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ABSTRACT 

A NEW WAREHOUSE LAYOUT MODEL WITH INTERSECTING 

NON-TRADITIONAL CROSS AISLES 

 

Mağara, Ayşegül 

Msc, Industrial Engineering 

Advisor: Asst. Prof. Dr. Ömer ÖZTÜRKOĞLU 

 

May 2018 

Recent studies of warehouse layout designs show that the travel distance for order-

picking operations can be reduced by changing the angle of the cross aisles in the 

traditional warehouse layout, eventually leading to the emergence of non-traditional 

layouts. In this thesis, a new design idea is proposed to search for better layouts for 

order-picking operations than traditional two-block layouts. For this, two angled 

cross aisles are allowed to intersect in the middle of the storage area, therefore this 

design idea is called as X-shape warehouse layout. A new constructive aisle model is 

developed so as to evaluate all possible layout options that can be generated by the 

new idea. In order to calculate order picking tour length, one of the best known 

metaheuristics algorithm called Ant Colony Optimization algorithm is used. Next, 

Differential Evolution algorithm is used to explore the best values of the design 

variables to minimize average order-picking tour length for a given number of 

orders. Last, it was shown that the best-found X-shaped designs unfortunately do not 

provide any savings on tour length over the equivalent two-block traditional designs 

in many cases. Only best-found designs with 3:1 shape ratios presented 1.5% 

reduction on average tour length for small picklist sizes in comparison to the 

equivalent two-block layouts. 

Key Words: Non-traditional warehouse design; Aisle design; Randomized storage; 

Constructive algorithm; Reel number optimisation 
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ÖZ 

KESİŞEN ANA KORİDORLU GELENEKSEL OLMAYAN YENİ BIR 

DEPO TASARIMI 

Mağara, Ayşegül 

Yüksek Lisans Tezi, Endüstri Mühendisliği 

Danışman: Öğr. Üyesi Dr. Ömer ÖZTÜRKOĞLU 

 

Mayıs 2018 

Yakın zamanda yapılan depo tasarımları, sipariş toplama işlemlerinin tur mesafesinin 

geleneksel depo tasarımlarındaki koridorların açısını değiştirerek azaltılabilmesine ve 

geleneksel olmayan (yenilikçi) tasarımların ortaya çıkmasına yol açmıştır. Bu tezde, 

sipariş toplama operasyonu için geleneksel iki bloklu depo tasarımlarından daha iyi 

bir dizayn arayışında, yeni bir tasarım fikri önerilmiştir; depolama alanının ortasında 

iki ana koridorun kesişmesine izin verilmiştir ve bu tasarım X şeklindeki depo 

tasarımı olarak adlandırılmıştır. Bu yeni fikir tarafından üretilebilecek tüm olası 

yerleşim seçeneklerini değerlendirmek için yeni bir koridor modeli geliştirilmiştir. 

Sipariş toplama için yapılan tur uzunluğunu hesaplamak için çok bilinen bir meta-

sezgisel yöntem olarak Karınca Kolonisi Optimizasyon Algoritması kullanılmıştır. 

Sonrasında Diferansiyel Evrim Algoritması, verilen sipariş listesi uzunluğuna göre 

ortalama sipariş toplama tur uzunluğunu en aza indirmek için tasarlanan modelin 

değişkenlerinin en iyi değerlerini araştırmak için kullanılmıştır. Son olarak, maalesef 

ki çoğu durumda X şekilli tasarımların eşdeğer iki bloklu geleneksel tasarımlar 

üzerinde tur uzunluğunda herhangi bir tasarruf sağlamadığı gösterilmiştir. Elde 

edilen 3:1 şekil oranına sahip X şeklindeki en iyi depo tasarımlarında, eşdeğer iki 

bloklu tasarıma kıyasla küçük sayıdaki sipariş toplama işlemi için ortalama tur 

uzunluğunda %1.5 azalma sağlanmıştır. 

Anahtar Kelimeler: Yenilikçi depo tasarımı; Koridor tasarımı; Rassal depolama 

politikası; Sipariş toplama rota uzunluğu; Çözüm oluşturma algoritması; Reel sayı en 

iyileme
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CHAPTER 1 

INTRODUCTION 

E-commerce activities and online sales are increasing day by day in today's world. 

According to an annual survey that was made by comScore and UPS, consumers buy 

51% of their needs from online stores. The percentage was 47% back in 2014 

(Farber, 2016). In order to meet this increasing demand, online stores were started to 

demonstrate larger storage areas. One of the key factor of making consumers 

satisfied is delivering their products as quick as possible. Consequently, warehouses 

have started playing an important role in the supply chain management because the 

importance of customer satisfaction and response time to customer orders have been 

increasing. Therefore, the duration to perform warehouse operations become one of 

the critical performance measures for warehouse managers. The major warehouse 

operations are receiving, put-away, order-picking and shipping. Among these 

operations, the order-picking operation is regarded as the most costly and critical 

operation because it causes 60% of the total cycle time and 50% of the total 

operational cost (Frazelle, 2002; De Koster, 2007; Bartholdi and Hackman, 2011). In 

order to decrease the order-picking operation cost, mainly 3 approaches are defined 

in the literature; namely using batches, changing layout and changing storage policy. 

Order batching is basically grouping orders to be simultaneously picked in a single 

tour and the aim is finding the optimum way of grouping to minimize picking time or 

travel length. According to specifications of products in the warehouse like 

consumption frequency and size, using appropriate storage policy can also reduce 

travel time or picking length. The storage policy types are briefly mentioned in 

Chapter 1.1.2. Also there are many studies in the literature for both batching and 

storage policy (Henn and Wascher, 2010; Chackelson et al., 2011; Rouwenhorst et 

al., 2000; Hong et al., 2012). Another variation of the approach is the layout change, 

which has a significant effect on the order picking process. We can see in the 

literature the studies on traditional designs which have been widely used for many 
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years. But also in recent years there are studies which based on the idea of changing 

the layout to different shapes. 

Since there are researches a few in number that has focused on order-picking 

operations in the non-traditional aisles, this thesis aims to fill this gap in the literature 

(Dukic and Opetuk, 2008; Çelik and Süral, 2013). In this thesis, we focused on the 

way possibility of changing the layout. There is a kind of warehouse layout that is 

commonly used named as traditional warehouse which is easy to implement and the 

efficiency of tour length is quite remarkable. Therefore, the question is if the main 

aisles are changed like the way never studied before, could order picking tour length 

be reduced? According to rule of triangle inequality, the hypotenuse is shorter than 

the sum of the other two sides in a triangle. With respect to this law, we inset two 

intersecting cross aisles in storage area, which allows to make the picker less total 

tour length than traditional ones under same order picking list. In this thesis, we 

research optimal warehouse layout with X-shape cross aisles under random storage 

policy with modelling it and analyze its efficiency for order-picking operation.   

