YASAR UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MASTER THESIS

DATABASE OPTIMIZATION
AND

TUNING ON MS SQL SERVER

SUZAN ARICI

THESIS ADVISOR: ASSOC.PROF.DR. MURAT KOMESLI

COMPUTER ENGINEERING

PRESENTATION DATE: 18.08.2017

BORNOVA / iZMIR
AUG 2017

We certify that, as the jury, we have read this thesis and that in our opinion it is fully

adequate, in scope and in quality, as a thesis for the degree of Master of Science / the

Doctor of Philosophy.

Jury Members:

Assoc. Prof. Dr. Murat KOMESLI

Yagar University

Prof. Dr. Mehmet Cudi OKUR

Yasar University

Assoc. Prof. Dr. Cigdem TARHAN
Dokuz Eyliil University

il

of. Dr. Ciineyt GUZELIS

Director of the Graduate School

ABSTRACT

DATABASE OPTIMIZATION AND TUNING ON MS SQL SERVER

Arici, Suzan
MSc, Computer Engineering
Advisor: Assoc. Prof. Dr. Murat KOMESLI
Aug, 2017

In the study of MS SQL Server query optimization, index architecture is examined to
understand query structure and execution. Query optimization is important for
database optimization because when users examine the query and try to optimize or
tune the query, they have to check all details of database to understand the reason
decrease. So when fixing problem increase query performance also increase database
performance. Some MS SQL Server features help users to find the problematic queries
and give some advices to fix them. In addition, some Dynamic Management Views,
Dynamic Management Functions and Statistics can help to see the problems on the

queries.

Key Words: MS SQL Server, query optimization, optimization, query optimization,

dynamic management views, dynamic management functions.

(0Y/
MS SQL SUNUMCU UZERINDE VERITABANI
ENIYILESTIRME VE AYARLAMA

Arici, Suzan
Yiiksek Lisans, Bilgisayar Miithendisligi
Danigsman: Do¢.Dr. Murat KOMESLI
Agustos 2017

MS SQL Server sorgu iyilestirme ¢alismasinda, sorgularin yapisini ve nasil ¢aligtigini
anlayabilmek icin indeks mimarisi incelenmektedir. Sorgu iyilestirme veri tabani
iyilestirme icinde olduk¢a Onemlidir. Kullanicilar sorgulari iyilestirme ic¢in hata
aramasi yaparken sorgunun Veri tabani igerisinde ulastigi tiim detaylar1 incelerler. Bu
yiizden sorgularin yavaslama sebebi tespit edildikten sonra sorgunun iyilesmesini
saglamak ayni zamanda veri tabanini da iyilestirir. Baz1 MS SQL Server’in kendine
ait ozelliklerini kullanmakta sorunlu olan sorgular1 bulmaya yardimci olur. Aym
zamanda bu kullanilan 6zellikler sorgular i¢in yararh tavsiyeler verebilirler. Ayrica,
dinamik yonetim goriiniimleri, dinamik yonetim fonksiyonlar1 ve istatistikler de

sorunlu sorgular1 inceleme ve iyilestirme konusunda yardimeidirlar.

Anahtar Kelimeler: MS SQL Server, sorgu eniyilestirme, dinamik yo6netim

gortimleri, dinamik yonetim fonksiyonlart.

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor Assoc. Prof. Dr. Murat KOMESLI for his

guidance and patience during this study.

[would like to express my enduring love to my parents, who are always supportive, loving and

caring to me in every possible way in my life.

Suzan ARICI
[zmir, 2017

-

TEXT OF OATH

I declare and honestly confirm that my study, titled “DATABASE OPTIMIZATION AND
TUNING ON MS SQL SERVER?” and presented as a Master’s Thesis, has been written without
applying to any assistance inconsistent with scientific ethics and traditions. I declare, to the best
of my knowledge and belief, that all content and ideas drawn directly or indirectly from external

sources are indicated in the text and listed in the list of references.

Suzan ARICI

............................

September 12,2017

vi

TABLE OF CONTENTS

A B S T R A C T e e ettt e e e et e e e e e e ranaa_ i
(@ Y/ TSSOSO iv
ACKN OW L LED GEMEN T S ..ottt \%;
X T OF O AT H viii
TABLE OF CON T ENT S ..ot vii
LIST OF FIGURES ...ttt et e e e e ixX
SYMBOLS AND ABBREVIATIONS ...ttt e et e e et neeeaaees Xiii
CHAPTER ONE INTRODUCGCTION ...ttt ettt e e etee e e e e e e e e eeeae e e 1
L L IN D EXES ..o ettt ettt e e e e e e e e e e e e et e e eeeerer——aaaaaaaren———— .2
1.1 ICLUSTERED INDEX ... ittt ettt e et e e ettt e e e e e e et eea e e s eeeaeeennnnnns 5
1.1.2NON-CLUSTERED INDEXottt ettt e et s s e e e e e e e seseeeeeeennennns 6
CHAPTER TWO MS SQL SERVER FEATURESooiii e 8
2.1 SOQL PROFILER ..ottt e st e e et ae e e e sntae e e e anneas 9
2.2 DATABASE ENGINE TUNING ADVISOR ...t 13
2.3 ACTIVITY MONITOR .ottt ettt e e e e et e e e e e e e e e et eens 18
24 EXECUTION PLAN Lottt e e et e e e e e 22
B o B I = G I o I AN A SRR PTRTRT RPN 22
e LY | I = AN N AT RRRRTRI 23
24 3GRAPHICAL PLAN ..ottt e et e e e e e r e 24

CHAPTER THREE EXAMINATON OF QUERIES WITH RELATIONAL ALGEBRA .. 33

3.1 RELATIONAL ALGEBRA MAIN OPERATORScccooiiiiiiiic e 36
3.2 QUERIES’ RELATIONAL ALGEBRA OPERATIONS AND QUERY TREE
REPRESENTATIONS ..o e s 44

CHAPTER FOUR USING DYNAMIC MANAGEMENT VIEW (DMV) AND DYNAMIC

MANAGEMENT FUNCTIONS (DMF) FOR OPTIMIZATION......ccccoviiiiiiiniseneiee 47
4L UNUSED INDEX ...ttt sttt nb e sre e ne e 48
4.2 MISSING INDEX- ...ttt sttt bttt n bbb b 49
4.3 INDEX FRAGMENTATIONiiieiiiieie ittt 52
4.4 EXECUTION PLAN ANALYSIS ON CACHE ..ottt 54

\1

4.5 FINDING TOP N MOST EXPENSIVE QUERIES..........coooiiiiiiie 55

4.6 THE MOST CPU CONSUMED QUERIESccocciiiiiiiiic e 56
4.7 DISK /O BOTTLENECK ...ttt 56
4.8 THE MOST EXECUTED QUERIES ..o s 57
4.9 QUERY OPTIMIZER ...t s 58
CHAPTER FIVE IMPORTANCE OF STATISTICS ..o 59
S5.1DISK /O STATISTICS ...t 60
5.2 EXECUTION TIME STATISTICS ..ottt 61
5.3 MONITORING STATISTICS ...ttt e 63
CHAPTER SIX RELATED WORKS. ..ot 66
CHAPTER SEVEN CONCLUSIONS AND RESULTS ... 71
REFERENGCES.o s 73
APPENDIX 1 - DENTAL CLINIC DATABASE SQL CODEccccoiiiiiiiiiiccneeen 76

viii

LIST OF FIGURES

Figure 1. SQL Server Balanced Tree Index Structure (www.red-gate.com/simple-
talk/sql/database-administration/brads-sure-guide-to-indexes/).........c.ccocvvvrvervennne. 3

Figure 2. B-Tree Structure (Adar, 2016).........cccererreriiiinieninesese e 4

Figure 3. With using Clustered Index, Leaf node has own data row (www.red-

gate.com/simple-talk/sql/database-administration/brads-sure-guide-to-indexes/)... 5

Figure 4. Non-Clustered index has pointers for locate the data (www.red-gate.com/simple-

talk/sql/database-administration/brads-sure-guide-to-indexes/).........ccocevvevvrrernenne. 7
Figure 5. SQL Profiler PIACE.ccveiiiecie e e 10
Figure 6. Trace file OPLIONS.cciiviiiiicc e et 10
Figure 7. Necessary performance selection for recorded on trace file.......c.cccooevirviennann. 11
Figure 8. Appearance of the Trace file.........cccoviiiiiiiiii s 12
Figure 9. Appearance of Database Engine Tuning AdViSOr..........ccccceviiiievieiienieese e 13
Figure 10. Tuning Options’ SEIECtIONS.cervirreriiriiieieisise sttt 14
Figure 11. Recommendations Page of Database Engine Tuning AdVisor.cccceeervenae 14
Figure 12. Analyzing of Third QUETY.cccciriiiiiiieie e 15
Figure 13. The Performance Impact OF INAEX.ccooveiiiiiiiiiieiecee e 16
Figure 14. Index recommendation for QUErY FOUT.cccooiiiiiiiiiniiees e 17
Figure 15. The Performance Impact OF INAEX.ccooveiiiiiiiiiiereeeee e 17
Figure 16. Display of Overview Pane (mssqldude.wordpress.com, 2011)c..cccccvvrvernenns 18
Figure 17. Display Of ProCESS PANE.cccciiiiiriiiieieisiisisese st 19
Figure 18. Selections Of PrOCESSES PaNE.oieiiiiieieiniiiste st 19
Figure 19. Display of Resources Waits Pane.ccoooveeriiiie e 19
Figure 20. Display of Data File 1/O. ..o s 20
Figure 21. Display of Recent Expensive QUEries Pane............cccovveeereieeierneniene e 21
Figure 22. Right Click Options of EXPensive QUETY.cccuoeiirrraieneseeeesie e see e eee e e 21
Figure 23. Edit QUErY SEIECTION.......cccuiiiiiie e 21

Figure 24. Execution Plan SEIECLION.cccvcveii i 22
Figure 25. Display of TEXEPIAN.covoiiiie e e e 23
Figure 26. XML PIan File. ... s 23
Figure 27. Display XML Plan as @ Graph.cccccoovirinineneicesisese s 24
Figure 28. Execute Query with Execution Plan Selection.............ccccoovvvininencieicien, 24
Figure 29. Execution Plan of Fourth QUETY.ccooiiiiiiiiiceee s 26
Figure 30. Display of Icons’ TOOIIPS.ueiveiveieieieisisiesie e 26
Figure 31. Recommended INAEXES.ccvriiriiiieiiisie s 27
Figure 32. Non-clustered index applied Person.Person table.ccccoviininineicicinen, 28
Figure 33. Tooltips After First Index on Person.person table.ccoooiiniiineiciciinnn, 28
Figure 34. Non-clustered index applied Sales.Customer table..............ccccovviiininciiiiinn, 29
Figure 35. Tooltips after Second Applied Index on Sales.Customer table............c...ccou...e. 29
Figure 36. Execution Plan of Fifth QUErY.cccoi i e 30
Figure 37. Tooltips of Operators of QUEry fiVe. ..o 30
Figure 38. Recommendations of Data Base Engine Tuning AdVisOr..........ccccccovvevveneveennnn, 31
Figure 39. All Recommendations are Applied on The QUENY.c.cccveveieceeie e 31
Figure 40. TOOItIPS OF OPEIAtOrS.cviiviiie et s sre s 32
Figure 41. Place of Relational Algebra Query in the Query Optimization (Ricardo, Urban,
DOLB). ... veoreeeeeeeeeeeeeeeeseeeseee e eee s s s e ettt s e e e et e e e er e n e en s 34
Figure 42. Class Diagram of Dental Clinic Database............ccccocveviiiiiiiiecienc e 35
Figure 43. ER Diagram of Dental Clinic Database.ccccooereiiiiiniiniineeeeeees 35
Figure 44. Dental Clinic Database Diagram from MS SQL Server.ccccocveviiiniiinnenns 36
Figure 45. Representation of QUEry RESUIL.coviiiiiiiiiece s 38
Figure 46. Representation of QUEry RESUIL.cooiiiiiiiiiiec s 39
Figure 47. Representation of QUEry RESUIL.cooiiiiiiiiiiece s 40
Figure 48. Representation of QUEry RESUIL.cooiiiiiiiiinec e 41
Figure 49. Query Tree of name,surname(cage=18 and genderzF(Patient[><]Dentist)) 42

Figure 50. Query Tree of I1p.name,p.age,d.name,s.description(c (PatientNDentistN
Specialty)(ITsurname(ogroup by surname>1(Patient))))ccccevvevveiieievineviennnn, 42

Figure 51. Query Tree of ITp.Name,p.Surname,p.Age,p.Gender,a.Description(c (PatientN

Appointment)(TIDentistID(cSpecID=1(Dentist))))ccoveverivrirereireiieiese e, 43
Figure 52. Query Tree of ITname,age,gender(cDentistiD=654321(Patient))............c.cc.c.... 43
Figure 53. Query Tree of QUENY THIEE.ccvii e 45
Figure 54. Query Tree 0f QUENY FOUT.coviiiiie et 45
Figure 55. Query Tree of QUENY FIVE.civ i 46
Figure 56. Querying of UnUSed INAEX.ccoiieiiiiiieieiiise e 48
Figure 57. Querying of UNUSEd INTEX..........coiiieriiiiieisisise s 49
Figure 58. Missing Index Warnings on Query Execution Plan Graph.............ccccoovviinenns 50
Figure 59. Missing INAeX QUETYING.coivitiiirieriiieieisi sttt 51
Figure 60. DMV Missing INdeX QUEIYING.ccerveiieieiinininiesiesie e 51
Figure 61. Finding Fragmented INUEX..........ccoirerririiieinisise s 53
Figure 62. FiXing Fragmentation.ccocoiiiieiiieieisesese e 53
Figure 63. Execution Plan Analysis 0n CaChed.cccooviiiiiiiinineieieesesese e 54
Figure 64. Most EXPENSIVE QUETIES.ciuiitiriiiieieieieieiesese sttt 55
Figure 65. CPU ConsumMEd QUETIES.cueivieieieieeeeiteseesresteestesrestaesaesteesaesresseesaesteesnesreans 56
Figure 66. The most I/O Perform QUETIES.cccveiiiiiieie ettt 57
Figure 67. The Most Executed QUENES LSt.ccccvviiiiiieiiiiiic e 58
Figure 68. Optimizer INFOrMAatioN.cccoiiiiiii i e 58
Figure 69. Statistics of Person.Person Table..........ccccoovivieiiiiiic i 59
Figure 70. Query Four and Query Five 1/O Statistics before IndeX..........ccccoevvvveveiviiicnnnane. 60
Figure 71. 1/O Statistics after INAEX.oiv e 61
Figure 72. Execution Time Statistics before INAeX.ccoocvvvirriiiieie e 62
Figure 73. Execution Time Statistics after Index Applied. ..o 63
Figure 74. Query Four and Five Without INeX.........ccccviiiiiiiiiiieic e 64

Xi

Figure 75. Query Four and Five With INdeX.cccooveiiiiiiiiicc e 65

Figure 76. Display 0f REIAX........c.ccoiiiiie s 66
Figure 77. DiSplay Of RATciiiiiii e 67
Figure 78. Display of MS SQL Sensor (www.paessler.com/database-monitoring)............... 67

Figure 79. Display of SQL Assistant on Databases
(www.softtreetech.com/sglassist/iNdex.nNtm).cooeviiiiiniiinc e 68

Figure 80. Display of SolarWinds (www.solarwinds.com/database-performance-
ANAIYZET). .o s 69

Figure 81. Display of Free Sql Performance Monitoring Tool (www.manageengine.com/sql-

PErfOrmMAaNCE-MONITON).ciuiiiiiiiite e e 70

Xii

SYMBOLS AND ABBREVIATIONS
ABBREVIATIONS:
MS SQL Microsoft Structured Query Language
DMV Dynamic Management Views

DMF Dynamic Management Functions

Xiii

CHAPTER ONE
INTRODUCTION

This study aims that to explain what query optimization is in MS SQL Server with
understandable way and it will provide information on how to use certain features of
the MS SQL Server to improve performance, how to interpret the results, and how to

improve the query.

First, it needs to know why query optimization is necessary. With right optimization,
query result can be reached quickly, but primarily, queries should be monitored and

examined to understand their needs.

Getting fast results from the query is the goal of the query optimizing. In the MS SQL
server, users can use different methods for getting better results. Using indexes can
decrease search time to bring queries’ information, and monitor queries with activity
monitor; it gives recent expensive queries’ informations, disk I/O and CPU usage so
user can interfere these queries. MS SQL profiler can create trace file for query and
then, this file is used by database engine tuning to analysis and then it gives some
recommendations if it is necessary for a given query. In addition, there is an execution
plan option on SQL server, it shows a query execution plan and gives information

about the query.

This work will be done with indexes, SQL Server own features, Dynamic Management
Views and Dynamic Management Functions and statistics. Firstly, indexes and their
architecture will be presented. So, users are expected to know what is an index? How
can SQL Server use them? Moreover, how they work in the query. Then, SQL Server
Features will be introduced and their missions, and Dynamic Management Views,
which are the same functions with these features, but they have only one difference;

they have own queries. This study has seven chapters;

Aim of the study, which MS SQL Server features will be used on this study, and
importance of the index is explained in chapter one. Chapter two examines some

importance MS SQL Server features that are MS SQL Profiler, Database Engine

Tuning Advisor, Activity Monitor and Execution Plan and their usage, using
AdventureWorks2014 database’s some queries are created to do performance analysis
and query optimization. To understand query execution on query optimizer, relational
algebra job need to be known, chapter three explains the relational algebra function
and query tree. Dynamic Management Views and Dynamic Management Functions
are important for monitoring performance so chapter four mentioned these two for
optimization. Statistics can be used query and performance optimization some
statistical information give important clues to users, chapter five explains these
statistics. Definitely, there are different tools that can be used with MS SQL Server to
monitor and optimize query performance, chapter six includes these related works. All
of these optimization options are used on queries that have poor performance, and
some results have been reached these optimization jobs and study result mentioned on

in chapter seven.

1.1 INDEXES

Indexes are used to read queries quickly in crowded databases. When running queries
needed to pull data from the table are used to reduce the time required. Maybe indexes
are not necessary for small databases but when working with big databases, indexes
can be lifesaving (Goziideli, 2014). By all means, using index cannot always increase
the performance, some usage of indexes can be wrong or unnecessary, so it reduces

query performance.

First, users have to have an idea about the way of work of index. It can be explained
through an example; assume there is a bookstore and a customer wants ‘The Phantom
of the Opera’ bookseller starts scanning all stack without any order, this is table scan,
it is not good for time and customer. If bookseller orders books with their names, when
a customer asks ‘The Phantom of the Opera’, he/she directly goes that bookshelf and
finds the book. So he/she and customer save time, it is a clustered index. However, if
a customer only asks the author name ‘Gaston Leroux- The Phantom of the Opera’
(assume there are some several books of the same name), booksellers system will not
work well against to this want. Nevertheless, if bookseller orders books with author
names, he/she will go the bookshelf that starts with ‘G’ and then he/she will find easily,
it is non-clustered index. Before index type and index architecture, users need to know

some terminology of index:

Seek Operation: SQL Server reaches information directly with using B-Tree structure.

It is more preferable, and faster than scan operation.

Scan Operation: It scans all data set to get information. Table scan operation is the

slowest one.

Lookup Operation: When cannot be reached information by using index, lookup

operation reach the information with the help of index and identified key value.

Actually, clearly understand to how the index works B-tree structure need to be learnt.

Therefore, at the beginning, index architecture will be trying to understand.
Index Architecture: Balanced Tree Structure (B-Tree Structure):

To understand index working system Balanced Tree structure will be examined, In
SQL Server indexes are organized into a B-tree structure. Balanced tree comprises of

root level, intermediate level and leaf level. Figure 1 shows SQL Server balanced tree

structure.
B-Tree Index Structure
1
Root Level
5000
| |
1 1
Intermediate 1 5000
Level 2500 7500
1 1
| | | 1
1 2500 5000 7500
Leaf Level
24589 439359 743935 10000

Figure 1. SQL Server Balanced Tree Index Structure (www.red-gate.com/simple-
talk/sql/database-administration/brads-sure-guide-to-indexes/).

