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ABSTRACT 

PARALLEL EVOLUTIONARY ALGORITHMS FOR  

QUADRATIC ASSIGNMENT PROBLEM 

KIZIL, Alper 

MSc. in Computer Engineering 

Advisor: Asst. Prof. Dr. Korhan KARABULUT 

August 2017 

Quadratic Assignment Problem (QAP) is one of the most difficult combinatorial 

problems. There are many approaches proposed in literature to solve QAP. Genetic 

algorithms are nature inspired metaheuristics which can create good enough solutions 

in reasonable time. But for large size problems, they may be insufficient. This is due 

to search space they operate becomes too large and algorithm starts to miss out some 

parts. In this thesis, island model genetic algorithms are used to enhance a standard 

sequential genetic algorithm in terms of solution quality. Results show that, even with 

the most basic 2 island model, the proposed algorithm is able to obtain 3 times better 

results when solving QAP instances. The proposed algorithm is tested and fine-tuned 

for some of the parameters to enhance the algorithm even further. It is also observed 

that, different parameters effect solution quality. Ultimately, the proposed algorithm is 

able to come up with good enough configurations that can solve QAP instances up to 

3% gap compared to the best-known solutions in the literature.  

Key Words: Quadratic Assignment Problem, Metaheuristics, Genetic Algorithms, 

Island Model, Parallelism, Combinatorial Optimization.
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ÖZ 

İKİNCİ DERECE ATAMA PROBLEMİ İÇİN PARALEL EVRİMSEL 

ALGORİTMALAR 

KIZIL, Alper 

Yüksek Lisans Tezi, Bilgisayar Mühendisliği 

Danışman: Yrd. Doç. Dr. Korhan KARABULUT 

Ağustos 2017 

Karesel Atama Problemi (KAP) en zor birleşimsel problemlerden birisidir. Literatürde 

KAP’ni çözmek için birçok yaklaşım önerilmiştir. Genetik algoritmalar doğadan ilham 

alan, makul bir zaman aralığında iyi sayılabilecek çözümler üreten metasezgisellerdir. 

Ancak geniş boyutlu problemler için yetersiz kalabilirler. Bunun sebebi bu 

algoritmaların üzerinde çalıştığı arama uzayının çok genişlemesi ve algoritmanın bu 

arama uzayının belirli bölümlerini gözden kaçırabilmesidir. Bu tez çalışmasında, ada 

modeli olarak tanımlanan bir modeli standart sıralı genetik algoritmayı  çözüm kalitesi 

yönünden geliştirmek için kullanılmıştır. Sonuçlar, önerilen algoritmanın, en temel 2-

adalı model ile dahi, KAP örneklerinde 3 kat daha iyi çözüm bulabildiğimi 

göstermiştir. Önerilen algoritma test edilmiş ve bazı parametrelerine ince ayar 

yapılarak çözüm kalitesi daha da arttırılmıştır. Ayrıca değişik parametrelerin sonuç 

kalitesine etkileri gözlemlenmiştir.Sonuçta, önerilen algoritma yeterince iyi 

konfigürasyonlarla KAP örneklerini literatürdeki en iyi çözümlere %3 yakınlıkta 

çözebilme düzeyine çıkabilmiştir. 

Anahtar Kelimeler: Karesel Atama Problemi, Metasezgiseller, Genetik Algoritmalar, 

Ada Modeli, Paralelleştirme, Kombinatoryal  Optimizasyon.
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CHAPTER 1 

INTRODUCTION 

Optimization is the process of selecting the best element out of a set of elements. This 

is a concept widely used in real life. For instance, when we want to go from one place 

to another, we think of alternative routes and select the best possible in terms of money 

and time. Similarly, a company producing manufactured products wants to maximize 

their profit by minimizing raw material cost.  

Another and very famous example can be found in business of shipping goods. 

Package delivery companies usually deliver many packages to their destinations daily. 

Suppose that a truck owned by the company delivers supplies to several locations. To 

maximize their profit, they must reduce their expenditures. The simplest way to 

accomplish this is to select a route in such a way that, truck will travel the least distance, 

therefore it will consume least fuel. Distance travelled in a possible route can be 

calculated by accumulatively adding distances in each step for one stop from another. 

A shipping company can use a computer to calculate all possible route permutations 

and select the permutation with the least cost. Tricky part here is the number of stops 

along the way. As the number of stops increase, number of possible permutations will 

increase exponentially to the point where an efficient calculation becomes impossible, 

because truck will start from the depot with 𝑛 possible next stops to select and any 

remaining 𝑛 − 1 possible stops may be selected as the second stops and so on. This 

will make number of calculations 𝑛! for 𝑛 stops. For small numbers like 10, there will 

be 3.628.800 possible alternate routes, which can be handled by a computer. For larger 

number of stops like 20, we will have 2.432.902.008.176.640.000 alternate routes and 

calculation will be overwhelming. 

The mentioned problem is known as the classical “Traveling Salesman Problem” in 

computer science and it has a wide area of research. There are many other problems 

like Traveling salesman which share common characteristics. That is, as the input size 

of problem grows, number of possible solutions grow exponentially. One other 
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intriguing fact is that, some of these problems are proven to be convertible between 

each other. This means that, an algorithm capable of solving one such problem 

efficiently can be used to solve others with some adjustments. 

1.1. Classification of Problems 

In computer science, optimization problems are divided into two basic categories 

based on the complexity of the problem with respect to its input size. Complexity of a 

problem is the number of necessary steps required with respect to number of inputs for 

the most efficient algorithm for the problem. 

Class P Problems: If there is an algorithm that can solve the problem in at most 𝑛𝑐  

steps where 𝑛  is the input size and 𝑐  is a constant. Since constant 𝑐  is the most 

significant factor determining the running time, we call it a polynomial time algorithm 

and the problem it solves becomes class P optimization problem. Sorting problem can 

be considered as an example for this class. One of most efficient known algorithm for 

this problem is Tim Sort which makes 𝑛𝑙𝑜𝑔𝑛 comparisons at worst and average cases. 

Average number of comparisons made by Tim Sort for different input sizes are given 

in Table 1.1. 

Table 1.1. Tim Sort average number of comparisons depending on instance size 

Input Size Average Comparisons (𝑛𝑙𝑜𝑔𝑛) 

10 10 

20 26 

30 45 

50 85 

 

Unlike Traveling salesman problem, increasing input size does not get overwhelming 

as the input size increases. 

Class NP – Hard: NP (non-deterministic polynomial) problems do not have polynomial 

time algorithms for their solution. An NP problem is convertible to other problems in 

NP domain, so that, if there is a polynomial time algorithm found for this problem, all 
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other problems in NP class can be solved in polynomial time. Since they are 

convertible between each other, any problem in this class is thought to be as hard as 

the hardest problems in optimization. 

It is currently not known whether NP-Hard class problems can be solved in polynomial 

time, since P = NP formula has not been proven. However, it is generally believed that 

P ≠ NP (Cormen, 2013). 

Table 1.2 shows the number of solution candidates to consider for an algorithm for 

solving travelling salesman problem with brute force approach. Most efficient exact 

algorithm for TSP known today takes an average of 𝑂 (𝑛2 2𝑛)  steps to complete 

(Woeginger, 2003). Table 1.3 shows the number of solution candidates to consider for 

this algorithm. 

Table 1.2. Brute force TSP Solution average number of permutations to test 

depending on instance size 

Input Size Number of Candidates to test (𝑛!) 

10 3,628,800 

20 2,432,902,008,176,640,000 

30 265,252,859,812,191,000,000,000,000,000,000 

Table 1.3 Most efficient TSP Solution average number of permutations to test 

depending on instance size 

Input Size Number of Candidates to test 𝑂 (𝑛2 2𝑛) 

10 102,400 

20 419,430,400 

30 966,367,641,600 

50 2,814,749,767,106,560,000 
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Even with most efficient exact algorithms, runtime will be greatly increased in case of 

NP-Complete problems. However, optimal results might not be mandatory in all 

situations. In such a case, one might weaken the requirement of finding absolute 

optimum and accept a “good enough” solution. In this case, if the problem has a good 

known heuristic, they provide good enough solutions in a reasonable time. If the 

problem in question have no known best practice for its solution, problem-independent 

metaheuristic methods can be applied to obtain a good enough solution within a 

reasonable time frame. 

1.2. Quadratic Assignment Problem as an NP- Hard Problem 

Just like Traveling Salesman problem, Quadratic Assignment Problem (QAP) is one 

of the most difficult combinatorial optimization problems. Quadratic Assignment 

Problem was first proposed by Koopmans and Beckmann in 1957 to formulate 

economical activities. The problem consists of assignment of a number of facilities to 

the same number of locations in such a way that each location will have a facility. In 

this problem, distances between locations and flows between the facilities are known. 

The objective generally considered in the literature is minimizing the cost of allocating 

facilities into locations, where cost is the sum of all possible distance-flow products. 

Since its first proposal by Koopmans and Beckmann, this problem has been used in 

blackboard-wiring, numerous economic problems, building a decision framework for 

assigning police stations, supermarkets and schools, scheduling problems, best design 

for typewriter keyboards and control panels, archeology, statistical analysis, analysis 

of reaction chemistry, numerical analysis, hospital planning etc. (Loiola, de Abreu, 

Boaventura-Netto, Hahn, & Querido, 2007). 

QAP is known to be one of most difficult combinatorial optimizations and serve as a 

benchmark problem for evaluating metaheuristics algorithms. Sahni and Gonzales 

proved this problem is NP-Hard and in general instance sizes of n > 30 cannot be 

solved by traditional exact algorithm approaches in a reasonable time (Sahni & 

Gonzales, 1976). That means unless it is proven that P = NP, there is no known way to 

solve this problem in a polynomial time in exact approaches. 

Reductions can be made to QAP to transform it into Traveling Salesman Problem, 

Binary packing problem and maximum clique problem. So, any algorithm capable of 

solving QAP in a reasonable time interval will also be able to solve these problems 
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when the necessary transformation algorithm is supplied (Loiola, de Abreu, 

Boaventura-Netto, Hahn, & Querido, 2007). 

QAPLIB is an Internet library that is created by Stefan Karisch in 1991 which contains 

QAP instances from literature, as well as, published best known and optimal solutions, 

latest news about QAP, lower bounds found in literature for the instances, software 

dedicated to QAP, people who have been working on QAP (Burkard, Karisch, & Rendl, 

1997). It was maintained by Karisch until 1997. From 1997 to 2012, Erande Cela 

maintained the library who is also famous for his work on QAP. From 2012 and 

onwards website is maintained by Peter Hahn and Miguel Anjos from University of 

Pennsylvania and Polytechnique de Montreal. Website contains 15 well known data-

sets in literature including most famous Nugent, Skorin-Kapov and Taillard datasets 

ranging from sizes 12 to 256 (Burkard, Karisch, & Rendl, 1997). 

Library contains 135 instances from 15 data-sets in total and according to Taillard 

(Taillard É. , 1995) and Tseng & Liang (Tseng & Liang, 2006) these instances are 

grouped into 4 categories mainly: 

1. Real-life Instances: Instances created after real-life problems, these types of 

problems have many 0 entries on weight matrix and other entries are not 

uniformly distributed. Burkard and Offermann data set, Steinberg data set and 

Krarup data set are main examples. 

2. Real-life like Instances: This kind of instances resemble real-life problems, 

however, they are artificially created and generally larger on size. Taillard “b” 

instances are on this category. 

3. Uniform Randomly Generated Instances: Entries in their distance and flow 

matrices have been generated using a uniform random distribution. According 

to Taillard, they are the most difficult ones to solve. (Taillard É. , 1995) Taillard 

“a” instances are on this category. 

4.  Random Flows on a Grid: Instances in which locations are placed on an 𝑛 𝑥 𝑛 

grid and distances between these points are generated as Manhattan Distances 

between grids. Nugent, Skorin-Kapov and Wilhelm and Ward instances are in 

this category.  
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1.3. Metaheuristics for NP Hard Problems 

Many of the optimization problems in literature are considered to be NP-Hard and a 

lot of computation effort is required to solve them. There are approaches like 

backtracking, enumerative search, branch and bound methods, dynamic programming 

which can find optimal solutions but they are only useful for specific problems because 

finding an optimum solution for NP-Hard Problem is often extremely difficult.  

However, for some problems, even for some problem instances, there might be 

shortcuts only applicable to that problem, or problem instances. A heuristic is any kind 

of solution technique which allows some degree of simplification to the problem at 

hand, which may or may not give the optimum solution. Heuristics are usually derived 

from human experiences and allow reasonable speedups, though, as mentioned, they 

do not guarantee finding optimal solutions. When finding an optimum solution is 

considered to be hard using conventional ways, researchers usually look for a heuristic 

which can be applicable to the problem at hand. Most common heuristic techniques 

are trial and error, educated guessing, intuitive judgements, common sense, etc. 

When there is no known heuristic for a problem at hand, researchers look for more 

generic methods which are applicable to wider area of problems. Metaheuristics are a 

set of problem independent methodologies designed to be applicable to wide diversity 

of problems, which often yields good enough, approximate (sub-optimal) solutions. 

They are extensively used in optimization and machine learning. 

There are two primary mechanisms of metaheuristics; exploration, that is, exploring a 

wide portion of search space and exploitation, which is finding local optimum points 

as much as possible. A good metaheuristic balances both mechanisms and provides 

sufficient results in a reasonable amount of time. In literature, metaheuristics are 

classified under 2 categories: trajectory based metaheuristics and population based 

metaheuristics.  

Trajectory based metaheuristics use a single candidate solution and this solution is 

modified iteratively as the algorithm progresses; when a better solution is obtained 

within its neighborhood, original candidate is replaced until there are no more better 

solutions. Due to this trait, such algorithms create the illusion of following a trajectory 

within search space. Some examples of trajectory based metaheuristics are simulated 

annealing (Kirkpatrick, Gelatt, & Vecchi, 1983), tabu search (Glover, 1989) (Glover, 
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1990), iterated local search (Lourenço, Martin, & Stützle, 2003), variable 

neighborhood search (Hansen & Mladenovic, 2001) and greedy randomized adaptive 

search procedure (Feo & Resende, 1995).  

Second type of metaheuristics favor a collection of individuals over a single individual, 

namely called as population based heuristics. As such algorithms progress, individuals 

within the population interact with each other and create varieties. In time, unfit 

solutions are neglected, usually superior solutions are selected, combined to create 

better solutions. This process continues until a reasonable solution is found. Examples 

of such algorithms are evolutionary algorithms (Eiben & Smith, 2003), particle swarm 

optimization (Kennedy, 2010) and ant colony optimization (Dorigo, Birattari, & 

Stützle, 2006), scatter search (Glover, Laguna, & Marti, 2003), etc. 

Trajectory based problems metaheuristics are generally better on exploitation, they 

find results faster and are more computation power efficient but they are more prone 

to being stuck at local optimum points since diversity is a lesser concern. On the other 

hand, population based metaheuristics focus more on exploration of search space and 

thus, are slower but, generally they are more robust and less prone to being stuck at a 

local optimum. However, we cannot infer one is better than the other in general. 

Besides traditional metaheuristic methods, there are also hybrid models which 

combine several methods to solve optimization problems.  A common approach is 

having a population based metaheuristic as the base problem solver and improving it 

with a trajectory based method, thus utilizing stronger sides of each approach. Another 

possible improvement for such methods is utilizing parallelization and parallel 

programming in order to run multiple instances of metaheuristics algorithms to 

improve overall search result quality and reduce the runtime of algorithm. 

1.4. No Free Lunch Theorem 

A theorem presented by two computer scientists, David Wolpert and William G. 

Macready in 1997, states that, there cannot exist an algorithm which solves all 

optimization problems better than other competitor algorithms (Wolpert & Macready, 

1997). 

This theorem is widely accepted today, because no one was able to come up with such 

an algorithm. So, for instance, comparing evolutionary algorithms, in broader context, 
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evolutionary computation methods with other types of computation methods and 

algorithms in general is meaningless. More sensible approach would be comparing 

evolutionary algorithms and other type of problem solvers in specific problem types. 

According to a survey made by Hans-Paul Schwefel, an EA can perform well when 

solving discontinuous, non-differentiable, multimodal, noisy and otherwise, when 

unconventional response surfaces are involved, while it is weaker in solving linear, 

quadratic, strongly convex, unimodal, separable types of problems (Schwefel, 1997). 

NFL theorem tells us that there will always be a trade-off between reliability of 

problem solver and its applicability to problems in general. When solving a problem, 

if there is an efficient algorithm which can solve problem in question, metaheuristics 

should not be utilized. However, metaheuristics are solvers which are easily applicable 

and easily adoptable for a wide variety of problems. One other quality they provide is 

their robustness; they are not easily affected by parameter changes in the problem. In 

short, metaheuristics are a common ground between variety of problems and 

applicability of problem solvers. 

1.5. Genetic Algorithms as Metaheuristics 

Genetic algorithms are the most common subtype of evolutionary algorithms. They 

are considered as population based metaheuristics. Evolutionary computing is a major 

area of research in combinatorial optimization which draws inspiration from natural 

selection and evolution of species as well as survival of the fittest. Conception of 

evolutionary computing is no surprise, because nature has proven itself to be a 

formidable competition environment, a source of inspiration for a problem solver. That 

is, any species in nature that has tailored itself to its environment or niche over a long 

time. Just like nature, evolutionary computation draws its strength from Darwin’s 

“Survival of Fittest” principle. And just as in nature, evolutionary algorithms start with 

a population. This population will produce new individuals over time through breeding 

(cross-over), mutation and selection of stronger. In this setting, over many generations, 

stronger traits will overtake the population, while weaker traits will disappear over 

time. When applied to optimization, an individual solution’s fitness value determines 

how well it will adapt itself inside the population and become a source for the later 

generations. This process yields better and better results for a certain amount of time. 
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In the end, usually fair-enough solutions are obtained when the literature is overviewed. 

Genetic algorithms are no exception. 

1.5.1. GA Properties 

Genetic Algorithms subclass is first proposed by John Holland in his book Adaptation 

in Natural and Artificial Systems in 1975 (Holland, 1975). According to Eshelman, 

there are three distinct specifications which separates genetic algorithms from other 

types of evolutionary algorithms. These are representation used (bitstrings), selection 

method (proportional selection) and primary means of obtaining newer solutions 

(cross-over). However, over the years, new representation methods such as real-digit 

values, permutations, floating points and other selection techniques like stochastic 

universal sampling, rank based selection, tournament selection etc. are adopted in 

distinct implementations. This made Genetic Algorithms closer to other types of 

evolutionary algorithms like Evolutionary Strategy, Genetic Programming, 

Evolutionary Programming, while primary emphasis on cross over technique always 

remained in later implementations (Eshelman, 1997). 

In his book, Holland created the first genetic algorithm which will be latter known as 

“Simple GA” or “Canonical GA” to optimize mathematical functions. Over time, 

genetic algorithms gained different representations and selection methodologies, in 

addition, high mutation rates are used in different studies. Table 1.4 lists the general 

properties used in Simple GA. 

Table 1.4 Simple GA Properties 

Representation Method Bit Strings 

Recombination Single – Point Cross over 

Mutation Bit flip 

Parent Selection Fitness Proportional 

Survivor Selection Generational 
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GA General Approaches 

In all genetic algorithm implementations, problem solving process starts with a 

population which consists of a number of usually randomly created individuals. 

Representation of these individuals are called chromosomes and they can be an integer 

number, a bitstring, a floating number or permutations. And then, each of these 

individuals are evaluated based on a predetermined function to evaluate their fitness 

values. Those fitness values are called phenotypes and they determine the chance of 

selection of each individual for mating (cross-over). In the next step of algorithm, some 

of these individuals are selected from the population and cross-over operator is applied. 

Since their chance of selection is based on their fitness values, there is a greater chance 

the better individuals inside the population are selected and in rare occasions, the 

weaker can be selected to provide diversity within the population. When cross over 

and usually low amount of mutation is applied, those selected individuals create a 

number of new individuals referred as offspring or children. Each of the new offspring 

are evaluated by the fitness function and their fitness values are also determined. After 

new offspring are created, algorithm will have a parent population and child population. 

Since most of the genetic algorithms prefer fixed-size populations, a number of 

individuals must be selected from two populations to create next generation. To do that, 

a selection operator is applied. Selection operator may prefer replacement of all parents 

in the population with children, a random selection of 𝑛 individuals or selection based 

on fitness. This part of algorithm ends with a new generation of individuals. The same 

procedure applied to newly obtained generation and the ones come after it, until one 

of these newer generations satisfy the termination condition. This termination 

condition can be number of generations, finding a predefined fitness value, absolute 

time passed or total number of fitness calculations, etc. When a viable solution is found, 

the algorithm terminates. A sample pseudo code for GA is as follows:  
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Figure 1.1. A Pseudo – code for GA (Eiben & Smith, 2003) 

General processes in an evolutionary algorithm can also be represented in a flow-chart 

diagram as shown below: 

 
Figure 1.2. An Iteration Cycle of GA (Eiben & Smith, 2003) 

As described above, genetic algorithms work through the iterations of the loop, what 

is called generations. First branching starts on survivor selection. In classical GA, 

algorithm creates a number of children from randomly selected parents and once this 

number is reached, it replaces all the parents with newly produced children, thus 

creating the next generation. This kind of genetic algorithms are called Generational 

GA. Other kinds of implementations may favor combining parent and child 

populations and selecting 𝑛 individuals from merged population. This kind of genetic 

algorithms are called Steady State GA. 