The reminder of this thesis is organized as follows: We review the related literature 

in Chapter 1. In Chapter 2, we present a new warehouse design and define the 

modelling of our problem. The calculation of route length in the warehouse and 

implementation of related algorithms is detailly explained in the Chapter 3. We 

finally provide results of our problem, an overall summary of this thesis and discuss 

possible directions for future research in Chapter 4. 

1.1. Literature Review 

1.1.1. Aisle Design 

Designing of warehouse layouts includes a series of decision. Such as “Where to a 

Pick-up and Deposit (P&D) point will be represented”, “How many blocks and aisles 

should be there”, “Where the main aisle is going to be represented”. Although there 

are few studies in the literature, changing layout design may provide significant 

efficiency (Gue and Meller, 2009b; Öztürkoğlu et al., 2014; Mesa, 2016). It can be 

argued that the layout type named as traditional warehouse that was generated in 

nearly half century ago having been the most common layout type. Gue and Meller 

(2009) referred a layout with highlighting two main design rules; first, order picking 
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aisle should be parallel to each other (horizontal or vertical) and second if there are 

main aisles then they should be perpendicular to order picking aisles. There are 

examples of traditional layout types represented in Figure 1.1. These designs are the 

most common in warehouses, because they are less costly, easy to be implemented 

and they provide many efficiently usable places for storage. 

 

Figure 1.1 Traditional Warehouse Layout Examples. 

Although traditional layouts are commonly used, in recent years there are some 

studies that propose non-traditional layouts to reduce travel distance in warehouse. 

The first idea of angled aisles in warehouses is suggested by Berry (1968) and White 

(1972) but they didn’t propose any layout. Gue and Meller (2009) improved that idea 

and converted it to a new warehouse design. With their two-innovative designs 

(shown in Figure 1.2), the authors showed that expected single command distance 

could be decreased about 10-20% compared to the equivalent traditional design. 

 

Figure 1.2 Examples of Innovative Warehouse Designs. Adapted from: “Aisle 

configurations for unit-load warehouses.” By Gue, K. R., & Meller, R. D. (2009), IIE 

Transactions, 41(3), 171-182. 

Pohl et al. (2009b) studied the innovative Fishbone design for dual-command 

operation and show that this design reduces dual‐command travel by 10–15%. In 

Pohl et al. (2011) they investigate both Flying-V and Fishbone design within the 

scope of the turnover based storage policy, and they also showed that these layouts 

still provide reduction on travel distance over traditional layouts. Öztürkoğlu et al. 

(2012) proposed innovative designs for warehouses which have single command 

a) Design A 

 

b) Design B 

a) Flying-V b) Fishbone 
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operation and random storage policy: Chevron, Leaf and Butterfly (shown in Figure 

1.3). For Chevron design, it is noted that average single-command distance decreased 

about 13-20%, however area requirement increased in average 5%. 

 

Figure 1.3 Optimal Designs for Single-Command Operation. Adapted from: 

“Optimal unit-load warehouse designs for single-command operations.” By 

Öztürkoğlu, Ö, Gue, K. R., & Meller, R. D. (2012). IIE Transactions, 44(6), 459-475. 

Pick-up and deposit point (P&D) is a location in a warehouse that picker starts to 

collect products and deposit them in this location. There are studies in the literature 

where there are different numbers of P&D points in different places. In the study of 

Gue et al. (2012), P&D point is placed in front of warehouse and in Öztürkoğlu et al. 

(2014) P&D point is located at different locations of warehouse. According to 

Öztürkoğlu et al. (2014)’s study, multiple P&D point innovative designs decreased 

the average single-command travel distance between in the range of 3-10%. These 

designs are demonstrated in Figure 1.4. 

 

Figure 1.4 Innovative Warehouse Designs for Multiple P&D points. Adapted from: 

“A constructive aisle design model for unit-load warehouses with multiple pickup 

and deposit points.” By Öztürkoğlu, Ö, Gue, K. R., & Meller, R. D. (2014). 

European Journal of Operational Research, 236(1), 382-394. 

For sequential order picking operation, Dukic and Opetuk (2008) showed that 

traditional Design B is better than Fishbone design. However, Çelik and Süral (2013) 

showed that there are some cases where Fishbone design has 5-10% improvement 

less routing length than Design B. 

1.1.2. Order Picking (OP) 

One of the most important factors affecting average order picking length is to 

b) Leaf a) Chevron c) Butterfly 

a) Design A2 c) Design C2 b) Design B2 
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determine in which areas the products will be stored and stocked in. The most 

frequently cited strategies in industry and literature are randomized, dedicated, class-

based and turnover-based product storage policies. Because of ensuring the usage of 

storage areas with high efficiency and simplicity of implementation, random storage 

strategy is used frequently in the industry. According to this method, products are 

randomly placed with the equal probability to the appropriate free storage cells 

(Petersen, 1999). Dedicated storage policy involves placing products in predefined 

areas for themselves. In this policy, because the placement of products in certain 

cells gains awareness to collectors, productivity increases in order picking. However, 

the policy causes low capacity utilization up to 50% at warehouses in which the 

seasonality is experienced or the rate of transformation is low (Bartholdi and 

Hackman, 2011). Class based storage policy has emerged by combining random and 

allocated field storage policies. In this policy, products are classified into classes 

according to their turnover rate and a storage area is allocated to each product class 

according to the total storage needs and proximity of the cells to the P&D point. 

Subsequently, products in each class are placed according to the random product 

placement policy in the respective cells allocated for its class. In traditional 

warehouse designs, there are three generally accepted applications of this policy; 

diagonal, across-aisle and within-aisle storage (Petersen and Schmenner, 1999). 

The order picking process in the warehouses is the total tour of which the storage 

cells identified to be visited according to the given pick list. After visiting the last 

location in the tour, picker usually returns to the initial point. What is problematic is 

that the picker visits each cell only once and returns to the starting point. This is a 

special Travelling Salesman Problem (TSP) as called Steiner TSP which is most 

extensively studied in the literature and one of the NP-hard problem (Ratliff and 

Rosenthall, 1938; De Koster et al., 2007; Theys et al., 2010). The most common 

approach is these kinds of studies are assuming this sequential order picking route as 

TSP and modelling it. In order to solve these problems, exact algorithms and 

heuristics are chosen. In traditional layouts exact algorithms like linear 

programming, dynamic programming and branch-and-bound algorithms can 

calculate the optimal tour length. Ratliff and Rosenthal (1983)'s pioneering study 

showed that an optimal order-picking route can be solved in polynomial time using a 

dynamic programming-based exact algorithm for one-block warehouses. Roodbergen 
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and De Koster (2001a) extended this algorithm for two-block warehouses, and 

developed an exact algorithm to solve the order-picker route in polynomial time. 