Root Level (Level 2): This level (node) keeps all information about our data. SQL

Server starts searching information from here. Also branching starts here by nature of

balanced tree structure.

Intermediate Level (Level 1) (Non-Leaf): Searching continues with intermediate

level this level may have more than one level depends on a number of records and
3

index size (Adar, 2016). Therefore, can be said that a root level has one or more

intermediate level.

Leaf Level (Level 0): Data searching ends this level. It starts with root level and

continues with intermediate levels after eliminating it reaches the leaf level it keeps

data in different way depends on index type.

For instance; in the bookseller example, the customer wants to buy ‘Phantom of
Opera’, how bookseller finds this book with a B-Tree structure will be examined with

helping of Figure 2.

Figure 2. B-Tree Structure (Adar, 2016).

Data information searching starts with root level users compare their information with
this root’s information. Is P smaller than L, if it is users will continue their searching
with left intermediate leaf, but it is greater than L, they keep their searching with right
intermediate leaf. It is greater than L, searching moves on the right side. Therefore,
again, they compare P and O, S and W, and users see P is greater than O so they will
look right side and P is smaller than S they look left they get P, Q, R leaf nodes it keeps
related data. Their searching ends, leaf level for B-Tree. Finding data changes

according to index types.

Without index, SQL Server search all records without any order and checks all data
even if it finds the data against the situation of having same data it is called Table
Scan (Full Table Scan). Also, It must be known that data records (if not specified)
randomly settled on the table, this structure is called Heap Structure. In parallel with
this structure, table scan may be expensive (time-consuming) for finding a specific
data in the thousands and millions data. In addition to this situation, indexes are used

for find a data easily and save the time.
1.1.1 Clustered Index

Clustered index is also known as physical index because of data that are physically
sorted according to index defined column. For this reason, only one clustered index
can be defined for a table. In Figure 2 shows how B-tree structure works on SQL Server,
to find data from the example, reaching data at the leaf node that point, if this node has
all information about searching data it is called clustered index. Figure 3 shows

clustered index b-tree structure.

B-Tree Index Structure
Clustered Index
1
Root Level
5000
1
1 1
Intermediate 1 5000
Level 2500 7500
1 2500 5000 7500
Leaf Level
2493 4993 7493 10000
Customer Number FirstName Last Name
4 Anna Victoria

Figure 3. With using Clustered Index, Leaf node has own data row (www.red-
gate.com/simple-talk/sql/database-administration/brads-sure-guide-to-indexes/).

Any changed on the one of clustered index column can cause physically reorganizing

data on the table. That cause loss of performance for big tables (Adar, 2016).

5

If there are any restriction on the query, clustered index used as clustered index seek.

If there are not restriction on the query, clustered index used as clustered index scan.

Creating clustered index with T-SQL:

CREATE CLUSTERED INDEX[Index_Name] ON
[DataBase_Name].[Schema_Name]

(
[Column_Name] ASC/DESC

1.1.2 Non-Clustered Index

Non-Clustered indexes are ordered by logically, it means that; opposite of the
clustered index, non-clustered index does not have all information about the data on
the leaf node; it has an information about where data is located. Therefore, non-
clustered index cannot reach data directly. Non-clustered index reaches data over the
clustered index and heap.

If non-clustered index defined on a table that has clustered index, this type of index
has key value. Key value is a reference for clustered index (Goziideli, 2014). These

are shown on Figure 4.

B-Tree Index Structure
Non-Clustered Index
A
Root Level
™M
1
1 1
Intermediate A M
Level F s
— —
A ’ \ -
Leaf Level
£ L s 4
' Key Value, Bookmark I
B-Tree Index Structure
Clustered Index
1
Root Level
5000
1
1 1
Intermediate 1 5000
Level 2500 7500
— —
b 500 SO0 7500
Leaf Level
2495 459 74%% 10000
Customer Number First Name Last Name
M Arra Victoria

Figure 4. Non-Clustered index has pointers for locate the data (www.red-
gate.com/simple-talk/sql/database-administration/brads-sure-guide-to-indexes/).

Non-clustered index is fast about reaching data but it can be used with clustered index
seek or clustered index scan so its performance is lower than clustered index
(Goziideli, 2014).

Creating non-clustered index with T-SQL.:

CREATE NONCLUSTERED INDEX[Index_Name] ON

[DataBase Name].[Schema_Name]

(
[Column_Name] ASC/DESC

)

CHAPTER TWO
MS SQL SERVER FEATURES

MS SQL Server has some own features; users can control and check their SQL query
performances. In this study, SQL Profiler, Database Engine Tuning Advisor, Activity
Monitor and Execution Plan will be examined. With all of these features, queries can

be followed and user can find necessity of query.

First, it needs to known that AdventureWorks2014 Database of MS SQL Server will

be used and following queries related with this database.

Queries and Meanings

Queries are:
1. select™

from person.Person

This query result shows all information on Person.Person table.

2. select*

from sales.Customer

This query result shows all information on Sales.Customer table.

3. Select StorelD

From Sales.Customer

Where StorelD Is Not Null and AccountNumber like '%17'

This query result shows StorelD which is not null and include 17 in AccountNumber
from Sales.Customer with condition of Where

4. Select PersonlID,Title,FirstName,LastName
From Sales.Customer As s Inner Join
Person.Person As p On p.BusinessEntitylD = s.PersonIlD
Where PersonID Is Not Null

This query will bring Personld column from Sales.Customer table and Title, FirstName
and LastName of customers from Person.Person table so it is used Inner Join to
associate two different table and there is a Where condition and it does not want empty

Personld.

5. Select StorelD, FirstName,MiddleName,LastName
From Sales.Customer as sc join Person.Person as pp on
sc.PersonlD=pp.BusinessEntitylD
Where StorelD Is Not Null and AccountNumber like '%17' and StorelD<1000

This query result shows StorelD from Sales.Customer table, FirstName, MiddleName,
LastName from Person.Person table so it is used Join to associate two different table
and there is a Where condition and it does not want empty StorelD and will be smaller
than 1000, in addition AccountNumber will include 17.

2.1 SQL PROFILER

SQL Profiler is the one of the SQL Server’s tools. Profiler monitor events on the SQL
Server. It helps to performance monitoring. Users can analyze the SQL Server
performance and statistics (Goziideli, 2014). With SQL Profiler, they can analyze
query plans of most useful queries, and find solution for performance optimization

(Sahtiyan, 2011Db).

Showing Usage of SOL Profiler with Pictures

First, SQL Server Profiler should be selected from Tools selection (Figure 5):

4a SQLQueryd.sql BILGISAYAR. AdventureWorks2014 -Bilgisayar (56)) - Microsoft SQL Server Ma
File Edk View Query Project Debug | Tools | Window Help

P 0T i | J NewQuery | Yy SQL Server Profiler
‘ 5 437 | | AdventureWorks2014 .} ¢ 4" Database Engine Tuning Advisor
Object Explorer) Code Snippets Manager... Ctri+K Ctrl+B
Connect~ %/ %) m [7] a’s Choose Toolbox items...
= [BILGISAYAR (SQL Server 12.0.226¢ External Tools...
= (3 Databases Import and Export Settings...
% [System Databases Giistomize .
3 (3 Database Snapshots .
= | AdventureWorks2014 Options...
(3 Database Diagrams
= [Tables
N 3 Suctarn Tahlae

Figure 5. SQL Profiler place.

Then, user has to choose server after choosing server should be given a name for trace
file (Figure 6):

Trace Properties s
Genirbl | Everts Selection |
Trace name it cortum Woia Trnce)
Trace provder name: BILGISATAR
Trace provader fyps [Meroscit ST Sarver “20147 wermn [1z02zs
e thee templabe: [Turng 'ﬂ
™ Saveitofie: | J
| 5
=
r
[T Sarve o tnble J
r]7
I~ Enable trace stop tme; [sosamz =] [1ssaas —
Run | iptsl Yardem

Figure 6. Trace file options.

It can be selected necessary units from Event Selection part, then click run button
(Figure 7):

10

Trace Properties *
General Events Selection
Review selected events and event columns to trace. To see a complete list, select the "Show all events” and "Show all columns™ options.
Events | TextData | Duration | SPID | DatabaselD | DatabaseName | Object Type | LoginName | ~
+ Objects
= Performance
[~ Auto Stats I~ I~ - r r r
[Degree of Parallelism - I - I
[v¥ Peformance statistics v v v v v
[~ Plan Guide Successful r r r r r
[~ Plan Guide Unsuccessful I~ I~ r r r
v SQL:Ful TextQueny v v v v v v
[Showplan Al v v v v v
[v Showplan Al For Query Compile v v v v v
v Showplan Statistics Profile v v v v v
¥ Showplan Text 2 i~ 2 v v v
Showplan Text I_Unenﬁnded}
Displays the plan tree of the SQL statement being executed. The Showplan Text (Unencoded) event class is the same as ¥ Show all events
the Showplan Text event class, except the event information is formatted as text rather than as binary data.
™ Show all columns
DatabaseMame (no fitters applied)
MName of the database in which the statement of the user is running. Column Fitters... |
Organize Columns... |
Run iptal | Yardim |

Figure 7. Necessary performance selection for recorded on trace file

After clicking run button trace file begins to record data, so to get good results trace
file should run and record data at least one day. Some queries will be used for trace
file:

1. Select*

From person.Person

2. Select *

From sales.Customer

3. Select PersonID,Title,FirstName,LastName
From Sales.Customer As sc
Inner Join
Person.Person As pp On pp.BusinessEntitylD = sc.PersonID

Where PersonID Is Not Null

11

4. Select StorelD
From Sales.Customer

Where StorelD Is Not Null and AccountNumber like ‘%17

In addition, view of trace file (Figure 8):

2] SOL Server Profiler

File Edit View Replay Toels Window Help

BEOS 8 a e u om R EE @

E;E AdventureWorksTrace BILGISAYAR)

| EventClass | TextData Duration | SPID | DatabaselD DatabaseName Object Type LoginMame

Trace Start
Showplan A11 For Query CO... 55 32767 mssqlsyst... 8272 - P Bi...
pPerformance statistics 1 55 32767 8272 - P
Showplan all 55 32767 mssqlsyst... 8272 - P Bi...
Showplan Text 55 32767 mssqQlsyst... 8272 - P Bi.us
SQL:BatchCompleted select @2trancount (o] 13 5 Adventure... Bi...
Showplan A11 For Query CO... 52 5 Adventure... 20801 - AQ Bi...
Performance statistics z32 52 5
Performance statistics Select PersonID,Title,FirstName,Las... 52 s
showplan A1l 52 5 Adventure... 20801 - AQ Bi.us
Showplan Text 5z 5 Adventure... 20801 - AQ Bi...
showplan statistics Profile 52 5 Adventure... 20801 - AQ Bi.us
SqL:BatchCompleted Select PersonID,Title,FirstName,Las... 1585 5z 5 Adventure... Bi...
Showplan A11 For Query CO... 54 5 Adventure... 20801 - AQ Bi...
Performance statistics 54 54 5
Showplan A11 54 5 Adventure... 20801 - AQ Bi...
Showplan Text 54 5 Adventure... 20801 - AQ Biaua
Showplan Statistics Profile 54 5 Adventure... 20801 - AQ Bi...

Select StorelD

From sales.Customer

Where storeID Is Wot Kull and AccountNumber Tike '#17°'

Figure 8. Appearance of the Trace file.

EventClass shows the type of query,
TextData shows the query,

Duration shows the cost of query execution,
SPID shows the users code (Goziideli, 2014).

Users can find best query for same result with comparing their durations. To stop trace
file, user must click red square button and save as trace file. Because Database Engine

Tuning Advisor tool uses this file for analyze queries.

12

2.2 DATABASE ENGINE TUNING ADVISOR

The other SQL Server performance-monitoring tool is Database Engine Tuning
Advisor. To use the tool users need to create trace file like created on SQL Profiler or
it can save the query as a trace file. Nevertheless, using SQL Profiler trace file is most
preferable because it records all events when users use database/server for long time
by this way, users can get better recommendations from Database Engine Tuning
Advisor. These recommendations can be; index recommendations, view

recommendations or partitioning recommendations.
Database Engine Tuning Advisor placed at tool button, to use this tool (Figure 9):
o First users should give a name their session,
e Select workload type and select trace file,
e Select Database for workload,
¢ Choosing Database for tuning,
e Users can make the necessary adjustment from Tuning Options part (Figure 10),

e Finally, click Start Analysis button to start process.

= Database Engine Tuning Advisor - m] *
File Edit View Actions Tools Window Help x
il | @ B | b Start Analysis B s | P

E==niMonitar BILGISAYAR - AdWorksQuenyTrace. |
3 Connect | B3 4
o B BILGISATAR General Tuning Options
[l AdWorksQuenyTrace -
04102016 19:58:18 EERT EaE
04.10.2016 17:35:08 |AdWorstuermice
04.10.2016 17:14:21
4 query Worklozd
.7 tracequery
= tracefile @) File () Table () Plan Cache
05.06.2016 03:10:35 |C.-Users- ‘Desktop*AdWorks TraceFile frc & |2
(%] advquery
7] QueryAdv Database for workdozd analysis AdvertureWorks 2014 v
07.03.2016 19:30:48
07.03.2016 19:29:51
I};S 032016 191312 Select databases and tables to tune
02.03 2016 22:02:59 [®] Name Selected Tables

— i AdvertureWorks2014 T2 T2

w7] | master Click to select individual tables |+

v General = 1 [d model Click to select individual tables |«

1D - 1 [msdb Click to select individual tables |~

Name AdWorksQuery Tra P Click to select individual b
v Siatus 1 [temp ick {0 select individual tables |+

Creation time 10.06.2017 18:25 ¥ v
Ready. Connections: 2

Figure 9. Appearance of Database Engine Tuning Advisor.

13

W Database Engine Tuning Advisor

Major Version 12

Minor Version 0

Server Collati Turkish_CI_AS
Server Editior Enterprise hd

O X
File Edit View Actions Tools Window Help X
i |03 @ | b Start Analysis B by | D
ssegbonitor ‘BILGISAYAR - AdWorkQueryTrace |
B Connect &) |4
= IB BILGISAYAR Generzl Tuning Options
@ Ad\'”m?;z%:?:;.ss 18 Limit tuning time Advanced Options... ~
iF w41020617:3508 Stop at: [10 Hazran 2017 Cumartesi B [19:35 g
Z 04.10.2016 17:14:21
1 query Physical Design Structures (PDS) to use in database
%] tracequery
7] tracefile () Indexes and indexed views (O Indexed views [Include fitered indexes
05.06 2016 03:10:35 .
] advauery @ Indexes (O Nonclustersd indexes
1% QueryAdv (O Evaluate tilization of existing PDS anly
07.03.2016 19:30:48
07.03 2016 19:29:51 Partitioning strategy to employ
06.03 2016 19:33:12 - -
12.03.2016 220259 (® Mo partitioning () Full partitioning
(O Aligned partitioning
o= |
Lo £ Physical Design Structures (PDS)to keep in database
v General ~

() Do nat keep any existing PDS () Keep indexes only

@) Keep all existing PDS () Keep clustered indexes only

() Keep aligned partitioning v

Ready.

Connections: 2

Figure 10. Tuning Options’ Selections.

After analyzing Database Engine Tuning Advisor displays recommendations page,
recommended indexes and estimated improvement can be seen in this page, also users

can apply directly these recommended indexes (Figure 11):

u#a
File Edit View Actions Tools Window Help x
jif |G B Start Analysis 2 5 U | P
E=nionManitor “BILGISAYAR - AdWorkQuenyTrace |
27 Connect B3 |4
2 IB _BILGISATAR General Tuning Options Progress Recommendations Reports
el AdWorkQuery Trace Estimated i - 46%
I 04.10.2016 15:58:18 E
04.10.2016 17:35:08 Paitition Recommendations ¥
G 04.10.2016 17:14:21 P ETe—— ¥
¥ query
[tracequery of Recommendation Details Patition Scheme ~ Size (KB) Definition
7 tracefile 3_index_Person_5_1765581328__K1_4 5.7 3088 {[Business EntitylD] asc) include {[Title], [FirstNamel], [LastName]
05.06.2016 03:10:35 5_index_Customer_5_S37578582_ K2 295 {[PersoniD] ase)
lig advausry a_index_Customer_5_957578532_ K1_3 256 ([CustomerD] asc) include ([StorelD}
7] QueryAdv 1
07.03:2016 19:30:48 SQL Script Preview [= |
07.03.2016 19:23:51
06.03.2016 19:33:12 "REATE NONCLUSTERED INDEX
02.03.2016 22:.02:59 [dta_index_Customer_5_997578592__K1_3] ON [Sales].[Customer]
— Al, ‘ [CustomerlD] ASC
e
INCLUDE ([StoreID]) WITH (SORT_IN_TEMPDB = OFF,
v General A DROP_EXISTING =OFF, ONLINE = OFF) GN [PRIMARY]
Major Version 12 < |’
Minor Version 0 1 I
Server Collatic Turkish_CI_AS [] Show esdsting objects 0 See Reports for sizes of existing obiects Copy to Clipboard Close
Server Editior Enterprise hd

Figure 11. Recommendations Page of Database Engine Tuning Advisor.

For all trace file, Database Engine Tuning Advisor gives different indexes
recommendations with estimated improvement. It should not forget, it is just estimate

not guarantee improvement.

14

Applying all recommended indexes without control is not useful. Therefore, some
examples will be shown about improving performance. Created two different trace
files which are recorded different queries, it will be shown and explained with pictures,

recommended indexes how effect our performance.

First recommended indexes, for AdventureWorksTrace (FigureS) file which is
previously created on SQL Profiler. Moreover, Tuning Advisor gives some index
recommendations for this file with 46% estimated improvement. However,
AdventureWorksTrace file recorded all four queries that are mentioned on Showing
Usage of SQL Profiler with Pictures part. When Database Engine Tuning Advisor
analyzed this trace file, it gives three different index recommendation for third and
fourth queries. If this recommended indexes applied on these two queries, it may affect
performance negatively because sometime using index can create undesirable results.
Therefore, users have to be sure about the reliability of the result. For this reason, two
different trace files created that are third and fourth queries separated and then these
trace files analyzed with the Database Engine Tuning Advisor (Figure 12 and Figure
14):

SQLQueryl.sql - " ...ilgisayar (X))l SOLCuery3.sql - not connected™ SQLQuery2.sql - not connected™ ~ Properties
-|Select PersonID,Title,FirstName,LastName =8 Current ¢
From Sales.Customer As sc -
Inner Join G- ?‘Jr
Person.Person As pp On pp.BusinessEntityID - sc.PersonID
Where PersonID Is Mot Null

il Database Engine Tuning Advisor - [m} *
File Edit View Actions Tools Window Help x
i [B3 Start Analysis B i P

Jession Menitor

-BILGISAYAR - QueryTraceFile |
24 Connect | 24 [

= B BILGISAYAR Py General Tuning Options Progress Recommendations Reports
7] UueryTraceFile Estimated i —
7] AdWorkGQueryTrace 2
04.10.2016 19:58:1 Partition Recommendations ¥
04.10.2016 17:35:0 N
04102016 1:,_14_2 Index Recommendations ¥

Database Name - Object Mame = Recommendation ~ Target of Recommendation Details Partition Sch
AdventureWorks2014 = [Person][Person] create “h _dta_index_Person_5_1765581328_K1_4 5.7
[|0 AdventureWorks2074 3 [Sales][Customer] create “h _dta_index_Customer_5_997578592_ K2

7] query

L7 tracequery

7] tracefile

DEDCondc fodn

Figure 12. Analyzing of Third Query.

