted gaps occur in

data pages or updated or added data will fill the page and it effects logical order and

physical order matching. All this operation directly effects disk I/O because when

query wants reach the data it should dispose of time much more than expected so it

effects performance negative way. To fix this user should specify the rate of

fragmentation. To find the rate, users will use sys.dm_db_index_phsical_stats DMF.

After detecting fragmentation, they have two options; Reorganize and Rebuild

operations.

Rebuild operation is dropping the index and creating again. With dropping operation,

fragmented index is completely removed. Reorganize operation is reorganizing the

index pages that means reordering clustered or nonclustered index’s leaf level pages.

To determine which operation will be apply on index users should see fragmentation

rate if fragmentation rate is more than 30% Rebuild operation must be used (Figure

61).

53

Figure 61. Finding Fragmented Index.

Identifying and fixing one of the fragmented index from Figure 61. First fragmented

index that has 87% fragmentation rate will be fixed. This index fragmentation rate is

greater than 30% so users need to apply rebuild operation (Figure 62).

ALTER INDEX [IX_Person_LastName_FirstName_MiddleName]

ON [Person].[Person] REBUILD WITH (ONLINE = ON)

Figure 62. Fixing Fragmentation.

54

As is seen, first index fragmentation is fixed with rebuild operation. To apply

Reorganize one of the fragmented index that is smaller than 30% users should use this

query:

ALTER INDEX [AK_Product_Name]

ON [Production].[Product] REORGANIZE

After applied this operation users should create new index on this table and these

columns.

4.4 EXECUTION PLAN ANALYSIS ON CACHE

As stated chapter 2 that before query execution, SQL Server create estimated execution

plan estimates which index or procedure will be used for this query and this execution

plan is saved on cached. If the query is executed again, this plan is used for this and its

purpose is performance saving. However, if there is some difference in index or

procedure SQL Server’s used execution plan will be wrong it effects performance

negative way. So, this execution plans on the cached should be checked and it can be

done with these sys.dm_db_cached_plans DMV, sys.dm_exec_sql_text,

sys.dm_exec_query_plan DMFs (Figure 63). Plan Usage is number of execution of

execution plan. Users can control the execution plan when they do any changes on

index or procedure.

Figure 63. Execution Plan Analysis on Cached.

55

4.5 FINDING TOP N MOST EXPENSIVE QUERIES

Expensive queries mean SQL Server spends more time to execute these queries. Users

can reach same expensive queries with using Activity monitor section. Now

sys.dm_exec_query_stats DMV and sys.dm_exec_sql_text and

sys.dm_exec_query_plan DMFs will be used to find and interfere the queries (Figure

64).

Figure 64. Most Expensive Queries.

Total duration column shows total execution time, CPU% column shows time that was

spent to execute. With using these information users can detect most expensive queries

and examine these queries to decrease execution times and increase queries’

performance.

56

4.6 THE MOST CPU CONSUMED QUERIES

CPU is the most important system resource for SQL Server. When CPU spend more

time to one query execution, server performance will be effected badly. For this reason,

users need to control queries, which are consume CPU time more than expected. To

identify these queries sys.dm_exec_query_stats DMV, sys.dm_exec_sql_text and

sys.dm_exec_query_plan DMFs will be used (Figure 65).

Figure 65. CPU Consumed Queries.

Total CPU time column shows execution time on CPU, CPU percentage column shows

percentage of CPU place. With controlling these values, users can make some

necessary changes on queries to improve the query performance. It should not

forgotten improving query performance means improving database performance.

4.7 DISK I/O BOTTLENECK

Disk I/O checking is important for performance measuring, if problem occurs on

reading and writing processes that will probably effect the CPU and cached. So, to

improve the performance of query users need to check disk I/O amount and detect

the most I/O perform queries. To detect these queries sys.dm_exec_query_stats

DMV, sys.dm_exec_sql_text and sys.dm_exec_query_plan DMFs are used (Figure

66).