Gelders and Heeremans (1994) and Roodbergen and de Koster (2001b) solved the 

optimal order-picking route as a traveling salesman problem (TSP) by using Little et 

al. (1963)'s branch-and-bound algorithm. In addition to these exact algorithms, 

special heuristics, such as s-shape, aisle-by-aisle, largest-gap, mid-point, and return, 

have been proposed for generating reasonable routes in traditional warehouse designs 

(Kunder and Gudehus, 1975; Hall, 1993; Petersen, 1997; Roodbergen and de Koster, 

2001b). Although exact algorithms are successful to finding optimal tour length for 

traditional layout, heuristic methods are more preferred to calculate total order 

picking tour length for non-traditional layouts. Greedy algorithms (Cormen et al., 

1990) and constructive heuristics like Genetic algorithms (Eiben et al., 1994), 

Simulated annealing (Metropolis et al., 1953), Tabu search (Glover, 1986) etc. are 

some of the famous heuristic algorithms which applied in many studies which based 

on TSP. Specially metaheuristic algorithms are preferred in recent years to solve TSP 

based problem (Panda, 2018; Mazidi and Damghanijazi, 2017; Zhang et al., 2018). 

They have trade-off criteria; they can be shortened the calculation time but deviation 

from optimal of algorithm may be increased consequently. 

There are limited studies in the literature for order picking operation in non-

traditional warehouse layout. Dukic and Opetuk (2008) studied Fishbone layout and 

used an s-shape algorithm which is a special heuristic algorithm to compare 

efficiency with Design B. However, because they couldn’t find optimal total tour 

length, they couldn’t prove the improvement of Fishbone. Çelik and Süral (2014) 

calculated the optimal tour in Fishbone and showed that 5-10% less tour over Design 

B in small pick list sizes. Although using an exact algorithm to solve TSP gives more 

accurate solutions, it is very exhausting way to investigate a new non-traditional 

warehouse design problem. Because the main order-picking routing algorithms rely 

on a specific layout, they lack the flexibility to be used if the layout changes. Instead 

of applying exact algorithms, recently developed heuristic methods which perform 

good at finding close to optimal solution are more effortless.  
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CHAPTER 2 

MODELLING THE WAREHOUSE 

As mentioned in the previous section, there are many innovative design studies in the 

literature that have broken many design rules in different ways. (Gue and Meller, 

2009; Öztürkoğlu et al., 2012; Öztürkoğlu et al., 2014). Although these designs 

provided reductions on travel distance, they cause extra storage area to because of 

the loss of locations due to angled and additional cross aisles. For example in 

Öztürkoğlu et al. (2014), the two non-intersecting aisle designs showed that expected 

travel distance can be reduced by 3-10% by needed 5-14% more space. The 

feasibility of a warehouse design is to offer a higher level of improvement than the 

area is needed. When suggesting a new layout, this performance should be taken into 

account. 

The importance of the order picking operation is mentioned in the previous section. 

We can see that most of previous studies on this topic are about traditional layouts. 

However, there are limited studies on order picking tour in the non-traditional 

warehouses. Therefore, to fill the significant gap on a need of a warehouse design 

that reduced order picking tour length in the literature, in this thesis we examine a 

new warehouse layout design that can make order picking operation more efficient. 

In addition to innovative designs that have broken many design rules, designing and 

modelling of a warehouse which has only two intersecting aisles has been 

investigated in this thesis. 

We have several design and model assumptions for our problem. The design 

assumptions are listed below. 

• The storage area in the warehouse has a rectangular shape. Each side of the 

warehouse is also a cross aisle that aims to facilitate travel between locations. 

They are called “periphery cross aisles”.  

• There are two inserted, linear angled cross aisles in the storage area that 

intersect in the centre of the warehouse. In particular, the presence of the 
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centre point is expected to facilitate accessing between the storage cells of the 

four different regions. They are also allowed to be originated from any side of 

the warehouse. Additionally, they are not allowed to overlap.  

• Two intersecting cross aisles divide the warehouse into four picking regions. 

The picking aisles in each region assumed to be parallel to each other. 

• There is only one P&D point in the warehouse and it is located in the middle 

of the front cross aisle.  

Hence, we call our problem “X-shape aisle design” problem. Figure 2.1 shows the 

simple representation of X-shape non-traditional warehouse. 𝑆1 and 𝑆2 refer the 

starting points of the first and second cross aisles. 𝐸1 and 𝐸2 are referred as ending 

points of cross aisles respectively.  

 

Figure 2.1 X-shape Warehouse Model. 

2.1. Encoding 

The idea of representing a general warehouse design with a vector was seen first in 

Öztürkoğlu et al. (2014). With this vector, best warehouse layouts were searched and 

depicted. Based on the proposed encoding of Öztürkoğlu et al. (2014), we also 

develop our encoding to represent any warehouse design in our model. This encoding 

includes a set of continuous variables that are used to generate an X-shape warehouse 
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layout:  {𝑆1𝑥, 𝑆1𝑦, 𝑆2𝑥, 𝑆2𝑦, 𝛼1, 𝛼2, 𝛼3, 𝛼4 } . There are four picking regions in a 

warehouse that is divided by the intersecting two angled cross aisles. First picking 

region is assumed to be the area between 𝑆1 and 𝑆2. Second region is specified as the 

area between 𝑆2  and 𝐸1  and the other regions are indexed in clockwise direction. 

Hence, angles of picking aisles in these respected picking regions defined by index 

𝑖 ∈ {1,2,3,4} are indicated by 𝛼𝑖 ; 0 ≤ 𝛼𝑖 ≤ 𝜋. 

In order to reduce the number of variables, the rectangular shape warehouse is 

indicated by a continuous loop as suggested by Öztürkoğlu et al. (2014). Thus, the 

upper left, upper right, lower right and lower left corners take the values of 0, 1, 2, 3 

respectively. In order to form a closed loop, the upper left corner also takes the value 

of 4. Hence, the variable  𝑚 ∈ [0,4] is used to indicate the initial point of first angled 

cross aisle. It can be easily converted to a point as long as the width and the length of 

the warehouse is given. Additionally, as assumed that two angled cross aisles are 

intersecting in the center of the warehouse, let 𝑂𝑥 and 𝑂𝑦 are the x and y coordinates 

of the centroid as (𝑂𝑥, 𝑂𝑦), respectively. Because of the assumption of linear angled 

cross aisles, the end point of the first angled cross aisle can be easily obtained by 

using 𝑚 and 𝑂 . Moreover, let 𝛽  be the clockwise angle (0 ≤ 𝛽 ≤ 𝜋) between the 

first and the second angled cross aisles. When 𝑚 and 𝛽 is known, the initial point of 

the second angled cross aisle can easily be obtained, as well as its end point. Last, the 

encoding is reduced to {𝑚, 𝛽, 𝛼1, 𝛼2, 𝛼3, 𝛼4 } . We also studied on the symmetric 

layouts based on the orientation of the angled cross aisles. As shown in Appendix 1, 

we can reduce the search space of 𝑚 ∈ [0,2]. 

After specifying the warehouse layout in our model, according to the specified 

product placement policy, the calculation of average picking tour length has been 

made. The representation vector and thus the design is altered for searching the best 

layout within each class. 