After analyzing third query’s trace file Database Engine Tuning Advisor gave two
indexes recommendation with 86% estimated performance improvement. After
applied recommended indexes, users can control query performance from execution
plan. With the help of execution plan’s Tooltip that is a yellow box, it shows up when

the mouse is over the command. Execution Plan and Tooltip will be discussed in detail

15

Execution Plan section. For now to measure of improvement, it will be compared
Estimated Subtree Cost values in the tooltip (Figure 13).
SELECT SELECT SELECT
Cached plan size 40 K8 | Cached plan size 40 KB = Cached plan size 24 KB
Degree of Parallclism 0 | Degree of Parallelism 0 Degree of Parallelism 0
Estimated Operator Cost 0(0%) | Estimated Operator Cost 0[0%) Estimated Operator Cost 0 (056)
Memaory Grant 3568 | Estimated Subtree Cost 0534474 Egtimated Subtree Cost 023917
Estimated Subtree Cost 327966) Memory Grant 5368 | Estimated Number of Rows 19119
Estimated Mumber of Rows 18118 | Estimated Number of Rows 19119
Statement Stat . Statement
atemen ST
SELECT PersoniD SELECT PersoniD SELECT PersonlD
Tithe . Title Title,
I r h
FirstMame Firsthlama | irstName
LastMName LastMame LastNarme
FROM SalesCustomer A5 ¢ FROM Sales Customer AS ¢ FROM Sales.Customer AS c

IMMER JOIN Parsan. Persan AS p ON
p.BusinessEntitylD = c.PerscalD
WHERE PersonlD 15 NOT NULL

Query has no index

INMER JOIN Person.Person A5 p ON
p.BusinessEntitylD = ¢.PersanlD
WHERE PerzoniD IS MOT MULL

First index applied on
Person.Person table

MMER JOIN Person. Person AS p oM
p.BusinessEntitylD = ¢.PersonlD
WHERE PersoniD IS MOT NULL

Second index applied on
Sales Customer table

Figure 13. The Performance Impact of Index.

As shown in the Figure 13; if recommended indexes are not applied on third query,

this query performance will be 3,27966. First index applied on person.person table and

it increased performance 3,27966 to 0,534474. Then second index index applied on

sales.customer table to see how it will affect performance, and it’s result is satisfying

as first index, it increase query performance 0,534474 to 0,23917. So, it can be said

that recommended indexes are useful for this query, as a result of Database Engine

Tuning Advisor recommendation. After this query examination, fourth query

improvement can be examined with same steps; primarily create trace file for fourth

query then analyze this file with Database Engine Tuning Advisor and get some index

recommendations (Figure 14).

16

7 QuerydAnalyze
1% QueryTraceFile
] AdWorkQueryTrace
04.10.2016 19:58:1
04.10.2016 17:35:0
04.10.2016 17:14:2
L4 query
] tracequery
) tracefile
05.06.2016 03:10:3
] advquery
1% QueryAdv
07.03.2016 19:30:4

A7 N7 INIC 10.36R
>

2012
QuerydAnalyze

= Database Engine Tuning Advisor - O X
File Edit View Actions Tools Window Help x
iR | B3 Start Analysis B U | P

Sésx'on Meonitor _BILGISAYAR - QuerydA W

& Connect | 34 |4

=] lB BILGISAYAR N General Tuning Options Progress Recommendations Reports

Estimated improvement: 617%

Creation time_11.06 2017 01:01

Partition Recommendations:

Index Recommendations

Database Name ~ Object Name

<

[] Show existing objects

Recommendation ~
IJ AdventursWorks2014 [[Sales]|Customer] create

Target of Recommendation

“h _dta_index_Customer_5_997578592_ K1_3

0 See Reports for sizes of existing objects

¥
¥
¥

Details Parition Schems

Tuning session completed successfully.

Connections: 2

Figure 14. Index recommendation for Query Four.

Estimated improvement of query performance is 61%, so if recommended index is

applied on the query, performance will increase 61%. After applied index, it will be

seen the difference of performance between two tooltips of query four (Figure 15).

Clustered Index Scan (Clustered)
Scanning a clustered index, entirely or only a range.

Index Scan (MonClustered)
Scan a nonclustered index, entirely or only a range.

Physical Operation Clustered Index Scan Physical Operation Index Scan
Logical Operation Clustered Index Scan Logical Operation Index Scan
Estimated Execution Mode Row Estimated Execution Mode Row
Storage RowStore Storage RowStore
Estimated Operator Cost 0,113973 (803) Estimated 1/O Cost 0,0283102
Estimated 1/0 Cost 0,0020139 Estimated Operator Cost 0,0502692 (90%)
Estimated CPU Cost 0,021959 Estimated Subtree Cost 0,0502692
Estimated Subtree Cost 0113973 Estimated CPU Cost 0,021959
Estimated Mumber of Executions 1 Estimated Mumber of Executions 1
Estimated Number of Rows 19520 Estimated Number of Rows 51,4068
Estimated Row Size 15 B Estimated Row Size 15B
Ordered Falze Ordered False
MNode ID 3 Mode ID 2

Query has no index

Index applied on query

Figure 15. The Performance Impact of Index.

As shown in the Figure 15, performance of fourth query increase 0,113973 to

0,0502692. Therefore, it can be said that performance improvement works have a

positive effect.

17

2.3 ACTIVITY MONITOR

The SQL Server Activity Monitor is a tool in SQL Server that displays information
about SQL Server processes and their effect on SQL Server performance (Petrovic,
2014b). Activity Monitor runs queries on the monitored instance to obtain information
for the Activity Monitor display panes. When the refresh interval is set to less than 10
seconds, the time that is used to run these queries can affect server performance.
Activity monitor consists of some panes: Overview, Processes, Resources Waits, Data
file I/O and Recent Expensive Queries. The Recent Expensive Queries pane will be

the focal point for this study.
i. The Overview Pane
This pane contains four graphs (Figure 16):

e Processor Time: The percentage of elapsed time that the processor spends to

execute non-idle threads for the instance across all CPUs.

o Waiting Tasks: The number of tasks that are waiting for processor, /O, or

memory resources.
e Database I/O: Information on data and log files for system and user databases.

e Batch Request/sec: The number of SQL Server batches that are received by the

instance.

Overview

% Processor Time (82%) Waiting Tasks (0) Database /0 (0 MBizec) Batch Requests/sec (40)

Figure 16. Display of Overview Pane (mssgldude.wordpress.com, 2011)
With the help of these graphs, Users can make the necessary arrangements.
ii. The Processes Pane

The Processes Pane shows the information about the currently running processes on
the SQL databases, who runs them, and from which application (Figure 17) (Petrovicb,
2014).

18

Processes

O

5[U.E] Logn | Database vl Tas.. |s| Com.. || Appl.. k| Wait Tim... || Wait.. k. Wait.. \| B..ke] H.kJ] Me.. |5 Host.. | Wor.

51 1 ‘Bilgisayar'. . master Microsoft] 24 3L ded

52 1 Bilgisayar'... master Microsoft... o o 3IL... def

53 1 ‘Bilgisayar'.... tempdb RUMMING SELECT Microsoft... 0 24 3IL... ded
Bigisayar,.. AdvertureWorks2014 T 0 24

55 1 ‘Bilgisayar'... AdventursWorks2014 Microsoft... o 24 3IL... d

56 1 ‘Bilgisayar.... AdventureWorks2014 Microsoft...] 24 3IL... d

Figure 17. Display of Process Pane.

Figure 17 shows the all the active users and running processes on the SQL Server.
Users can right click any of the Session IDs that users think are problematic and can
run a SQL Server Profiler Trace to capture all its activities; users can also see
the Session Details or can even kill a process (Figure 18) (Mehta, 2010).

Processes (=)
s [U.E] Login ~ Database vl Tas.. | Com.. | Appl.. || Wait Tim... .| Wai.. || Wat.. |\ B..|w H.s| Me.. || Host. | Wor.
51 1 -Bilgisayar\... master Microsoft... il 24 BIL... def
52 1 -Bilgisayar'.... master Microsoft.. 0 0 BIL... ded
53 1 -Blgisayar\... tem--- ——DURRMME _cmLmeT Bimemenft 0 24 BIL... def
55 1 Bilgisayar. . Adv Kill Process & 0 24 BIL de
56 1 -Bigisayar'... Adv Trace Process in SQL Server Profiler ft... 0 24 BIL... de

Figure 18. Selections of Processes Pane.
iii. The Resources Waits

This Activity Monitor pane shows the information about waits for resources (Figure
19).

Resource Waits (=)

Wait Category ~ Wait Time (ms/sec) ~ Recent Wait Time {ms/sec) . Average Waiter Count w| Cumulative Wat Time {sec) - ~
0 0.0 09
Metwork 140 0 0 0.0 58
Cther 0 0 0.0 0
SQLCLR 0 0 0.0 0
Buffer 110 0 0 0.0 61
Buffer Latch 0 0 0.0 0
Compilation o il 0.0 o
Latch 0 0 0.0 0
Lock 0 0 0.0 3

Loooing 0 i 0o 4 hd

Figure 19. Display of Resources Waits Pane.

e Wait Category: Wait type of Process Pane,

e Wait Time (ms/sec): The time all waiting tasks are waiting for one or more
resources,

e Recent Wait Time (ms/sec): The average time all waiting tasks are waiting for
one or more resources,

19

e Average Waiter Count: Is calculated for a typical point in time in the last
sample interval and represents the number of tasks waiting for one or more
resources,

e Cumulative Wait Time (sec): The total time waiting tasks have waited for one
or more resources since the last SQL Server restart, or DBCC SQLPERF last

execution (Petrovic, 2014b).

iv. The Data File I/O Pane

Contains information about the database files, all database files are listed (Figure 20).

Data File I/O (=)
Database ~. File Name ~| MB/sec Read ~| MB./sec Writen - Response Time (ms) ~ ~
a croso erve 0.0 0.0 0
AdventureWorks... C:\Program Files'\Microsoft SQL Server\MSSQL12. MSSQLSERVER\MS... 0.0 00]
master C:\Program Files"\Microsoft SQL Server'MS5QL12 MSSQLSERVERWMS... 0.0 00]
master C:\Program Files‘\Microsoft SQL Server\MS5QL12 MSSQLSERVERNMS... 0.0 0o o
model C:\Program Files"Microsoft SQL Server'\MSSQL12. MSSQLSERVERMS... 0.0 0o]
mode! C:\Program Files‘\Microsoft SQL Server\M55QL12 MSSQLSERVERWMS... 0.0 0.0 0
medb C:\Program Files\Microsoft SQL Server\MSSQL12 MSSQLSERVERWMS... 0.0 00 0
medb C:\Program Files"\Microsoft SQL Server'MS5QL12 MSSQLSERVERWMS... 0.0 00]
tempdb C:\Program Files‘\Microsoft SQL Server\MS5QL12 MSSQLSERVERNMS... 0.0 0o o
temndh C\Prooam Fles\Micmsoft SO| ServertMSS0] 12 MSSOI SFRVERNMS non [111] 1] hd
Figure 20. Display of Data File 1/0.
e MB/sec Read: Shows recent read activity,
e MB/sec Written: Shows recent write activity,
[]

Response Time (ms): Average response time for recent read-and-write activity.

v. The Recent Expensive Queries Pane

This pane is more useful to find the most expensive queries that means these queries
consume much more time than others do. For executed queries, users get list the list
shows expensive queries executed in the last 30 seconds. Users can control and edit
these queries. In addition, Execution Plan can be displayed and to see options right
click can be used (Figure 21 and Figure 22):

20

Recent Expensive Queries (=)

Query w| Bxecutio... || CP.. || Physical Reads.. || Logical Wit... || Logical Read.. |..| Average Dura... |..| Plan Court w Database ~
SELECT *FROM sys.dm_db_index_physical_st... 0 0 0 0 0 140 1 AdventureWorks2014
SELECT TOP 50 SUBSTRINGeqt. TEXT.(eqs 0 0 0 0 0 573 1 AdventureWorks2014
SELECT TOP 1 @previous_callection_time =c... o o o 0 o o 1 tempdb

SELECT ¢ CustomerlD, SUM{Line Total)FROM o o o 0 o 410 1 AdventureWorks2014
select TOP S0fotal_logical_reads +total_logical 0 0 0 0 0 248 1 AdventureWorks2014
SELECT TOP 20 SUBSTRING(qt texd, (gs.stat 0 0 0 0 0 445 1 AdventureWorks2014
INSERT INTO Ham_dbfilestats SELECT ~ @c]]] 0] 6 1 tempdb

SELECT oh CustomerlD, SUM|Line Total)FRO 0 0 0 0 0 372 1 Adventure\Works2014
SELECT TOP 1 @previous_collection_time = | 0 0 0 0 0] 1 tempdb v
< >

Figure 21. Display of Recent Expensive Queries Pane.

SELECT TOP 50 SUBSTRING(eqt. TEXT . gs... 0
SELECT TOP 1 @previous_collection_time =c... 1]
SELECT c.CustomerlD), SUMgs

Edit Cuery Text

Show Execution Plan

Figure 22. Right Click Options of Expensive Query.

Query can be edited directly; different query can written for same reseult or can be

idenfied an index for this query (Figure 23).

—EELECT c.CustomerID, SUM(LineTotal)
FROM Sales.SalesOrderDetail od
J0IN Sales.SalesOrderHeader oh
ON od.SalesOrderID=oh.SalesOrderID
J0IN Sales.Customer ¢ ON oh.CustomerID=c.CustomerID
GROUP BY c.CustomerID

Figure 23. Edit Query Selection.

Or users can reach execution plan of this expensive query; they can see cost of query

and get more information using with tooltips (Figure 24).

21

Query I: Query cost (relative to the batchj: 1003

SELECT c.CustomerID, SUM(LineTotal) FROM Sales.SalesOrderDetail od JOIN Sales.SalesCOrderHeader oh ON od.SalesOrderID=o

Compute Scalar Compute Secalaz
Cost: 0 % Cost: 0 %

= . -] 7 &

Hash Match Hash Match Merge Join Clustered Index Scan [Clustered)

SELECT

iAggregate) iInner Join) {Inner Join) [Customer] . [PFK_Customer CustomerID]..

= Cost: 28 &% Cost: 31 % Cost: 3 & Cost: 3 %

k5
Index Scan (NonClustered)

[SzlesOrderHeader] . [IX_SalesOrderHe..

Cost: 2 %

_} —

@

Clustered Index Scan (Clustered)
[SalesOrderDetail] . [PK_SalesOrderDe..

Cost: 32 %

Figure 24. Execution Plan Selection.

2.4 EXECUTION PLAN

Execution Plan is the most useful feature of SQL Server to measure, monitor and

optimize expensive queries. Execution plan is a graph that shows path of the query

execution. To read it, users should start reading right to left and top to bottom.

Especially it can be used to find query performance problem, firstly problematic

queries found then their Execution Plan examined to find problem. Execution plans

stored at cache and if same query runs again this plan is used. Some changings effects

execution plan so there is some differences will be occurred on execution plan. This

changings can be (Adar, 2016):

e Table changing,

e DROP or CREATE index command,
e Changing of STATISTICS,

e Calling sp_recompile function,

e Using DDL and DML together.

Execution Plan has three different type; Graphical Plan, Text Plan and XML Plan. In

this study graphical plan is examined deeply.

2.4.1 TextPlan:

Reading text plan of executed query is hard and complex for users. To use text form
of execution plan users should execute; SET STATISTICS PROFILE ON command

22

for display Actual Execution Text Plan and SET SHOWPLAN_ALL ON command
for Estimated Execution Text Plan (Figure 25).

—ISelect StorelID, FirstName,MiddleName,lastName

From Sales.Customer as sc join Persen.Person as pp on sc.PersonID=pp.BusinessEntityID
Where StoreID Is Not Null and AccountNumber like '¥17' and StoreID<1@e@

SET STATISTICS PROFILE ON

[Resuts |1y Messages 3 Execution plan
StorslD FirstName MiddisNams LastName

1 Ramaona S Antrim

Rows Exec.. StmiText Stmtld MNodeld Parent PhysicalOp LogicalDp Argument

1 i3 i1 Select StorelD, FirstName MiddleMName,LastName From Sales Customer as sc join Person.... 1 1 0 MNULL MULL NULL

FE Nested Loopsinner Join, OUTER REFERENCES: (fsc] [PersoniD]. [Epri003) WITH U... 1 2 1 Nested Loops Inner Join ~ OUTER REFERENCES
3 7 1 -Filter{(WHERE:{[Adventure Works2014]. [Sales]. [Customer].[AccountNumber] as [sc] [.. 1 5 2 Fitter Filtter WHERE:([Adverturs'W:
4 0 0 Compute Scalar(DEFIME:{[sc] [Account Mumber]=isnull (AW +[AdventureWorks20... 1 6 5 Compute S5c... Comput.. DEFINE:({[sc] [Account!
5 674 1 ndex Seek(OBJECT ([AdventureWorks2014]. [Sales].[Customer].[dta_index_... 1 6 Index Seek Index S.. QBJECT:{[Adverturs'W:
6 3 7 -index Seek{DBJECT:([AdvertureWorks2014] [Person] [Person] [dta_index_Person 1 12 2 Index Seek Index 5. OBJECT:([AdvertureWi

Figure 25. Display of Text Plan.

2.4,2 XML Plan

Reading XML form of execution plan is easier than Text plan form. Users should
display XML form as a graph. To use xml form of execution plan users should execute;
SET STATISTICS XML ON command for display Actual XML Plan and SET

SHOWPLAN_XML ON command for Estimated Execution XML Plan (Figure 26 and
Figure 27).

—-15elect PersonlID,Title,FirstName,LastName
From Sales.Customer Az =c
Inner Join
Person.Person As pp On pp.BusinessEntityID = sc.PersonID
kWhere PersonID I= Mot Null

L MNull

SET STATISTICS XML OM
o Resutts _'_1 Messages
PersonlD Title FirstMame LastMame

1 291 i Mr. Gustavo Achong

..............................

Microsoft SCIL Server 2005 XML Showplan

1 §:HmehnKManmFWmDiﬁdmma&mmmmﬁﬂumm

Figure 26. XML Plan File.

23

ExecutionPlan el thirdquery.sql -Ji} Bilgisaya (5m* recomquery3.sql -J}
Query 1: Query cost (relative to the hatch): 100%

Zelect PersonlD,Title, FirstName,LastMame From Zales.Customer A3

34)

Index Scan (NonClustered)

Merge Join
{ITnner Joind [Fersom]. [_dta index Persom 5 17655
Cost: 37 % Cost: 42 %

33
Index Seek (NonClustered)

[Customer] . [_dta index Customer & 5.
Cost: 20 %

Figure 27. Display XML Plan as a Graph.

2.4.3 Graphical Plan

Graphical Plan is the most useful and understandable Execution Plan form. Because
graphs show all necessary information about query operators and their tooltips that
have all information about operators. With using this information, users can find the
problem of their query. Query plan graphs can be displayed as Estimated Execution
Plan or Actual Execution Plan. Estimated execution plan represent an estimated query
plan that created from query optimizer before query execution. Nevertheless, actual

execution plan represent real plan that occurs after executed query.

Users can select execution plan form from the top of SQL Server than execute the

query (Figure 28):

'ty | | AdventureWorks2014 'H Y Execute b Debug ™ o i) =l | 3y | &3 8587 | = 2 |EE|4 .
QueryS.sql ---E‘»I...ilgi;avar_(ii]]" Display Estimated Execution Plan (Ctrl+L) a Include Actual Execution Plan (Ctrl+ M) |(51n* x

| -15elect StorelID, FirstName,MiddleName,LlastName

From Sales.Customer as sc join Person.Person as pp on sc.PersenID=pp.BusinessEntityID
and StoreID<1@6@

Where StoreID Is Not Null and AccountNumber like '¥17'

1
L}
T

100 %

e .
[Resuts |13 Messages & Execution plan
Query cost (relative to the batch): 100%

Query 1:
SGelect S3torelD, FirstName, MiddleWName,LastName From Sales.Customer as sc join Person. Person as pp on sc.F
Fr—
el T 3 J_ﬁ
Nested Loops . Index Seek (NonClustered)
(Inner Join) Filter Compute Scalar [Customer]. [_dta_index Customer S_S5.
Cost: 1 % Cost: O % - - . -~
Cost: O % Cost: & %

o)
Index Seek (NonClustered)

[Person] . [_dta index Persom 5_L76ES.
Cost: 35 %

Figure 28. Execute Query with Execution Plan Selection.