57

Figure 66. The most I/O Perform Queries.

Users can see the most I/O perform queries from this result, as a solution to minimize

I/O using index on these queries (if relevant to use) will be lifesaving. As mentioned

chapter 2, reading and writing data with index seek is easier for server. Finding query

result is not exhausted with index.

4.8 THE MOST EXECUTED QUERIES

All Servers have most executed queries, maintenance of these queries is quite

important. Most used query performance is important for users, these queries

performances effect workflows. Thus, users need to control these queries periodically

with sys.dm_exec_query_stats DMV, sys.dm_exec_sql_text and

sys.dm_exec_query_plan DMFs (Figure 67). After finding most used queries, it can

be used SQL Server tools to analyze them. After analyzing, queries needs specified

and applied to speed up queries.

58

Figure 67. The Most Executed Queries List.

4.9 QUERY OPTIMIZER

To get information about query optimizer users can use

sys.dm_exec_query_optimizer_info DMV. This DMV is an aggregation of the

optimization events over time (Fitchey, 2014). It tracks all optimization performs.

Users can determine query performance situation with checking this DMV (Figure 68).

This output includes all optimization performance information of optimizer.

Figure 68. Optimizer Information.

59

CHAPTER FIVE

IMPORTANCE OF STATISTICS

Statistics are very important to optimize query performance. Query optimizer uses

statistics; it uses statistics to create optimal query plan structure. With using these,

optimizer creates estimated cost and plan, optimizer decides to use index seek or index

scan operation with using statistical information. Statistical data designate the way of

optimizer. Users can reach already existing statistical information with using SQL

Server Management Studio and control them. Besides, to monitor and quantify the

performance of query users need to observe some statistical values for that query.

Figure 69. Statistics of Person.Person Table.

60

5.1 DISK I/O STATISTICS

These disk I/O statistics show users, the number of index seek or scan and logical read

and write numbers. Logical read numbers will be small to get good performance from

query. SET STATISTICS ON/OFF commands are used to see statistics. Closing

statistics with OFF is important to do not occupy a place in cache. Statistical values on

query four and query five are measured before using index (Figure 70);

Figure 70. Query Four and Query Five I/O Statistics before Index.

61

Figure 71. I/O Statistics after Index.

As is seen logical reads have high values Figure 70, the server spends a lot of effort

for I / O operation. Index can be used to reduce this seek operation (Figure 71); After

using necessary index Figure 71, query performance improved with reducing logical

reads.

5.2 EXECUTION TIME STATISTICS

Execution time is important for query performance so CPU time managed before

chapters. In this chapter, CPU time will be controlled with using statistics, which are

SET STATISTICS TIME ON/OFF. The execution time of query four and five are

going to be measured without applying index (Figure 72).

62

Figure 72. Execution Time Statistics before Index.

To performance improvement Figure72, CPU time needs to reduce. Necessary index

can be applied on queries. After applied index CPU time and elapsed time decrease

that shows the improvement of performance (Figure 73). So, it can be said that index

which are used on these queries is useful for improvement.

63

Figure 73. Execution Time Statistics after Index Applied.

5.3 MONITORING STATISTICS

With SET STATISTICS PROFILE ON/OFF command, it can monitor the query to get

its necessity to improve performance (Figure 74).

64

Figure 74. Query Four and Five Without Index.

For first query physical operation columns and rows column can be checked, and to

understand this statistics second query is more clarify, rows, nodeid, parent and

physical operation columns’ values can be examined and compared with Figure 75

values.

65

Figure 75. Query Four and Five With Index.

To measure improvement of query four users can check Physical Operation columns,

it shows that, after using index, merge join, index scan and index seek operations are

used for getting result, and Rows column shows that searching data number decreased

19972 to 19119 for applied index table. For second query Rows column shows that

using index decrease searching data number 19820 to 674 for index applied table and

index seek operation is used for improve the performance.