In a Steady State GA, in addition to crossover and mutation, a replacement operator is 

also required. This kind of algorithm make replacements without regarding the 

generation or iteration count. Newly produced children are introduced to population 
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as soon as they are created. This approach allows user to precise adjustment of the 

course of algorithm, while a Generational GA, this work will be done by selection 

method which will be used to determine parents. This makes implementation of 

Generational GA simpler to implement but harder to control its course. Additionally, a 

Steady State GA will guarantee good individuals will be kept for next generation while 

a generational GA will need a property called elitism to have same feature. 

GA Selection Methods 

In each iteration of the algorithm, a subset of the current population is selected to breed 

new individuals. This is the main process that drives algorithm further. This selection 

of subset is usually based on a function called “Fitness Function” which determines 

the quality of the individuals in population by assigning them positive score values. 

Typically, as the score gets higher, it will increase the chance of selection of the 

individual.  

A selection procedure would start with evaluation of each of the individuals inside the 

population according to fitness function. This fitness function is always problem 

specific; meaning that, each problem has its own fitness calculation. In some problems, 

additional constraints might be given like time and budget. So, fitness function must 

also account satisfiability of these constraints. There are different approaches to ensure 

validity of solutions. The algorithm might simply discard invalid solutions, it might 

attempt to repair invalid solutions, may prefer to use task-specific operators that 

always produce correct solutions or may integrate a penalty mechanism for invalid 

solutions. In the next step, population is generally sorted in an ascending order with 

respect to the fitness scores of individuals. After that, selections are made according to 

the properties of various algorithms. Most commonly used algorithms for selection are; 

Fitness Proportionate, Stochastic Universal Sampling, Rank Selection, Tournament 

Selection and Truncation Selection, while in some cases selection can be made 

randomly to gain from computation time. 

a. Random Selection: The weakest and most obvious selection type is simply picking 

𝑛  number of individuals from population for breeding. As the selection will be 

totally random, it will not help the forward development of algorithm results. In 

most cases this approach is used in steady state algorithms to gain computation 

time where selection pressure is enforced by replacement strategy. 
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b. Fitness Proportional Selection: This is the most straightforward selection approach 

and is utilized by simple GA. Entire population is sorted based on fitness quality 

of individuals, and then, a probability value is created for each of the individuals 

by normalizing fitness values. In each iteration, one individual is selected from the 

population based on their probabilities. The chance of selection is increased 

according to the fitness value; so fitter solutions are more prone to being selected. 

The algorithm takes 𝑛 iterations for 𝑛 selections and therefore it will have 𝑂(𝑛) 

running time. The advantage of this method is that, it is the simplest conventional 

method, while, its disadvantage is that, it takes significant computation time and a 

super fit individual may take over the population in a short time. 

c. Stochastic Universal Sampling: It is a more advanced form of fitness proportional 

selection introduced by James Baker (Baker, 1987) . Unlike FPS (Fitness 

Proportional Selection) algorithm, which selects a number of solutions from 

population by repeated sampling, this algorithm divides the population into evenly 

spaced ordered based on fitness intervals. SUS then rolls a random number to 

sample solutions from each of the intervals. This algorithm has advantages over 

classical FPS algorithm: it increases chance of weaker members of population to 

be selected, thus, increases diversity within population. It is considered a fairer 

approach than classical FPS. 

d. Rank Selection: While fitness proportional and SUS methods are strong, they 

suffer from their sensitivity to relative individual fitness values. For instance, a 

solution with fitness value 10 is 10 times likely to be selected than a solution with 

fitness value 1. On the other hand, an individual with fitness value 110 has almost 

the same chance of being selected with an individual with fitness value 100. In 

order to solve this weakness, rank selection algorithm’s selection depends on the 

relative strength of solutions. 

e. Tournament Selection: Basic idea of this algorithm is creating a number of 

tournaments between several solutions which are selected randomly from the 

population. Winner of each tournament is then selected for breeding. In addition, 

the winner is determined by a probability value which allows higher chance for 

better individual and allows a lower chance for worse individuals. If the 

tournament size is adjusted, it allows user to influence selection pressure. Higher 

tournament size creates more selection pressure. This algorithm works well in 
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parallel processing, is simple to code and is as efficient as other fitness 

proportionate algorithms and allows the adjustment of selection pressure. 

f. Truncation Selection:  In this model, entire population is ordered based on fitness 

values and a subset of fittest individuals are selected for breeding. While this 

method is less complex than the others, it is not used in general. 

Elitism is usually used in generational algorithms in order to retain the best individuals 

inside the population. To put it simply, most quality solutions within the population are 

preserved and passed on to the next generation. This approach is not required in a 

steady state algorithm, since it relies on replacement strategies to retain the best 

individuals. 

GA Replacement Methodologies 

Replacement also known as survivor selection is a key component in determining 

algorithms progress. In generational GAs, this selection is simply based on selecting 

newly produced children and eliminating parents from the new population, while in 

steady state GAs, there are different approaches and each has their own strengths and 

weaknesses: 

a. Random Replacement: The simplest and most straightforward approach for steady 

state algorithms is generating new population by selecting individuals from both 

parents and newly created children randomly. If selected, this approach will not 

drive algorithms search towards a specific course and leave the driving search to 

better individuals to selection method. When used in a steady state GA, this will 

bring it close to traditional generational GA, where the progress of the search is 

also dependent on selection method. While it has the advantage of easy 

implementation, it will have no significant difference from a generational GA.  

b. Inverse Proportional Replacement: As the name suggests, this methodology is 

somewhat similar to fitness proportional selection used in parent selection. 

Probability of being replaced in the next generation is determined by a probability 

that is inverse proportional to individual’s fitness quality. This means that, the 

lower fitness value of individual, the higher chance it should be replaced. This, of 

course, guides the search process to better individuals very fast, but, after an 

extended period in algorithm’s course, all population members will have similar 
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characteristics and therefore similar fitness values. This may cripple algorithm’s 

diversity and prevent it from enhancing solution quality. 

c. Replace Worst:  In a steady state GA, most commonly used method is replacing 

the worst fitness quality members of the population with the newly created children. 

This approach would also drive the search process further, eliminating weaker 

candidates in a time interval and creating more robust population in a relatively 

shorter time frame and preserving the best candidates is ensured. When combined 

with a random selection strategy, it may yield satisfactory results. However, in a 

long period of run, this approach is thought to kill the diversity within the 

population and all candidates will become somewhat similar, and finding good 

results will be significantly harder and it may have considered to be a greedy 

approach. 

d. Replace Parents:  This idea is based on newly created children to replace their 

worst parent or all of their parents. While the clear advantage of this is always 

maintaining some form of diversity within the population, it will not speed up the 

search process as much as replace worst strategy. It is slower, but it may not be 

effected by the degradation of diversity as much. 

GA Representation Methods 

Regardless of which type of GA is used, strategy of building a genetic algorithm 

always starts with deciding on a proper representation. Without an efficient 

representation, it might be difficult to differentiate the quality of individual solutions. 

Choosing the right representation is one of the most difficult aspects in genetic 

algorithm because everything else, selection strategy, replacement strategy, choice of 

crossover and mutation operators will depend on it. In order to do the right choice, a 

good knowledge about the problem to be solved must be present, while, some common 

choices used in literature might be helpful for this decision. 

a. Binary String Representation: A solution is represented in the form of a string of 

binary digits. To use this representation, size of the string and technique to convert 

genotype consisting of binary string to a suitable phenotype must be decided upon. 

If a binary string of a particular size can encompass entire search space, this kind 

of a representation is efficient. If the problem has extra constraints which creates 

invalid solutions, such type of solutions must be fixed or dealt with. 
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In literature, binary string representations is used for many problems such as 

knapsack problem or one-max problem. 

b. Integer Representation: If the problem to be solved contains a set of values which 

can take integer values as solution, interpretation with binary representation might 

slow down the process or might not encompass entire search space. In such cases, 

representing solutions using integer numbers might be more practical. 

c. Floating Point Presentation: There are also cases when set of candidate solutions 

are continuous rather than discrete. In such problems, although not entirely 

accurate, most suitable form of presentation is using floating point numbers. 

d. Permutation Presentation: When a problem needs to be presented as a sequence of 

events, this kind of solution representation is often preferred. Events can be labeled 

with integer values and their sequencing within the permutation might present the 

order which events occur. 

As examples, generally algorithms solving 8-Queen problem, traveling salesman 

problem, quadratic assignment problem prefers this kind of representation. 

GA Mutation Methods 

A mutation procedure is introduced into genetic algorithms to generate diversity within 

the population as the algorithm progress. Unlike an Evolutionary Strategy algorithm, 

where mutation operator is used to direct the search process, in genetic algorithms 

mutation is used strictly to create variations and widen the area covered by the 

algorithm’s search process within the search space.  Technique of mutation is heavily 

dependent on genetic structure of solutions (genotype). There are different types of 

mutation operators used in literature: 

a. Bit-Flip Mutation:  This technique is used in binary string representations. Given 

a small probability, a candidate solution can undergo a change in one of values in 

its bits. If the bit is 0, it is inverted to 1, if it is 1, it is inverted to 0. 

b. Random Resetting: Used in integer representations where an integer value is 

replaced by one of allowable values in problem domain with a small probability. 

c. Creep Mutation: Used in integer representations by adding a small value to the 

genotype by a small probability. Probabilities are computed for each position 

within the genome. Generating small changes is more probable than larger changes. 
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d. Uniform Mutation: Works on floating point representations with the principle of 

increasing or decreasing an allele value in the range of a value randomly selected 

within a number domain. 

e. Swap Mutation: Works on permutation representations by swapping the allele 

values of two randomly selected genes (positions). An example is shown in Figure 

1.3. 

 

Figure 1.3. Sample swap mutation between two alleles 

 

f. Insert Mutation: Used in permutation representations. In this method, two points 

are selected at random. One of the points is moved to the end of the other. An 

example is shown in Figure 1.4. 

 

Figure 1.4. Insert mutation between two alleles 

g. Scramble Mutation: Used in permutation representations. Two points are selected 

to create a subset and then this subset is shuffled. An example is shown in Figure 

1.5. 

 

Figure 1.5. Scramble mutation 

h. Inversion Mutation: Inversion works by the principle of selecting two points and 

creating a subset and inversing its order. An example is shown in Figure 1.6. 

 

Figure 1.6. Inversion mutation 



18 

GA Recombination Methods 

Recombination can be thought as creating newer individuals by combining the genes 

of parent individuals in a meaningful way, without violating the problem constraints. 

It is one of the most important aspects of a genetic algorithm. While mutation is mainly 

used for creating diversity within the population by occasionally diverting some 

solutions from the local maximum points, recombination (cross-over) operators are 

mainly responsible for driving the search process further by pulling the population into 

the local maximum points. To make search process efficient, two operators should be 

used in balance. Just like mutation methods, cross-over methods are also dependent on 

the problem representation. 

a. Single-Point Crossover:  A single point is selected in both parents’ chromosomes. 

And then, parents’ chromosomes are splitted at this point. Two children are created 

by exchanging tail parts. Used in binary representations and integer representations. 

An example is shown in Figure 1.7. 

 

Figure 1.7. Single Point Crossover 

 

b. N Point Crossover: N Points are selected within the chromosomes of parent 

individuals and divided. And then those different segments are merged in children. 

Used in binary representations and integer representations. 

c. Uniform Crossover: Instead of taking full chromosomes of parents, this method 

works on genes. For each gene, a probability value is created and based on that 

value, source of the gene whether parent 1 or parent 2 is selected. Works in binary 

representations and integer representations. 

d. Single Arithmetic Recombination: Picks a gene on a random position in both 

parents and take the arithmetic mean of the parents’ allele at that point and further 
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beyond that point. Takes head section directly from parents. Used in floating point 

representations. 

e. Whole Arithmetic Recombination: Works by taking arithmetic mean of two parents’ 

allele on all genes. Two created children have identical chromosomes. Used in 

floating point representations. 

f. Partially Mapped Crossover (PMX):  Used in permutation representations. First 

introduced by Goldberg and Lingle as a cross-over operator for the solution of TSP 

(Goldberg & Lingle, 1985). 

The algorithm first selects two points within parent chromosomes randomly and 

copies the genes between these two points from first parent. Then checks the alleles 

in the same section of second parent that are not copied into child. For each of 

these alleles (say A), checks the alleles in their positions on parent 1 (Say B). And 

then, places A in child to the position of B in parent 2. If the place of B in child is 

occupied by the element C, copies the allele A into position of C in child. And at 

the end, copies the rest of the alleles from parent 2 into child. And then the second 

child is created by parents 1 and 2 reversed. 

A simple illustration of how the process works is given in Figure 1.8. Whole 

process takes 3 phases. In the first phase, alleles from parent 1 are copied directly 

to child. In the second phase, alleles not present in child but present in parent 2 are 

copied. In the last phase, all other alleles are copied into their original positions in 

child. 

 

Figure 1.8. Partially Mapped Crossover 

g. Edge Crossover:  It is another interesting idea for permutation representations 

that favors the preservation of edges found in both parents. In this algorithm, 

first, neighboring alleles for each allele is determined and they are listed. In the 

second step of the algorithm, a random allele is selected and in each iteration, 
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algorithm might select one of the edges. Selection firstly favors edges found in 

both parents. If no such edge is present, next allele is selected from one of the 

selectable edges randomly. An example is shown in Figure 1.9.

 

Figure 1.9. Edge Crossover 

h. List Order Crossover:  This is another crossover technique derived from PMX. It 

starts in the same manner as PMX: a subset of genes are selected from parent 1 and 

are copied into the child. In the next step, starting from the endpoint of randomly 

determined subset, the unused alleles in parent 2 are copied into the children in the 

same order in parent 2, until no more element remains. A simple representation can 

be shown as below in Figure 1.10:  

 

Figure 1.10. List Order Crossover 

1.6. Parallel Computing 

Originally, all of the programs that run on a computer were designed to run in serial. 

They were split into sets of instructions which are sent to a single processing unit and 

executed in sequence one by one. This resembles an analogy where a single worker is 

building a wall, doing all necessary tasks one at a time. This approach was slow and 
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complex tasks requiring lots of computing power would require very long-time frame 

to complete (Figure 1.11). 

 

Figure 1.11. Serial Processing (Barney, 2009) 

 

In contrast, parallel programming is the use of multiple processing units 

simultaneously to by dividing a task at hand into smaller chunks (Figure 1.12). 

 

 

Figure 1.12. Parallel Processing (Barney, 2009) 

This processing unit maybe multiple cores of a single processor, multiple processors 

on a single computer or a cluster of computers. In order to achieve an efficient 

parallelization, problem at hand must be logically divisible into smaller subproblems. 

Today, parallel software systems are used in numerous fields effectively, such as, big 

data processing, data mining, search engines, medical imaging, computer graphics, 
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virtual reality, web services, entertainment industry, operating systems, computer 

security as well as optimization. 

 Where it is possible to use multiprocessing, it yields huge benefits. It decreases the 

runtime required for solving problems, allows to solve larger instances of the problem 

and since all the processors today contain several processing units, it also allows 

efficient utilization of resources at hand. 

1.6.1. Flynn’s Taxonomy 

Proposed by famous computer researcher Michael J. Flynn in 1966, Flynn’s taxonomy 

is a classification of parallel computing architectures based on instructions and data 

(Flynn, 1972). It is still most widely accepted and is a popular classification technique 

as of today. There are four distinct categories in this classification. 

a. Single Instruction Single Data (SISD): A serial computer which features no 

parallelism. A single processing unit fetches a single instruction from memory at a 

time and only a single data stream is used as an input at a time. Typical examples 

are old computers and mainframes. 

b. Single Instruction Multiple Data (SIMD): A type of parallel computer in which all 

processing units fetch and execute same instruction from memory at a time where 

each of which uses different data streams as inputs at a time. A typical example can 

a be GPU unit. 

c. Multiple Instructions Multiple Data (MIMD): Most common type of parallel 

computers today, in which multiple processing units fetch and execute different 

instructions from memory and are able to use different data streams of their own. 

Typical examples are modern personal computers, tablets and smartphones. 

d. Multiple Instruction Single Data (MISD):  An uncommon type of parallel computer 

in which each processing unit fetches different instructions from memory and 

operates on same data stream. 

1.6.2. Parallel Computing Performance Criteria 

Performance gain in multiprocessor architectures are often calculated by Amdahl’s law. 

According to this law, performance gain by enhancing some portion of a computer can 

be calculated using “Speedup Ratio” formula (Amdahl, 1967). 
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a. Speed-up Ratio: A ratio which determines how much gain will be obtained when 

an enhancement is made. Can be adapted to multiprocessor architectures. 

Therefore, speed-up ratio on N-Cores (𝑆𝑁) can be calculated as follows: 

𝑆𝑁  =  
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝐸𝑛𝑡𝑖𝑟𝑒 𝑇𝑎𝑠𝑘  𝑖𝑛 𝑆𝑖𝑛𝑔𝑙𝑒 𝐶𝑜𝑟𝑒 

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝐸𝑛𝑡𝑖𝑟𝑒 𝑡𝑎𝑠𝑘 𝑖𝑛 𝑁 − 𝐶𝑜𝑟𝑒𝑠  

b. Parallelization Efficiency: Determines how much speedup is obtained per newly 

added processor: 

𝐸𝑁 =  
𝑆𝑝𝑒𝑒𝑑 𝑢𝑝 𝑅𝑎𝑡𝑖𝑜 (𝑆𝑁)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑒𝑠 𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑 (𝑁) 

There are three possible scenarios for parallelization efficiency when a program is 

divided into N processors:  

𝐸𝑁 = {

𝑆𝑢𝑏 − 𝑙𝑖𝑛𝑒𝑎𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ,                 𝐸𝑁 < 1
𝐿𝑖𝑛𝑒𝑎𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ,                             𝐸𝑁 =  1
𝑆𝑢𝑝𝑒𝑟 −  𝐿𝑖𝑛𝑒𝑎𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 ,           𝐸𝑁 >  1

 

In most cases, increasing the number of processor cores will not yield the efficiency 

desired. The biggest reason for that is, it is not possible to divide all of the portions of 

the program N-Equal tasks. That is why most of the time, sub-linear efficiencies are 

acceptable. However, in some cases, linear efficiency can be obtained. Additionally, 

execution time may not be the only gain in multi-core architectures. There may be 

other performance considerations depending on the problem. 
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CHAPTER 2 

PARALLEL EVOLUTIONARY ALGORITHMS 

Genetic algorithms in general are types of metaheuristics that provide good enough 

results within a reasonable time frame for computationally hard problems. But when 

applied to larger instances of hard problems, they may become relatively slow. In 

addition, it is not just a matter of speed but also quality of solutions may drop. Main 

reason of the drop in the solution quality is that algorithm will only be able to focus a 

smaller portion of search space, since the expanse of traversing search space will also 

increase as input size increases. A single sequential algorithm will eventually converge 

on a small portion of search space and lose its diversity. Since a good metaheuristic is 

expected to balance solution exploitation and solution exploration, they may become 

inefficient. 

One way to deal with these problems is taking advantage of modern computation 

architectures and multiple processor cores within a single chip or to put it shortly, 

combining evolutionary algorithms with parallel computation. By sharing the 

workload evenly among processor cores, it is expected to gain a speedup over the same 

algorithm running on single processor core, as well as, running different algorithms 

simultaneously to discover a larger area in search space with the hope that it will lead 

to finding better solutions. It should also be pointed out that, parallelized EA models 

resemble natural evolution process better than their serial counterparts. 

As genetic algorithms are perhaps the most popular subtype of evolutionary algorithms, 

parallelization of GA, is also more popular compared to the other types in the literature. 

There are several strategies suggested in the literature as to how to accomplish 

parallelization of GA. 

2.1. Parallel GA Models 

2.1.1. Parallel Independent Runs 

A simple approach based on the idea of a single GA might not be able to explore a 

wide area within the search space. So, by taking advantage of the multi-core 

architecture of modern processors, several independent GA might run simultaneously. 

Problem here is; there is no communication between these GA programs. This can be 
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achieved easily by running each of the evolutionary algorithms on separate threads or 

processes. Although a simple mechanism, it can be extremely helpful if we are not sure 

about the nature of problem at hand. By running GA with different parameters (cross-

over rate, mutation rate, selection strategy, etc.), it allows gathering statistical data 

about the problem at hand in a much shorter time frame compared to running each 

configuration sequentially. Disadvantage of this strategy is; since there is no 

communication between independent runs, diversity within each algorithm will 

rapidly fall compared to other methodologies and it will conclude on a local optimum 

with much greater probability. This problem is also known in literature as premature 

convergence. 

2.1.2. Master-Slave Model 

This model is constructed to gain pure speedup compared to a simple sequential GA. 

The idea is that, time consuming tasks like fitness evaluation, crossover and mutation 

within a GA can be distributed to the other processor cores and completion time of the 

algorithm can be reduced drastically. Main parts of the algorithm like initialization and 

generation loop will be dealt within the master process/thread, while time consuming 

tasks, mostly fitness evaluations, will be distributed to slave threads/processes 

assigned on different cores. Once the calculations are complete, slave threads are 

terminated and results are returned to master thread. The other parts of the algorithm 

will work just as its sequential counterpart. The experiments carried out in this thesis 

study show that, when applied to the sequential algorithms, this method yields a 

significant speedup. Figure 2.1 shows the general architecture of master-slave model. 

