

BORNOVA / İZMİR

AUGUST 2017

YAŞAR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MASTER THESIS

PARALLEL EVOLUTIONARY ALGORITHMS

FOR

QUADRATIC ASSIGNMENT PROBLEM

ALPER KIZIL

THESIS ADVISOR: ASST. PROF. DR. KORHAN KARABULUT

COMPUTER ENGINEERING MASTERS PROGRAM

PRESENTATION DATE: 10.08.2017

iii

v

ABSTRACT

PARALLEL EVOLUTIONARY ALGORITHMS FOR

QUADRATIC ASSIGNMENT PROBLEM

KIZIL, Alper

MSc. in Computer Engineering

Advisor: Asst. Prof. Dr. Korhan KARABULUT

August 2017

Quadratic Assignment Problem (QAP) is one of the most difficult combinatorial

problems. There are many approaches proposed in literature to solve QAP. Genetic

algorithms are nature inspired metaheuristics which can create good enough solutions

in reasonable time. But for large size problems, they may be insufficient. This is due

to search space they operate becomes too large and algorithm starts to miss out some

parts. In this thesis, island model genetic algorithms are used to enhance a standard

sequential genetic algorithm in terms of solution quality. Results show that, even with

the most basic 2 island model, the proposed algorithm is able to obtain 3 times better

results when solving QAP instances. The proposed algorithm is tested and fine-tuned

for some of the parameters to enhance the algorithm even further. It is also observed

that, different parameters effect solution quality. Ultimately, the proposed algorithm is

able to come up with good enough configurations that can solve QAP instances up to

3% gap compared to the best-known solutions in the literature.

Key Words: Quadratic Assignment Problem, Metaheuristics, Genetic Algorithms,

Island Model, Parallelism, Combinatorial Optimization.

vii

ÖZ

İKİNCİ DERECE ATAMA PROBLEMİ İÇİN PARALEL EVRİMSEL

ALGORİTMALAR

KIZIL, Alper

Yüksek Lisans Tezi, Bilgisayar Mühendisliği

Danışman: Yrd. Doç. Dr. Korhan KARABULUT

Ağustos 2017

Karesel Atama Problemi (KAP) en zor birleşimsel problemlerden birisidir. Literatürde

KAP’ni çözmek için birçok yaklaşım önerilmiştir. Genetik algoritmalar doğadan ilham

alan, makul bir zaman aralığında iyi sayılabilecek çözümler üreten metasezgisellerdir.

Ancak geniş boyutlu problemler için yetersiz kalabilirler. Bunun sebebi bu

algoritmaların üzerinde çalıştığı arama uzayının çok genişlemesi ve algoritmanın bu

arama uzayının belirli bölümlerini gözden kaçırabilmesidir. Bu tez çalışmasında, ada

modeli olarak tanımlanan bir modeli standart sıralı genetik algoritmayı çözüm kalitesi

yönünden geliştirmek için kullanılmıştır. Sonuçlar, önerilen algoritmanın, en temel 2-

adalı model ile dahi, KAP örneklerinde 3 kat daha iyi çözüm bulabildiğimi

göstermiştir. Önerilen algoritma test edilmiş ve bazı parametrelerine ince ayar

yapılarak çözüm kalitesi daha da arttırılmıştır. Ayrıca değişik parametrelerin sonuç

kalitesine etkileri gözlemlenmiştir.Sonuçta, önerilen algoritma yeterince iyi

konfigürasyonlarla KAP örneklerini literatürdeki en iyi çözümlere %3 yakınlıkta

çözebilme düzeyine çıkabilmiştir.

Anahtar Kelimeler: Karesel Atama Problemi, Metasezgiseller, Genetik Algoritmalar,

Ada Modeli, Paralelleştirme, Kombinatoryal Optimizasyon.

ix

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor Asst. Prof. Dr KARABULUT for his

guidance and patience during this study.

I would like to express my enduring love to my parents, who are always supportive,

loving, motivative and caring to me in every possible way in my life.

I would like to thank all my co-workers and friends who always supported me and

helped me with best of their abilities.

Alper KIZIL

Izmir, 2017

xi

TEXT OF OATH

I declare and honestly confirm that my study, titled “PARALLEL EVOLUTIONARY

ALGORITHMS FOR QUADRATIC ASSIGNMENT PROBLEM” and presented as

a Master’s Thesis, has been written without applying to any assistance inconsistent

with scientific ethics and traditions. I declare, to the best of my knowledge and belief,

that all content and ideas drawn directly or indirectly from external sources are

indicated in the text and listed in the list of references.

Alper KIZIL

Signature

………………………………..

September 5, 2017

xiii

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ .. vii

ACKNOWLEDGEMENTS ... ix

TEXT OF OATH .. xi

TABLE OF CONTENTS ... xiii

LIST OF FIGURES ... xv

LIST OF TABLES .. xvi

SYMBOLS AND ABBREVIATIONS ... xix

CHAPTER 1 INTRODUCTION ... 1

1.1. CLASSIFICATION OF PROBLEMS ... 2

1.2. QUADRATIC ASSIGNMENT PROBLEM AS AN NP- HARD PROBLEM 4

1.3. METAHEURISTICS FOR NP HARD PROBLEMS .. 6

1.4. NO FREE LUNCH THEOREM .. 7

1.5. GENETIC ALGORITHMS AS METAHEURISTICS .. 8

1.5.1. GA PROPERTIES ... 9

1.6. PARALLEL COMPUTING ... 20

1.6.1. FLYNN’S TAXONOMY .. 22

1.6.2. PARALLEL COMPUTING PERFORMANCE CRITERIA 22

 CHAPTER 2 PARALLEL EVOLUTIONARY ALGORITHMS .. 24

2.1. PARALLEL GA MODELS ... 24

2.1.1. PARALLEL INDEPENDENT RUNS ... 24

2.1.2. MASTER-SLAVE MODEL .. 25

2.1.3. ISLAND MODEL .. 26

2.1.4. CELLULAR MODEL.. 28

2.1.5. HYBRID MODELS ... 29

2.2. MEASURING PERFORMANCE IN PARALLEL GAS .. 30

2.2.1. COMPUTATION TIME GAIN ... 30

xiv

2.2.2. SOLUTION QUALITY GAIN ... 31

 CHAPTER 3 LITERATURE REVIEW .. 32

3.1. LITERATURE REVIEW ON QUADRATIC ASSIGNMENT PROBLEM 32

3.1.1. EXACT ALGORITHMS IN THE LITERATURE .. 35

3.1.2. METAHEURISTIC ALGORITHMS IN LITERATURE 37

3.1.3. CURRENT SITUATION IN QAP ... 53

3.2. LITERATURE REVIEW ON PARALLELIZATION OF GA 55

 CHAPTER 4 AN ISLAND MODEL PARALLEL GA FOR QAP 63

4.1. FORMULATION AND SOLUTION REPRESENTATION 63

4.2. IMPLEMENTATION OF THE ALGORITHM ... 63

4.3. ALGORITHM TERMINATION .. 67

4.4. CODING AND BENCHMARKING THE ALGORITHM .. 68

 CHAPTER 5 CONCLUSIONS AND FUTURE WORK .. 95

REFERENCES ... 97

xv

LIST OF FIGURES

Figure 1.1. A Pseudo – code for GA (Eiben & Smith, 2003) ... 11

Figure 1.2. An Iteration Cycle of GA (Eiben & Smith, 2003) .. 11

Figure 1.3. Sample swap mutation between two alleles ... 17

Figure 1.4. Insert mutation between two alleles ... 17

Figure 1.5. Scramble mutation .. 17

Figure 1.6. Inversion mutation .. 17

Figure 1.7. Single Point Crossover ... 18

Figure 1.8. Partially Mapped Crossover ... 19

Figure 1.9. Edge Crossover ... 20

Figure 1.10. List Order Crossover .. 20

Figure 1.11. Serial Processing (Barney, 2009) ... 21

Figure 1.12. Parallel Processing (Barney, 2009)... 21

Figure 2.13. Master-Slave Model ... 25

Figure 2.14. A unidirectional ring, a torus and a complete graph (Sudholt, 2015) 27

Figure 2.15. Graph representation of the cellular model. (Sudholt, 2015) 29

Figure 4.1. Island GA Pseudocode .. 66

Figure 4.2. Number of islands versus mean RPC graph for Tai30a instance 73

Figure 4.3. Number of islands versus mean RPC graph for Tai40a instance 74

Figure 4.4. Number of islands versus mean RPC graph for Tai50a instance 76

Figure 4.5. Number of islands versus mean RPC graph for Tai60a instance 77

Figure 4.6. Number of islands versus mean RPC graph for Tai80a instance 78

Figure 4.7. Parallelization efficiency of Island Model over sequential Algorithm 80

xvi

LIST OF TABLES

Table 1.1. Tim Sort average number of comparisons depending on instance size 2

Table 1.2. Brute force TSP Solution average number of permutations to test depending on

instance size .. 3

Table 1.3 Most efficient TSP Solution average number of permutations to test depending on

instance size .. 3

Table 1.4 Simple GA Properties .. 9

Table 3.5. QAPLIB Instances with optimum values unknown & Best-known metaheuristics.

(Burkard, Karisch, & Rendl, 1997) ... 54

Table 4.1. Parallel Island GA Parameters Initial Experiment .. 66

Table 4.2. Sequential GA Parameters .. 67

Table 4.3. Parallel Island GA Preliminary Test – 1 Parameters .. 69

Table 4.4. Parallel Island GA Preliminary Test-1, Top 13 Most Successful Configurations

out of 96, based on average RPC .. 69

Table 4.5. Parallel Island GA Preliminary Test -2 Parameters .. 71

Table 4.6 Parallel Island GA Preliminary Test -2 Results ... 71

Table 4.7 Parallel Island GA Optimizing Number of Islands .. 72

Table 4.8 Number of Islands Experiment Results with Tai30a data set 72

Table 4.9 Number of Islands Experiment Results with Tai40a data set 73

Table 4.10 Number of Islands Experiment Results with Tai50a data set 75

Table 4.11 Number of Islands Experiment Results with Tai60a data set 76

Table 4.12 Number of Islands Experiment Results with Tai80a data set 77

Table 4.13 Parallelization Efficiency (%) on Taillard samples. .. 79

Table 4.14 Unidirectional – Bidirectional Ring Migration Comparison on Tai30a 81

Table 4.15 Unidirectional – Bidirectional Ring Migration Comparison on Tai40a 81

Table 4.16 Unidirectional – Bidirectional Ring Migration Comparison on Tai50a 82

Table 4.17 Unidirectional – Bidirectional Ring Migration Comparison on Tai60a 82

Table 4.18 Unidirectional – Bidirectional Ring Migration Comparison on Tai80a 82

xvii

Table 4.19 : Optimizing Other Parameters on Taillard a Instances – Possible Configurations

 .. 83

Table 4.20 Taillard a Samples Optimizing Number of Immigrants 84

Table 4.21 : Taillard a Samples Optimizing Immigration Time (Number of Iterations) 85

Table 4.22 Taillard a Samples Optimizing Number of Elites per Island 86

Table 4.23 : Taillard a Samples Best Parameters found on Taillard a Data Set 87

Table 4.24 : Taillard a Instances Optimum Configuration Results 88

Table 4.25 : Burkard Instance Set Optimizing Number of Islands 89

Table 4.26 : Steinberg Instance Set Optimizing Number of Islands 90

Table 4.27 : Nugent Instance Set Optimizing Number of Islands ... 92

xix

SYMBOLS AND ABBREVIATIONS

ABBREVIATIONS:

QAP Quadratic Assignment Problem

EA Evolutionary Algorithm

GA Genetic Algorithm

SA Simulated Annealing

AC Ant Colony

TS Tabu Search

1

CHAPTER 1

INTRODUCTION

Optimization is the process of selecting the best element out of a set of elements. This

is a concept widely used in real life. For instance, when we want to go from one place

to another, we think of alternative routes and select the best possible in terms of money

and time. Similarly, a company producing manufactured products wants to maximize

their profit by minimizing raw material cost.

Another and very famous example can be found in business of shipping goods.

Package delivery companies usually deliver many packages to their destinations daily.

Suppose that a truck owned by the company delivers supplies to several locations. To

maximize their profit, they must reduce their expenditures. The simplest way to

accomplish this is to select a route in such a way that, truck will travel the least distance,

therefore it will consume least fuel. Distance travelled in a possible route can be

calculated by accumulatively adding distances in each step for one stop from another.

A shipping company can use a computer to calculate all possible route permutations

and select the permutation with the least cost. Tricky part here is the number of stops

along the way. As the number of stops increase, number of possible permutations will

increase exponentially to the point where an efficient calculation becomes impossible,

because truck will start from the depot with 𝑛 possible next stops to select and any

remaining 𝑛 − 1 possible stops may be selected as the second stops and so on. This

will make number of calculations 𝑛! for 𝑛 stops. For small numbers like 10, there will

be 3.628.800 possible alternate routes, which can be handled by a computer. For larger

number of stops like 20, we will have 2.432.902.008.176.640.000 alternate routes and

calculation will be overwhelming.

The mentioned problem is known as the classical “Traveling Salesman Problem” in

computer science and it has a wide area of research. There are many other problems

like Traveling salesman which share common characteristics. That is, as the input size

of problem grows, number of possible solutions grow exponentially. One other

2

intriguing fact is that, some of these problems are proven to be convertible between

each other. This means that, an algorithm capable of solving one such problem

efficiently can be used to solve others with some adjustments.

1.1. Classification of Problems

In computer science, optimization problems are divided into two basic categories

based on the complexity of the problem with respect to its input size. Complexity of a

problem is the number of necessary steps required with respect to number of inputs for

the most efficient algorithm for the problem.

Class P Problems: If there is an algorithm that can solve the problem in at most 𝑛𝑐

steps where 𝑛 is the input size and 𝑐 is a constant. Since constant 𝑐 is the most

significant factor determining the running time, we call it a polynomial time algorithm

and the problem it solves becomes class P optimization problem. Sorting problem can

be considered as an example for this class. One of most efficient known algorithm for

this problem is Tim Sort which makes 𝑛𝑙𝑜𝑔𝑛 comparisons at worst and average cases.

Average number of comparisons made by Tim Sort for different input sizes are given

in Table 1.1.

Table 1.1. Tim Sort average number of comparisons depending on instance size

Input Size Average Comparisons (𝑛𝑙𝑜𝑔𝑛)

10 10

20 26

30 45

50 85

Unlike Traveling salesman problem, increasing input size does not get overwhelming

as the input size increases.

Class NP – Hard: NP (non-deterministic polynomial) problems do not have polynomial

time algorithms for their solution. An NP problem is convertible to other problems in

NP domain, so that, if there is a polynomial time algorithm found for this problem, all

3

other problems in NP class can be solved in polynomial time. Since they are

convertible between each other, any problem in this class is thought to be as hard as

the hardest problems in optimization.

It is currently not known whether NP-Hard class problems can be solved in polynomial

time, since P = NP formula has not been proven. However, it is generally believed that

P ≠ NP (Cormen, 2013).

Table 1.2 shows the number of solution candidates to consider for an algorithm for

solving travelling salesman problem with brute force approach. Most efficient exact

algorithm for TSP known today takes an average of 𝑂 (𝑛2 2𝑛) steps to complete

(Woeginger, 2003). Table 1.3 shows the number of solution candidates to consider for

this algorithm.

Table 1.2. Brute force TSP Solution average number of permutations to test

depending on instance size

Input Size Number of Candidates to test (𝑛!)

10 3,628,800

20 2,432,902,008,176,640,000

30 265,252,859,812,191,000,000,000,000,000,000

Table 1.3 Most efficient TSP Solution average number of permutations to test

depending on instance size

Input Size Number of Candidates to test 𝑂 (𝑛2 2𝑛)

10 102,400

20 419,430,400

30 966,367,641,600

50 2,814,749,767,106,560,000

4

Even with most efficient exact algorithms, runtime will be greatly increased in case of

NP-Complete problems. However, optimal results might not be mandatory in all

situations. In such a case, one might weaken the requirement of finding absolute

optimum and accept a “good enough” solution. In this case, if the problem has a good

known heuristic, they provide good enough solutions in a reasonable time. If the

problem in question have no known best practice for its solution, problem-independent

metaheuristic methods can be applied to obtain a good enough solution within a

reasonable time frame.

1.2. Quadratic Assignment Problem as an NP- Hard Problem

Just like Traveling Salesman problem, Quadratic Assignment Problem (QAP) is one

of the most difficult combinatorial optimization problems. Quadratic Assignment

Problem was first proposed by Koopmans and Beckmann in 1957 to formulate

economical activities. The problem consists of assignment of a number of facilities to

the same number of locations in such a way that each location will have a facility. In

this problem, distances between locations and flows between the facilities are known.

The objective generally considered in the literature is minimizing the cost of allocating

facilities into locations, where cost is the sum of all possible distance-flow products.

Since its first proposal by Koopmans and Beckmann, this problem has been used in

blackboard-wiring, numerous economic problems, building a decision framework for

assigning police stations, supermarkets and schools, scheduling problems, best design

for typewriter keyboards and control panels, archeology, statistical analysis, analysis

of reaction chemistry, numerical analysis, hospital planning etc. (Loiola, de Abreu,

Boaventura-Netto, Hahn, & Querido, 2007).

QAP is known to be one of most difficult combinatorial optimizations and serve as a

benchmark problem for evaluating metaheuristics algorithms. Sahni and Gonzales

proved this problem is NP-Hard and in general instance sizes of n > 30 cannot be

solved by traditional exact algorithm approaches in a reasonable time (Sahni &

Gonzales, 1976). That means unless it is proven that P = NP, there is no known way to

solve this problem in a polynomial time in exact approaches.

Reductions can be made to QAP to transform it into Traveling Salesman Problem,

Binary packing problem and maximum clique problem. So, any algorithm capable of

solving QAP in a reasonable time interval will also be able to solve these problems

5

when the necessary transformation algorithm is supplied (Loiola, de Abreu,

Boaventura-Netto, Hahn, & Querido, 2007).

QAPLIB is an Internet library that is created by Stefan Karisch in 1991 which contains

QAP instances from literature, as well as, published best known and optimal solutions,

latest news about QAP, lower bounds found in literature for the instances, software

dedicated to QAP, people who have been working on QAP (Burkard, Karisch, & Rendl,

1997). It was maintained by Karisch until 1997. From 1997 to 2012, Erande Cela

maintained the library who is also famous for his work on QAP. From 2012 and

onwards website is maintained by Peter Hahn and Miguel Anjos from University of

Pennsylvania and Polytechnique de Montreal. Website contains 15 well known data-

sets in literature including most famous Nugent, Skorin-Kapov and Taillard datasets

ranging from sizes 12 to 256 (Burkard, Karisch, & Rendl, 1997).

Library contains 135 instances from 15 data-sets in total and according to Taillard

(Taillard É. , 1995) and Tseng & Liang (Tseng & Liang, 2006) these instances are

grouped into 4 categories mainly:

1. Real-life Instances: Instances created after real-life problems, these types of

problems have many 0 entries on weight matrix and other entries are not

uniformly distributed. Burkard and Offermann data set, Steinberg data set and

Krarup data set are main examples.

2. Real-life like Instances: This kind of instances resemble real-life problems,

however, they are artificially created and generally larger on size. Taillard “b”

instances are on this category.

3. Uniform Randomly Generated Instances: Entries in their distance and flow

matrices have been generated using a uniform random distribution. According

to Taillard, they are the most difficult ones to solve. (Taillard É. , 1995) Taillard

“a” instances are on this category.

4. Random Flows on a Grid: Instances in which locations are placed on an 𝑛 𝑥 𝑛

grid and distances between these points are generated as Manhattan Distances

between grids. Nugent, Skorin-Kapov and Wilhelm and Ward instances are in

this category.

6

1.3. Metaheuristics for NP Hard Problems

Many of the optimization problems in literature are considered to be NP-Hard and a

lot of computation effort is required to solve them. There are approaches like

backtracking, enumerative search, branch and bound methods, dynamic programming

which can find optimal solutions but they are only useful for specific problems because

finding an optimum solution for NP-Hard Problem is often extremely difficult.

However, for some problems, even for some problem instances, there might be

shortcuts only applicable to that problem, or problem instances. A heuristic is any kind

of solution technique which allows some degree of simplification to the problem at

hand, which may or may not give the optimum solution. Heuristics are usually derived

from human experiences and allow reasonable speedups, though, as mentioned, they

do not guarantee finding optimal solutions. When finding an optimum solution is

considered to be hard using conventional ways, researchers usually look for a heuristic

which can be applicable to the problem at hand. Most common heuristic techniques

are trial and error, educated guessing, intuitive judgements, common sense, etc.

When there is no known heuristic for a problem at hand, researchers look for more

generic methods which are applicable to wider area of problems. Metaheuristics are a

set of problem independent methodologies designed to be applicable to wide diversity

of problems, which often yields good enough, approximate (sub-optimal) solutions.

They are extensively used in optimization and machine learning.

There are two primary mechanisms of metaheuristics; exploration, that is, exploring a

wide portion of search space and exploitation, which is finding local optimum points

as much as possible. A good metaheuristic balances both mechanisms and provides

sufficient results in a reasonable amount of time. In literature, metaheuristics are

classified under 2 categories: trajectory based metaheuristics and population based

metaheuristics.

Trajectory based metaheuristics use a single candidate solution and this solution is

modified iteratively as the algorithm progresses; when a better solution is obtained

within its neighborhood, original candidate is replaced until there are no more better

solutions. Due to this trait, such algorithms create the illusion of following a trajectory

within search space. Some examples of trajectory based metaheuristics are simulated

annealing (Kirkpatrick, Gelatt, & Vecchi, 1983), tabu search (Glover, 1989) (Glover,

7

1990), iterated local search (Lourenço, Martin, & Stützle, 2003), variable

neighborhood search (Hansen & Mladenovic, 2001) and greedy randomized adaptive

search procedure (Feo & Resende, 1995).

Second type of metaheuristics favor a collection of individuals over a single individual,

namely called as population based heuristics. As such algorithms progress, individuals

within the population interact with each other and create varieties. In time, unfit

solutions are neglected, usually superior solutions are selected, combined to create

better solutions. This process continues until a reasonable solution is found. Examples

of such algorithms are evolutionary algorithms (Eiben & Smith, 2003), particle swarm

optimization (Kennedy, 2010) and ant colony optimization (Dorigo, Birattari, &

Stützle, 2006), scatter search (Glover, Laguna, & Marti, 2003), etc.

Trajectory based problems metaheuristics are generally better on exploitation, they

find results faster and are more computation power efficient but they are more prone

to being stuck at local optimum points since diversity is a lesser concern. On the other

hand, population based metaheuristics focus more on exploration of search space and

thus, are slower but, generally they are more robust and less prone to being stuck at a

local optimum. However, we cannot infer one is better than the other in general.

Besides traditional metaheuristic methods, there are also hybrid models which

combine several methods to solve optimization problems. A common approach is

having a population based metaheuristic as the base problem solver and improving it

with a trajectory based method, thus utilizing stronger sides of each approach. Another

possible improvement for such methods is utilizing parallelization and parallel

programming in order to run multiple instances of metaheuristics algorithms to

improve overall search result quality and reduce the runtime of algorithm.

1.4. No Free Lunch Theorem

A theorem presented by two computer scientists, David Wolpert and William G.

Macready in 1997, states that, there cannot exist an algorithm which solves all

optimization problems better than other competitor algorithms (Wolpert & Macready,

1997).

This theorem is widely accepted today, because no one was able to come up with such

an algorithm. So, for instance, comparing evolutionary algorithms, in broader context,

8

evolutionary computation methods with other types of computation methods and

algorithms in general is meaningless. More sensible approach would be comparing

evolutionary algorithms and other type of problem solvers in specific problem types.

According to a survey made by Hans-Paul Schwefel, an EA can perform well when

solving discontinuous, non-differentiable, multimodal, noisy and otherwise, when

unconventional response surfaces are involved, while it is weaker in solving linear,

quadratic, strongly convex, unimodal, separable types of problems (Schwefel, 1997).