24

As is seen in the Figure 28, query execute with execution plan selection, SQL Server
displays graphical plan of query execution plan. With using this plan, users can check
costs of operators and which index operations (index seek or index scan) are used for
finding result. If there is index scan or table scan, it means it should be started here to
optimize this query. Because, scanning all data to find the data that the query wants, is
a time wasting and performance killer. So, seek operator is the preferable for quick

result and performance improving.

The other advantage is tooltips, each icon on the graphical plan has an own tooltip. It
can be said that these tooltips are lifesaving, because they have a lot of information
about icons if users read right this given informations they can make an improvement
on expensive queries. Two different queries will be used to show different tooltip

contents with using execution plan tooltips.

As stated from Activity Monitor part, users can find expensive queries that means these
queries consume much more time to execute than others, so Recent Expensive Queries
Pane gives users them. After identifying expensive query users should examine their

execution plan graph to find any problematic look.

Initially, fourth query will be examined in Figure 29; graph shows clustered index scan
Is used for bring result and server spends 87% of time. At first appearance, users think
that index should be used for this query but before apply index, tooltips must be
checked first. To make sure how intervention will be applied on query. Thus they have

to know the meanings of expressions of tooltips (Figure 30).

25

-I5elect PersonID,Title,FirstName, LastName
From Sales.Customer As sc
Inner Join
Person.Person As pp On pp.BusinessEntityID = sc.PersonID
Where PersonID Is Mot Null

100 % -

[Resuts 3 Messages Em Execution plan

Query 1: Query cost (relative to the batch): 100%
Select PersonlIl,Title, FirstNawe,LastMName From Sales.Customer L

23 "
Hash Match Clustered Index Scan (Clustered)
{Tnrer Join) [Customer] . [PE Customer CustomerID]..
Cost: 10 % Cost: 32 %

2

Clustered Index Scan (Clustered)
[Perscon]. [PE Person BusinessEnticyT.

Cost: 87 %

Figure 29. Execution Plan of Fourth Query.

Clustered Index Scan [Clustered]) Clustered Index Scan [Clustered]

Scanning a clustered index, entirely ar anly a range. Scanning a clustered index, entirely or only a range.

Physical Operation Clustered Index Scan | physical Operation Clustered Index Scan
Logical Operation Clustered Index Scan | | pgical Operation Clustered Index Scan
Actual Execution Mode Row | artual Execution Mode oy
Estim ated Execution Mode Row | Estimated Execution Mode oy
Storage RowStore Storage RowStore
Actual Number of Rows 19112 | Actual Mumber of Rows 10972
Actual Number of Batches 0| Actual Number of Batches 0
Estimated 1/O Cost 00920133 | Ectimated IO Cost 2,82481
Estimated Operator Cost 0113873 (3%) | Estimated Operator Cost 284673 (57%)
Estimated Subtree Cost 0,1135973 | Ectimated CPU Cost 00221262
Estimated CPU Cost 0.021839 | Estimated Subtree Cost 2 84673
Estim ated Mumber of Executions 1 | Number of Executions 1
Number of Executions 1 | Estimated Number of Executions 1
Estimated Number of Rows 12112 | Fstimated Number of Bows 10877
Estimated Row Size 11EB | Estimated Row Size 127 R
Actual Rebinds 0 | Actual Rebinds o
Actual Rewinds {0 | Actual Rewinds o
Ordered False | ordered False
Node ID ! [Node ID L

Figure 30. Display of Icons’ Tooltips.

Some important expressions can be explained,;

e Physical Operation shows the actual operation when the query is executed.

e Logical Operation shows the estimated operation when the query is executed.

e Estimated Operator Cost shows the all-time that spends on this operation.

e Estimated Subtree Cost shows the total time the SQL Server spent.

26

e Estimated Number of Rows shows The number of affected records.

e Ordered shows if the query has order by operation TRUE, has not FALSE. It
should not be used if query is not too complex.

e Node ID transforms the execution plan into a tree structure and displays the
level of the corresponding node.

e Index Scan means that all the data is read line by line.

e Index Seek means that an index that is clustered or non-clustered is detected
and only the desired data is reached (Adar, 2016).

As stated previous Database Engine Tuning Advisor part, estimated subtree cost as a
measure of improvement. In Figure 29 the query operation is Clustered Index Scan,
effected rows are 19972 and Estimated Subtree Cost is 2,84673 to improve this query;
query operation should be index seek, effected rows should be decreased and

Estimated Subtree Cost has a lower value.

If users cannot decide which index will apply on the query, they can use Database
Engine Tuning Advisor to get some recommendation like this query. After applying
recommended indexes and it observed in the previous Database Engine Tuning
Advisor section that improvement of performance with using SELECT operator
tooltips to see all improvement. However, in this section it will be observed how

indexes effect other index scan operators (Figure 31).

CREATE NONCLUSTERED INDEX [_dta_index Person 5 1765581328 KL 4 5 7] ON [Person].[Person]
[BusinessEntityID] ASC
INCLUDE [Title],

[FirstName],
[LastName]) WITH (SORT_IM_TEMPDB = OFF, DROP_EXISTING = OFF, ONMLINE = OFF) ON [PRIMARY]

CREATE NONCLUSTERED INDEX [_dta_index_Customer_5 997578592 K2] ON [Sales].[Customer]

[PersonID] ASC
WITH (SORT_IN_TEMPDB = OFF, DROP_EXISTING = OFF, ONLINE = OFF) ON [PRIMARY]

Figure 31. Recommended Indexes.

The first intervention for Person.Person table because its cost has higher value, so users
can apply index on this table like Figure 31. After applying non-clustered index on

Person.Person table (Figure 32):

27

- = &

SELECT Hash Match Clustered Index Scan (Clustered)
S { Trmer Jodind [Customer] . [PE_Customer CustomerIDr]..
Cost: 0O % - -
Cost: &80 % Cost: 21 %

5]
Index Scan (MonClustered)

[Person]. [_dta index Person & 17eLb.
Cost: 19 %

Figure 32. Non-clustered index applied Person.Person table.

Cost is decreased by using index, person.person table does index scan again but
tooltips should be examined before. And there is a new complication on sales.customer
table as is seen, using index increase its cost, so this table needs an another index. Can

be looked at the Figure 33 to understand difference of tooltips:

Clustered Index Scan [Clustered) Index Scan (MonClustered)

Scanning a clustered index, entirely or only a range, Scan a nonclustered index, entirely or only a range,

Physical Operation Clustered Index 5can Physical Operation Index Scan
Logical Operation Clustered Index Scan Logical Operation Index Scan
Actual Execution Mode Fow Actual Execution Mode .oy
Estimated Execution Mode FRow Estimated Execution Mode Rova
Storage RoweStore Storage RoweSkore
Actual Humber of Rows 19119 Actual Number of Rows 19972
Actual Humber of Batches 0 Actual Number of Batches 0
Estimated IJO Cost 0,0920139 Estimated IJO Cost 0,0736306
Estimated Operator Cost 0113973 (21%) Estimated Operator Cost 0100807 (19
Estimated Subtree Cost 0113973 Estimated Subtree Cost 1100307
Estimated CPU Cost 0021959 Estimated CPU Cost 00221262
Estimated Mumber of Executions 1 Estimated Mumber of Executions 1
MNumber of Executions 1 Number of Executions 1
Estimated Mumber of Rows 19119 Estimated Number of Rows 10072
Estimated Row 5ize 11E Estimated Row Size 127EB
Actual Rebinds 0 Actual Rebinds 0
Actual Rewinds 0 Actual Rewinds 0
Ordered False Ordered False
Mode ID 1 Mode ID 2

Figure 33. Tooltips After First Index on Person.person table.

There is not difference on clustered index scan operator. However, in index scan
operator estimated subtree cost has a huge difference. It can be said that second index
can be applied on sales.customer table (Figure 34).

28

= =l k5
S ELECT Merge Join Index Scan (NonClustered)
|".-l.-l=1-- ';_I N (Tnher Join) [Personn]. [_dta index Person & 17655
= Cost: 37 % Cost: 42 %

-
Index Seek (NonClustered)

[Customer] . [_dta index Customer 5 5.
Cost: 20 %

Figure 34. Non-clustered index applied Sales.Customer table.

After applying non-clustered index on sales.customer table person.person table does
index scan with 42% cost. But, in sales.customer table does index seek with 20% cost.
With this schema on Figure 34 users may think these indexes are not useful for

improvement but if they check tooltips; they will see the difference and improvement

of performance.

Index Scan [(MonClustered) Index Seek (NonClustered]
Scan a nonclustered index, entirely or only a range. Zcan a particular range of rows from a nonclustered
index,
Physical Operation Index Scan
Logical Operation Index Scan Physical Operation Index Seek
Actual Execution Mode Rowe Logical Operation Index Seek
Estim ated Execution Mode Raow Pctual Execution Mode Flowy
Storage Rowstore Estimated Execution Mode Ry
Actual Number of Rows 1007z Storage Rowstare
Actual Mumber of Batches g Actual Number of Rows 19119
Estimated 17O Cost 0, 0756506 Actual Mumber of Batches o}
Estim ated Operator Cost 0,100807 (422 Estimated Operator Cost 0,0487573 (20%5)
Estimated Subtree Cost 0100807 Estimated IO Cost 0,02736%4
Estimated CPU Cost 00221262 Estimated CPU Cost 00211879
Estimated Humber of Executions 1 _Estimated Subtree Cost 00487373
Number of Executions 1 Mumber of Executions 1
Estimated Humber of Rows 1907z Estimated Number of Executions 1
Estimated Row Size 127 g Estimated Mumber of Rows 19113
Actual Rebinds o Estimated Row Size 11B
Actual Rewinds g Actual Rebinds o
Ordered True Actual Rewinds]
Node ID 1 Ordered True
Mode ID 2

Figure 35. Tooltips after Second Applied Index on Sales.Customer table.

Both two indexes applied on query and there is really big difference about performance.

So it can be said that the query performance is improved, person.person table estimated

29

subtree cost was 2,84673 now 0,100807 and sales.customer table cost was 0,113973

now 0,0487573.

Fifth query examined with same way (Figure 36 and Figure 37):

0% -

[Resuts [13 Messages g‘u Execution plan

H5elect StoreID, FirstName,MiddleName,LastName
From Sales.Customer as sc join Person.Person as pp on sc.PersonID=pp.BusinessEntityID
where StoreID Is Not Null and Accounthumber like '%17' and StoreID<106@

Query 1: Query cost (relative to the batch): 100%
Select StoreID, FirstName, MiddleNsme,LsstName From Sales.Customer as sc join Person.Person as pp on sc.PersonlD=pp.Busines.
Missing Index (Impact 47.1476): CREATE NCONCLUSTERED INDEX [<Newe of Missing Index, sysnawe,>] ON [3Jales].[Customer] ([3tor.

fdl

Nested Loops
(Irmer Join)
Cost: 0 %

B E E|

Filter Compute Scalar
Cost: 1%

Cost: 10 %

| :ﬂx

Clustered Index Seek (Clustered)
[Person]. [PE_Persom BusinessErtityI.

Cost: 45 %

Compute Scalar
Cost: 1%

Clustered Index Scan (Clustered)
[Customer] . [PK Customer CustomerID]..

Cost: 44 %

Figure 36. Execution Plan of Fifth Query.

Clustered Index Seek [Clustered)
Scanning a particular range of rows from a clustered index.

Clustered Index Scan [Clustered)
Scanning a clustered index, entirely or only a range.

Physical Operation Clustered Index Seek Physical Operation Clustered Index Scan
Logical Operation Clustered Index Seek Logical Operation Clustered Index Scan
Actual Execution Mode Fow Actual Execution Mode R
Estimated Execution Mode Fow Estimated Execution Mode R
Storage RowStore Storage RowStore
Actual Number of Rows 3 Actual Number of Rows 19820
Actual Number of Batches 0 Actual Number of Batches o
Estimated Operator Cost 0,116159 {43%) Estimated IfO Cost 00820139
Estimated IfO Cost 0,003125 Estimated Operator Cost 0113973 (4430
Estimated CPU Cost 0,0001531 Estimated CPU Cost 0,021959
Estimated Subtree Cost 0116139 Estimated Subtree Cost 0113973
MNumber of Executions 7 Number of Executions 1
Estimated Mumber of Executions 36,5130466 Estimated Mumber of Executions 1
Estimated Number of Rows 1 Estimated Number of Rows 10820
Estimated Row Size 165 B Estimated Row Size 19B
Actual Rebinds 0 Actual Rebinds o
Actual Rewinds 0 Actual Rewinds o
Ordered True Ordered False
Node ID 13 Node ID 5

Figure 37. Tooltips of Operators of Query five.

30

CREATE NONCLUSTERED INDEX [_dta_index Person 5 1765581328 K1 5 6 7] ON [Person].[Persan]
[BusinessEntityID] ASC
INCLUDE | [FirstName],

[MiddleName],
[LastName]) WITH (SORT_IN_TEMPDE = OFF, DROP_EXISTING = OFF, ONLINE = OFF) ON [PRIMARY]

CREATE NOMCLUSTERED INDEX [_dta_index_Customer_5_997578592_ K3_K2] ON [Sales].[Customer]

[StoreID] ASC,
[PersonID] ASC
JWITH (SORT_IN_TEMPDB = OFF, DROP_EXISTING = OFF, ONLINE = OFF) ON [PRIMARY]

CREATE STATISTICS [_dta_stat 997578592_2 5] ON [Sales].[Customer]([PersonID], [AccountNumber])

CREATE STATISTICS [_dta_stat 997578592_5_3] ON [Sales].[Customer]([AccountNumber], [StoreID])

CREATE STATISTICS [_dta stat 997578592 2 3 5] ON [Sales].[Customer]([PersonID], [StorelID], [AccountNumber])

Figure 38. Recommendations of Data Base Engine Tuning Advisor.

For this query estimated subtree costs do not have very high value but yet Database
Engine Tuning Advisor is used to see recommended index and improvement (Figure
38). Database Engine Tuning Advisor recommendations shown in the Figure 38. Three
different statistics are recommended for improvement of performance on
sales.customer table that means statistics also effect query performance so all

recommendations applied on this query (Figure 39).

— ey iy
E ;1] 4
- Nested Loops . Index Seek (NonClustered)
- Fileer Coupute Scalar [Customer]. [_dta_index Customer 5_2.

{Inner Join) Cast: 1 % Cast: O %

Cost: O %
3]

Index Seek (HonClustered)
[Person] . [_doa index Person & 17655.

Cost: 95 %

Cost: &5 %

Figure 39. All Recommendations are Applied on The Query.

31

index,

Index Seek [NonClustered)

scan a particular range of rows from a nonclustered

Index Seek [NonClustered]

Scan a particular range of rows from a nonclustered

index,

Physical Operation Index Seek Physical Operation Index Seek
Logical Operation Index Seek Logical Operation Index Seek
Actual Execution Mode Fouwr Actual Execution Mode v
Estimated Execution Mode Fowe Estimated Execution Mode Rl
Storage Rowstore Storage Fowstore
Actual Number of Rows 3 Actual Number of Rows a7d
Actual Number of Batches 0 Actual Number of Batches 0
Estim ated Operator Cost 0100049 (95%%) Estimated Operator Cost 00047841 (5%
Estimated IJO Cost 0003125 Estimated IfO Cost 00038657
Estimated CPLU) Cost 00001581 Estimated CPU Cost 0,0003934
Estimated Subtree Cost 0100049 Estimated Subtree Cost 0,004 7o
Mumber of Executions 7 Mumber of Executions 1
Estimated Number of Executions 36,5130466 Estimated Mumber of Executions 1
Estimated Number of Rows 1 Estimated Number of Rows a7d
Estimated Row Size 165 B Estimated Row 5ize 19B
Actual Rebinds 0 Actual Rebinds 0
Actual Rewinds 0 Actual Rewinds 0
Ordered True Ordered True
Node ID 11 Node ID 5

Figure 40. Tooltips of Operators.

In the new execution plan there are two index seek with 5% and 95% costs. Users need

to examine tooltips to measure performance changing (Figure 40). After applying all

recommended command, the difference can be seen between Figure 37 and Figure 40;

person.person table estimated subtree cost was 0,116159 now 0,100049 and

sales.customer table cost was 0,113973 now 0,0047641 and with index seek on

sales.customer table effected row numbers decreased 19820 to 674. At the result of

this example, it can be said that query performance is improved.

32

CHAPTER THREE
EXAMINATON OF QUERIES WITH RELATIONAL ALGEBRA

Relational algebra is the basis of the SQL to understand query execution steps it must
to known. Queries in relational algebra are applied to relation instances, result of a
query is again a relation instance. It is useful for query execution it describes queries
in the relational database. It can said relational algebra is a mathematical expression

of query.

Relational algebra has operators that describes queries and DBMS uses these

expressions in query optimizing (Figure 41).

When any query comes to SQL Server to execute, some processes are passed to get

result. These steps are;

e First SQL Server parse the query that means it checks syntax of query.

e Than after validation of query (assuming the query is valid) that means verifies
objects referred to are database objects and requested operations are valid, it
translate query into a relational algebra to use it in query optimization process.

e Relational algebra in SQL Server likes logical query tree and the tree occurs
with logical operators of relational algebra.

e Recompose relational algebra operations to find most useful query plan.

e The next step is to choose a plan that is less costly, estimate the cost of query
with using relational algebra operations and the Query Optimizer creates the

optimal execution plan for the query.

33

| Initial SQL Query 1

| Code for Query ‘

Figure 41. Place of Relational Algebra Query in the Query Optimization (Ricardo,
Urban, 2016).

Therefore, Relational Algebra is important to understand and optimize the query in
relational database. Also, designing the tables in the database correctly is important in
terms of query performance. To understand relational algebra simply will be created a
new simple relational database and will be some query executions with relational
algebra operators and then all query trees and algebraically expressions of queries

(Query one, two, three, four and five) that used previous chapter will be shown.

The example database name is Dental Clinic. Class diagram and ER diagram of
database are shown in Figure 42 and Figure 43:

34

“ 55N BIGINT(20)

@ Dentistld VARCHAR(15)
>

0 D invoice PaymentofTreatment
| Speclality | |-Dentis
-speciD l-name 1 createdby volceno "'“'Mld
; P -cos!
on 1. has specalty [a 1 -[s)se:‘llﬁstld 0.+ includes -total_amount
+get_speciD(int) T Spec i
i N word — +get_treatmentld{int)
[+get_description(varchar) [EpASS! +get_invoicenofint) +get_cost(decimal)
:gD:\-t:;fhfoom& Sl;name specld) +get_treatmentid(int) +set_total_amount(decimal)
sword(varchal +get_SSN(int)
+getDentistiD(int) +get_Dentistid(int)
1 1 check appointment 1.
created by hiass
fiz 0.*
4 rog Patient tment
medication Prescription l-ssN |-appointld
-medid -prescld -name -date
l-description l-medid |-surname 1 make appointment
-dosage 1. has -SSN -gender 7.7 |-Dentistid
+get_medid(int) 5 |-Dentistid 1. has l-age -ssN
|+set_dosage(varchar) l+get_prescld(int) 1.7 |-phone +get_appointid(int)
+get_medid(int) |-password +get_date(varchar)
+get_SSN(int) +get_SSN(int) +get_description(varchar)
+get_Dentistid(int) +get_password(varchar) o e S
_] patient v bl _] medication v
S5 BIGINT (20) prescld INT{11) medid INT(11)
>password VARCHAR(1Z) | =0 @ —————— @ medid INT{11) _ _— — —I+{ “meddescripion V ARCHAR(20)
_______ J
»name Y ARCHAR(25) 55N BIGINT (20) 7 dosage VARCHAR(50)
 Dentistd VARCHAR(15) >
»surname ¥ ARCHAR{25) ~
sage INT(11)
> gender CHAR(1) T "] appointment ¥ T
» phone VARCHAR(15) : appointiD INT(11) |
> | > date VARCHAR(10) |
i i
F] L— > description VARCHAR(30) (- — 1
: @ Dentistld VARCHAR(15) | :
| @ 55N BIGINT{20) : |
"] paymentoftreatment ¥ |] > 1 T
———————— i v o
treatmentld INT(11) | 1 —J dentist _ spediality v
* name W ARCHAR(30) | Il o Dentistld VARCHAR(15) speclD INT(11)
> cost DECIMAL (10,4) T -i | passuord VARCHAR(12) : > description V ARCHAR (30)
> total _am ount DECIM AL (15,6) | * #Name VARCHAR(20) =i »
> |] invoice v (m———= > 5urname VARCHAR(20)
: invoi ceno INT{11) 1 ¥ specID INT(11)
| @ trestmentld INT(11) _! »

Figure 43. ER Diagram of Dental Clinic Database.

