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ABSTRACT 

 

STOCHASTIC DIFFERENTIAL EQUATIONS and ITS APPLICATIONS 

 

TACAR, Emine 

MSc in Department Of Mathematics 

Supervisor: Assoc. Prof. Dr. Şahlar MEHERREM 

July 2018, 34 pages 

 

In this thesis, exact solution of the stochastic linear differential equations has been 

studied. It�̂�’s formula has been  mainly considered as an exact solution method of 

linear SDEs. Moreover, structure of SDEs which contains It�̂�’s Product Rule and 

some properties about It�̂�’s integral has been explained. Proof of existence and 

uniqueness theorems of solutions based on SDEs has been briefly discussed. 

Furthermore, the exact solution for the general type scalar linear stochastic 

differential equations has been proved. In addition to examine studies, selected 

examples for SDEs showing how to use the It�̂�’s formula effectively have been 

solved in detail. 

 

 

 

 

 

 

 

Keywords: It�̂�’s Formula, Stochastic Processes, Stochastic Differential Equations, 

 

 

 



iv 

 

ÖZ 

 

STOKASTİK DİFERANSİYEL DENKLEMLER VE UYGULAMALARI 

 

TACAR, Emine 

Yüksek Lisans Tezi, Matematik Bölümü 

Danışman: Doç. Dr. Şahlar MEHERREM 

Temmuz 2018, 34 sayfa 

 

 

 

Bu tezde, stokastik doğrusal diferansiyel denklemlerin tam çözümleri incelendi. 

SDE’ lerin bir tam çözüm metodu olan It�̂� formülü ağırlıklı olarak ele alındı. 

Ayrıca, It�̂� Çarpım Kuralı ve It�̂� integralinin bazı özelliklerini içeren  SDE’ lerin 

yapısı açıklandı. SDE’ lerin çözümlerine yönelik varlık ve teklik teoremlerinin 

ispatları kısaca tartışıldı. Ayrıca, genel tipteki skaler stokastik doğrusal diferansiyel 

denklemlerin tam çözümü ispatlandı. İncelenen çalışmalara ek olarak, 

It�̂� formülünün etkili olarak nasıl kullanıldığını gösteren SDE’ lere yönelik seçilmiş 

örnekler detaylı olarak çözüldü. 

 

 

 

 

Anahtar Kelimeler: It�̂� Formülü, Stokastik Prosesler, Stokastik Diferansiyel 

Denklemler. 
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SYMBOLS AND ABBREVIATIONS 

 

Symbols                                                     Response 

A  Subset of power set 

Ω Sample space 

𝜎                                                   Algebra (or 𝜎 − field) 

ℱ  Subsets of Ω 

𝐴𝑐 Complement of A 
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P(A) Probabaility of the event 
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X : Ω → 𝑅𝑛 n dimensional random variable 

(Ω, ℱ, 𝑃 )                                              Probability space 

ODE Ordinary differential equation 

𝑊(.)   Brownian motion (Wiener Process) 

SDE  Stochastic differential equation 

𝜉(.)                                                        White noise
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1. INTRODUCTION 

 

    1.1 Historical Remarks 

 

     Stochastic differential equations have been widely used to model phenomena 

appearing in economics, finance, robotics and management science and it continues 

to be a vital role in many different fields of real world problems. 

 

    The exact solution of stochastic differential equations has been studied by many 

authors. Most of all, Kiyosi It�̂�, who leaded the field and made a breakthrough the 

theory of stochastic integration and SDEs, now regarded as the founder of It�̂� 

Calculus, put forward his theory in 1944 (Ito, 1944, 1951). Probability theory and 

stochastic processes, Ito stochastic calculus and stochastic Taylor expansion are 

investigated in (Kloedan and Platen, 1999). Probability concepts, stochastic 

integration and the white noise limit are considered in (Gardiner, 1990). Solution 

methods of SDEs are discussed in  (Gikhman and Skorochord, 2014).  

 

    Furthermore, finding the exact solution for SDEs is actually difficult to attain 

therefore, it will be very helpful to find a approximation solution. In this sence, 

numerical solutions of SDEs have been considered in many researches. Some of 

those can be given as follow. (Gard, 1987), (Higham, 2001), (Kloedan and Platen, 

1992), (Milstein and Tretyakov, 2004) and (Schurz, 2002). 

     Deterministic and Stochastic systems constitute the two main categories of models 

used in science fields such as mathematics, physics, chemistry and social sciences. 

These frequently heard concepts can be clarified as follows: 

 

     Deterministic models are systems that have no randomness in determining the 

future state of systems. So for a well-modelled deterministic system, under the same 

conditions and for the same initial states, the system will always give the same 

result. For example, an object we drop from 100 meters above will repeat once 

every 4.5 seconds, and the rate at which it falls will be 44.1m/s. Or it is because of 

the development of weapons that can be shot at a target point several hundred miles 

away today. Deterministic systems are called systems that can be calculated at a 

time point and how they will behave in advance based on the dynamic model.  

 

     Stochastic models, on the other hand, are systems with randomness. This 

randomness can be at system parameters, at the input, at the moment of inertia. 

 

     Therefore, the output of the system will have a similarity to the similarity. In such 

systems, the same results may not be obtained even if the same experiment is 

repeated under the same conditions, but it is possible to calculate the range in which 

the results are or in what range, and what the likelihood of occurrence is. In the case 

of stochastic models, the future position of the system is not known but rather 

predicted and probable. We can give examples such as lotto withdrawal, dice throw, 

exchange rates, stock exchange systems. 
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              The Brownian motion is the random movement of floating or suspended particles 

in a fluid. The mathematical model used to explain this movement. This model is 

also called the Wiener method. In 1827, when Scottish botanist Robert Brown 

examined pollen in watery environment under a microscope, he noticed that a 

number of small particles separated from the pollen were moving constantly. The 

premise was suspected that this movement was a vital source, but when it came to 

seeing particles made of inorganic materials making the same move, it was the 

result that it was not biological. The movement had already been recognized, but 

since most scientists learned of it from Brown’s work, this phenomenon is referred 

to as the “Brownian movement”. Explanation of what Brown sees, Albert Einstein 

(1879-1955), a German-born scientist in the 20th century, would wait until the 

causes of the motion of the particles were found. 

 

This thesis is organized as follows. In section 2, some preliminaries and basic 

definitions about stochastic analysis are provided. The structure of SDEs are 

explained in section 3. The existence and uniqueness of solutions to SDEs are 

derived in section 4. Certain solution methods of SDEs and especially Ito’s formula 

are mainly considered in section 5. Some illustrative examples are given by 

applying the Ito’s formula in section 6. Finally, in section 7 gives the conclusion of 

the matter in hand. 
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2. BASIC CONSEPTS AND DEFINITIONS 

 

2.1  𝝈-field 

 

A 𝜎-field on𝛺 provides the following features. If 

(i) ∅,𝛺 ∈  Ƒ,     𝛺 ≠ ∅, Ƒ ⊆ 2𝛺 

 

(ii) A ∈  Ƒ, and  𝐴𝑐 ∈  Ƒ. 

 

(iii) 𝐴1,𝐴2, … ∈  Ƒ, 

 

 then ⋃ 𝐴𝑘 ,
∞
𝑘=1 ⋂ 𝐴𝑘 ∈  Ƒ

∞
𝑘=1  

 

 

2.2 Measurable Space 

 

Let , 𝛺 be a any set and Ƒ be a set of events then the pair (𝛺, Ƒ) is denoted as a 

measurable space. 

 

2.3 Probability Measure 

  

Let us define a map  𝑃 ∶  Ƒ → [0, 1].Then the map is called a probability measure if 

(i) P(∅) = 0, 𝑃(𝛺) = 1; 

 

(ii) 𝐴𝑖 ∈  Ƒ, 𝐴𝑖 ⋂𝐴𝑗 =∅,  𝑖, 𝑗 = 1,2, … , 𝑖 ≠ 𝑗 

 then P(⋃ 𝐴𝑖) = ∑ 𝑃(𝐴𝑖)
∞
𝑖=1

∞
𝑖=1 . 

A triple (𝛺, Ƒ, 𝑃)   is called a probability space provided 𝛺 is any sets, and  𝐴 ∈ Ƒ 

is called an event, 𝑃(𝐴)denotes the probability of the event, a  𝜎 − algebra of 

subsets of 𝛺, then P is a probability measure on Ƒ. 
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2.4 Random Variables 

 

Let (𝛺, Ƒ) and (𝛺′, Ƒ′) be two measurable space and X: 𝛺 →  𝛺′ 𝑜𝑛 Ƒ/ Ƒ′- 

measurable map.We call X on Ƒ/ Ƒ′-random variableor simply a random variable if 

there would be no confusion.It is called onƑ − random variable when (𝛺′,

Ƒ′)=(𝑅𝑚,, B(𝑅𝑚)).Note that the notion of random variable is defined without 

probability measures. 

Where, 𝛺  is a topological space, then the smallest 𝜎 − field containing all open sets 

of 𝛺 is called the Borel 𝜎 −field of 𝜎, denoted by 𝐵(𝜎). 

X: 𝛺 → 𝛺′, 𝑋−1(Ƒ′) is a sub-𝜎field of Ƒ, which is called the 𝜎 − field generated by 

X, denoted by σ(x).  This is the smallest   σ-field Ω under which X is measurable.  

Also if  {𝑋𝜃, 𝜃 ∈ 𝛳}is a family of random variables 

from𝛺 𝑡𝑜 𝛺′,  then we denote by𝜎(𝑋𝜃, 𝜃 ∈ 𝛳) ≜ ⋁𝜃∈𝛳𝑋𝜃
−1(Ƒ′).  

Where,  𝑉𝛼Ƒ𝛼 ≜ 𝜎(∪𝜶 Ƒ𝜶),⋀𝜶 Ƒ𝛼 ≜  ∩𝜶 Ƒ𝛼. 

The smallest sub-σ-field of Ƒ under which all Xθ (𝜃 𝜖 𝛳) are measurable. 

Let X,Y:  𝛺 →  𝛺′ 𝑏𝑒 two random variables and G a σ-field on Ω.  Then X is said 

to be independent of G if σ(X) is independent 

of  𝒢 ,  and X is said to beindependent of Y if𝜎(𝑋) and 𝜎(𝑌) are independent. 