2.2. Layout Generation 

Traditional warehouse layouts are as we mentioned in section 1, most preferred 

layout types due to being well-balanced at two key indicators; easy to implement and 

acceptable picking tour length. It can be argued that non-traditional warehouse 

layout’s appliance is not so effortless. Therefore, the main aim is developing a 
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warehouse layout to create an environment for shorter order picking route under 

constraints to be preferred over the traditional layout. To compare to traditional 

warehouse and our warehouse model, there are 3 different width (W)/ length (L) 

ratios as warehouse size are selected. These ratios determine the capacity, height and 

width.  

Our warehouse model has extra parameters different from Design B warehouse. 

Some of parameters are fixed for every shape ratio in one pallet unit (1 PU= 10 

pixels). Such as; 

• Cross aisles’ width is decided as 2.0 PU.  

• Pallet size is another fixed parameter which is 1.0 PU.  

• The width of picking aisles “a” is fixed at 1.5 PU.  

Some of parameters are changed for every different layout. In our non-traditional 

model there are two cross aisles and to identify their location 𝑚 and 𝛽 variables were 

used. As mentioned in “Encoding” part, picking aisles’ angle 𝛼𝑖  can be differ for 

every warehouse layout.  

After deciding the parameters of the warehouse, next step is deciding which steps are 

going to follow for constructing a non-traditional warehouse layout. With shaping 

outer edges and the main cross aisles of the warehouse formed by the resolution of 

the vector, there are simple warehouse regions are developed. Then according to our 

assumption, for the picker to travel around the warehouse, side cross aisles are placed 

in the layout. The whole warehouse design is constructed by following the steps in 

the Figure 2.2.  

 

Figure 2.2 General Steps for Layout Construction. 

Shape Outer Edge According to 

Width Height Ratio  

Place Side Cross Aisles All Over 

the Warehouse 

Locate P&D 
Locate Cross Aisles According  

to 𝑚 and 𝛽  

Fill Every Region with Pallets and 

Specify Picking Aisles 
Complete the Layout Design 
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2.2.1. Region Construction 

A region in a layout refers a separated storage area which is defined by the side and 

the angled cross aisles. As we mentioned before, the picking aisles in a region are 

willing to be parallel to each other. And all the picking aisles in the region have the 

same angle.  

The most critical part in our module is to define each region appropriately. As seen 

in the Figure 2.3, there might exist regions with different shapes. These can be seen 

as triangular, quadrilateral or pentagonal shaped regions according to the orientations 

of the cross aisles. Therefore, to be able to construct these kind of shapes, their 

corners should be determined appropriately. After all the regions are described, to 

construct racks, we need to define a reference point for placing the initial pallet 

location.  

 

Figure 2.3 Defining Regions. 

2.2.2. Reference Point 

The first and significant step is the process of determining the reference point. The 

reference point refers to a point where the first pallet in the storage area is placed. 

With placing pallets according to first pallet, picking aisles are formed which is 

explained in detail in next section. The incorrect selection of this reference point 

means the pallets and picking aisles in the entire warehouse area are designed 

incorrectly. Because of that, the instructions that are decided carefully must be 

followed. 

As in the cartesian coordinate system, the reference point is determined at the plane 

where two forming lines are intersecting at point 0 while the x line increases to the 

right side and the y line increases downward. The simple logic is to find the point at 

which the greatest number of pallets are placed in the predetermined area. This 

investigation is done according to the angle of picking aisles. If there is only one 

reference point candidate in an area, that point is designated as the reference point. 

 
  

Triangular region Quadrilateral region Pentagonal region 
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But also an area can have more than one reference point candidate. If picking aisles’ 

angle is 𝛼𝑖 = 0 or 𝛼𝑖 = π
2⁄  and there is a corner point in the area, that corner point 

is selected as the reference point. If any of the top points are not a corner, then the 

most appropriate point at the edges is defined as the reference point. If 𝛼𝑖 ≠ 0 or 

𝛼𝑖 ≠ π
2⁄   then the steps of determination of the reference point in that case is shown 

as a flowchart at Figure 2.4. To guarantee the first pallet placement, the further 

intersection point is set as candidate reference point. Therefore, we determine two 

alternative reference points, chosen from the corners of the storage area. The reason 

is that, when we check the first pallet, if it is located out of the region, then we take 

the other reference point. In order to pick an appropriate reference point, we consider 

the angles of the picking aisles in the region. So that we create all parallel racks 

without any interruption starting from the reference point. 

 

Figure 2.4 Flowchart of Determination of Reference Point. 

Draw a line passing through from centre with 𝛼𝑖 (named as centre line) 

Continue to draw lines parallel to the centre line until cover the whole 

determined area 

Calculate the intersection points of the edges of the area with the nearest and 

furthest parallel lines 

Calculate the nearest and furthest parallel line from the control line 

Draw an extra parallel line farther from determined area (named as control 

line) 

Set nearest intersection point as reference point 
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2.2.3. First Pallet  

According to the nature of the research subject, the areas are formed between 

warehouse edges, related main cross aisles and intersection point of cross aisles. 

These areas should be filled with pallets. The first pallet refers to the initial pallet 

location in a region. A pallet location represented by its centroid and corners. Hence 

according to alternative reference points and the angle of the picking aisle in the 

region we create the centroid of the first pallet and then its corners. We check is it 

located in the region. If it is not, then we use the alternative reference point. In order 

to calculate the centroid of the first pallet as follows; 

The pallet establishment is started with examination and calculation of the first pallet 

position according to the selected reference point in the area. The calculation is made 

with 𝛽  which is the angle between main cross aisles and 𝛼𝑖 which is the angle 

between picking aisle and the warehouse edge. As a result of our work, 4 different 

main representations can cover all pallet versions for all possible 𝛼𝑖values. In Figure 

2.5, these 4 main pallets are shown.  

 

Figure 2.5 Main Pallets. 
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Figure 2.6 Example of Calculation of Initial Pallet. 

Corners and the centroid of initial pallet calculation is illustrated in Figure 2.5 and a 

detailed example of placing initial pallet in the warehouse shown in the Figure 2.6. 

The calculation is performed together with the equations given in the Table A2.1 in 

the Appendix 2 and the main pallets in the Figure 2.5.  

2.2.4. Other Pallets 

In order to build a rack, pallets should be continuing in the defined area. After the 

first pallet is placed, other pallets in the rack must continue to locate in accordance 

with the appropriate angle of picking aisles in the region. At step one, it is checked 

whether there is enough space for one pallet by following 𝛼𝑖 angle adjacent to the 

initial pallet. After placing a pallet successfully, sometimes there will not be enough 

space to fit another pallet one on the orbit while forming up an aisle. In this case, 

overflow pallet is placed just below or above (according to the direction for 

construction of whole region) of the previously placed pallet. An example of this 

pallet placing policy is shown in Figure 2.7. The new pallet was tried to be located in 

the direction of the arrow (parallel to the angle 𝛼𝑖) to the nearest (in this example to 

the right) of the genesis pallet which is indicated by darker colour on the upper left 

corner. Due to lack of place, unfortunately the pallet that has grey colour cannot be 

placed in defined area. So, we move on to build another rack. To do that, we place a 

pallet just below to genesis pallet. Because of having not enough space, instead of 

placing to the left side first and continuing with the right side; new pallets continue to 

be placed to the right. (Positioning was made, taking into account that the warehouse 

was viewed from above.) As presented in Figure 2.7 without extending the area, 
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“two lines of pallet-picking aisle-two lines of pallet” pattern continue to construct 

whole area with following 𝛼𝑖 angle. These steps progress until all four regions filled 

by pallets.  