Additionally, a diagram can be created with using MS SQL Server (Figure 44).

35

Invoice
7 invsicshe
TraatmantiD
<G

DantistiD

B ——

PaymentofTreatment
§ TreatmentiD

Mama

[y Cost
Total Amount

patient
§ I

Nama

Dentist
§ DentistiD Appointment
Ham ¥ AppointD
bR ———
Sumama e data
SpaciD == dazeript
Dientistily
j Prespcription
Bl
specialty Mad 1D
§ SpeciD 254
Smargmen Medication Dantzd
§ MediD Desage
Maddascription

Figure 44. Dental Clinic Database Diagram from MS SQL Server.

As seen in Figure 44, database has dentist, patient, specialty, prescription,
appointment, paymentoftreatment, medication, and invoice tables. To understand
relational algebra operators these tables will be used. Before do some example the

operations of relational algebra can be defined.
3.1 RELATIONAL ALGEBRA MAIN OPERATORS
a. SELECT Operation o:

It fetches all the information (subsets) on the table or just the desired part from relation.
This operation result can be the input for another relational algebra operation

(Ramakrishnan, Gehrke).
b. PROJECT OperationIT :

Projection operation deletes attributes that are not in projection list. Duplicate rows are
removed from result because relations are sets. So, it fetches certain columns on the

selection operation.

36

c. CARTESIAN PRODUCT Operation X

Each row of table 1 is paired each row of table 2. Result schema has all information of

relational tables of table 1 and table 2.
d. UNION Operation v :

Returns all the tuples from two different relational tables. The two relations must be

union compatible.
e. DIFERENCE Operations —:

For two relational tables to be applicable tables must have the same arity and Attribute

domains must be compatible.
f. RENAME Operation p :
Returns an identical result to R except that in all tuples attribute

A'is renamed to B (McBrien, 2010). It used to rename the table after Cartesian product

operation or join operations.
g. INTERSECTION Operation N :
Fetches common tuples between two relational tables. Tables must be compatible.

h. JOIN Operation X

Returns tuples from the Cartesian product where common attributes between relational
tables have the same values and removes duplicated columns (McBien, 2010). When
more than one table information is available, a single table can be presented it like one
table.

All SQL queries can be shown as relational expressions. It can be explained with some

examples:

e Listall 18 years old and female patients Name and Surname which are patient
of Dr.O’Sullivan. Figure 45 represents the result of query.
SQL:
Select p.Name, p.Surname
From Patient p join Dentist d on p.DentistiD=d.DentistID
Where p.Age=18 and p.Gender="F'

37

Relational Algebra:

I1name,surname(cage=18 and gender=F(Patient X|Dentist))

Patient Table

Name Sumame Age Gender Phone Dertist|D Dentist Table
1 White 20 M 02589632222 123456 DentistlD Name Sumame SpeclD
2 12345678313 Betty Whte 25 F (2589633214 123654 1 123321 Jennifer Blue 1
3 12345678914 Adam More 8 M 01478523698 123456 2 123456 Rommie O'Sulivan 1
4 12345678915 Jernfer Julan 12 F 01478523265 654321 3 123654 Wanda Scaret 3
5 1235678916 Helen Height 16 F 01478523698 654311 4 654321 G Frederick 2
6 1235678917 Cater Brown 18 M 01478742156 12331
7 12345678918 Jane Doe B F 02589631478 123456
8 1235678913 John Brown 59 M 02365419874 123456
9 12345678921 Johana Bel U F 01478523214 123654
10 12345678923 Bety Boop 18 F 02543698712 123456 Tiname. surname(Cage=18 and
11 12345678924 Jmmy Kim oM 01478521254 654321 gender=F (Patient P{Dentist))
12 12345678925 Hayden Lee % F 0236541789 123654 TR — -
13 12345678926 Robet Lee 3 M 02365417896 123654 1 T Do .
14 12345678927 Borden Kim 2 F 02365479917 123321 > bty Boop ;
15 12345678928 Alex Wang 40 F 02365417896 123321 3 ke oG TF
16 12345678929 Chan Wang 45 M 02589631465 123654
17 12345678931 Luke ONel 18 F 02589631365 123456
18 12345678932 Janet Jacob 35 F 02365417896 123654
19 12345678933 Bnd.. Bown 13 M 05987412365 654321
20 12345678934 Jackie Jam 65 M 02365419863 123321
21 12345678935 James Jam 52 F 08963214578 123654
22 12345678936 Poly Jam 0 F 02589631456 123456
23 12345678937 Ronie.. Jodon 47 M 02589632154 123321
24 12345678938 Roxe Pam B OF 02589632485 654321
25 12345679939 Remi Rwver 26 F 02589632145 123654

Figure 45. Representation of Query Result.

e List all patients whom are have same Surname and their ages, their doctors’
name and specialties. Figure 46 represents the result of query.
SQL:
Select p.Name,p.age,d.Name, s.description
From patient p inner join Dentist d on p.DentistID=d.DentistID inner join
Specialty s on s.SpeclID=d.SpecID
Where p.surname in (SELECT Surname
FROM patient
GROUP BY Surname
HAVING
COUNT (Surname) > 1)

Relational Algebra:

Ip.name,p.age,d.name,s.description(c (Patient PX|Dentist !X
Specialty)(ITsurname(cgroup by surname>1(Patient))))

38

Patient Table Dentist Table
SEN Name Sumame Age Gender Phone Dientist|D D rmstlD Name Sumame SpeclD
1 12345678912} Robet Whte 20 M 02589632222 123456 1 123321 Jennfer Blue 1
2 12145678913 Betty Whte 25 F 02589633214 123654 2 123456 FRonmie O'Sulivan 1
3 12345678914 Adam More 48 M 01478523698 123456 3 123654 Wanda Scarett 3
4 12345678915 Jemnfer Julian 12 0F 01478523265 654321 4 654321 Gu Frederick 2
5 12345678916 Helen Heigt 16 F 01478523698 654321
§ 12345678917 Cater Brown 18 M 1478742156 123321 Specialty Table
7 12345678918 Jane Dos 18 F 02589631478 123456 SpeclD description
8 12345678915 John Brown 59 M 02365419874 123456 1 T Orthodondist
9 12345678921 Johana Bell M F 01478523214 1236854 2 2 Pediatric Dertistry
10 12345678923 Betty Boop 18 F 02543698712 123456 3 3 Oral surgeon
11 12345678924 Jmmy Kim oM 01478521254 654321 7ip.name.p aged name s description(c(Patient
12 12345678925 Hayden Les % F 02365417896 123654 IXIDentist XISpecialty)(Tsurname(Ggroup by
13 12345678926 Robet Les 33 M 02365417896 123654 surname>1 (Patient))))
14 12345678927 Borden Kim 2 F 02365479917 123321 Neme | oge | Neme | descipton
15 12345678928 Alex Wang 40 F 02365417896 123321 ' 20 Romie Onhodondist
16 12345678923 Chan Wang 45 M 02589631465 123654 i
- - o 2 25 Wanda Oral surgeon
7 12345678931 luke O'Nel 18 F 02589631365 123456 ; 8 T et | Coodornke
13 12345678932 Janet Jacob 35 F 02365417896 123654 i]
19 12345678933 Brand.. Brown 13 M 05967412385 654321 | 59 | Fomie | (thodmdst
20 12345678934 Jackie Jam 8 M 02365419863 123321 2 l‘; fif:nda ;z:'?:;e[;m'm
21 12345678935 James Jam 52 F 09963214578 123654
22 12345678336 Poly Jam Pl F 02589631456 123456 | | 3 Wands Oral surgeon
23 12345678937 Rorie.. Jodon 47 M 02589632154 123321 | © 20 | Jomifer | Cthodondst
24 12345678938 Rmds Pam 15 F 02599632435 654321 3 0]Je””’fer Orthodondist
25 12345678933 Remi Fiver % F 02589632145 123654 10 4 Wanda Oralsurgeon
11 Brandon 13 Gru Pediztric Dentistry
12 Jackie 65 Jennifer Orthodondist
13 James 52 Wanda Oralsurgeon
14 Pally 30 Ronnie Ornthodondist

Figure 46. Representation of Query Result.

List all Orthodontics patient and their treatment. Figure 47 represents the result
of query.
SQL:
Select p.Name,p.Surname,p.Age,p.Gender,a.description
From patient p join Appointment a on p.SSN=a.SSn
Where a.DentistID in (Select DentistID
From Dentist
Where SpecID="1")
Relational Algebra:

Hp.Name,p.Surname,p.Age,p.Gender,a.Description(cs(PatientD'(]
Appointment)(ITDentistID(cSpeclD=1(Dentist))))

39

Appointment Table Dentist Table
AppoirtlD date description DentistlD S5n
1 20160122 00:00-00.000 Futine Cortrol 123456 12345678912 | DordidiD | Name | Sumame | SpeciD
2 20170625 00:00:00.000 Shampe Ache 123654 12345678921 11123321 ¢ Jernifer Blue 1
3 20170521 00:00:00.000 Rutine Control 123321 12345678927 2 Ronrie O'Sulivan 1
4 4 20170621 00:00:00.000 Shape Ache 654321 12345678924 3 123654 Wanda Scarett 3
5 5 2017-04-25 00:00:00.000 Rutine Control 123456 12345678936 4 6321 Gu Frederick 2
Patient Table
MName Sumame Age Gender Phone Dentist|D
1 " Robet Whte 20 M (2589632222 123456
2 12345878913 Betty Whte 25 F 02589639214 123654
3 12345678914 Adam More 48 M 01473523698 123456 mp.IName p Surname p Age p Gender.a Descrption
4 12345678915 Jennifer Juiian 12 F 01478523265 654321 (o(Patient P Appointment(nDentistID(cSpecID=
5 12345678916 Helen Heigt 16 F 01478523538 654321 1(Dentist))))
6 12345678917 Cater Bown 18 M 01478742156 123321 Sumame Age Gender description
7 12345678918 Jane Doe 1 F 02589631478 123456 4 Whte 20 M Rutine Control
3 12345678913 John Brown 59 M 02365419874 123456 - " Kim 0 F Rutine Cartral
3 12345678921 Johama Bel U F 01478523214 123654 1 Jam 0 F Rutine Cortrol
10 12345678323 Betty Boop 1 F 02543698712 123456
11 12345678924 Jmmy Km 14 M 01478521254 654321
12 12345678925 Hayden Les % F 02365417836 123654
13 12345678926 FRobet Lee 33 M 02365417836 123654
14 12345678327 Borden Kim M F 02365473917 123321
15 12345678928 Alex Wang 40 F 02365417896 123321
16 12345678923 Chan Wang 45 W 02589631465 123654
7 12345678931 Luke ONel 18 F 02583631365 123456
18 12345678932 Janet Jacob 35 F 02365417836 123654
19 12345678933 Brand.. Bown 13 M 05987412365 654321
20 12345678934 Jackie Jam B M 02365413963 123321
21 12345678935 James Jam 52 F 09963214578 123654
22 12345673336 Poly Jam ! F 02589631456 123456
23 12345678937 FRonie.. Jordon 7 0Mm 02589632154 123321
24 12345678338 Roxde Pam 15 F 02589632485 654321
25 12345678939 FRemi River % F 02589632145 123654

Figure 47. Representation of Query Result.

e List Dr. Gru Frederick’s patients’ name, gender and ages. Figure 48 represents
the result of query.
SQL:
Select Name,Age,Gender
From patient
Where DentistID ='654321'
Relational Algebra:

ITname,age,gender(cDentistiD=654321(Patient))

40

Patient Table

Mame Sumame Age Gender Phone DentistD
1 Whte 20 M 02589632222 123458 ,
2 12345678913 Betty Whte 25 F ooseseianis 1mgse mname.age.gender(cDentistID=
3 12345678914 Adam More 8 M 01478523692 123456 - ©54321(Patient))
4 12345678915 Jemnfer Juian @ 12 F 01478523265 654321
5 12245678916 Helen Heigt 16 F (478523698 654321 | Na _Age Gender
6§ 12345678917 Cater Brown 18 M 01478742156 123321 L ; F
7 12345678918 Jane Doe 18 F (2589631478 123456 2 Helen 16 F
8 12345678979 John Bown 53 M 02365419874 123456 3 dmmy 4 M
9 12345678921 Johana Bel U F 01478523214 123654 4 Bandn 13 M
10 12345678923 Betty Boop 18 F (2543698712 123456 5 Rowde 15 F
11 12345678924 Jimmy Kim 1% M 01478521254 654321
12 12345678925 Hayden Lee 3w F 02365417896 123654
13 12345678926 Robett Lee 9 M 02365417896 123654
14 12345678927 Borden Kim 20 F 02365479917 123321
15 12345678928 Mex Wang 40 F 02365417896 123321
16 12345678929 Chan Wang 45 M 02589631465 123654
7 12345678931 luke ONel 18 F 02589631365 123456
18 12345678932 Janet Jaccb 35 F 02365417896 123654
19 12345678933 Brand.. Brown 13 M 05987412365 654321
20 12345678934 Jackie Jam 8 M 02365419863 123321
21 12345678935 James Jam 5 F 08963214578 123654
22 12345678936 Poly Jam 0 F 02589631456 123456
23 12345678937 FRonie.. Jordon 47 M 02589632154 123321
24 12345678938 Roxie Pam 15 F 02589632485 654321
75 12345678939 Remi Rwver 26 F 02589632145 123654

Figure 48. Representation of Query Result.

The simple database and simple queries are created to understand how operation
works. Talked about relational algebra place in query optimization. Query tree of
queries of Dental Clinic Database (Figure 49, Figure 50, Figure 51 and Figure 52) will
be created to show how tree will be created. The reason for the creation of the query
tree is to make it easier to understand how the relational algebra is constructed. Query
Tree occurs with leaf nodes that are relations. Reading the expressions begin bottom
and ends root node (top).

41

HName,Surname

GAge=18

GGender=F

4
p.Dentistl=d.DentistID

Patient Dentist

Figure 49. Query Tree of name,surname(cage=18 and gender=F(Patient X Dentist))

ITp Name p Age.d Name s description

M S.SpecID=d.Spe

p.Dentistl=d DentistID cID
Patient Dentist Specialty
[Tsurname

cgroup by surname

Patient

Figure 50. Query Tree of TIp.name,p.age,d.name,s.description(c (Patient X Dentist
PX|Specialty)(TIsurname(cgroup by surname>1(Patient))))
42

ITp.Name,p.Surname,p.Age,p.Gender,a
.Description

Xla.SSN=p.SSN

Appointment Patient

I1dentistID

ospeciD=1

Dentist

Figure 51. Query Tree of I1p.Name,p.Surname,p.Age,p.Gender,a.Description(c
(Patient Xl Appointment)(ITDentistID(cSpecID=1(Dentist))))

ITname,age,gender

odentistID=6
54321

Patient

Figure 52. Query Tree of ITname, age, gender(cDentistiD=654321(Patient))

43

3.2 QUERIES’ RELATIONAL ALGEBRA OPERATIONS AND
QUERY TREE REPRESENTATIONS

These study’s queries will be examined as relational algebra operations and their query

tree representations.

1. SOL:

Select *
From person.Person

Relational Algebra:

o (Person.person)

2. SQL:

Select *
From sales.Customer

Relational Algebra:

o (sales.customer)

3. SQL:
Select StorelD

From Sales.Customer
Where StorelD Is Not Null and AccountNumber like '%17'

Relational Algebra:

[1StorelD(cStorelD Is Not Null AND AccountNumber

like *%17’(sales.customer))

44

HStore 1D

GStorelD Not
Null

G AccountNumbe
r

Sales.Customer

Figure 53. Query Tree of Query Three.

4. SQL:
Select PersonlD, Title,FirstName,LastName
From Sales.Customer As sc Inner Join
Person.Person As pp On pp.BusinessEntitylD = sc.PersonID
Where PersonID Is Not Null
Relational Algebra:

IpersonID,Title,FirstName,LastName(cpersonID Is Not Null (sales.customer
IX] Person.Person))

HpersonID,

Title.FirstName.LastName

|

GhpersonID Not Null

[X| BusinessEntityID =

PersonID

Person.Person

Sales.Customer

Figure 54. Query Tree of Query Four.

45

5. SQL:
Select StorelD, FirstName,MiddleName,LastName
From Sales.Customer as sc join Person.Person as pp on
sc.PersonlD=pp.BusinessEntitylD
Where StorelD Is Not Null and AccountNumber like '%17" and
StorelD<1000
Relational Algebra:

I1StorelD,FirstName,MiddleName,LastName(cStorelD Is Not Null AND
AccountNumber like *%17> AND StorelD < 1000(sales.customer |X| Person.Person))

HStoreID, FirstName, MiddleName,

LastName

G StorelD Not Null

O AccountNumber Like
%17

O 'StorelD<1000

|X| BusinessEntitylD =
PersonID

Sales.Customer Person.Person

Figure 55. Query Tree of Query Five.

46

CHAPTER FOUR
USING DYNAMIC MANAGEMENT VIEW (DMV) AND DYNAMIC
MANAGEMENT FUNCTIONS (DMF) FOR OPTIMIZATION

Dynamic management views and functions return server state information that can be
used to monitor the health of a server instance, diagnose problems, and tune
performance. With using DMV and DMFs, users can scan all necessary information
to manage the database. DMV has querying structure, DMF returns table with using
parameter. Users can find useful information with using DMV and DMF like missing
index, most expensive index, least used index, most expensive queries, and most used
queries. DMV has spell dictionary, all DMVs are drawn from system table and this
system table shows on our DMV as a sys.dm_ and after this notation db_, exec , io_,
os_, are followed. They refer groups of what users looking for. Mostly sys.dm_db_
and sys.dm_exec_ DMVs will be used in this study.

sys.dm_db_: It quotes chapter and verse about database and index.

sys.dm_exec_: They inform directly or indirectly about the relevant elements by the

execution of user codes (Acungil, 2016).

There will be shown and explained some useful DMV and DMFs to optimize queries.
Users can find slow queries, running queries, missing index and execution plan of
queries, fragmentation of index, most CPU consuming queries and most 1/0 performed
queries. After finding and fixing all of these problems, the query performance will be
probably improved.

As stated previously, index and their importance for query performance previous
chapter, let’s remember how index were used; profiler can be used to trace query or
activity monitor can be used to find expensive queries and users can directly use
database engine tuning administer on query to get recommendation and apply directly
or examine recommended indexes. When users do some DML operation on queries it
effects index and add or drop operations may effect query performance so users need

to control index, which are unused, missing, or there is any fragmentation on index.

47

So, to control these query problems DMV and DMF querying can be used.

4.1UNUSED INDEX

Finding unused index increases the performance because all deletion and addition
operations also effects index. For this reason, these indexes should be controlled
periodically. To find unused or rarely used index wusers can run
sys.dm_db_index_usage_stats DMV.

With this query, users can get more information about our database’s indexes
situations. After running this query, users will get some information columns and rows
about user seeks, user scans and user updates (Figure 56).