 

2.6 Stochastic Process 

 

Let (𝛺, ℱ, P) a probability space. A family {X(t), t ∈ 𝐼} of random variables from 

(𝛺, ℱ, P) to 𝑅𝑛 is called a stochastic process. A stochastic process can be denoted 

by {𝑋(𝑡)}𝑡∈𝑇,{𝑋𝑡}𝑡∈𝑇, or simply 𝑋. 

 

2.7 Hilbert Space of Random Variables 

 

A complete inner product space is called Hilbert Space. Inner product on this space  

is defined as  < 𝑋, 𝑌 > = 𝐸 < 𝑋𝑌 >  and the norm of Hilbert space of random 

variables is written in the form: ∥ 𝑋 ∥𝑅𝑉= (𝐸(|𝑋|
2))

1

2 
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3. STRUCTURE OF SDEs 

 

3.1 Motivation 

 

Let us consider the following (ODE) ordinary differential equation: 

                                   (ODE) {
�̇�(𝑡) = 𝒇(𝒙(𝑡)),   (𝑡 > 0)

𝒙(0) = 𝑥0,

                                    (1) 

 

where 𝑥0 ∈ 𝑅
𝑛, 𝒇 ∶  𝑅𝑛⟶ 𝑅𝑛, vector-valued function and the solution of the 

system denotes trajectory as 𝒙(. ) ∶ [0, ∞) → 𝑅𝑛. 

 

 

Figure 3.1 Trajectory of The ODE 

 

The solution of the system at the time 𝑡 ≥ 0 is called “state” by x(t) and displayed 

the derivative as, �̇�(𝑡) ≔
𝑑

𝑑𝑡
𝑥(𝑡). 

However, considering many industrial problems, it is seen that the trajectories of 

the systems modeled with (ODE) as the result of experimental measurements do 

not behave as expected: 

 

 

Figure 3.2 Sample Path of The Stochastic Differential Equation 

 

 

Thus, ODE in (1)  can be modified to determine the random effects on the system 

as follows: 
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                          {
�̇�(𝐭) = 𝒇(𝑿(𝐭)) + 𝑭(𝑿(𝐭))𝝃(𝐭),   (𝐭 > 𝟎)

𝑿(𝟎) = 𝐱𝟎.

                                  (2) 

Where , 𝐹:ℝ𝑛⟶𝕄𝑛𝑥𝑚, 𝜉(𝑡) ≔m-dimensional white noise. 

 

Let us consider the equation (2) with  the dimensions 𝑚 = 𝑛,  fixed point x0= 0 and 

the functions f = 0, and F = I. In this case, it turns out that the solution of (2) in this 

setting  is Brownian motion  or Wiener process (n-dimensional), with a notation 

𝑾(. ).  Then, it can be shown  the mathematical relation between white noise and 

Wiener process as�̇�(. ) = 𝝃(. ). Due to the dot notation used for the derivative with 

respect to time t, we can also describe the following expression: 

𝑑𝐗(𝑡)

𝑑𝑡
= 𝒇(𝑿(t) + 𝑭(𝑿(t))

𝒅𝑾(t)

dt
  .   

Now, multiply the above equation by 𝑑𝑡, and then we reach the following (SDE) 

stochastic differential equation: 

 

(SDE){
d𝐗(t) = 𝐟(𝐗(t))dt + 𝐅(𝐗(t))d𝐖(t)

𝐗(0) = x0.

(3) 

 

As we will discussed in next chapters, the It�̂� interpretation of SDE(3), i.e. 

𝐗(. ) satisfies the stochastic integral equation: 

𝑿(𝑡) = 𝑥0 + ∫ 𝒇(𝑿(𝑠)𝑑𝑠 +
𝑡

0
∫ 𝑭(𝑿(𝑠))𝑑𝑾(s)
𝑡

0
,      𝑡 > 0. 

 

3.2 It�̂�’s Formula(Chain Rule) 

 

The It�̂�’s formula is similar to the classic chain rule in Elementary Calculus.  

Assuming that f is a differentiable function of a real variable x and take fixed 𝑥0, 

then it can be considered as Δ𝑥 = 𝑥 − 𝑥0 with  Δ𝑓(𝑥) = 𝑓(𝑥) − 𝑓(𝑥0). By using 

Taylor expansion we get: 

Δ𝑓(𝑥) = 𝑓′(𝑥)Δ𝑥 +
1

2
𝑓′′(𝑥)(Δ𝑥)2 + 𝑂(Δ𝑥)3. 

If we use the differential 𝑑𝑥 instead of  Δ𝑥 , we have 
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d𝑓(𝑥) = 𝑓′(𝑥)d𝑥 +
1

2
𝑓′′(𝑥)(d𝑥)2 + 𝑂(d𝑥)3. 

All terms of order (𝑑𝑥)2 and higher are omitted, then basic calculus formula is 

obtained d𝑓(𝑥) = 𝑓′(𝑥)d𝑥. 

Suppose next that 𝑥 = 𝑥(𝑡), we get the differential form of the usual chain rule 

                   d𝑓(𝑥(𝑡)) = 𝑓′(𝑥(𝑡))d𝑥(𝑡) = 𝑓′(𝑥(𝑡))𝑥′(𝑡)𝑑𝑡.                              (*) 

Now, we plug into stochastic process 𝑋𝑡 instead of the deterministic function 𝑥(𝑡). 

The relation between the differential function 𝑓 and the process 𝑋𝑡 is expressed as  

𝐹𝑡 = 𝑓(𝑋𝑡). 

                                           d𝐹𝑡 = 𝑓
′(𝑋𝑡)d𝑋𝑡 +

1

2
𝑓′′(𝑋𝑡)(d𝑋𝑡)

2.                            (**) 

If a stochastic process 𝑋𝑡 satisfies the following equality, it is called an Ito diffusion: 

𝑑𝑋𝑡 = 𝛼(𝑊𝑡, 𝑡)𝑑𝑡 + 𝛽(𝑊𝑡, 𝑡)𝑑𝑊𝑡. 

 

Theorem 3.2.1  Let 𝑋𝑡 is an It�̂� diffusion and  𝐹𝑡 = 𝑓(𝑋𝑡) then, 

d𝐹𝑡 = [𝛼(𝑊𝑡, 𝑡)𝑓
′(𝑋𝑡) +

𝛽(𝑊𝑡, 𝑡)
2

2
𝑓′′(𝑋𝑡)]𝑑𝑡 + 𝛽(𝑊𝑡, 𝑡)𝑓

′(𝑋𝑡)d𝑊𝑡. 

 

Proof: 

We know the It�̂� diffusion as d𝐹𝑡 = 𝑓
′(𝑋𝑡)d𝑋𝑡 +

1

2
𝑓′′(𝑋𝑡)(d𝑋𝑡)

2, then let us write 

 
 

(𝑑𝑋𝑡)
2
 = ( 𝛼(𝑊𝑡, 𝑡)𝑑𝑡 + 𝛽(𝑊𝑡, 𝑡)𝑑𝑊𝑡)

2 

=  𝛼(𝑊𝑡, 𝑡)
2𝑑𝑡2 + 2𝛼(𝑊𝑡, 𝑡) 𝛽(𝑊𝑡, 𝑡)𝑑𝑊𝑡𝑑𝑡 + 𝛽(𝑊𝑡, 𝑡)

2𝑑𝑊𝑡
2 

                 = 𝛽(𝑊𝑡, 𝑡)
2𝑑𝑡, 

where  𝑑𝑊𝑡
2 = 𝑑𝑡  and 𝑑𝑡𝑑𝑊𝑡 = 𝑑𝑡

2 = 0. Substituting into (**) gives 

d𝐹𝑡 = 𝑓
′(𝑋𝑡)d𝑋𝑡 +

1

2
𝑓′′(𝑋𝑡)(d𝑋𝑡)

2 

        = 𝑓′(𝑋𝑡)(𝛼(𝑊𝑡, 𝑡)𝑑𝑡 + 𝛽(𝑊𝑡, 𝑡)𝑑𝑊𝑡) +
1

2
𝑓′′(𝑋𝑡) 𝛽(𝑊𝑡, 𝑡)

2𝑑𝑡 

        = [ 𝛼(𝑊𝑡, 𝑡)𝑓
′(𝑋𝑡) +

𝛽(𝑊𝑡,𝑡)
2

2
𝑓′′(𝑋𝑡)] 𝑑𝑡 +  𝛽(𝑊𝑡, 𝑡)𝑓

′(𝑋𝑡) 𝑑𝑊𝑡. 

 

Remark: If 𝑋𝑡 = 𝑊𝑡, we obtain the following result: 

d𝐹𝑡 = 𝑓
′(𝑊𝑡)d𝑊𝑡 +

1

2
𝑓′′(𝑊𝑡)𝑑𝑡. 
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If we have time-dependent function 𝑓 = 𝑓(𝑡, 𝑥), then the analog of (*) is submitted 

by 

𝑑𝑓(𝑡, 𝑥) =
𝜕𝑓(𝑡,𝑥)

𝜕𝑡
𝑑𝑡 +

𝜕𝑓(𝑡,𝑥)

𝜕𝑥
𝑑𝑥 +

1

2

𝜕2𝑓(𝑡,𝑥)

𝜕𝑥2
(𝑑𝑥)2 + 𝑂(𝑑𝑥)3 + 𝑂(𝑑𝑡)2 . 

Put 𝑥 = 𝑋𝑡 then gives 

𝑑𝑓(𝑡, 𝑋𝑡) =
𝜕𝑓(𝑡,𝑋𝑡)

𝜕𝑡
𝑑𝑡 +

𝜕𝑓(𝑡,𝑋𝑡)

𝜕𝑥
𝑑𝑋𝑡 +

1

2

𝜕2𝑓(𝑡,𝑋𝑡)

𝜕𝑥2
(𝑑𝑋𝑡)

2. 

In the case when 𝑋𝑡 is an Ito diffusion, we get the following expression with 

additional term: 

d𝐹𝑡 = [
𝜕𝑓(𝑡, 𝑋𝑡)

𝜕𝑡
+ 𝛼(𝑊𝑡, 𝑡)

𝜕𝑓(𝑡, 𝑋𝑡)

𝜕𝑥
+
 𝛽(𝑊𝑡, 𝑡)

2

2

𝜕2𝑓(𝑡, 𝑋𝑡)

𝜕𝑥2
] 𝑑𝑡 

                      + 𝛽(𝑊𝑡, 𝑡)
𝜕𝑓(𝑡, 𝑋𝑡)

𝜕𝑥
 𝑑𝑊𝑡 .                 