66

CHAPTER SIX

RELATED WORKS

In this chapter will be introduced other tools, which are do same things with SQL

Server tools.

 RelaX - Relational Algebra Calculator: This calculator transforms relational

algebra to SQL query and SQL query to relational algebra expression and

shows query tree. It has own data users can learn relational algebra with use

this data also, users can create their own database to use it. It can be used online

(Figure 76).

Figure 76. Display of RelaX.

 RAT – Relational Algebra Translator: With this tool, users can transform

their relational algebra to SQL query. Thus, this tool shows query tree like

67

RelaX. It can be downloaded as free (Figure 77).

Figure 77. Display of RAT.

 DATABASE MONITOR PRTG: Users can get this database performance

analyzer free at its own site. With this analyzer, user can monitor their database,

no matter what databases are MySQL, Microsoft SQL, Oracle SQL, and

PostgreSQL (Figure 78).

Figure 78. Display of MS SQL Sensor (www.paessler.com/database-monitoring).

 SQL ASSISTANT: It can be used with MS SQL Server, it has own

performance measurement tools like SQL Server. Users can use it to improve

the query and find differences between SQL Server solutions (Figure 79).

68

Figure 79. Display of SQL Assistant on Databases

(www.softtreetech.com/sqlassist/index.htm).

 SOLARWINDS DATABASE PERFORMANCE ANALYZER:

Performance analyzer is very useful for MS SQL Server performance tracking,

with this analyzer users can watch their each query performance daily. They

can collect their data from analyzer and fix the query and other events that

effect the performance (Figure 80).

69

Figure 80. Display of SolarWinds (www.solarwinds.com/database-performance-

analyzer).

 FREE SQL PERFORMANCE MONITORING TOOL: With this tool users

can monitor CPU, memory, disk and locks. They can watch their server

performance here and they can determine the operation, which one is healthier

for their query (Figure 81).

70

Figure 81. Display of Free Sql Performance Monitoring Tool

(www.manageengine.com/sql-performance-monitor).

71

CHAPTER SEVEN

CONCLUSIONS AND RESULTS

In this study, importance of index was explained for query performance, and to

understand index usage mentioned index structure. Knowing SQL Server Features and

using them are important to improve query performance. Waiting query result can

cause very huge problem when working with big data. So, this study’s main aim was

decrease the waiting time of query result.

To decrease the waiting time and improve query performance SQL Profiler was used

to create trace file for track the queries. After save the trace file, this file used on

Database Engine Tuning Advisor to analyze query needs, this analyze operation can

be applied a query directly but, to analyze more than one query, trace file should be

used. In this study, Database Engine Tuning Advisor analyzed the trace file, gave some

index and statistics recommendation with their estimated improvement rate. Before

apply the recommendations researches made on queries, after researches,

recommendations applied and got better result. To measure the improvement,

execution plans tooltips’ estimated subtree cost values were used.

The other feature was Activity Monitor; with using this tool users can monitor CPU

time, disk I/O and recent expensive queries. These are the main problems of

performance so monitoring all of these with activity monitor panes is lifesaving

because with using it the problem can be detected and find a solution for the

performance. Recent expensive queries pane may give users the problematic queries

so users can rewrite these queries or they can examine their execution plan to identify

query necessity. The last SQL Server feature was execution plan this tool scrutinized.

Users can detect query problem and find a solution by using tooltips.

After SQL Server general features, talked about relational algebra and its importance

on query optimizer. Query tree and relational algebra expression were clarified.

The other important things were DMVs and DMFs, they do same thing with SQL

Server tools. They can be used specifically on specific query. Therefore, they have

72

some negative effects, when using DMV, users can be careful about date because this

querying can bring all accumulative informations that are not useful for us. They may

mislead the study.

Additionally, mentioned importance of statistics, using statistics and reading correctly

them is important to understand the problematic queries and their solutions. Also,

reading statistics is important for interpret the index’s effects on query. Therefore, this

study mentioned all important point for performance improvement.