NFL theorem tells us that there will always be a trade-off between reliability of

problem solver and its applicability to problems in general. When solving a problem,

if there is an efficient algorithm which can solve problem in question, metaheuristics

should not be utilized. However, metaheuristics are solvers which are easily applicable

and easily adoptable for a wide variety of problems. One other quality they provide is

their robustness; they are not easily affected by parameter changes in the problem. In

short, metaheuristics are a common ground between variety of problems and

applicability of problem solvers.

1.5. Genetic Algorithms as Metaheuristics

Genetic algorithms are the most common subtype of evolutionary algorithms. They

are considered as population based metaheuristics. Evolutionary computing is a major

area of research in combinatorial optimization which draws inspiration from natural

selection and evolution of species as well as survival of the fittest. Conception of

evolutionary computing is no surprise, because nature has proven itself to be a

formidable competition environment, a source of inspiration for a problem solver. That

is, any species in nature that has tailored itself to its environment or niche over a long

time. Just like nature, evolutionary computation draws its strength from Darwin’s

“Survival of Fittest” principle. And just as in nature, evolutionary algorithms start with

a population. This population will produce new individuals over time through breeding

(cross-over), mutation and selection of stronger. In this setting, over many generations,

stronger traits will overtake the population, while weaker traits will disappear over

time. When applied to optimization, an individual solution’s fitness value determines

how well it will adapt itself inside the population and become a source for the later

generations. This process yields better and better results for a certain amount of time.

9

In the end, usually fair-enough solutions are obtained when the literature is overviewed.

Genetic algorithms are no exception.

1.5.1. GA Properties

Genetic Algorithms subclass is first proposed by John Holland in his book Adaptation

in Natural and Artificial Systems in 1975 (Holland, 1975). According to Eshelman,

there are three distinct specifications which separates genetic algorithms from other

types of evolutionary algorithms. These are representation used (bitstrings), selection

method (proportional selection) and primary means of obtaining newer solutions

(cross-over). However, over the years, new representation methods such as real-digit

values, permutations, floating points and other selection techniques like stochastic

universal sampling, rank based selection, tournament selection etc. are adopted in

distinct implementations. This made Genetic Algorithms closer to other types of

evolutionary algorithms like Evolutionary Strategy, Genetic Programming,

Evolutionary Programming, while primary emphasis on cross over technique always

remained in later implementations (Eshelman, 1997).

In his book, Holland created the first genetic algorithm which will be latter known as

“Simple GA” or “Canonical GA” to optimize mathematical functions. Over time,

genetic algorithms gained different representations and selection methodologies, in

addition, high mutation rates are used in different studies. Table 1.4 lists the general

properties used in Simple GA.

Table 1.4 Simple GA Properties

Representation Method Bit Strings

Recombination Single – Point Cross over

Mutation Bit flip

Parent Selection Fitness Proportional

Survivor Selection Generational

10

GA General Approaches

In all genetic algorithm implementations, problem solving process starts with a

population which consists of a number of usually randomly created individuals.

Representation of these individuals are called chromosomes and they can be an integer

number, a bitstring, a floating number or permutations. And then, each of these

individuals are evaluated based on a predetermined function to evaluate their fitness

values. Those fitness values are called phenotypes and they determine the chance of

selection of each individual for mating (cross-over). In the next step of algorithm, some

of these individuals are selected from the population and cross-over operator is applied.

Since their chance of selection is based on their fitness values, there is a greater chance

the better individuals inside the population are selected and in rare occasions, the

weaker can be selected to provide diversity within the population. When cross over

and usually low amount of mutation is applied, those selected individuals create a

number of new individuals referred as offspring or children. Each of the new offspring

are evaluated by the fitness function and their fitness values are also determined. After

new offspring are created, algorithm will have a parent population and child population.

Since most of the genetic algorithms prefer fixed-size populations, a number of

individuals must be selected from two populations to create next generation. To do that,

a selection operator is applied. Selection operator may prefer replacement of all parents

in the population with children, a random selection of 𝑛 individuals or selection based

on fitness. This part of algorithm ends with a new generation of individuals. The same

procedure applied to newly obtained generation and the ones come after it, until one

of these newer generations satisfy the termination condition. This termination

condition can be number of generations, finding a predefined fitness value, absolute

time passed or total number of fitness calculations, etc. When a viable solution is found,

the algorithm terminates. A sample pseudo code for GA is as follows:

11

Figure 1.1. A Pseudo – code for GA (Eiben & Smith, 2003)

General processes in an evolutionary algorithm can also be represented in a flow-chart

diagram as shown below:

Figure 1.2. An Iteration Cycle of GA (Eiben & Smith, 2003)

As described above, genetic algorithms work through the iterations of the loop, what

is called generations. First branching starts on survivor selection. In classical GA,

algorithm creates a number of children from randomly selected parents and once this

number is reached, it replaces all the parents with newly produced children, thus

creating the next generation. This kind of genetic algorithms are called Generational

GA. Other kinds of implementations may favor combining parent and child

populations and selecting 𝑛 individuals from merged population. This kind of genetic

algorithms are called Steady State GA.

In a Steady State GA, in addition to crossover and mutation, a replacement operator is

also required. This kind of algorithm make replacements without regarding the

generation or iteration count. Newly produced children are introduced to population

12

as soon as they are created. This approach allows user to precise adjustment of the

course of algorithm, while a Generational GA, this work will be done by selection

method which will be used to determine parents. This makes implementation of

Generational GA simpler to implement but harder to control its course. Additionally, a

Steady State GA will guarantee good individuals will be kept for next generation while

a generational GA will need a property called elitism to have same feature.

GA Selection Methods

In each iteration of the algorithm, a subset of the current population is selected to breed

new individuals. This is the main process that drives algorithm further. This selection

of subset is usually based on a function called “Fitness Function” which determines

the quality of the individuals in population by assigning them positive score values.

Typically, as the score gets higher, it will increase the chance of selection of the

individual.

A selection procedure would start with evaluation of each of the individuals inside the

population according to fitness function. This fitness function is always problem

specific; meaning that, each problem has its own fitness calculation. In some problems,

additional constraints might be given like time and budget. So, fitness function must

also account satisfiability of these constraints. There are different approaches to ensure

validity of solutions. The algorithm might simply discard invalid solutions, it might

attempt to repair invalid solutions, may prefer to use task-specific operators that

always produce correct solutions or may integrate a penalty mechanism for invalid

solutions. In the next step, population is generally sorted in an ascending order with

respect to the fitness scores of individuals. After that, selections are made according to

the properties of various algorithms. Most commonly used algorithms for selection are;

Fitness Proportionate, Stochastic Universal Sampling, Rank Selection, Tournament

Selection and Truncation Selection, while in some cases selection can be made

randomly to gain from computation time.

a. Random Selection: The weakest and most obvious selection type is simply picking

𝑛 number of individuals from population for breeding. As the selection will be

totally random, it will not help the forward development of algorithm results. In

most cases this approach is used in steady state algorithms to gain computation

time where selection pressure is enforced by replacement strategy.

13

b. Fitness Proportional Selection: This is the most straightforward selection approach

and is utilized by simple GA. Entire population is sorted based on fitness quality

of individuals, and then, a probability value is created for each of the individuals

by normalizing fitness values. In each iteration, one individual is selected from the

population based on their probabilities. The chance of selection is increased

according to the fitness value; so fitter solutions are more prone to being selected.

The algorithm takes 𝑛 iterations for 𝑛 selections and therefore it will have 𝑂(𝑛)

running time. The advantage of this method is that, it is the simplest conventional

method, while, its disadvantage is that, it takes significant computation time and a

super fit individual may take over the population in a short time.

c. Stochastic Universal Sampling: It is a more advanced form of fitness proportional

selection introduced by James Baker (Baker, 1987) . Unlike FPS (Fitness

Proportional Selection) algorithm, which selects a number of solutions from

population by repeated sampling, this algorithm divides the population into evenly

spaced ordered based on fitness intervals. SUS then rolls a random number to

sample solutions from each of the intervals. This algorithm has advantages over

classical FPS algorithm: it increases chance of weaker members of population to

be selected, thus, increases diversity within population. It is considered a fairer

approach than classical FPS.

d. Rank Selection: While fitness proportional and SUS methods are strong, they

suffer from their sensitivity to relative individual fitness values. For instance, a

solution with fitness value 10 is 10 times likely to be selected than a solution with

fitness value 1. On the other hand, an individual with fitness value 110 has almost

the same chance of being selected with an individual with fitness value 100. In

order to solve this weakness, rank selection algorithm’s selection depends on the

relative strength of solutions.

e. Tournament Selection: Basic idea of this algorithm is creating a number of

tournaments between several solutions which are selected randomly from the

population. Winner of each tournament is then selected for breeding. In addition,

the winner is determined by a probability value which allows higher chance for

better individual and allows a lower chance for worse individuals. If the

tournament size is adjusted, it allows user to influence selection pressure. Higher

tournament size creates more selection pressure. This algorithm works well in

14

parallel processing, is simple to code and is as efficient as other fitness

proportionate algorithms and allows the adjustment of selection pressure.

f. Truncation Selection: In this model, entire population is ordered based on fitness

values and a subset of fittest individuals are selected for breeding. While this

method is less complex than the others, it is not used in general.

Elitism is usually used in generational algorithms in order to retain the best individuals

inside the population. To put it simply, most quality solutions within the population are

preserved and passed on to the next generation. This approach is not required in a

steady state algorithm, since it relies on replacement strategies to retain the best

individuals.

GA Replacement Methodologies

Replacement also known as survivor selection is a key component in determining

algorithms progress. In generational GAs, this selection is simply based on selecting

newly produced children and eliminating parents from the new population, while in

steady state GAs, there are different approaches and each has their own strengths and

weaknesses:

a. Random Replacement: The simplest and most straightforward approach for steady

state algorithms is generating new population by selecting individuals from both

parents and newly created children randomly. If selected, this approach will not

drive algorithms search towards a specific course and leave the driving search to

better individuals to selection method. When used in a steady state GA, this will

bring it close to traditional generational GA, where the progress of the search is

also dependent on selection method. While it has the advantage of easy

implementation, it will have no significant difference from a generational GA.

b. Inverse Proportional Replacement: As the name suggests, this methodology is

somewhat similar to fitness proportional selection used in parent selection.

Probability of being replaced in the next generation is determined by a probability

that is inverse proportional to individual’s fitness quality. This means that, the

lower fitness value of individual, the higher chance it should be replaced. This, of

course, guides the search process to better individuals very fast, but, after an

extended period in algorithm’s course, all population members will have similar

15

characteristics and therefore similar fitness values. This may cripple algorithm’s

diversity and prevent it from enhancing solution quality.

c. Replace Worst: In a steady state GA, most commonly used method is replacing

the worst fitness quality members of the population with the newly created children.

This approach would also drive the search process further, eliminating weaker

candidates in a time interval and creating more robust population in a relatively

shorter time frame and preserving the best candidates is ensured. When combined

with a random selection strategy, it may yield satisfactory results. However, in a

long period of run, this approach is thought to kill the diversity within the

population and all candidates will become somewhat similar, and finding good

results will be significantly harder and it may have considered to be a greedy

approach.

d. Replace Parents: This idea is based on newly created children to replace their

worst parent or all of their parents. While the clear advantage of this is always

maintaining some form of diversity within the population, it will not speed up the

search process as much as replace worst strategy. It is slower, but it may not be

effected by the degradation of diversity as much.

GA Representation Methods

Regardless of which type of GA is used, strategy of building a genetic algorithm

always starts with deciding on a proper representation. Without an efficient

representation, it might be difficult to differentiate the quality of individual solutions.

Choosing the right representation is one of the most difficult aspects in genetic

algorithm because everything else, selection strategy, replacement strategy, choice of

crossover and mutation operators will depend on it. In order to do the right choice, a

good knowledge about the problem to be solved must be present, while, some common

choices used in literature might be helpful for this decision.

a. Binary String Representation: A solution is represented in the form of a string of

binary digits. To use this representation, size of the string and technique to convert

genotype consisting of binary string to a suitable phenotype must be decided upon.

If a binary string of a particular size can encompass entire search space, this kind

of a representation is efficient. If the problem has extra constraints which creates

invalid solutions, such type of solutions must be fixed or dealt with.

16

In literature, binary string representations is used for many problems such as

knapsack problem or one-max problem.

b. Integer Representation: If the problem to be solved contains a set of values which

can take integer values as solution, interpretation with binary representation might

slow down the process or might not encompass entire search space. In such cases,

representing solutions using integer numbers might be more practical.

c. Floating Point Presentation: There are also cases when set of candidate solutions

are continuous rather than discrete. In such problems, although not entirely

accurate, most suitable form of presentation is using floating point numbers.

d. Permutation Presentation: When a problem needs to be presented as a sequence of

events, this kind of solution representation is often preferred. Events can be labeled

with integer values and their sequencing within the permutation might present the

order which events occur.

As examples, generally algorithms solving 8-Queen problem, traveling salesman

problem, quadratic assignment problem prefers this kind of representation.

GA Mutation Methods

A mutation procedure is introduced into genetic algorithms to generate diversity within

the population as the algorithm progress. Unlike an Evolutionary Strategy algorithm,

where mutation operator is used to direct the search process, in genetic algorithms

mutation is used strictly to create variations and widen the area covered by the

algorithm’s search process within the search space. Technique of mutation is heavily

dependent on genetic structure of solutions (genotype). There are different types of

mutation operators used in literature:

a. Bit-Flip Mutation: This technique is used in binary string representations. Given

a small probability, a candidate solution can undergo a change in one of values in

its bits. If the bit is 0, it is inverted to 1, if it is 1, it is inverted to 0.

b. Random Resetting: Used in integer representations where an integer value is

replaced by one of allowable values in problem domain with a small probability.

c. Creep Mutation: Used in integer representations by adding a small value to the

genotype by a small probability. Probabilities are computed for each position

within the genome. Generating small changes is more probable than larger changes.

17

d. Uniform Mutation: Works on floating point representations with the principle of

increasing or decreasing an allele value in the range of a value randomly selected

within a number domain.

e. Swap Mutation: Works on permutation representations by swapping the allele

values of two randomly selected genes (positions). An example is shown in Figure

1.3.

Figure 1.3. Sample swap mutation between two alleles

f. Insert Mutation: Used in permutation representations. In this method, two points

are selected at random. One of the points is moved to the end of the other. An

example is shown in Figure 1.4.

Figure 1.4. Insert mutation between two alleles

g. Scramble Mutation: Used in permutation representations. Two points are selected

to create a subset and then this subset is shuffled. An example is shown in Figure

1.5.

Figure 1.5. Scramble mutation

h. Inversion Mutation: Inversion works by the principle of selecting two points and

creating a subset and inversing its order. An example is shown in Figure 1.6.

Figure 1.6. Inversion mutation

18

GA Recombination Methods

Recombination can be thought as creating newer individuals by combining the genes

of parent individuals in a meaningful way, without violating the problem constraints.

It is one of the most important aspects of a genetic algorithm. While mutation is mainly

used for creating diversity within the population by occasionally diverting some

solutions from the local maximum points, recombination (cross-over) operators are

mainly responsible for driving the search process further by pulling the population into

the local maximum points. To make search process efficient, two operators should be

used in balance. Just like mutation methods, cross-over methods are also dependent on

the problem representation.

a. Single-Point Crossover: A single point is selected in both parents’ chromosomes.

And then, parents’ chromosomes are splitted at this point. Two children are created

by exchanging tail parts. Used in binary representations and integer representations.

An example is shown in Figure 1.7.

Figure 1.7. Single Point Crossover

b. N Point Crossover: N Points are selected within the chromosomes of parent

individuals and divided. And then those different segments are merged in children.

Used in binary representations and integer representations.

c. Uniform Crossover: Instead of taking full chromosomes of parents, this method

works on genes. For each gene, a probability value is created and based on that

value, source of the gene whether parent 1 or parent 2 is selected. Works in binary

representations and integer representations.

d. Single Arithmetic Recombination: Picks a gene on a random position in both

parents and take the arithmetic mean of the parents’ allele at that point and further

19

beyond that point. Takes head section directly from parents. Used in floating point

representations.

e. Whole Arithmetic Recombination: Works by taking arithmetic mean of two parents’

allele on all genes. Two created children have identical chromosomes. Used in

floating point representations.

f. Partially Mapped Crossover (PMX): Used in permutation representations. First

introduced by Goldberg and Lingle as a cross-over operator for the solution of TSP

(Goldberg & Lingle, 1985).

The algorithm first selects two points within parent chromosomes randomly and

copies the genes between these two points from first parent. Then checks the alleles

in the same section of second parent that are not copied into child. For each of

these alleles (say A), checks the alleles in their positions on parent 1 (Say B). And

then, places A in child to the position of B in parent 2. If the place of B in child is

occupied by the element C, copies the allele A into position of C in child. And at

the end, copies the rest of the alleles from parent 2 into child. And then the second

child is created by parents 1 and 2 reversed.

A simple illustration of how the process works is given in Figure 1.8. Whole

process takes 3 phases. In the first phase, alleles from parent 1 are copied directly

to child. In the second phase, alleles not present in child but present in parent 2 are

copied. In the last phase, all other alleles are copied into their original positions in

child.

Figure 1.8. Partially Mapped Crossover

g. Edge Crossover: It is another interesting idea for permutation representations

that favors the preservation of edges found in both parents. In this algorithm,

first, neighboring alleles for each allele is determined and they are listed. In the

second step of the algorithm, a random allele is selected and in each iteration,

20

algorithm might select one of the edges. Selection firstly favors edges found in

both parents. If no such edge is present, next allele is selected from one of the

selectable edges randomly. An example is shown in Figure 1.9.

Figure 1.9. Edge Crossover

h. List Order Crossover: This is another crossover technique derived from PMX. It

starts in the same manner as PMX: a subset of genes are selected from parent 1 and

are copied into the child. In the next step, starting from the endpoint of randomly

determined subset, the unused alleles in parent 2 are copied into the children in the

same order in parent 2, until no more element remains. A simple representation can

be shown as below in Figure 1.10:

Figure 1.10. List Order Crossover

1.6. Parallel Computing

Originally, all of the programs that run on a computer were designed to run in serial.

They were split into sets of instructions which are sent to a single processing unit and

executed in sequence one by one. This resembles an analogy where a single worker is

building a wall, doing all necessary tasks one at a time. This approach was slow and

21

complex tasks requiring lots of computing power would require very long-time frame

to complete (Figure 1.11).

Figure 1.11. Serial Processing (Barney, 2009)

In contrast, parallel programming is the use of multiple processing units

simultaneously to by dividing a task at hand into smaller chunks (Figure 1.12).

Figure 1.12. Parallel Processing (Barney, 2009)

This processing unit maybe multiple cores of a single processor, multiple processors

on a single computer or a cluster of computers. In order to achieve an efficient

parallelization, problem at hand must be logically divisible into smaller subproblems.

Today, parallel software systems are used in numerous fields effectively, such as, big

data processing, data mining, search engines, medical imaging, computer graphics,

22

virtual reality, web services, entertainment industry, operating systems, computer

security as well as optimization.

 Where it is possible to use multiprocessing, it yields huge benefits. It decreases the

runtime required for solving problems, allows to solve larger instances of the problem

and since all the processors today contain several processing units, it also allows

efficient utilization of resources at hand.

1.6.1. Flynn’s Taxonomy

Proposed by famous computer researcher Michael J. Flynn in 1966, Flynn’s taxonomy

is a classification of parallel computing architectures based on instructions and data

(Flynn, 1972). It is still most widely accepted and is a popular classification technique

as of today. There are four distinct categories in this classification.

a. Single Instruction Single Data (SISD): A serial computer which features no

parallelism. A single processing unit fetches a single instruction from memory at a

time and only a single data stream is used as an input at a time. Typical examples

are old computers and mainframes.

b. Single Instruction Multiple Data (SIMD): A type of parallel computer in which all

processing units fetch and execute same instruction from memory at a time where

each of which uses different data streams as inputs at a time. A typical example can

a be GPU unit.

c. Multiple Instructions Multiple Data (MIMD): Most common type of parallel

computers today, in which multiple processing units fetch and execute different

instructions from memory and are able to use different data streams of their own.

Typical examples are modern personal computers, tablets and smartphones.

d. Multiple Instruction Single Data (MISD): An uncommon type of parallel computer

in which each processing unit fetches different instructions from memory and

operates on same data stream.

1.6.2. Parallel Computing Performance Criteria

Performance gain in multiprocessor architectures are often calculated by Amdahl’s law.

According to this law, performance gain by enhancing some portion of a computer can

be calculated using “Speedup Ratio” formula (Amdahl, 1967).

23

a. Speed-up Ratio: A ratio which determines how much gain will be obtained when

an enhancement is made. Can be adapted to multiprocessor architectures.

Therefore, speed-up ratio on N-Cores (𝑆𝑁) can be calculated as follows:

𝑆𝑁 =
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝐸𝑛𝑡𝑖𝑟𝑒 𝑇𝑎𝑠𝑘 𝑖𝑛 𝑆𝑖𝑛𝑔𝑙𝑒 𝐶𝑜𝑟𝑒

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝐸𝑛𝑡𝑖𝑟𝑒 𝑡𝑎𝑠𝑘 𝑖𝑛 𝑁 − 𝐶𝑜𝑟𝑒𝑠

b. Parallelization Efficiency: Determines how much speedup is obtained per newly

added processor:

𝐸𝑁 =
𝑆𝑝𝑒𝑒𝑑 𝑢𝑝 𝑅𝑎𝑡𝑖𝑜 (𝑆𝑁)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑒𝑠 𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑 (𝑁)

There are three possible scenarios for parallelization efficiency when a program is

divided into N processors:

𝐸𝑁 = {

𝑆𝑢𝑏 − 𝑙𝑖𝑛𝑒𝑎𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 , 𝐸𝑁 < 1
𝐿𝑖𝑛𝑒𝑎𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 , 𝐸𝑁 = 1
𝑆𝑢𝑝𝑒𝑟 − 𝐿𝑖𝑛𝑒𝑎𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 , 𝐸𝑁 > 1

In most cases, increasing the number of processor cores will not yield the efficiency

desired. The biggest reason for that is, it is not possible to divide all of the portions of

the program N-Equal tasks. That is why most of the time, sub-linear efficiencies are

acceptable. However, in some cases, linear efficiency can be obtained. Additionally,

execution time may not be the only gain in multi-core architectures. There may be

other performance considerations depending on the problem.

24

CHAPTER 2

PARALLEL EVOLUTIONARY ALGORITHMS

Genetic algorithms in general are types of metaheuristics that provide good enough

results within a reasonable time frame for computationally hard problems. But when

applied to larger instances of hard problems, they may become relatively slow. In

addition, it is not just a matter of speed but also quality of solutions may drop. Main

reason of the drop in the solution quality is that algorithm will only be able to focus a

smaller portion of search space, since the expanse of traversing search space will also

increase as input size increases. A single sequential algorithm will eventually converge

on a small portion of search space and lose its diversity. Since a good metaheuristic is

expected to balance solution exploitation and solution exploration, they may become

inefficient.

One way to deal with these problems is taking advantage of modern computation

architectures and multiple processor cores within a single chip or to put it shortly,

combining evolutionary algorithms with parallel computation. By sharing the

workload evenly among processor cores, it is expected to gain a speedup over the same

algorithm running on single processor core, as well as, running different algorithms

simultaneously to discover a larger area in search space with the hope that it will lead

to finding better solutions. It should also be pointed out that, parallelized EA models

resemble natural evolution process better than their serial counterparts.

As genetic algorithms are perhaps the most popular subtype of evolutionary algorithms,

parallelization of GA, is also more popular compared to the other types in the literature.

There are several strategies suggested in the literature as to how to accomplish

parallelization of GA.

2.1. Parallel GA Models

2.1.1. Parallel Independent Runs

A simple approach based on the idea of a single GA might not be able to explore a

wide area within the search space. So, by taking advantage of the multi-core

architecture of modern processors, several independent GA might run simultaneously.

Problem here is; there is no communication between these GA programs. This can be

25

achieved easily by running each of the evolutionary algorithms on separate threads or

processes. Although a simple mechanism, it can be extremely helpful if we are not sure

about the nature of problem at hand. By running GA with different parameters (cross-

over rate, mutation rate, selection strategy, etc.), it allows gathering statistical data

about the problem at hand in a much shorter time frame compared to running each

configuration sequentially. Disadvantage of this strategy is; since there is no

communication between independent runs, diversity within each algorithm will

rapidly fall compared to other methodologies and it will conclude on a local optimum

with much greater probability. This problem is also known in literature as premature

convergence.