Moreover, when the process 𝐹𝑡 depends on more than one Ito diffusions such 

that  𝐹𝑡 = 𝑓(𝑡, 𝑋𝑡, 𝑌𝑡), then an analogous formula to above yields to 

d𝐹𝑡 =
𝜕𝑓(𝑡, 𝑋𝑡, 𝑌𝑡)

𝜕𝑡
𝑑𝑡 +

𝜕𝑓(𝑡, 𝑋𝑡, 𝑌𝑡)

𝜕𝑥
𝑑𝑋𝑡 +

𝜕𝑓(𝑡, 𝑋𝑡, 𝑌𝑡)

𝜕𝑦
𝑑𝑌𝑡 

       +
1

2

𝜕2𝑓(𝑡,𝑋𝑡,𝑌𝑡)

𝜕𝑥2
(𝑑𝑋𝑡)

2 +
1

2

𝜕2𝑓(𝑡,𝑋𝑡,𝑌𝑡)

𝜕𝑦2
(𝑑𝑌𝑡)

2 +
𝜕2𝑓(𝑡,𝑋𝑡,𝑌𝑡)

𝜕𝑥𝜕𝑦
𝑑𝑋𝑡𝑑𝑌𝑡 . 

 

Now let us consider SDE (3) with 𝑛 = 1, 𝑭 = 𝐼 and 𝑋(. ) solves the following SDE: 

                                                      𝑑(𝑋) = 𝑓(𝑋)𝑑𝑡 + 𝑑𝑊.                                         (4) 

 

Assuming  that Ψ ∶ 𝑅𝑛→ 𝑅𝑛is a smooth function, then we want to investigate 

which SDE is solved with  𝑌(𝑡) ∶= Ψ(X(t)), t ≥ 0. If the equation (4) is observed, 

the following equation can be written: 

𝑑𝑌 = Ψ′𝑑𝑋 = Ψ′𝑓𝑑𝑡 + Ψ′𝑑𝑊. 

By chain rule, taking derivative with respect to x is represented as  
𝑑

𝑑𝑥
 , so there is 

an error here. Because, in stochastic sense,  𝑑𝑊 ≈ (𝑑𝑡)
1

2. If we evaluate 𝑑𝑌 which 

includes 𝑑𝑡 and (𝑑𝑡)
1

2 we have  

 𝑑𝑌 = Ψ′𝑑𝑋 +
1

2
Ψ′′(𝑑𝑋)2 +⋯ 

𝑑𝑌 = Ψ′(𝑓𝑑𝑡 + 𝑑𝑊) +
1

2
Ψ′′(𝑓𝑑𝑡 + 𝑑𝑊)2 +⋯ 
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𝑑𝑌 = (Ψ′𝑓 +
1

2
Ψ′′)𝑑𝑡 + Ψ′𝑑𝑊 + {Terms of order (𝑑𝑡)

3

2 and higher}. 

Since (𝑑𝑊)2 = 𝑑𝑡, and then we obtain, 

𝑑𝑌 = (Ψ′𝑓 +
1

2
Ψ′′) 𝑑𝑡 + Ψ′𝑑𝑊. 

Here, apart from the classical calculus, 
1

2
Ψ′′𝑑𝑡 is also appeared in the equation as 

additional term. 

 

3.3  Different Cases of It�̂�’s Formula  

 

Theorem 3.2 Let  𝑋(. )  be a solution of the following SDE 

𝑑𝑋𝑡 = 𝐹 𝑑𝑡 + 𝐺𝑑𝑊𝑡 . 

 

For a integrable functions  Ƒ ∈ 𝐿1 (0, T), 𝐺 ∈ 𝐿2 (0,T), and then for any function  

𝛹:R × [0, 𝑇] → 𝑅, 𝛹 is continuous and its derivatives   𝛹𝑡 ,𝛹𝑥𝛹𝑥𝑥 are exist and 

continuous. 

Proof: 

Let us suppose that Y(t)∶ = Ψ(X(t), t). 

Now, Y(t) corresponds to the following stochastic differential equation 

dY𝑡 = Ψ𝑡𝑑𝑡 + Ψ𝑥𝑑𝑋 +
1

2
Ψ𝑥𝑥𝐺

2dt     

𝑑Y𝑡 = (Ψ𝑡 +Ψ𝑥𝐹 +
1

2
Ψ𝑥𝑥𝐺

2) 𝑑𝑡 + Ψ𝑥 

A)  Now, take the special case Ψ (x) =𝑥𝑛,  where n changes on zero and one, 

and let provide that the below equality: 

d(𝑋𝑛) = n𝑋𝑛−1dx +
1

2
n(n-1)𝑋𝑛−2𝐺2dt.                                                                        (∎) 

It is obvious that  𝑛 = 0,1, … and for 𝑛 = 2, related expression holds. Now we 

provide the above-stated formula for 𝑛 − 1: 

d ( 𝑋𝑛−1) = (𝑛 − 1)𝑋𝑛−2dX +
1

2
(n-1)(n-2)𝑋𝑛−3𝐺2dt 

                 =  (n-1)𝑋𝑛−2(Fdt + G dW) +
1

 2
(n-1)(n-2)𝑋𝑛−3𝐺2d 

Then we prove it for n: 

Note that   
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 d(𝑋𝑛) =  𝑑(X𝑋𝑛−1). 

            =  𝑋𝑑(𝑋𝑛−1 ) +𝑋𝑛−1dX + (𝑛 − 1)𝑋𝑛−2𝐺2dt  

            =  𝑋((n-1)𝑋𝑛−2dX +
1

2
(n-1)(n-2)𝑋𝑛−3𝐺2dt) +  (n-1)𝑋𝑛−2𝐺2dt  +𝑋𝑛−1dX 

            =  n𝑋𝑛−2dx +
1

2
𝑛(𝑛 − 1)𝑋𝑛−2𝐺2dt . 

Because; 

(n-1) +
1

2
(n-1)(n-2) =

1

  2
𝑛(n-1). This proves (∎). 

B)  Now let, Ψ(x, t) = p(x)q(t), where p and q are polynomials.  

𝑑(Ψ(𝑋, 𝑡)) = 𝑑(𝑝(𝑋)𝑞) = 𝑝(𝑋)𝑑𝑞 + 𝑞𝑑𝑝(𝑋) 

= 𝑝(𝑋)𝑞′𝑑𝑡 + 𝑞[𝑝′(𝑋)𝑑𝑋 +
1

2
𝑝′′(𝑋)𝐺2𝑑𝑡] 

= Ψ𝑡𝑑𝑡 + Ψ𝑥𝑑𝑋 +
1

2
Ψ𝑥𝑥𝐺

2𝑑𝑡 

This computation affirms It�̂�’s formula for  Ψ(x, t) = p(x)q(t). Hence it is also true 

for each function Ψ getting the model :    

Ψ(𝑥, 𝑡) = ∑𝑝𝑖(𝑥)𝑞𝑖(𝑡)

𝑛

𝑖=1

. 

Where 𝑝𝑖 and 𝑞𝑖are polynomials. This means that the It�̂� formula applies to all 

polynomial functions which have the component variables 𝑥 and 𝑡. 

We now consider Ψ which is indicated in It�̂�’s formula, then  Ψ𝑛 corresponds to 

sequence of polynomials such that; 

 

   Ψ𝑛  → Ψ             Ψ𝑡
𝑛 →  Ψ𝑡 

        Ψ𝑥
𝑛 →  Ψ𝑥          Ψ𝑥𝑥

𝑛 → Ψ𝑥𝑥, 

Since  0 ≤ 𝑠 ≤ 𝑇, we can write the following in the sense of general It�̂�’s formula 

by using limit via 𝑠 → ∞: 

  Ψ𝑛(X(s), s)−Ψ𝑛(X(0), 0) = ∫( Ψ𝑡
𝑛 +

𝑠

0

Ψ𝑥
𝑛𝐹 +

1

2
Ψ𝑥𝑥
𝑛 𝐺2)𝑑𝑡 + ∫Ψ𝑥

𝑛GdW

𝑠

0

 

 

3.4  Generalized It�̂�’s Formula 

 

Let us now, briefly study the case where stochastic process X(.), drift and diffusion 

functions have m-components.  
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In this case, we supposed to have,  𝑑𝑋𝑡
𝑖 = 𝜙𝑖𝑑𝑡 + 𝜓𝑖𝑑𝑊𝑡with for𝜙𝑖 ∈ 𝐿1(0,T), 

𝜓𝑖 ∈ 𝐿2(0, T), and  𝑖 = 1,… ,𝑚. 

Let   Ψ:𝑅𝑚 × [0,T]  → R  be a  continuous function and its partial derivatives are 

continuous such that  
𝜕Ψ

𝜕𝑡
,
𝜕Ψ

𝜕𝑥𝑖
  ,

𝜕2Ψ

𝜕𝑥𝑖𝜕𝑥𝑗
and  𝑖 = 1,… ,𝑚 , then we can state the 

following generalized It�̂�’s formula: 

𝑑(Ψ(X1, … , X𝑚, 𝑡) = Ψ𝑡𝑑𝑡 +∑Ψ𝑥𝑖

𝑚

𝑖=1

𝑑𝑋𝑖 +
1

2
∑ Ψ𝑥𝑖𝑥𝑗

2

𝑚

𝑖,𝑗=1

𝜙𝑖𝜓𝑖𝑑𝑡. 

 

3.5  Multidimensional It�̂�’s Formula 

 

In this subsection we present the It�̂�’s formula in the case of 𝑅𝑛- valued stochastic 

processes with the stochastic equation 𝑑𝑿𝒕 = 𝝓𝑑𝑡 + 𝝍𝑑𝑾𝒕for some 𝝓 ∈

𝐿𝑛
1 (0,T), 𝝍 ∈ 𝐿𝑛𝑥𝑚

2 (0, T). 

Let   Ψ: [0, T]  × 𝑅𝑛  → R   be a continuous function and its partial derivatives are 

continuous such that  
𝜕Ψ

𝜕𝑡
,
𝜕Ψ

𝜕𝑥𝑖
  ,

𝜕2Ψ

𝜕𝑥𝑖𝜕𝑥𝑗
and 𝑖, 𝑗 = 1,… , 𝑛 , then we can express the 

following multidimensional It�̂�’s formula: 

𝑑(𝑡,Ψ(𝑿(𝑡)) = Ψ𝑡𝑑𝑡 +∑Ψ𝑥𝑖

𝑛

𝑖=1

𝑑𝑋𝑖 +
1

2
∑ Ψ𝑥𝑖𝑥𝑗

2 ∑𝜓𝑖𝑘𝜓𝑗𝑘
𝑚

𝑘=1

𝑛

𝑖,𝑗=1

𝑑𝑡. 