The last chapter was about related works, which are useful tools to use. Using different

performance analyzer tools can help us to improve studies.

Consequently, different queries were used, some of them were complex some of them

were simple. Different queries were chosen with different difficulty levels to could see

different solutions and recommendations. Moreover, reached different solution for

each queries, all solutions and recommendations analyzed and interpreted with using

SQL Server information and applied their solutions to queries. The results were

successful, the study reached its aim, and it improved queries performance on this

study.

To improve this study new optimization tools and new MS SQL Server tools can be

used. Query and index monitoring are mostly mentioned in this study to optimization

and tuning, different database maintenance methods can be searched and applied to

optimize and tune the database. These methods are not suitable for big database

transections so, this study can be improved in this direction.

73

REFERENCES

Acungil, M. (2016). SQL Server'da DMV'ler (Dynamic Management Views) Üzerine.

Mustafa Acungil; Eğitmen, Danışman, Teknik Yönetici:

Http://Mustafaacungil.Blogspot.Com.Tr/2010/01/Sql-Serverda-Dmvler-Dynamic-

Management.Html

Adar, İ. (2016). SQL Server 2016. Abaküs Yayınevi.

Agarwal, S. (2016, May 26). Activity Monitor In SQL Server.

Http://Www.Sqlservercurry.Com/:

Http://Www.Sqlservercurry.Com/2013/04/Activity-Monitor-In-Sql-Server.Html

Agarwal, S. (2016, 06 26). SQL Server Curry. Activity Monitor In SQL Server:

Http://Www.Sqlservercurry.Com/2013/04/Activity-Monitor-In-Sql-Server.Html

Aktaş, İ. (2015). İsmail Aktaş. Database Performans Yönetimi:

Http://Ismailaktas.Com.Tr/Ders-27-Database-Performans-Yonetimi/

Bolton, C., Langford, J., Berry, G., Payne, G., & Farley, R. (2014). Logicalread. SQL

Server Query Optimization: Https://Logicalread.Com/Sql-Server-2012-Query-

Optimization-W01/#.Wyiib4jyjiv

Corlăţan, C., Lazăr, M., Luca, V., & Petricică, O. (2014). Query Optimization

Techniques In Microsoft SQL Server.

Dave, P. (2015, May 11). SQL Server-Introduction To Database Engine Tuniing

Advisor(A.K.A DTA).

Davidson, L., & Ford, T. (2010). Performance Tuning With SQL Server Dynamic

Management Views. Simple Talk Publishing.

Demircioğlu, M. (2012, 11 22). Execution Plan Index Davranışlarının İncelenmesi.

Fritchey, G. (2015). SQL Server Query Performance Tuning.

Fritchey, G. (2011). Query Performance Tuning: Start To Finish.

Galperin, E. (2011). Techfounder. Database Optimization Techniques You Can

Actually Use: Http://Www.Techfounder.Net/2011/03/25/Database-Optimization-

Techniques-You-Can-Actually-Use/

GHENCEA, A., & GIEGER, I. (2010). Database Optimizing Services.

Gözüdeli, Y. (2014). SQL Server 2014 & Veritabanı Programlama. Ankara: Seçkin

Yayıncılık.

Host4ASP.Net. (2014). How To Optimize SQL Databases With Microsoft SQL Server

Management Studio?

Https://Support.Smartbear.Com/Viewarticle/78858/. (2014).

74

Https://Support.Smartbear.Com/Viewarticle/78858/:

Https://Support.Smartbear.Com/Viewarticle/78858/

Jones, D. (2014). Learn SQL Server Administration In A Month Of Lunch. Manning

Publications.

Kline, K. (2010). Top 10 Tips For Optimizing SQL Server Performance. Quest

Software.

Koch, R. (2016). Toptal. SQL Database Performance Tuning For Developers.

Kumari, N. (2012). SQL Server Query Optimization Techniques: Tips For Writting

Efficient And Faster Queries.