 

Figure 2.13. Master-Slave Model 
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2.1.3. Island Model 

Another model called island model is an enhancement to independent runs by allowing 

a communication between GAs on different processor cores. This is expected to 

eliminate the problem of premature convergence on different GAs and provide better 

results. 

In Island model, also known as coarse-grained GA, main population is divided into 

different subpopulations known as the islands or demes. Those islands are then 

assigned into different processor cores and just as in sequential GA, each of them starts 

to evolve independently. After certain number of generations, known as epoch, each 

of these island exchange solutions and continue to evolve from that point. Newly 

introduced individuals add diversity to islands and hopefully keep them from 

converging prematurely. Also, islands stuck at low fitness regions of subspace are 

introduced with better solutions allowing them to evolve and contribute. 

This model provides a reasonable speed-up. It is also flexible, which means it can be 

combined with any other model. In addition, it eliminates premature convergence, 

explores different regions within search space and provides much better results than a 

classic sequential GA. However, it will add extra parameters due to migration model 

it implements. These parameters are: 

1.  Number of Islands to make up general population. This determines how many 

simultaneous runs will be conducted within the algorithm. It is expected that, in 

general as the number of islands increase, so will the performance of algorithm. 

But if the general population is divided into too small subpopulations, algorithm 

may perform poorly. This is usually dependent on problem size and called “critical 

mass”. 

2.  Period of Migration, which is how often the solutions will be exchanged between 

islands. If the period is too frequent, subpopulations may not have enough time to 

evolve and exploit, so algorithm may perform poorly. If the period is too seldom, 

there is a risk of premature convergence of subpopulations, and therefore, the 

algorithm may perform poorly. 

3. Number of Solutions to Exchange within each epoch. If too many candidates are 

exchanged, newly added solutions might take over the subpopulations and those 

subpopulations maybe diverted from local optimums. If the candidates to be 
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exchanged are too few, they may not be enough to prevent premature convergence 

of subpopulations. 

4.  Immigration Topology, which determines the spatial distribution of the islands. 

This, determines the neighborhood structure. Islands can be arranged in a circular 

order, one after another, in which case immigration topology is called ring 

migration. If the islands are arranged to resemble a graph migration topology, it is 

called graph migration. One might also choose to use a multidimensional (3D, 4D, 

etc.) representation for topology, in which case islands will have more than one 

neighbors, such representations are called hypercube. Different types of topologies 

are shown in Figure 2.2. 

 

 

Figure 2.14. A unidirectional ring, a torus and a complete graph (Sudholt, 2015) 

 

5.  Direction of Migration between neighbors. Any type of migration topology can 

be arranged to exchange individuals in a single direction or a bidirectional. 

6.  Immigration Policy; the decision of which members to exchange between 

subpopulations. Selection may be the random, the worst candidates or the best 

candidates or any other selection strategy might also be applied. There is no 

consensus to which strategy is better. 

7.  Decision to Copy or Move the Immigrants is the decision of leaving a copy of 

individual or removing it from original island might also play a part in efficiency 

of the algorithm. 

8.  Homogeneous or Heterogeneous Island Algorithms. If all islands are initialized 

with same parameters, this kind of an island model is said to be homogeneous. If 
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the configurations of the islands are different, this kind of a model is called 

heterogeneous island model (Sudholt, 2015). 

Island model is ideal for MIMD machines, where every island will be assigned to a 

different core, therefore this model is commonly favored when a modern-day CPU 

will be used. But they can also run on single core CPU, albeit not simultaneously. 

2.1.4. Cellular Model 

This can be considered as a special form of island model, where each island consists 

of a single individual. It is also known as fine-grained model. Each island is called a 

cell and these cells are connected with their immediate neighbors in a topology and 

they can only reproduce or mate with their neighboring cells. As the algorithm progress, 

neighboring cells will start to be closely related, while, spatially distant cells will be 

different from each other. This typical change is called isolation by the distance. In the 

long run, better solutions will start to take over population on a slow rate. This process 

is called diffusion. 

Unlike island model, cellular model implements no evolution within the cells, but it 

occurs in the outer layer, inter-cells. Commonly, fitness evaluations, selection and 

mutations and cross over between cells are done in synchronization. However, it is 

also possible that the algorithms may choose to perform these operations 

asynchronously in some cases, depending on the problem instance. 

An important aspect in this model is the selection of the cell to be updated or order of 

the updates within the model. Alba et al. (Alba, Giacobini, Tomassini, & Romero, 2002) 

suggested 4 strategies for choosing the next candidate to be updated: 

• Uniform Sweep: Selection is done randomly. 

• Fixed Line Sweep: Cells are updated by line. 

• Fixed Random Sweep: A sequence of cells determined according to some strategy 

and updates are done in permutation sequence 

• New Random Sweep: A permutation is regenerated after every selection, this 

model is called new random sweep. 

Another important aspect of cellular model is the topology to be selected in which cells 

will be spatially distributed. According to (Sudholt, 2015) most common topologies 
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are ring, 2D torus and graphs. This factor will have a large impact on diffusion of better 

solutions and a correct selection will vastly improve output of the algorithm. Figure 

2.3 shows an example of graph representation. 

 

Figure 2.15. Graph representation of the cellular model.  (Sudholt, 2015) 

Cellular model is preferred on SIMD machines. For this reason, they are very 

convenient to run on GPU modules. However, they can be modified to run on MIMD 

standard CPUs we use today, or even on a single core processor albeit not 

simultaneously. 

2.1.5. Hybrid Models 

Aside from the traditional models, genetic algorithms can be set to run in combination 

of these approaches to obtain better speed up and solution quality. However, their 

implementations will be reasonably more complex. Instead of a single level, there will 

be two levels of algorithms. Below are some interesting combinations: 

1. Island Model & Cellular Model Hybrid: Using an island model on higher level and 

running a cellular model within each island. Cellular parts may be set to run on 

computer’s GPU, while fitness calculations, migration and other operations are 

performed on CPU.  

2. Island Model & Sub-Island Model Hybrid: Island model on higher level and within 

each island, running another island model. This may further increase general 

diversity and allow algorithm to cover search space more extensively. 
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3. Island Model & Master-Slave Model Hybrid: This model is beneficial where there 

are more cores in CPU than number of islands constructed on the algorithm to 

better utilize the available processor. 

4. Cellular model & Master-Slave Model Hybrid: In this model, fitness calculations 

will be sent to CPU for faster computation, and other parts of algorithm will remain 

on GPU. 

2.2. Measuring Performance in Parallel GAs 

There are two main factors to assess the gain of parallelization in genetic algorithms. 

These are computation time gain and solution quality. 

2.2.1. Computation Time Gain 

Computation time in genetic algorithms is measured in several different ways: wall 

clock time it takes to complete the algorithm and number of generations it takes to 

complete the algorithm. In either case, computation time gain can be measured in terms 

of speed–up method formulated by Ahmdahl (Amdahl, 1967). 

In 2002, Alba presented a taxonomy in which speedup provided by the parallelization 

of evolutionary algorithms can be classified (Alba, 2002): 

a. Strong speedup:  Total runtime of the parallel evolutionary algorithm is compared 

to the runtime of the best-known sequential algorithm. This sequential algorithm 

may or may not be an EA. This scale determines how much a parallel EA improves 

over current best-known counterpart. However, it is not favored by the researchers 

because of the complexity of finding the best known sequential algorithm. 

b. Weak speedup: Total runtime of the parallel evolutionary algorithm is compared to 

its sequential counterpart. It is favored by the researchers since it is easy to classify. 

It has two different sub versions:  

i. Panmictic (Single Population) weak speedup: Runtime of parallel evolutionary 

algorithm is compared to the single-population version of it on an 𝑚 processor 

system.  

ii. Orthodox weak speedup: Runtime of parallel evolutionary algorithm on a 

multicore machine is compared to runtime of sequential algorithm on a single 

core machine. 
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According to Alba (Alba, 2002), parallel evolutionary algorithms can not only achieve 

a linear speedup, but also super linear speedup is also possible on some instances. Alba 

concludes that several factors such as using efficient data structures, better exploration 

of search space from multiple positions or increase on some other resources like 

memory, cache etc. effect the efficiency of the algorithm. Therefore, he concludes that 

achieving super linear speeds in an EA is possible with a correct implementation. 

2.2.2. Solution Quality Gain 

A parallel algorithm will evidently better discover the different portions of subspace 

than its sequential counterpart and avoid problems like premature convergence. 

Effectively this will improve the solution quality.  

A formulation called Relative Percentage Change (RPC) can be used to compare 

solution qualities of parallel and sequential algorithms, between best candidates of two 

algorithms and best-known solutions for the problem on hand. RPC formula for 

minimization problems is given below: 

𝑅𝑃𝐶 =  
𝑋𝑁𝑒𝑤 − 𝑋𝐵𝑒𝑠𝑡𝐾𝑛𝑜𝑤𝑛

𝑋𝐵𝑒𝑠𝑡𝐾𝑛𝑜𝑤𝑛
× 100 

𝑋𝐵𝑒𝑠𝑡𝐾𝑛𝑜𝑤𝑛 is the best solution found for a problem instance in literature, while 𝑋𝑁𝑒𝑤 

is the solution that needs to be evaluated. Formula above will yield the difference of 

newly found solution compared to best known solution to the problem on hand by 

percentage. A negative value indicates that the compared algorithm found a better 

solution than the best-known solution.  

This will ultimately allow to measure how an algorithm performs compared to another 

algorithm. In addition, it will allow to measure how a change in a parameter affects 

the efficiency of parallel evolutionary algorithm, because finding the correct 

parameters is a key point for successfully discovering a wide area of search space and 

avoiding premature convergence. 
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CHAPTER 3 

LITERATURE REVIEW 

3.1. Literature Review on Quadratic Assignment Problem 

Since its first proposal by Koopsman and Beckmann in 1957 (Koopmans & Beckmann, 

1957), to mathematically model economical activities, Quadratic Assignment Problem 

(QAP) gained a lot of attention on scientific world because it can be used in many 

applications. 

Perhaps one of the most famous applications is “Steinberg Wiring Problem” described 

by Leon Steinberg to model placement of computer components in an electronic 

blackboard in order to minimize total amount of wiring needed (Steinberg, 1961). In 

his article he suggested three instances with a matrix size of 36 x 36. It took about 40 

years of research to solve these famous problem instances. According to QAPLIB 

(Burkard, Karisch, & Rendl, 1997) , “b” and “c” instances were solved and proved to 

be optimal by Nyström in 1999 (Nyström, 1999), while “a” instance is solved and 

proved to be optimal by Brixius and Anstreicher in 2001 (Brixius & Anstreichner, 

2001). 

In 1974, Richard Francis, Leon F McGinnis Jr and John A. White published a book, in 

which they analyzed and modeled a decision framework for assigning facilities like 

police stations, schools and medical facilities on locations, according to the latest 

survey they utilized QAP for their framework (Francis, Jr., & White, 1974). 

In 1972, Jakob Krarup created a dataset called kra30a to represent layout of newly 

built Klinikum Regensburg in Germany using QAP. His objective was to find a layout 

of hospital facilities in such a way that communication cost x distance between 

facilities were minimized (Krarup & Pruzan, 1978). Optimum solution for the problem 

is found with Branch and bound algorithm by Hahn, Hightower, Johnson, Spielberg, 

Roucairol in 2001; twenty-nine years later after it was proposed (Hahn, Hightower, 

Johnson, Guignard-Spielberg, & Roucairol, 2001). 

In 1977, Dickey and Hopkins used QAP to model layout of buildings within a 

university campus (Dickey. & Hopkins, 1972). 
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In 1977, Burkard and J. Offermann tried to find the best possible typing machine 

keyboard using typing-time of an average steno typist and frequency of pairs of letters 

in different languages data (Burkard & Offermann, 1977). 

In the same year, Alwalid N. Elshafei used QAP to find a layout for 19 hospital 

departments in such a way that minimizes the total distance travelled by patients 

(Elshafei, 1977) . In 1976, Hubert and Schultz used QAP for data Analysis (Hubert & 

Schultz, 1976). 

In 1988, Laporte and Mercure used QAP to formulate a solution which minimizes the 

distance between the center of mass of the blades and the geometric center of the 

cylinder in hydraulic turbine runners by locating the turbine blades (Laporte & 

Mercure., 1988). In 1994, Phillips and Rosen used QAP to solve molecular 

conformation problem in their research (Phillips & Rosen, 1994).  

In 1997, George and Pothen used QAP to formulate 1-sum and 2-sum problems to 

analyze spectral envelope reduction (George & Pothen, 1997). In 2015, Azab used 

QAP to model process planning mathematically in his work (Azab, 2015).  

In 2017, Bougleux, Brun, Carletti, Foggia, Gaüzère, and Vento used QAP to compute 

graph edit distance measure (Bougleux, ve diğerleri, 2017). 

According to a recent survey on subject (Loiola, de Abreu, Boaventura-Netto, Hahn, 

& Querido, 2007), QAP has also derivative problems like Linear Assignment Problem 

which is P class and can be easily solved by Hungarian Method. 3-Index Assignment 

problem, Quadratic Bottleneck Assignment Problem, Quadratic Three-dimensional 

Assignment Problem, Quadratic Semi-Assignment Problem, Multi objective 

Quadratic Assignment Problem all are special cases of the original problem. 

There are three surveys on QAP in the literature, published in 1994, 1998 and 2007. 

Oldest survey belongs to Pardalos, Rendl and Wolkowicz, which was published in 

1994  (Pardalos, Rendl, & Wolkowicz, 1994). It starts with formulizations of QAP and 

continues with derivatives of the problem, computational complexity of QAP, lower 

and upper bounds, introduces a local search algorithm, talks about exact solution 

methods and sub-optimal algorithms for QAP and introduces a library called QAPLIB. 

The Second survey belongs to Çela in the form of a book, written in 1998  (Çela, 1998). 

He starts with problem definition and continues with formulations of QAP, its 
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computational complexity, exact algorithms and lower bounds, heuristics on QAP and 

finishes with derivatives of QAP.  

The latest survey to Loiola, De Abreu, Boaventura-Netto, Hahn, Querido and is 

published in 2007  (Loiola, de Abreu, Boaventura-Netto, Hahn, & Querido, 2007). It 

starts with brief history of QAP, continues with its formulations found in literature, 

QAP-related problems, lower bounds found in literature, exact, heuristic and 

metaheuristic algorithms for solving QAP and finishes with main research trends and 

tendencies. 

Many data sets were proposed by different scientists all over the world since proposal 

of QAP. There are mainly 15 data sets used by researchers, all of which can be found 

in QAPLIB, a library dedicated to Quadratic Assignment Problem. The library 

contains problem instances, their optimal and best-known solutions, best solution 

methods, brief histories about data sets, when they are proposed and for what purpose. 

It was originally created by Stefan Karisch in 1997 with the help of Burkhard and 

Rendl. He maintained the relevant web site until 2002. From 2002 to 2012 website 

was maintained by Erande Cela. After 2012 website is maintained by Peter Hahn and 

Miguel Anjos. Last bulk update to the website was done in 2011 (Burkard, Karisch, & 

Rendl, 1997). 

Quadratic Assignment problem is proven to be NP-Hard by Sahni and Gonzales back 

in 1976 in their article “P-Complete Approximation problems”  (Sahni & Gonzales, 

1976). This fact has led scientists all over the world to consider two possible 

approaches when dealing with quadratic assignment problem. Some scientists 

followed the exact methodologies and they were able to come up with optimum 

solutions for small or specific instances of the problem. Others decided to relax the 

finding optimum requirement and settled with sub-optimal results and utilized 

heuristic and meta-heuristic methodologies to solve the larger and more general 

problem instances to some degree. In the literature, between 1957 and 1990’s generally 

first approach was more common. While after 1990’s with metaheuristics became 

more popular, second approach became more common. There are different exact and 

heuristic/metaheuristic methodologies to solve quadratic assignment problem in the 

literature. 
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3.1.1. Exact Algorithms in the Literature 

Today, exact algorithms are considered to be effective for instances smaller than size 

of 30 and some bigger instances for only specific instances. With the developments in 

computer hardware, and parallelization of algorithms, this threshold will increase more 

and more. 

The most popular of the exact methodologies when solving QAP is branch and bound 

algorithm. One of earliest applications of branch and bound method to QAP was in 

1966 by Gavet and Plyter (Gavett & Plyter, 1966).  

In 1979, Bazaara and Elshafei created a branch and bound algorithm in their work 

which could solve instances up to size of 20 (Bazaraa & Elshafei, 1979). In 1980, 

Edwards proposed a binary branch and bound algorithm for the solution of Koopmans-

Beckmann QAP (Edwards, 1980). 

In the same year, Burkhard and Derigs proposed a branch and bound based solution to 

the Nugent 5, 6, 7, 8, 12 and 15 instances and become the first one to solve Nugent15 

instance (Burkard & Derigs, 1980). In 1983, Bazaraa and Kirca proposed a branch and 

bound algorithm that can solve Nugent12a and Elshafei19 instances (Bazaraa & Kirca, 

1983).  

In 1987, Roucairol proposed a parallel branch and bound algorithm which can work 

on a multiprocessor computer or a cluster using a common shared memory. She tested 

her algorithm on a Cray X-MP machine and coded her algorithm in FORTRAN. She 

tested her algorithm on Nugent instances with size 5, 6, 7 and 8 with 1, 2 and 3 

processors and calculated speed-up for each of them. She found out that the speed-up 

for small instances like 5 and 6 were negligible, while for bigger instances like 8 or 10, 

speed-up values were almost equal to the number of processors added (Roucairol, 

1987). 

In 1989, Pardalos and Crouse suggested another parallelized branch and bound 

algorithm which was essentially an enhanced version of Roucairol’s work. They also 

worked on Nugent data set with instances of size 5 to 15, 20 and 30. They noted that, 

their algorithm only worked on symmetric instances and not in asymmetric ones. They 

were able to find the exact solutions for instance sizes up to 15. For 20 and 30 size 

instances, the exact solutions were not found. They were able to obtain speed-up ratios 

comparable to Roucairol’s work (Pardalos & Crouse, 1989).  
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In 1993, Laursen adopted parallelized branch and bound into several problems, 

including QAP (Laursen, 1993). In 1997, Brüngger, Marzetta, Clausen and Perregaard 

proposed a parallelized branch and bound algorithm based on ZRAM parallel search 

library  (Brungger, Marzetta, Clausen, & Perregaard, 1997). They were able to gain 

linear speedups and were able to solve 10 previously unsolved instances from QAPLIB. 

Instances are hadl6, hadl8, had20, tail7a, tai20a, rou20, nug21, nug22, esc32e, esc32f. 

In 2001, Anstreicher, Brixius, Goux and Linderoth proposed a branch and bound 

algorithm which solves previously unsolved nug27, nug28, nug30, kra30b, kra32 and 

tho30 instances (Anstreicher, Brixius, Goux, & Linderoth, 2002). 

One of the most famous set of QAP instances are called Nugent instances. According 

to a recent survey on QAP, all of these instances are solved to optimality by branch 

and bound methods except instance size 8 (Loiola, de Abreu, Boaventura-Netto, Hahn, 

& Querido, 2007). Below is a detailed table showing which instance size of Nugent 

data set is solved to optimality, by whom and in what year and using which 

methodology. Table 3.1 clearly shows most commonly used exact methodology to 

obtain the optimal solutions is branch and bound strategy. 

Table 3.1. Nugent Instances and who solved them using which methodology. 

(Loiola, de Abreu, Boaventura-Netto, Hahn, & Querido, 2007).  

Another exact algorithm that is used when solving QAP instances is called Dynamic 

Programming. It is only used in a special case called Tree QAP where non-zero entries 

in flow matrix forms a tree. It is an extension to the branch and bound methodology 

Instance Size Who Solved? -When? Method 

8 Burkard - 1975 Complete Enumeration 

12 Burkard & Stratman - 1978 Branch & Bound 

15 Burkard & Derigs - 1980 Branch & Bound 

20 Colorni et al. - 1996 Branch & Bound 

21 - 22 - 24 Brüngger et al. - 1997 Branch & Bound 

25 Hahn – 2000 Branch & Bound 

27 - 28 - 30 Anstreicher et al. - 2002 Branch & Bound 
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which was introduced by Christofides and Benevant in 1989 (Christofides & Benavent, 

1989). 

Another type of exact strategy is called cutting plane method which was introduced by 

Bazaara and Sherali in 1982 (Bazaraa & Sherali, 1982) . According to the recent survey, 

this methodology is only proper for small size instances of QAP due to its slow 

convergence. Bazaraa and Sherali tested this method on Nugent 5, 6, 7, 8, 12, 15, 20 

and 30 instances, Steinberg 36 instance, Elshafei 19 instance and Krarup 32 instance. 

An enhanced version of this algorithm is proposed by Padberg and Rinaldi named 

branch and cut technique seems to accelerate algorithm’s convergence, although work 

was focused on symmetric traveling salesman problem and not quadratic assignment 

problem in general (Padberg & Rinaldi, 1991). 