2.1.2. Master-Slave Model

This model is constructed to gain pure speedup compared to a simple sequential GA.

The idea is that, time consuming tasks like fitness evaluation, crossover and mutation

within a GA can be distributed to the other processor cores and completion time of the

algorithm can be reduced drastically. Main parts of the algorithm like initialization and

generation loop will be dealt within the master process/thread, while time consuming

tasks, mostly fitness evaluations, will be distributed to slave threads/processes

assigned on different cores. Once the calculations are complete, slave threads are

terminated and results are returned to master thread. The other parts of the algorithm

will work just as its sequential counterpart. The experiments carried out in this thesis

study show that, when applied to the sequential algorithms, this method yields a

significant speedup. Figure 2.1 shows the general architecture of master-slave model.

Figure 2.13. Master-Slave Model

26

2.1.3. Island Model

Another model called island model is an enhancement to independent runs by allowing

a communication between GAs on different processor cores. This is expected to

eliminate the problem of premature convergence on different GAs and provide better

results.

In Island model, also known as coarse-grained GA, main population is divided into

different subpopulations known as the islands or demes. Those islands are then

assigned into different processor cores and just as in sequential GA, each of them starts

to evolve independently. After certain number of generations, known as epoch, each

of these island exchange solutions and continue to evolve from that point. Newly

introduced individuals add diversity to islands and hopefully keep them from

converging prematurely. Also, islands stuck at low fitness regions of subspace are

introduced with better solutions allowing them to evolve and contribute.

This model provides a reasonable speed-up. It is also flexible, which means it can be

combined with any other model. In addition, it eliminates premature convergence,

explores different regions within search space and provides much better results than a

classic sequential GA. However, it will add extra parameters due to migration model

it implements. These parameters are:

1. Number of Islands to make up general population. This determines how many

simultaneous runs will be conducted within the algorithm. It is expected that, in

general as the number of islands increase, so will the performance of algorithm.

But if the general population is divided into too small subpopulations, algorithm

may perform poorly. This is usually dependent on problem size and called “critical

mass”.

2. Period of Migration, which is how often the solutions will be exchanged between

islands. If the period is too frequent, subpopulations may not have enough time to

evolve and exploit, so algorithm may perform poorly. If the period is too seldom,

there is a risk of premature convergence of subpopulations, and therefore, the

algorithm may perform poorly.

3. Number of Solutions to Exchange within each epoch. If too many candidates are

exchanged, newly added solutions might take over the subpopulations and those

subpopulations maybe diverted from local optimums. If the candidates to be

27

exchanged are too few, they may not be enough to prevent premature convergence

of subpopulations.

4. Immigration Topology, which determines the spatial distribution of the islands.

This, determines the neighborhood structure. Islands can be arranged in a circular

order, one after another, in which case immigration topology is called ring

migration. If the islands are arranged to resemble a graph migration topology, it is

called graph migration. One might also choose to use a multidimensional (3D, 4D,

etc.) representation for topology, in which case islands will have more than one

neighbors, such representations are called hypercube. Different types of topologies

are shown in Figure 2.2.

Figure 2.14. A unidirectional ring, a torus and a complete graph (Sudholt, 2015)

5. Direction of Migration between neighbors. Any type of migration topology can

be arranged to exchange individuals in a single direction or a bidirectional.

6. Immigration Policy; the decision of which members to exchange between

subpopulations. Selection may be the random, the worst candidates or the best

candidates or any other selection strategy might also be applied. There is no

consensus to which strategy is better.

7. Decision to Copy or Move the Immigrants is the decision of leaving a copy of

individual or removing it from original island might also play a part in efficiency

of the algorithm.

8. Homogeneous or Heterogeneous Island Algorithms. If all islands are initialized

with same parameters, this kind of an island model is said to be homogeneous. If

28

the configurations of the islands are different, this kind of a model is called

heterogeneous island model (Sudholt, 2015).

Island model is ideal for MIMD machines, where every island will be assigned to a

different core, therefore this model is commonly favored when a modern-day CPU

will be used. But they can also run on single core CPU, albeit not simultaneously.

2.1.4. Cellular Model

This can be considered as a special form of island model, where each island consists

of a single individual. It is also known as fine-grained model. Each island is called a

cell and these cells are connected with their immediate neighbors in a topology and

they can only reproduce or mate with their neighboring cells. As the algorithm progress,

neighboring cells will start to be closely related, while, spatially distant cells will be

different from each other. This typical change is called isolation by the distance. In the

long run, better solutions will start to take over population on a slow rate. This process

is called diffusion.

Unlike island model, cellular model implements no evolution within the cells, but it

occurs in the outer layer, inter-cells. Commonly, fitness evaluations, selection and

mutations and cross over between cells are done in synchronization. However, it is

also possible that the algorithms may choose to perform these operations

asynchronously in some cases, depending on the problem instance.

An important aspect in this model is the selection of the cell to be updated or order of

the updates within the model. Alba et al. (Alba, Giacobini, Tomassini, & Romero, 2002)

suggested 4 strategies for choosing the next candidate to be updated:

• Uniform Sweep: Selection is done randomly.

• Fixed Line Sweep: Cells are updated by line.

• Fixed Random Sweep: A sequence of cells determined according to some strategy

and updates are done in permutation sequence

• New Random Sweep: A permutation is regenerated after every selection, this

model is called new random sweep.

Another important aspect of cellular model is the topology to be selected in which cells

will be spatially distributed. According to (Sudholt, 2015) most common topologies

29

are ring, 2D torus and graphs. This factor will have a large impact on diffusion of better

solutions and a correct selection will vastly improve output of the algorithm. Figure

2.3 shows an example of graph representation.

Figure 2.15. Graph representation of the cellular model. (Sudholt, 2015)

Cellular model is preferred on SIMD machines. For this reason, they are very

convenient to run on GPU modules. However, they can be modified to run on MIMD

standard CPUs we use today, or even on a single core processor albeit not

simultaneously.

2.1.5. Hybrid Models

Aside from the traditional models, genetic algorithms can be set to run in combination

of these approaches to obtain better speed up and solution quality. However, their

implementations will be reasonably more complex. Instead of a single level, there will

be two levels of algorithms. Below are some interesting combinations:

1. Island Model & Cellular Model Hybrid: Using an island model on higher level and

running a cellular model within each island. Cellular parts may be set to run on

computer’s GPU, while fitness calculations, migration and other operations are

performed on CPU.

2. Island Model & Sub-Island Model Hybrid: Island model on higher level and within

each island, running another island model. This may further increase general

diversity and allow algorithm to cover search space more extensively.

30

3. Island Model & Master-Slave Model Hybrid: This model is beneficial where there

are more cores in CPU than number of islands constructed on the algorithm to

better utilize the available processor.

4. Cellular model & Master-Slave Model Hybrid: In this model, fitness calculations

will be sent to CPU for faster computation, and other parts of algorithm will remain

on GPU.

2.2. Measuring Performance in Parallel GAs

There are two main factors to assess the gain of parallelization in genetic algorithms.

These are computation time gain and solution quality.

2.2.1. Computation Time Gain

Computation time in genetic algorithms is measured in several different ways: wall

clock time it takes to complete the algorithm and number of generations it takes to

complete the algorithm. In either case, computation time gain can be measured in terms

of speed–up method formulated by Ahmdahl (Amdahl, 1967).

In 2002, Alba presented a taxonomy in which speedup provided by the parallelization

of evolutionary algorithms can be classified (Alba, 2002):

a. Strong speedup: Total runtime of the parallel evolutionary algorithm is compared

to the runtime of the best-known sequential algorithm. This sequential algorithm

may or may not be an EA. This scale determines how much a parallel EA improves

over current best-known counterpart. However, it is not favored by the researchers

because of the complexity of finding the best known sequential algorithm.

b. Weak speedup: Total runtime of the parallel evolutionary algorithm is compared to

its sequential counterpart. It is favored by the researchers since it is easy to classify.

It has two different sub versions:

i. Panmictic (Single Population) weak speedup: Runtime of parallel evolutionary

algorithm is compared to the single-population version of it on an 𝑚 processor

system.

ii. Orthodox weak speedup: Runtime of parallel evolutionary algorithm on a

multicore machine is compared to runtime of sequential algorithm on a single

core machine.

31

According to Alba (Alba, 2002), parallel evolutionary algorithms can not only achieve

a linear speedup, but also super linear speedup is also possible on some instances. Alba

concludes that several factors such as using efficient data structures, better exploration

of search space from multiple positions or increase on some other resources like

memory, cache etc. effect the efficiency of the algorithm. Therefore, he concludes that

achieving super linear speeds in an EA is possible with a correct implementation.

2.2.2. Solution Quality Gain

A parallel algorithm will evidently better discover the different portions of subspace

than its sequential counterpart and avoid problems like premature convergence.

Effectively this will improve the solution quality.

A formulation called Relative Percentage Change (RPC) can be used to compare

solution qualities of parallel and sequential algorithms, between best candidates of two

algorithms and best-known solutions for the problem on hand. RPC formula for

minimization problems is given below:

𝑅𝑃𝐶 =
𝑋𝑁𝑒𝑤 − 𝑋𝐵𝑒𝑠𝑡𝐾𝑛𝑜𝑤𝑛

𝑋𝐵𝑒𝑠𝑡𝐾𝑛𝑜𝑤𝑛
× 100

𝑋𝐵𝑒𝑠𝑡𝐾𝑛𝑜𝑤𝑛 is the best solution found for a problem instance in literature, while 𝑋𝑁𝑒𝑤

is the solution that needs to be evaluated. Formula above will yield the difference of

newly found solution compared to best known solution to the problem on hand by

percentage. A negative value indicates that the compared algorithm found a better

solution than the best-known solution.

This will ultimately allow to measure how an algorithm performs compared to another

algorithm. In addition, it will allow to measure how a change in a parameter affects

the efficiency of parallel evolutionary algorithm, because finding the correct

parameters is a key point for successfully discovering a wide area of search space and

avoiding premature convergence.

32

CHAPTER 3

LITERATURE REVIEW

3.1. Literature Review on Quadratic Assignment Problem

Since its first proposal by Koopsman and Beckmann in 1957 (Koopmans & Beckmann,

1957), to mathematically model economical activities, Quadratic Assignment Problem

(QAP) gained a lot of attention on scientific world because it can be used in many

applications.

Perhaps one of the most famous applications is “Steinberg Wiring Problem” described

by Leon Steinberg to model placement of computer components in an electronic

blackboard in order to minimize total amount of wiring needed (Steinberg, 1961). In

his article he suggested three instances with a matrix size of 36 x 36. It took about 40

years of research to solve these famous problem instances. According to QAPLIB

(Burkard, Karisch, & Rendl, 1997) , “b” and “c” instances were solved and proved to

be optimal by Nyström in 1999 (Nyström, 1999), while “a” instance is solved and

proved to be optimal by Brixius and Anstreicher in 2001 (Brixius & Anstreichner,

2001).

In 1974, Richard Francis, Leon F McGinnis Jr and John A. White published a book, in

which they analyzed and modeled a decision framework for assigning facilities like

police stations, schools and medical facilities on locations, according to the latest

survey they utilized QAP for their framework (Francis, Jr., & White, 1974).

In 1972, Jakob Krarup created a dataset called kra30a to represent layout of newly

built Klinikum Regensburg in Germany using QAP. His objective was to find a layout

of hospital facilities in such a way that communication cost x distance between

facilities were minimized (Krarup & Pruzan, 1978). Optimum solution for the problem

is found with Branch and bound algorithm by Hahn, Hightower, Johnson, Spielberg,

Roucairol in 2001; twenty-nine years later after it was proposed (Hahn, Hightower,

Johnson, Guignard-Spielberg, & Roucairol, 2001).

In 1977, Dickey and Hopkins used QAP to model layout of buildings within a

university campus (Dickey. & Hopkins, 1972).

33

In 1977, Burkard and J. Offermann tried to find the best possible typing machine

keyboard using typing-time of an average steno typist and frequency of pairs of letters

in different languages data (Burkard & Offermann, 1977).

In the same year, Alwalid N. Elshafei used QAP to find a layout for 19 hospital

departments in such a way that minimizes the total distance travelled by patients

(Elshafei, 1977) . In 1976, Hubert and Schultz used QAP for data Analysis (Hubert &

Schultz, 1976).

In 1988, Laporte and Mercure used QAP to formulate a solution which minimizes the

distance between the center of mass of the blades and the geometric center of the

cylinder in hydraulic turbine runners by locating the turbine blades (Laporte &

Mercure., 1988). In 1994, Phillips and Rosen used QAP to solve molecular

conformation problem in their research (Phillips & Rosen, 1994).

In 1997, George and Pothen used QAP to formulate 1-sum and 2-sum problems to

analyze spectral envelope reduction (George & Pothen, 1997). In 2015, Azab used

QAP to model process planning mathematically in his work (Azab, 2015).

In 2017, Bougleux, Brun, Carletti, Foggia, Gaüzère, and Vento used QAP to compute

graph edit distance measure (Bougleux, ve diğerleri, 2017).

According to a recent survey on subject (Loiola, de Abreu, Boaventura-Netto, Hahn,

& Querido, 2007), QAP has also derivative problems like Linear Assignment Problem

which is P class and can be easily solved by Hungarian Method. 3-Index Assignment

problem, Quadratic Bottleneck Assignment Problem, Quadratic Three-dimensional

Assignment Problem, Quadratic Semi-Assignment Problem, Multi objective

Quadratic Assignment Problem all are special cases of the original problem.

There are three surveys on QAP in the literature, published in 1994, 1998 and 2007.

Oldest survey belongs to Pardalos, Rendl and Wolkowicz, which was published in

1994 (Pardalos, Rendl, & Wolkowicz, 1994). It starts with formulizations of QAP and

continues with derivatives of the problem, computational complexity of QAP, lower

and upper bounds, introduces a local search algorithm, talks about exact solution

methods and sub-optimal algorithms for QAP and introduces a library called QAPLIB.

The Second survey belongs to Çela in the form of a book, written in 1998 (Çela, 1998).

He starts with problem definition and continues with formulations of QAP, its

34

computational complexity, exact algorithms and lower bounds, heuristics on QAP and

finishes with derivatives of QAP.

The latest survey to Loiola, De Abreu, Boaventura-Netto, Hahn, Querido and is

published in 2007 (Loiola, de Abreu, Boaventura-Netto, Hahn, & Querido, 2007). It

starts with brief history of QAP, continues with its formulations found in literature,

QAP-related problems, lower bounds found in literature, exact, heuristic and

metaheuristic algorithms for solving QAP and finishes with main research trends and

tendencies.

Many data sets were proposed by different scientists all over the world since proposal

of QAP. There are mainly 15 data sets used by researchers, all of which can be found

in QAPLIB, a library dedicated to Quadratic Assignment Problem. The library

contains problem instances, their optimal and best-known solutions, best solution

methods, brief histories about data sets, when they are proposed and for what purpose.

It was originally created by Stefan Karisch in 1997 with the help of Burkhard and

Rendl. He maintained the relevant web site until 2002. From 2002 to 2012 website

was maintained by Erande Cela. After 2012 website is maintained by Peter Hahn and

Miguel Anjos. Last bulk update to the website was done in 2011 (Burkard, Karisch, &

Rendl, 1997).

Quadratic Assignment problem is proven to be NP-Hard by Sahni and Gonzales back

in 1976 in their article “P-Complete Approximation problems” (Sahni & Gonzales,

1976). This fact has led scientists all over the world to consider two possible

approaches when dealing with quadratic assignment problem. Some scientists

followed the exact methodologies and they were able to come up with optimum

solutions for small or specific instances of the problem. Others decided to relax the

finding optimum requirement and settled with sub-optimal results and utilized

heuristic and meta-heuristic methodologies to solve the larger and more general

problem instances to some degree. In the literature, between 1957 and 1990’s generally

first approach was more common. While after 1990’s with metaheuristics became

more popular, second approach became more common. There are different exact and

heuristic/metaheuristic methodologies to solve quadratic assignment problem in the

literature.

35

3.1.1. Exact Algorithms in the Literature

Today, exact algorithms are considered to be effective for instances smaller than size

of 30 and some bigger instances for only specific instances. With the developments in

computer hardware, and parallelization of algorithms, this threshold will increase more

and more.

The most popular of the exact methodologies when solving QAP is branch and bound

algorithm. One of earliest applications of branch and bound method to QAP was in

1966 by Gavet and Plyter (Gavett & Plyter, 1966).

In 1979, Bazaara and Elshafei created a branch and bound algorithm in their work

which could solve instances up to size of 20 (Bazaraa & Elshafei, 1979). In 1980,

Edwards proposed a binary branch and bound algorithm for the solution of Koopmans-

Beckmann QAP (Edwards, 1980).

In the same year, Burkhard and Derigs proposed a branch and bound based solution to

the Nugent 5, 6, 7, 8, 12 and 15 instances and become the first one to solve Nugent15

instance (Burkard & Derigs, 1980). In 1983, Bazaraa and Kirca proposed a branch and

bound algorithm that can solve Nugent12a and Elshafei19 instances (Bazaraa & Kirca,

1983).

In 1987, Roucairol proposed a parallel branch and bound algorithm which can work

on a multiprocessor computer or a cluster using a common shared memory. She tested

her algorithm on a Cray X-MP machine and coded her algorithm in FORTRAN. She

tested her algorithm on Nugent instances with size 5, 6, 7 and 8 with 1, 2 and 3

processors and calculated speed-up for each of them. She found out that the speed-up

for small instances like 5 and 6 were negligible, while for bigger instances like 8 or 10,

speed-up values were almost equal to the number of processors added (Roucairol,

1987).

In 1989, Pardalos and Crouse suggested another parallelized branch and bound

algorithm which was essentially an enhanced version of Roucairol’s work. They also

worked on Nugent data set with instances of size 5 to 15, 20 and 30. They noted that,

their algorithm only worked on symmetric instances and not in asymmetric ones. They

were able to find the exact solutions for instance sizes up to 15. For 20 and 30 size

instances, the exact solutions were not found. They were able to obtain speed-up ratios

comparable to Roucairol’s work (Pardalos & Crouse, 1989).

36

In 1993, Laursen adopted parallelized branch and bound into several problems,

including QAP (Laursen, 1993). In 1997, Brüngger, Marzetta, Clausen and Perregaard

proposed a parallelized branch and bound algorithm based on ZRAM parallel search

library (Brungger, Marzetta, Clausen, & Perregaard, 1997). They were able to gain

linear speedups and were able to solve 10 previously unsolved instances from QAPLIB.

Instances are hadl6, hadl8, had20, tail7a, tai20a, rou20, nug21, nug22, esc32e, esc32f.

In 2001, Anstreicher, Brixius, Goux and Linderoth proposed a branch and bound

algorithm which solves previously unsolved nug27, nug28, nug30, kra30b, kra32 and

tho30 instances (Anstreicher, Brixius, Goux, & Linderoth, 2002).

One of the most famous set of QAP instances are called Nugent instances. According

to a recent survey on QAP, all of these instances are solved to optimality by branch

and bound methods except instance size 8 (Loiola, de Abreu, Boaventura-Netto, Hahn,

& Querido, 2007). Below is a detailed table showing which instance size of Nugent

data set is solved to optimality, by whom and in what year and using which

methodology. Table 3.1 clearly shows most commonly used exact methodology to

obtain the optimal solutions is branch and bound strategy.

Table 3.1. Nugent Instances and who solved them using which methodology.

(Loiola, de Abreu, Boaventura-Netto, Hahn, & Querido, 2007).

Another exact algorithm that is used when solving QAP instances is called Dynamic

Programming. It is only used in a special case called Tree QAP where non-zero entries

in flow matrix forms a tree. It is an extension to the branch and bound methodology

Instance Size Who Solved? -When? Method

8 Burkard - 1975 Complete Enumeration

12 Burkard & Stratman - 1978 Branch & Bound

15 Burkard & Derigs - 1980 Branch & Bound

20 Colorni et al. - 1996 Branch & Bound

21 - 22 - 24 Brüngger et al. - 1997 Branch & Bound

25 Hahn – 2000 Branch & Bound

27 - 28 - 30 Anstreicher et al. - 2002 Branch & Bound

37

which was introduced by Christofides and Benevant in 1989 (Christofides & Benavent,

1989).

Another type of exact strategy is called cutting plane method which was introduced by

Bazaara and Sherali in 1982 (Bazaraa & Sherali, 1982) . According to the recent survey,

this methodology is only proper for small size instances of QAP due to its slow

convergence. Bazaraa and Sherali tested this method on Nugent 5, 6, 7, 8, 12, 15, 20

and 30 instances, Steinberg 36 instance, Elshafei 19 instance and Krarup 32 instance.

An enhanced version of this algorithm is proposed by Padberg and Rinaldi named

branch and cut technique seems to accelerate algorithm’s convergence, although work

was focused on symmetric traveling salesman problem and not quadratic assignment

problem in general (Padberg & Rinaldi, 1991).

3.1.2. Metaheuristic Algorithms in Literature

Due to the disadvantages of the exact algorithms, many large - sized as well as some

smaller - sized problems cannot be solved optimally. This mandates some relaxation

from finding the optimum solution and settling with a “good enough” solution in a

“reasonable time” frame for many instances of QAP. Many researchers focused on

metaheuristics in the past, because they are easy to adapt to different problems and

generally find good solutions. Since QAP is considered as a benchmark problem, it is

perfect to test how successful a certain metaheuristic is compared to the other

algorithms. Many metaheuristics have been proposed in literature for solving Nugent

and other QAP instances on QAPLIB. Simulated Annealing, Genetic Algorithms, Ant

Colony Optimization, Neural Networks, Tabu Search, Greedy Randomized Adaptive

Search Procedure, Variable Neighborhood Search, Iterative Local Search, Breakout

Local Search, Particle Swarm Optimization and combinations or derivatives of these

approaches can be found commonly.

One of the earliest examples is Burkard and Rendl’s simulated annealing solution in

1984. Authors state that they could reach solutions which differs from the optimum

values by 1% or 2 % and they concluded that this could be an acceptable solution with

smaller hardware demand with a shorter time frame (Burkard & Rendl, 1984).

In 1987, Davis compared Genetic Algorithms and Simulated Annealing solutions to

QAP in his book as an example of combinatorial problems (Davis, 1987).

38

In 1990, Skorin-Kapov published another article in which she solved Nugent 15, 20

and 30 instances, Krarup 30, Steinberg 36 instances, as well as her own instances with

sizes 42, 49, 56, 64, 72, 81 and 90 using Tabu Search method (Skorin-Kapov, 1990).

In 1991, Taillard proposed another Tabu Search algorithm which is implemented as a

parallel algorithm and solved Nugent 5-30 instances, Elshafei 19, Krarup 30, Steinberg

36, Skorin-Kapov 42, 49, 56, 64 Instances and another data set that he created using

parallel Tabu Search. He claimed with this method some problems can be solved up to

size 64 with sub-optimal but good results (Taillard, 1991).

In 1993, Chakrapani and Skorin- Kapov created first massively parallel taboo search

implementation on supercomputer Connection Machine 2. Algorithm utilized 𝑛2 cores

where 𝑛 is the size of problem. Their work computed solutions for problems with sizes

up to 90, as the best known or close to the best known, while for sizes bigger than or

equal to 100, best known solutions are improved. (Chakrapani & Skorin-Kapov, 1993)

In 1993, Fleurent and Ferland published a parallel hybrid metaheuristic which

combines local search and Tabu Search with Genetic Algorithms. In their paper, they

compared 5 different algorithms; a local search procedure with pairwise exchange (LS),

a Tabu search algorithm that was run 4𝑛 times and 4000𝑛 times respectively (Tab4n

and Tab4000n), same local search and Tabu algorithms with different starting points

1000 times (RepLS and RepTab4n) and a Genetic Hybrid Algorithm with LS and Tabu

Search (GHA) on Skorin-Kapov 72-100 instances. Their results indicated that GHA

performs better when compared to single Local Search or Single Tabu Search

algorithm in almost all instances. They reported that their algorithm has improved best

known scores for Taillard 40, 50, 60 and 80 instances and Skorin-Kapov 81, 100a,

100b, 100c, 100d and 100e instances (Fleurent & Ferland, 1993).