Larsen, G. (2011, 06 03). Database Journal. Top 10 SQL Server Counters For

Monitoring SQL Server Performance:

Http://Www.Databasejournal.Com/Features/Mssql/Article.Php/3932406/Top-

10-SQL-Server-Counters-For-Monitoring-SQL-Server-Performance.Htm

Measuring SQL Server Performance. (2017, 05 25). Measuring SQL Server

Performance: Https://Support.Smartbear.Com/Viewarticle/78858/ Adresinden

Alındı

Mehta, A. (2010). Performance Analysis Using Sql Server 2008 Activity Monitor.

Mehta, A. K. (2016). Performance Analysis Using SQL Server 2008 Activity Monitor

Tool. Www.Mssqltips.Com:

Https://Www.Mssqltips.Com/Sqlservertip/1917/Performance-Analysis-Using-

Sql-Server-2008-Activity-Monitor-Tool/

Msdn.Microsoft.Com. (2014). Open Activity Monitor (SQL Server Management

Studio): Https://Msdn.Microsoft.Com/En-Us/Library/Ms175518.Aspx

Msdn.Microsoft.Com. (2014). SQL Server Profiler: Https://Msdn.Microsoft.Com/En-

Us/Library/Ms181091.Aspx

Mssqldude.Wordpress.Com. (2011, January 19). SQL Server 2008 R2 Performance

Monitoring: Https://Mssqldude.Wordpress.Com/2011/01/19/Sql-Sevrer-2008-

R2-Performance-Monitoring/

Petrovic, M. (2014a). Monitor SQL Server Queries-Find Poor Performers-Activity

Monitor And Data Collection.

Petrovic, M. (2014b). SQL Server Activity Monitor.

Petrovic, M. (2014c, Feb). SQL Server Performance Monitoring With Data Collector-

Part2-Set-Up And Usage.

Pinal, D. (2015). Sqlaquthority. SQL SERVER – Introduction To Database Engine

Tuning Advisor (A.K.A. DTA): Https://Blog.Sqlauthority.Com/2015/05/11/Sql-

Server-Introduction-To-Database-Engine-Tuning-Advisor-A-K-A-Dta/

75

Plecki, M. (2014). Technet Magazine. SQL Server:

Https://Technet.Microsoft.Com/En-Us/Library/2007.11.Sqlquery.Aspx

Rusanu Consulting. (2014). How To Analyse SQL Server Performance:

Http://Rusanu.Com/2014/02/24/How-To-Analyse-Sql-Server-Performance/

Sahtiyan, T. (2011a, Oct). Query Plan Görüntüleme Seçenekleri.

Sahtiyan, T. (2011b, Oct). SQL Server Profiler Ile Query Planları Toplamak.

Sahtiyan, T. (2011c, Feb). SQL Server'da Index Kavramı.

Shaw, G. (2009). Redgatehub. Finding The Causes Of Poor Performance In SQL

Server: Https://Www.Red-Gate.Com/Simple-Talk/Sql/Performance/Finding-

The-Causes-Of-Poor-Performance-In-Sql-Server,-Part-2/

Sahtiyan, T. (2011d, 08 24). Eksik Index’lerin (Missing Index) Belirlenip

Oluşturulması Operasyonu.

Sahtiyan, T. (2011e). SQL Server'da İstatistik(Statistics) Kavramı.