3.1.2. Metaheuristic Algorithms in Literature 

Due to the disadvantages of the exact algorithms, many large - sized as well as some 

smaller - sized problems cannot be solved optimally. This mandates some relaxation 

from finding the optimum solution and settling with a “good enough” solution in a 

“reasonable time” frame for many instances of QAP. Many researchers focused on 

metaheuristics in the past, because they are easy to adapt to different problems and 

generally find good solutions. Since QAP is considered as a benchmark problem, it is 

perfect to test how successful a certain metaheuristic is compared to the other 

algorithms. Many metaheuristics have been proposed in literature for solving Nugent 

and other QAP instances on QAPLIB. Simulated Annealing, Genetic Algorithms, Ant 

Colony Optimization, Neural Networks, Tabu Search, Greedy Randomized Adaptive 

Search Procedure, Variable Neighborhood Search, Iterative Local Search, Breakout 

Local Search, Particle Swarm Optimization and combinations or derivatives of these 

approaches can be found commonly.  

One of the earliest examples is Burkard and Rendl’s simulated annealing solution in 

1984. Authors state that they could reach solutions which differs from the optimum 

values by 1% or 2 % and they concluded that this could be an acceptable solution with 

smaller hardware demand with a shorter time frame (Burkard & Rendl, 1984).  

In 1987, Davis compared Genetic Algorithms and Simulated Annealing solutions to 

QAP in his book as an example of combinatorial problems (Davis, 1987). 
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In 1990, Skorin-Kapov published another article in which she solved Nugent 15, 20 

and 30 instances, Krarup 30, Steinberg 36 instances, as well as her own instances with 

sizes 42, 49, 56, 64, 72, 81 and 90 using Tabu Search method (Skorin-Kapov, 1990). 

In 1991, Taillard proposed another Tabu Search algorithm which is implemented as a 

parallel algorithm and solved Nugent 5-30 instances, Elshafei 19, Krarup 30, Steinberg 

36, Skorin-Kapov 42, 49, 56, 64 Instances and another data set that he created using 

parallel Tabu Search. He claimed with this method some problems can be solved up to 

size 64 with sub-optimal but good results (Taillard, 1991).  

In 1993, Chakrapani and Skorin- Kapov created first massively parallel taboo search 

implementation on supercomputer Connection Machine 2. Algorithm utilized 𝑛2 cores 

where 𝑛 is the size of problem. Their work computed solutions for problems with sizes 

up to 90, as the best known or close to the best known, while for sizes bigger than or 

equal to 100, best known solutions are improved. (Chakrapani & Skorin-Kapov, 1993) 

In 1993, Fleurent and Ferland published a parallel hybrid metaheuristic which 

combines local search and Tabu Search with Genetic Algorithms. In their paper, they 

compared 5 different algorithms; a local search procedure with pairwise exchange (LS), 

a Tabu search algorithm that was run 4𝑛 times and 4000𝑛 times respectively (Tab4n 

and Tab4000n), same local search and Tabu algorithms with different starting points 

1000 times (RepLS and RepTab4n) and a Genetic Hybrid Algorithm with LS and Tabu 

Search (GHA) on Skorin-Kapov 72-100 instances. Their results indicated that GHA 

performs better when compared to single Local Search or Single Tabu Search 

algorithm in almost all instances. They reported that their algorithm has improved best 

known scores for Taillard 40, 50, 60 and 80 instances and Skorin-Kapov 81, 100a, 

100b, 100c, 100d and 100e instances (Fleurent & Ferland, 1993). 

In 1994, Li, Pardalos, Resende used a metaheuristic named as greedy randomized 

adaptive search procedure (GRASP). GRASP is an iterative search procedure which 

has two phases. In the first phase, also named as construction phase, algorithm 

iteratively constructs a candidate solution by adding an element to the permutation or 

assigning a facility to a location. Choice of next element is determined by a greedy 

fitness function. This function did not necessarily select the best possible choice but 

one of best from a number of solutions. This allowed algorithm to be stochastic in 

nature. The solution produced in first phase is not guaranteed to be locally optimum. 
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Therefore, the algorithm goes over a second phase called local search. In this phase, a 

two-opt local search procedure is applied to the final solution. They tested their 

algorithm on almost all instances of QAPLIB; Burkard, Christofides, Elshafei, 

Eschermann, Krarup, Nugent, Roucairol, Scriabin, Steinberg and Li& Pardalos. The 

algorithm was one of the most-successful metaheuristics in literature; it was able to 

find almost all best-known solutions as well as improving some of those solutions (Li, 

Pardalos, & Resende, 1994). 

Between 1994 and 1999, Maniezzo and Colorni adapted several versions of ant colony 

algorithm for solving QAP (Maniezzo & Colorni, 1994). Their series of work first 

started in 1994 where they adopted ACO algorithm developed to solve traveling 

salesman problem to QAP for the first time in literature. This algorithm employed a 

number of intelligent computing agents called ants which construct a solution 

incrementally by assigning facilities to locations. To avoid assigning same facilities to 

different locations, they added a Tabu list which included forbidden moves in each 

step. They tested their algorithm on Nugent 15-30, Elshafei 19, Krarup 30 instances. 

They used optimal solutions as a comparison base for instances smaller than 20, while 

for two larger instances (Nugent30, Krarup30) they used the best-known solutions 

computed by Burkard et al. (Burkard, Karisch, & Rendl, 1997). They compared their 

algorithm with GRASP, another heuristic developed by Pardalos et. al in 1994 (Li, 

Pardalos, & Resende, 1994). Their results were comparable to GRASP. Although a 

single ant would quickly converge on a local maximum point, collaboration between 

several ants yielded a good set of solutions. 

In 1994, Nissen devised a sequential Evolutionary Strategy (ES) algorithm to solve 

QAP. He used permutation representation and standard random population generation. 

After that, in each iteration, children are created by applying between 0 to 2 random 

swap mutations to the parents, since he determined standard mutation scheme is not 

applicable in this problem. He also did not use any recombination operators. Algorithm 

was able to adapt mutation probability based on success of children compared to their 

parents. If for a couple of generations, children are less suitable, then mutation amount 

is automatically increased to widen the search area. He then compared his solutions to 

Simulated Annealing of Heragu and Alfa (Heragu & Alfa, 1992) and Tabu Search 

Algorithms of Taillard (Taillard, 1991) and his own implementation of two-opt search 

on Nugent 20 and 30 instances, Skorin - Kapov 64, Elshafei 19 and Steinberg 36 
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instances. He found out ES algorithm performed better than two-opt, while it was on 

par with TS and SA (Nissen, 1994).  

In 1995, Bousoño-Calzón and Manning applied a Hopfield Neural Network to solve 

QAP. According to the authors, this type of neural network is often applied to the 

optimization problems, because main purpose of this network is to maximize the 

throughput while minimizing the cost; therefore, it might outperform conventional 

methods. However, this only works if the instances in question are symmetrical. 

Authors used this problem to represent processors, their distances and communication 

weights and come to a solution implementing a neural network to minimize the sum 

of all communication costs within a multiprocessor environment (C.Bousoño-Calzón 

& Manning, 1995).  

In 1995, Tate and Smith published a sequential genetic algorithm to solve quadratic 

assignment problem. They designed 10 runs containing different random seeds for 

each instance, to assess overall performance of algorithm. Their algorithm had 3 

different setups:  

• 25% of population replaced by children and 75% of parents undergo only 

mutation 

• 50% of population replaced by children and 50% of parents undergo only 

mutation  

• 75% of population replaced by children and 25% parents undergo only mutation.  

They limited population size to 100 and determined optimum found or 2000 

generations reached as termination condition. They worked with a total of 11 Nugent 

instances. They determined setup with 25% of population replaced by children and 75% 

of remaining population undergo mutation as the best by a small margin. They found 

out higher mutation rates are more successful when solving QAP. They also reported 

that their algorithm found comparable results to previously known metaheuristics (Tate 

& Smith, 1995). 

In 1996, Bachelet et al. tested different metaheuristics to compare their performance 

on QAPLIB instances. All the compared algorithms were parallelized algorithms. For 

the base case, they implemented a sequential hill climbing search algorithm with 

replace best strategy. For the Parallel Tabu Search, they implemented an algorithm 

which runs multiple independent tabu search algorithms with no communication. 
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Algorithms are initialized with different solutions and different parameters in the 

beginning. For genetic algorithm, they used a cellular model where the main 

population is divided into sub-regions called cells and the interactions between two 

individuals are limited to their neighbors. Mutations are applied to the individual cells 

and each individual is evolved on separate processors. They tried this setting in both 

SIMD and MIMD architectures. They claimed that, Cellular GA is better at exploration 

and Tabu Search is better at exploitation. Therefore, they also proposed two types of 

parallelized hybrid algorithms. In Parallel Synchronous Hybrid (PSH) Algorithm, they 

utilized Tabu search as a mutation operator for Cellular GA. In Parallel Asynchronous 

Hybrid (PAH) Algorithm, they proposed a system where algorithms exchange 

solutions on certain time intervals. They compared their results with ES from Nissen 

(Nissen, 1994), SA from Heragu and Alfa (Heragu & Alfa, 1992) and Tabu Search 

from Taillard (Taillard, 1991) on Nugent 30, Steinberg 36 and Skorin - Kapov 64 

instances. They concluded that, while each algorithm has its own strengths, overall GA 

- Tabu Search hybrids perform better than others on average (Bachelet, Preux, & Talbi, 

1996).  

In 1997, Cung et al. proposed a Scatter Search procedure to solve QAP. This procedure 

is similar to an evolutionary algorithm, because both works on a randomly generated 

population. Scatter Search algorithm then combines several elite solutions (more than 

two) from main population and tries to find a good trial point. Once they obtained 

results from scatter search algorithm, they improved results further with a Tabu search 

algorithm which are integrated into the main population of scatter search algorithm. 

They executed their algorithm using Elshafei, Taillard, Krarup, Skorin – Kapov and 

Thonemann instances. Authors reported that, their algorithm was able to find best-

known or optimal values for most of problem instances and was able to imrpove best 

- known solutions for tho150 and tai256c instances (Cung, Mautor, Michelon, & 

Tavares, 1997) .  

In 1999, Stützle applied Iterative Local Search (ILS), yet another metaheuristic to QAP. 

This algorithm first generates an initial solution and applies a local search procedure 

on that solution, using two-opt algorithm. Then, in the next step, the algorithm 

perturbates the obtained solution, applies the same local search again and decides 

whether it meets the termination criterion. Author also pointed out that, it is possible 

to make ILS a population based procedure by maintaining set of solutions instead of a 
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single one. He concluded that, while population based ILS algorithm gives better 

results in overall, single solution ILS implementations are open to improvements and 

overall results of the algorithm are promising (Stützle T. , 1999) 

In 1999, Gambardella, Taillard and Dorigo created another Ant Colony algorithm 

which uses an extra local search procedure. In a standard ant colony approach, 

pheromone trails are manipulated by agents during or after the construction of new 

solutions locally as well as globally. However, in this new approach, pheromone trails 

are only updated globally. This drives the algorithm towards a quick converge to the 

solution. Downside of this approach is, sometimes premature convergence may happen 

and solution may be sub-optimal. Authors therefore developed a diversification 

mechanism which erases pheromone trails periodically. Additionally, in previous 

applications, pheromone trails were used to construct new solutions while in their 

implementation, those trails are used to improve existing solutions (Gambardella, 

Taillard, & Dorigo, 1999).  

In 2000, Ahuja, Orlin and Tiwari suggested a genetic algorithm based on greedy 

principles like initializing starting population with a metaheuristic algorithm namely 

GRASP technique suggested in 1994 by Li et. al. (Li, Pardalos, & Resende, 1994). For 

the parent selection they did not employ a fitness proportionate strategy, rather 

selection was based on uniform random probability for each solution. They created 

three new crossover schemas and found the most effective to be shift-path crossover 

in which, identical portions of the chromosome in parents are determined and other 

parts of chromosome of one parent is shifted until the most similar fitness value to the 

other parent can be obtained. After that, selection of the survivor depends on the 

created children. Since this technique only allows selection of single parent, if child is 

fitter than both parents, the one that is the most similar to child is eliminated and if 

there is a fitter parent compared to child, that parent is selected. For mutation part, they 

employed an algorithm which creates an 𝑛 𝑥 𝑛 matrix, in which value at the position 

𝑖𝑗 defines the number of individuals in the current population in which site 𝑖 contains 

the facility 𝑗. For the local search part of the algorithm, they employed a 2-exchange 

neighborhood algorithm to improve the already found results. They also employed a 

strategy called tournament in which they gathered half of the final population from 

two different runs, merged into a single population and re-run the algorithm. They 

tested their algorithm on 132 instances from QAPLIB including Burkard, Elshafei, 
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Christofides and Eschermann and determined their algorithm was able to find 103 of 

the 132 best known solutions and for the remaining, it was able to approach 1% to the 

best-known solution (Ahuja, Orlin, & Tiwari, 2000). 

In 2001, Talbi, Roux, Fonlupt, Robillard proposed an ant colony solution which is 

strengthened by Tabu search algorithm. In their system, each ant iteratively creates 

permutations of QAP, better the solution finds, more pheromone trail it produces. 

Solutions produced by ants are then used in a Tabu search algorithm to improve global 

solution quality. They compared their algorithm with another ant colony 

implementation from previous years, HAS-QAP created by Gambardella et al. in 1997  

(Gambardella, Taillard, & Dorigo, 1999) using Nugent, Skorin-Kapov and Taillard 

instances. Their algorithm named as, ANTabu outperformed HAS-QAP on all test 

cases (Talbi, Roux, Fonlupt, & D.Robillard, 2001). 

In 2003, Misevicius (A.Misevicius, 2003) proposed a simulated annealing algorithm 

which he hybridized with Tabu Search algorithm to improve the results. He started 

with random permutations, for the neighbourhood discovery scheme, he applied a 2-

way perturbation which swaps two elements until all possible swaps are applied. 

Neighbours are searched based on a fixed order. In total, 𝑛 (𝑛 −  1)/2 trials are done 

to search all the neighbourhoods. When a better solution is found, his algorithm 

replaced it with the current solution and implemented the same procedure again. 

Before starting the annealing procedure, his algorithm considers a few random moves 

and gets the average difference, relying on the idea that the average fitness value 

directly affects initial and final temperatures. Another improvement he made is 

applying an adaptive, dynamical cooling schedule to his algorithm. After each 

annealing step, his algorithm improves best found result using CRAFT algorithm 

(Armour & Buffa, 1963). After certain number of iterations, his algorithm terminates. 

He then utilized Tabu search on the best result. His implementation is based on 

Taillard’s work in 1991 (Taillard, 1991). He compared his algorithm with previous 

simulated annealing implementations in the literature: Connolly’s algorithm (C-SA-

QAP) (Connolly, 1990) and Bölte and Thonemann’s algorithm (TB2) (Bölte & 

Thonemann, 1996). He started all algorithms with the same set of parameters and the 

same initial permutations to measure his algorithm. He concluded that his algorithm 

surpassed both Connelly’s algorithm and Thonemann’s algorithm based on the 

QAPLIB instances: Krarup, Nugent, Skorin-Kapov, Steinberg, Taillard, Thonemann 
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and Wilhelm. He also pointed out that, his algorithm improved the best-known solution 

for Thonemann 150 instance. 

In 2004, Misevicius suggested another algorithm, this time hybridization of Genetic 

algorithm and Tabu search  (A.Misevicius, 2004). He used Tabu search as a mutation 

operator to improve solutions. He also adapted a mechanism to detect premature 

convergence at the end of each generation. For the parent selection, he used rank 

selection methodology. For the cross-over operator, he used an improved version of 

uniform like crossover (ULX). Idea is that, identical genes on both parents are first 

copied into child and remaining genes are replaced from both parents’ uniformly and 

randomly. His improvement creates more than one child and selects the best among 

them. He tested his algorithm on QAPLIB instances; Taillard, Eschermann, Krarup 

and Steinberg. He compared his algorithm with Taillard’s Tabu search in 1991 (Taillard, 

1991). He reported that, his algorithm obtained best-known results except for Taillard 

60, 80 and 100 instances. 

In 2005, Misevicius proposed yet another algorithm, this time an implementation of 

Tabu search. He pointed out in his paper, like many other metaheuristics, Tabu search 

also suffers from a condition known as stagnation in which algorithms starts 

uncovering very large domain in solution space and converging from a local area very 

fast and then as the search progress, it takes extremely long time to improve due to 

lack of diversification. He proposes using Tabu search as a tool for intensification and 

another mutation strategy to diversify the solutions obtained. He used Taillard’s Tabu 

algorithm (Taillard, 1991) and modified it to encompass an additional mutation 

procedure. Author found out this version of Tabu search yields slightly better results 

than the original version. He tried four different versions of mutation. The first was 

swap mutation in which two genes of genome (permutation) are randomly swapped. 

In the second model, entire genome is divided into two equal sized parts from middle 

point and random swaps are made between two random genes from both sides. In the 

third model, shift mutation, where all elements are shifted by a given number. In the 

fourth model, two randomly selected neighbours are interchanged. He performed 

experiments solely on Taillard data set, both with symmetric ‘a’ instances and 

asymmetric ‘b’ instances. He found out that, for smaller instances like tai20a, tai25a 

and tai30a, shift mutation performed better, while for larger instances like tai50a, 
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tai60a and tai80a, neighbour exchange method performed better, while all of the results 

were competitive (A.Misevicius, 2005). 

In 2006, Tseng and Liang proposed a hybrid metaheuristic which combines genetic 

algorithms and ant colony optimization in an algorithm named ANGEL. Their 

algorithm consists of two stages. In the first stage, ant colony algorithm runs and 

creates an initial population for genetic algorithm. In the next stage, genetic algorithm 

kicks in and improves the sub-optimal solution pool. They used a variant of List Order 

Crossover and added a secondary crossover applied to best known solution with others 

in population named as eugenic crossover.  In addition to genetic algorithm, in final 

step, a two-opt local search procedure is used. After genetic algorithm terminates, ant 

colony algorithm once again starts and tries to diversify population again for next stage 

of genetic algorithm. This cycle continues until best-known solutions are obtained. 

Authors reported that they tested their algorithm on 100 QAPLIB instances and they 

were able to find optimum or best-known solutions for 90% of the instances (Tseng & 

Liang, 2006). 

In same year, Demirel and Toksari proposed another hybrid algorithm which combines 

ant colony algorithm with simulated annealing as a local search procedure, which they 

named as AntSimulated  (Demirel & Toksari, 2006). Their algorithm starts as a normal 

ant colony procedure, a number of solutions are generated by each of the ants and all 

pheromone trails are set to same value. Then, each of these solutions are improved in 

two stages: pheromone trail based modification and a local search based on simulated 

annealing. In the first step, a number of swaps based on pairwise exchange inside 

permutation is applied to each of the solutions based on the pheromone traits. In the 

latter stage, three best found solutions are transferred to secondary simulated annealing 

procedure and algorithm runs for 200 iterations with an initial temperature of 100 and 

final temperature of 10. Neighbourhood is defined with either swap mechanism or 

objective swap mechanism which considers all possible swaps for elements inside 

permutation and selects the best. In the next stage, improved solutions are returned to 

the ant colony algorithm, evaporation and update of pheromone trails are done after 

that algorithm checks whether stopping criterion is satisfied. If the criterion is not 

satisfied, ant colony algorithm continues on next iteration. In the end, they compared 

their algorithm with Gambardella et al.’s HAS-QAP algorithm (Gambardella, Taillard, 
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& Dorigo, 1999) on QAPLIB instances and reported AntSimulated performs better on 

most instances. 

In 2006, Stützle proposed yet another Iterated local search (ILS) algorithm for QAP. 

He pointed out that in order to apply ILS to QAP, one must consider four fundamental 

functions: 

• GenerateSolution: Creates a random solution 

• Perturbation Function: Applied to a solution to create another solution to 

discover other parts of search space by randomly exchanging parts of 

permutation 

• A Local Search Function: to improve existing solutions. Two opt search is widely 

used. 

• AcceptanceCriterion: Whether to accept current result or not. 

 Although simple, Stützle points out that ILS is an effective metaheuristic in TSP-like 

problems. He run several experiments to determine its effectiveness for QAP. He found 

out that ILS algorithm was prone to stuck in a small area of search space and cannot 

explore different regions despite high perturbation rate. He proposed two types of 

solutions. One of them includes a soft restart procedure in which, whenever algorithm 

decides a stagnation happened, model restarts itself from another point in search space. 

Another solution he proposed was to make ILS population based instead of single 

solution based, which might increase diversity and improve algorithm. Author 

compared his algorithm with previous ILS based implementations, like Taillard’s 

Robust Tabu search (Taillard, 1991). He reported that, current ILS with soft-restart 

performs better in all instances. He also reported that, population based ILS algorithm 

performs better (Stützle, 2006). 

In 2009, James et al. suggested a parallelized Tabu Search algorithm to solve QAP. 