 

Figure 2.7 Building Racks. 

2.3. Network Construction 

This stage aims to generate a network of nodes and edges that represent the pallet 

locations and intersects of aisles in a typical warehouse layout to ease of travel path 

calculations. There are similar approaches in the literature that converted a given a 

warehouse layout to a graph (Radliff and Rosenthal, 1983; Roodbergen, 2006; 

Öztürkoğlu, 2011; Ansari, 2017).  

A typical warehouse network consists of a set of special nodes called access nodes, 

pick-up and deposit nodes, travel nodes and cross nodes. Access nodes are the points 

that are located on the central line of a picking aisle (see Figure 2.8). As seen in the 

figure, even though some access nodes, of which one serves the pallet location on the 

left and the other serves to the pallet location on the opposite side, are located on the 

same coordinate, however they are uniquely defined for the purpose of accurate 

network representation. In order to allow travel between these nodes, they are 

connected by an edge with a distance of zero. The centres of the pallet locations are 

used to calculate the coordinates of these access nodes. The calculation of access 

points’ location is shown in the Figure 2.8. The first step of the calculation is 

determination of which pallet’s access node is to be calculated. Then a line is drawn 

parallel to the warehouse edge from the center of the corresponding pallet. As a next 
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step, a parallel line is drawn vertically to the center point of the aisle. When we 

connect center of pallet and middle point of the aisle, we get a right-angled triangle 

as can be seen in the Figure 2.8. Because of width of picking aisle and the 𝛼𝑖 angle 

and the side cross aisle are already known, with a simple Pythagoras equation, the 

access points’ coordinates are calculated. These steps are followed for locating all the 

access nodes in the warehouse. 

The pick-up and deposit nodes represent the existing P&D points from and to where 

materials go through. In our model we assumed that it is fixed in the middle of front 

cross aisle. Travel nodes are intersecting points of central lines of picking and cross 

aisles that are assumed to be used to access to the picking aisles. Last, cross nodes 

are defined as the intersects of central lines of cross aisles that are used to change 

aisles for ease of travel to the required locations (see Figure 2.8 for an example 

nodes). For the sake of clarification, only cross nodes that are made from intersecting 

side cross aisles shown on the figure. Last, appropriate nodes are connected by edges 

with a weight of distance between the connected nodes. We assume that edges are 

undirected that allow two-way travel with the same distance.    

 

Figure 2.8 Travel Nodes, Access Nodes and Cross Nodes Representation. 
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CHAPTER 3 

ROUTE LENGTH CALCULATION 

An order picker route is the path that is constructed by the sequence of locations that 

need to be visited by the picker according to a given pick list. A pick list consists of 

required items and their locations to be visited by a picker. A picker visits these 

locations in a tour starting and ends at a P&D point. Hence, the length of a tour is the 

total distance required to visit these locations starting from P&D point and ending at 

the P&D point. As last, this problem resembles to well-known TSP problem and the 

aim is to find the shortest route length for order picking operation.  

As we mentioned in Section 1.1.2, there are many exact and time-efficient algorithms 

in the literature to solve TSP in traditional one-block or multi-block layouts (Ratliff 

and Rosenthall, 1938; De Koster et al., 2007; Theys et al., 2010). In most of these 

studies, the researchers focused on calculating optimal or close-optimal order-

picking length in predefined traditional layouts like Design A and Design B. 

However, our problem has changeable layout. And when the layout is changed these 

algorithms cannot be easily adaptable. Because the aisle design problem in this study 

aims to find the best design parameters that minimize order-picking tour length, we 

decide to use one of the most widely used and TSP solving activity is proven 

metaheuristics algorithm: Ant Colony Optimisation (ACO).  

3.1. Ant Colony Optimisation (ACO) 

For our model’s route length calculation, we preferred the Ant Colony Optimization 

(ACO) algorithm which is firstly designed by Dorigo and Gambardella (1997) for the 

discrete TSP problem. This metaheuristic algorithm is inspired by acting ants in the 

nature. Because ants secrete a hormone which is called pheromone, they can find 

their direction. The ants leave the pheromones on the roads they are passing through 

and choose from alternative routes as they return to the point of food or nest. These 

pheromones actually a sign for other ants. The choice made depends on the distance 

of the roads and the amount of pheromone on the route. In the alternative routes if 
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the pheromone amount is equal, more ants began to prefer shorter way and the 

pheromone amount will increase so the shortest way has been found in this way.  

It is showed as algorithm starts with c number of ants placed randomly. At each step, 

the ant will probabilistically determine the next point, depending on the distance and 

the amount of pheromone. In tour 𝑡 , ant 𝑘  can travel between 𝑖  to 𝑗  points in a 

probability of 𝑝𝑖𝑗
𝑘 =

[𝜏𝑖𝑗]
𝑃𝑅 

[𝜂𝑖𝑗]
𝑉𝑅 

∑ [𝜏𝑖𝑗]
𝑃𝑅 

[𝜂𝑖𝑗]
𝑉𝑅 

𝐼∈𝑁𝑖
𝑘

,  𝑖𝑓 𝑖 ∈ 𝑁𝑖
𝑘. In this function 𝜏𝑖𝑗 represents 

the pheromone amount between point 𝑖 and 𝑗. 𝜂𝑖𝑗 is visibility intuitive value, which 

is the reverse of distance between 𝑖 and 𝑗 point (1 𝑑⁄
𝑖𝑗

). 𝑃𝑅 and 𝑉𝑅 are variables that 

determine the pheromone and visibility intuitive’s relative effect according to 

decision function. For example; 𝑃𝑅 = 0 means that pheromone amount is ignored, 

just visibility intuitive is important. 𝑉𝑅 =  0 means that selection is made only based 

on the amount of pheromone. 𝑁𝑖
𝑘  is a set of unvisited point of ant 𝑘  when it is 

located at point 𝑖. The best route which is made by ants visiting for all points until 

that time is kept. The ants continue to form routes depending on the amount of 

pheromone until stopping criterion is reached. 