In 1994, Li, Pardalos, Resende used a metaheuristic named as greedy randomized

adaptive search procedure (GRASP). GRASP is an iterative search procedure which

has two phases. In the first phase, also named as construction phase, algorithm

iteratively constructs a candidate solution by adding an element to the permutation or

assigning a facility to a location. Choice of next element is determined by a greedy

fitness function. This function did not necessarily select the best possible choice but

one of best from a number of solutions. This allowed algorithm to be stochastic in

nature. The solution produced in first phase is not guaranteed to be locally optimum.

39

Therefore, the algorithm goes over a second phase called local search. In this phase, a

two-opt local search procedure is applied to the final solution. They tested their

algorithm on almost all instances of QAPLIB; Burkard, Christofides, Elshafei,

Eschermann, Krarup, Nugent, Roucairol, Scriabin, Steinberg and Li& Pardalos. The

algorithm was one of the most-successful metaheuristics in literature; it was able to

find almost all best-known solutions as well as improving some of those solutions (Li,

Pardalos, & Resende, 1994).

Between 1994 and 1999, Maniezzo and Colorni adapted several versions of ant colony

algorithm for solving QAP (Maniezzo & Colorni, 1994). Their series of work first

started in 1994 where they adopted ACO algorithm developed to solve traveling

salesman problem to QAP for the first time in literature. This algorithm employed a

number of intelligent computing agents called ants which construct a solution

incrementally by assigning facilities to locations. To avoid assigning same facilities to

different locations, they added a Tabu list which included forbidden moves in each

step. They tested their algorithm on Nugent 15-30, Elshafei 19, Krarup 30 instances.

They used optimal solutions as a comparison base for instances smaller than 20, while

for two larger instances (Nugent30, Krarup30) they used the best-known solutions

computed by Burkard et al. (Burkard, Karisch, & Rendl, 1997). They compared their

algorithm with GRASP, another heuristic developed by Pardalos et. al in 1994 (Li,

Pardalos, & Resende, 1994). Their results were comparable to GRASP. Although a

single ant would quickly converge on a local maximum point, collaboration between

several ants yielded a good set of solutions.

In 1994, Nissen devised a sequential Evolutionary Strategy (ES) algorithm to solve

QAP. He used permutation representation and standard random population generation.

After that, in each iteration, children are created by applying between 0 to 2 random

swap mutations to the parents, since he determined standard mutation scheme is not

applicable in this problem. He also did not use any recombination operators. Algorithm

was able to adapt mutation probability based on success of children compared to their

parents. If for a couple of generations, children are less suitable, then mutation amount

is automatically increased to widen the search area. He then compared his solutions to

Simulated Annealing of Heragu and Alfa (Heragu & Alfa, 1992) and Tabu Search

Algorithms of Taillard (Taillard, 1991) and his own implementation of two-opt search

on Nugent 20 and 30 instances, Skorin - Kapov 64, Elshafei 19 and Steinberg 36

40

instances. He found out ES algorithm performed better than two-opt, while it was on

par with TS and SA (Nissen, 1994).

In 1995, Bousoño-Calzón and Manning applied a Hopfield Neural Network to solve

QAP. According to the authors, this type of neural network is often applied to the

optimization problems, because main purpose of this network is to maximize the

throughput while minimizing the cost; therefore, it might outperform conventional

methods. However, this only works if the instances in question are symmetrical.

Authors used this problem to represent processors, their distances and communication

weights and come to a solution implementing a neural network to minimize the sum

of all communication costs within a multiprocessor environment (C.Bousoño-Calzón

& Manning, 1995).

In 1995, Tate and Smith published a sequential genetic algorithm to solve quadratic

assignment problem. They designed 10 runs containing different random seeds for

each instance, to assess overall performance of algorithm. Their algorithm had 3

different setups:

• 25% of population replaced by children and 75% of parents undergo only

mutation

• 50% of population replaced by children and 50% of parents undergo only

mutation

• 75% of population replaced by children and 25% parents undergo only mutation.

They limited population size to 100 and determined optimum found or 2000

generations reached as termination condition. They worked with a total of 11 Nugent

instances. They determined setup with 25% of population replaced by children and 75%

of remaining population undergo mutation as the best by a small margin. They found

out higher mutation rates are more successful when solving QAP. They also reported

that their algorithm found comparable results to previously known metaheuristics (Tate

& Smith, 1995).

In 1996, Bachelet et al. tested different metaheuristics to compare their performance

on QAPLIB instances. All the compared algorithms were parallelized algorithms. For

the base case, they implemented a sequential hill climbing search algorithm with

replace best strategy. For the Parallel Tabu Search, they implemented an algorithm

which runs multiple independent tabu search algorithms with no communication.

41

Algorithms are initialized with different solutions and different parameters in the

beginning. For genetic algorithm, they used a cellular model where the main

population is divided into sub-regions called cells and the interactions between two

individuals are limited to their neighbors. Mutations are applied to the individual cells

and each individual is evolved on separate processors. They tried this setting in both

SIMD and MIMD architectures. They claimed that, Cellular GA is better at exploration

and Tabu Search is better at exploitation. Therefore, they also proposed two types of

parallelized hybrid algorithms. In Parallel Synchronous Hybrid (PSH) Algorithm, they

utilized Tabu search as a mutation operator for Cellular GA. In Parallel Asynchronous

Hybrid (PAH) Algorithm, they proposed a system where algorithms exchange

solutions on certain time intervals. They compared their results with ES from Nissen

(Nissen, 1994), SA from Heragu and Alfa (Heragu & Alfa, 1992) and Tabu Search

from Taillard (Taillard, 1991) on Nugent 30, Steinberg 36 and Skorin - Kapov 64

instances. They concluded that, while each algorithm has its own strengths, overall GA

- Tabu Search hybrids perform better than others on average (Bachelet, Preux, & Talbi,

1996).

In 1997, Cung et al. proposed a Scatter Search procedure to solve QAP. This procedure

is similar to an evolutionary algorithm, because both works on a randomly generated

population. Scatter Search algorithm then combines several elite solutions (more than

two) from main population and tries to find a good trial point. Once they obtained

results from scatter search algorithm, they improved results further with a Tabu search

algorithm which are integrated into the main population of scatter search algorithm.

They executed their algorithm using Elshafei, Taillard, Krarup, Skorin – Kapov and

Thonemann instances. Authors reported that, their algorithm was able to find best-

known or optimal values for most of problem instances and was able to imrpove best

- known solutions for tho150 and tai256c instances (Cung, Mautor, Michelon, &

Tavares, 1997) .

In 1999, Stützle applied Iterative Local Search (ILS), yet another metaheuristic to QAP.

This algorithm first generates an initial solution and applies a local search procedure

on that solution, using two-opt algorithm. Then, in the next step, the algorithm

perturbates the obtained solution, applies the same local search again and decides

whether it meets the termination criterion. Author also pointed out that, it is possible

to make ILS a population based procedure by maintaining set of solutions instead of a

42

single one. He concluded that, while population based ILS algorithm gives better

results in overall, single solution ILS implementations are open to improvements and

overall results of the algorithm are promising (Stützle T. , 1999)

In 1999, Gambardella, Taillard and Dorigo created another Ant Colony algorithm

which uses an extra local search procedure. In a standard ant colony approach,

pheromone trails are manipulated by agents during or after the construction of new

solutions locally as well as globally. However, in this new approach, pheromone trails

are only updated globally. This drives the algorithm towards a quick converge to the

solution. Downside of this approach is, sometimes premature convergence may happen

and solution may be sub-optimal. Authors therefore developed a diversification

mechanism which erases pheromone trails periodically. Additionally, in previous

applications, pheromone trails were used to construct new solutions while in their

implementation, those trails are used to improve existing solutions (Gambardella,

Taillard, & Dorigo, 1999).

In 2000, Ahuja, Orlin and Tiwari suggested a genetic algorithm based on greedy

principles like initializing starting population with a metaheuristic algorithm namely

GRASP technique suggested in 1994 by Li et. al. (Li, Pardalos, & Resende, 1994). For

the parent selection they did not employ a fitness proportionate strategy, rather

selection was based on uniform random probability for each solution. They created

three new crossover schemas and found the most effective to be shift-path crossover

in which, identical portions of the chromosome in parents are determined and other

parts of chromosome of one parent is shifted until the most similar fitness value to the

other parent can be obtained. After that, selection of the survivor depends on the

created children. Since this technique only allows selection of single parent, if child is

fitter than both parents, the one that is the most similar to child is eliminated and if

there is a fitter parent compared to child, that parent is selected. For mutation part, they

employed an algorithm which creates an 𝑛 𝑥 𝑛 matrix, in which value at the position

𝑖𝑗 defines the number of individuals in the current population in which site 𝑖 contains

the facility 𝑗. For the local search part of the algorithm, they employed a 2-exchange

neighborhood algorithm to improve the already found results. They also employed a

strategy called tournament in which they gathered half of the final population from

two different runs, merged into a single population and re-run the algorithm. They

tested their algorithm on 132 instances from QAPLIB including Burkard, Elshafei,

43

Christofides and Eschermann and determined their algorithm was able to find 103 of

the 132 best known solutions and for the remaining, it was able to approach 1% to the

best-known solution (Ahuja, Orlin, & Tiwari, 2000).

In 2001, Talbi, Roux, Fonlupt, Robillard proposed an ant colony solution which is

strengthened by Tabu search algorithm. In their system, each ant iteratively creates

permutations of QAP, better the solution finds, more pheromone trail it produces.

Solutions produced by ants are then used in a Tabu search algorithm to improve global

solution quality. They compared their algorithm with another ant colony

implementation from previous years, HAS-QAP created by Gambardella et al. in 1997

(Gambardella, Taillard, & Dorigo, 1999) using Nugent, Skorin-Kapov and Taillard

instances. Their algorithm named as, ANTabu outperformed HAS-QAP on all test

cases (Talbi, Roux, Fonlupt, & D.Robillard, 2001).

In 2003, Misevicius (A.Misevicius, 2003) proposed a simulated annealing algorithm

which he hybridized with Tabu Search algorithm to improve the results. He started

with random permutations, for the neighbourhood discovery scheme, he applied a 2-

way perturbation which swaps two elements until all possible swaps are applied.

Neighbours are searched based on a fixed order. In total, 𝑛 (𝑛 − 1)/2 trials are done

to search all the neighbourhoods. When a better solution is found, his algorithm

replaced it with the current solution and implemented the same procedure again.

Before starting the annealing procedure, his algorithm considers a few random moves

and gets the average difference, relying on the idea that the average fitness value

directly affects initial and final temperatures. Another improvement he made is

applying an adaptive, dynamical cooling schedule to his algorithm. After each

annealing step, his algorithm improves best found result using CRAFT algorithm

(Armour & Buffa, 1963). After certain number of iterations, his algorithm terminates.

He then utilized Tabu search on the best result. His implementation is based on

Taillard’s work in 1991 (Taillard, 1991). He compared his algorithm with previous

simulated annealing implementations in the literature: Connolly’s algorithm (C-SA-

QAP) (Connolly, 1990) and Bölte and Thonemann’s algorithm (TB2) (Bölte &

Thonemann, 1996). He started all algorithms with the same set of parameters and the

same initial permutations to measure his algorithm. He concluded that his algorithm

surpassed both Connelly’s algorithm and Thonemann’s algorithm based on the

QAPLIB instances: Krarup, Nugent, Skorin-Kapov, Steinberg, Taillard, Thonemann

44

and Wilhelm. He also pointed out that, his algorithm improved the best-known solution

for Thonemann 150 instance.

In 2004, Misevicius suggested another algorithm, this time hybridization of Genetic

algorithm and Tabu search (A.Misevicius, 2004). He used Tabu search as a mutation

operator to improve solutions. He also adapted a mechanism to detect premature

convergence at the end of each generation. For the parent selection, he used rank

selection methodology. For the cross-over operator, he used an improved version of

uniform like crossover (ULX). Idea is that, identical genes on both parents are first

copied into child and remaining genes are replaced from both parents’ uniformly and

randomly. His improvement creates more than one child and selects the best among

them. He tested his algorithm on QAPLIB instances; Taillard, Eschermann, Krarup

and Steinberg. He compared his algorithm with Taillard’s Tabu search in 1991 (Taillard,

1991). He reported that, his algorithm obtained best-known results except for Taillard

60, 80 and 100 instances.

In 2005, Misevicius proposed yet another algorithm, this time an implementation of

Tabu search. He pointed out in his paper, like many other metaheuristics, Tabu search

also suffers from a condition known as stagnation in which algorithms starts

uncovering very large domain in solution space and converging from a local area very

fast and then as the search progress, it takes extremely long time to improve due to

lack of diversification. He proposes using Tabu search as a tool for intensification and

another mutation strategy to diversify the solutions obtained. He used Taillard’s Tabu

algorithm (Taillard, 1991) and modified it to encompass an additional mutation

procedure. Author found out this version of Tabu search yields slightly better results

than the original version. He tried four different versions of mutation. The first was

swap mutation in which two genes of genome (permutation) are randomly swapped.

In the second model, entire genome is divided into two equal sized parts from middle

point and random swaps are made between two random genes from both sides. In the

third model, shift mutation, where all elements are shifted by a given number. In the

fourth model, two randomly selected neighbours are interchanged. He performed

experiments solely on Taillard data set, both with symmetric ‘a’ instances and

asymmetric ‘b’ instances. He found out that, for smaller instances like tai20a, tai25a

and tai30a, shift mutation performed better, while for larger instances like tai50a,

45

tai60a and tai80a, neighbour exchange method performed better, while all of the results

were competitive (A.Misevicius, 2005).

In 2006, Tseng and Liang proposed a hybrid metaheuristic which combines genetic

algorithms and ant colony optimization in an algorithm named ANGEL. Their

algorithm consists of two stages. In the first stage, ant colony algorithm runs and

creates an initial population for genetic algorithm. In the next stage, genetic algorithm

kicks in and improves the sub-optimal solution pool. They used a variant of List Order

Crossover and added a secondary crossover applied to best known solution with others

in population named as eugenic crossover. In addition to genetic algorithm, in final

step, a two-opt local search procedure is used. After genetic algorithm terminates, ant

colony algorithm once again starts and tries to diversify population again for next stage

of genetic algorithm. This cycle continues until best-known solutions are obtained.

Authors reported that they tested their algorithm on 100 QAPLIB instances and they

were able to find optimum or best-known solutions for 90% of the instances (Tseng &

Liang, 2006).

In same year, Demirel and Toksari proposed another hybrid algorithm which combines

ant colony algorithm with simulated annealing as a local search procedure, which they

named as AntSimulated (Demirel & Toksari, 2006). Their algorithm starts as a normal

ant colony procedure, a number of solutions are generated by each of the ants and all

pheromone trails are set to same value. Then, each of these solutions are improved in

two stages: pheromone trail based modification and a local search based on simulated

annealing. In the first step, a number of swaps based on pairwise exchange inside

permutation is applied to each of the solutions based on the pheromone traits. In the

latter stage, three best found solutions are transferred to secondary simulated annealing

procedure and algorithm runs for 200 iterations with an initial temperature of 100 and

final temperature of 10. Neighbourhood is defined with either swap mechanism or

objective swap mechanism which considers all possible swaps for elements inside

permutation and selects the best. In the next stage, improved solutions are returned to

the ant colony algorithm, evaporation and update of pheromone trails are done after

that algorithm checks whether stopping criterion is satisfied. If the criterion is not

satisfied, ant colony algorithm continues on next iteration. In the end, they compared

their algorithm with Gambardella et al.’s HAS-QAP algorithm (Gambardella, Taillard,

46

& Dorigo, 1999) on QAPLIB instances and reported AntSimulated performs better on

most instances.

In 2006, Stützle proposed yet another Iterated local search (ILS) algorithm for QAP.

He pointed out that in order to apply ILS to QAP, one must consider four fundamental

functions:

• GenerateSolution: Creates a random solution

• Perturbation Function: Applied to a solution to create another solution to

discover other parts of search space by randomly exchanging parts of

permutation

• A Local Search Function: to improve existing solutions. Two opt search is widely

used.

• AcceptanceCriterion: Whether to accept current result or not.

 Although simple, Stützle points out that ILS is an effective metaheuristic in TSP-like

problems. He run several experiments to determine its effectiveness for QAP. He found

out that ILS algorithm was prone to stuck in a small area of search space and cannot

explore different regions despite high perturbation rate. He proposed two types of

solutions. One of them includes a soft restart procedure in which, whenever algorithm

decides a stagnation happened, model restarts itself from another point in search space.

Another solution he proposed was to make ILS population based instead of single

solution based, which might increase diversity and improve algorithm. Author

compared his algorithm with previous ILS based implementations, like Taillard’s

Robust Tabu search (Taillard, 1991). He reported that, current ILS with soft-restart

performs better in all instances. He also reported that, population based ILS algorithm

performs better (Stützle, 2006).

In 2009, James et al. suggested a parallelized Tabu Search algorithm to solve QAP.

The cooperative parallel tabu search algorithm (CPTS) as the authors name it, is

implemented with the idea of running multiple TS algorithms on different processors,

while communication among different algorithm instances share a global long-term

memory in which they store their solutions. Half of the solutions are the best-found

ones so far in any stage of the algorithm. This guarantees the half of the TS algorithms

start with copy of the best-found solutions, therefore it drives the common search

47

process to the more quality areas of the search space. Each of the algorithms are

assigned with different parameters to ensure diversification to some degree. There are

references sets in memory associated with each of the TS processes. In the start of the

algorithm, a single instance of TS runs on all processors to update reference sets

associated with them. This provides seeding the start of algorithm with relatively good

solutions and some diversification. In the next step, each processor runs its own TS

algorithm based on the results from their reference sets. When each of the algorithm

terminates, a global algorithm updates the entry in reference set and checks whether

the solution updated is the best-known solution. If it is, this solution is distributed to

the other algorithms in other processors via shared reference set. To maintain diversity,

the global algorithm also checks if the solution obtained is changed each time. If it did

not, the algorithm starts main diversity operator to reseed the local algorithm on that

processor. The termination of the global algorithm is determined by number of

iterations. Authors tested this algorithm with Taillard and Skorin-Kapov instances

from QAPLIB. Also, they compared their algorithm with 10 other implementations

from literature including Tseng and Liang’s GA +AC hybrid from 2006 (Tseng &

Liang, 2006) and Misevicius’ tabu search algorithm from 2005 (A.Misevicius, 2005)

and Misevicius’ genetic algorithm - tabu search hybrid from 2004 (A.Misevicius,

2004). Authors indicated that, each of the algorithm performances varies depending on

the data set used. If an algorithm runs well on Taillard’s set, it does not guarantee to

run well on Skorin-Kapov instances. However, they pointed out that, their algorithm

matches or outperforms other algorithms in terms of solution quality, except in some

special cases. For instance, Misevicius’ tabu algorithm performed slightly better on

tai100b instance (James, Rego, & Glover, 2009).

In 2013, Benlic and Hao proposed a breakout local search (BLS) algorithm to solve

QAP (Benlic & Hao, 2013). Their algorithm works similarly to an Iterated local search

algorithm. Algorithm starts with an initial solution and iterates between two phases;

local search and perturbation. In local search phase, algorithm performs a steepest

descent local search algorithm on solution at hand and obtains an improved solution.

If the algorithm cannot improve the solution, it assumes it is a local optimum and

proceeds with perturbation process to explore a different region in search space. If

exploration of search space is weak, algorithm might be stuck on a stagnation point

where it ends up cycling between couples of local optimum points and cannot improve.

48

But, if the diversification procedure is strong, algorithm might get a random restart

and waste considerable amount of time. Authors found solution to this problem by

introducing an adaptive perturbation technique. Idea with adaptive perturbation is that,

algorithm performs a small change on permutation and tests whether it is strong

enough to jump to another local optimum area. If the jump is not sufficient, amount of

change to the original permutation is increased. They pointed out adaptive perturbation

scheme is the most important factor which gives BLS advantage over ILS algorithm.

BLS also borrows tabu list notion from tabu search to avoid circling between the same

points, although BLS does not consider exploration in intensification phase, while SA

and Tabu search does. Authors also experimented on different QAPLIB instances to

see its effectiveness. They compared their algorithm to CPTS by James et al. (James,

Rego, & Glover, 2009), Misevicius’ tabu search algorithm (A.Misevicius, 2005), and

Misevicius’ genetic algorithm hybrid from 2004 (A.Misevicius, 2004) and a few others.

BLS was able to solve every real-life like instance from QAPLIB except Taillard150b

to their best-known values. For unstructured instances, it was able to find 7 of 9 best-

known solutions and it is comparable to those given algorithms in terms of solution

quality.

In 2013, Tosun, Dokeroglu and Cosar proposed an Island Model genetic algorithm for

solving QAP (Tosun, Dokeroglu, & Cosar, 2013). To best of my knowledge, this is

the only example in literature directly related to this thesis topic. QAP-IPGA algorithm,

as they name it, uses different subpopulations exploring different regions in search

space, thus dramatically increases the speed algorithm converges to a solution. Island

model also facilitates a migration model between subpopulations to maintain diversity.

In this algorithm, every subpopulation is assigned a slave processor which does the

genetic operations as well as assigned with the task of introducing newly created

individuals to the population. Since they do not replace any individual solution within

population, this process is causing an increase within global population. However,

authors limited this increase by a ratio to original population, once that amount is

reached, slave processor stops generating. Algorithm terminates when a certain

number of generations is reached. They tested this algorithm with 3 different crossover

operators and 3 different selection methodologies. They used Order Crossover,

Partially Mapped Crossover and Cycle Crossover, as well as, Truncation Selection,

Tournament Selection and Roulette Wheel Selection as selection strategies. Out of 9

49

different configurations, they found out Tournament Selection as the best selection

strategy and Partially Mapped Crossover (PMX) as the best crossover methodology.

This is the same configuration which is used in this thesis. They also implemented a

parallel exhaustive search algorithm which is able to solve instances optimally upto

size of 16 for comparison purposes. They tested their algorithm on QAPLIB instances

using a computer cluster with 46 nodes with a global population count up to 30,000

individuals. They found out, there is a sharp increase in solution quality up until 8

islands. This is also consistent with my experiments. They reported QAP-IPGA was

able to solve instances up to 30 to the best-known results and for instance sizes between

30 and 150 their algorithm was able to produce results with an average 1% gap. They

concluded that while parallelization has a significant effect on solution quality for a

genetic algorithm, they cannot increase the size of optimally solvable instances in QAP

since this problem is exponential.

In 2015, Benlic and Hao proposed yet another genetic algorithm using breakout local

search as a tool for local search operation (Benlic & Hao, 2015). Their algorithm starts

with randomly generating an initial population and improving upon that population

using breakout local search. After this step, genetic algorithm starts working on

provided local optimum solutions. They utilized tournament selection as parent

selection strategy, for the crossover operator, they preferred Uniform Crossover (UX)

and used breakout local search algorithm as a way to optimize cross over operation’s

output. This algorithm is the one they developed for their article back in 2013. They

also developed a replacement strategy to replace existing parents with newly created

children. Replacement strategy decides based on the test whether there is an identical

solution to the newly created children and whether there is an individual with worse

fitness value than newly created children within population. If those two conditions

hold, replacement with worst-fitness individual happens. Though they acknowledged

this greedy strategy may lead to premature convergence. To solve this problem, at least

in theory, they developed an adaptive mutation operator which tests for how many

iterations the best-found solution did not change. If a stagnation is detected, mutation

operator increases the amount of mutation from the minimum value to higher values

until there is a change in the best-known solution. Once the change is achieved,

mutation amount returns the initial minimum. They set the termination criteria to two

hours of execution time and tested their work on QAPLIB instances. They compared

50

their algorithm to their previous BLS algorithm implementation in 2013, as well as,

Misevicius’ genetic algorithm implementation in 2004 (A.Misevicius, 2004) and

parallel tabu search algorithm of James et al. in 2009 (James, Rego, & Glover, 2009).

They evaluated the proposed algorithm on the set of 135 instances from the QAPLIB.

They reported that proposed algorithm outperforms its local search component (BLS)

and other compared algorithms and was able to obtain best known results for 133

instances.