The cooperative parallel tabu search algorithm (CPTS) as the authors name it, is 

implemented with the idea of running multiple TS algorithms on different processors, 

while communication among different algorithm instances share a global long-term 

memory in which they store their solutions. Half of the solutions are the best-found 

ones so far in any stage of the algorithm. This guarantees the half of the TS algorithms 

start with copy of the best-found solutions, therefore it drives the common search 
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process to the more quality areas of the search space. Each of the algorithms are 

assigned with different parameters to ensure diversification to some degree. There are 

references sets in memory associated with each of the TS processes. In the start of the 

algorithm, a single instance of TS runs on all processors to update reference sets 

associated with them. This provides seeding the start of algorithm with relatively good 

solutions and some diversification. In the next step, each processor runs its own TS 

algorithm based on the results from their reference sets. When each of the algorithm 

terminates, a global algorithm updates the entry in reference set and checks whether 

the solution updated is the best-known solution. If it is, this solution is distributed to 

the other algorithms in other processors via shared reference set. To maintain diversity, 

the global algorithm also checks if the solution obtained is changed each time. If it did 

not, the algorithm starts main diversity operator to reseed the local algorithm on that 

processor. The termination of the global algorithm is determined by number of 

iterations. Authors tested this algorithm with Taillard and Skorin-Kapov instances 

from QAPLIB. Also, they compared their algorithm with 10 other implementations 

from literature including Tseng and Liang’s GA +AC hybrid from 2006 (Tseng & 

Liang, 2006) and Misevicius’ tabu search algorithm from 2005 (A.Misevicius, 2005) 

and Misevicius’ genetic algorithm - tabu search hybrid from 2004 (A.Misevicius, 

2004). Authors indicated that, each of the algorithm performances varies depending on 

the data set used. If an algorithm runs well on Taillard’s set, it does not guarantee to 

run well on Skorin-Kapov instances. However, they pointed out that, their algorithm 

matches or outperforms other algorithms in terms of solution quality, except in some 

special cases. For instance, Misevicius’ tabu algorithm performed slightly better on 

tai100b instance (James, Rego, & Glover, 2009). 

In 2013, Benlic and Hao proposed a breakout local search (BLS) algorithm to solve 

QAP  (Benlic & Hao, 2013). Their algorithm works similarly to an Iterated local search 

algorithm. Algorithm starts with an initial solution and iterates between two phases; 

local search and perturbation. In local search phase, algorithm performs a steepest 

descent local search algorithm on solution at hand and obtains an improved solution. 

If the algorithm cannot improve the solution, it assumes it is a local optimum and 

proceeds with perturbation process to explore a different region in search space. If 

exploration of search space is weak, algorithm might be stuck on a stagnation point 

where it ends up cycling between couples of local optimum points and cannot improve. 
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But, if the diversification procedure is strong, algorithm might get a random restart 

and waste considerable amount of time. Authors found solution to this problem by 

introducing an adaptive perturbation technique. Idea with adaptive perturbation is that, 

algorithm performs a small change on permutation and tests whether it is strong 

enough to jump to another local optimum area. If the jump is not sufficient, amount of 

change to the original permutation is increased. They pointed out adaptive perturbation 

scheme is the most important factor which gives BLS advantage over ILS algorithm. 

BLS also borrows tabu list notion from tabu search to avoid circling between the same 

points, although BLS does not consider exploration in intensification phase, while SA 

and Tabu search does. Authors also experimented on different QAPLIB instances to 

see its effectiveness. They compared their algorithm to CPTS by James et al. (James, 

Rego, & Glover, 2009), Misevicius’ tabu search algorithm (A.Misevicius, 2005), and 

Misevicius’ genetic algorithm hybrid from 2004 (A.Misevicius, 2004) and a few others. 

BLS was able to solve every real-life like instance from QAPLIB except Taillard150b 

to their best-known values. For unstructured instances, it was able to find 7 of 9 best-

known solutions and it is comparable to those given algorithms in terms of solution 

quality. 

In 2013, Tosun, Dokeroglu and Cosar proposed an Island Model genetic algorithm for 

solving QAP  (Tosun, Dokeroglu, & Cosar, 2013). To best of my knowledge, this is 

the only example in literature directly related to this thesis topic. QAP-IPGA algorithm, 

as they name it, uses different subpopulations exploring different regions in search 

space, thus dramatically increases the speed algorithm converges to a solution. Island 

model also facilitates a migration model between subpopulations to maintain diversity. 

In this algorithm, every subpopulation is assigned a slave processor which does the 

genetic operations as well as assigned with the task of introducing newly created 

individuals to the population. Since they do not replace any individual solution within 

population, this process is causing an increase within global population. However, 

authors limited this increase by a ratio to original population, once that amount is 

reached, slave processor stops generating. Algorithm terminates when a certain 

number of generations is reached. They tested this algorithm with 3 different crossover 

operators and 3 different selection methodologies. They used Order Crossover, 

Partially Mapped Crossover and Cycle Crossover, as well as, Truncation Selection, 

Tournament Selection and Roulette Wheel Selection as selection strategies. Out of 9 
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different configurations, they found out Tournament Selection as the best selection 

strategy and Partially Mapped Crossover (PMX) as the best crossover methodology. 

This is the same configuration which is used in this thesis. They also implemented a 

parallel exhaustive search algorithm which is able to solve instances optimally upto 

size of 16 for comparison purposes. They tested their algorithm on QAPLIB instances 

using a computer cluster with 46 nodes with a global population count up to 30,000 

individuals. They found out, there is a sharp increase in solution quality up until 8 

islands. This is also consistent with my experiments. They reported QAP-IPGA was 

able to solve instances up to 30 to the best-known results and for instance sizes between 

30 and 150 their algorithm was able to produce results with an average 1% gap. They 

concluded that while parallelization has a significant effect on solution quality for a 

genetic algorithm, they cannot increase the size of optimally solvable instances in QAP 

since this problem is exponential. 

In 2015, Benlic and Hao proposed yet another genetic algorithm using breakout local 

search as a tool for local search operation  (Benlic & Hao, 2015). Their algorithm starts 

with randomly generating an initial population and improving upon that population 

using breakout local search. After this step, genetic algorithm starts working on 

provided local optimum solutions. They utilized tournament selection as parent 

selection strategy, for the crossover operator, they preferred Uniform Crossover (UX) 

and used breakout local search algorithm as a way to optimize cross over operation’s 

output. This algorithm is the one they developed for their article back in 2013. They 

also developed a replacement strategy to replace existing parents with newly created 

children. Replacement strategy decides based on the test whether there is an identical 

solution to the newly created children and whether there is an individual with worse 

fitness value than newly created children within population. If those two conditions 

hold, replacement with worst-fitness individual happens. Though they acknowledged 

this greedy strategy may lead to premature convergence. To solve this problem, at least 

in theory, they developed an adaptive mutation operator which tests for how many 

iterations the best-found solution did not change. If a stagnation is detected, mutation 

operator increases the amount of mutation from the minimum value to higher values 

until there is a change in the best-known solution. Once the change is achieved, 

mutation amount returns the initial minimum. They set the termination criteria to two 

hours of execution time and tested their work on QAPLIB instances. They compared 
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their algorithm to their previous BLS algorithm implementation in 2013, as well as, 

Misevicius’ genetic algorithm implementation in 2004 (A.Misevicius, 2004) and 

parallel tabu search algorithm of James et al. in 2009 (James, Rego, & Glover, 2009). 

They evaluated the proposed algorithm on the set of 135 instances from the QAPLIB. 

They reported that proposed algorithm outperforms its local search component (BLS) 

and other compared algorithms and was able to obtain best known results for 133 

instances. 

In 2015, Tosun introduced a parallel island model genetic algorithm - tabu search 

hybrid  (U.Tosun, 2015), in which an island GA algorithm is run to find a nearly 

optimal set of results, in order to create a seed population. In the next step, a 

diversification operator is applied to vary seed solutions. He reported that final seed 

solutions are often very close to the best-known solutions. In final step, results are 

enhanced by using a parallel tabu search algorithm. Introduced parallel GA is the same 

one he and his colleagues proposed back in 2013 (Tosun, Dokeroglu, & Cosar, 2013). 

It is an island parallel model using ring exchange with PMX crossover inside 

subpopulations, and using tournament selection. Diversification operator used in 

second step is an enhanced version of the same operator proposed by James et al. 

(James, Rego, & Glover, 2009). In the final step, robust tabu search algorithm is 

applied which is the most famous metaheuristic for QAP proposed by Taillard in 1991 

(Taillard, 1991). He tested this hybrid algorithm on QAPLIB instances. He compared 

newly obtained results with his previous work, as well as Benlic and Hao’s BLS 

algorithm (Benlic & Hao, 2013), Ant colony - GA hybrid of Tseng and Liang (Tseng 

& Liang, 2006), Tabu search of Misevicius (A.Misevicius, 2005) and GA -TS hybrid 

of Misevicius (A.Misevicius, 2004) on Skorin - Kapov and Taillard instances. He 

concluded that, newly created algorithm surpasses its competitors in terms of time and 

solution quality, while BLS of Benlic and Hao performs better in terms of time in 

Taillard instances. 

In 2016, Hafiz and Abdennour proposed 5 different particle swarm optimization (PSO) 

variants for QAP  (Hafiza & Abdennourb, 2016). Authors also pointed out PSO in its 

natural form is not suitable for combinatorial optimization problems like QAP. They 

made it clear that, in its natural form, PSO is continuous and depends on Euclidian 

distance between particles, therefore when applying the algorithm, one must make it 

discrete, change distance measure to make it applicable for QAP. Authors also point 
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out that PSO is applied for TSP which is a more specific form of QAP, where weight 

matrix does not exist. In the proposed algorithm, they used permutations to represent 

assignment of facilities to locations, where a full permutation is considered as a particle. 

In this approach, probability of facility selected for a particular location is represented 

by velocity elements. After each iteration, velocity is updated based on permutations 

quality. In this way, more promising placement probabilities are increased as the 

algorithm works through iterations. Like its other counterparts, PSO is also prone to 

premature convergence due to lack of diversity which might take place in latter stages 

of search. To solve this problem, authors considered restarting idea first proposed by 

James et al. in 2009 (James, Rego, & Glover, 2009). In the context of PSO, restart can 

be thought as reinitialization of particles’ velocities. This allows to retain algorithm’s 

experience and thus personal and global best-known solutions. 

They proposed 5 different variants of the PSO algorithm. In first approach called Local 

best PSO (LPSO), sharing of information is limited to the immediate neighborhoods 

which allows particles to explore more within search space. The best knowns are 

obtained through neighbors and not globally. In the second approach, called Dynamic 

multi swarm PSO, swarm is divided into sub-swarms and information is only shared 

within subswarms for a certain number of iterations. After that, the swarms are 

regrouped and redistributed randomly. This mechanism allows sharing information 

globally, while allowing certain level of diversity. For other 3 approaches, a learning 

strategy is varied. In the original algorithm, swarm’s best position and particle’s own 

best position is used. Third approach, Unified Particle Swarm Optimization (UPSO), 

combines particle’s own knowledge and swarm’s collective knowledge over a 

unification factor. In the fourth approach, Comprehensive Learning PSO (CLPSO), 

each particle only learns from another single particle, if solution of particle does not 

improve, it automatically makes another random selection. In the fifth strategy, Fully 

Informed Particle Swarm (FIPS), a particle learns from its entire neighborhood instead 

of a single other particle. They tested their algorithm and its variants on QAPLIB 

instances. Their tests have shown that UPSO method achieves the best results on 35 

different instances. They also compared their algorithm with other techniques 

including Taillard’s Robust tabu search (Taillard, 1991) and Maniezzo and Colorni’s 

ant colony algorithm (Maniezzo & Colorni, 1994). They concluded that, although their 

algorithm performed well, in terms of solution quality against others, Taillard’s 
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algorithm was simply better. Their interpretation was solution modification techniques 

are more powerful than techniques based on solution construction in QAP. 

In 2017, Sagban et al. proposed yet another ant colony – local search hybrid algorithm 

implementation for QAP and TSP  (R.Sagban, Ku-Mahamud, & Abu Bakar, 2017). 

Their algorithm was based on Stützle and Hoos’ ACO variant (MMAS) proposed for 

TSP and QAP (Stützle & Hoos, 2000). According to the authors, their enhancements 

to MMAS was based on utilizing two types of memory: a component based and a 

population based memory. Component based memory stores significant components 

found. Significance is tested with an algorithm according to a threshold by a heuristic 

function. This process is highly dependent on evaporation of pheromone trails. This 

component will later be used to guide the ant in their probabilistic construction. On the 

other hand, population based memory is related to entire population rather than 

fragments of the solution. This structure keeps a sample of population that consists of 

the improved solutions. This structure is updated after each local search iteration, if 

the solutions found are better than those already known. They used 3-opt local search 

with first improvement strategy for QAP variant of the algorithm. They compared their 

algorithm with other ant colony implementations in the literature. Their algorithm was 

able to solve 22 of the 40 instances from QAPLIB (Burkard, Christofides, Elshafei, 

Krarup, Taillard) to best known solutions, while outperforming MMAS algorithm and 

other variants they used. 

In 2017, Aksan et al. proposed a parallelized break out search algorithm which utilizes 

Levenshtein Distance metric to check similarity between already discovered points 

and new starting locations. This process enhances exploration procedure by saving 

algorithm from re-searching already discovered areas and enables other areas to be 

explored. They also implemented parallel, independent runs of same algorithm and 

implemented a master - slave model using OpenMP library. Levenshtein Distance 

similarity metric is a measure that determines how close two strings are. Authors 

pointed out that it already has promising applications in spell correction, speech 

recognition, computational biology, DNA analysis, machine translation, information 

extraction and plagiarism detection. Therefore, they decided to use this measure to find 

a similarity ratio between two permutations. Their algorithm starts with a number of 

randomly generated permutations, with the restriction of being at least 30% different 

from each other. This similarity checking mechanism enables different runs of the 
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algorithm to start searching in different parts of search space. After algorithm starts, 

each thread starts searching the neighborhood of initially created solution using 

steepest descent algorithm. To minimize the cost, each portion of permutation is 

inverted until the best solution in the neighborhood is obtained. After that, it continues 

from this location to search new solution's neighborhood and if a stagnation is detected, 

algorithm makes a jump from this local optimum using perturbation phase which 

utilizes tabu search. The fitness calculations are utilized in each of slave threads, using 

master - slave model. Authors reported that, their algorithm was able to achieve almost 

linear speedup. They tested their algorithm on 59 QAPLIB instances. Their previous 

tests with similarity ratio value shown that 30% to be the most effective for 

Levenshtein Distance. They compared their algorithm with other state of the art 

algorithms from literature including Tabu Search by James et al. (James, Rego, & 

Glover, 2009), Ant colony - GA hybrid of Tseng and Liang (Tseng & Liang, 2006), 

Parallel hybrid algorithm of Tosun (U.Tosun, 2015), Memetic search algorithm of 

Benlic and Hao (Benlic & Hao, 2015). Authors reported that their algorithm was able 

to be one of the three best performing results according to their experiments with 

Taillard, Skorin - Kapov, Krarup, Steinberg and Eschermann instances (Aksan, 

Dokeroglu, & Cosar, 2017). 

3.1.3. Current Situation in QAP 

According to QAPLIB website, (Burkard, Karisch, & Rendl, 1997) which was updated 

in 2011 for the last time, 11 types of instances are solved to optimality out of 15 types 

of published there, so far. There are still Skorin - Kapov, Taillard, Thonemann and 

Wilhelm instances whose optimal solutions are unknown. All of the instances are 

bigger than or equal to size of 30.  

Table 3.2 shows the instances solved to the best - known value using one of the    

metaheuristics techniques, as well as, how close solution is to the calculated lower 

bound. 
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Table 3.5. QAPLIB Instances with optimum values unknown & Best-known 

metaheuristics. (Burkard, Karisch, & Rendl, 1997) 

Instance Name Solution Method Gap from lower 

bound (%) 

Taillard – 30a Robust – Tabu Search 6.12 % 

Taillard – 35a Robust – Tabu Search 8,48 % 

Taillard – 35b Robust – Tabu Search 14.52 % 

Taillard – 40a Robust – Tabu Search 9.43 % 

Taillard – 40b Robust – Tabu Search 11.43 % 

Taillard – 50a Iterated Tabu Search 11.09 %     

Taillard – 50b Robust – Tabu Search 13.79 % 

Taillard – 60a Tabu Search 22.59 % 

Taillard – 60b Robust – Tabu Search 10.82 % 

Taillard – 80a Iterated Tabu Search 22.20 % 

Taillard – 80b Robust – Tabu Search 12.28 % 

Taillard – 100a Iterated Tabu Search 24.86 % 

Taillard – 100b Robust – Tabu Search 10.78 % 

Taillard – 150b Genetic Algorithm 10.78 % 

Taillard – 256c Ant Colony Algorithm 2.03 % 

Skorin – Kapov –  42 Robust – Tabu Search 5.56 % 

Skorin – Kapov –  49 Robust – Tabu Search 5.91 % 

Skorin – Kapov –  56 Robust – Tabu Search 5.37 % 
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Skorin – Kapov –  64 Robust – Tabu Search 5.70 % 

Skorin – Kapov –  72 Robust – Tabu Search 5.38 % 

Skorin – Kapov –  81 Genetic Algorithm 5.41 % 

Skorin – Kapov – 90 Robust – Tabu Search 5.63 % 

Skorin –Kapov –  100a Genetic Algorithm 5.37 % 

Skorin –Kapov –  100b Genetic Algorithm 5.44 % 

Skorin –Kapov –  100c Genetic Algorithm 5.54 % 

Skorin –Kapov –  100d Genetic Algorithm 5.54 % 

Skorin –Kapov –  100e Genetic Algorithm 5.54 % 

Skorin –Kapov –  100f Genetic Algorithm 5.60 % 

Thonemann –  40 Simulated Annealing 6.69 % 

Thonemann –  150 Simulated Annealing 6.30 % 

Wilhelm –  50 Simulated Annealing 3.52 % 

Wilhelm –  100 Genetic Algorithm 3.15 % 

 

3.2. Literature Review on Parallelization of GA 

An early attempt for parallelizing genetic algorithm dates back to 1976 work of Bethke 

(Bethke, 1976). In his work, he used master – slave model to parallelize some portions 

of two kinds of genetic algorithm. One of them is a simple generational GA and other 

one is a steady state GA. After that, he measured performances of the algorithms. His 

conclusion was, generational GA was well suited to this model, while steady-state 

model made less efficient use of parallel processors but was still reasonably efficient 

in terms of multiprocessing. 
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In 1981, Grefenstette published a technical report on applying parallelization on 

genetic algorithms (Grefenstette, 1981). According to Cantu-Paz, (Cantú-Paz, 1995) 

he proposed four different types of parallelization models. Among those four models, 

three of them were master-slave architecture based, while the last model was multi- 

population based. First model included a sequential generation GA where fitness 

calculations were done in slave processors in each iteration. Second model was also a 

sequential GA, but there was no synchronization between slave processors; they 

received fitness calculations whenever they finished previous one. In third model, 

population was stored in a shared memory structure, where every slave processor takes 

one individual whenever it is idle and calculates fitness value for that individual 

independently from other processors. In fourth model, he proposed a multi population 

schema, where best individuals are shared among processors at the end of every 

iteration. 

In 1985, Grosso proposed a multi – population model in his dissertation (Grosso, 1985). 

According to Cantu-Paz (Cantú-Paz, 1998) his objective was to simulate diploid 

individuals and a global population which consisted of five separate demes that 

exchange a fixed number of solutions. Rate of the migration was changed in different 

experiments to see the effect of migration rate.  He discovered that, the rate of 

improvement in his five-deme model were faster than a single combined population. 

In 1987, Tanese proposed a parallel genetic algorithm which utilizes hypercube 

topology as a migration topology for the first time (Tanese, 1987). According to Cantu-

Paz (Cantú-Paz, 1998), she defined a neighborhood structure between demes as being 

in the same dimension with each other. Immigrants of the demes were selected from 

the best solutions and replaced the worst solutions of other demes. Migrations 

happened in fixed time intervals. According to Cantu-Paz (Cantú-Paz, 1995), she 

reported that parallel GA’s results were comparable to serial version with the 

advantage of near-linear speedup. 

In 1989, Tanese published another paper as a continuation for her work in 1987 (Tanese, 

1989).  According to Cantu-Paz (Cantú-Paz, 1998), she compared performances of a 

serial GA, a multipopulational parallel GA using a hypercube topology and 

multipopulational GA with no communication. All algorithms are run for 500 

iterations. She concluded that, multipopulational parallel GA was able to find same 

solutions as the sequential version. However, final solution quality was worse. 
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Solution quality surpassed the sequential version with introduction of migration 

schema. 

In 1990, Whitely and Starkweather created a parallelized version of their previously 

implemented GENITOR algorithm by using smaller distributed populations and a 

migration schema. Their implementation of the migration schema transfers the best 

individuals in each of the subpopulations to their immediate neighbors and replaces 

worst individuals in that population using a ring migration topology.  They called this 

new algorithm GENITOR II and tested it on several problems, like optimizing a 

feedforward neural network and traveling salesman problem. They used three versions 

of the algorithm in comparisons to sequential version of the algorithm GENITOR, 

distributed version of the algorithm GENITOR II and another distributed version 

without a migration schema. They reported that, distributed algorithm is more robust 

and they were able to optimize larger size problems and they acknowledged distributed 

algorithm to be superior to the serial version in terms of solution quality (Whitely & 

Starkweather, 1990). 

In 1991, Mühlenbein et al. applied a distributed genetic algorithm named as PGA to 

optimization of continuous functions. To avoid premature convergence and stagnation, 

they also implemented a hill – climbing algorithm for each subpopulation. For this 

application, they used a ring-like migration topology, which they call ladder topology. 