 

3.6  It�̂� Product Rule 

 

In this subsection we show up how to drive It�̂� Product Rule by the following 

theorem. 

Theorem 3.1  Suppose that 

{

𝑑𝑋 = 𝜙1𝑑𝑡 + 𝜓1𝑑𝑊 

𝑑𝑌 = 𝜙2𝑑𝑡 + 𝜓2𝑑𝑊 
     (0 ≤ 𝑡 ≤ 𝑇) 

where,𝜙𝑖 ∈ 𝐿
1 (0,T), 𝜓𝑖 ∈ 𝐿

2 (0, T) , (i =1,2). 

Then; 

d (𝑋𝑌 )= 𝑌d𝑋 + 𝑋𝑑𝑌 + 𝜓1𝜓2𝑑𝑡. 

 

                Proof: 
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A)  Let’s choose 0≤ 𝑟 ≤ 𝑇. For simplicity we assume: 

𝑋(0)= 𝑌(0)=0,  𝜙𝑖(t)  ≡  𝜙𝑖 ,  𝜓𝑖(t)  ≡  𝜓𝑖, 

Here, 𝜙𝑖 , 𝜓𝑖 are time-independent random variables, 

ℱ(0) −measurable random variables, then 

𝑋𝑡= ϕ1t + 𝜓1𝑊𝑡and  𝑌𝑡= 𝜙2t + 𝜓2𝑊𝑡    (t≥ 0). 

Therefore, 

∫ 𝑌
𝑟

0
d𝑋+𝑋d𝑌+𝜓1𝜓2 

= ∫ (𝑋
𝑟

0
 𝜙2 + 𝑌ϕ1)𝑑𝑡 +∫ (𝑋

𝑟

0
𝜓2 + 𝑌𝜓1)Dw + ∫ 𝜓1

𝑟

0
𝜓2𝑑𝑡 

= ∫ (
𝑟

0
ϕ1𝑡 + 𝜓1𝑊)  𝜙2 + ( 𝜙2𝑡 + 𝜓2𝑊) ϕ1𝑑𝑡 

+ ∫ ϕ1𝑡 + 𝜓1𝑊)
𝑟

0
𝜓2 + ( 𝜙2𝑡 + 𝜓2𝑊) 𝜓1dW  + 𝜓1𝜓2r 

= ϕ1 𝜙2𝑟
2 + (𝜓1 𝜙2 + 𝜓2ϕ1)[∫ 𝑊

𝑟

0
𝑑𝑡  +∫ 𝑡𝑑𝑊]

𝑡

0
 

+ 2𝜓1𝜓2 ∫ 𝑊𝑑𝑊 +
𝑟

0
𝜓1𝜓2r. 

According to above-stated Lemma, we evaluate 2∫ 𝑊𝑑𝑊 
𝑟

0
= 𝑊2(r) –r  

and ∫ 𝑊𝑑𝑡 +
𝑟

0
∫ 𝑡𝑑𝑊
𝑟

0
= 𝑟𝑊(𝑟).  

By using these properties, we obtain: 

∫ 𝑌
𝑟

0
d𝑋 + 𝑋d𝑌 + 𝜓1𝜓2𝑑𝑡 

=ϕ1 𝜙2𝑟
2 + (𝜓1 𝜙2 + 𝜓2ϕ1)𝑟𝑊(𝑟) + 𝜓1𝜓2𝑊

2(r)  

= 𝑋(r) 𝑌(r). 

As a result, we have: 

∫ 𝑌d𝑋
𝑟

𝑠
= 𝑋(𝑟)𝑌(r) − 𝑋(𝑠)Y(s) − ∫ 𝑋𝑑

𝑟

𝑠
Y − ∫ 𝜓1𝜓2𝑑𝑡

r

s
. 

 

For the special case with s = 0, 𝑋(0) = 0, 𝑌(0) = 0;𝜑𝑖 and  𝜓𝑖are random variables. 

If this situation, s ≥ 0, 𝑋(s),  𝑌(s) are optional, at the same time𝜑𝑖  and 𝜓𝑖 are 

constant ℱ(s)- measurable random variables, then it can be proved in a similar way. 

B) Let𝜑𝑖, 𝜓𝑖are step processes, then we apply phase A on [𝑡𝑘,𝑡𝑘+1) and 

using𝜑𝑖𝑎𝑛𝑑  𝜓𝑖constant random variables, then obtain integral equalities. 

C) For the general case, we choose step processes as: 

𝜑𝑖
𝑛 ∈ 𝐿1(0,T),  𝜓𝑖

𝑛 ∈ 𝐿2(0,T),with 

E(∫ |𝜑𝑖
𝑛 − 𝜑𝑖|

𝑇

0
dt)  → 0 and 

E(∫ | 𝜓𝑖
𝑛 −  𝜓𝑖|

2𝑇

0
dt) → 0        
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As n→ ∞,𝑖 = 1, 2. 

Let us define the following equalities: 

𝑋𝑛(t) ∶= 𝑋(0) + ∫ 𝜑1
𝑛𝑡

0
ds + ∫  𝜓1

𝑛𝑡

0
dW , 

𝑌𝑛(t) ∶= 𝑌(0) + ∫ 𝜑2
𝑛𝑡

0
ds + ∫  𝜓2

𝑛𝑡

0
dW   

 

When we apply phase B to 𝑋𝑛(.), and 𝑌𝑛(.) for (s,r) and use limits, where each the 

following formula: 

𝑋(r)𝑌(r) = 𝑋(s)𝑌(s) + ∫ 𝑋
𝑟

𝑠
d𝑌 + 𝑌d𝑋 + 𝜓1 𝜓2𝑑𝑡. 

 

3.7  It�̂� Integral 

 

One of the most important stochastic integrals is called the Itô integral. In 1944, 

Japanese mathematician K. It�̂� introduced this type of integral. Moreover, 

impression of diffusion processes originally motivated to the It�̂� integral. 

Itô integral Yt(B) (blue) of a Brownian motion B (red) with respect to itself, i.e., 

both the integrand and the integrator are Brownian. It comes in view: 

Yt(B)=(B2-t)/2. 

 

Figure 3.3 (Comparation of Itô integral and Brownian Motion) 

 

Here are some important features of the Brownian movement. First, the movement 

is totally erratic, a random move. Under the microscope, the particles seem to move 

forward and backward, but this is very different from the vibrational motion we 

know. While there is no period in the Brownian motion, the particles can change 
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their vibrational movement there is a movement with a definite period around a 

fixed point. 

 

3.8 Stochastic Differential 

 

In this subsection, we consider the following useful Lemmas for stochastic 

differential. 

 

Lemma 3.8.1  𝑑 (𝑊𝑡
2 ) = 2𝑊𝑡𝑑𝑊𝑡 +  𝑑𝑡. 

Proof. 

By using  the product rule and the stochastic relation 𝑑 (𝑊𝑡
2) = 𝑑𝑡 , gives 

𝑑 (𝑊𝑡
2 ) = 𝑊𝑡𝑑𝑊𝑡 + 𝑊𝑡𝑑𝑊𝑡 +  𝑑𝑊𝑡𝑑𝑊𝑡 = 2𝑊𝑡𝑑𝑊𝑡 +  𝑑𝑡. 

 

Lemma 3.8.2  𝑑(𝑊𝑡
3) = 3𝑊𝑡

2𝑑𝑊𝑡 + 3𝑊𝑡𝑑𝑡. 

Proof. 

Let us apply the product rule and use the previous lemma, then gives 

𝑑(𝑊𝑡
3) = 𝑑(𝑊𝑡 .𝑊𝑡

2)  = 𝑊𝑡𝑑(𝑊𝑡
2)+𝑊𝑡

2𝑑𝑊𝑡 + 𝑑(𝑊𝑡
2)𝑑𝑊𝑡 

            =  𝑊𝑡(2𝑊𝑡𝑑𝑊𝑡 + dt) +𝑊𝑡
2𝑑𝑊𝑡 +d𝑊𝑡(2𝑊𝑡𝑑𝑊𝑡 + dt) 

             = 2𝑊𝑡
2d𝑊𝑡 +𝑊𝑡𝑑𝑡 +𝑊𝑡

2𝑑𝑊𝑡 +2𝑊𝑡 (𝑑𝑊𝑡
2
 ) +dt𝑑𝑊𝑡 

             = 3𝑊𝑡
2d𝑊𝑡 +3𝑊𝑡dt, 

where we used (𝑑𝑊𝑡
2
 ) = 𝑑𝑡 and 𝑑𝑡𝑑𝑊𝑡  = 0. 

 

Lemma 3.8.3 𝑑(𝑡𝑊𝑡) = 𝑊𝑡𝑑𝑡 +  𝑡d𝑊𝑡. 

Proof. 

By using the product rule and 𝑑𝑡𝑑𝑊𝑡  =  0, we have 

𝑑(t𝑊𝑡) = 𝑊𝑡dt +𝑡d𝑊𝑡  +  𝑑𝑡 d𝑊𝑡 

              = 𝑊𝑡𝑑𝑡 + 𝑡𝑑𝑊𝑡. 

 

3.9 Stochastic Calculus 

 

Theorem 6.1.1  For any 𝜏 <t, then the following equality holds 
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𝑑(∫ 𝑓(𝑠,
𝑡

𝜏
𝑊𝑠)d𝑊𝑠)  =  𝑓(𝑡,𝑊𝑡)𝑑𝑊𝑡. 

 

Proof. 

Let us consider  a stochastic process 𝑋𝑡 whose increments satisfy the following 

equation: 

𝑑𝑋𝑡  =  𝑓 (𝑡,𝑊𝑡)𝑑𝑊𝑡. 

Integrating above equality between 𝜏and t yields 

∫ 𝑑𝑋𝑠
𝑡

𝜏
 = ∫ 𝑓(𝑠,𝑊𝑠

𝑡

𝜏
)𝑑𝑊𝑠.                         