In 2015, Tosun introduced a parallel island model genetic algorithm - tabu search

hybrid (U.Tosun, 2015), in which an island GA algorithm is run to find a nearly

optimal set of results, in order to create a seed population. In the next step, a

diversification operator is applied to vary seed solutions. He reported that final seed

solutions are often very close to the best-known solutions. In final step, results are

enhanced by using a parallel tabu search algorithm. Introduced parallel GA is the same

one he and his colleagues proposed back in 2013 (Tosun, Dokeroglu, & Cosar, 2013).

It is an island parallel model using ring exchange with PMX crossover inside

subpopulations, and using tournament selection. Diversification operator used in

second step is an enhanced version of the same operator proposed by James et al.

(James, Rego, & Glover, 2009). In the final step, robust tabu search algorithm is

applied which is the most famous metaheuristic for QAP proposed by Taillard in 1991

(Taillard, 1991). He tested this hybrid algorithm on QAPLIB instances. He compared

newly obtained results with his previous work, as well as Benlic and Hao’s BLS

algorithm (Benlic & Hao, 2013), Ant colony - GA hybrid of Tseng and Liang (Tseng

& Liang, 2006), Tabu search of Misevicius (A.Misevicius, 2005) and GA -TS hybrid

of Misevicius (A.Misevicius, 2004) on Skorin - Kapov and Taillard instances. He

concluded that, newly created algorithm surpasses its competitors in terms of time and

solution quality, while BLS of Benlic and Hao performs better in terms of time in

Taillard instances.

In 2016, Hafiz and Abdennour proposed 5 different particle swarm optimization (PSO)

variants for QAP (Hafiza & Abdennourb, 2016). Authors also pointed out PSO in its

natural form is not suitable for combinatorial optimization problems like QAP. They

made it clear that, in its natural form, PSO is continuous and depends on Euclidian

distance between particles, therefore when applying the algorithm, one must make it

discrete, change distance measure to make it applicable for QAP. Authors also point

51

out that PSO is applied for TSP which is a more specific form of QAP, where weight

matrix does not exist. In the proposed algorithm, they used permutations to represent

assignment of facilities to locations, where a full permutation is considered as a particle.

In this approach, probability of facility selected for a particular location is represented

by velocity elements. After each iteration, velocity is updated based on permutations

quality. In this way, more promising placement probabilities are increased as the

algorithm works through iterations. Like its other counterparts, PSO is also prone to

premature convergence due to lack of diversity which might take place in latter stages

of search. To solve this problem, authors considered restarting idea first proposed by

James et al. in 2009 (James, Rego, & Glover, 2009). In the context of PSO, restart can

be thought as reinitialization of particles’ velocities. This allows to retain algorithm’s

experience and thus personal and global best-known solutions.

They proposed 5 different variants of the PSO algorithm. In first approach called Local

best PSO (LPSO), sharing of information is limited to the immediate neighborhoods

which allows particles to explore more within search space. The best knowns are

obtained through neighbors and not globally. In the second approach, called Dynamic

multi swarm PSO, swarm is divided into sub-swarms and information is only shared

within subswarms for a certain number of iterations. After that, the swarms are

regrouped and redistributed randomly. This mechanism allows sharing information

globally, while allowing certain level of diversity. For other 3 approaches, a learning

strategy is varied. In the original algorithm, swarm’s best position and particle’s own

best position is used. Third approach, Unified Particle Swarm Optimization (UPSO),

combines particle’s own knowledge and swarm’s collective knowledge over a

unification factor. In the fourth approach, Comprehensive Learning PSO (CLPSO),

each particle only learns from another single particle, if solution of particle does not

improve, it automatically makes another random selection. In the fifth strategy, Fully

Informed Particle Swarm (FIPS), a particle learns from its entire neighborhood instead

of a single other particle. They tested their algorithm and its variants on QAPLIB

instances. Their tests have shown that UPSO method achieves the best results on 35

different instances. They also compared their algorithm with other techniques

including Taillard’s Robust tabu search (Taillard, 1991) and Maniezzo and Colorni’s

ant colony algorithm (Maniezzo & Colorni, 1994). They concluded that, although their

algorithm performed well, in terms of solution quality against others, Taillard’s

52

algorithm was simply better. Their interpretation was solution modification techniques

are more powerful than techniques based on solution construction in QAP.

In 2017, Sagban et al. proposed yet another ant colony – local search hybrid algorithm

implementation for QAP and TSP (R.Sagban, Ku-Mahamud, & Abu Bakar, 2017).

Their algorithm was based on Stützle and Hoos’ ACO variant (MMAS) proposed for

TSP and QAP (Stützle & Hoos, 2000). According to the authors, their enhancements

to MMAS was based on utilizing two types of memory: a component based and a

population based memory. Component based memory stores significant components

found. Significance is tested with an algorithm according to a threshold by a heuristic

function. This process is highly dependent on evaporation of pheromone trails. This

component will later be used to guide the ant in their probabilistic construction. On the

other hand, population based memory is related to entire population rather than

fragments of the solution. This structure keeps a sample of population that consists of

the improved solutions. This structure is updated after each local search iteration, if

the solutions found are better than those already known. They used 3-opt local search

with first improvement strategy for QAP variant of the algorithm. They compared their

algorithm with other ant colony implementations in the literature. Their algorithm was

able to solve 22 of the 40 instances from QAPLIB (Burkard, Christofides, Elshafei,

Krarup, Taillard) to best known solutions, while outperforming MMAS algorithm and

other variants they used.

In 2017, Aksan et al. proposed a parallelized break out search algorithm which utilizes

Levenshtein Distance metric to check similarity between already discovered points

and new starting locations. This process enhances exploration procedure by saving

algorithm from re-searching already discovered areas and enables other areas to be

explored. They also implemented parallel, independent runs of same algorithm and

implemented a master - slave model using OpenMP library. Levenshtein Distance

similarity metric is a measure that determines how close two strings are. Authors

pointed out that it already has promising applications in spell correction, speech

recognition, computational biology, DNA analysis, machine translation, information

extraction and plagiarism detection. Therefore, they decided to use this measure to find

a similarity ratio between two permutations. Their algorithm starts with a number of

randomly generated permutations, with the restriction of being at least 30% different

from each other. This similarity checking mechanism enables different runs of the

53

algorithm to start searching in different parts of search space. After algorithm starts,

each thread starts searching the neighborhood of initially created solution using

steepest descent algorithm. To minimize the cost, each portion of permutation is

inverted until the best solution in the neighborhood is obtained. After that, it continues

from this location to search new solution's neighborhood and if a stagnation is detected,

algorithm makes a jump from this local optimum using perturbation phase which

utilizes tabu search. The fitness calculations are utilized in each of slave threads, using

master - slave model. Authors reported that, their algorithm was able to achieve almost

linear speedup. They tested their algorithm on 59 QAPLIB instances. Their previous

tests with similarity ratio value shown that 30% to be the most effective for

Levenshtein Distance. They compared their algorithm with other state of the art

algorithms from literature including Tabu Search by James et al. (James, Rego, &

Glover, 2009), Ant colony - GA hybrid of Tseng and Liang (Tseng & Liang, 2006),

Parallel hybrid algorithm of Tosun (U.Tosun, 2015), Memetic search algorithm of

Benlic and Hao (Benlic & Hao, 2015). Authors reported that their algorithm was able

to be one of the three best performing results according to their experiments with

Taillard, Skorin - Kapov, Krarup, Steinberg and Eschermann instances (Aksan,

Dokeroglu, & Cosar, 2017).

3.1.3. Current Situation in QAP

According to QAPLIB website, (Burkard, Karisch, & Rendl, 1997) which was updated

in 2011 for the last time, 11 types of instances are solved to optimality out of 15 types

of published there, so far. There are still Skorin - Kapov, Taillard, Thonemann and

Wilhelm instances whose optimal solutions are unknown. All of the instances are

bigger than or equal to size of 30.

Table 3.2 shows the instances solved to the best - known value using one of the

metaheuristics techniques, as well as, how close solution is to the calculated lower

bound.

54

Table 3.5. QAPLIB Instances with optimum values unknown & Best-known

metaheuristics. (Burkard, Karisch, & Rendl, 1997)

Instance Name Solution Method Gap from lower

bound (%)

Taillard – 30a Robust – Tabu Search 6.12 %

Taillard – 35a Robust – Tabu Search 8,48 %

Taillard – 35b Robust – Tabu Search 14.52 %

Taillard – 40a Robust – Tabu Search 9.43 %

Taillard – 40b Robust – Tabu Search 11.43 %

Taillard – 50a Iterated Tabu Search 11.09 %

Taillard – 50b Robust – Tabu Search 13.79 %

Taillard – 60a Tabu Search 22.59 %

Taillard – 60b Robust – Tabu Search 10.82 %

Taillard – 80a Iterated Tabu Search 22.20 %

Taillard – 80b Robust – Tabu Search 12.28 %

Taillard – 100a Iterated Tabu Search 24.86 %

Taillard – 100b Robust – Tabu Search 10.78 %

Taillard – 150b Genetic Algorithm 10.78 %

Taillard – 256c Ant Colony Algorithm 2.03 %

Skorin – Kapov – 42 Robust – Tabu Search 5.56 %

Skorin – Kapov – 49 Robust – Tabu Search 5.91 %

Skorin – Kapov – 56 Robust – Tabu Search 5.37 %

55

Skorin – Kapov – 64 Robust – Tabu Search 5.70 %

Skorin – Kapov – 72 Robust – Tabu Search 5.38 %

Skorin – Kapov – 81 Genetic Algorithm 5.41 %

Skorin – Kapov – 90 Robust – Tabu Search 5.63 %

Skorin –Kapov – 100a Genetic Algorithm 5.37 %

Skorin –Kapov – 100b Genetic Algorithm 5.44 %

Skorin –Kapov – 100c Genetic Algorithm 5.54 %

Skorin –Kapov – 100d Genetic Algorithm 5.54 %

Skorin –Kapov – 100e Genetic Algorithm 5.54 %

Skorin –Kapov – 100f Genetic Algorithm 5.60 %

Thonemann – 40 Simulated Annealing 6.69 %

Thonemann – 150 Simulated Annealing 6.30 %

Wilhelm – 50 Simulated Annealing 3.52 %

Wilhelm – 100 Genetic Algorithm 3.15 %

3.2. Literature Review on Parallelization of GA

An early attempt for parallelizing genetic algorithm dates back to 1976 work of Bethke

(Bethke, 1976). In his work, he used master – slave model to parallelize some portions

of two kinds of genetic algorithm. One of them is a simple generational GA and other

one is a steady state GA. After that, he measured performances of the algorithms. His

conclusion was, generational GA was well suited to this model, while steady-state

model made less efficient use of parallel processors but was still reasonably efficient

in terms of multiprocessing.

56

In 1981, Grefenstette published a technical report on applying parallelization on

genetic algorithms (Grefenstette, 1981). According to Cantu-Paz, (Cantú-Paz, 1995)

he proposed four different types of parallelization models. Among those four models,

three of them were master-slave architecture based, while the last model was multi-

population based. First model included a sequential generation GA where fitness

calculations were done in slave processors in each iteration. Second model was also a

sequential GA, but there was no synchronization between slave processors; they

received fitness calculations whenever they finished previous one. In third model,

population was stored in a shared memory structure, where every slave processor takes

one individual whenever it is idle and calculates fitness value for that individual

independently from other processors. In fourth model, he proposed a multi population

schema, where best individuals are shared among processors at the end of every

iteration.

In 1985, Grosso proposed a multi – population model in his dissertation (Grosso, 1985).

According to Cantu-Paz (Cantú-Paz, 1998) his objective was to simulate diploid

individuals and a global population which consisted of five separate demes that

exchange a fixed number of solutions. Rate of the migration was changed in different

experiments to see the effect of migration rate. He discovered that, the rate of

improvement in his five-deme model were faster than a single combined population.

In 1987, Tanese proposed a parallel genetic algorithm which utilizes hypercube

topology as a migration topology for the first time (Tanese, 1987). According to Cantu-

Paz (Cantú-Paz, 1998), she defined a neighborhood structure between demes as being

in the same dimension with each other. Immigrants of the demes were selected from

the best solutions and replaced the worst solutions of other demes. Migrations

happened in fixed time intervals. According to Cantu-Paz (Cantú-Paz, 1995), she

reported that parallel GA’s results were comparable to serial version with the

advantage of near-linear speedup.

In 1989, Tanese published another paper as a continuation for her work in 1987 (Tanese,

1989). According to Cantu-Paz (Cantú-Paz, 1998), she compared performances of a

serial GA, a multipopulational parallel GA using a hypercube topology and

multipopulational GA with no communication. All algorithms are run for 500

iterations. She concluded that, multipopulational parallel GA was able to find same

solutions as the sequential version. However, final solution quality was worse.

57

Solution quality surpassed the sequential version with introduction of migration

schema.

In 1990, Whitely and Starkweather created a parallelized version of their previously

implemented GENITOR algorithm by using smaller distributed populations and a

migration schema. Their implementation of the migration schema transfers the best

individuals in each of the subpopulations to their immediate neighbors and replaces

worst individuals in that population using a ring migration topology. They called this

new algorithm GENITOR II and tested it on several problems, like optimizing a

feedforward neural network and traveling salesman problem. They used three versions

of the algorithm in comparisons to sequential version of the algorithm GENITOR,

distributed version of the algorithm GENITOR II and another distributed version

without a migration schema. They reported that, distributed algorithm is more robust

and they were able to optimize larger size problems and they acknowledged distributed

algorithm to be superior to the serial version in terms of solution quality (Whitely &

Starkweather, 1990).

In 1991, Mühlenbein et al. applied a distributed genetic algorithm named as PGA to

optimization of continuous functions. To avoid premature convergence and stagnation,

they also implemented a hill – climbing algorithm for each subpopulation. For this

application, they used a ring-like migration topology, which they call ladder topology.

Each of the subpopulations evolve for a fixed period of time, utilizing a steady-state

GA. Migration takes place after certain time intervals, and best individuals are

migrated to the immediate neighbors of the subpopulations. The algorithm terminates

after the algorithm reaches a certain fitness value. They benchmarked their algorithm

on several different problems and measured a superlinear speedup in some cases. They

also reported better solution quality and even found a global minimum point which

was previously unknown for one of the functions (Mühlenbein, Schomisch, & Born,

1991).

 In 1993, Whitely and Gordon compared 9 different parallel GA algorithms for

continuous function optimization that were previously introduced in the literature.

Among those algorithms, two of them were using master – slave model, four of them

were coarse-grained and two of them were fine-grained algorithms. Other algorithms

were two different implementations of Goldberg’s famous Simple Genetic Algorithm

(Goldberg, 1988). This is the earliest work referencing coarse-grained algorithms as

58

an island model. They normalized the algorithms to use same number of fitness

evaluations as a base for comparison. They used De Jong functions, Rastigin, Schwefel,

Griewangk, Ugly 3, 4-bit deceptive functions and zero-one knapsack problem for

benchmarking the algorithms. All the algorithms were started with a population size

of 400. According to their test results, Simple GA derivatives got the worst results in

terms of solution quality, while parallel implementations performed better. Most

notably, Whitely and Starkweather’s GENITOR II algorithm (Whitely & Starkweather,

1990) got the best results. They also noted that, elitist versions of the algorithms were

better than non-elitist versions (Gordon & Whitely, 1993).

In 1994, Levine used an island model GA to solve Set Partitioning Problem in his

dissertation. Set partitioning problem is a type of combinatorial optimization problem

used by many airline companies for flight crew scheduling. He created a steady-state

sequential GA and distributed it among N-Processors of an IBM SP-1 computer. He

measured his results in terms of solution quality. He fixed the number of migration

intervals to 1000 generations on each of the tests, while utilizing ring migration in

which, a single best solution from each population replaced its immediate neighbor’s

worst solution. He used 1, 2, 4, 8, 16, 32, 64 and 128 islands on his experiments. He

concluded in his experiments that; migration was preferable to no migration in island

model. However, he was unable to find a significant difference among different

migration intervals. He also concluded that, incrementing number of islands has

contributed to solution quality for set partitioning problem (Levine, 1994).

In 1998, Ochi et al. applied an island model GA to vehicle routing problem. Vehicle

routing problem consists of a number of vehicles with a fixed capacity that are to

deliver items of different quantities to different customers. Knowing the distances

between customers, objective of problem is to find total minimum distance traveled by

the vehicles, given that only a single truck handles deliveries for a given customer and

total quantity that must be carried by truck cannot exceed maximum capacity allowed.

Their approach was combining a parallel island model genetic algorithm with scatter

search. Their migration policy is unusual: when one of the islands starts to lose

diversity, it issues a broadcast requesting best known solutions from all other islands.

This allowed creation of somewhat different population and broadens the exploration

of search space. They compared their results to Taillard’s sequential algorithm and

59

they found out some improvements in terms speedup and solution quality. Their

reported speedup gain was almost linear (Ochi, Vianna, Drummond, & Victor, 1998).

 In 2002, Fan et al. applied an island model genetic algorithm to segment lateral

ventricles from magnetic resonance brain images. By applying active model-based

segmentation technique, researchers were able to convert the process into an

optimization process. Then, an island model GA is run to solve the problem. In initial

phase, rough descriptions of object surfaces are inputted as initial population to the

genetic algorithm and algorithm is utilized to refine those images using an energy

minimization procedure. Their algorithm included a somewhat unorthodox migration

methodology, in which how many subpopulations will migrate solutions is determined

by the algorithm randomly, while best known solutions of the islands are migrated.

They noted that parallel genetic algorithm did a very good job as the results of

experiments indicated that their approach surpassed existing sequential GA solutions

with more effective discovery of search space and increased convergence speed gained

by the parallel island model GA (Fan, Jiang, & Evans, 2002).

In 2003, Pereira and Lapa applied an island model GA to nuclear reactor core design

optimization problem. This optimization targeted minimizing the average-peak factor

in a 3-enrichment-zone reactor by adjusting several reactor cell parameters, such as

dimensions, enrichment and materials. They used a fixed size 50 intra-island

populations and utilized ring migration strategy where best – individuals are migrated

at every 10 generations. They compared single island, 2 island, 4 island and 8 island

configurations. Their experiments have shown that, island model surpassed sequential

GA, both in terms of solution quality and completion time. Authors interpreted this as,

vast differences are due to preservation of the diversity with the island model (Perreira

& Lapa, 2003).

In 2004, Tang et al. studied the effects of migration topology in island model parallel

GA, using quadratic assignment problem. They considered two migration models,

unidirectional ring migration and a randomized stepping stone model, where recipient

islands and receiving individuals are chosen at random. To ensure a fair comparison,

they fixed all other parameters as, population size being 240, crossover probability is

set to 0.8, mutation probability to 0.05, migration interval is set to every 10 generations,

and migration policy is set to best individual replaces worst of the recipient population.

They run their algorithms with 3, 4, 6, 8, 10 islands on Skorin-Kapov 100b and Taillard

60

100b instances. They found out that, unidirectional ring migration schema performed

better than the randomized-stepping stone model in general (Tang, Lim, Ong, & Er,

2004)ç

In 2010, Ruciñski et al. studied the effects of migration topology on an island model

differential evolution algorithm using several continuous functions like Rastrigin,

Schwefel and Lennard-Jones. They considered 128, 256, 512 and 1024 islands in their

experiments. Their experiments were rather extensive; they tested 14 different

topologies including various derivatives of unidirectional ring topology, torus,

cartwheel and lattice topology, hypercube, broadcast and fully connected. Migration

interval is fixed in all tests to 100 generations. They used best individuals replace worst

in the receiver island as the migration policy. They report that, the impact of the island

size varies with topologies, so it is not a primary factor to consider when deciding on

a topology. However, when the number of islands is increased, the topology becomes

more important in order to utilize additional islands. They concluded that, ring

migration variants perform better than other kind of topologies, because spread of

information is faster (Rucinski, Izzo, & Biscani, 2010).

In 2015, Liu and Wang applied island model parallel GA to generalized assignment

problem. In this problem, there are N bins with capacity C and M items. The task is to

find an assignment of items into bins in such a way that, no bins exceed their capacity

and total cost of assignment is minimized. Authors decided to implement an

asynchronous migration methodology in order to reduce communication delay. In their

algorithm, each island starts with a randomized population, and islands are connected

with 2D toroidal grid topology. In this topology, each island has 4 neighbors. The

number of islands are decided in runtime depending on the number of available

processors. Each island holds an import FIFO queue. This queue considers two criteria:

more elite and more diverse solutions have higher chances of being selected. Rate of

immigration and immigration interval are constant and parameterized. The authors

considered two types of processor scalabilities when benchmarking the algorithm.

Strong scaling tests included more CPU cores and are designed to test the speedup,

while weak scaling is used to measure solution quality. Authors executed the tests on

supercomputers. Strong scaling results showed that, super-linear speedups are

attainable, even with synchronous version. Weak scaling experiments have shown that,

number of islands utilized is directly related to solution quality, while they have also

61

shown that, asynchronous version of algorithm performed better than synchronous

version (Liu & Wang, 2015).

 In 2016, Kurdi applied an island model GA to job shop scheduling problem. In this

problem, there are 𝑛 machines and 𝑚 jobs. Goal is to find a schedule to assign all the

tasks to the machines in such a way that each machine can process only one job at a

time and each job should be processed on each machine. The author employed

different mutation models on each of the islands to provide better diversification and

provide better exploration. The author employed a derivation of 2D unidirectional ring

migration. Migration only happens when algorithm cannot find an improvement in all

islands for 10 generations. For the migration policy, the author selected migrate worst

solution policy. Author also benchmarked his algorithm against different migration

policies, one being replace best and other replace random. He concluded that his

algorithm compared better against both of them (Kurdi, 2016).

Other than coarse-grained island model and parallelization of time consuming tasks,

called master slave model, there is also a third type of parallelization proposed in

literature: fine-grained parallel GAs.

Perhaps, the earliest example in literature is Robertson’s work from 1987. According

to Cantu – Paz (Cantú-Paz, 1998), his algorithm parallelized selection of parents,

mating and crossover sections using a massively parallel computer CM-1 which

as16,000 processors (Robertson, 1987).

In 1989, Gorgos – Schleuter (Gorges - Schleuter, 1989) and her college Mühlenbein

(Mühlbein, 1989) developed a massively parallel fine-grain model called

ASPARAGOS which works on massively parallel computers and utilizes an individual

based multipopulational structure what is known as cellular model nowadays. In both

articles, it is called as the neighborhood model. In their model, neighborhood is defined

on a ladder-like two-dimensional grid where each individual occupied a grid point.

Mating and selection was done asynchronously between immediate neighbors. They

also implemented a hill climbing local search strategy to prevent population from

falling into premature convergence. Mühlenbein applied ASPARAGOS to quadratic

assignment and traveling salesman problems, and successfully obtained optimum

results for Nugent30 and Steinberg36 QAP instances, as well as 40 city TSP and 50

city TSP instances (Mühlbein, 1989). Gorgos-Schleueter applied it to TSP and tested

62

problem parameters. She concluded both mutation and migration create diversity

within population. However, migration is better at creating variance, because these

variations are useful compared to random variations achieved with mutation. She

found out that, the most important parameters were selection strategy and population

sizes. She also found out ASPARAGOS found better solution than simulated annealing

and was faster than k-opt local search strategy (Gorges - Schleuter, 1989).

In 1994, Shapiro and Navetta applied massively parallel neighborhood model

algorithm to predict RNA secondary structure. They run their algorithm on MP2

supercomputer with 16,384 processors. They utilized a grid based topology where

every cell is appointed to a single processor. Their algorithm was able to find solutions

up to 5% of optimal solution (Shapiro & Navetta, 1994).

In 1998, Folino et al. solved k-satisfiability problem using a cellular genetic algorithm.

They utilized a 2-dimensional toroidal grid to define the neighborhood between cells.

They tested their algorithm on a Meiko CS-2 SIMD computer. They compared their

algorithm with a sequential algorithm proposed in the literature on 3-SAT problems

with 64 to 512 variables. They showed that, their algorithm converged significantly

faster than its sequential version, allowing it to solve larger problems in the same

amount of time (Folino, Pizzuti, & Spezzano, 1998).