Wort, S., Loforte, R., & Knight, B. (2017). Logicalread. Improving SQL Server Query

Performance With Indexes: Https://Logicalread.Com/Improving-Sql-Server-

Query-Performance-With-Indexes-W02/#.Wyikpijyjiv

Yeter, M. (2014, 02 24). MS How To. SQL Server Mimarisi – Nedir? Nasıldır?:

Http://Www.Mshowto.Org/Sql-Server-Mimarisi-Nedir-Nasildir.Html

76

 APPENDIX 1 – Dental Clinic Database SQL Code

Dental Clinic Database creating tables:

create table speciality(

SpecID int,

description varchar(30),

constraint PKS_Speciality primary key(SpecID)

)

create table Dentist(

DentistID varchar(15),

Name varchar(20),

Surname varchar(20),

SpecID int,

constraint PKD_dentist primary key(DentistID),

constraint FKS_Speciality foreign key(SpecID) references Speciality(SpecID)

on update cascade on delete no action

)

create table patient(

SSN bigint Not Null,

Name varchar(25) Not Null,

Surname varchar(25) Not Null,

Age int,

Gender char(1),

Phone nvarchar(15) Not Null,

DentistID varchar(15) Not Null,

Constraint PKP_Patient primary key(SSN),

77

Constraint FKD_Dentist foreign key(DentistId) references Dentist(DentistID)

on update cascade on delete no action,

constraint Chk_gender check(charindex('F',Gender)>0 or charindex('M',Gender)>0 or

Gender is Null),

constraint Chk_Phone check(Phone is Null or

(Phone like '[0][0-8][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]') and

len(Phone)=11)

)

create table Appointment(

AppointID int Not Null,

date datetime,

description varchar(30),

DentistID varchar(15) Not Null,

SSn bigint Not Null,

constraint PKA_Appointment primary key(AppointID),

constraint FKAD_Dentist foreign key(DentistID) references Dentist(DentistID),

constraint FKP_Patient foreign key(SSN) references Patient(SSN)

on update cascade on delete no action

)

create table Medication(

MedID int Not Null,

Meddescription varchar(20),

constraint PKM_Medication primary key(MedID)

)

create table Prespcription(

PresID int Not Null,

MedID int Not Null,

78

SSN bigint Not Null,

DentistID varchar(15) Not Null,

Dosage varchar(15) Not Null,

Constraint PKP_Prescription primary key(PresID),

Constraint FKPD_Dentist foreign key(DentistID) references Dentist(DentistID),

Constraint FKPP_Patient foreign key(SSN) references patient(SSN),

Constraint FKM_Medication foreign key(MedID) references Medication(MedID)

on update cascade on delete no action

)

create table PaymentofTreatment(

TreatmentID int not Null,

Name varchar(30) Not Null,

Cost smallmoney Not Null,

Total_Amount as cost*(1+0.08),

constraint PKP_Payment primary key(TreatmentID)

)

create table Invoice(

invoiceNo int Not Null,

TreatmentID int Not Null,

SSN bigint Not Null,

DentistID varchar(15) Not Null,

constraint PKI_Invoice primary key(invoiceNo),

constraint FKT_Treatment foreign key(TreatmentID) references PaymentofTreatment,

constraint KFIP_Patient foreign key(SSN) references Patient(SSN),

constraint FKID_Dendist foreign key(DentistID) references Dentist(DEntistID)

on update cascade on delete no action

79

)

Procedures:

1. Alter proc[dbo].[Dental Clinic](@ID bigint)

 as

 Select i.SSN, sum(Total_Amount) as Payment

 From Invoice i, PaymentofTreatment p

 Where i.TreatmentID=p.TreatmentID and i.SSN=@ID

 Group by i.SSN

2. Alter Proc [dbo].[allowdentist](@username varchar (20))

as

Set nocount on;

Select Distinct(p.SSN), p.Name, P.SurName, i.Name

From patient p, Invoice r, Dentist d, PaymentofTreatment i

where d.DentistID = r.DentistID and p.SSN = r.SSN and i.TreatmentID =

r.TreatmentID

and d.DentistID = @username

Set nocount off;

Trigger:

Create trigger nochange

on Invoice

after update

80

as

if UPDATE(TreatmentID)

begin

if exists (

 Select *

 From Invoice r, deleted d

 Where r.SSN=d.SSN and d.TreatmentID<>r.TreatmentID)

 begin

 RAISERROR('Can Not Change Treatment',10,1)

 rollback

 end

81