The integral on the left side can be calculated by using the separation 

0 =  𝑡0 < 𝑡1… < 𝑡𝑛−1 < 𝑡𝑛  = 𝑡, then 

∫ 𝑑𝑋𝑠
𝑡

𝜏
 = lim

𝑛→∞
∑ (𝑋𝑡𝑗+1
𝑛−1
𝑗=0 − 𝑋𝑡𝑗) = 𝑋𝑡 − 𝑋𝜏, 

Substituting them into previous integral equation gives: 

𝑋𝑡 = 𝑋𝜏 + ∫ 𝑓(𝑠,
𝑡

𝜏
𝑊𝑠)𝑑𝑊𝑠, 

and hence 

𝑑𝑋𝑡 =  𝑑(∫ 𝑓(𝑠,
𝑡

𝜏
𝑊𝑠)d𝑊𝑠),  

since 𝑋𝜏 is a constant. 

 

Lemma 3.9.1   ∫ 𝑊𝑠
𝑡

0
d𝑊𝑠 =

𝑊𝑡
2

2
 −

𝑡

2
 

Proof. 

Let 𝑋𝑡  = ∫ 𝑊𝑠
𝑡

0
d𝑊𝑠 and 𝑌𝑡 = 

𝑊𝑡
2

2
− 

𝑡

2
  .From 𝐼to ‘s formula  

𝑑𝑌𝑡 = 𝑑 (
𝑊𝑡
2

2
) – 𝑑(

𝑡

2
 )  =

1

2
 (2𝑊𝑡d𝑊𝑡 +  𝑑𝑡)  −

1

2
𝑑𝑡 = 𝑊𝑡𝑑𝑊𝑡, 

and from the Theorem 6.1.1, we have 

𝑑𝑋𝑡  = 𝑑(∫ 𝑊𝑠
𝑡

0
𝑑𝑊𝑠)  = 𝑊𝑡d𝑊𝑡 . 

Hence 𝑑𝑋𝑡 =𝑑𝑌𝑡 ,or 𝑑(𝑋𝑡 − 𝑌𝑡) = 0. Since the process 𝑋𝑡 - 𝑌𝑡 has zero increments, 

then  𝑋𝑡 − 𝑌𝑡 =  𝑐, constant. Taking 𝑡 = 0, yields 

𝑐 = 𝑋0 − 𝑌0  = ∫ 𝑊𝑠
0

0
d𝑊𝑠 − (

𝑊0
2

2
−
0

2
 ) =  0, 

and hence 𝑐 = 0. It follows that 𝑋𝑡  = 𝑌𝑡, which verifies the desired relation. 
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Lemma 3.9.2   ∫ 𝑠𝑊𝑠
𝑡

0
𝑑𝑊𝑠  =

𝑡

2
 (𝑊𝑡

2  −  
𝑡

2
  ) – 

1

2
∫ 𝑊𝑠

2𝑡

0
𝑑𝑠. 

Proof. 

Consider the stochastic processes 

𝑋𝑡 = ∫ 𝑠𝑊𝑠
𝑡

0
d𝑊𝑠 ,  𝑌𝑡 =

𝑡

2
 (𝑊𝑡

2 - 1), and 𝑍𝑡  =
1

2
∫ 𝑊𝑠

2𝑡

0
𝑑𝑠. 

Theorem 6.1.1 yields 

𝑑𝑋𝑡  = 𝑡𝑊𝑡𝑑𝑊𝑡 

𝑑𝑍𝑡 =
1

2
𝑊𝑡

2𝑑𝑡. 

Applying It�̂�’s Formula, we get  

𝑑𝑌𝑡  = 𝑑(
𝑡

2
 (𝑊𝑡

2  − 
𝑡

2
 )) =

1

2
𝑑( 𝑡𝑊𝑡

2)−𝑑( 
𝑡2

4
) 

=
1

2
 [( 𝑡 + 𝑊𝑡

2)𝑑𝑡 +  2𝑡𝑊𝑡𝑑𝑊𝑡]  −
1

2
𝑡𝑑𝑡 

=
1

2
𝑊𝑡

2𝑑𝑡 +  𝑡𝑊𝑡𝑑𝑊𝑡. 

We can easily see that  

𝑑𝑋𝑡  =  𝑑𝑌𝑡 − 𝑑𝑍𝑡 . 

This implies 𝑑(𝑋𝑡 − 𝑌𝑡 + 𝑍𝑡  ) = 0, i.e.  𝑋𝑡 − 𝑌𝑡 + 𝑍𝑡  =  𝑐, constant.  

Since 𝑋0 =𝑌0 =𝑍0 =  0, 

it means  that 𝑐 = 0. 

 

Lemma 3.9.3∫ (
𝑡

0
𝑊𝑠
2  −  𝑠 ) 𝑑𝑊𝑠  =

1

3
𝑊𝑡

3–  𝑡𝑊𝑡. 

Proof. 

Let us consider the function 𝑓(𝑡, 𝑥)  =
1

3
𝑥3  −  𝑡𝑥, and let 𝐹𝑡 = 𝑓 (𝑡,𝑊𝑡). 

Since 𝑓𝑡= - x,𝑓𝑥 = 𝑥2 - t,and 𝑓𝑥𝑥= 2x, 

then It�̂�’s Formula provides  

𝑑𝐹𝑡  = 𝑓𝑡dt + 𝑓𝑥 d𝑊𝑡  +
1

2
𝑓𝑥𝑥 (𝑑𝑊𝑡

2) 

        =  −𝑊𝑡dt + (𝑊𝑡
2  − t)d𝑊𝑡 +

1

2
 2𝑊𝑡dt 

        = (𝑊𝑡
2- t)d𝑊𝑡. 

From the Theorem 6.1.1 we get 

∫ (
𝑡

0
𝑊𝑠
2  −  𝑠 ) d𝑊𝑠  = ∫ 𝑑𝐹𝑠

𝑡

0
= 𝐹𝑡  − 𝐹0 = 𝐹𝑡 = 

1

3
𝑊𝑡

3 – 𝑡𝑊𝑡. 
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4. EXISTENCE AND UNIQUNESS SOLUTIONS FOR SDEs 

 

The existence and uniqueness theorems are the most important main constituent in  

SDEs theory. For that reason, the following theorems are below-stated.  

 

4.1 Theorem (Existence and Uniquness) 

 

Consider the following stochastic differential equation 

{

d𝑋𝑡  =  b(t, X𝑡)dt +  σ(t, X𝑡)dW𝑡

𝑋0 = 𝑥0,
 

where 𝑏(. ) and 𝜎(. )coefficients are continuous on[0, 𝑇] × 𝑅and 𝑥0 is a fixed 

random variable providing 

1) |𝑏(𝑡, 𝑥)| + σ|(𝑡, 𝑥)| ≤ 𝑀(1 + |𝑥|);      𝑥 ∈ 𝑅, 𝑇 ∈ [0, 𝑇] 

2) |𝑏(𝑡, 𝑥) − 𝑏(𝑡, 𝑦)| + σ|(𝑡, 𝑥) − σ(𝑡, 𝑦)| ≤ 𝐾|𝑥 − 𝑦|;       𝑥, 𝑦 ∈ 𝑅 

with constants 𝑀, 𝐾 > 0. Then 𝑋𝑡 is a unique stochastic process, which is 

continuous, and providing the following: 

𝐸[∫𝑋𝑡
2𝑑𝑡] < ∞.

𝑇

0

 

For the first condition in the sense of linear growthiness, 𝑏(. ) and 𝜎(. ) arguments 

are upper-bonded with linear function in 𝑥. Beside this, the second one emphasize 

that the drift and volatility functions are Lipschitz in the meaning of second 

variable. 

 

4.2 Uniqueness 

Proof: 

 Suppose that 𝑋𝑡 and 𝑋𝑡
∗ be two solutions. 

 

 Note that, we get the following equality: 

 

𝑋𝑡 − 𝑋𝑡
∗ = ∫ [𝑏(𝑠, 𝑋(𝑠)) − 𝑏(𝑠, 𝑋∗(𝑠)

𝑡

0

)]𝑑𝑠 
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+∫  [σ(𝑠, 𝑋(𝑠)) − σ(𝑠, 𝑋∗(𝑠))𝑑𝑊(𝑠).
𝑡

0

 

 

 By using Lipschitz condition, Hölder inequality and Gronwall’s inequality, 

we can obtain the following inequality: 

 

𝐸(  |𝑋(𝑠) − 𝑋∗(𝑠)|20≤𝑠≤𝑡
𝑠𝑢𝑝 ) ≤ 2𝐾(𝑇 + 4) ∫ 𝐸( |𝑋(𝑙) − 𝑋∗(𝑙)|20≤𝑙≤𝑠

𝑠𝑢𝑝 )𝑑𝑠
𝑡

0
. 

 

 The Gronwall inequality then yields that 

𝐸(  |𝑋(𝑡) − 𝑋∗(𝑡)|20≤𝑡≤𝑇
𝑠𝑢𝑝 ) = 0.  

Hence, 𝑋(𝑡) = 𝑋∗(𝑡) for all 0 ≤ 𝑡 ≤ 𝑇.            ∎ 

 

4.3 Existence 

 

Proof: 

 Let 𝑋𝑡 = ∫ 𝑏(𝑠, 𝑋(𝑠))
𝑡

0
𝑑𝑠 + ∫  [σ(𝑠, 𝑋(𝑠))𝑑𝑊(𝑠)

𝑡

0
, 

 

 Note that 

 𝐸 |∫ 𝑏(𝑠, 𝑋(𝑠))𝑑𝑠 − ∫ 𝑏(𝑠,
𝑡

0

𝑋∗(𝑠))
𝑡

0

𝑑𝑠| 

+𝐸 |∫ σ(𝑠, 𝑋(𝑠))𝑑𝑊(𝑠) − σ(𝑠, 𝑋∗(𝑠)
𝑡

0

)𝑑𝑊(𝑠)| 

≤ 𝐾(𝑇 + 1)∫𝐸|𝑋𝑛(𝑠) − 𝑋(𝑠)|
2𝑑𝑠 → 0

𝑇

0

. 

 Thus we can let 𝑛 → ∞ in 

𝑋𝑛(𝑡) = 𝑥0 +∫𝑏(𝑠, 𝑋𝑛−1(𝑠))𝑑𝑠 + ∫σ(𝑠, 𝑋𝑛−1(𝑠))𝑑𝑊(𝑠),

𝑡

0

𝑡

0

 

 We obtain that  

𝑋𝑡 = 𝑥0 +∫𝑏(𝑠, 𝑋(𝑠))𝑑𝑠 +∫σ(𝑠, 𝑋(𝑠))𝑑𝑊(𝑠).