In 2008, Steiner et al. applied cellular model for development of lightweight and stable

materials (Steiner, Jin, & Sendhoff, 2008). In the same year, Alba and Dorronsoro

applied a Cellular GA to solve vehicle routing problem. (Alba & Dorronsoro, 2008)

In 2009, Luque et al. applied a cellular genetic algorithm to various combinatorial

optimization problems like MAX-SAT, massively multimodal deceptive problem and

p-median problem. They used a cluster of computers for their experiment. They found

out that cellular GA outperformed island model in these experiments (Luque, Alba, &

Dorronsoro, 2009).

63

CHAPTER 4

AN ISLAND MODEL PARALLEL GA FOR QAP

4.1. Formulation and Solution Representation

According to the recent survey on QAP (Loiola, de Abreu, Boaventura-Netto, Hahn,

& Querido, 2007), there are 5 different formulations proposed in the literature: integer

linear programming formulations, Mixed Integer Linear Programming (MILP)

formulations, permutation based formulations, trace formulation and graph

formulation, while, the most popular formulation in literature is permutation based.

This is due to the simplicity of showing a solution in terms of a permutation and for a

genetic algorithm such solutions are easy to manipulate and use existing and proven

to be effective genetic operators like Partially Mapped Crossover (PMX) and List

Order Mutation. In this kind of formulation, locations are defined with the order in the

permutation, while facilities are shown with unique numbers between 1 and 𝑛. Each

facility’s position within the permutation defines its location. For instance, if size of

the problem is 5, the permutation 53412 defines a solution in which facility 5 is

assigned to location 0, facility 3 is assigned to location 1, facility 4 is assigned to

location 2, facility 1 is assigned to location 3 and facility 2 is assigned to location 2.

The optimization objective is minimizing total sum of flow between 𝑛 facilities and

the same number of locations, therefore, a fitness formulation can be defined as

follows:

min 𝑝 ∈ 𝑆𝑛 ∑ ∑ 𝐴𝑖𝑗 × 𝐵𝑝𝑖𝑝𝑗

𝑛

𝑗=1

𝑛

𝑖=1

where 𝑆𝑛 is all possible permutations with size 𝑛, 𝐴𝑖𝑗 is the distance between locations

𝑖 and 𝑗 , 𝐵𝑝𝑖𝑝𝑗 is the flow of demand between facilities 𝑝𝑖 and 𝑝𝑗 . In this

implementation, A and B matrices can be symmetrical or asymmetrical depending on

the problem instance, algorithm will work in either cases.

4.2. Implementation of The Algorithm

The primary aim of this thesis is measuring the effects of parallelization of a serial

genetic algorithm designed for solving QAP. The secondary objective is finding the

64

optimum algorithm configuration when parallelizing the GA. This study aims to

answer following questions:

1. How many islands (processors/threads) gives better performance? How many

islands are ideal?

2. Will there ever be a situation where increasing number of islands (threads)

actually start decreasing solution quality? (Is there a critical-mass situation?)

3. Does period of migration (an epoch) will affect the outcome of algorithm? If so,

what is the ideal setting for period migration?

4. How does number of solutions to be exchanged influence solution quality? What

is the ideal setting for the number of solutions to be exchanged?

5. Which immigration topology is more suitable?

6. How does the direction of migration will affect the algorithm’s outcome? Should

the exchange between islands be unidirectional or bidirectional?

7. What should be the ideal setting for the number of elites to be transferred to the

next generation directly?

8. How will the parallelization affect time of execution for the algorithm without

regarding any kind of optimization?

In order to answer how each parameter affects the solution, first we needed to create

an ordinary sequential GA without considering any kind of optimization. The model

consists of a number of islands, each of them running the same sequential algorithm

for a number of iterations, while in certain time intervals (after a number of iterations),

randomly selected solutions are exchanged between islands.

We also implemented a synchronized master-slave model for sequential GA to utilize

empty processors/threads to gain some wall clock time for the experiments. Fitness

calculations of each algorithm will be divided between the unused CPU cores and

when fitness calculations are obtained, algorithm will resume.

We also added a mechanism which uses two opt local search with best improvement

pivoting rule, which is only applied to elite solutions, which will improve the best

possible solution within each of the elite’s neighborhood. We implemented a

generation based genetic algorithm with elitism.

65

Our sequential algorithm starts with randomly created permutations of size 𝑛, where

𝑛 is the problem size. In each iteration, algorithm will first calculate fitness value of

each solution within population, order the solutions within the population based on

their fitness values, preserve the best 𝑚 solutions as population elites and select of 𝑛 −

𝑚 solutions among the rest using tournament selection methodology. Main reason for

selecting this methodology is that, it is proven to be the effective in QAP or TSP like

permutation based problems based on our experiences and other authors in the

literature such as Tosun et al. pointed out in a similar work (Tosun, Dokeroglu, & Cosar,

2013).

After the selection process, we use a Partially Mapped Crossover (PMX) as the

crossover operator, because it is a reasonably well operator when dealing with

permutation based problems like TSP and QAP which is also shown by Tosun et al.

(Tosun, Dokeroglu, & Cosar, 2013).

After crossover, each child will undergo two kinds of small mutations to preserve

diversity and avoid premature convergence problem. We implemented swap mutation

and inversion mutations, while, rest of the population undergoes crossover and

mutation, elite solutions also undergo a two-opt local search with best improvement to

find best possible solutions within that portion of search space. At the end of each

iteration, children and elites are combined and number of individuals within population

remains constant.

After a certain number of iterations, algorithm starts a migration process. In this step,

a group of randomly chosen solutions are migrated according to the utilized migration

topology. In our implementation, we used ring migration model, because it is the

easiest schema to implement.

In the final step, before moving to next iteration, algorithm will check for the

termination criteria and if the criteria is satisfied, algorithm will terminate and fittest

solution within the global population will be retuned as a result. Termination criteria

is described in detail in the next section.

66

Figure 4.1. Island GA Pseudocode

A simple experiment has been designed to decide on cross-over and mutation rate

parameters. 2 different GA configurations are created; one with high crossover and

mutation rates and the other with low crossover and mutation rates. The experiment

has been repeated 10 times for both configurations and minimum, maximum, mean

and trimmed mean values are calculated. The results are shown in Table 4.1. High

cross-over and mutation rate is more successful, so the next experiments will use these

rates.

Table 4.1. Parallel Island GA Parameters Initial Experiment

Configuration Data Instance
RPC

Min
RPC Mean

RPC Trimmed

Mean

RPC

Max

High Cross-

over (100%)

& Mutation

Rate (50%)

tai30a 2.80 3.46 3.41 4.51

tai40a 3.07 3.73 3.70 4.64

tai50a 3.00 3.65 3.66 4.28

tai60a 3.16 3.47 3.46 3.88

Average 3.01 3.58 3.56 4.32

Low Cross-

over (60%) &

tai30a 4.06 5.19 5.16 6.59

tai40a 4.17 5.32 5.36 6.14

67

Mutation

Rate (5%)
tai50a 4.59 5.28 5.26 6.14

tai60a 3.94 4.71 4.71 5.43

Average 4.19 5.13 5.12 6.07

After initial experiments, the following parameters and operators shown in Table 4.1

are selected. Since the focus of this work is examining the effects of hyper parameters

for island model GA, we did not consider using other operators and optimizing these

parameters further. Testing sequential algorithm in terms of solution quality and

experimenting with the parameters and operators is left as a future work.

Table 4.2. Sequential GA Parameters

Crossover Operator PMX crossover with Probability of 100%

Mutation Operator – 1 Swap Mutation with a probability of 50%.

Mutation Operator – 2 Inversion with Probability of 50%

Parent selection

methodology

Tournament selection with size 2

and with a probability of 75% for

selecting the better individual

4.3. Algorithm Termination

This work aims to investigate the effect of parallelization of a sequential algorithm,

primarily in terms of solution quality, as well as measuring the effects of different

parameters such as number of islands, immigration interval, immigrant count,

immigration topology, number of elites. To make a fair comparison, we have decided

to limit the total number of fitness evaluations by a constant value. By trial and error

methodology, we came up with the formula below:

𝑇𝑜𝑡𝑎𝑙 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑖𝑧𝑒 × 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑖𝑧𝑒 × 20,000.

Each run of the algorithm is allowed to do this many calculation exactly, and after that,

the algorithm terminates and reports the best found individual long with its fitness

value, as the final result.

68

4.4. Coding and Benchmarking the Algorithm

We implemented the algorithm using Java programming language on Windows

platform. While coding our project, we used Daniel Dyer’s Watchmaker Evolutionary

Computing Framework as basis for our project (Dyer, 2013).

Since genetic algorithms are stochastic, they heavily rely on randomization, therefore,

we have chosen Java implementation of Xoroshiro128+ algorithm by Tommy Ettinger

(Ettinger, 2017) as the random number generator. According to a comparison made by

Tobias Ibounig on 2894680 samples (Ibounig, 2016), this algorithm performs 58%

better than Java default random number generator in terms of runtime.

In order to ensure fairness, we used same seeds on all of our experiments. Each of the

tests applied for different configurations consists of 10 independent runs, except first

2 preliminary experiments. All of the ten independents runs are initialized with seeds

between 100 and 109 for each different parameter combination.

Like most of the work we come across in literature, we decided to focus on solving

QAPLIB instances. As we mentioned in Chapter 1, these instances can be categorized

into four main groups, with uniform - randomly generated instances are being the most

difficult ones to solve. This group is a good fit to measure our algorithm’s initial

performance and compare to other state of the art algorithms. Therefore, we decided

to start with Taillard ‘a’ instances, specifically ‘a’ instances with sizes between 30 and

80. In addition, none of these instances have been solved to optimality yet, so it can be

concluded that, they are among the most difficult QAP instances.

We performed our test on a VMWare virtual machine, running on a server having Xeon

E5-2660 2.20 Ghz. Processor. Our virtual machine has 4 cores & 8 threads, as well as

8 GBs of RAM reserved. The virtual machine runs Windows Server 2012 R2 as the

operating system with JDK 8 64-bit edition installed.

In order to start our experiments, we decided to run some preliminary tests to

determine ideal conditions to benchmark our algorithm. We decided to alternate

different parameter configurations and observe their results. Therefore, we prepared

an extensive test which includes population size, the number of islands, the number of

immigrants per island, immigration period and number of elites per island as

alternating parameters. We also decided to use single-directional ring migration as

69

migration topology, since it is the most commonly preferred and simplest to implement.

Table 4.2 lists the parameters and their values considered in the experiments.

Table 4.3. Parallel Island GA Preliminary Test – 1 Parameters

Parameter Value

Population sizes 50 – 100 – 150

Number of Islands 2 – 4 – 8 – 12

Number of Immigrants 5 – 10

Migration Period (Iterations) 10 – 20

Elite Count 1 – 2

We decided to conduct these tests on Taillard 30a data instance. Test included 96

different configurations and 5 independent runs are made for each configuration using

seeds 100-104, which makes 480 runs in total. RPC is computed for each configuration

and 5 RPCs are averaged for each configuration. Most successful 13 configurations of

the preliminary test is given in Table 4.3.

Table 4.4. Parallel Island GA Preliminary Test-1, Top 13 Most Successful

Configurations out of 96, based on average RPC

Population

Size

Number

of

Islands

Number of

Immigrants

Immigration

Period

Elite

Count

Migration

Topology

Average

RPC (%)

per 5 Run

50 12 10 20 1

Unidirectional

Ring

Migration

3.31

50 8 10 10 1 3.41

100 8 10 10 2 3.42

50 8 10 10 2 3.42

70

50 12 10 10 2 3.58

50 12 10 10 1 3.58

150 12 10 10 2 3.59

100 12 10 20 2 3.60

50 12 5 20 1 3.64

50 8 5 20 1 3.66

50 8 10 20 2 3.67

100 8 5 10 2 3.68

50 8 5 20 2 3.68

Results of the first preliminary experiment has shown that Population size and Number

of islands are the most critical factors in algorithm’s success. It seems using lower

island population and higher number of islands is more reasonable approach. This

experiment has also shown that, immigration period might be yet another parameter

worth considering. Effects of number of immigrants and elites cannot be determined

based on this experiment.

We decided to run a secondary preliminary experiment based on the obtained results.

Our purpose was to measure the effect of population size and number of islands

without regarding other parameters. Since first test has shown smaller island

populations with larger number of islands are more effective, we decreased population

sizes and increased number of islands. Table 4.4 shows the second preliminary test

parameters.

71

Table 4.5. Parallel Island GA Preliminary Test -2 Parameters

Parameter Value

Population sizes 40 – 50 – 60

Number of Islands 10 – 12 – 14

Number of Immigrants 10

Migration Period (Iterations) 10

Elite Count 2

Second preliminary experiment also confirmed our initial assumption. For Taillard 30a

instance and presumably also for the other Taillard ‘a’ instances, low island population

and high number of islands yields the better performance. The results of this

experiment sorted on decreasing average RPCs is given in Table 4.5.

Table 4.6 Parallel Island GA Preliminary Test -2 Results

Population

Size

Number of

Islands

Average RPC (%)

per 5 Run

Minimum RPC (%)

Per 5 Run

40 14 2.997 2.720

40 12 3.292 2.732

40 10 3.508 2.872

50 14 3.531 2.893

50 12 3.575 2.858

50 10 3.684 3.035

60 12 3.687 2.594

60 14 3.691 2.922

60 10 3.769 3.034

In the next experiments, we use a static global population size and vary the number of

groups they are divided (Islands / Threads). We decided to use a global population of

600 solutions to measure direct effect of number of islands / threads on solution quality.

We prepared yet another experiment with different number of islands, varying between

1 and 75, with 1 being the original sequential algorithm with all of 600 individuals on

a single island. In following test, each island will contain (600 / Number of Islands)

solutions. Since the population sizes on each island changes along with the number of

72

islands, we decided to use ratios instead of fixed values for parameters. Table 4.6

shows the parameter values used in this experiment.

Table 4.7 Parallel Island GA Optimizing Number of Islands

Parameter Value

Number of Immigrants 10 % of Population size per island

Migration Period (Iterations) 5 x Number of Islands

Elite Count 1 % of Population size per island or 1

In the next experiment, we have considered out of total 30x30x20,000 = 18,000,000

fitness evaluations as the termination limit for tai30a instance. The results are given in

Table 4.7

Table 4.8 Number of Islands Experiment Results with Tai30a data set

Population

Size

Number

of

Islands

Minimum

RPC Per

10 run

Mean RPC

per 10 Run

Trimmed

Mean RPC

Per 10 Run

Maximum

RPC for 10

runs

600 1 11.47 12.64 12.70 13.32

300 2 3.65 4.34 4.28 5.47

150 4 3.37 4.10 4.13 4.56

75 8 3.24 4.11 4.11 4.98

60 10 2.89 4.09 4.07 5.38

50 12 3.28 4.07 4.01 5.34

40 15 2.18 3.57 3.67 4.18

30 20 2.21 3.57 3.61 4.60

20 30 3.31 4.08 4.07 4.91

15 40 2.47 4.03 4.05 5.39

12 50 2.39 3.75 3.79 4.78

10 60 3.99 4.46 4.44 5.14

8 75 4.06 5.08 4.98 6.94

Mean RPC values versus number of islands plot is shown in Figure 4.1. We can see a

sharp increase in solution quality when 2 islands are used, due to the benefit gained

from two diverse populations rather than a single one. Solution quality of 2 islands and

others are almost 3 times better than sequential algorithm counterpart. This evidently

73

shows the power of island model GA compared to classical GA. For other results,

while 15 - 20 island (Threads/Processors) yields the best results in terms of solution

quality, we can see a gradual decrease until 40 - 50 Islands. After that point, algorithm

performance starts to drop, presumably because subpopulation amount is not enough

to create a diverse range population, thus hindering evolution process. We call this

point as “Critical Mass”, where any further parallelization will make solution quality

worse.

Figure 4.2. Number of islands versus mean RPC graph for Tai30a instance

For tai40a instance, we have considered out of 40 x 40 x 20,000 = 32,000,000 fitness

calculations for each run. Detailed results are given in Table 4.8

Table 4.9 Number of Islands Experiment Results with Tai40a data set

Population

Size

Number

of

Islands

Minimum

RPC Per

10 run

Mean RPC

per 10 Run

Trimmed

Mean RPC

Per 10 Run

Maximum

RPC for 10

runs

600 1 13.63 13.97 13.98 14.23

300 2 2.03 4.30 4.45 5.34

150 4 2.03 4.64 4.77 6.23

75 8 2.03 4.50 4.63 5.89

60 10 2.03 4.43 4.55 5.84

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

M
ea

n

R

P
C

 f
o
r

1
0
 R

u
n

s

Number of Islands

tai30a - Mean RPC of 10 Runs 1- 75 Islands

74

50 12 2.03 3.81 3.91 4.78

40 15 3.44 4.25 4.21 5.29

30 20 2.99 4.15 4.18 5.06

20 30 3.82 4.51 4.50 5.33

15 40 2.86 4.37 4.34 6.14

12 50 3.11 3.91 3.90 4.77

10 60 2.82 4.82 4.93 5.93

8 75 4.20 5.16 5.17 6.08

Just as in tai30a instance set, solution quality of island model GA is almost 3 times

better with minimum number of islands (2). It also shows us, while 12 islands

performed best, it may be coincidental because solution quality decreases gradually up

to 30 islands and after that point, results start to get better and better until 50 islands,

which is the second-best point after 12 islands. After 50 islands, solution quality starts

to drop slowly again. Therefore, we concluded that 50 islands is the also the critical

mass point for tai40 instance as well. Mean RPC values versus number of islands plot

is shown in Figure 4.2.

Figure 4.3. Number of islands versus mean RPC graph for Tai40a instance

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

M
ea

n

R

P
C

 f
o
r

1
0
 R

u
n

s

Number of Islands

tai40a - Mean RPC of 10 Runs 1- 75 Islands

75

For tai50a instance, we have considered 50 x 50 x 20,000 = 50,000,000 fitness

calculations. Table 4.9 shows the detailed results. Just as previous test instances, 20

islands seem to produce best average results, however, solution quality starts to drop

after 20 islands, and stands low until 50 islands, which is also the second-best point in

terms of average solution quality. After 50 islands, we see same solution quality drop

presumably due to insufficient island population hindering evolution. Figure 4.3 shows

the plot of number of islands versus mean RPC graph for Tai40a instance.

Table 4.10 Number of Islands Experiment Results with Tai50a data set

Population

Size

Number

of

Islands

Minimum

RPC Per

10 runs

Mean RPC

per 10 runs

Trimmed

Mean RPC

Per 10 runs

Maximum

RPC for 10

runs

600 1 13.57 14.08 14.11 14.33

300 2 3.91 4.63 4.65 5.12

150 4 3.91 4.43 4.43 4.99

75 8 3.25 4.32 4.33 5.23

60 10 3.56 4.30 4.33 4.83

50 12 3.11 4.28 4.32 5.12

40 15 3.60 4.32 4.28 5.39

30 20 3.14 3.95 3.98 4.54

20 30 3.90 4.44 4.41 5.20

15 40 3.93 4.53 4.50 5.41

12 50 3.46 4.22 4.22 4.91

10 60 3.53 4.54 4.58 5.25

8 75 4.24 5.01 5.00 5.84

76

Figure 4.4. Number of islands versus mean RPC graph for Tai50a instance

For tai60a problem instance, we have considered 60 x 60 x 20,000 = 72,000,000 fitness

calculations. We can see the same almost 3 times increase in terms of solution quality

between sequential and island model GAs. In terms of average solution quality, 50

islands seem to produce best average solution quality out of 10 runs. After 50 islands,

solution quality starts to drop. Table 4.10 gives the detailed RPC values and Figure 4.4

shows the number of islands versus mean RPC plot.

Table 4.11 Number of Islands Experiment Results with Tai60a data set

Population

Size

Number

of

Islands

Minimum

RPC Per 10

Runs

Mean RPC

per 10 Runs

Trimmed

Mean RPC

Per 10 Runs

Maximum

RPC for 10

Runs

600 1 13.13 13.72 13.76 13.92

300 2 3.34 4.32 4.36 4.99

150 4 3.34 4.34 4.37 5.04

75 8 3.34 4.14 4.06 5.57

60 10 3.62 4.14 4.10 4.95

50 12 2.76 4.26 4.28 5.56

40 15 3.76 4.11 4.05 4.94

30 20 3.28 3.96 4.00 4.38

20 30 3.26 4.03 3.99 5.06

15 40 3.56 3.97 3.93 4.72

12 50 3.18 3.85 3.89 4.19

10 60 2.55 4.02 4.12 4.71

8 75 3.29 4.25 4.26 5.14

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

M
ea

n

R

P
C

 f
o
r

1
0
 R

u
n

s

Number of Islands

tai50a - Mean RPC of 10 Runs 1- 75 Islands

77

Figure 4.5. Number of islands versus mean RPC graph for Tai60a instance

For tai80a instance, we have considered 80 x 80 x 20,000 = 128,000,000 fitness

calculations. As with all the previous cases, island model is 3 times more effective than

its sequential counterpart in term of solution quality. In terms of average solution

quality, 20 islands configuration has a slight edge over 50 islands, but they are close.

After 50 islands, same scenario happens and solution quality starts dropping. Table

4.11 gives the detailed RPC values and Figure 4.5 shows the number of islands versus

mean RPC plot.

Table 4.12 Number of Islands Experiment Results with Tai80a data set

Population

Size

Number

of

Islands

Minimum

RPC Per

10 Runs

Mean RPC

per 10 Runs

Trimmed

Mean RPC

Per 10 Runs

Maximum

RPC for 10

Runs

600 1 12.16 12.47 12.47 12.71

300 2 3.04 3.70 3.71 4.32

150 4 3.15 3.82 3.74 5.15

75 8 3.18 3.77 3.78 4.32

60 10 3.15 3.65 3.65 4.21

50 12 3.27 3.67 3.65 4.21

40 15 2.93 3.53 3.55 3.97

30 20 2.78 3.56 3.58 4.24

20 30 3.42 3.94 3.93 4.52

15 40 3.24 3.67 3.64 4.34

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

M
ea

n

R

P
C

 f
o
r

1
0
 R

u
n

s

Number of Islands

tai60a - Mean RPC of 10 Runs 1- 75 Islands

78

12 50 2.95 3.66 3.67 4.30

10 60 3.13 3.87 3.86 4.72

8 75 3.82 4.31 4.25 5.29

Figure 4.6. Number of islands versus mean RPC graph for Tai80a instance

Third experiment showed us that island model is able to produce 3 times better results

than its sequential counterpart. If we consider the ideal number of islands, while 20

islands can be considered as a good choice for Taillard ‘a’ data set, there are

improvements until 50 islands and 50 islands can be considered as critical mass point

for this data set using 600 global population.

We have also examined 1 - 75 island configurations in terms of speedup over their

sequential counterpart. Table 4.12 shows the parallelization efficiencies for different

numbers of islands, as well as single island & master-slave model (1-island). Each of

the configurations shown in the table utilizes all the processing units within the

computer (4 cores and 8 threads). When implementing the algorithm, we have not

considered optimizing completion time, since our main focus was the improvement in

terms of solution quality. Despite this, we can see super-linear speedups both in 1

island master - slave model and in our island & master - slave hybrid algorithm. We

can see that although the parallelization efficiency is still super-linear, it is a little low

for 2 - islands configuration, compared to other cases. After 4 islands, rate of

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

M
ea

n

R

P
C

 f
o
r

1
0
 R

u
n

s

Number of Islands

tai80a - Mean RPC of 10 Runs 1- 75 Islands

79

improvement starts to increase until 50 islands, peaking at 40-islands configuration

with an average value of 1.36. After 50 islands, number of threads utilized by the

algorithm is considerably over the limits of physical hardware causing bottlenecks,

and rate of improvement starts to decrease again. Note that, in our algorithm, migration

model is synchronous which means there may be idle times when some processing

units wait for the others while the algorithm runs. Converting algorithm to

asynchronous might also improve run time. Figure 4.6 also shows the parallelization

efficiency graphically.

Table 4.13 Parallelization Efficiency (%) on Taillard samples.