After all the ants complete visiting the all orders we get total tour length. In order to 

improve the solution 2-opt shifting local search algorithm is implemented. This 

algorithm is for shifting the two consecutive links to search better solutions. We 

prefer this algorithm because it is easy to implement and efficient way to improve the 

solution. In our problem, we check the tour length that calculated after shifting 

operation whether is less than previous tour, or not. If it is improved, then we update 

the solution and tour length. In case there are no improvement, the ACO algorithm 

continues with current non-shifted solution. The pseudocode of 2-opt is given in 

Figure 3.1. The used algorithm represented in a flow chart referred as Figure A4.1 in 

the appendix. 
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Figure 3.1 Pseudocode of 2-Opt Algorithm. 

We chose examples of problems with the number of cities because pick list sizes of 

our problem are varieties 5 to 50. Performance of the developed algorithm has been 

tested using examples of problems given in TSPLIB (Reinelt, 1991). The sizes of 

example problems are selected close to predetermined pick list size. The values of 

the parameters used in the ACO algorithm are as follows; stopping criteria is 100 

iterations, 𝑐  is 30, 𝐸𝑅  is 0,75 and finally 𝑃𝑅  is 1 and 𝑉𝑅  is 2. In addition, the 

algorithm was run with 10 different random number seed. According to the results 

(shown in the Table 3.1) shows that the developed ACO algorithm has capability of 

being able to use for calculating average order picking tour length. There is a slight 

deviation from optimal for 50 pick list size but for our problem we think that this 

algorithm is applicable. To be able to run the ACO to calculate shortest tour length in 

our warehouse, one of the need is the shortest distance matrix for the points that need 

to be visited which is given in the ACO equations as 𝑑𝑖𝑗.  

 

 

 

 

 

 

 

Algorithm 2: 2-Opt Algorithm  

Let 𝑖 and 𝑗 are nodes, (𝑖 + 𝑗 = 𝑛),         𝑖, 𝑗, 𝑛 ∈ 𝑁+ 

Let 𝑑𝑖𝑗 represents distance between 𝑖 and 𝑗 nodes,      𝑑𝑖𝑗 ∈ 𝑅 

 

For {𝑖 = 0, 𝑖 < 𝑛 − 3, 𝑖 + +} 

For {𝑗 = 𝑖 + 2, 𝑗 < 𝑛 − 1, 𝑗 + +} 

 If ൫𝑑𝑖𝑗 <  𝑑𝑖(𝑖+1)൯ AND If ൫𝑑(𝑖+1)(𝑗+1) < 𝑑𝑖(𝑖+1) + 𝑑𝑗(𝑗+1) ൯ 

Swap 𝑖 and 𝑗, 

Calculate the new total route length 

 Otherwise 

Do not swap 
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Table 3.1 ACO Algorithm Results. 

Example 

Problem 

Opt. 

Value 
Min Avg. Max 

CPU Time 

(sec) 

Deviation from 

Avg. Opt. 

uly16 6859 6859 6859 6859 0.2 0.00% 

gr17 2085 2085 2085 2085 0.2 0.00% 

uly22 7013 7013 7015 7036 0.4 0.03% 

fri26 937 937 937 937 0.5 0.00% 

dan42 699 699 699 699 1.1 0.00% 

eil51 426 428 434 438 1.7 1.97% 

 

3.2. Distance Matrix 

In order to calculate total tour length, we need to calculate shortest paths between 

points to visit. There might be a several paths between two nodes, naturally. The 

shortest path algorithm of Dijkstra is used to solve such problems which is a one to 

many algorithm (Dijkstra, 1959). For 𝑛 number of point, Dijkstra algorithm runs for 

𝑛 ∙ 𝑛 matrixes with cost of 𝑂(𝑛 + 𝑛 log 𝑛). Normally according to pick list size, 

distance between all access nodes and P&D nodes and distance between access 

nodes should be calculated with Dijkstra algorithm. However due to its cost, there is 

no need to use this algorithm for all nodes to build a distance matrix. We developed a 

new algorithm for calculating distance for the required locations which are referred 

by access nodes. This algorithm basically performs the following; firstly, we need to 

create a main distance matrix using Dijkstra which includes the distances between 

the cross points and the travel points. Then we need to compute the distances 

between access nodes using main distance matrix. There are two alternatives to 

calculate shortest path between two access nodes according to their locations. First 

alternative; If both of them are aligned at the same aisle, the shortest path is 

calculated directly as a distance. Second alternative; If the two nodes are in separate 

aisles, different paths between these nodes are calculated with using main distance 

and then the shortest one is selected as the distance. The details of the algorithm are 

given in the pseudocode in the Appendix 3.          
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3.3. Design Optimisation: Differential Evolution Algorithm (DE) 

In this stage, the route will be calculated according to the pick list given in a 

warehouse in which the layout is enhanced and the network is created. The average 

route length is calculated for an order consisting of a certain number of collection 

points. This can be thought of as the fitness value of the warehouse. As we 

mentioned in the previous section, the aim is to minimize this fitness. The main 

problem in achieve this aim is the best values of the variables in the encoding. These 

variables are continuous variables. In order to optimize variables, we prefer one of 

the metaheuristic algorithms that showed efficacy in continuous variable 

optimization; Differential Evolution Algorithm (DE).   

 Differential Evolution Algorithm (DE) is proposed by Storn and Pierce (1997). The 

simple DE algorithm is an evolutionary algorithm. Like genetic algorithms (GA) and 

evolutionary strategies, it can be used to improve the results. This is one of the 

metaheuristic algorithms which is a population-based and stochastic search tool. Due 

to this tool can be applicable to both discrete and continuous optimisation problems, 

it is frequently used in recent researches. Its simple structure, good results in 

complex problems, ease of implementation and robustness are the advantages of a 

basic DE algorithm (Jitkongchuen and Thammano, 2014). For continuous problems, 

according to Kitayama et al., (2011) the results of comparison between DE and 

Particle Swarm Optimisation (PSO) showed that DE algorithm is more efficient than 

PSO algorithm.  

The algorithm must be followed by four main steps and these steps are shown in 

Figure 3.2. With the first step as initialization, algorithm starts to optimize according 

to variables. We denoted the population size as P for implementation and G is used as 

generation number. So, the vector with D-dimension can be represented as 𝑋𝑖,𝐺 =

 [𝑥𝑖,𝐺
1 , 𝑥𝑖,𝐺

2 , … , 𝑥𝑖,𝐺
𝐷  ] 𝑖 = 1,2, … , 𝑃. To cover all the search space, parameters’ upper 

and lower bounds should be defined. After definition of boundaries, first parameter 

of value selection is made randomly from boundaries. The initialization phase 

completes after each P parameter in the vector is defined.  
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Figure 3.2.Main Steps of DE Algorithm. 

The second step as mutation, is used for expanding the search area. For given 

𝑋𝑖,𝐺 parameter, under 𝑖 ≠ 𝑟1, 𝑟2, 𝑟3  situation, three different parameters 𝑋𝑟1,𝐺 , 𝑋𝑟2,𝐺  

and 𝑋𝑟3,𝐺 are selected randomly. With 𝑉𝑖,𝐺+1 =  𝑋𝑟1,𝐺 + 𝐹൫𝑋𝑟2𝐺 −  𝑋𝑟3,𝐺 ൯ 

formulation, a mutation vector is created. In this formulation, F is a mutation factor 

and 𝑉𝑖,𝐺 = {𝑣𝑖,𝐺
1 , 𝑣𝑖,𝐺

2 , … , 𝑣𝑖,𝐺
𝐷 } vector represents the donor vector.  