𝑡

0

𝑡

0

 

Consequently, we prove that the Picard iterations  𝑋𝑛(𝑡) converge to the unique 

solution 𝑋𝑡 of the following equation: 

                  d𝑋𝑡  =  b(t, X𝑡)dt +  σ(t, X𝑡)dW𝑡                                                                  ∎ 
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5. SOLUTION METHODS OF SDEs 

 

We can investigate stochastic differential equations under two main headings, such 

that linear SDEs and non-linear SDEs. Moreover, we can also classify linear SDEs 

into two branches such that scalar and vector-valued. 

There are three effective methods to compute solution of SDEs: 

 The first major method is based on the It�̂�’s Formula and has already been 

used for linear solutions of SDEs. 

 The second one is numerical methods (which are essential for the analysis 

of random phenomena) to compute path-wise solutions of SDEs. The 

simplest effective computational methods for the approximation of SDEs 

are based on similar techniques for ODEs, but generalized to provide 

support for stochastic dynamics. The most commonly known method is the 

Euler-Maruyama Method,another useful method can be given as Milstein 

Method, Monte-Carlo Method, Taylor Method, Runge-Kutta Method, etc. 

 The third one is based on partial differential equations, which is associated 

with the probability density function of the solution. 

 

5.1 Linear Stochastic Differential Equations: 

 

We start off the SDEs with the common case, the scalar linear SDE: 

{

d𝑋𝑡  =  b(t, X𝑡)dt +  σ(t, X𝑡)dW𝑡

𝑋(0) = 𝑥0.
 

Above-stated SDE for a one-dimensional stochastic process 𝑋𝑡 is called a linear 

(scalar) SDE if and only if the functions 𝑏(. ) and 𝜎(. ) are affine functions of X𝑡,

∈ ℝ. 

𝑏(X𝑡, 𝑡) ∶= 𝐴(𝑡)X𝑡 + 𝛼(𝑡), 

𝜎(X𝑡, 𝑡) := [𝐵1(𝑡)X𝑡 + 𝛽1(𝑡),… , 𝐵𝑚(𝑡)X𝑡 + 𝛽𝑚(𝑡)], 

where A(t), 𝛼(𝑡) ∈ ℝ, 𝑊(𝑡) ∈ ℝ𝑚 is an m-dimensional Brownian Motion, and 

𝐵𝑖(𝑡),  𝛽𝑖 (𝑡) ∈  ℝ, 𝑖 = 1,… ,𝑚.  

Thus, 𝑏(t, X𝑡), 𝑥0 ∈  ℝ  and𝜎(𝑡, X𝑡) ∈ ℝ
1×𝑚 

A stochastic vector-valued differential equation: 

{

d𝑿𝑡  =  b(t, 𝐗𝒕)dt +  σ(t, 𝐗𝒕)d𝐖𝒕

𝑿(0) = 𝒙𝟎.
 

𝐗𝒕 is called a linear SDE if the functions 𝑏(t, 𝐗𝒕), ∈  ℝ
𝑛 and  
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𝜎(t, 𝐗𝒕) ∈ ℝ
𝑛×𝑚are affine functions of  𝐗𝒕 and thus, 

𝑏(t, 𝐗𝒕) ∶=  𝐴(𝑡)𝐗𝒕 + 𝛼(𝑡), 

𝜎(t, 𝐗𝒕) ≔ [𝐵1(𝑡)𝐗𝒕 + 𝛽1(𝑡), … , 𝐵𝑚(𝑡)𝐗𝒕 + 𝛽𝑚(𝑡)], 

where A(t) ∈ ℝ𝑛×𝑛, 𝛼(𝑡) ∈ ℝ𝑛, 𝐖𝒕 ∈ ℝ
𝑚 is an m- dimensional Brownian 

Motion, and 𝐵𝑖(𝑡)  ∈  ℝ
𝑛×𝑛,  𝛽𝑖 (𝑡) ∈  ℝ

𝑛. 

Assume first A≡ A is constant.Then the solution of the following SDE: 

{
 
 

 
 𝑑𝑿𝒕 = (𝛼(𝑡) + 𝐴𝑿𝒕)𝑑𝑡 +∑ 𝛽𝑖 (𝑡)

𝑚

𝑖=1

𝑑𝑾𝒕

𝑿(0) = 𝑥0

 

 

X(t)= 𝑒𝐴𝑡𝑿0+∫ 𝑒
𝐴(𝑡−𝑠)𝑡

0
(𝛼(𝑠)ds+∑  𝛽𝑖 (𝑠)

𝑚
𝑖=1 d𝑾𝒕), where, 𝑒𝐴𝑡 ∶= ∑

𝐴𝑘 𝑡
𝑘

𝑘!

∞
𝑘=0 . 

For more general type, the solution of the following SDE: 

{
 
 

 
 𝑑𝑿𝒕 = (𝛼(𝑡) + 𝐴(𝑡)𝑿𝒕)𝑑𝑡 +∑ 𝛽𝑖 (𝑡)

𝑚

𝑖=1

𝑑𝑾𝒕

𝑿(0) = 𝑥0

 

 

X(t)= 𝜓(𝑡)(𝑿𝟎+∫ 𝜓(𝑠)−1
𝑡

0
(𝛼(𝑠)ds+∑  𝛽𝑖 (𝑠)

𝑚
𝑖=1 d𝑾𝒕)). 

 

In the following non-autonomous ODE system, the function 𝜓(𝑡), which is the 

fundamental matrix of the system, described as: 

 

𝑑𝜓

𝑑𝑡
= A(t) 𝜓,   𝜓(0) = 𝐼 . 

 

5.2 Solution of General Scalar Linear SDEs 

 

As preparation for the study of the vector – valued cause, let us investigate first the 

case d=1 (with m arbitrary) of the equation 

(⋇)

{
 
 

 
 𝑑𝑋𝑡 = 𝐴(𝑡)𝑋𝑡 + 𝛼(𝑡))𝑑𝑡 +∑(𝐵𝑖(𝑡)𝑋𝑡 + 𝛽𝑖(𝑡))𝑑𝑊𝑡

𝑖

𝑚

𝑖=1

𝑋𝑡0 = 𝑐.
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All the quantities in this equation (except 𝑊𝑡 ∈ 𝑅
𝑚) are scalar functions. Suppose 

that the coefficients 𝐴(𝑡), 𝛼(𝑡), 𝐵𝑖(𝑡), and 𝛽𝑖(t) are measurable and bounded on the 

interval [t0,T], so that there always exists a unique solution 𝑋𝑖, which we shall now 

determine explicitly. 

Equation (⋇) has the solution: 

𝑋𝑡 = 𝜓𝑡(𝑐 + ∫𝜓𝑡
−1(𝛼(𝑠) −∑𝐵𝑖(𝑠)𝛽𝑖(𝑠))𝑑𝑠 +∑ ∫𝜓𝑡

−1𝛽𝑖(𝑠)𝑑𝑊𝑡
𝑖)

𝑡

𝑡0

𝑚

𝑖=1

𝑚

𝑖=1

𝑡

𝑡0

, 

where 

𝜓𝑡 = exp (∫(𝐴(𝑠) −∑𝐵𝑖𝑠
2/2)𝑑𝑠 +∑∫ 𝐵𝑖(𝑠)𝑑𝑊𝑡

𝑖)
𝑡

𝑡0

𝑚

𝑖=1

𝑚

𝑖=1

𝑡

𝑡0

 

is the solution of the following homogeneous equation: 

𝑑𝜓𝑡 = 𝐴(𝑡)𝜓𝑡𝑑𝑡 + ∑ 𝐵𝑖(𝑡)𝜓𝑡𝑑𝑊𝑡
𝑖𝑚

𝑖=1 , 𝜓𝑡0 = 1. 

 

Proof. Let us use Itô’s theorem to show that this process has the stochastic 

differential (⋇). If we now set 𝜓𝑡0 = exp (𝑌𝑡) and 

𝑍𝑡 = 𝑐 + ∫𝑒
−𝑌𝑡

𝑡

𝑡0

(𝛼(𝑠) −∑𝐵𝑖(𝑠)𝛽𝑖(𝑠))𝑑𝑠 +∑ ∫𝑒−𝑌𝑡𝛽𝑖(𝑠)𝑑𝑊𝑡
𝑖

𝑡

𝑡0

𝑚

𝑖=0

𝑚

𝑖=1

, 

we get 𝑋𝑖 = 𝑈(𝑌𝑡, 𝑍𝑡) where U is defined by 𝑈(𝑥, 𝑦) = 𝑒𝑥𝑦. 

Application of Itô’s formula yields 

𝑑𝑋𝑡 = 𝑋𝑡𝑑𝑌𝑡 + 𝑒
𝑌𝑖𝑑𝑍𝑡 +

1

2
∑𝑡𝑟(

𝑋𝑡 𝜓𝑡
𝜓𝑡 0

𝑚

𝑖=1

)( )𝑑𝑡 

        = 𝑋𝑡(𝐴(𝑡) −∑𝐵𝑖(𝑠)
2/2)𝑑𝑡 + 𝑋𝑡(∑𝐵𝑖(𝑡)𝑑𝑊𝑡

𝑖)

𝑚

𝑖=1

𝑚

𝑖=1

 

       + (𝑎(𝑡) −∑𝐵𝑖(𝑡)𝛽𝑖(𝑡))𝑑𝑡 +∑𝛽𝑖(𝑡)𝑑𝑊𝑡
𝑖

𝑚

𝑖=1

𝑚

𝑖=1

 

      +∑(𝑋𝑡𝐵𝑖 (
𝑡)2

2
+ 𝐵𝑖(𝑡)𝛽𝑖(𝑡)) 𝑑𝑡 = (𝐴(𝑡)𝑋𝑡 + 𝑎(𝑡))𝑑𝑡

𝑚

𝑖=1

 

      +∑(𝐵𝑖(𝑡)𝑋𝑡 + 𝛽𝑖(𝑡))𝑑𝑊𝑡
𝑖

𝑚

𝑖=1

. 
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6. APPLICATIONS 

 

Example 1: 

Consider the following stochastic scalar linear differential equation with ℝ1- valued 

stochastic process 𝑋𝑡and one-dimensional Brownian motion 𝑊𝑡 :  

{

dX𝑡 = 𝜆𝑋𝑡𝑑W𝑡

𝑋(0) = 1,
 

where 𝜆 is a constant coefficient, 𝜆 ∈ ℝ. 