Parallelization Efficiency in Taillard Samples compared to Seq. Alg.

of Islands

1

(Master

Slave)

2 4 8 10 12 15 20 30 40 50 60 75

Taillard30a 1.19 1.11 1.24 1.27 1.35 1.37 1.33 1.44 1.48 1.48 1.25 1.16 1.14

Taillard40a 1.25 1.04 1.21 1.25 1.30 1.26 1.31 1.31 1.22 1.32 1.10 1.01 0.99

Taillard50a 1.27 0.98 1.17 1.27 1.29 1.28 1.27 1.29 1.23 1.31 1.08 0.99 0.95

Taillard60a 1.32 0.96 1.13 1.30 1.30 1.27 1.28 1.29 1.27 1.33 1.08 1.00 0.97

Average 1.26 1.02 1.19 1.27 1.31 1.29 1.30 1.33 1.30 1.36 1.12 1.04 1.01

80

Figure 4.7. Parallelization efficiency of Island Model over sequential Algorithm

After the third experiment, we decided that best configuration we can use on Taillard

problem instances are 50 islands and 12 individuals for each island, since, it would

guarantee to give nearly best results for each instance and still has a fairly good

speedup. So far in all tests, we tested using unidirectional ring migration model. We

also wanted to see if changing migration topology might make things different.

Therefore, we utilized a secondary model that uses a bidirectional ring model and

compared it with unidirectional counterparts for 30, 40 and 50 island configurations.

In classical ring migration model, every island sends 𝑚 randomly chosen solutions to

the next island, starting from the first island. Island at the end sends to the first island,

thus, forming a ring. In bidirectional model, starting from first island, every island

sends 𝑚/2 randomly chosen solutions to the next island, while other 𝑚/2 solutions

are send to the previous island. If 𝑚 is odd, (𝑚 + 1)/2 solutions are sent to the next

island, while, 𝑚 − ((𝑚 + 1)/2) solutions are sent to the previous island. First island’s

previous island is considered to be last island and last island’s next is considered as

first island, therefore forming a ring.

The results for unidirectional and bidirectional ring migration topologies for different

Taillard instances are shown in Table 4.13 to Table 4.17. In the fourth experiment, we

observed that, the results do not show significant differences, so we cannot conclude

0.90

1.00

1.10

1.20

1.30

1.40

1.50

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

P
ar

al
le

liz
at

io
n

 E
ff

ic
ie

n
cy

 (
%

)

Number of Islands

Parallelization Efficiency over Sequential Algorithm

Taillard30a Taillard40a Taillard50a

Taillard60a Average

81

which topology is better. Their performances are very close for 30a, 40a and 50a

instances. For Taillard60a instance, unidirectional migration performs better and if we

look at Taillard80a data set, bidirectional migration seems better. However, given that,

we have not done a statistical analysis on results, we cannot conclude that one is better

than the other for Taillard – a instances. We think these inconclusive results may be

caused by random-migration policy. In order to confirm this theory, additional

experiments need to be conducted by utilizing other fitness-based migration policies.

For the sake of simplicity, we continued with unidirectional ring migration model.

Table 4.14 Unidirectional – Bidirectional Ring Migration Comparison on Tai30a

Table 4.15 Unidirectional – Bidirectional Ring Migration Comparison on Tai40a

Taillard 40a

Population Size
Number of

Islands

Migration

Topology

Mean RPC per

10 Run

30 20 Single Direction 4.15

30 20 Bidirectional 4.26

20 30 Bidirectional 4.30

20 30 Single Direction 4.51

15 40 Bidirectional 4.12

15 40 Single Direction 4.37

Taillard 30a

Population

Size

Number of

Islands
Migration Topology

Mean RPC per 10

Run

30 20 Single Direction 3.57

30 20 Bidirectional 3.70

20 30 Bidirectional 3.88

20 30 Single Direction 4.08

15 40 Bidirectional 3.84

15 40 Single Direction 4.03

12 50 Single Direction 3.75

12 50 Bidirectional 3.81

82

12 50 Single Direction 3.91

12 50 Bidirectional 3.79

Table 4.16 Unidirectional – Bidirectional Ring Migration Comparison on Tai50a

Taillard 50a

Population Size
Number of

Islands

Migration

Topology

Mean RPC per 10

Run

30 20 Single Direction 3.95

30 20 Bidirectional 4.00

20 30 Bidirectional 4.25

20 30 Single Direction 4.44

15 40 Bidirectional 4.45

15 40 Single Direction 4.53

12 50 Single Direction 4.22

12 50 Bidirectional 4.29

Table 4.17 Unidirectional – Bidirectional Ring Migration Comparison on Tai60a

Taillard 60a

Population Size
Number of

Islands

Migration

Topology

Mean RPC per 10

Run

30 20 Single Direction 3.96

30 20 Bidirectional 4.02

20 30 Bidirectional 4.00

20 30 Single Direction 4.03

15 40 Single Direction 3.97

15 40 Bidirectional 4.06

12 50 Single Direction 3.85

12 50 Bidirectional 3.94

Table 4.18 Unidirectional – Bidirectional Ring Migration Comparison on Tai80a

Taillard 80a

Population Size
Number of

Islands

Migration

Topology

Mean RPC per 10

Run

30 20 Bidirectional 3.50

30 20 Single Direction 3.56

20 30 Bidirectional 3.89

83

20 30 Single Direction 3.94

15 40 Single Direction 3.67

15 40 Bidirectional 3.69

12 50 Bidirectional 3.57

12 50 Single Direction 3.66

After having decided number of islands and migration type, we tried to optimize other

parameters. For the experiment 3, we made educated guesses for number of

immigrants, migration period (iterations) and elite count parameters. Therefore, in the

fifth experiment we tried to optimize these parameters on Taillard 30-60a instances

using 40 and 50 island configurations and unidirectional ring migration model. We

altered only one parameter at a time to get their best scores. Considered parameters

and their values are shown in Table 4.18. In the table, TBT is short for to be tested,

while Original is the value used from experiment 3.

Table 4.19 : Optimizing Other Parameters on Taillard a Instances – Possible

Configurations

Parameter Value

Number of Immigrants

10 % of Population size per island (Original)

20 % of Population size per island (TBT)

5% of Population size per island (TBT)

Migration Period (Iterations)

3 x Number of Islands (TBT)

4 x Number of Islands (TBT)

5 x Number of Islands (Original)

6 x Number of Islands (TBT)

7 x Number of Islands (TBT)

Elite Count

1 – Elite per island (Original)

2 – Elites per island (TBT)

84

We first started with optimizing number of immigrants parameter. Originally, it was

set to 10% which is 2 in an all cases. We tried swapping 4 individuals as well as 1

individual on each of the data sets. The results are shown in Table 4.19. Results clearly

indicate swapping 4 elements instead of 2 creates better results, while swapping a

single element always led to worse solutions. We did not try increasing this any further,

because it may destabilize evolution process within the islands.

Table 4.20 Taillard a Samples Optimizing Number of Immigrants

Data

Set

Population

Size

Number

of Islands
Param. Status

Number of

Immigrants

Mean RPC per

10 Run
 40 Islands

Tai30a

15 40 20% 4 3.52

15 40 Original (10%) 2 4.03

15 40 5% 1 4.06
 50 Islands

Tai30a

12 50 20% 4 3.48

12 50 Original (10%) 2 3.75

12 50 5% 1 4.10
 40 Islands

Tai40a

15 40 20% 4 3.86

15 40 Original (10%) 2 4.37

15 40 5% 1 4.50
 50 Islands

Tai40a

12 50 20% 4 3.75

12 50 Original (10%) 2 3.91

12 50 5% 1 4.19
 40 Islands

Tai50a

15 40 20% 4 4.12

15 40 Original (10%) 2 4.53

15 40 5% 1 5.05
 50 Islands

Tai50a

12 50 20% 4 4.16

12 50 Original (10%) 2 4.22

12 50 5% 1 4.44
 40 Islands

Tai60a

15 40 20% 4 3.75

15 40 Original (10%) 2 3.97

15 40 5% 1 4.30
 50 Islands

Tai60a
12 50 Original (10%) 2 3.85

12 50 20% 4 3.88

85

Then, we experimented on immigration period parameters, which was originally set to

5 X Number of Islands in experiment 3. We tried 3, 4, 6 and 7 times the number of

islands values for this parameter and compared to the original value. The results are

shown in Table 4.20. Our experiments show that, 3X seems better, because, it was

superior to the all others, for except Taillard40a – 40 island configuration. Note that,

immigration times are given in terms of number of iterations in the table.

Table 4.21 : Taillard a Samples Optimizing Immigration Time (Number of

Iterations)

Data

Set

Population

Size

Number

of

Islands

Param. Stat.
Immigration

Time

Mean

RPC

per 10

Run

Tai30a

40 Islands

15 40 3X 120 3.83

15 40 5X (Original) 200 4.03

15 40 4X 160 4.03

15 40 7X 280 4.21

15 40 6X 240 4.38

50 Islands

12 50 3X 150 3.51

12 50 4X 200 3.59

12 50 5X (Original) 250 3.75

12 50 6X 300 4.24

12 50 7X 350 4.32

Tai40a

40 Islands

15 40 3X 120 4.14

15 40 4X 160 4.17

15 40 7X 280 4.20

15 40 6X 240 4.23

15 40 5X (Original) 200 4.37

50 Islands

12 50 5X (Original) 250 3.91

12 50 3X 150 4.09

12 50 4X 200 4.17

12 50 7X 350 4.25

12 50 6X 300 4.60

Tai50a

40 Islands

15 40 3X 120 3.96

15 40 6X 240 4.16

12 50 5% 1 4.28

86

15 40 4X 160 4.19

15 40 7X 280 4.29

15 40 5X (Original) 200 4.53

50 Islands

12 50 3X 150 4.10

12 50 5X (Original) 250 4.22

12 50 4X 200 4.26

12 50 7X 350 4.28

12 50 6X 300 4.89

Tai60a

40 Islands

15 40 3X 120 3.79

15 40 4X 160 3.89

15 40 5X (Original) 200 3.97

15 40 6X 240 4.05

15 40 7X 280 4.12

50 Islands

12 50 3X 150 3.85

12 50 5X (Original) 250 3.85

12 50 4X 200 3.96

12 50 7X 350 4.18

12 50 6X 300 4.49

Last parameter we experimented on was number of elite solutions per island. We

experimented with 2% instead of 1%. The results are shown in Table 4.21. Results

indicate that, in all cases, %1 is better than %2.

Table 4.22 Taillard a Samples Optimizing Number of Elites per Island

Data

Set

Population

Size

Number

of

Islands

Elite Count
Mean RPC per

10 Run

Tai30a

40 Islands

15 40 1 (Original) 4.03

15 40 2 4.35

50 Islands

12 50 1 (Original) 3.75

12 50 2 4.38

Tai40a

40 Islands

15 40 1 (Original) 4.37

15 40 2 5.00

50 Islands

12 50 1 (Original) 3.91

12 50 2 4.80

Tai50a 40 Islands

87

15 40 1 (Original) 4.53

15 40 2 4.96

50 Islands

12 50 1 (Original) 4.22

12 50 2 4.98

Tai60a

40 Islands

15 40 1 (Original) 3.97

15 40 2 4.91

50 Islands

12 50 1 (Original) 3.85

12 50 2 4.46

In this thesis, we tried to apply a good parallelization method to a standard sequential

genetic algorithm. Our results seem promising. Our work on Taillard data set, which

is one of most difficult data sets on QAPLIB, have revealed a good enough island

model parallelization method for a standard sequential GA. We are able to obtain 3

times better results with slightly higher time frame. Although speed up optimization is

not performed. Our findings indicate that configuration provided in Table 4.22 using

standard island model is very efficient.

Table 4.23 : Taillard a Samples Best Parameters found on Taillard a Data Set

Parameter Value

Global Population Size 600

Island Population Size 12

Number of Islands 50

Number of Immigrants 4 (20% of Population size per island)

Migration Period (Iterations) 150 (3 x Number of Islands)

Elite Count 1 % of Population size per island or 1

Migration Type Unidirectional Ring Migration

Migration Policy Immigrants replaced

Immigrant Selection Randomly from subpopulations.

88

Next, we used the parameter values given in Table 4.22 to test the algorithm on other

Tai ‘a’ instances. Table 4.23 shows the results. The algorithm is executed 10 times on

each of the instance using random seeds 100 to 109. We can see that this algorithm is

able to achieve 2.8% RPC on smallest instance and 3% on average on Taillard - a data

set.

Table 4.24 : Taillard a Instances Optimum Configuration Results

Data

Instance
RPC Min RPC Mean RPC Trimmed Mean RPC Max

tai30a 2.798 3.460 3.412 4.506

tai40a 3.073 3.732 3.701 4.635

tai50a 2.995 3.653 3.656 4.283

tai60a 3.163 3.474 3.462 3.875

Average 3.010 3.580 3.560 4.320

Since our results with Taillard a instance set were somewhat conclusive in terms of

solution quality, we also decided to test our algorithm on other data sets. As we

mentioned before, QAP Instances can be classified roughly in 4 categories. We tested

with Uniform Randomly Generated Instance Taillard “a” instance set. Therefore, we

decided to test other 3 categories as well. For real-life instances, we decided to use

Burkard and Steinberg instance set from QAPLIB. We repeated experiment 3 with

same parameters we used on Taillard ‘a’ experiment, namely the effect of number of

islands on solution quality.

We used Burkard26a, Burkard26b, Burkard26c, Burkard26d, Steinberg36a,

Steinberg36b and Steinberg36c instances. Experiments are run on same machine as

before using same seed range. The results are given in Table 4.24. Best configurations

in terms of solution quality are highlighted with green.

89

Table 4.25 : Burkard Instance Set Optimizing Number of Islands

Burkard 26A Results of 10 Runs for each Configuration

Number of Islands
Population per

Island

Minimum

RPC %

Mean

RPC %

Trimmed

Mean

RPC %

Maximum

RPC %

Single Population 600 1.69 2.31 2.34 2.68

2 - Islands 300 0.11 0.27 0.27 0.44

4 - Islands 150 0.03 0.24 0.22 0.56

8 - Islands 75 0.00 0.18 0.18 0.36

10 - Islands 60 0.09 0.21 0.21 0.34

12 - Islands 50 0.00 0.16 0.15 0.38

15 - Islands 40 0.10 0.18 0.17 0.32

20 - Islands 30 0.03 0.19 0.20 0.27

30 - Islands 20 0.08 0.20 0.19 0.38

40 - Islands 15 0.02 0.15 0.14 0.38

50 - Islands 12 0.00 0.18 0.17 0.48

60 - Islands 10 0.09 0.24 0.23 0.48

75 - Islands 8 0.10 0.29 0.29 0.48

Burkard 26B Results of 10 Runs for each Configuration

Single Population 600 1.63 2.35 2.38 2.81

2 - Islands 300 0.00 0.22 0.21 0.52

4 - Islands 150 0.00 0.29 0.30 0.51

8 - Islands 75 0.18 0.34 0.32 0.73

10 - Islands 60 0.02 0.23 0.22 0.50

12 - Islands 50 0.17 0.24 0.24 0.38

15 - Islands 40 0.17 0.27 0.25 0.50

20 - Islands 30 0.17 0.26 0.25 0.35

30 - Islands 20 0.17 0.24 0.23 0.38

40 - Islands 15 0.17 0.24 0.22 0.42

50 - Islands 12 0.00 0.24 0.22 0.61

60 - Islands 10 0.17 0.31 0.29 0.61

75 - Islands 8 0.18 0.37 0.35 0.72

Burkard 26C Results of 10 Runs for each Configuration

Single Population 600 2.04 2.47 2.45 3.09

2 - Islands 300 0.00 0.09 0.08 0.27

4 - Islands 150 0.02 0.20 0.16 0.67

8 - Islands 75 0.00 0.13 0.07 0.77

10 - Islands 60 0.00 0.27 0.25 0.68

12 - Islands 50 0.01 0.08 0.06 0.25

15 - Islands 40 0.03 0.25 0.23 0.66

90

20 - Islands 30 0.01 0.14 0.10 0.58

30 - Islands 20 0.00 0.11 0.07 0.47

40 - Islands 15 0.02 0.12 0.10 0.37

50 - Islands 12 0.00 0.18 0.15 0.59

60 - Islands 10 0.01 0.29 0.23 0.99

75 - Islands 8 0.02 0.33 0.27 1.11

Burkard 26D Results of 10 Runs for each Configuration

Single Population 600 2.05 2.58 2.58 3.07

2 - Islands 300 0.01 0.08 0.07 0.31

4 - Islands 150 0.01 0.29 0.25 0.86

8 - Islands 75 0.00 0.17 0.10 0.95

10 - Islands 60 0.00 0.28 0.23 0.95

12 - Islands 50 0.01 0.13 0.08 0.67

15 - Islands 40 0.01 0.13 0.11 0.39

20 - Islands 30 0.00 0.08 0.05 0.37

30 - Islands 20 0.00 0.04 0.03 0.20

40 - Islands 15 0.01 0.10 0.07 0.38

50 - Islands 12 0.00 0.06 0.04 0.23

60 - Islands 10 0.01 0.24 0.16 1.08

75 - Islands 8 0.01 0.36 0.30 1.22

In general, results improve when more islands are used up to 50 islands configuration.

Only exception was C instance, in which improvement continued up to 40 islands.

Therefore, in general we can conclude that, 50 islands is the critical mass point for the

Burkard data set also. After this point, there is a drop in solution quality due to

insufficient intra island population size.

Results for Steinberg instances using the same parameter configuration are given in

Table 4.25. Again, best configurations for each instance are highlighted as gray.

Table 4.26 : Steinberg Instance Set Optimizing Number of Islands

Steinberg36a Results of 10 Runs for each Configuration

Number of Islands
Population

per Island

Minimum

RPC %

Mean

RPC %

Trimmed

Mean

RPC %

Maximum

RPC %

Single Population 600 61.08 65.10 65.06 69.41

2 - Islands 300 4.20 7.87 7.85 11.72

4 - Islands 150 5.56 10.39 10.41 15.08

8 - Islands 75 4.89 7.26 7.20 10.08

10 - Islands 60 4.70 8.37 8.15 13.79

91

12 - Islands 50 4.98 7.52 7.16 12.98

15 - Islands 40 3.91 7.52 7.02 15.16

20 - Islands 30 4.54 7.89 7.66 13.10

30 - Islands 20 5.10 7.69 7.34 13.10

40 - Islands 15 5.50 8.31 7.86 14.68

50 - Islands 12 4.30 7.60 6.92 16.31

60 - Islands 10 3.84 8.09 7.90 13.88

75 - Islands 8 5.29 9.02 8.70 15.24

Steinberg36b Results of 10 Runs for each Configuration

Number of Islands
Population

per Island

Minimum

RPC %

Mean

RPC %

Trimmed

Mean

RPC %

Maximum

RPC %

Single Population 600 156.62 170.34 170.45 183.20

2 - Islands 300 4.19 14.87 14.79 26.22

4 - Islands 150 7.77 14.05 13.23 26.87

8 - Islands 75 5.01 14.79 14.65 25.69

10 - Islands 60 3.96 14.58 14.80 23.42

12 - Islands 50 2.76 11.51 11.64 19.20

15 - Islands 40 5.64 15.93 15.85 26.87

20 - Islands 30 3.90 10.74 10.86 16.59

30 - Islands 20 6.79 14.52 13.91 27.21

40 - Islands 15 8.37 12.91 13.16 15.51

50 - Islands 12 5.79 10.73 10.40 18.33

60 - Islands 10 11.31 15.77 15.77 20.28

75 - Islands 8 8.16 20.55 18.54 49.00

Steinberg36c Results of 10 Runs for each Configuration

Number of Islands
Population

per Island

Minimum

RPC %

Mean

RPC %

Trimmed

Mean

RPC %

Maximum

RPC %

Single Population 600 54.16 57.40 57.32 61.28

2 - Islands 300 3.25 5.09 5.02 7.51

4 - Islands 150 4.38 8.67 8.47 14.60

8 - Islands 75 3.01 7.28 7.09 13.09

10 - Islands 60 2.70 6.45 6.22 12.06

12 - Islands 50 2.70 6.88 6.84 11.38

15 - Islands 40 3.86 8.63 8.40 15.23

20 - Islands 30 2.94 6.37 6.16 11.56

30 - Islands 20 2.12 5.20 5.28 7.67

40 - Islands 15 4.42 7.14 6.66 13.72

50 - Islands 12 2.76 6.11 6.00 10.39

60 - Islands 10 2.82 8.30 8.20 14.60

75 - Islands 8 4.34 8.50 8.26 14.60

92

Just like the previous data sets, we can clearly see that 50 islands configuration is one

of three best found configurations in each test. Therefore, we may say that 50 islands

is also best selection for the Steinberg instances in general. Also, we notice that,

parallelization also works like a charm here, creating 12 to 15 times better results even

in 2 island configurations.

After discovering this encouraging result, we decided to test our algorithm on third

category namely, random flows on grid. We decided to test our algorithm on Nugent

Instance set with sizes 15, 20, 25 and 30. Results of the experiment can be found on

Table 4.26.

Table 4.27 : Nugent Instance Set Optimizing Number of Islands

Nugent15 Results of 10 Runs for each Configuration

Number of Islands
Population

per Island

Minimum

RPC %

Mean

RPC

%

Trimmed

Mean RPC

%

Maximum

RPC %

Single Population 600 8.35 10.59 10.65 12.35

2 - Islands 300 0.17 1.98 2.00 3.65

4 - Islands 150 1.57 2.61 2.52 4.35

8 - Islands 75 0.00 1.44 1.46 2.78

10 - Islands 60 0.00 1.29 1.26 2.78

12 - Islands 50 0.17 1.62 1.65 2.78

15 - Islands 40 0.00 1.46 1.48 2.78

20 - Islands 30 0.52 1.57 1.54 2.78

30 - Islands 20 0.17 1.58 1.57 3.13

40 - Islands 15 0.00 1.46 1.30 4.17

50 - Islands 12 0.00 1.74 1.65 4.17

60 - Islands 10 0.17 1.67 1.67 3.13

75 - Islands 8 0.87 1.88 1.85 3.13

Nugent20 Results of 10 Runs for each Configuration

Single Population 600 11.67 13.50 13.55 14.94

2 - Islands 300 1.17 2.48 2.48 3.81

4 - Islands 150 1.17 2.56 2.50 4.44

8 - Islands 75 1.17 2.41 2.37 3.89

10 - Islands 60 1.17 2.96 3.05 4.05

12 - Islands 50 1.17 2.61 2.59 4.20

15 - Islands 40 1.17 3.00 3.00 4.83

20 - Islands 30 0.70 2.12 2.06 4.05

93

30 - Islands 20 1.09 2.40 2.35 4.05

40 - Islands 15 1.71 2.72 2.65 4.28

50 - Islands 12 1.32 2.49 2.48 3.74

60 - Islands 10 1.63 2.93 2.79 5.37

75 - Islands 8 0.39 3.10 3.19 5.06

Nugent25 Results of 10 Runs for each Configuration

Single Population 600 15.28 16.43 16.39 17.90

2 - Islands 300 0.27 2.35 2.26 5.18

4 - Islands 150 0.27 2.44 2.45 4.49

8 - Islands 75 0.48 2.39 2.40 4.22

10 - Islands 60 0.16 2.31 2.23 5.08

12 - Islands 50 0.69 2.38 2.38 4.06

15 - Islands 40 0.32 2.25 1.98 6.36

20 - Islands 30 0.91 1.99 1.94 3.47

30 - Islands 20 0.80 2.57 2.62 3.95

40 - Islands 15 0.59 2.32 2.40 3.47

50 - Islands 12 0.37 2.28 2.28 4.22

60 - Islands 10 0.86 3.30 3.43 4.75

75 - Islands 8 2.14 3.57 3.45 5.98

Nugent30 Results of 10 Runs for each Configuration

Single Population 600 15.87 17.90 18.03 18.88

2 - Islands 300 1.31 2.81 2.81 4.25

4 - Islands 150 1.73 3.20 3.16 4.96

8 - Islands 75 1.70 2.81 2.66 5.13

10 - Islands 60 1.83 3.12 3.10 4.57

12 - Islands 50 0.46 2.56 2.57 4.61

15 - Islands 40 1.63 3.08 3.09 4.44

20 - Islands 30 1.73 2.95 2.87 4.83

30 - Islands 20 1.11 2.40 2.34 4.21

40 - Islands 15 1.70 3.12 3.07 4.93

50 - Islands 12 0.98 2.57 2.45 5.10

60 - Islands 10 0.98 3.21 3.23 5.29

75 - Islands 8 0.98 3.56 3.57 6.07

We came across somewhat different results compared to previous experiments,

possibly due to relatively smaller sizes of Nugent instances. While 50 island

configuration still performs fairly, we cannot conclude on a common best

configuration for all instances. Most crude inference we can make is any number of

islands between 30 and 50 seems reasonable for this problem set. However, we notice

94

that even 2 Island configuration can find very good results compared to sequential

version being at least 8, up to 15 times better.