Each of the subpopulations evolve for a fixed period of time, utilizing a steady-state 

GA. Migration takes place after certain time intervals, and best individuals are 

migrated to the immediate neighbors of the subpopulations. The algorithm terminates 

after the algorithm reaches a certain fitness value. They benchmarked their algorithm 

on several different problems and measured a superlinear speedup in some cases. They 

also reported better solution quality and even found a global minimum point which 

was previously unknown for one of the functions (Mühlenbein, Schomisch, & Born, 

1991). 

 In 1993, Whitely and Gordon compared 9 different parallel GA algorithms for 

continuous function optimization that were previously introduced in the literature. 

Among those algorithms, two of them were using master – slave model, four of them 

were coarse-grained and two of them were fine-grained algorithms. Other algorithms 

were two different implementations of Goldberg’s famous Simple Genetic Algorithm 

(Goldberg, 1988). This is the earliest work referencing coarse-grained algorithms as 
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an island model. They normalized the algorithms to use same number of fitness 

evaluations as a base for comparison. They used De Jong functions, Rastigin, Schwefel, 

Griewangk, Ugly 3, 4-bit deceptive functions and zero-one knapsack problem for 

benchmarking the algorithms. All the algorithms were started with a population size 

of 400. According to their test results, Simple GA derivatives got the worst results in 

terms of solution quality, while parallel implementations performed better. Most 

notably, Whitely and Starkweather’s GENITOR II algorithm (Whitely & Starkweather, 

1990) got the best results. They also noted that, elitist versions of the algorithms were 

better than non-elitist versions (Gordon & Whitely, 1993). 

In 1994, Levine used an island model GA to solve Set Partitioning Problem in his 

dissertation. Set partitioning problem is a type of combinatorial optimization problem 

used by many airline companies for flight crew scheduling. He created a steady-state 

sequential GA and distributed it among N-Processors of an IBM SP-1 computer. He 

measured his results in terms of solution quality. He fixed the number of migration 

intervals to 1000 generations on each of the tests, while utilizing ring migration in 

which, a single best solution from each population replaced its immediate neighbor’s 

worst solution. He used 1, 2, 4, 8, 16, 32, 64 and 128 islands on his experiments. He 

concluded in his experiments that; migration was preferable to no migration in island 

model. However, he was unable to find a significant difference among different 

migration intervals. He also concluded that, incrementing number of islands has 

contributed to solution quality for set partitioning problem (Levine, 1994). 

In 1998, Ochi et al. applied an island model GA to vehicle routing problem. Vehicle 

routing problem consists of a number of vehicles with a fixed capacity that are to 

deliver items of different quantities to different customers. Knowing the distances 

between customers, objective of problem is to find total minimum distance traveled by 

the vehicles, given that only a single truck handles deliveries for a given customer and 

total quantity that must be carried by truck cannot exceed maximum capacity allowed. 

Their approach was combining a parallel island model genetic algorithm with scatter 

search. Their migration policy is unusual: when one of the islands starts to lose 

diversity, it issues a broadcast requesting best known solutions from all other islands. 

This allowed creation of somewhat different population and broadens the exploration 

of search space. They compared their results to Taillard’s sequential algorithm and 
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they found out some improvements in terms speedup and solution quality. Their 

reported speedup gain was almost linear (Ochi, Vianna, Drummond, & Victor, 1998). 

 In 2002, Fan et al. applied an island model genetic algorithm to segment lateral 

ventricles from magnetic resonance brain images. By applying active model-based 

segmentation technique, researchers were able to convert the process into an 

optimization process. Then, an island model GA is run to solve the problem. In initial 

phase, rough descriptions of object surfaces are inputted as initial population to the 

genetic algorithm and algorithm is utilized to refine those images using an energy 

minimization procedure. Their algorithm included a somewhat unorthodox migration 

methodology, in which how many subpopulations will migrate solutions is determined 

by the algorithm randomly, while best known solutions of the islands are migrated. 

They noted that parallel genetic algorithm did a very good job as the results of 

experiments indicated that their approach surpassed existing sequential GA solutions 

with more effective discovery of search space and increased convergence speed gained 

by the parallel island model GA (Fan, Jiang, & Evans, 2002). 

In 2003, Pereira and Lapa applied an island model GA to nuclear reactor core design 

optimization problem. This optimization targeted minimizing the average-peak factor 

in a 3-enrichment-zone reactor by adjusting several reactor cell parameters, such as 

dimensions, enrichment and materials. They used a fixed size 50 intra-island 

populations and utilized ring migration strategy where best – individuals are migrated 

at every 10 generations. They compared single island, 2 island, 4 island and 8 island 

configurations. Their experiments have shown that, island model surpassed sequential 

GA, both in terms of solution quality and completion time. Authors interpreted this as, 

vast differences are due to preservation of the diversity with the island model (Perreira 

& Lapa, 2003). 

In 2004, Tang et al. studied the effects of migration topology in island model parallel 

GA, using quadratic assignment problem. They considered two migration models, 

unidirectional ring migration and a randomized stepping stone model, where recipient 

islands and receiving individuals are chosen at random. To ensure a fair comparison, 

they fixed all other parameters as, population size being 240, crossover probability is 

set to 0.8, mutation probability to 0.05, migration interval is set to every 10 generations, 

and migration policy is set to best individual replaces worst of the recipient population. 

They run their algorithms with 3, 4, 6, 8, 10 islands on Skorin-Kapov 100b and Taillard 
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100b instances. They found out that, unidirectional ring migration schema performed 

better than the randomized-stepping stone model in general (Tang, Lim, Ong, & Er, 

2004)ç 

In 2010, Ruciñski et al. studied the effects of migration topology on an island model 

differential evolution algorithm using several continuous functions like Rastrigin, 

Schwefel and Lennard-Jones. They considered 128, 256, 512 and 1024 islands in their 

experiments. Their experiments were rather extensive; they tested 14 different 

topologies including various derivatives of unidirectional ring topology, torus, 

cartwheel and lattice topology, hypercube, broadcast and fully connected. Migration 

interval is fixed in all tests to 100 generations. They used best individuals replace worst 

in the receiver island as the migration policy. They report that, the impact of the island 

size varies with topologies, so it is not a primary factor to consider when deciding on 

a topology. However, when the number of islands is increased, the topology becomes 

more important in order to utilize additional islands. They concluded that, ring 

migration variants perform better than other kind of topologies, because spread of 

information is faster (Rucinski, Izzo, & Biscani, 2010). 

In 2015, Liu and Wang applied island model parallel GA to generalized assignment 

problem. In this problem, there are N bins with capacity C and M items. The task is to 

find an assignment of items into bins in such a way that, no bins exceed their capacity 

and total cost of assignment is minimized. Authors decided to implement an 

asynchronous migration methodology in order to reduce communication delay. In their 

algorithm, each island starts with a randomized population, and islands are connected 

with 2D toroidal grid topology. In this topology, each island has 4 neighbors. The 

number of islands are decided in runtime depending on the number of available 

processors. Each island holds an import FIFO queue.  This queue considers two criteria: 

more elite and more diverse solutions have higher chances of being selected. Rate of 

immigration and immigration interval are constant and parameterized. The authors 

considered two types of processor scalabilities when benchmarking the algorithm. 

Strong scaling tests included more CPU cores and are designed to test the speedup, 

while weak scaling is used to measure solution quality. Authors executed the tests on 

supercomputers. Strong scaling results showed that, super-linear speedups are 

attainable, even with synchronous version. Weak scaling experiments have shown that, 

number of islands utilized is directly related to solution quality, while they have also 
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shown that, asynchronous version of algorithm performed better than synchronous 

version (Liu & Wang, 2015). 

  In 2016, Kurdi applied an island model GA to job shop scheduling problem. In this 

problem, there are 𝑛 machines and 𝑚 jobs. Goal is to find a schedule to assign all the 

tasks to the machines in such a way that each machine can process only one job at a 

time and each job should be processed on each machine. The author employed 

different mutation models on each of the islands to provide better diversification and 

provide better exploration. The author employed a derivation of 2D unidirectional ring 

migration. Migration only happens when algorithm cannot find an improvement in all 

islands for 10 generations. For the migration policy, the author selected migrate worst 

solution policy. Author also benchmarked his algorithm against different migration 

policies, one being replace best and other replace random. He concluded that his 

algorithm compared better against both of them (Kurdi, 2016). 

Other than coarse-grained island model and parallelization of time consuming tasks, 

called master slave model, there is also a third type of parallelization proposed in 

literature: fine-grained parallel GAs.  

Perhaps, the earliest example in literature is Robertson’s work from 1987. According 

to Cantu – Paz (Cantú-Paz, 1998), his algorithm parallelized selection of parents, 

mating and crossover sections using a massively parallel computer CM-1 which 

as16,000 processors (Robertson, 1987). 

In 1989, Gorgos – Schleuter (Gorges - Schleuter, 1989) and her college Mühlenbein 

(Mühlbein, 1989) developed a massively parallel fine-grain model called 

ASPARAGOS which works on massively parallel computers and utilizes an individual 

based multipopulational structure what is known as cellular model nowadays. In both 

articles, it is called as the neighborhood model. In their model, neighborhood is defined 

on a ladder-like two-dimensional grid where each individual occupied a grid point. 

Mating and selection was done asynchronously between immediate neighbors. They 

also implemented a hill climbing local search strategy to prevent population from 

falling into premature convergence. Mühlenbein applied ASPARAGOS to quadratic 

assignment and traveling salesman problems, and successfully obtained optimum 

results for Nugent30 and Steinberg36 QAP instances, as well as 40 city TSP and 50 

city TSP instances (Mühlbein, 1989). Gorgos-Schleueter applied it to TSP and tested 
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problem parameters. She concluded both mutation and migration create diversity 

within population. However, migration is better at creating variance, because these 

variations are useful compared to random variations achieved with mutation. She 

found out that, the most important parameters were selection strategy and population 

sizes. She also found out ASPARAGOS found better solution than simulated annealing 

and was faster than k-opt local search strategy (Gorges - Schleuter, 1989). 

In 1994, Shapiro and Navetta applied massively parallel neighborhood model 

algorithm to predict RNA secondary structure. They run their algorithm on MP2 

supercomputer with 16,384 processors. They utilized a grid based topology where 

every cell is appointed to a single processor. Their algorithm was able to find solutions 

up to 5% of optimal solution (Shapiro & Navetta, 1994). 

In 1998, Folino et al. solved k-satisfiability problem using a cellular genetic algorithm. 

They utilized a 2-dimensional toroidal grid to define the neighborhood between cells. 

They tested their algorithm on a Meiko CS-2 SIMD computer. They compared their 

algorithm with a sequential algorithm proposed in the literature on 3-SAT problems 

with 64 to 512 variables. They showed that, their algorithm converged significantly 

faster than its sequential version, allowing it to solve larger problems in the same 

amount of time (Folino, Pizzuti, & Spezzano, 1998). 

In 2008, Steiner et al. applied cellular model for development of lightweight and stable 

materials (Steiner, Jin, & Sendhoff, 2008). In the same year, Alba and Dorronsoro 

applied a Cellular GA to solve vehicle routing problem. (Alba & Dorronsoro, 2008) 

In 2009, Luque et al. applied a cellular genetic algorithm to various combinatorial 

optimization problems like MAX-SAT, massively multimodal deceptive problem and 

p-median problem. They used a cluster of computers for their experiment. They found 

out that cellular GA outperformed island model in these experiments (Luque, Alba, & 

Dorronsoro, 2009). 
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CHAPTER 4 

AN ISLAND MODEL PARALLEL GA FOR QAP 

4.1. Formulation and Solution Representation 

According to the recent survey on QAP  (Loiola, de Abreu, Boaventura-Netto, Hahn, 

& Querido, 2007), there are 5 different formulations proposed in the literature: integer 

linear programming formulations, Mixed Integer Linear Programming (MILP) 

formulations, permutation based formulations, trace formulation and graph 

formulation, while, the most popular formulation in literature is permutation based. 

This is due to the simplicity of showing a solution in terms of a permutation and for a 

genetic algorithm such solutions are easy to manipulate and use existing and proven 

to be effective genetic operators like Partially Mapped Crossover (PMX) and List 

Order Mutation. In this kind of formulation, locations are defined with the order in the 

permutation, while facilities are shown with unique numbers between 1 and 𝑛. Each 

facility’s position within the permutation defines its location. For instance, if size of 

the problem is 5, the permutation 53412 defines a solution in which facility 5 is 

assigned to location 0, facility 3 is assigned to location 1, facility 4 is assigned to 

location 2, facility 1 is assigned to location 3 and facility 2 is assigned to location 2. 

The optimization objective is minimizing total sum of flow between 𝑛 facilities and 

the same number of locations, therefore, a fitness formulation can be defined as 

follows: 

min 𝑝 ∈  𝑆𝑛 ∑ ∑ 𝐴𝑖𝑗  ×  𝐵𝑝𝑖𝑝𝑗

𝑛

𝑗=1

𝑛

𝑖=1
 

where 𝑆𝑛 is all possible permutations with size 𝑛, 𝐴𝑖𝑗 is the distance between locations 

𝑖  and 𝑗 , 𝐵𝑝𝑖𝑝𝑗  is the flow of demand between facilities 𝑝𝑖  and 𝑝𝑗 . In this 

implementation, A and B matrices can be symmetrical or asymmetrical depending on 

the problem instance, algorithm will work in either cases. 

4.2. Implementation of The Algorithm 

The primary aim of this thesis is measuring the effects of parallelization of a serial 

genetic algorithm designed for solving QAP. The secondary objective is finding the 
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optimum algorithm configuration when parallelizing the GA. This study aims to 

answer following questions: 

1.  How many islands (processors/threads) gives better performance? How many 

islands are ideal? 

2.  Will there ever be a situation where increasing number of islands (threads) 

actually start decreasing solution quality? (Is there a critical-mass situation?) 

3. Does period of migration (an epoch) will affect the outcome of algorithm? If so, 

what is the ideal setting for period migration? 

4. How does number of solutions to be exchanged influence solution quality? What 

is the ideal setting for the number of solutions to be exchanged? 

5. Which immigration topology is more suitable? 

6. How does the direction of migration will affect the algorithm’s outcome? Should 

the exchange between islands be unidirectional or bidirectional? 

7.  What should be the ideal setting for the number of elites to be transferred to the 

next generation directly? 

8. How will the parallelization affect time of execution for the algorithm without 

regarding any kind of optimization? 

In order to answer how each parameter affects the solution, first we needed to create 

an ordinary sequential GA without considering any kind of optimization. The model 

consists of a number of islands, each of them running the same sequential algorithm 

for a number of iterations, while in certain time intervals (after a number of iterations), 

randomly selected solutions are exchanged between islands. 

We also implemented a synchronized master-slave model for sequential GA to utilize 

empty processors/threads to gain some wall clock time for the experiments. Fitness 

calculations of each algorithm will be divided between the unused CPU cores and 

when fitness calculations are obtained, algorithm will resume. 

We also added a mechanism which uses two opt local search with best improvement 

pivoting rule, which is only applied to elite solutions, which will improve the best 

possible solution within each of the elite’s neighborhood. We implemented a 

generation based genetic algorithm with elitism. 
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Our sequential algorithm starts with randomly created permutations of size 𝑛, where 

𝑛 is the problem size. In each iteration, algorithm will first calculate fitness value of 

each solution within population, order the solutions within the population based on 

their fitness values, preserve the best 𝑚 solutions as population elites and select of 𝑛 −

𝑚 solutions among the rest using tournament selection methodology. Main reason for 

selecting this methodology is that, it is proven to be the effective in QAP or TSP like 

permutation based problems based on our experiences and other authors in the 

literature such as Tosun et al. pointed out in a similar work (Tosun, Dokeroglu, & Cosar, 

2013).  

After the selection process, we use a Partially Mapped Crossover (PMX) as the 

crossover operator, because it is a reasonably well operator when dealing with 

permutation based problems like TSP and QAP which is also shown by Tosun et al. 

(Tosun, Dokeroglu, & Cosar, 2013). 

After crossover, each child will undergo two kinds of small mutations to preserve 

diversity and avoid premature convergence problem. We implemented swap mutation 

and inversion mutations, while, rest of the population undergoes crossover and 

mutation, elite solutions also undergo a two-opt local search with best improvement to 

find best possible solutions within that portion of search space. At the end of each 

iteration, children and elites are combined and number of individuals within population 

remains constant. 

After a certain number of iterations, algorithm starts a migration process. In this step, 

a group of randomly chosen solutions are migrated according to the utilized migration 

topology. In our implementation, we used ring migration model, because it is the 

easiest schema to implement. 

In the final step, before moving to next iteration, algorithm will check for the 

termination criteria and if the criteria is satisfied, algorithm will terminate and fittest 

solution within the global population will be retuned as a result. Termination criteria 

is described in detail in the next section. 
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Figure 4.1.  Island GA Pseudocode 

A simple experiment has been designed to decide on cross-over and mutation rate 

parameters. 2 different GA configurations are created; one with high crossover and 

mutation rates and the other with low crossover and mutation rates. The experiment 

has been repeated 10 times for both configurations and minimum, maximum, mean 

and trimmed mean values are calculated. The results are shown in Table 4.1. High 

cross-over and mutation rate is more successful, so the next experiments will use these 

rates. 

Table 4.1. Parallel Island GA Parameters Initial Experiment 

Configuration Data Instance  
RPC 

Min 
RPC Mean 

RPC Trimmed 

Mean 

RPC 

Max 

High Cross-

over (100%) 

& Mutation 

Rate (50%) 

tai30a 2.80 3.46 3.41 4.51 

tai40a 3.07 3.73 3.70 4.64 

tai50a 3.00 3.65 3.66 4.28 

tai60a 3.16 3.47 3.46 3.88 

Average 3.01 3.58 3.56 4.32 

Low Cross-

over (60%) & 

tai30a 4.06 5.19 5.16 6.59 

tai40a 4.17 5.32 5.36 6.14 
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Mutation 

Rate (5%) 
tai50a 4.59 5.28 5.26 6.14 

tai60a 3.94 4.71 4.71 5.43 

Average 4.19 5.13 5.12 6.07 

 

After initial experiments, the following parameters and operators shown in Table 4.1 

are selected. Since the focus of this work is examining the effects of hyper parameters 

for island model GA, we did not consider using other operators and optimizing these 

parameters further. Testing sequential algorithm in terms of solution quality and 

experimenting with the parameters and operators is left as a future work. 

Table 4.2. Sequential GA Parameters 

Crossover Operator PMX crossover with Probability of 100% 

Mutation Operator – 1 Swap Mutation with a probability of 50%. 

Mutation Operator – 2 Inversion with Probability of 50% 

Parent selection 

methodology 

Tournament selection with size 2 

and with a probability of 75% for 

selecting the better individual 

4.3. Algorithm Termination 

This work aims to investigate the effect of parallelization of a sequential algorithm, 

primarily in terms of solution quality, as well as measuring the effects of different 

parameters such as number of islands, immigration interval, immigrant count, 

immigration topology, number of elites. To make a fair comparison, we have decided 

to limit the total number of fitness evaluations by a constant value. By trial and error 

methodology, we came up with the formula below: 

𝑇𝑜𝑡𝑎𝑙 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑖𝑧𝑒 ×  𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑠𝑖𝑧𝑒 ×  20,000. 

Each run of the algorithm is allowed to do this many calculation exactly, and after that, 

the algorithm terminates and reports the best found individual long with its fitness 

value, as the final result. 



68 

4.4. Coding and Benchmarking the Algorithm 

We implemented the algorithm using Java programming language on Windows 

platform. While coding our project, we used Daniel Dyer’s Watchmaker Evolutionary 

Computing Framework as basis for our project (Dyer, 2013). 

Since genetic algorithms are stochastic, they heavily rely on randomization, therefore, 

we have chosen Java implementation of Xoroshiro128+ algorithm by Tommy Ettinger  

(Ettinger, 2017) as the random number generator. According to a comparison made by 

Tobias Ibounig on 2894680 samples (Ibounig, 2016), this algorithm performs 58% 

better than Java default random number generator in terms of runtime. 

In order to ensure fairness, we used same seeds on all of our experiments. Each of the 

tests applied for different configurations consists of 10 independent runs, except first 

2 preliminary experiments. All of the ten independents runs are initialized with seeds 

between 100 and 109 for each different parameter combination. 

Like most of the work we come across in literature, we decided to focus on solving 

QAPLIB instances. As we mentioned in Chapter 1, these instances can be categorized 

into four main groups, with uniform - randomly generated instances are being the most 

difficult ones to solve. This group is a good fit to measure our algorithm’s initial 

performance and compare to other state of the art algorithms. Therefore, we decided 

to start with Taillard ‘a’ instances, specifically ‘a’ instances with sizes between 30 and 

80. In addition, none of these instances have been solved to optimality yet, so it can be 

concluded that, they are among the most difficult QAP instances. 

We performed our test on a VMWare virtual machine, running on a server having Xeon 

E5-2660 2.20 Ghz. Processor. Our virtual machine has 4 cores & 8 threads, as well as 

8 GBs of RAM reserved. The virtual machine runs Windows Server 2012 R2 as the 

operating system with JDK 8 64-bit edition installed. 