-Iselect Top 5@
DB_NAME(dm_ius.database_id) as DbName, oc.name a5 ObjectName,
i.name as IndexName, i.index id as IndexID, dm_ius.user_seeks as UserSeek,
dm_ius.user_scans as UsrScans, dm_ius.user_lookups as UserlLookups,
dm_ius.user_updates as UserUpdates, p.TableRows
From sys.dm_db_index_usage_stats dm_ius
Inner Join sys.indexes i on i.index_id = dm_ius.index_id and dm_ius.object_id = i.cbject_id
in sys.objects o on dm_ius.cbject_id = o.object_id
in sys.schemas s on o.schema_id = s.schema_id
Inner Join (Select Sum(p.rows) TableRows, p.index_id, p.cbject_id
From sys.partiticns p Group by p.index_id, p.cbject_id) p on p.index_id = dm_ius.index_id and dm_ius.object_id = p.cbject_id
Where OBJECTPROPERTY (dm_ius.chject_id, 'IsUserTable')=1
And 1i.type_desc = 'nonclustered’
And i.is_primary key = @
And 1i.is_unique_constraint = @
Order by (dm_ius.user_seeks + dm_ius.user_scans + dm_ius.user_lookups)
ASC

Inner
Inner

100 %

[Resutts 3 Messages

ObjectMame IndexName IndexlD UserSeek UsrScans Userlookups Userlpdates TableRows
1 _dta_index_Person_5_1765581328__ K1 457 & 0 1 0 0 19972
2 _dta_index_Person_5_1765581328__ K1 56 7 13 1 0] 0 15572
3 AdventureWorks2014 Customer _dta_index_Customer_5_997578592_ K2 g 1 0] 0 15820
4 AdventureWorks2014 Customer _dta_index_Customer_5_997578592_ K3_K2] 2 0 o 0 15820

Figure 56. Querying of Unused Index.

With using this output of query, users can control last index usage information.
However, most important one is UserUpdates, if column has very high value and index
did not use, users must do some operation on this index, because this situation can
cause of low performance.

It could get similar result with using different DMV querying (Figure 57). With using
this querying, users can get name of unused index. Using these information users can

eliminate some of unused indexes.

48

JISELECT OBJECT_NAME(i.[object_id]) AS [Table Name] ,

i.name
FROM sys.indexes AS i
INMER JOIN sys.chjects AS o ON i.[object_id] = o.[object_id]
WHERE i.index_id NOT IN { SELECT ddius.index_id
FROM sys.dm_db_index_usage stats AS ddius
WHERE ddius.[ochject_id] = i.[ocbject_id]
AND i.index_id = ddius.index_id
AND database_id = DE_ID())

AND o.[type] = U’
ORDER BY OBJECT_NAME(i.[object_id]) AsC ;|

100 % -
[Results 3 Messages

Table Mame name

1 | Address | PK_Address_Address|D

2 Address AK_Address_rowguid

3 Address 1¥_Address_Addresslinel_Addressline?_City_StateP ..
4 Address 1¥_Address_StateProvincelD

h AddressType PE_Address Type_Address TypelD

& AddressType AK_Address Type _rowguid

AddressType AK_Address Type_Mame

H AWBuildVe... PE_AWBuildVersion_SystemInformation|D

9 Bill>fMateri... AK_BIllOfMaterals_Product AssembhylD_ComponentID...
10 BillfMater... PHE_BillOfMaterals_BillOf Materals| D

11 Bill>fMateri... [X_BillCOfMaterals_UnitMeasureCode

12 BusinessEn... PK_BusinessEntity_BusinessEntitylD

13 BusinessEn.. AK_BusinessEntity_rowguid

14 BusinessEn... PK_BusinessEntityAddress_BusinessEntitylD_Address. ..
15 BusinessEn... AK_BusinessEntityAddress_rowaguid

Figure 57. Querying of Unused index.

4.2MISSING INDEX

Creating index is very important to database and its performance because it can be said
that index is a shortcut of reaching query results. If index is created correctly, it will
be work fast. Previously talked about query execution previous chapter when users run
the query, optimizer will try to find short and fast way to bring the result and it does
this with indexes. So, when optimizer try to find short and fast way to query and there
is no index to use it will identify index to speed up to performance, and users see this
recommended index as a missing index on our screen. It can be also seen this warning
on query execution plan graph (Figure 58). Finding and applying missing index can
increase the query performance of course it can be checked before apply permanently
with wrong usage it will effect negatively the performance.

49

DMV and DMF can be used to identify missing indexes. There are three DMV, one
DMF.

e sys.dm_db_missing_index_details: This DMV shows which chosen index
will be use on which table and column by optimizer.

e sys.dm_db_missing_index_group_stats: This DMV shows summary
information of groups of missing index.

e sys.dm_db_missing_index_groups: This DMV is a kind of bridge between
sys.dm_db_missing_index_details and
sys.dm_db_missing_index_group_stats. These two DMVs create a meaningful
whole with this DMV.

e sys.dm_db_missing_index_columns: a DMF that accepts an index_handle
parameter and returns a table providing details of columns that would comprise
the
suggested missing index (Davidson & Ford, 2010). It shows information about

database table columns that are missing index, excluding spatial indexes.

FSelect StoreID, FirstName,MiddleName,LastName ~Select PersonID,Title, FirstName,LastName
From Sales.Customer as sc join Person.Person as pp on sc.PersonID=pp.BusinessEntityID From Sales.Customer As sc
Where StoreID Is Not Null and AccountNumber like '¥17' and StoreID<1808 Inner Join
Person.Person As pp On pp.BusinessEntityID = sc.PersonID
00% -~ Where PersonID Is lot Null

o
_ﬁ Messages & Execution plan

00% -
Cuery 1: Query cost (relative to the batch): 100% :

Select StorelD, FirstName,MiddleName,LastName From Sales.Customer as 3c join ‘j Results _'j Messages E"’ Execution plan
IMlsaing Index (Impact 47.1476): CREATE NONCLUSTERED INDEX [<Name of

_\lissir‘.gli Cuery 1: Query cost (relative to the batch): 100%

@ 1 Select PersonlID,Title,FirstName,LastName From Sales.Customer A
T =3 II‘IlSEling Index (Impact 20.9951): CREATE NONWCLUSTERED INDEX [<Na
SELECT N;sted ?nt.:ps Filter Compute Scalar [_[1‘ ,—#—.
Cost: 0 & {Innez Join) Cost: 10 % Cost: 1% L)
Cost: 0 %
SELECT Hash Match Clustered Index Scan (Clustersd)
(Inner Join) [Customer] . [PE_Customer CustomerID].
£
Ifﬁl Cost: &0 % Cost: 21 &
Clustered Index Seek (Clustered)
[Person] . [FE_Person_BusinessEntityl.. @

Cost: 45 %
Index Scan (NonClustered)
[Persen].[_dta_index Person 5_17655.-

Cost- 19 %

Figure 58. Missing Index Warnings on Query Execution Plan Graph.

50

-Iselect Top 20
ROUND(s.avg_total_user_cost * s.avg_user_impact
“(s.user_seeks + s.user_scans),@) as [Total Cost],
d.[statement] as [Table Name],
equality columns,
inequality columns,
included_columns
From sys.dm_db_missing_index groups g

Inner Join sys.dm_db_missing_index_group_stats s
on s.group_handle = g.index_group_handle
Inner Join sys.dm_db_missing_index_ details d

en d.index_handle = g.index_handle
Order by [Total Cost] Desc

100 % -
[Resuts [y Messagss

Total Cost Table Name equalty_columns inequalty_columns included_columns
E[Adventure‘ﬂu'orksZDM].[Sales].[Customer] NULL [PersonlD] MULL

2 [AdventureWorks2014] [Sales]. [Customer] NULL [StorelD] [PersoniD], [Account Mumber]
Figure 59. Missing Index Querying.
-|SELECT user_seeks * avg_total user_cost * ([avg_user_impact * @.81)
AS [index_adwantage] .
dbmigs.last_user seek ,
dbmid. [statement] AS [Database.Schema.Table] ,
dbmid.equality columns ,
dbmid.inequality_columns ,
dbmid.included_columns ,
dbmigs.unique_compiles |,
dbmigs.user_seeks ,
dbmigs.avg_total_user_cost ,
dbmigs.avg_user_impact
FROM sys.dm_db_missing index_group_stats AS dbmigs WITH (MOLOCK)
INMER JOIN sys.dm db missing index groups AS dbmig WITH (NOLOCK)
ON dbmigs.group_handle = dbmig.index_group handle
INMER JOIN sys.dm_db _missing_index_details AS dbmid WITH (NOLOCK)
ON dbmig.index handle = dbmid.index_handle
WHERE dbmid. [database_id] = DE_ID()
ORDER BY index_advantage DESC ;
100 % -
[Results _'_1 Messages
index_advantage last_user_seek Database.Schema. Table equality_columns inequality_columns
: 0.33671833552 | 2017-06-29 20:40:31.167 [Adventure\Works2014] [Sales] [Customer] NULL [PersoniD]
2 0,122409399955472 2017-06-23 20:39:48.830 [AdventureWorks2014] [Sales] [Customer] MULL [StarelD]
included_columns unigue_compiles user_seeks avg_total_user_cost avg_user_impact
NULL 2 3 0534473548444444 21
[PersoniD], [AccountNumber] 2 1 0.259618239566215 4715

Figure 60. DMV Missing Index Querying.

Finding missing index with DMV and DMF helps (Figure 59 and Figure 60). Total

cost column shows the cost of missing index, Table Name column shows the table that

needs to be applied to the index, equality and inequality columns shows key columns

of index, included column shows the column that needs to adding to the index, last

user seek and scan column the last time that seek and scan operations might have used

51

the index., average total user cost column shows average cost saving for the queries

that could have been

helped by the index in the group (Davidson & Ford, 2010), index advantage total

benefit of recommended index. To optimize query performance users should check

periodically missing index and their effects.
4.3INDEX FRAGMENTATION

Index fragmentation is a serious performance problem. When index data deleted,
inserted or updated index fragmentation can occur, when data is deleted gaps occur in
data pages or updated or added data will fill the page and it effects logical order and
physical order matching. All this operation directly effects disk 1/O because when
query wants reach the data it should dispose of time much more than expected so it
effects performance negative way. To fix this user should specify the rate of
fragmentation. To find the rate, users will use sys.dm_db_index_phsical_stats DMF.
After detecting fragmentation, they have two options; Reorganize and Rebuild

operations.

Rebuild operation is dropping the index and creating again. With dropping operation,

fragmented index is completely removed. Reorganize operation is reorganizing the

index pages that means reordering clustered or nonclustered index’s leaf level pages.
To determine which operation will be apply on index users should see fragmentation
rate if fragmentation rate is more than 30% Rebuild operation must be used (Figure
61).

52

= SELECT

ps.abject_id,

i.name as IndexName,

OBJECT_SCHEMA_NAME (ps.cbject_id) as ObjectSchemaName,
OBJECT_NAME (ps.object_id) as ObjectName,
.avg_fragmentation_in_percent
s.dm_db_index_physical stats (DB_ID(), 'LIMITED') ps
INNER JOIN sys.indexes i ON i.object_id=ps.ocbject_id and i.index_id=ps.index_id
WHERE avg_fragmentation_in_percent > 15 AND ps.index_id » @ And page_count < 1l@ee
ORDER BY avg_fragmentation_in_percent desc

{ULL, NULL , NULL,

00 % -
[Resutts 3 Messages
ject_i IndexMame ObjectSchemaMame ObjectName
1 1%_Person_LastName_FirstName_MiddleMName Person Person
2 T2ERTTEZ3 AK_BusinessErtityCortact_rowguid Person BusinessErtityContact
3 245575513 PK_Databasslog_DatabaseloglD dbo Databaseloa
4 114095447 PK_ProductCostHistory_Product|D_Start Date Production ProductCost History
5 1780595675 AK_Product Description_rowguid Production Product Description
& 414624520 PK_SpecialOfferProduct_SpecialOfferlD_Product D Sales SpecialOfferProduct
7 526624519 AK_Store_rowguid Sales Store
8 354100302 PK_ProductList PriceHistory_ProductID_Start Date Production ProductListPrice Histony
5 610101214 I¥_Product Review_ProductID_Name Production Product Review
10 725577623 I¥_BusinessEntityContact_Person|D Person Business EntityContact
11 T2hhTTER23 [¥_BusinessEntityContact_Contact Type|D Person Business EntityContact
12 1237579447 AK_Employee_LoginlD HumanResources Employee
13 1573582065 AK_Product_rowguid Production Product
14 258095960 PK_Productinventory_ProductlD_Location|D Production ProductInventory
15 373576369 1¥_Address_AddressLine 1_Addressline2_City_StateP... Person Address
16 526624519 [¥_Store_SalesPersonlD Sales Store

avg_fragmentation_in_percent

87.6344086021505
75

75

66.6666666666667
66,6666666666667
66,6666666666667
66,6666666666667
66.6666666666667
66,6666666666667
66,6666666666667
66,6666666666667
66,6666666666667
66,6666666666667
57.1428571428571
56.6101634315254
50

Figure 61. Finding Fragmented Index.

Identifying and fixing one of the fragmented index from Figure 61. First fragmented

index that has 87% fragmentation rate will be fixed. This index fragmentation rate is

greater than 30% so users need to apply rebuild operation (Figure 62).
ALTER INDEX [IX_Person_LastName_FirstName_MiddleName]

ON [Person].[Person] REBUILD WITH (ONLINE = ON)

= ALTER INDEX [IX Person_LastName FirstName MiddleName]
ON [Person].[Person] REBUILD WITH (OMLINE = ON)

100 % -

[Results 3 Messages

object_id IndexMName CbjectSchemaName ObjectMame avg_fragmentation_in_percent
1 [245575913 | PK_Databaselog_DatabaseloglD dbo DatabaseLog 75
2 ?255??523 AK_BusinessEntityContact_rowguid Person BusinessEntiyContact 75
3 725577623 |¥%_BusinessEntityContact_PersonlD Person BusinessErtityContact ~ 66,6666666666667
4 72557723 I%_BusinessEntityContact_Contact TypelD Person BusinessEntityContact ~ 66,6666666666667
5 1237575447 AK_Employee_LoginlD HumanResources Employes 66,6666666666667

Figure 62. Fixing Fragmentation.

53

As is seen, first index fragmentation is fixed with rebuild operation. To apply
Reorganize one of the fragmented index that is smaller than 30% users should use this

query:
ALTER INDEX [AK_Product_Name]
ON [Production].[Product] REORGANIZE

After applied this operation users should create new index on this table and these

columns.

4 4EXECUTION PLAN ANALYSIS ON CACHE

As stated chapter 2 that before query execution, SQL Server create estimated execution
plan estimates which index or procedure will be used for this query and this execution
plan is saved on cached. If the query is executed again, this plan is used for this and its
purpose is performance saving. However, if there is some difference in index or
procedure SQL Server’s used execution plan will be wrong it effects performance
negative way. So, this execution plans on the cached should be checked and it can be
done with these sys.dm_db_cached plans DMV, sys.dm_exec sql_text,
sys.dm_exec_query_plan DMFs (Figure 63). Plan Usage is number of execution of
execution plan. Users can control the execution plan when they do any changes on

index or procedure.

Sselect top 28 st.text as [SQL],

cp.cachechjtype,

cp.objtype,

COALESCE(DE_NAME(st.dbid), 'Resource') as [DatabaseName],|
cp.usecounts as [Plan Usage],

qp.query_plan

From sys.dm_exec_cached_plans cp
ply sys.dm_exec_sql_text(cp.plan_handle) st
ply sys.dm_exec_query_plan(cp.plan_handle) gp

100 %

7 Resutts 3 Messages

SaL cacheobitype obitype DatabaseName Plan Usage query_plan
1 Select top 20 st text as [SQL], cp.cacheobitype, cp.obitype.... Compiled Plan ~ Adhoc AdvertureWorks2014 1 <ShowPlanXML xmins="http://schemas microsoft com...
2 select case when cfg.corfiguration_id = 124 — configurati... Compiled Plan Adhoc master & <ShowPlanXML xmins="http//schemas microsoft com...
3 (@_msparam_0 nvarchar(4000))SELECT ISNULL{{case dmi.... Compiled Plan ~ Prepared master & <ShowPlanXML xmins="http//schemas microsoft com...
4 (@_msparam_0 nvarchar(4000))SELECT dtb compatibilty le.. Compiled Plan ~ Prepared — master & <ShowPlanXML xmins="http//schemas microsoft com...
5 SELECT dtb name AS [Name], dtb database_id AS [ID] FRO... Compiled Plan Adhoc master 1 <ShowPlanXML xmins="http//schemas microsoft com...
6 (@_meparam_0 nvarchar4000))SELECT CAST(COLLATION... Compiled Plan Prepared master 1 <ShowPlanXML xmins="http//schemas microsoft com...
7 (@_msparam_0 nvarchar(4000))SELECT dtb collation_name... Compiled Plan ~ Prepared master 1 <ShowPlanXML xmins="http//schemas microsoft com...

Figure 63. Execution Plan Analysis on Cached.

54

45FINDING TOP N MOST EXPENSIVE QUERIES

Expensive queries mean SQL Server spends more time to execute these queries. Users
can reach same expensive queries with using Activity monitor section. Now
sys.dm_exec_query_stats DMV and sys.dm_exec_sql_text and

sys.dm_exec_query_plan DMFs will be used to find and interfere the queries (Figure
64).

=|SELECT TOP 28
CAST(gs.total _elapsed_time / 1000808.80 as decimal(28,2)) as [Tetal Duration],
CAST(gs.total_worker_time * 188.8 / gs.total_elapsed_time as decimal(28,2)) as [CPU %],
SUBSTRING(gt.text, (gs.statement start_offset/2)+1,
((CASE gs.statement_end_offset
WHEN -1 THEN DATALENGTH({qt.text)
ELSE gs.statement_end_offset
END - gs.statement_start_offset)/2)+1),

qs.execution_count,
gs.total logical reads, gs.last logical reads,
qs.min_logical_reads, gqs.max_logical_reads,
qs.total_elapsed_time, gs.last_elapsed_time,
qs.min_elapsed_time, gqs.max_elapsed_time,
gs.last_executicn_time,
qp.query_plan
FROM sys.dm_exec_query_stats gs
CROSS Al s.dm_exec_sql_text(gs.sql_handle) qt
CROSS APPLY sys.dm exec_query_plan(gs.plan_handle) qp
WHERE qt.encrypted-@
ORDER BY gs.total logical reads DESC

0% =

|5 Resuts [{3 Messages

Total Duration CPU % {No column name} execution_court total_logical_reads last_logical_reads min_logical_reads = max_logical_reads total_elaps
1 7542 SELECT clmns name AS [Name], cimns.column_id AS ... 20 28744 1435 1435 1467 133881
2 3 0.53 SELECT clmns column_id AS [ID], clmns name AS [Na... 2 3160 1544 1544 1616 8188146
3 0.06 8452 SELECTiname AS [Name] CAST(index_id ASint) A.. 5 703 360 & 360 55443
14 0.00 100.00 SELECT cstrname A3 [Name] FROM sys tables ASthl.. 1 237 237 237 237 2787
5 37 0.81 Select Person|D Title. FirstName. LastMName From Sale... 1 228 228 228 228 §707744
6 0.01 100.00 SELECT cstrname A3 [Name] FROM sys tables ASthl.. 1 223 223 223 223 7042

last_elapsed_time min_elapsed_time max_elapsed_time lz=t_execution_time query_plan

3sde 3848 33654 2017-06-3001:56:43.760 <ShowPlanXML xmins="hitp://schemas microsoft com...

10553 10553 8177593 2017-06-30 01:56:43 623

55696 5596 2577, 2017-06-30 01:56:45.523

2787 2787 2787 2017-06-30 01:56:44 647

57077 57077 57077 2017-06-30 01:56:33.810

7042 7042 704z 2017-06-30 01:56:44 550

190947 190040 190017 N17nC o0 Nd.ECED 497

Figure 64. Most Expensive Queries.