In order to optimise our design problem in the mutation step, 4 different strategies 

were integrated in DE. The strategies given the formulas below were used together in 

equal probability. The decision of which parameter is going to be use in mutation is 

chosen randomly in the range [1, 𝑃]. 𝑋𝑏𝑒𝑠𝑡,𝐺 is the best vector which has the best 

fitness at generation G. 

• DE/ Best/1: 𝑉𝑖,𝐺 =  𝑋𝑏𝑒𝑠𝑡,𝐺 + 𝐹 (𝑋𝑟1
𝑖 ,𝐺 −  𝑋𝑟2

𝑖 ,𝐺 )  (Storn, 1996) 

• DE/Best/2: 𝑉𝑖,𝐺 =  𝑋𝑏𝑒𝑠𝑡,𝐺 + 𝐹 (𝑋r1
𝑖 ,𝐺 −  𝑋𝑟2

𝑖 ,𝐺 ) + 𝐹 (𝑋𝑟3
𝑖 ,𝐺 −  𝑋𝑟4

𝑖 ,𝐺 ) (Storn, 

1996). 

• DE/Rand/1: 𝑉𝑖,𝐺 =  𝑋𝑟1
𝑖 ,𝐺 + 𝐹 (𝑋𝑟2

𝑖 ,𝐺 −  𝑋𝑟3
𝑖 ,𝐺 )  (Storn, 1996) 

• DE/Rand/2:  𝑉𝑖,𝐺 =  𝑋𝑟1
𝑖 ,𝐺 + 𝐹 (𝑋𝑟2

𝑖 ,𝐺 −  𝑋𝑟3
𝑖 ,𝐺 ) + 𝐹 (𝑋𝑟4

𝑖 ,𝐺 −  𝑋𝑟5 
𝑖 ,𝐺 )  (Qin 

et al., 1997) 

The recombination step involves successful solutions of the previous generation. 

Donor vector elements are included in the trial vector (𝑈𝑖,𝐺 = {𝑢𝑖,𝐺
1 , 𝑢𝑖,𝐺

2 , … , 𝑢𝑖,𝐺
𝐷 }) 

with crossover rate (CR) probability. DE uses a uniform recombination as in defined 

below (Storn and Price, 1997). 

𝑢𝑖,𝐺
𝑗

= {
𝑉𝑗,𝑖,𝐺+1    𝑖𝑓 ൫𝑟𝑎𝑛𝑑𝑗,𝑖 ~ 𝑈[0,1]൯ ≤ 𝐶𝑅 𝑜𝑟 (𝑗 = 𝑗𝑟𝑎𝑛𝑑)

𝑥𝑗,𝑖,𝐺+1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , 𝑗 = 1,2, … , 𝐷,  

 𝑗𝑟𝑎𝑛𝑑 is a random integer from [1, 2, ..., D]. 

Initialization Mutation Recombination Selection 
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In the selection process, which is the last step of DE, compares the target vector 𝑋𝑖,𝐺  

and trial vector 𝑢𝑖,𝐺+1
𝑗

. It is ensured that the better value of the function is transferred 

to the next generation. With the equation 𝑋𝑖,𝐺+1 = {
𝑈𝑖,𝐺 , 𝑖𝑓 𝑓(𝑈𝑖,𝐺+1) ≤ 𝑓(𝑋𝑖,𝐺)

𝑋𝑖,𝐺                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , 

𝑖 = 1,2, … , 𝑃, if the trial vector has lower function value then this trial vector is 

selected as a next generation. If it is the opposite, then the target vector moved to 

next generation. The DE algorithm performs continuously with mutation, 

recombination and selection steps until stop criteria as illustrated in the Figure 3.2. 

3.3.1. Constraint Handling 

As we explained in the section 2.1, there are six variables of our problem.  𝑚 is 

bounded with [0,2], 𝛽 is defined as in the range of [0, 𝜋] and 𝛼𝑖’s can be change in 

the range of [0, 𝜋] for every 𝑖 ∈ {1,2,3,4}. While searching the best value in the DE 

algorithm, there is a possibility of these variables are out of bounds during mutation. 

In order to keep them in the boundaries, we use the Periodic Approach which is 

proposed by Padhye et al. (2015) as a constraint-handling strategy. This strategy, we 

bound the constraints with a periodic repetition (𝑝 =  𝑥(𝑈) −  𝑥(𝐿)) of the objective 

function. With equation 𝑦 = {
𝑥(𝑈) − ൫𝑥(𝐿) − 𝑥𝐶൯ % 𝑝 ,    𝑖𝑓 𝑥𝐶 <  𝑥(𝐿),

𝑥(𝐿) + ൫𝑥𝐶 − 𝑥(𝑈)൯ % 𝑝 ,    𝑖𝑓 𝑥𝐶 >  𝑥(𝑈)  , (where % 

is used for mode operation) a breached variable is turned into boundaries of 

[𝑥(𝐿), 𝑥(𝑈)] ; and become a new variable noted as 𝑦 . For our problem; 𝑥 =

{𝑚, 𝛽, 𝛼1, 𝛼2, 𝛼3, 𝛼4}.  

3.3.2. Implementation of DE 

There are many parameters that need to be set in DE. In this process, Mallipeddi et 

al.’s (2011) study on parameter settings and mutation strategies was used. Because 

according to them, in P=50 and in order to balance efficiency and speed, CR should 

be taken in the range [0.1-0.9] and F should be taken in the range [0.4-0.9] in steps of 

0.1. As mentioned Mallipeddi et al.’s (2011) study, to balancing efficiency and speed 

in our problem parameters as P = 50, CR=0.5, F=0.4 implemented.  

Calculations have been analysed on an example problem to understand the efficiency 

of DE. With this purpose, a continuous variable test function known as the "Six-

hump Camel-back" in the literature is selected (Pohlheim, 2007). We chose this 
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problem because it is similar the way our problem has continuous variables. The 

algorithm tested with 20 different seeds and showed an optimal deviation of 0.09% 

on the average. According to Thomsen (2004), different types of DE algorithm can 

find optimum points in single results, although in this test algorithm DE couldn’t find 

the optimum, it shows close results which is an acceptable threshold for our problem. 