In order to start our experiments, we decided to run some preliminary tests to 

determine ideal conditions to benchmark our algorithm. We decided to alternate 

different parameter configurations and observe their results. Therefore, we prepared 

an extensive test which includes population size, the number of islands, the number of 

immigrants per island, immigration period and number of elites per island as 

alternating parameters. We also decided to use single-directional ring migration as 
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migration topology, since it is the most commonly preferred and simplest to implement. 

Table 4.2 lists the parameters and their values considered in the experiments. 

Table 4.3. Parallel Island GA Preliminary Test – 1 Parameters 

Parameter Value 

Population sizes 50 – 100 – 150 

Number of Islands 2 – 4 – 8 – 12  

Number of Immigrants 5 – 10  

Migration Period (Iterations) 10 – 20  

Elite Count 1 – 2    

 

We decided to conduct these tests on Taillard 30a data instance. Test included 96 

different configurations and 5 independent runs are made for each configuration using 

seeds 100-104, which makes 480 runs in total. RPC is computed for each configuration 

and 5 RPCs are averaged for each configuration. Most successful 13 configurations of 

the preliminary test is given in Table 4.3. 

Table 4.4. Parallel Island GA Preliminary Test-1, Top 13 Most Successful 

Configurations out of 96, based on average RPC 

Population 

Size 

Number 

of 

Islands 

Number of 

Immigrants 

Immigration 

Period 

Elite 

Count 

Migration 

Topology 

Average 

RPC (%) 

per 5 Run 

50 12 10 20 1 

Unidirectional 

Ring 

Migration 

3.31 

50 8 10 10 1 3.41 

100 8 10 10 2 3.42 

50 8 10 10 2 3.42 
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50 12 10 10 2 3.58 

50 12 10 10 1 3.58 

150 12 10 10 2 3.59 

100 12 10 20 2 3.60 

50 12 5 20 1 3.64 

50 8 5 20 1 3.66 

50 8 10 20 2 3.67 

100 8 5 10 2 3.68 

50 8 5 20 2 3.68 

 

Results of the first preliminary experiment has shown that Population size and Number 

of islands are the most critical factors in algorithm’s success. It seems using lower 

island population and higher number of islands is more reasonable approach. This 

experiment has also shown that, immigration period might be yet another parameter 

worth considering. Effects of number of immigrants and elites cannot be determined 

based on this experiment. 

We decided to run a secondary preliminary experiment based on the obtained results. 

Our purpose was to measure the effect of population size and number of islands 

without regarding other parameters. Since first test has shown smaller island 

populations with larger number of islands are more effective, we decreased population 

sizes and increased number of islands. Table 4.4 shows the second preliminary test 

parameters. 
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Table 4.5. Parallel Island GA Preliminary Test -2 Parameters 

Parameter Value 

Population sizes 40 – 50 – 60  

Number of Islands 10 – 12 – 14    

Number of Immigrants 10  

Migration Period (Iterations) 10  

Elite Count 2    

Second preliminary experiment also confirmed our initial assumption. For Taillard 30a 

instance and presumably also for the other Taillard ‘a’ instances, low island population 

and high number of islands yields the better performance. The results of this 

experiment sorted on decreasing average RPCs is given in Table 4.5. 

Table 4.6 Parallel Island GA Preliminary Test -2 Results  

Population 

Size 

Number of 

Islands 

Average RPC (%) 

per 5 Run 

Minimum RPC (%) 

Per 5 Run 

40 14 2.997 2.720 

40 12 3.292 2.732 

40 10 3.508 2.872 

50 14 3.531 2.893 

50 12 3.575 2.858 

50 10 3.684 3.035 

60 12 3.687 2.594 

60 14 3.691 2.922 

60 10 3.769 3.034 

 

In the next experiments, we use a static global population size and vary the number of 

groups they are divided (Islands / Threads). We decided to use a global population of 

600 solutions to measure direct effect of number of islands / threads on solution quality. 

We prepared yet another experiment with different number of islands, varying between 

1 and 75, with 1 being the original sequential algorithm with all of 600 individuals on 

a single island. In following test, each island will contain (600 / Number of Islands) 

solutions. Since the population sizes on each island changes along with the number of 
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islands, we decided to use ratios instead of fixed values for parameters. Table 4.6 

shows the parameter values used in this experiment. 

Table 4.7 Parallel Island GA Optimizing Number of Islands 

Parameter Value 

Number of Immigrants 10 % of Population size per island 

Migration Period (Iterations) 5 x Number of Islands 

Elite Count 1 % of Population size per island or 1 

 

In the next experiment, we have considered out of total 30x30x20,000 = 18,000,000 

fitness evaluations as the termination limit for tai30a instance. The results are given in 

Table 4.7 

Table 4.8 Number of Islands Experiment Results with Tai30a data set 

Population 

Size 

Number 

of 

Islands 

Minimum 

RPC Per 

10 run 

Mean RPC 

per 10 Run 

Trimmed 

Mean RPC 

Per 10 Run 

Maximum 

RPC for 10 

runs 

600 1 11.47 12.64 12.70 13.32 

300 2 3.65 4.34 4.28 5.47 

150 4 3.37 4.10 4.13 4.56 

75 8 3.24 4.11 4.11 4.98 

60 10 2.89 4.09 4.07 5.38 

50 12 3.28 4.07 4.01 5.34 

40 15 2.18 3.57 3.67 4.18 

30 20 2.21 3.57 3.61 4.60 

20 30 3.31 4.08 4.07 4.91 

15 40 2.47 4.03 4.05 5.39 

12 50 2.39 3.75 3.79 4.78 

10 60 3.99 4.46 4.44 5.14 

8 75 4.06 5.08 4.98 6.94 

Mean RPC values versus number of islands plot is shown in Figure 4.1. We can see a 

sharp increase in solution quality when 2 islands are used, due to the benefit gained 

from two diverse populations rather than a single one. Solution quality of 2 islands and 

others are almost 3 times better than sequential algorithm counterpart. This evidently 
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shows the power of island model GA compared to classical GA. For other results, 

while 15 - 20 island (Threads/Processors) yields the best results in terms of solution 

quality, we can see a gradual decrease until 40 - 50 Islands. After that point, algorithm 

performance starts to drop, presumably because subpopulation amount is not enough 

to create a diverse range population, thus hindering evolution process. We call this 

point as “Critical Mass”, where any further parallelization will make solution quality 

worse. 

  

Figure 4.2.  Number of islands versus mean RPC graph for Tai30a instance 

For tai40a instance, we have considered out of 40 x 40 x 20,000 = 32,000,000 fitness 

calculations for each run. Detailed results are given in Table 4.8 

 

Table 4.9 Number of Islands Experiment Results with Tai40a data set 

Population 

Size 

Number 

of 

Islands 

Minimum 

RPC Per 

10 run 

Mean RPC 

per 10 Run 

Trimmed 

Mean RPC 

Per 10 Run 

Maximum 

RPC for 10 

runs 

600 1 13.63 13.97 13.98 14.23 

300 2 2.03 4.30 4.45 5.34 

150 4 2.03 4.64 4.77 6.23 

75 8 2.03 4.50 4.63 5.89 

60 10 2.03 4.43 4.55 5.84 
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50 12 2.03 3.81 3.91 4.78 

40 15 3.44 4.25 4.21 5.29 

30 20 2.99 4.15 4.18 5.06 

20 30 3.82 4.51 4.50 5.33 

15 40 2.86 4.37 4.34 6.14 

12 50 3.11 3.91 3.90 4.77 

10 60 2.82 4.82 4.93 5.93 

8 75 4.20 5.16 5.17 6.08 

Just as in tai30a instance set, solution quality of island model GA is almost 3 times 

better with minimum number of islands (2). It also shows us, while 12 islands 

performed best, it may be coincidental because solution quality decreases gradually up 

to 30 islands and after that point, results start to get better and better until 50 islands, 

which is the second-best point after 12 islands. After 50 islands, solution quality starts 

to drop slowly again. Therefore, we concluded that 50 islands is the also the critical 

mass point for tai40 instance as well. Mean RPC values versus number of islands plot 

is shown in Figure 4.2. 

 

Figure 4.3. Number of islands versus mean RPC graph for Tai40a instance 
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For tai50a instance, we have considered 50 x 50 x 20,000 = 50,000,000 fitness 

calculations. Table 4.9 shows the detailed results. Just as previous test instances, 20 

islands seem to produce best average results, however, solution quality starts to drop 

after 20 islands, and stands low until 50 islands, which is also the second-best point in 

terms of average solution quality. After 50 islands, we see same solution quality drop 

presumably due to insufficient island population hindering evolution. Figure 4.3 shows 

the plot of number of islands versus mean RPC graph for Tai40a instance. 

 

Table 4.10 Number of Islands Experiment Results with Tai50a data set 

 

Population 

Size 

Number 

of 

Islands 

Minimum 

RPC Per 

10 runs 

Mean RPC 

per 10 runs 

Trimmed 

Mean RPC 

Per 10 runs 

Maximum 

RPC for 10 

runs 

600 1 13.57 14.08 14.11 14.33 

300 2 3.91 4.63 4.65 5.12 

150 4 3.91 4.43 4.43 4.99 

75 8 3.25 4.32 4.33 5.23 

60 10 3.56 4.30 4.33 4.83 

50 12 3.11 4.28 4.32 5.12 

40 15 3.60 4.32 4.28 5.39 

30 20 3.14 3.95 3.98 4.54 

20 30 3.90 4.44 4.41 5.20 

15 40 3.93 4.53 4.50 5.41 

12 50 3.46 4.22 4.22 4.91 

10 60 3.53 4.54 4.58 5.25 

8 75 4.24 5.01 5.00 5.84 
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Figure 4.4. Number of islands versus mean RPC graph for Tai50a instance 

For tai60a problem instance, we have considered 60 x 60 x 20,000 = 72,000,000 fitness 

calculations. We can see the same almost 3 times increase in terms of solution quality 

between sequential and island model GAs. In terms of average solution quality, 50 

islands seem to produce best average solution quality out of 10 runs. After 50 islands, 

solution quality starts to drop. Table 4.10 gives the detailed RPC values and Figure 4.4 

shows the number of islands versus mean RPC plot. 

Table 4.11 Number of Islands Experiment Results with Tai60a data set 

Population 

Size 

Number 

of 

Islands 

Minimum 

RPC Per 10 

Runs 

Mean RPC 

per 10 Runs 

Trimmed 

Mean RPC 

Per 10 Runs 

Maximum 

RPC for 10 

Runs 

600 1 13.13 13.72 13.76 13.92 

300 2 3.34 4.32 4.36 4.99 

150 4 3.34 4.34 4.37 5.04 

75 8 3.34 4.14 4.06 5.57 

60 10 3.62 4.14 4.10 4.95 

50 12 2.76 4.26 4.28 5.56 

40 15 3.76 4.11 4.05 4.94 

30 20 3.28 3.96 4.00 4.38 

20 30 3.26 4.03 3.99 5.06 

15 40 3.56 3.97 3.93 4.72 

12 50 3.18 3.85 3.89 4.19 

10 60 2.55 4.02 4.12 4.71 

8 75 3.29 4.25 4.26 5.14 
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Figure 4.5. Number of islands versus mean RPC graph for Tai60a instance 

For tai80a instance, we have considered 80 x 80 x 20,000 = 128,000,000 fitness 

calculations. As with all the previous cases, island model is 3 times more effective than 

its sequential counterpart in term of solution quality. In terms of average solution 

quality, 20 islands configuration has a slight edge over 50 islands, but they are close. 

After 50 islands, same scenario happens and solution quality starts dropping. Table 

4.11 gives the detailed RPC values and Figure 4.5 shows the number of islands versus 

mean RPC plot. 

Table 4.12 Number of Islands Experiment Results with Tai80a data set 

Population 

Size 

Number 

of 

Islands 

Minimum 

RPC Per 

10 Runs 

Mean RPC 

per 10 Runs 

Trimmed 

Mean RPC 

Per 10 Runs 

Maximum 

RPC for 10 

Runs 

600 1 12.16 12.47 12.47 12.71 

300 2 3.04 3.70 3.71 4.32 

150 4 3.15 3.82 3.74 5.15 

75 8 3.18 3.77 3.78 4.32 

60 10 3.15 3.65 3.65 4.21 

50 12 3.27 3.67 3.65 4.21 

40 15 2.93 3.53 3.55 3.97 

30 20 2.78 3.56 3.58 4.24 

20 30 3.42 3.94 3.93 4.52 

15 40 3.24 3.67 3.64 4.34 
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12 50 2.95 3.66 3.67 4.30 

10 60 3.13 3.87 3.86 4.72 

8 75 3.82 4.31 4.25 5.29 

 

Figure 4.6. Number of islands versus mean RPC graph for Tai80a instance 

Third experiment showed us that island model is able to produce 3 times better results 

than its sequential counterpart. If we consider the ideal number of islands, while 20 

islands can be considered as a good choice for Taillard ‘a’ data set, there are 

improvements until 50 islands and 50 islands can be considered as critical mass point 

for this data set using 600 global population. 

We have also examined 1 - 75 island configurations in terms of speedup over their 

sequential counterpart. Table 4.12 shows the parallelization efficiencies for different 

numbers of islands, as well as single island & master-slave model (1-island). Each of 

the configurations shown in the table utilizes all the processing units within the 

computer (4 cores and 8 threads). When implementing the algorithm, we have not 

considered optimizing completion time, since our main focus was the improvement in 

terms of solution quality. Despite this, we can see super-linear speedups both in 1 

island master - slave model and in our island & master - slave hybrid algorithm. We 

can see that although the parallelization efficiency is still super-linear, it is a little low 

for 2 - islands configuration, compared to other cases. After 4 islands, rate of 
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improvement starts to increase until 50 islands, peaking at 40-islands configuration 

with an average value of 1.36. After 50 islands, number of threads utilized by the 

algorithm is considerably over the limits of physical hardware causing bottlenecks, 

and rate of improvement starts to decrease again. Note that, in our algorithm, migration 

model is synchronous which means there may be idle times when some processing 

units wait for the others while the algorithm runs. Converting algorithm to 

asynchronous might also improve run time. Figure 4.6 also shows the parallelization 

efficiency graphically. 

Table 4.13 Parallelization Efficiency (%) on Taillard samples. 

Parallelization Efficiency in Taillard Samples compared to Seq. Alg. 

# of Islands 

1 

(Master 

Slave) 

2 4 8 10 12 15 20 30 40 50 60 75 

Taillard30a 1.19 1.11 1.24 1.27 1.35 1.37 1.33 1.44 1.48 1.48 1.25 1.16 1.14 

Taillard40a 1.25 1.04 1.21 1.25 1.30 1.26 1.31 1.31 1.22 1.32 1.10 1.01 0.99 

Taillard50a 1.27 0.98 1.17 1.27 1.29 1.28 1.27 1.29 1.23 1.31 1.08 0.99 0.95 

Taillard60a 1.32 0.96 1.13 1.30 1.30 1.27 1.28 1.29 1.27 1.33 1.08 1.00 0.97 

Average 1.26 1.02 1.19 1.27 1.31 1.29 1.30 1.33 1.30 1.36 1.12 1.04 1.01 
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Figure 4.7. Parallelization efficiency of Island Model over sequential Algorithm 

After the third experiment, we decided that best configuration we can use on Taillard 

problem instances are 50 islands and 12 individuals for each island, since, it would 

guarantee to give nearly best results for each instance and still has a fairly good 

speedup. So far in all tests, we tested using unidirectional ring migration model. We 

also wanted to see if changing migration topology might make things different. 

Therefore, we utilized a secondary model that uses a bidirectional ring model and 

compared it with unidirectional counterparts for 30, 40 and 50 island configurations. 

In classical ring migration model, every island sends 𝑚 randomly chosen solutions to 

the next island, starting from the first island. Island at the end sends to the first island, 

thus, forming a ring. In bidirectional model, starting from first island, every island 

sends 𝑚/2 randomly chosen solutions to the next island, while other 𝑚/2 solutions 

are send to the previous island. If 𝑚 is odd, (𝑚 + 1)/2 solutions are sent to the next 

island, while, 𝑚 − ((𝑚 + 1)/2) solutions are sent to the previous island. First island’s 

previous island is considered to be last island and last island’s next is considered as 

first island, therefore forming a ring. 

The results for unidirectional and bidirectional ring migration topologies for different 

Taillard instances are shown in Table 4.13 to Table 4.17. In the fourth experiment, we 

observed that, the results do not show significant differences, so we cannot conclude 
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which topology is better. Their performances are very close for 30a, 40a and 50a 

instances. For Taillard60a instance, unidirectional migration performs better and if we 

look at Taillard80a data set, bidirectional migration seems better. However, given that, 

we have not done a statistical analysis on results, we cannot conclude that one is better 

than the other for Taillard – a instances. We think these inconclusive results may be 

caused by random-migration policy. In order to confirm this theory, additional 

experiments need to be conducted by utilizing other fitness-based migration policies. 

For the sake of simplicity, we continued with unidirectional ring migration model. 

Table 4.14 Unidirectional – Bidirectional Ring Migration Comparison on Tai30a 

 

 

Table 4.15 Unidirectional – Bidirectional Ring Migration Comparison on Tai40a 

Taillard 40a 

Population Size 
Number of 

Islands 

Migration 

Topology 

Mean RPC per 

10 Run 

30 20 Single Direction 4.15 

30 20 Bidirectional 4.26 

 

20 30 Bidirectional 4.30 

20 30 Single Direction 4.51 

 

15 40 Bidirectional 4.12 

15 40 Single Direction 4.37 

 

Taillard 30a 

Population 

Size 

Number of 

Islands 
Migration Topology 

Mean RPC per 10 

Run 

30 20 Single Direction 3.57 

30 20 Bidirectional 3.70 

 

20 30 Bidirectional 3.88 

20 30 Single Direction 4.08 

 

15 40 Bidirectional 3.84 

15 40 Single Direction 4.03 
 

12 50 Single Direction 3.75 

12 50 Bidirectional 3.81 
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12 50 Single Direction 3.91 

12 50 Bidirectional 3.79 

 

Table 4.16 Unidirectional – Bidirectional Ring Migration Comparison on Tai50a 

 

Taillard 50a 

Population Size 
Number of 

Islands 

Migration 

Topology 

Mean RPC per 10 

Run 

30 20 Single Direction 3.95 

30 20 Bidirectional 4.00 
 

20 30 Bidirectional 4.25 

20 30 Single Direction 4.44 
 

15 40 Bidirectional 4.45 

15 40 Single Direction 4.53 
 

12 50 Single Direction 4.22 

12 50 Bidirectional 4.29 

 

Table 4.17 Unidirectional – Bidirectional Ring Migration Comparison on Tai60a 

Taillard 60a 

Population Size 
Number of 

Islands 

Migration 

Topology 

Mean RPC per 10 

Run 

30 20 Single Direction 3.96 

30 20 Bidirectional 4.02 
 

20 30 Bidirectional 4.00 

20 30 Single Direction 4.03 
    

15 40 Single Direction 3.97 

15 40 Bidirectional 4.06 
 

12 50 Single Direction 3.85 

12 50 Bidirectional 3.94 

 

Table 4.18 Unidirectional – Bidirectional Ring Migration Comparison on Tai80a 

Taillard 80a 

Population Size 
Number of 

Islands 

Migration 

Topology 

Mean RPC per 10 

Run 

30 20 Bidirectional 3.50 

30 20 Single Direction 3.56 
 

20 30 Bidirectional 3.89 
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20 30 Single Direction 3.94 
    

15 40 Single Direction 3.67 

15 40 Bidirectional 3.69 
 

12 50 Bidirectional 3.57 

12 50 Single Direction 3.66 

After having decided number of islands and migration type, we tried to optimize other 

parameters. For the experiment 3, we made educated guesses for number of 

immigrants, migration period (iterations) and elite count parameters. Therefore, in the 

fifth experiment we tried to optimize these parameters on Taillard 30-60a instances 

using 40 and 50 island configurations and unidirectional ring migration model. We 

altered only one parameter at a time to get their best scores. Considered parameters 

and their values are shown in Table 4.18. In the table, TBT is short for to be tested, 

while Original is the value used from experiment 3. 

 

Table 4.19 : Optimizing Other Parameters on Taillard a Instances – Possible 

Configurations 

Parameter Value 

Number of Immigrants 

10 % of Population size per island (Original) 

20 % of Population size per island (TBT) 

5% of Population size per island (TBT) 

Migration Period (Iterations) 

3 x Number of Islands (TBT) 

4 x Number of Islands (TBT) 

5 x Number of Islands (Original) 

6 x Number of Islands (TBT) 

7 x Number of Islands (TBT) 

Elite Count 

1 – Elite per island (Original) 

2 –  Elites per island (TBT) 
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We first started with optimizing number of immigrants parameter. Originally, it was 

set to 10% which is 2 in an all cases. We tried swapping 4 individuals as well as 1 

individual on each of the data sets. The results are shown in Table 4.19. Results clearly 

indicate swapping 4 elements instead of 2 creates better results, while swapping a 

single element always led to worse solutions. We did not try increasing this any further, 

because it may destabilize evolution process within the islands. 