Solution: 

Let Y: = ln(X)= U(X(t),t) 

dY= 𝑈𝑡dt+ 𝑈𝑋dX +
1

2
𝑈𝑋𝑋 𝐺

2dt 

dY =0+
1

𝑋
dX -

1

2𝑋2
λ2𝑋2𝑑𝑡 =

1

𝑋
dx -

λ2

 2
𝑑𝑡 

dY=
1 

𝑋
𝑋. λ.dw-

λ2

2
𝑑𝑡 

∫𝑑𝑌 = ∫λdw −
λ𝟐

2
dt 

Y=λw(t) −
λ2

2
𝑡 + 𝑐 

X= 𝐶1𝑒
λw(t)− λ

2

2
t  ⟹X= 𝐶1𝑒

λw(0)− λ
2

2
.0 =1        

w(0)=0
⇒    𝐶1𝑒

0=1⟹ 𝐶1 = 1 

As a result, we have the solution as 

X(t)=𝑒𝜆𝑤
(𝑡)−

𝜆2

2
𝑡
. 
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Example 2: 

Consider the following stochastic scalar linear differential equation with ℝ1- valued 

stochastic process 𝑋𝑡and one-dimensional Brownian motion 𝑊𝑡 :  

{

𝑑𝑋𝑡 = 𝑔(𝑡)𝑋𝑡𝑑𝑊𝑡

𝑥(0) = 1,
 

where, g(t) is a continuous function (not a random variable).  

Solution: 

Let,Y:= ln(X)= U(X(t),t) 

dy=𝑈𝑡dt+𝑈𝑋dX +
1

2
𝑈𝑋𝑋𝐺

2dt 

dY=0+
1

𝑋
dX -

1

2𝑋2
𝑔2𝑋2𝑑𝑡 

=
1

 𝑋
.g.Xdw-

1

2
𝑔2dt 

∫𝑑𝑌 = ∫(𝑔𝑑𝑤 −
1

2
𝑔2dt) 

Y=∫ 𝑔𝑑𝑤
𝑡

0
- 
1

2
∫ 𝑔2 
𝑡

0
ds 

lnX =∫ 𝑔𝑑𝑤
𝑡

0
- 
1

2
∫ 𝑔2 
𝑡

0
ds 

X(t)=𝑐1exp[∫ 𝑔𝑑𝑤
𝑡

0
- 
1

2
∫ 𝑔2 
𝑡

0
ds],    𝑐1=1; 

X(t)=exp[−
1

2
∫ 𝑔2
𝑡

0
ds+∫ 𝑔𝑑𝑤

𝑡

0
] 

 

Example 3: 

Consider the following stochastic scalar linear differential equation with ℝ1- valued 

stochastic process 𝑋𝑡and one-dimensional Brownian motion 𝑊𝑡 :  

{

𝑑𝑋𝑡 = 𝑓(𝑡)𝑋𝑡𝑑𝑡 + 𝑔(𝑡)𝑋𝑡𝑑𝑊𝑡

𝑥(0) = 1,
 

where f(t) and g(t) are continuous functions. 
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Solution: 

Let, Y := ln(X)= U(X(t),t) 

dY=𝑈𝑡dt+ 𝑈𝑋dx +
1

2
𝑈𝑋𝑋𝐺

2dt 

dY=0+
1

𝑋
dX -

1

2𝑋2
𝐺2𝑑𝑡 

dY =
1

 𝑋
.[f.X.dt+ g.X.dw]-

1

2𝑋2
𝑔2𝑋2𝑑𝑡 

∫𝑑𝑌 = ∫(𝑓𝑑𝑡 + 𝑔𝑑𝑤 −
1

2
𝑔2dt) 

Y=∫ (𝑓 −
1

2

1

0
𝑔2)ds+∫ 𝑔𝑑𝑤

𝑡

0
 = lnX 

X(t)=  𝑐1exp[∫ (𝑓 −
1

2

𝑡

0
𝑔2)𝑑𝑠 + ∫ 𝑔𝑑𝑤

𝑡

0
], 𝑐1=1; 

X(t)= exp[∫ (𝑓 −
1

2

𝑡

0
𝑔2)𝑑𝑠 + ∫ 𝑔𝑑𝑤

𝑡

0
]. 

Example 4: 

Consider the following stochastic scalar linear differential equation with ℝ1- 

valued stochastic process 𝑋𝑡and one-dimensional Brownian motion 𝑊𝑡 : 

{

𝑑𝑋𝑡 = 𝑓(𝑡)𝑋𝑡𝑑𝑡 + 𝑔(𝑡)𝑋𝑡𝑑𝑊𝑡

𝑋(0) = 𝑋0.
 

where f(t) and g(t) are continuous functions. 

Solution: 

We will try to find a solution depart from previous example as a different 

approach by using product form of stochastic processes: 

X(t)= 𝑋1(t)𝑋2(t) 

where,   {

𝑑𝑋1 = 𝑔(𝑡)𝑋1𝑑𝑊

𝑋1(0) = 𝑋0,
                       (⋆) 

and          {

𝑑𝑋2 = 𝐴(𝑡)𝑑𝑡 + 𝐵(𝑡)𝑑𝑊

𝑋2(0) = 1.
      (⋆⋆) 

By using Ito product rule, we can write the following expressions: 
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dX =d(𝑋1𝑋2) =  𝑋1𝑑𝑋2 + 𝑋2𝑑𝑋1 + 𝑔(𝑡)𝑋1𝐵(𝑡)𝑑𝑡 

dX= g(t)XdW+(𝑋1𝑑𝑋2 + 𝑔(𝑡)𝑋1𝐵(𝑡)𝑑𝑡) 

dX = g(t)XdW+ 𝑋1(𝐴(𝑡)𝑑t+B(t)dW)+ g(t)𝑋1B(t)dt 

dX = (𝐴(𝑡)𝑋1 + g(t)B(t)𝑋1 )dt+ [g(t) 𝑋 +B(t)𝑋1]Dw.   

 When we choose,  B(t) ≡ 0       𝑎𝑛𝑑      𝐴(𝑡) ≡ 𝑋(t)d(t) , 

then, equation  (⋆⋆) transforms into simple non-random stochastic equation:  

{

𝑑𝑋2 = 𝑓(𝑡) 𝑋2𝑑𝑡

𝑋2(0) = 1
      ⟹  ∫

𝑑𝑋2
𝑋2
  =  ∫𝑓(𝑡)𝑑𝑡  ⟹  ln 𝑋2 = ∫ 𝑓(𝑠)𝑑𝑠

𝑡

0

 

⟹  𝑋2(𝑡) = exp (∫ 𝑓(𝑠)𝑑𝑠
𝑡

0

) 

Now we try to solve (⋆) {

𝑑𝑋1 = 𝑔(𝑡)𝑋1𝑑𝑊

𝑋(0) = 𝑋
 

Let Y∶= ln(𝑋1(𝑡)) = 𝑢(𝑋1(𝑡), 𝑡) 

dY =utdt+u𝑋1d𝑋1 +
1

2
u𝑋1𝑋1𝐺

2dt 

dY =0+
1

𝑋1
d𝑋1 −

1

2𝑋1
2 . 𝑔

2. 𝑋1
2dt 

dY =
1

𝑋1
. 𝑔. 𝑋1𝑑𝑊 −

1

2
𝑔2𝑑𝑡 

Y(t)=  𝑐0 + ∫ 𝑔(𝑠)𝑑𝑤(𝑠) −
1

2

𝑡

0
∫ 𝑔2(𝑠)𝑑𝑠 = 𝑙𝑛(
𝑡

0
𝑋1(𝑡)) 

𝑋1(𝑡) = 𝑥0exp[∫ 𝑔(𝑠)𝑑𝑤(𝑠) − 
1

2

𝑡

0
∫ 𝑔2
𝑡

0
(s)ds] 

By combining 𝑋1(𝑡) and 𝑋2(𝑡) in the product form, we can obtain the desired 

solution as follows: 

X(t)= 𝑥0exp[∫ (𝑓(𝑠) −
𝑡

0

1

2
𝑔2(s))ds+∫ 𝑔(𝑠)𝑑𝑤(𝑠)]

𝑡

0
 

Example 5: 

Consider the following SDE, which is related with stock prices. Let ℙ(t) represents 

the price of a stock at time t and 
𝑑ℙ

ℙ
 is the relative change of price model of P(t):  
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{

𝑑ℙ

ℙ
=  𝜇𝑑𝑡 + 𝜎𝑑𝑊

ℙ(0) = 𝑝0,

 

where, 𝜇 > 0  and 𝜎 are constant coefficients, called drift and volatility of the stock, 

respectively. 

Solution: 

Let’s write the above SDE as 

𝑑ℙ=μℙdt + σℙdw     (∗) 

Let, Y := ln(ℙ)= U(ℙ (t),t) 

dY = 𝑈𝑡dt+𝑈ℙdℙ+
1

2
𝑈 ℙℙ𝐺

2dt 

dY =0+
1

ℙ
d ℙ -

1

 2ℙ2
𝐺2𝑑𝑡 

dY =
1

ℙ
.[𝜇. ℙ.dt+ 𝜎. ℙ.dw]-

1

2ℙ2
𝜎2ℙ2𝑑𝑡 

∫𝑑𝑌 = ∫(𝜇𝑑𝑡 + 𝜎𝑑𝑤 −
1

2
𝜎2dt) 

Y= 𝜇𝑡 + 𝜎𝑤(𝑡) −
𝜎2

2
t 

Y = 𝑙𝑛ℙ  ⟹  ℙ(t) = 𝑝0exp [(𝜇 −
𝜎2

2
) 𝑡 +  𝜎𝑤(𝑡)] , 𝑝0 > 0. 

Equation  (∗) implies   ℙ(𝑡) = 𝑝0 + ∫ 𝜇ℙ𝑑𝑠 + ∫ 𝜎ℙ𝑑𝑊
𝑡

0

𝑡

0
 , 

then take expectation both side of above equality, we can easily observe that  

𝐸 (∫ 𝜎ℙ𝑑𝑊
𝑡

0
) = 0   and   𝐸(ℙ(𝑡)) = 𝑝0 + ∫ 𝜇𝐸(ℙ(𝑠))

𝑡

0
𝑑𝑠. 

Thus, 𝐸(ℙ(𝑡)) = 𝑝0exp (𝜇𝑡)  for   𝑡 ≥ 0. 

Consequently, the expected value of the stock price is equivalent to the 

deterministic solution of (*) corresponding to 𝜎 = 0. 