Total duration column shows total execution time, CPU% column shows time that was
spent to execute. With using these information users can detect most expensive queries

and examine these queries to decrease execution times and increase queries’

performance.

55

4.6 THE MOST CPU CONSUMED QUERIES

CPU is the most important system resource for SQL Server. When CPU spend more
time to one query execution, server performance will be effected badly. For this reason,
users need to control queries, which are consume CPU time more than expected. To
identify these queries sys.dm_exec_query_stats DMV, sys.dm_exec_sql_text and
sys.dm_exec_query_plan DMFs will be used (Figure 65).

EISELECT TOP 5@
CAST((gs.total_worker_time)/1808888.8 as decimal(28,2)) as [Total CPU Time],
CAST(gs.total_worker_time * 188.8 / gs.total_elapsed_time as decimal(28.2))as [CPU¥],
CAST((gs.total_elapsed_time - gs.total _worker_time)*188.8 / gqs.total_elapsed_time as decimal(28,2))as [Waiting],
SUBSTRING(qt.TEXT,
gs.statement_start offset/2) +1

., [(CASE gs.statement_end_offset

WHEN -1 THEM DATALENGTH(qt.TEXT)

ELSE qs.statement_end_offset

END - gs.statement_start_offset)/2)+1)
,qs.execution_count
,qs.total_logical_reads
,gqs.last_legical reads
,gqs.total_logical_writes
,gqs.last_logical writes
,qs.total_worker_time
,qs.1last_worker_time
,qs.total_elapsed_time/leeeese AS Total _elapsed_time_Secs
,qs.last_elapsed_time /10060600 AS Last_clapsed_time_Secs
,qs.last_execution_time

.qp.query_plan

.dm_exec_query stats gs
.dm_exec_sql_texti(gs.sql_handle) gt
CROSS APPLY sys.dm_exec_query plan{gs.plan_handle) qp
ORDER BY gs.total_worker_time DESC

o -

[Results _'_1 Messages

% Wating (Mo column name) execution_count total_logical_reads last_logical_reads total_logical_writes last_logical_writes
1 0.01 Select StorelD, FirstName, MiddleName:, LastName Fro.. 1 143 143 0 0
2 8.05 Select Person|D, Title, FirstName LastMame From Sales... 1 228 228 0 0
3 88.07 SELECT TOP 50 CAST((gs total_worker_time)/10000... 9 0 0 0 0

Figure 65. CPU Consumed Queries.

Total CPU time column shows execution time on CPU, CPU percentage column shows
percentage of CPU place. With controlling these values, users can make some
necessary changes on queries to improve the query performance. It should not

forgotten improving query performance means improving database performance.

4.7DISK I/O BOTTLENECK

Disk I/O checking is important for performance measuring, if problem occurs on
reading and writing processes that will probably effect the CPU and cached. So, to
improve the performance of query users need to check disk I/O amount and detect
the most I/O perform queries. To detect these queries sys.dm_exec_query_stats
DMV, sys.dm_exec sql text and sys.dm_exec query plan DMFs are used (Figure
66).

56

-lselect [Total I/0] =(gs.total_logical reads + gs.total_logical writes),
[Avarage I/0] = (gs.total logical_reads + qs.total_logical writes)/gs.execution_count,
qs.execution_count,
qt.text as [parent query],

DE_NAME(qt.dbid) as DatabaseName,
qp.query_plan
From dm_exec_query_stats gs

sys.dm_exec_sql_text(gs.sql_handle)as qt
Cross Apply sys.dm_exec_query_plan(gs.plan_handle) qp
Order by [Total I/0] Desc

100 %

[Resuts |3 Messages

Total /0 Awvarage /0 execution_court parent query DatabaseMame guery_plan
1 6 (@_msparam_0 nvarchar(4000)SELECT ISNULL{jcase dmi.... NULL <ShowPlanX¥ML xmins="http//schemas mi
2 60 10 6 (@_msparam_0 nvarchar(4000)SELECT dtb compatibility_le... NULL
3 17 17 1 SELECT dtb .name AS [Name], dtb.database_id AS [ID] FRO... NULL
4 5 5 1 (@_msparam_{ nvarchar(4000))SELECT dtb collation_name... NULL
5 0 0 6 select case when cfg.configuration_id = 124 — corfigurati... MULL
6 0 0 1 (@_msparam_0 nvarchar(4000))SELECT CAST(COLLATIO... NULL

Figure 66. The most I/O Perform Queries.

Users can see the most 1/0O perform queries from this result, as a solution to minimize
I/0 using index on these queries (if relevant to use) will be lifesaving. As mentioned
chapter 2, reading and writing data with index seek is easier for server. Finding query

result is not exhausted with index.
4.8 THE MOST EXECUTED QUERIES

All Servers have most executed queries, maintenance of these queries is quite
important. Most used query performance is important for users, these queries
performances effect workflows. Thus, users need to control these queries periodically
with sys.dm_exec_query_stats DMV, sys.dm_exec_sql_text and
sys.dm_exec_query_plan DMFs (Figure 67). After finding most used queries, it can
be used SQL Server tools to analyze them. After analyzing, queries needs specified

and applied to speed up queries.

57

—-|SELECT TOP 5@
gs.execution_count,
gt.text as [Query_Text],
DE_NAME(qt.dbid) as DatabaseName,
qp.query_plan
From sys.dm_exec_query_stats gqs

Cross Apply

Order By gs.execution_count DESC|

100 % =

sys.dm_exec_sql_text(qgs.sql_handle) as gt
Cross Apply sys.dm_exec_query_plan(gs.plan_handle) as gp

[Resutis 3 Messages

Query_Tex DatabaseMame query_plan
1 SELECT TOP 50 gs.execution_court, qtiesd.. NULL £ShowPlanXML xmins="http //schemas microsoft.com. .
2 3 SELECT dtb.name AS [Name], dtb state AS [State] F... NLULL £ShowPlanXML xmins="http //schemas microsoft.com. .
3 1 SELECT TOP 100 [Object_Mame] = object_... NULL £ShowPlanXML xmins="http //schemas microsoft.com. .
4 1 Select StorelD, FirstName MiddeName, LastMame F.. NULL zShowPlanXML xmins="http //schemas microsoft.com...
5 1 SELECT TOP 5 5QLbd text AS 'SQL°, gstats.executi.. NULL <ShowPlanXML xmins="http //schemas microsoft.com. ..
Figure 67. The Most Executed Queries List.
4.9 QUERY OPTIMIZER
To get information about query optimizer users can use

sys.dm_exec_query_optimizer_info DMV. This DMV is an aggregation of the

optimization events over time (Fitchey, 2014). It tracks all optimization performs.

Users can determine query performance situation with checking this DMV (Figure 68).

This output includes all optimization performance information of optimizer.

—ISELECT COUNTER ,

OCCURRENCE

WALUE

FROM SYS.DM_EXEC_QUERY_OPTIMIZER_INFO)

100 %% -

[Resutts _'_1 Messages

COUNTER OCCURREMCE WALUE
1 [optimizations | 17468 1
2 elapsedtime 17468 0.004261907487978
3 final cost 17468 0.0253474233758691
4 trivial plan 10815 1
5 tasks 6653 757.49631745077.
6 no plan o MNULL
7 search 0 2678 1
g search 0time 2678 0.00850149365197909
5 search Otasks 267 1345,13528304705
10 search 1 3975 1
11 search 1time 357 0.00166062853081761
12 search 1tasks 3597 361,594568553459
13 search 2 o MULL
14 search 2time o NULL
15 search 2 tasks o NULL
16 gainstage D ... 0 MNULL

7 gainstage 1... 0 NULL

18 timeout 34 1
15 memony limit ... o NULL
20 insert strt 437 1
il delete stmt 36032 1

Figure 68. Optimizer Information.

58

CHAPTER FIVE
IMPORTANCE OF STATISTICS

Statistics are very important to optimize query performance. Query optimizer uses
statistics; it uses statistics to create optimal query plan structure. With using these,
optimizer creates estimated cost and plan, optimizer decides to use index seek or index
scan operation with using statistical information. Statistical data designate the way of
optimizer. Users can reach already existing statistical information with using SQL
Server Management Studio and control them. Besides, to monitor and quantify the

performance of query users need to observe some statistical values for that query.

AdventureWorks2014 | ! Eeecute | Debug

lorer v 1
EEERAEE
= = Person.Person

3 Columns

L3 Keys

[Constraints

[Triggers

[Indexes

=] [Statistics
illd _dta_index_Person_5_1765581328_K1_
il _WA_Sys_00000002_683CA210
ol WA _Sys_D000000S_693CA210
il _WA_Sys_D0DDD004_693CA210
il WA _Sys_ 00000003 _G93CAZI0
illd _WA_Sy=_0000D0006_B83CAZ10
lld WA _Sys_00000008_693CA210
il “WA_Sys_00000009_693CA210
il _WA,_Sys_0D00DD0D_693CA210
il AK_Person_rowguid
illd '*%_Person_LastName_FirstName_Midd

PK F Busi EntitviD

Figure 69. Statistics of Person.Person Table.

59

5.1 DISK I/O STATISTICS

These disk /O statistics show users, the number of index seek or scan and logical read
and write numbers. Logical read numbers will be small to get good performance from
query. SET STATISTICS ON/OFF commands are used to see statistics. Closing
statistics with OFF is important to do not occupy a place in cache. Statistical values on

query four and query five are measured before using index (Figure 70);

—|SET STATISTICS IO ON
—-15elect PersonID,Title,FirstMame,LastName
From Sales.Customer As sc
Inner Join
Person.Person As pp On pp.BusinessEntityID = sc.PersonID
Where PersonID Is Not Null
SET STATISTICS IO OFF

100 % -

77 Resuts |3 Messages 2" Execution plan

(19119 row(s) affected)
Table 'Workfile'. Scan count 8, logical reads 8, physical reads @,
Table 'Worktable'. Scan count @, logical reads @, physical reads @,
Table 'Person'. Scan count 1, logical reads 185, physical reads @,
Table 'Customer'. Scan count 1, lDEical reads 123i physical reads @
—ISET STATISTICS IO ON
—1select StoreID, FirstName,MiddleName,lastName
From Sales.Customer as sc join Person.Person as pp on sc.PersonID=pp.BusinessEntityID
Where StoreID Is Mot Mull and AccountNumber like '¥17' and StorelD<leéee
SET STATISTICS IO OFF

% -

] Resulis _I_'I Messages E'ﬂ BExecution plan

(3 row(s) affected)
Table 'Person'. 5can count @, lnﬁical reads 12i physical reads @, read-ahead reads @, 1
Table 'Customer'. 5can count 1, luﬁlcal reads 123|r physical reads @, read-ahead reads @

Figure 70. Query Four and Query Five I/O Statistics before Index.

60

—-[SET STATISTICS IO ON

-I5elect PersonID,Title,FirstName, LastName
From Sales.Customer As sc
Inner Join
Person.Person &As pp On pp.BusinessEntityID = sc.PersonID
Where PersonID Iz Not Null
SET STATISTICS IO OFF

% -

Resuts L3 Messages 3,1 Execution plan

{19119 row(s) affected)
Table 'Customer'. 5can count 1, lagical reads 36i physical reads 1, read-ahead reads 34
Table 'Person'. Scan count 1, loglcal reads 185, physical reads @, read-ahead reads @,
—|5ET STATISTICS IO ON
-5elect StoreID, FirstName,MiddleName,LastName
From Sales.Custeomer as sc join Person.Person as pp on sc.PersonID=pp.BusinessEntityID
Where StoreID Is Not Null and AccountNumber like "¥17' and StoreID<1080
SET STATISTICS IO OFF

%o -

Resuts L3 Messages 3#1 Execution plan

(3 row(s) affected)

Table 'Person'. Scan count 8, 1UEical reads 9, physical reads 8, read-ahead reads 8, lo
Table 'Customer'. 5can count 1, lDElCEl reads 4i physical reads @, read-ahead reads @,

Figure 71. 1/O Statistics after Index.

As is seen logical reads have high values Figure 70, the server spends a lot of effort
for 1/ O operation. Index can be used to reduce this seek operation (Figure 71); After

using necessary index Figure 71, query performance improved with reducing logical
reads.

5.2 EXECUTION TIME STATISTICS

Execution time is important for query performance so CPU time managed before
chapters. In this chapter, CPU time will be controlled with using statistics, which are
SET STATISTICS TIME ON/OFF. The execution time of query four and five are
going to be measured without applying index (Figure 72).

61

—|SET STATISTICS TIME ON
—|5elect PersonID,Title,FirstName,LastName
From Sales.Customer As sc
Inner Join
Person.Person &s pp On pp.BusinessEntityID = sc.PersonID
Where PersonID Is Not Null
SET STATISTICS TIME DFﬂ
% v

| Results L3 Messages 2" Execution plan

(19119 row(s) affected)
(1 row(s) affected)

SQL Server Execution Times:
CPU time = 63 ms, elapsed time = 433 ms.
L]

-|5ET STATISTICS TIME ON
-l5elect StorelID, FirstName,MiddleName,lastName

From Sales.Customer as sc join Person.Person as pp on sc.PersonID=pp.BusinessEntityID
Where StoreID Is Not Null and AccountMumber like "¥17' and StorelD<1868
SET STATISTICS TIME DFﬂ

fo =

']
Resuts [Messages E'ﬂ Bxecution plan

(3 rowi(s) affected)
(1 rowi(s) affected)

SQL Server Execution Times:

CPU time = 93 me ElaEsed time = 124 ms,

Figure 72. Execution Time Statistics before Index.

To performance improvement Figure72, CPU time needs to reduce. Necessary index
can be applied on queries. After applied index CPU time and elapsed time decrease
that shows the improvement of performance (Figure 73). So, it can be said that index

which are used on these queries is useful for improvement.

62

-ISET STATISTICS TIME ON
-5elect PersonID,Title,FirstName,lLastName

From Sales.Customer As sc

Inner Join

Person.Person As pp On pp.BusinessEntityID = sc.PersonID
Where PersonID Is Mot Null

S5ET STATISTICS TIME OFF
D% =~

1 Results _I_°I Messages E'“ Execution plan
(19119 row(s) affected)
(1 rowis) affected)

SQL Server Execution Times:

-|SET STATISTICS TIME ON
-15elect StorelD, FirstName,MiddleName,lastName

From Sales.Customer as sc join Person.Person as pp on sc.PersonID=pp.BusinessEntityID
Where StoreID Is Mot Null and AccountNumber like '¥17' and StoreID<1886
SET STATISTICS TIME 'DFFl

% -

Resuts L3 Messages E”’ Execution plan
(3 rowi(s) affected)
(1 rowi(s) affected)

SQL Server Execution Times:
CPU time = @ ms, ElaEsed time = 231 ms.

Figure 73. Execution Time Statistics after Index Applied.

5.3 MONITORING STATISTICS

With SET STATISTICS PROFILE ON/OFF command, it can monitor the query to get
its necessity to improve performance (Figure 74).

63

- SET STATISTICS PROFILE ON
- Select PersonID,Title.FirstName,Lasthame
From Sales.Customer As sc
Inner Join
Person.Person As pp On pp.BusinessEntityID - sc.PersonlD
Where PersonID Is Mot Null
SET STATISTICS PROFILE fJFFI
pose -
7 Resuts |1y Messages 7 Execution plan
PesenlD Tile FirstMame LastMeme
1 iz Gustove Achong
2 Catherine Abel
3 Him FAoercrombis
4 Humbeta Aceveda
5 Pilar Ackeman
13 Frances Adame
7 [anganst Sevith
8 Carda Adams
£l Jay Adams
10 Raonald Adina
11 244 B T 1l T——
Aows Eeecutes SimiTesd Simtkd Nodeld Parent PhysicalDp Logicallp
1 1 Select PersonlD), Trle Frsthame, LasgtMame Fom 5. 1 1 LI NULL NULL
2 RETRE -Hash Matchilnrer Jain, HASH: (] [PersanlD])... 1 2 1 Hash Matech rer Jain
3 LELRE T HOustered Index ScanfDEJECT: [Adverture 1 3 2 Custersd Indes Scan Clustered Index Scan
4 3Rz 1 FeIredee ScaniDBJECT [AdventureWords2014... 1 4 2 Index Soan Ince: Soan
—5ET STATISTICS PROFILE OH
—select StorelD, FirstNams MiddleMams LastNams
From Sales. Customer as sc join Person.Person as pp on sc.PersonID=pp. BusinessEntityID
Where StoreID Is Mot Null and AccountNumber like "¥17° and StoreID<l06@
SET STATISTICS PROFILE OFF
Pl % =
[0 Resufls =y Massages 5 Eeecutionplan
5'|.|ZII'9||:| FresMama MiddeMame LastMame
1|80 | Aamona . Arbsim
2 B0 Lindsey R Camacho
3 B8 Cinedy M. Daodd
ED‘N& Eczcutes Somi Teot Stmtld Nodeld FParent Fhysicallp Logicallp
1 1 Select StorelD), Rret Name MiddeMame LasiName Fr.. 1 1 o MULL NULL
2 1 |-Nested Loeps(inner Join, OUTER REFERENCES:... 1 2 1 Mesled Loaps Inrer Jain
3 1 it WHERE-[Exprl002] bee 17 AND [Adv.. 1 4 2 Fiter Fiter
4 0 | [=Compute ScalarDEFINE:(ExpriD02]={Adwe... 1 5 4 Compute Scalar Compute Scalar
5 o [HCampute ScalerDEFINE Jec] [AccountM... 1 B 5 Compute Scalar Compute Scalar
B 1 | HOustered Index ScanfDBJECT [Adwe . 1 7 E Clustersd Index Scan Oustersd Index Scan
7 3 7 Hlustered Index SeckDBJECT [AdventureWor.., 1 15 Z Cugered Index Seek Custered Index Seck

Figure 74. Query Four and Five Without Index.

For first query physical operation columns and rows column can be checked, and to

understand this statistics second query is more clarify, rows, nodeid, parent and

physical operation columns’ values can be examined and compared with Figure 75

values.

64

-|SET STATISTICS FROFILE ON

Select PersonlD,Title,FirstHame,LastName

From Sales.Customer As sc

Inner Jain

Person.Persen As pp On pp.BusinezcEntityID = cc.PersonlD
kWhere PersonID Is Mot Hull

SET STATISTICS PROFILE OFF

100 %%

=) Resufls Ty Messages ; Executon plan

PerzonlD Tile FretMame LastMame
1 {281 M Gustave Acheng
PR Ms. Cabheine Abel
3 255 Ms. Kim Abercrombie
4z S Humbedo Acevedo
B 259 S=. Piar Ackeman
[301 Idls Frances Adams
7o Ms. Margaret Smith
8 305 Ms. Carda Adama

Rows Eoscutes StfTed Smikd Modeld Pament PhysicalOp
1 {18118 1 Select PersonlD, Teke st Name,LastName From S.. 1 1 0 NULL
PRI |-Merge Join{lnner Jon, MERGE:(pp].[BusnessE... 1 2 1 Merge Join
1 19972 1 l-Index Sean(OBJECT-[AdvertureWorks2014,. 1 3 2 et Sean
4 19113 1 Iindex SeekiOBJECT [AdvertureWorks2014,, 1 4 2 bndex Seex

SET STATISTICS PROFILE ON
-|Select StorelID, FirstName,MiddleMName,LastName
From Sales.Custoser as sc join Persen.Person as pp on sc.PersonIbD=pp.BusinessEntityID

Where StoreID Is Mot Null and AccountWusber like "¥17' and StoreID<l@88
SET STATISTICS PROFILE OFF
1% -
J Resubs |1y Messages 5 = Execution plan
FrathName MiddaMame LastMame
J Famana J Anitnm
Lindsey R. Camache
Cindy M Dodd
FAows Executes SttTest Semtld Modeld Parent PhysicslOp
R Seleet SlorelD, FreiName MiddeMame LastMame Fr.. 1 1 0 NULL
ER -Hested Loapsirmer Jon, OUTER REFERENCES:C . 1 2 1 Nested Loaps
7 1 |-Fiter(WHERE:([Adverture\Works2014] [Sales][.. 1 5 2 Fiter
o 0 | HCompute Scalar{DEFINE:(so] [AccountMum... 1 B 5 Compute Scalar
B74 1 I [~Index Seek(DBJECT [AdvertureWorksZ.. 1 7 g Index Seek
3 7 |lrvdes Seek(DBJECT: [AdvermureWarks 20141 1 13 2 Index Seek

Figure 75. Query Four and Five With Index.