Table 4.20 Taillard a Samples Optimizing Number of Immigrants 

Data 

Set 

Population 

Size 

Number 

of Islands 
Param. Status 

Number of 

Immigrants 

Mean RPC per 

10 Run 
 40 Islands 

Tai30a 

15 40 20% 4 3.52 

15 40 Original (10%) 2 4.03 

15 40 5% 1 4.06 
 50 Islands 

Tai30a 

12 50 20% 4 3.48 

12 50 Original (10%) 2 3.75 

12 50 5% 1 4.10 
 40 Islands 

Tai40a 

15 40 20% 4 3.86 

15 40 Original (10%) 2 4.37 

15 40 5% 1 4.50 
 50 Islands 

Tai40a 

12 50 20% 4 3.75 

12 50 Original (10%) 2 3.91 

12 50 5% 1 4.19 
 40 Islands 

Tai50a 

15 40 20% 4 4.12 

15 40 Original (10%) 2 4.53 

15 40 5% 1 5.05 
 50 Islands 

Tai50a 

12 50 20% 4 4.16 

12 50 Original (10%) 2 4.22 

12 50 5% 1 4.44 
 40 Islands 

Tai60a 

15 40 20% 4 3.75 

15 40 Original (10%) 2 3.97 

15 40 5% 1 4.30 
 50 Islands 

Tai60a 
12 50 Original (10%) 2 3.85 

12 50 20% 4 3.88 
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Then, we experimented on immigration period parameters, which was originally set to 

5 X Number of Islands in experiment 3. We tried 3, 4, 6 and 7 times the number of 

islands values for this parameter and compared to the original value. The results are 

shown in Table 4.20. Our experiments show that, 3X seems better, because, it was 

superior to the all others, for except Taillard40a – 40 island configuration. Note that, 

immigration times are given in terms of number of iterations in the table. 

Table 4.21 : Taillard a Samples Optimizing Immigration Time (Number of 

Iterations) 

Data 

Set 

Population 

Size 

Number 

of 

Islands 

Param. Stat. 
Immigration 

Time 

Mean 

RPC 

per 10 

Run 

Tai30a 

40 Islands 

15 40 3X 120 3.83 

15 40 5X (Original) 200 4.03 

15 40 4X 160 4.03 

15 40 7X 280 4.21 

15 40 6X 240 4.38 

50 Islands 

12 50 3X 150 3.51 

12 50 4X 200 3.59 

12 50 5X (Original) 250 3.75 

12 50 6X 300 4.24 

12 50 7X 350 4.32 

Tai40a 

40 Islands 

15 40 3X 120 4.14 

15 40 4X 160 4.17 

15 40 7X 280 4.20 

15 40 6X 240 4.23 

15 40 5X (Original) 200 4.37 

50 Islands 

12 50 5X (Original) 250 3.91 

12 50 3X 150 4.09 

12 50 4X 200 4.17 

12 50 7X 350 4.25 

12 50 6X 300 4.60 

Tai50a 

40 Islands 

15 40 3X 120 3.96 

15 40 6X 240 4.16 

12 50 5% 1 4.28 
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15 40 4X 160 4.19 

15 40 7X 280 4.29 

15 40 5X (Original) 200 4.53 

50 Islands 

12 50 3X 150 4.10 

12 50 5X (Original) 250 4.22 

12 50 4X 200 4.26 

12 50 7X 350 4.28 

12 50 6X 300 4.89 

Tai60a 

40 Islands 

15 40 3X 120 3.79 

15 40 4X 160 3.89 

15 40 5X (Original) 200 3.97 

15 40 6X 240 4.05 

15 40 7X 280 4.12 

50 Islands 

12 50 3X 150 3.85 

12 50 5X (Original) 250 3.85 

12 50 4X 200 3.96 

12 50 7X 350 4.18 

12 50 6X 300 4.49 

Last parameter we experimented on was number of elite solutions per island. We 

experimented with 2% instead of 1%. The results are shown in Table 4.21. Results 

indicate that, in all cases, %1 is better than %2. 

Table 4.22 Taillard a Samples Optimizing Number of Elites per Island 

Data 

Set 

Population 

Size 

Number 

of 

Islands 

Elite Count 
Mean RPC per 

10 Run 

Tai30a 

40 Islands 

15 40 1 (Original) 4.03 

15 40 2 4.35 

50 Islands 

12 50 1 (Original) 3.75 

12 50 2 4.38 

Tai40a 

40 Islands 

15 40 1 (Original) 4.37 

15 40 2 5.00 

50 Islands 

12 50 1 (Original) 3.91 

12 50 2 4.80 

Tai50a 40 Islands 
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15 40 1 (Original) 4.53 

15 40 2 4.96 

50 Islands 

12 50 1 (Original) 4.22 

12 50 2 4.98 

Tai60a 

40 Islands 

15 40 1 (Original) 3.97 

15 40 2 4.91 

50 Islands 

12 50 1 (Original) 3.85 

12 50 2 4.46 

In this thesis, we tried to apply a good parallelization method to a standard sequential 

genetic algorithm. Our results seem promising. Our work on Taillard data set, which 

is one of most difficult data sets on QAPLIB, have revealed a good enough island 

model parallelization method for a standard sequential GA. We are able to obtain 3 

times better results with slightly higher time frame. Although speed up optimization is 

not performed. Our findings indicate that configuration provided in Table 4.22 using 

standard island model is very efficient. 

Table 4.23 : Taillard a Samples Best Parameters found on Taillard a Data Set 

Parameter Value 

Global Population Size 600 

Island Population Size 12 

Number of Islands 50 

Number of Immigrants 4 (20% of Population size per island) 

Migration Period (Iterations) 150 (3 x Number of Islands) 

Elite Count  1 % of Population size per island or 1 

Migration Type Unidirectional Ring Migration 

Migration Policy Immigrants replaced 

Immigrant Selection Randomly from subpopulations. 
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Next, we used the parameter values given in Table 4.22 to test the algorithm on other 

Tai ‘a’ instances. Table 4.23 shows the results. The algorithm is executed 10 times on 

each of the instance using random seeds 100 to 109. We can see that this algorithm is 

able to achieve 2.8% RPC on smallest instance and 3% on average on Taillard - a data 

set. 

Table 4.24 : Taillard a Instances Optimum Configuration Results 

Data 

Instance 
RPC Min RPC Mean RPC Trimmed Mean RPC Max 

tai30a 2.798 3.460 3.412 4.506 

tai40a 3.073 3.732 3.701 4.635 

tai50a 2.995 3.653 3.656 4.283 

tai60a 3.163 3.474 3.462 3.875 

Average 3.010 3.580 3.560 4.320 

 

Since our results with Taillard a instance set were somewhat conclusive in terms of 

solution quality, we also decided to test our algorithm on other data sets. As we 

mentioned before, QAP Instances can be classified roughly in 4 categories. We tested 

with Uniform Randomly Generated Instance Taillard “a” instance set. Therefore, we 

decided to test other 3 categories as well. For real-life instances, we decided to use 

Burkard and Steinberg instance set from QAPLIB. We repeated experiment 3 with 

same parameters we used on Taillard ‘a’ experiment, namely the effect of number of 

islands on solution quality.  

We used Burkard26a, Burkard26b, Burkard26c, Burkard26d, Steinberg36a, 

Steinberg36b and Steinberg36c instances. Experiments are run on same machine as 

before using same seed range. The results are given in Table 4.24. Best configurations 

in terms of solution quality are highlighted with green. 
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Table 4.25 : Burkard Instance Set Optimizing Number of Islands 

 

Burkard 26A Results of 10 Runs for each Configuration 

Number of Islands 
Population per 

Island 

Minimum 

RPC % 

Mean 

RPC % 

Trimmed 

Mean 

RPC % 

Maximum 

RPC % 

Single Population 600 1.69 2.31 2.34 2.68 

2 - Islands 300 0.11 0.27 0.27 0.44 

4 - Islands 150 0.03 0.24 0.22 0.56 

8 - Islands 75 0.00 0.18 0.18 0.36 

10 - Islands 60 0.09 0.21 0.21 0.34 

12 - Islands 50 0.00 0.16 0.15 0.38 

15 - Islands 40 0.10 0.18 0.17 0.32 

20 - Islands 30 0.03 0.19 0.20 0.27 

30 - Islands 20 0.08 0.20 0.19 0.38 

40 - Islands 15 0.02 0.15 0.14 0.38 

50 - Islands 12 0.00 0.18 0.17 0.48 

60 - Islands 10 0.09 0.24 0.23 0.48 

75 - Islands 8 0.10 0.29 0.29 0.48 

Burkard 26B Results of 10 Runs for each Configuration 

Single Population 600 1.63 2.35 2.38 2.81 

2 - Islands 300 0.00 0.22 0.21 0.52 

4 - Islands 150 0.00 0.29 0.30 0.51 

8 - Islands 75 0.18 0.34 0.32 0.73 

10 - Islands 60 0.02 0.23 0.22 0.50 

12 - Islands 50 0.17 0.24 0.24 0.38 

15 - Islands 40 0.17 0.27 0.25 0.50 

20 - Islands 30 0.17 0.26 0.25 0.35 

30 - Islands 20 0.17 0.24 0.23 0.38 

40 - Islands 15 0.17 0.24 0.22 0.42 

50 - Islands 12 0.00 0.24 0.22 0.61 

60 - Islands 10 0.17 0.31 0.29 0.61 

75 - Islands 8 0.18 0.37 0.35 0.72 

Burkard 26C Results of 10 Runs for each Configuration 

Single Population 600 2.04 2.47 2.45 3.09 

2 - Islands 300 0.00 0.09 0.08 0.27 

4 - Islands 150 0.02 0.20 0.16 0.67 

8 - Islands 75 0.00 0.13 0.07 0.77 

10 - Islands 60 0.00 0.27 0.25 0.68 

12 - Islands 50 0.01 0.08 0.06 0.25 

15 - Islands 40 0.03 0.25 0.23 0.66 
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20 - Islands 30 0.01 0.14 0.10 0.58 

30 - Islands 20 0.00 0.11 0.07 0.47 

40 - Islands 15 0.02 0.12 0.10 0.37 

50 - Islands 12 0.00 0.18 0.15 0.59 

60 - Islands 10 0.01 0.29 0.23 0.99 

75 - Islands 8 0.02 0.33 0.27 1.11 

Burkard 26D Results of 10 Runs for each Configuration 

Single Population 600 2.05 2.58 2.58 3.07 

2 - Islands 300 0.01 0.08 0.07 0.31 

4 - Islands 150 0.01 0.29 0.25 0.86 

8 - Islands 75 0.00 0.17 0.10 0.95 

10 - Islands 60 0.00 0.28 0.23 0.95 

12 - Islands 50 0.01 0.13 0.08 0.67 

15 - Islands 40 0.01 0.13 0.11 0.39 

20 - Islands 30 0.00 0.08 0.05 0.37 

30 - Islands 20 0.00 0.04 0.03 0.20 

40 - Islands 15 0.01 0.10 0.07 0.38 

50 - Islands 12 0.00 0.06 0.04 0.23 

60 - Islands 10 0.01 0.24 0.16 1.08 

75 - Islands 8 0.01 0.36 0.30 1.22 

  

In general, results improve when more islands are used up to 50 islands configuration. 

Only exception was C instance, in which improvement continued up to 40 islands. 

Therefore, in general we can conclude that, 50 islands is the critical mass point for the 

Burkard data set also. After this point, there is a drop in solution quality due to 

insufficient intra island population size. 

Results for Steinberg instances using the same parameter configuration are given in 

Table 4.25. Again, best configurations for each instance are highlighted as gray. 

Table 4.26 : Steinberg Instance Set Optimizing Number of Islands 

 

Steinberg36a Results of 10 Runs for each Configuration 

Number of Islands 
Population 

per Island 

Minimum 

RPC % 

Mean 

RPC % 

Trimmed 

Mean 

RPC % 

Maximum 

RPC % 

Single Population 600 61.08 65.10 65.06 69.41 

2 - Islands 300 4.20 7.87 7.85 11.72 

4 - Islands 150 5.56 10.39 10.41 15.08 

8 - Islands 75 4.89 7.26 7.20 10.08 

10 - Islands 60 4.70 8.37 8.15 13.79 
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12 - Islands 50 4.98 7.52 7.16 12.98 

15 - Islands 40 3.91 7.52 7.02 15.16 

20 - Islands 30 4.54 7.89 7.66 13.10 

30 - Islands 20 5.10 7.69 7.34 13.10 

40 - Islands 15 5.50 8.31 7.86 14.68 

50 - Islands 12 4.30 7.60 6.92 16.31 

60 - Islands 10 3.84 8.09 7.90 13.88 

75 - Islands 8 5.29 9.02 8.70 15.24 

Steinberg36b Results of 10 Runs for each Configuration 

Number of Islands 
Population 

per Island 

Minimum 

RPC % 

Mean 

RPC % 

Trimmed 

Mean 

RPC % 

Maximum 

RPC % 

Single Population 600 156.62 170.34 170.45 183.20 

2 - Islands 300 4.19 14.87 14.79 26.22 

4 - Islands 150 7.77 14.05 13.23 26.87 

8 - Islands 75 5.01 14.79 14.65 25.69 

10 - Islands 60 3.96 14.58 14.80 23.42 

12 - Islands 50 2.76 11.51 11.64 19.20 

15 - Islands 40 5.64 15.93 15.85 26.87 

20 - Islands 30 3.90 10.74 10.86 16.59 

30 - Islands 20 6.79 14.52 13.91 27.21 

40 - Islands 15 8.37 12.91 13.16 15.51 

50 - Islands 12 5.79 10.73 10.40 18.33 

60 - Islands 10 11.31 15.77 15.77 20.28 

75 - Islands 8 8.16 20.55 18.54 49.00 

Steinberg36c Results of 10 Runs for each Configuration 

Number of Islands 
Population 

per Island 

Minimum 

RPC % 

Mean 

RPC % 

Trimmed 

Mean 

RPC % 

Maximum 

RPC % 

Single Population 600 54.16 57.40 57.32 61.28 

2 - Islands 300 3.25 5.09 5.02 7.51 

4 - Islands 150 4.38 8.67 8.47 14.60 

8 - Islands 75 3.01 7.28 7.09 13.09 

10 - Islands 60 2.70 6.45 6.22 12.06 

12 - Islands 50 2.70 6.88 6.84 11.38 

15 - Islands 40 3.86 8.63 8.40 15.23 

20 - Islands 30 2.94 6.37 6.16 11.56 

30 - Islands 20 2.12 5.20 5.28 7.67 

40 - Islands 15 4.42 7.14 6.66 13.72 

50 - Islands 12 2.76 6.11 6.00 10.39 

60 - Islands 10 2.82 8.30 8.20 14.60 

75 - Islands 8 4.34 8.50 8.26 14.60 
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Just like the previous data sets, we can clearly see that 50 islands configuration is one 

of three best found configurations in each test. Therefore, we may say that 50 islands 

is also best selection for the Steinberg instances in general. Also, we notice that, 

parallelization also works like a charm here, creating 12 to 15 times better results even 

in 2 island configurations. 

After discovering this encouraging result, we decided to test our algorithm on third 

category namely, random flows on grid. We decided to test our algorithm on Nugent 

Instance set with sizes 15, 20, 25 and 30. Results of the experiment can be found on 

Table 4.26. 

Table 4.27 : Nugent Instance Set Optimizing Number of Islands 

 

Nugent15 Results of 10 Runs for each Configuration 

Number of Islands 
Population 

per Island 

Minimum 

RPC % 

Mean 

RPC 

% 

Trimmed 

Mean RPC 

% 

Maximum 

RPC % 

Single Population 600 8.35 10.59 10.65 12.35 

2 - Islands 300 0.17 1.98 2.00 3.65 

4 - Islands 150 1.57 2.61 2.52 4.35 

8 - Islands 75 0.00 1.44 1.46 2.78 

10 - Islands 60 0.00 1.29 1.26 2.78 

12 - Islands 50 0.17 1.62 1.65 2.78 

15 - Islands 40 0.00 1.46 1.48 2.78 

20 - Islands 30 0.52 1.57 1.54 2.78 

30 - Islands 20 0.17 1.58 1.57 3.13 

40 - Islands 15 0.00 1.46 1.30 4.17 

50 - Islands 12 0.00 1.74 1.65 4.17 

60 - Islands 10 0.17 1.67 1.67 3.13 

75 - Islands 8 0.87 1.88 1.85 3.13 

Nugent20 Results of 10 Runs for each Configuration 

Single Population 600 11.67 13.50 13.55 14.94 

2 - Islands 300 1.17 2.48 2.48 3.81 

4 - Islands 150 1.17 2.56 2.50 4.44 

8 - Islands 75 1.17 2.41 2.37 3.89 

10 - Islands 60 1.17 2.96 3.05 4.05 

12 - Islands 50 1.17 2.61 2.59 4.20 

15 - Islands 40 1.17 3.00 3.00 4.83 

20 - Islands 30 0.70 2.12 2.06 4.05 



93 

30 - Islands 20 1.09 2.40 2.35 4.05 

40 - Islands 15 1.71 2.72 2.65 4.28 

50 - Islands 12 1.32 2.49 2.48 3.74 

60 - Islands 10 1.63 2.93 2.79 5.37 

75 - Islands 8 0.39 3.10 3.19 5.06 

Nugent25 Results of 10 Runs for each Configuration 

Single Population 600 15.28 16.43 16.39 17.90 

2 - Islands 300 0.27 2.35 2.26 5.18 

4 - Islands 150 0.27 2.44 2.45 4.49 

8 - Islands 75 0.48 2.39 2.40 4.22 

10 - Islands 60 0.16 2.31 2.23 5.08 

12 - Islands 50 0.69 2.38 2.38 4.06 

15 - Islands 40 0.32 2.25 1.98 6.36 

20 - Islands 30 0.91 1.99 1.94 3.47 

30 - Islands 20 0.80 2.57 2.62 3.95 

40 - Islands 15 0.59 2.32 2.40 3.47 

50 - Islands 12 0.37 2.28 2.28 4.22 

60 - Islands 10 0.86 3.30 3.43 4.75 

75 - Islands 8 2.14 3.57 3.45 5.98 

Nugent30 Results of 10 Runs for each Configuration 

Single Population 600 15.87 17.90 18.03 18.88 

2 - Islands 300 1.31 2.81 2.81 4.25 

4 - Islands 150 1.73 3.20 3.16 4.96 

8 - Islands 75 1.70 2.81 2.66 5.13 

10 - Islands 60 1.83 3.12 3.10 4.57 

12 - Islands 50 0.46 2.56 2.57 4.61 

15 - Islands 40 1.63 3.08 3.09 4.44 

20 - Islands 30 1.73 2.95 2.87 4.83 

30 - Islands 20 1.11 2.40 2.34 4.21 

40 - Islands 15 1.70 3.12 3.07 4.93 

50 - Islands 12 0.98 2.57 2.45 5.10 

60 - Islands 10 0.98 3.21 3.23 5.29 

75 - Islands 8 0.98 3.56 3.57 6.07 

 

We came across somewhat different results compared to previous experiments, 

possibly due to relatively smaller sizes of Nugent instances. While 50 island 

configuration still performs fairly, we cannot conclude on a common best 

configuration for all instances. Most crude inference we can make is any number of 

islands between 30 and 50 seems reasonable for this problem set. However, we notice 
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that even 2 Island configuration can find very good results compared to sequential 

version being at least 8, up to 15 times better. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

Quadratic Assignment Problem is one of the most studied and one of most difficult 

combinatorial optimization problems in the literature. Algorithms proposed for it 

ranges from branch and bound exact algorithm to metaheuristics like ant colony, 

simulated annealing, tabu search, genetic algorithms, break-out local search 

techniques. Metaheuristic methodologies are open to development and will continue 

to contribute to the literature, while a good metaheuristic balances out exploration of 

search space and exploitation of optimum points. 

Parallelism plays an important role to achieve these goals in genetic algorithms, as 

well as other types of metaheuristics. A good parallelism, with communication 

between different runs of algorithm, creates a diversification within different runs and 

prevents them from stagnation or premature convergence, while different runs working 

simultaneously, allows searching of different portions of search space. This of course 

leads to better results. Parallelism also used to reduce completion time of algorithm. 

These factors are especially another huge advantage in combinatorial optimization 

where exact algorithms are insufficient to handle large instances. 

Genetic algorithms are inherently parallel by their nature. There are two good 

strategies proposed in literature: island and cellular Models. In this thesis, we optimize 

a standard sequential genetic algorithm using island and master - slave models. Our 

results were encouraging. We were able to improve algorithms’ performance by 2 to 

15 times in terms of solution quality and optimized other parameters to find some 

reasonable island model configurations for different sets of instances with different 

characteristics. 

The results of the experiments show that parallelization of a sequential GA using island 

model influences algorithm’s performance. As a future work, more parameters and 

more parameters values can be considered in the experiments and methodologies like 

Design of Experiments or racing can be used to decide on the values. 

The proposed algorithm also gains some speedup, although this speedup is sublinear. 

As a future work, the communication model can be improved using asynchronous 

communication instead synchronous model. This may better utilize the computing 
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power, since the islands will not have to block on waiting for their neighbors to send 

immigrants and continue the evolution process. 

Different crossover and mutation operators, along with their parameters, of the serial 

GA can be experimented to select the best configuration to achieve better results. 

In addition, cellular models can be used for parallelization of genetic algorithms. 

Unlike island models which are suitable with MIMD CPU units of today, cellular 

models are more compatible with SIMD GPU units. Another approach could be using 

a hybrid model. 
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