Example 6: 

Consider the following SDE, which is called “Brownian Bridge”: 

{
𝑑𝐵 = −

𝐵

1−𝑡
𝑑𝑡 + 𝑑𝑊

𝐵(0) = 0.

         (0≤ 𝑡 < 1) 
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Solution: 

Let Y∶=
𝐵

1−𝑡
= 𝑈(𝐵(𝑡), 𝑡) 

dY = 𝑈𝑡dt+𝑈𝐵dB +
1

2
𝑈𝐵𝐵𝐺

2dt 

dY=
𝐵

(1−𝑡)2
dt+

1

1−𝑡
 .[-

𝐵

1−𝑡
dt+dw]=

𝑑𝑤

1−𝑡
 

∫𝑑𝑌 = ∫
𝑑𝑤

1−𝑡
⟹ 𝑌 = ∫

1

1−𝑠

𝑡

0
dw(s)+𝑐0 

⟹
𝐵(𝑡)

1−𝑡
 = ∫

1

1−𝑠

𝑡

0
dw(s)+ 𝑐0 

B(t)=(1-t)∫
1

1−𝑠

𝑡

0
 dw(s)+𝑐0,    𝑐0 = 0 

B(t)=(1-t)∫
1

1−𝑠

𝑡

0
 dw(s). 

 

Example 7: 

Consider the following linear SDE, which is called “Langevin Equation” with ℝ1- 

valued stochastic process 𝑋𝑡and one-dimensional Brownian motion 𝑊𝑡: 

{

dX𝑡 = −𝛼𝑋𝑡𝑑𝑡 + 𝜎𝑑𝑊𝑡

X(0) = 𝑋0

 

, 

where, 𝛼, 𝜎 and 𝑋0are real constants. 

Solution: 

Let, Y ∶= 𝑒𝛼𝑡X(t)= U(X(t),t) 

dY = 𝑈𝑡dt+𝑈𝑋dX +
1

2
𝑈𝑋𝑋𝐺

2dt 

dY= 𝛼𝑒𝛼𝑡X(t)dt+ 𝑒𝛼𝑡𝑑𝑋 + 0 

dY= 𝛼𝑒𝛼𝑡X(t)dt+𝑒𝛼𝑡[-𝛼𝑋(𝑡)𝑑𝑡 + 𝜎𝑑𝑤(𝑡)] 

∫𝑑𝑌 = ∫𝜎𝑒𝛼𝑡dw(t)  ⟹ 𝑌 = ∫ 𝜎𝑒𝛼𝑠
𝑡

0
dw(s)+𝑐0 

𝑒𝛼𝑡X(t)=∫ 𝜎𝑒𝛼𝑠
𝑡

0
dw(s)+𝑐0 

𝑒𝛼0X(0)=𝑐0 = 𝑋0 
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𝑒𝛼𝑡X(t)= 𝑋 + ∫ 𝑒𝛼𝑠
𝑡

0
𝜎𝑑𝑤(𝑠) 

X(t)= 𝑋0𝑒
−𝛼𝑡+𝑒−𝛼𝑡 ∫ 𝑒𝛼𝑠

𝑡

0
𝜎𝑑𝑤(𝑠) 

X(t)= 𝑋𝑒−𝛼𝑡+ 𝜎 ∫ 𝑒−𝛼(𝑡−𝑠)
𝑡

0
𝑑𝑤(𝑠) 

Example 8: 

Consider the following linear SDE, which is called “Ornstein-Uhlenbeck Equation” 

associated with second order stochastic process 𝑌(𝑡)and white noise 𝜉(𝑡): 

 

{
�̈�(𝑡) = −𝑏�̇�(𝑡) + 𝜎𝜉(𝑡)

𝑌(0) = 𝑌0, �̇�(0) = 𝑌1,

 

where, b> 0 is the friction coefficient and 𝜎 is the diffusion coefficient. 

Solution: 

Let’s get assumption X(t)∶= �̇�(𝑡) the velocity process, satisfies the Langevin 

Equation: 

{

𝑑𝑋(𝑡) = −𝑏𝑋(𝑡) + 𝜎𝑑𝑊(𝑡)

𝑋(0) = 𝑌1.
 

We know the above equation from Example 7, so we get X(t) solution as follow: 

X(t)=𝑒−𝑏𝑡. 𝑌1+ 𝜎. ∫ 𝑒
−𝑏(𝑡−𝑠)𝑡

0
 dW(s). 

Take the integral on assumption, we get: 

Y(t)= 𝑌0+∫ 𝑋𝑑𝑠,  so we obtain the following:
𝑡

0
 

Y(t)=𝑌0 +∫ [
𝑡

0
𝑒−𝑏𝑡. 𝑌1 + 𝜎. ∫ 𝑒

−𝑏(𝑡−𝑠)𝑡

0
 dW(s)]dr 

Example 9: 

Verify that,   𝑋𝑡 = Sin (𝑊𝑡) with = a ) solves,  

d  = - dt + d  

 



29 

 

Solution: 

Let, d  = d(  ) = d  

- ds 

Example 10: 

Consider the following SDE, which is called “Cox-Ingesall-Ross (CIR) Interest 

Rate Model”: 

dR(t)=(𝛼 − 𝛽𝑅(𝑡))𝑑𝑡 + 𝜎√𝑅(𝑡) dW(t), 

where 𝛼, 𝛽 and 𝜎 are positive constants. 

Solution: 

Let, R(t)=𝑒−𝛽𝑡U(t)  with U(0)=R(0), 

dR(t)= - 𝛽𝑒−𝛽𝑡𝑈(𝑡)𝑑𝑡 + 𝑒−𝛽𝑡𝑑𝑈(𝑡), 

dR(t) = −𝛽𝑅(𝑡)𝑑𝑡 + 𝑒−𝛽𝑡𝑑𝑈(𝑡), 

𝑒−𝛽𝑡dU(t)= 𝛼𝑑𝑡 + 𝜎√𝑅(𝑡)dW(t). 

Thus, 

U(t) - U(0)= 𝛼 ∫ 𝑒𝛽𝑠
𝑡

0
ds+ 𝜎 ∫ 𝑒𝛽𝑠

𝑡

0
√𝑅(𝑠)d𝑊(𝑠), 

U(t)=R(0)+
𝛼

𝛽
(𝑒𝛽𝑡-1)+ 𝜎 ∫ 𝑒𝛽𝑠√𝑅(𝑠)

𝑡

0
dW(s), 

R(t)= 𝑒−𝛽𝑡R(0)+
𝛼

𝛽
(1-𝑒−𝛽𝑡)+ 𝜎𝑒−𝛽𝑡 ∫ 𝑒𝛽𝑠√𝑅(𝑠)

𝑡

0
dW(s). 

Example 11: 

Consider the following general type linear stochastic differential equation with ℝ1- 

valued stochastic process 𝑋𝑡and one-dimensional Brownian motion 𝑊𝑡: 

 (†) 

Solution: 

We can use product form of stochastic processes as follow: 
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d -  

d  

dt +  d dt    

 

Example 12: 

Consider the following linear SDE, which is called “Vasicek Interest Rate Model”: 

dR(t)=(𝛼 −  𝛽𝑅(𝑡))𝑑𝑡 + 𝜎𝑑𝑊(𝑡), 

where, R(t) interest rate process, 𝛼, 𝛽 and 𝜎 are positive constants. 

 

Solution: 

Let, dR(t)=- 𝛽𝑅(𝑡)𝑑𝑡,     𝛼 = 0, 𝜎 = 0 

R(t)=R(0)𝑒−𝛽𝑡. 

Then, R(t)=𝑒−𝛽𝑡. 𝑉(𝑡)    𝑤𝑖𝑡ℎ  𝑉(0) = 𝑅(0). 

dR(t)= - 𝛽𝑒−𝛽𝑡. 𝑉(𝑡)𝑑𝑡 + 𝑒−𝛽𝑡. 𝑑𝑉(𝑡) 

dR(t)= - 𝛽𝑅(𝑡)𝑑𝑡 + 𝑒−𝛽𝑡. 𝑑𝑉(𝑡), so 

𝑒−𝛽𝑡. 𝑑𝑉(𝑡)= 𝛼𝑑𝑡 + 𝜎𝑑𝑊(𝑡) 

V(t)-V(0)= 𝛼. ∫ 𝑒𝛽𝑠
𝑡

0
ds+ 𝜎 ∫ 𝑒𝛽𝑠

𝑡

0
dW(s) 

V(t)=R(0)+
𝛼

𝛽
(𝑒𝛽𝑡-1)+ 𝜎 ∫ 𝑒𝛽𝑠

𝑡

0
dW(s) 

Consequently, we get;  

R(t)= 𝑒−𝛽𝑡𝑅(0) +
𝛼

𝛽
(1-𝑒−𝛽𝑡) +  𝜎𝑒−𝛽𝑡 ∫ 𝑒𝛽𝑠

𝑡

0
dW(s). 

X(t) = (t). (t). 

Now, main SDE (†) transforms into two Adjoint SDEs: 
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(Adjoint SDE-1):   

and 

(Adjoint SDE-2):  

By using Ito product rule, 

dX(t) = d + + f(t) B(t)dt, 

dX(t) = dt + f(t) [A(t)dt + B(t)dW] + f(t) B(t)dt, 

dX(t) = [Xd(t) + A(t) + f(t) B(t)]dt + [f(t)X + B(t) ]Dw, 

f(t)X + B(t)  = e(t) + f(t)X, 

Here, B(t)  e(t). . 

Xd(t) + A(t) + f(t) B(t) = C(t) + Xd(t), 

A(t) + f(t). , 

A(t) + f(t). , 

Here, A(t) . 

Now, we can solve the following Adjoint SDE-1: 

 

Let, Y: = ln(X) = U(X(t), t), 

dY = dt + U d  U dt, 

dY = 0 + d -  . dt, 

dY = [d(t) dt + f(t) dW] - dt, 
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7. CONCLUSION 

 

In this thesis, stochastic linear differential equations and applications has been 

studied.Moreover , Ito’s stochastic differential equations and some properties of  Ito 

Formula and Ito product rule have been discussed. Ito’s Formula has been displayed 

for finding exact solutions to certain stochastic differential equations. Also, Ito 

Lemma has been shown how it can be applied to solve linear stochastic differential 

equations analytically. Furthermore, existence and uniquness theorems has been 

explained for SDEs and exlicit solution of general scalar linear for SDEs has been 

proved. Then, several examples have been given to illustrate  Ito’s Formula in 

applications. 
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