95

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

Quadratic Assignment Problem is one of the most studied and one of most difficult

combinatorial optimization problems in the literature. Algorithms proposed for it

ranges from branch and bound exact algorithm to metaheuristics like ant colony,

simulated annealing, tabu search, genetic algorithms, break-out local search

techniques. Metaheuristic methodologies are open to development and will continue

to contribute to the literature, while a good metaheuristic balances out exploration of

search space and exploitation of optimum points.

Parallelism plays an important role to achieve these goals in genetic algorithms, as

well as other types of metaheuristics. A good parallelism, with communication

between different runs of algorithm, creates a diversification within different runs and

prevents them from stagnation or premature convergence, while different runs working

simultaneously, allows searching of different portions of search space. This of course

leads to better results. Parallelism also used to reduce completion time of algorithm.

These factors are especially another huge advantage in combinatorial optimization

where exact algorithms are insufficient to handle large instances.

Genetic algorithms are inherently parallel by their nature. There are two good

strategies proposed in literature: island and cellular Models. In this thesis, we optimize

a standard sequential genetic algorithm using island and master - slave models. Our

results were encouraging. We were able to improve algorithms’ performance by 2 to

15 times in terms of solution quality and optimized other parameters to find some

reasonable island model configurations for different sets of instances with different

characteristics.

The results of the experiments show that parallelization of a sequential GA using island

model influences algorithm’s performance. As a future work, more parameters and

more parameters values can be considered in the experiments and methodologies like

Design of Experiments or racing can be used to decide on the values.

The proposed algorithm also gains some speedup, although this speedup is sublinear.

As a future work, the communication model can be improved using asynchronous

communication instead synchronous model. This may better utilize the computing

96

power, since the islands will not have to block on waiting for their neighbors to send

immigrants and continue the evolution process.

Different crossover and mutation operators, along with their parameters, of the serial

GA can be experimented to select the best configuration to achieve better results.

In addition, cellular models can be used for parallelization of genetic algorithms.

Unlike island models which are suitable with MIMD CPU units of today, cellular

models are more compatible with SIMD GPU units. Another approach could be using

a hybrid model.

97

REFERENCES

A.Misevicius. (2003). A Modified Simulated Annealing Algorithm for the Quadratic

Assignment Problem. INFORMATICA, 497–514.

A.Misevicius. (2004). An improved hybrid genetic algorithm: new results for the

quadratic assignment problem. Knowledge-Based Systems, 65–73.

A.Misevicius. (2005). A Tabu Search Algorithm for the Quadratic Assignment

Problem. Computational Optimization and Applications, 95–111.

Ahuja, R. K., Orlin, J. B., & Tiwari, A. (2000). A greedy genetic algorithm for the

quadratic assignment. Computers & Operations Research, 917- 934.

Aksan, Y., Dokeroglu, T., & Cosar, A. (2017). A stagnation-aware cooperative parallel

breakout local search algorithm for the quadratic assignment problem. Computers

& Industrial Engineering, 105–115.

Alba, E. (2002). Parallel evolutionary algorithms can achieve super-linear

performance. Information processing letters, 7-13.

Alba, E., & Dorronsoro, B. (2008). A Hybrid Cellular Genetic Algorithm for the

Capacitated Vehicle Routing Problem. Engineering Evolutionary Intelligent

Systems, 379-422.

Alba, E., Giacobini, M., Tomassini, M., & Romero, S. (2002). Comparing

Synchronous and Asynchronous Cellular Genetic Algorithms. International

Conference on Parallel Problem Solving from Nature (pp. 601-610). Berlin:

Springer.

Amdahl, G. M. (1967). Validity of the single processor approach to achieving large

scale computing capabilities. American Federation of Information Processing

Societies (Spring) (pp. 483-485). Atlantic City, New Jersey: ACM.

Anstreicher, K. M., Brixius, N. W., Goux, J.-P., & Linderoth, J. (2002). Solving large

quadratic assignment problems on computational grids. Mathematical

Programming 91.3, 563-588.

Armour, G., & Buffa, E. (1963). A heuristic algorithm and simulation approach to

relative location of facilities. Management Science, 294–304.

Azab, A. (2015). Quadratic assignment problem mathematical modelling for process

planning. International Journal of Computer Integrated Manufacturing , 561-580.

Bachelet, V., Preux, P., & Talbi, E. G. (1996). Parallel hybrid meta-heuristics:

application to the quadratic assignment problem. Proceedings of the Parallel

Optimization Colloquium, (pp. 233-242).

Baker, J. E. (1987). Reducing bias and inefficiency in the selection algorithm. Second

98

International Conference on Genetic Algorithms on Genetic algorithms and their

application (pp. 14-21). Cambridge ,MA: L. Erlbaum Associates Inc.

Barney, B. (2009, January 29). Introduction to Parallel Computing: Part 1. Retrieved

from http://www.drdobbs.com: http://www.drdobbs.com/introduction-to-

parallel-computing-part/212903586

Bazaraa, M. S., & Elshafei, A. N. (1979). An exact branch-and-bound procedure for

the quadratic-assignment problem. Naval Research Logistics, 109-121.

Bazaraa, M. S., & Sherali, H. D. (1982, November). On the Use of Exact and Heuristic

Cutting Plane Methods for the Quadratic Assignment Problem. Journal of the

Operational Research Society, 33(11), 991–1003.

Bazaraa, M., & Kirca, O. (1983). A branch‐and‐bound‐based heuristic for solving the

quadratic assignment problem. Naval Research Logistics , 287-304.

Benlic, U., & Hao, J. (2013). Breakout local search for the quadratic assignment

problem. Applied Mathematics and Computation, 4800- 4815.

Benlic, U., & Hao, J. K. (2015). Memetic search for the quadratic assignment problem.

Expert Systems with Applications, 584–595.

Bethke, A. D. (1976). Comparison of genetic algorithms and gradient-based optimizers

on parallel processors: efficiency of use of processing capacity. University of

Michigan, College of Literature, Science, and the Arts, Computer and

Communication Sciences Department.

Bölte, A., & Thonemann, U. (1996). Optimizing simulated annealing schedules with

genetic programming. European J. of Operational Research, 402–416.

Bougleux, S., Bruna, L., Carletti, V., Foggia, P., Gaüzère, B., & Vento, M. (2017).

Graph edit distance as a quadratic assignment problem. Pattern Recognition

Letters, 38–46.

Brixius, N., & Anstreichner, K. (2001). The Steinberg wiring problem. Iowa: The

University of Iowa.

Brungger, A., Marzetta, A., Clausen, J., & Perregaard, M. (1997). Joining forces in

solving large-scale quadratic assignment problems in parallel. Proceedings 11th

International Parallel Processing Symposium (pp. 418-427). Geneva: IEEE.

Burkard, R. E., & Derigs, U. (1980). Quadratic Assignrnent Problems. In B. ll.E., & u.

Derigs, Lecture Notes in Economics and Mathematical Systems 184 Assignment

and Matching Problems: Solution Methods with FORTRAN-Programs (pp. 99-

146). Springer-Verlag Berlin.

Burkard, R. E., & Offermann, J. (1977). Entwurf von Schreibmaschinentastaturen

mittels quadratischer Zuordnungsprobleme. Zeitschrift für Operations Research,

99

B121–B132.

Burkard, R., & Rendl, F. (1984). A thermodynamically motivated simulation procedure

for combinatorial optimization problems. European Journal of Operational

Research, 169-174.

Burkard, R., Karisch, S., & Rendl, F. (1997). QAPLIB – A Quadratic Assignment

Problem Library. Journal of Global Optimization, 10(4), 391–403.

C.Bousoño-Calzón, & Manning, M. R. (1995). The Hopfield neural network applied

to the Quadratic Assignment Problem. Neural Computing & Applications, 64–72.

Cantú-Paz, E. (1995). A summary of research on parallel genetic algorithms. Ilinois

Genetic Algorithms Laboratory ,University of Ilınois.

Cantú-Paz, E. (1998). A survey of parallel genetic algorithms. Calculateurs paralleles,

reseaux et systems repartis, 141-171.

Çela, E. (1998). The Quadratic Assignment Problem Theory and Algorithms.

Dordrecht: Kluwer Academic Publishers.

Chakrapani, J., & Skorin-Kapov, J. (1993). Massively parallel tabu search for the

quadratic assignment problem. Annals of Operations Research, 327-341.

Christofides, N., & Benavent, E. (1989, October). An Exact Algorithm for the

Quadratic Assignment Problem on a Tree. Operations Research, 37(5), 760-768.

Connolly, D. (1990). An improved annealing scheme for the QAP. European J. of

Operational Research, 93–100.

Cormen, T. (2013). Hard? Problems. MIT Press.

Cung, V. D., Mautor, T., Michelon, P., & Tavares, A. (1997). A scatter search based

approach for the quadratic assignment problem. IEEE International Conference

on Evolutionary Computation, (pp. 165-169).

Davis, L. (1987). Genetic Algorithms and Simulated Annealing.

Demirel, N., & Toksari, M. (2006). Optimization of the quadratic assignment problem

using an ant colony algorithm. Applied Mathematics and Computation, 427–435.

Dickey., J., & Hopkins, J. W. (1972). Campus building arrangement using TOPAZ.

Transportation Research, 59-68.

Dorigo, M., Birattari, M., & Stützle, T. (2006). Ant colony optimization. IEEE

Computational Intelligence Magazine, 28-39.

Dyer, D. W. (2013, 1 31). Watchmaker Framework for Evolutionary Computation.

Retrieved from Github: https://github.com/dwdyer/watchmaker

Edwards, C. (1980). A branch and bound algorithm for the Koopmans-Beckmann

quadratic assignment problem. Combinatorial Optimization II, 35-52.

100

Eiben, A., & Smith, J. (2003). Introduction to Evolutionary Computing. Berlin:

SpringerVerlag .

Elshafei, A. N. (1977). Hospital Layout as a Quadratic Assignment Problem. Journal

of the Operational Research Society, 167–179.

Eshelman, L. J. (1997). Genetic algorithms. In T. Back, D. Fogel, & Z. Michalewicz,

Handbook of Evolutionary Computation (pp. 44-54). Bristol: IOP Publishing Ltd.

Ettinger, T. (2017, 05 15). https://github.com/SquidPony/SquidLib. Retrieved from

Github: https://github.com/SquidPony/SquidLib

Fan, Y., Jiang, T., & Evans, D. (2002). Volumetric segmentation of brain images using

parallel genetic algorithms. IEEE Transactions on Medical Imaging, 904 - 909.

Feo, T., & Resende, M. (1995). Greedy Randomized Adaptive Search Procedures.

Journal of Global Optimization, 109-133.

Fleurent, C., & Ferland, J. A. (1993). Genetic hybrids for the quadratic assignment

problem. DIMACS Series in Discrete Mathematics and Theoretical Computer

Science, 173-187.

Flynn, M. J. (1972, September). Some computer organizations and their effectiveness.

IEEE Transactions on Computers, 21(9), 948-960. doi:10.1109/TC.1972.5009071

Folino, G., Pizzuti, C., & Spezzano, G. (1998). Solving the satisfiability problem by a

parallel cellular genetic algorithm. Proceedings. 24th EUROMICRO Conference

(Cat. No.98EX204) (pp. 715-722). Vasteras,SWE: IEEE.

Francis, R. L., Jr., F. M., & White, J. A. (1974). Facility Layout and Location: An

Analytical Approach. Englewood Cliffs , NJ: Prentice Hall.

Gambardella, L. M., Taillard, É., & Dorigo, M. (1999). Ant Colonies for the Quadratic

Assignment Problem. The Journal of the Operational Research Society, 167-176.

Gavett, J. W., & Plyter, N. V. (1966). The Optimal Assignment of Facilities to

Locations by Branch and Bound. Operations Research, 210 - 232.

George, A., & Pothen, A. (1997). An Analysis of Spectral Envelope Reduction via

Quadratic Assignment Problems. SIAM Journal on Matrix Analysis and

Applications, 706–732.

Glover, F. (1989). Tabu Search—Part I. ORSA Journal on Computing , 190-206.

Glover, F. (1990). Tabu Search—Part II. ORSA Journal on Computing, 4-32.

Glover, F., Laguna, M., & Marti, R. (2003). Scatter Search. Advances in evolutionary

computing, 519-537.

Goldberg, D. (1988). Genetic Algorithms in Search, Optimization and Machine

Learning. Machine Learning 3, 95-99.

101

Goldberg, D., & Lingle, R. (1985). Alleles, Loci and the Traveling Salesman Problem.

1st International Conference on Genetic Algorithms (pp. 154-159).

Cambridge,MA: L. Erlbaum Associates Inc.

Gordon, V. S., & Whitely, D. (1993). Serial and Parallel Genetic Algorithms as

Function Optimizers. ICGA, (pp. 177-183).

Gorges - Schleuter, M. (1989). ASPARAGOS A Parallel Genetic Algorithm and

Population Genetics. Workshop on Parallel Processing :Logic Organization and

Technology (pp. 413-424). Wildbad Kreuth, Germany: Springer-Verlag.

Grefenstette, J. J. (1981). Parallel Adaptive Algorithms for Function Optimization.

Computer Science Department, Vanderbilt University.

Grosso, P. (1985). "Computer simulations of genetic adaptation: Parallel

subcomponent interaction in a multilocus model.

Hafiza, F., & Abdennourb, A. (2016). Particle Swarm Algorithm variants for the

Quadratic Assignment Problems - A probabilistic learning approach. Expert

Systems With Applications, 413–431.

Hahn, P., Hightower, W., Johnson, T., Guignard-Spielberg, M., & Roucairol, C. (2001).

Tree elaboration strategies in branch and bound algorithms for solving the

quadratic assignment problem. Yugoslav Journal of Operations Research, 41-60.

Hansen, P., & Mladenovic, N. (2001). Variable neighborhood search: Principles and

applications. European Journal of Operational Research, 449-467.

Heragu, S. S., & Alfa, A. S. (1992). Experimental analysis of simulated annealing

based algorithms for the layout problem. EJORDT, 190-202.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control and Artificial Intelligence. Ann

Arbor, MI: University of Michigan Press.

Hubert, L., & Schultz, J. (1976). Quadratic Assignment as a General Data Analysis

Strategy . British Journal of Mathematical and Statistical Psychology, 190–241.

Ibounig, T. (2016, 04 29). PRNG-Performance. Retrieved from Github:

https://github.com/tobijdc/PRNG-Performance

James, T., Rego, C., & Glover, F. (2009). cooperative parallel tabu search algorithm

for the quadratic assignment problem. European Journal of Operational Research,

810–826.

James, T., Rego, C., & Glover, F. (2009). Multistart Tabu Search and Diversification

Strategies for the Quadratic Assignment Problem. IEEE Transactions on

Systems ,Man and Cybernetics , PartA :Systems and Humans, 579–596.

Kennedy, J. (2010). Particle Swarm Optimization. In C. Sammut, & G. Webb,

102

Encyclopedia of Machine Learning (pp. 760-766). New York: Springer US.

doi:10.1007/978-0-387-30164-8_630

Kirkpatrick, S., Gelatt, C., & Vecchi, M. (1983). Optimization by Simulated Annealing.

Science, New Series, 671-680.

Koopmans, T., & Beckmann, M. (1957). Assignment problems and the location of

economic activities. Econometrica: journal of the Econometric Society, 53-76.

Krarup, J., & Pruzan, P. M. (1978). Computer-aided layout design. Mathematical

Programming Studies , 75-94.

Kurdi, M. (2016). An effective new island model genetic algorithm for job shop

scheduling problem. Computers & Operations Research, 132-142.

Laporte, G., & Mercure., H. (1988). Balancing hydraulic turbine runners: A quadratic

assignment problem. European Journal of Operational Research, 378-381.

Laursen, P. S. (1993). Simple approaches to parallel Branch and Bound. Parallel

Computing, 143-152.

Levine, D. (1994). A parallel genetic algorithm for the set partitioning problem.

Li, Y., Pardalos, P. M., & Resende, M. G. (1994). A Greedy Randomized Adaptive

Search Procedure for the Quadratic Assignment Problem. DIMACS Series in

Discrete Mathematics and Theoretical Computer Science, 237-261.

Liu, Y., & Wang, S. (2015). A scalable parallel genetic algorithm for the Generalized

Assignment Problem. Parallel Computing, 98-119.

Loiola, E. M., de Abreu, N. M., Boaventura-Netto, P. O., Hahn, P., & Querido, T. (2007,

January 16). A survey for the quadratic assignment problem. European Journal of

Operational Research, 176(2), 657–690.

Lourenço, H., Martin, O., & Stützle, T. (2003). Iterated Local Search. In F. Glover, &

G. Kochenberger, Handbook of Metaheuristics (pp. 320-353). New York:

Springer US. doi:10.1007/b101874

Luque, G., Alba, E., & Dorronsoro, B. (2009). An asynchronous parallel

implementation of a cellular genetic algorithm for combinatorial optimization.

GECCO '09 Proceedings of the 11th Annual conference on Genetic and

evolutionary computation (pp. 1395-1402). Montreal,Canada: ACM New York.

Maniezzo, V., & Colorni, A. (1994). The Ant System Applied to the Quadratic

Assignment Problem. IEEE Transactions on Knowledge and Data Engineering,

769-778 .

Mühlbein, H. (1989). Parallel Genetic Algorithms,Population Genetics and

Combinatorial Optimization. Workshop on Parallel Processing: Logic,

Organization, and Technology (pp. 398-406). Wildbad Kreuth,Germany:

103

Springer-Verlag.

Mühlenbein, H., Schomisch, M., & Born, J. (1991). The parallel genetic algorithm as

function optimizer. Parallel Computing, 619-632.

Nissen, V. (1994). Solving the Quadratic Assignment Problem with Clues from Nature.

IEEE TRANSACTIONS ON NEURAL NETWORKS, 66-72.

Nyström, M. (1999). Solving Certain Large Instances of the Quadratic Assignment

Problem: Steinberg's Examples. CA,US: California Institute of Technology.

Ochi, L., Vianna, D., Drummond, L., & Victor, A. (1998). A parallel evolutionary

algorithm for the vehicle routing problem with heterogeneous fleet. Future

Generation Computer Systems, 285-292.

Padberg, M., & Rinaldi, G. (1991). A Branch-and-Cut Algorithm for the Resolution of

Large-Scale Symmetric Traveling Salesman Problems. SIAM , 60–100.

Pardalos, P. M., & Crouse, J. V. (1989). A parallel algorithm for the quadratic

assignment problem. ACM/IEEE Conference on Supercomputing 89 (pp. 351-

360). IEEE.

Pardalos, P., Rendl, F., & Wolkowicz, H. (1994). The Quadratic Assignment Problem

A Survey and recent developments. DIMACS Series in Discrete Mathematics and

Theoretical Computer Science, 1-42.

Perreira, C., & Lapa, C. (2003). Coarse-grained parallel genetic algorithm applied to a

nuclear reactor core design optimization problem. Annals of Nuclear Energy, 555-

565.

Phillips, A. T., & Rosen, J. B. (1994). A quadratic assignment formulation of the

molecular conformation problem. Journal of Global Optimization, 229–241.

R.Sagban, Ku-Mahamud, K., & Abu Bakar, M. (2017). Reactive max-min ant system

with recursive local search and its application to TSP and QAP. Intelligent

Automation & Soft Computing, 127-134.

Robertson, G. (1987). Parallel implementation of genetic algorithms in a classifier

system. Genetic algorithms and their applications : proceedings of the second

International Conference on Genetic Algorithms (pp. 140-147). Cambridge, MA:

Hillsdale, N.J. : L. Erlhaum Associates.

Roucairol, C. (1987). A parallel branch and bound algorithm for the quadratic

assignment problem. Discrete Applied Mathematics, 211-225.

Rucinski, M., Izzo, D., & Biscani, F. (2010). On the impact of the migration topology

on the Island Model. Parallel Computing, 555-571.

Sahni, S., & Gonzales, T. (1976, July). P-Complete Approximation Problems. Journal

of the ACM, 23(3), 555-565.

104

Schwefel, H.-P. (1997). Advantages (and disadvantages) of evolutionary computation

over other approaches. In T. Back, D. Fogel, & Z. Michalewicz, Handbook of

Evolutionary Computation (pp. 14-15). Bristol: IOP Publishing Ltd. .

Shapiro, B., & Navetta, J. (1994). A massively parallel genetic algorithm for RNA

secondary structure prediction. The Journal of Supercomputing, 195-207.

Skorin-Kapov, J. (1990). Tabu search applied to the quadratic assingnment problem.

ORSA Journal on Computing, 33-45.

Steinberg, L. (1961). The backboard wiring problem: a placement algorithm. SIAM

Review, 37-50.

Steiner, T., Jin, Y., & Sendhoff, B. (2008). A cellular model for the evolutionary

development of lightweight material with an inner structure. GECCO '08

Proceedings of the 10th annual conference on Genetic and evolutionary

computation (pp. 851-858). Atlanta, GA, USA: ACM New York.

Stützle, T. (1999). Iterated local search for the quadratic assignment problem. FG

INTELLEKTIK, FB INFORMATIK.

Stützle, T. (2006). Iterated local search for the quadratic assignment problem.

European Journal of Operational Research, 1519–1539.

Stützle, T., & Hoos, H. (2000). MAX—MIN ant system. Future Generation Computer

Systems, 889–914.

Sudholt, D. (2015). Parallel Evolutionary Algorithms. In J. Kacprzyk, & W. Pedrycz,

Springer Handbook of Computational Intelligence (pp. 929-957). New York City:

Springer Publishing Company.

Taillard, É. (1995). Comparison of iterative searches for the quadratic assignment

problem. Location Science, 87-105.

Taillard, R. (1991). Robust taboo search for the quadratic assignment problem. Parallel

Computing, 443-455.

Talbi, E., Roux, O., Fonlupt, C., & D.Robillard. (2001). Parallel Ant Colonies for the

quadratic assignment problem. Future Generation Computer Systems, 441–449.

Tanese, R. (1987). Parallel genetic algorithms for a hypercube. Genetic Algorithms

and Their Applications: Proceedings of the Second International Conference on

Genetic Algorithms (pp. 177-183). Hillside , NJ: Lawrence Erlbaum.

Tanese, R. (1989). Distributed genetic algorithms. Proceedings of the Third

International Conference on Genetic Algorithms (pp. 434-439). San Meteo,CA:

Morgan Kauffmann.

Tang, J., Lim, M., Ong, Y., & Er, M. (2004). Study of migration topology in island

model parallel hybrid-GA for large scale quadratic assignment problems. Control,

105

Automation, Robotics and Vision Conference (pp. 2286-2291). Kunming, China:

IEEE.

Tate, D. M., & Smith, A. E. (1995). A Genetic Approach To The Quadratic Assignment

Problem. Computers Ops. Research., 73-83.

Tosun, U., Dokeroglu, T., & Cosar, A. (2013). A robust Island Parallel Genetic

Algorithm for the Quadratic Assignment Problem. International Journal of

Production Research, 4117–4133.

Tseng, L., & Liang, S. (2006). A Hybrid Metaheuristic for the Quadratic Assignment

Problem. Computational Optimization and Applications, 85–113.

U.Tosun. (2015). On the performance ofparallel hybrid algorithms for the solution of

the quadratic assignment problem. Engineering ApplicationsofArtificial

Intelligence, 267–278.

Whitely, D., & Starkweather, T. (1990). GENITOR II: a distributed genetic algorithm.

Journal of Experimenal & Theoretical Artificial Intelligence, 189-214.

Woeginger, G. J. (2003). Exact Algorithms for NP-Hard Problems: A Survey. In M.

Jünger, G. Reinelt, & G. Rinaldi, Combinatorial optimization - Eureka, you shrink!

(pp. 185-207). New York, NY: Springer-Verlag New York, Inc.

Wolpert, D., & Macready, W. (1997, April). No Free Lunch Theorems for Optimization.

IEEE Transactions on Evolutionary Computation, 1(1), 67-82.

doi:10.1109/4235.585893