To measure improvement of query four users can check Physical Operation columns,
it shows that, after using index, merge join, index scan and index seek operations are
used for getting result, and Rows column shows that searching data number decreased
19972 to 19119 for applied index table. For second query Rows column shows that
using index decrease searching data number 19820 to 674 for index applied table and

index seek operation is used for improve the performance.

65

CHAPTER SIX
RELATED WORKS

In this chapter will be introduced other tools, which are do same things with SQL

Server tools.

¢ RelaX - Relational Algebra Calculator: This calculator transforms relational
algebra to SQL query and SQL query to relational algebra expression and
shows query tree. It has own data users can learn relational algebra with use

this data also, users can create their own database to use it. It can be used online

(Figure 76).

UIBK - PS Databse ..

Person
name string
age number
gender sfring
Frequents
name string
pizzeria string
Eats
name string
pizza string
Serves
PlZzeria string
pizza string
price number

Relational Algebra saL

select from where group having order limit

select distinct name,age,gender
From Person
Where age Is Not Null and gender like "%F' and age>20

P execute query

T age » null and gender like '%F' and age > 20

T name, age, gender O age # null and gender like '%F' and age > 20 Person

Person.name Person.age Person.gender

Group Editor

download history =

Figure 76. Display of RelaX.

e RAT - Relational Algebra Translator: With this tool, users can transform

their relational algebra to SQL query. Thus, this tool shows query tree like

66

RelaX. It can be downloaded as free (Figure 77).

[) Relational Algebra Translator 4.2.0.0 — ®
File Edit View Data Tool Language Help

R.A Operators .
H- Relational Translator Rat

Sigma Clear expression

[R <T1{StulD, StuName, Class} (Student)
R1 @@ call you query

Natural product Save que

Ro .
Assignment II
Logical Operators SELECT StulD, StuName,Class FRCM Student

AND logical
OR logical

Mathematical Operators

- St uNam. !
! Greater than or equal f) s A fass I
Less than or equal {ma'm

Figure 77. Display of RAT.

e DATABASE MONITOR PRTG: Users can get this database performance
analyzer free at its own site. With this analyzer, user can monitor their database,
no matter what databases are MySQL, Microsoft SQL, Oracle SQL, and
PostgreSQL (Figure 78).

Mar: 193 msec

+ Downtime (%downtime) — Record Count (#) Value () Response Time (msec)

Figure 78. Display of MS SQL Sensor (www.paessler.com/database-monitoring).

e SQL ASSISTANT: It can be used with MS SQL Server, it has own
performance measurement tools like SQL Server. Users can use it to improve

the query and find differences between SQL Server solutions (Figure 79).

67

ey

Fle Edr View
o New Query

¥ mter

Query 501 Assatert Debuy Tosls Window Community Hep
) G HD &
thea b # v I3 WG Ml QEIO =2 =2 42
w 0 X setestsgl Docabumastes (sa (591" | sample si0cadl - |oJ)master (50 (61 -

e fot Sewch Yow [pooding Lenguege Settings Meorn Bun Bugm Yndew |
BE s s@RadmD|dci0e 2= =13 ¥ T e

[SEr—

CFEATE TARLE

akle conchusy

—
Figure 79. Display of SQL Assistant on Databases
(www.softtreetech.com/sglassist/index.htm).
e SOLARWINDS DATABASE PERFORMANCE ANALYZER:

Performance analyzer is very useful for MS SQL Server performance tracking,
with this analyzer users can watch their each query performance daily. They
can collect their data from analyzer and fix the query and other events that

effect the performance (Figure 80).

68

Day | Thursday - September 04 2004 @ Tese
SOL Wat Programs | Databases Machines DB Users Files
Woerval: 1howr ¢

Top SQL Statoments |

. |
000 | EE =
sl -
oo |

—“on

oo |

proy
i =
3 | e o =

- 888 sEESE !
w‘- - - - e = o

xane |

oo |

o |

o |

M e v ue W

DB Instances Wait Time

11713
MONITORING

Query Advice

Trends

@ Storage O

Septamber 4 10.00AM 11 00AM

SCA Kt AITN001 74
Wart Twre 2912 i wm
Vot Wt Tame for Teme Periog 15755 sy

| % oof Totel Wast Tame aoN
Average (secones) D OOeST I
Erecubons ¥aan l
SOL Temt
DELETE FROM ORCER_LINE WHERE of_0 4 » o o
N0 of_8 vl = 0_0_w AND of_w_ i« jo_w_
freom SOL

SET NOCOUNT OFF « omae 2 Batie 10 s3ore resuits
» aready IF ORUEC NAONE_0ronrsy

I 2 e

wy

- I (1

® Current

& Resource:

Srewt Ordery
Lol

LT
- TR
= LAOMSITI4
S0 00278
LaLis il
. 2075
® JAMGITIN
® 2200 e
SRE 4T
LIRS Al

Lhon s Ll
Saxn
» SXNERYS

Sessions

e

Figure 80. Display of SolarWinds (www.solarwinds.com/database-performance-
analyzer).

FREE SQL PERFORMANCE MONITORING TOOL : With this tool users

can monitor CPU, memory, disk and locks. They can watch their server

performance here and they can determine the operation, which one is healthier

for their query (Figure 81).

69

Free SQL Health Monitor

Dashboard Q Details ﬂ‘ Settings !-! Discovery ’ Community

2, mesaolw2kirz-1 % Resources mesol-w2k8r2-1 localhost
. ICh m
= Server Detals Lo Loy -
m SOL Server f‘\ ﬁ ;4\) ﬁ
CPU
& [atabases 149 14 %
= Services CFU Usage: 14 % CPU Usage : 14 %
=] x E
fa0 localhost Lo o oo O
= Server Details f 1 !’ ﬁ
= S0L Server Memary 47,18 % 6793 %
m [Databazes Used: 368 GB (4718 %) Used : 536 GB(67.93 %)
W Services Free : 412 GB(52.82 %) Free : 253 GB(32.07 %)
L Ll
Disk space '_./‘ '\-_-/
. N Used : 46383 GB(10.06 % B Used: 5972 GB(27.01 %
© Monitor More Servers {) {)
B Free : 4£18.83 GB(85.54 %) B Free : 161.36 GB(72.99 %)

Support :: Feedback —
Manan .-.Er-l ':]iﬂE

Free Tools

Figure 81. Display of Free Sqgl Performance Monitoring Tool
(www.manageengine.com/sgl-performance-monitor).

70

CHAPTER SEVEN
CONCLUSIONS AND RESULTS

In this study, importance of index was explained for query performance, and to
understand index usage mentioned index structure. Knowing SQL Server Features and
using them are important to improve query performance. Waiting query result can
cause very huge problem when working with big data. So, this study’s main aim was

decrease the waiting time of query result.

To decrease the waiting time and improve query performance SQL Profiler was used
to create trace file for track the queries. After save the trace file, this file used on
Database Engine Tuning Advisor to analyze query needs, this analyze operation can
be applied a query directly but, to analyze more than one query, trace file should be
used. In this study, Database Engine Tuning Advisor analyzed the trace file, gave some
index and statistics recommendation with their estimated improvement rate. Before
apply the recommendations researches made on queries, after researches,
recommendations applied and got better result. To measure the improvement,

execution plans tooltips’ estimated subtree cost values were used.

The other feature was Activity Monitor; with using this tool users can monitor CPU
time, disk I/O and recent expensive queries. These are the main problems of
performance so monitoring all of these with activity monitor panes is lifesaving
because with using it the problem can be detected and find a solution for the
performance. Recent expensive queries pane may give users the problematic queries
SO users can rewrite these queries or they can examine their execution plan to identify
query necessity. The last SQL Server feature was execution plan this tool scrutinized.
Users can detect query problem and find a solution by using tooltips.

After SQL Server general features, talked about relational algebra and its importance

on query optimizer. Query tree and relational algebra expression were clarified.

The other important things were DMVs and DMFs, they do same thing with SQL
Server tools. They can be used specifically on specific query. Therefore, they have

71

some negative effects, when using DMV, users can be careful about date because this
querying can bring all accumulative informations that are not useful for us. They may

mislead the study.

Additionally, mentioned importance of statistics, using statistics and reading correctly
them is important to understand the problematic queries and their solutions. Also,
reading statistics is important for interpret the index’s effects on query. Therefore, this

study mentioned all important point for performance improvement.

The last chapter was about related works, which are useful tools to use. Using different

performance analyzer tools can help us to improve studies.

Consequently, different queries were used, some of them were complex some of them
were simple. Different queries were chosen with different difficulty levels to could see
different solutions and recommendations. Moreover, reached different solution for
each queries, all solutions and recommendations analyzed and interpreted with using
SQL Server information and applied their solutions to queries. The results were
successful, the study reached its aim, and it improved queries performance on this

study.

To improve this study new optimization tools and new MS SQL Server tools can be
used. Query and index monitoring are mostly mentioned in this study to optimization
and tuning, different database maintenance methods can be searched and applied to
optimize and tune the database. These methods are not suitable for big database

transections so, this study can be improved in this direction.

72

REFERENCES

Acungil, M. (2016). SQL Server'da DMV'ler (Dynamic Management Views) Uzerine.
Mustafa Acungil; Egitmen, Danisman, Teknik Y Onetici:
Http://Mustafaacungil.Blogspot.Com.Tr/2010/01/Sql-Serverda-Dmvler-Dynamic-
Management.Html

Adar, 1. (2016). SQL Server 2016. Abakiis Yaymevi.

Agarwal, S. (2016, May 26). Activity Monitor In SQL Server.
Http://Www.Sqlservercurry.Com/:
Http://Www.Sqlservercurry.Com/2013/04/Activity-Monitor-In-Sql-Server. Html

Agarwal, S. (2016, 06 26). SQL Server Curry. Activity Monitor In SQL Server:
Http://Www.Sqlservercurry.Com/2013/04/Activity-Monitor-In-Sql-Server. Html

Aktas, 1. (2015). Ismail Aktas. Database Performans Yonetimi:
Http://Ismailaktas.Com.Tr/Ders-27-Database-Performans-Yonetimi/

Bolton, C., Langford, J., Berry, G., Payne, G., & Farley, R. (2014). Logicalread. SQL
Server Query Optimization: Https://Logicalread.Com/Sql-Server-2012-Query-
Optimization-WO01/#.Wyiib4jyjiv

Corlatan, C., Lazar, M., Luca, V., & Petricica, O. (2014). Query Optimization
Techniques In Microsoft SQL Server.

Dave, P. (2015, May 11). SQL Server-Introduction To Database Engine Tuniing
Advisor(A.K.A DTA).

Davidson, L., & Ford, T. (2010). Performance Tuning With SQL Server Dynamic
Management Views. Simple Talk Publishing.

Demircioglu, M. (2012, 11 22). Execution Plan Index Davranislarinin Incelenmesi.
Fritchey, G. (2015). SQL Server Query Performance Tuning.
Fritchey, G. (2011). Query Performance Tuning: Start To Finish.

Galperin, E. (2011). Techfounder. Database Optimization Techniques You Can
Actually Use: Http://Www.Techfounder.Net/2011/03/25/Database-Optimization-
Techniques-You-Can-Actually-Use/

GHENCEA, A., & GIEGER, L. (2010). Database Optimizing Services.

Gozideli, Y. (2014). SQL Server 2014 & Veritaban1 Programlama. Ankara: Seckin
Yaymcilik.

Host4 ASP.Net. (2014). How To Optimize SQL Databases With Microsoft SQL Server
Management Studio?

Https://Support.Smartbear.Com/Viewarticle/78858/. (2014).

73

Https://Support.Smartbear.Com/Viewarticle/78858/:
Https://Support.Smartbear.Com/Viewarticle/78858/

Jones, D. (2014). Learn SQL Server Administration In A Month Of Lunch. Manning
Publications.

Kline, K. (2010). Top 10 Tips For Optimizing SQL Server Performance. Quest
Software.

Koch, R. (2016). Toptal. SQL Database Performance Tuning For Developers.

Kumari, N. (2012). SQL Server Query Optimization Techniques: Tips For Writting
Efficient And Faster Queries.

Larsen, G. (2011, 06 03). Database Journal. Top 10 SQL Server Counters For
Monitoring SQL Server Performance:
Http://Www.Databasejournal. Com/Features/Mssql/Article.Php/3932406/Top-
10-SQL-Server-Counters-For-Monitoring-SQL-Server-Performance. Htm

Measuring SQL Server Performance. (2017, 05 25). Measuring SQL Server
Performance: Https://Support.Smartbear.Com/Viewarticle/78858/ Adresinden
Alindi

Mehta, A. (2010). Performance Analysis Using Sql Server 2008 Activity Monitor.

Mehta, A. K. (2016). Performance Analysis Using SQL Server 2008 Activity Monitor
Tool. Www.Mssqltips.Com:
Https://Www.Mssqltips.Com/Sqlservertip/1917/Performance-Analysis-Using-
Sql-Server-2008-Activity-Monitor-Tool/

Msdn.Microsoft.Com. (2014). Open Activity Monitor (SQL Server Management
Studio): Https://Msdn.Microsoft.Com/En-Us/Library/Ms175518.Aspx

Msdn.Microsoft.Com. (2014). SQL Server Profiler: Https://Msdn.Microsoft.Com/En-
Us/Library/Ms181091.Aspx

Mssqldude.Wordpress.Com. (2011, January 19). SQL Server 2008 R2 Performance
Monitoring: Https://Mssqldude. Wordpress.Com/2011/01/19/Sql-Sevrer-2008-
R2-Performance-Monitoring/

Petrovic, M. (2014a). Monitor SQL Server Queries-Find Poor Performers-Activity
Monitor And Data Collection.

Petrovic, M. (2014b). SQL Server Activity Monitor.

Petrovic, M. (2014c, Feb). SQL Server Performance Monitoring With Data Collector-
Part2-Set-Up And Usage.

Pinal, D. (2015). Sqlaquthority. SQL SERVER — Introduction To Database Engine
Tuning Advisor (A.K.A. DTA): Https://Blog.Sqlauthority.Com/2015/05/11/Sql-
Server-Introduction-To-Database-Engine-Tuning-Advisor-A-K-A-Dta/

74

Plecki, M. (2014). Technet Magazine. SQL Server:
Https://Technet.Microsoft. Com/En-Us/Library/2007.11.Sqlquery.Aspx

Rusanu Consulting. (2014). How To Analyse SQL Server Performance:
Http://Rusanu.Com/2014/02/24/How-To-Analyse-Sql-Server-Performance/

Sahtiyan, T. (2011a, Oct). Query Plan Goriintiileme Segenekleri.
Sahtiyan, T. (2011b, Oct). SQL Server Profiler Ile Query Planlar1 Toplamak.
Sahtiyan, T. (2011c¢, Feb). SQL Server'da Index Kavrami.

Shaw, G. (2009). Redgatehub. Finding The Causes Of Poor Performance In SQL
Server: Https://Www.Red-Gate.Com/Simple-Talk/Sql/Performance/Finding-
The-Causes-Of-Poor-Performance-In-Sql-Server,-Part-2/

Sahtiyan, T. (2011d, 08 24). Eksik Index’lerin (Missing Index) Belirlenip
Olusturulmasi1 Operasyonu.

Sahtiyan, T. (2011e). SQL Server'da Istatistik(Statistics) Kavramu.

Wort, S., Loforte, R., & Knight, B. (2017). Logicalread. Improving SQL Server Query
Performance With Indexes: Hittps://Logicalread.Com/Improving-Sql-Server-
Query-Performance-With-Indexes-W02/#.Wyikpijyjiv

Yeter, M. (2014, 02 24). MS How To. SQL Server Mimarisi — Nedir? Nasildir?:
Http://Www.Mshowto.Org/Sql-Server-Mimarisi-Nedir-Nasildir. Html

75

APPENDIX 1 — Dental Clinic Database SQL Code

Dental Clinic Database creating tables:

create table speciality(

SpeclID int,

description varchar(30),

constraint PKS_Speciality primary key(SpeclD)
)

create table Dentist(

DentistID varchar(15),

Name varchar(20),

Surname varchar(20),

SpeclID int,

constraint PKD_dentist primary key(DentistID),
constraint FKS_Speciality foreign key(SpeclD) references Speciality(SpeclD)
on update cascade on delete no action

)

create table patient(

SSN bigint Not Null,

Name varchar(25) Not Null,

Surname varchar(25) Not Null,

Age int,

Gender char(1),

Phone nvarchar(15) Not Null,

DentistID varchar(15) Not Null,

Constraint PKP_Patient primary key(SSN),

76

Constraint FKD_Dentist foreign key(Dentistld) references Dentist(DentistID)
on update cascade on delete no action,

constraint Chk_gender check(charindex('F',Gender)>0 or charindex('M',Gender)>0 or
Gender is Null),

constraint Chk_Phone check(Phone is Null or

(Phone like '[0][0-8][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]) and
len(Phone)=11)

)

create table Appointment(

AppointID int Not Null,

date datetime,

description varchar(30),

DentistID varchar(15) Not Null,

SSn bigint Not Null,

constraint PKA_Appointment primary key(AppointID),
constraint FKAD_Dentist foreign key(DentistID) references Dentist(DentistID),
constraint FKP_Patient foreign key(SSN) references Patient(SSN)
on update cascade on delete no action

)

create table Medication(

MedID int Not Null,

Meddescription varchar(20),

constraint PKM_Medication primary key(MedID)

)

create table Prespcription(

PresID int Not Null,

MedID int Not Null,
77

SSN bigint Not Null,

DentistID varchar(15) Not Null,

Dosage varchar(15) Not Null,

Constraint PKP_Prescription primary key(PresID),

Constraint FKPD_Dentist foreign key(DentistID) references Dentist(DentistID),
Constraint FKPP_Patient foreign key(SSN) references patient(SSN),

Constraint FKM_Medication foreign key(MedID) references Medication(MedID)
on update cascade on delete no action

)

create table PaymentofTreatment(

TreatmentID int not Null,

Name varchar(30) Not Null,

Cost smallmoney Not Null,

Total_Amount as cost*(1+0.08),

constraint PKP_Payment primary key(TreatmentID)

)

create table Invoice(

invoiceNo int Not Null,

TreatmentID int Not Null,

SSN bigint Not Null,

DentistID varchar(15) Not Null,

constraint PKI1_Invoice primary key(invoiceNo),

constraint FKT_Treatment foreign key(TreatmentID) references PaymentofTreatment,
constraint KFIP_Patient foreign key(SSN) references Patient(SSN),

constraint FKID_Dendist foreign key(DentistID) references Dentist(DEntistID)

on update cascade on delete no action

78

)

Procedures:

1. Alter proc[dbo].[Dental Clinic](@ID bigint)
as
Select i.SSN, sum(Total Amount) as Payment
From Invoice i, PaymentofTreatment p
Where 1. TreatmentID=p.TreatmentID and i.SSN=@ID

Group by i.SSN

2. Alter Proc [dbo].[allowdentist](@username varchar (20))
as
Set nocount on;
Select Distinct(p.SSN), p.Name, P.SurName, i.Name
From patient p, Invoice r, Dentist d, PaymentofTreatment 1

where d.DentistID = r.DentistID and p.SSN = r.SSN and i.TreatmentID =

r.TreatmentID
and d.DentistID = @username

Set nocount off;

Trigger:

Create trigger nochange
on Invoice

after update

79

as
if UPDATE(TreatmentID)
begin
if exists (
Select *
From Invoice r, deleted d
Where r.SSN=d.SSN and d.TreatmentID<>t.TreatmentID)
begin
RAISERROR('Can Not Change Treatment',10,1)
rollback

end

80