In order to stop the algorithm, we needed a criterion. We use iteration number to stop 

algorithm but also if there is a chance to improve the solution, we run the algorithm a 

bit more. According to our stopping criteria; first 1000 iteration are completed 

without any condition. At every iteration after 1000 iterations, the results are 

controlled by checking whether they are better than the previous results. If there is 

not, algorithm stops at iteration 1100. However there is an improvement, the 

algorithm runs 100 iterations more than the iteration that seen improvement. Also, 

the improved result set as global solution. The algorithm continues to run until there 

is no better solution found in next 100 iterations. 
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CHAPTER 4 

RESULTS AND CONCLUSIONS 

4.1. Numerical Study 

This section describes the search for the best X-shape warehouse layout where 

average tour length is minimized. As mentioned in 2.2, we study 3 different shapes of 

rectangular warehouse that has storage racks placed in a single-deep rack system. We 

assume that all products stored under randomized storage policy because of its 

simplicity, its more efficient use of storage space and popularity in the industry 

(Petersen, 1999). Therefore, we assume uniform picking. We also locate the single 

P&D point in the middle of the front cross aisle because Roodbergen and Vis (2006) 

showed that this is the optimal location for a single P&D point that minimizes the 

order-picking tour under randomized storage. 

In order to consider the effect of verifying number of picks on average tour length, 

we use seven pick list sizes (3, 5, 10, 20, 30, 40 and 50) (Çelik and Süral, 2014). For 

example; if the pick list size is 30, order picker travels 30 different location in a 

warehouse starting from the P&D point and ends the travel at the P&D point. So, if 

there are 𝑚 number of storage locations on warehouse and the picking list size is 𝑛, 

∁(𝑚, 𝑛) number of different order lists could be created. Because of considering 

every possible order and its tour length will be incredibly time consuming. We 

statistically determine an appropriate number of orders. First, we generate 1000 

orders for both small (3) and large (5) pick list size and for 3 different shapes of 

warehouse. In the Table 4.1, averages and standard deviations of these orders are 

given. According to statistical analyse for finding sample size with 𝑛 =

 
𝑠2∙𝑍∝

2⁄
2

(𝑥̅∙0.01)2 formula we calculate our sample sizes for number of orders in 95% 

confidence interval and %1 margin of error. As a result, we decided to use 1500 

samples for smaller pick list size (3,5,10) and 250 samples for larger pick list size 

(20,30,40,50) is sufficient.  
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Table 4.1 Pick List Analyses. 

Warehouse 

Size 
500x500 750x750 1000x1000 

# of Pick 3 50 3 50 3 50 

E[0]= 1204,65 3339,53 1613,79 4751,389 1618,78 7067,86 

E[1]= 1242,93 3388,65 1882,85 5467,94 1800,92 7528,55 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

E[998]= 1254,10 3291,99 2246,44 4516,01 2329,89 7319,08 

E[999]= 1251,44 3525,16 2111,60 5577,22 2201,37 7073,10 

𝑥̅ 1300,18 3348,75 1910,15 5200,41 2516,56 7063,79 

S 217,12 223,16 366,33 356,66 496,16 492,76 

n 1071,29 170,59 1412,92 180,69 1493,28 186,93 

 

Thus, the average tour length of these order list sizes (the average tour length) 

determine the fitness value or cost of the design concerned. With ACO algorithm, we 

try to minimize fitness value in 3 different shape ratios as mentioned in Section 3.1. 

In order to compare efficiency of generated non-traditional warehouse, we made 

Design B as a base for deciding the capacity which are represented at Table 4.2. We 

use the same order lists and very close storage capacity for both X-shaped and 

Design B to make an accurate comparison.  

Table 4.2 Design B Warehouse Features. 

Shape Ratio Aisle Number Width (PU) Length (PU) Total Pallet 

1:1 7 380.0 420.0 510 

2:1 11 580.0 290.0 512 

3:1 14 730.0 240.0 510 

4.2. Results 

We run our experiments with three different seeds on a computer running on 4 GB 

RAM and a 1.70 GHz Intel ® CORE i5 processor and select the one with the best 

result. The average computational time for these experiments in three different shape 

ratios are shown at Table 4.3. In the previous section we mentioned that the creation 
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of picking list for optimizing the warehouse design and the calculation of average 

tour length could be takes very long time. Table 4.3 shows that even the smallest 

CPU time which is the warehouse in 2:1 shape ration for 3 picks takes 4 hours. 

Table 4.3 Average Running Times. 

Pick No 3 5 10 20 30 40 50 

Avg 

CPU 

Time 

(hr) 

1:1 5,15 11,09 39,57 13,43 39,40 70,82 114,39 

2:1 3,85 9,14 21,86 23,79 55,97 84,22 116,75 

3:1 4,35 10,09 40,19 86,82 34,55 85,33 110,22 

There are representations of the best X-shape layouts for all picking number of 

orders in the Appendix 5. In Table A6.1 shown the tour lengths and specifications of 

these layouts of proposed non-traditional layout (X-shape) designs which has equal 

dimensions with equivalent traditional warehouse design. Also, average tour lengths 

of 2-blocked traditional layout (Design B) for the same circumstances are presented 

in the same table. Although there is significant improvement of proposed warehouse 

layout over Design B (see Figure 4.1.b), as seen in the Figure 4.1.a the capacities of 

X-shape layouts are much lower than same shaped Design B, which is not a healthy 

analogy.  

 

Figure 4.1 Comparison of X-shape and Design B in Same Size. 

In order to make a correct comparison, X-shape warehouse dimensions are expanded 

until their capacities’ approximately equal to equivalent Design B. While expanding 

warehouses, obtained variables from optimization (such as αi’s and m) and shape 

ratio are kept constant. In this case, it turns out new X-shape layout needs extra 
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space. In order to visualize this need, Figure 4.2.a represents the area loss over 

Design B. Expanded X-shape layout’s specifications and average tour lengths (the 

fitness) are represented in Table A6.2. The improvements of the expanded X-shape 

layout over equivalent Design B which are shown in the Figure 4.2.b. For the 

warehouse with 1:1 and 2:1 shape ratio, X-shape layout has worse fitness values than 

Design B. However, X-shape warehouse that has 3:1 shape ratio in small amount of 

order picking, it is superior over traditional Design B. Purposed layouts for 3:1 shape 

ratio shows improvement at avg. tour length on the average 1,44% if there is 21,72% 

more area. 

 

Figure 4.2 Comparison of Expended X-shape and Design B in Same Capacity. 

If we interpret the solutions in Appendix 5, the cross aisles in model of 3:1 and 2:1 

shape ratio for 3 orders looking alike traditional layout. With these cross aisles, it is 

easier to travel front and rear cross aisles in the warehouse. As seen in those layouts, 

the angles of picking aisles’ which similar to Chevron design (Öztürkoğlu et al., 

2012), is meeting the need occurs with separation of upper and lower part of 

warehouse with main aisles.  

4.3. Conclusion 

In this thesis, we investigate a completely new non-traditional warehouse design that 

will improve the order picking operation. We assume there are two cross aisles that 

intersect in the middle of rectangular shape warehouse under randomized storage 

policy and one P&D point which is located on middle of front cross aisles. Because 

cross aisles can be located every edge in the warehouse and picking aisles may have 
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all kinds of angles in the range [0, 𝜋], to optimize them we use Differential Evolution 

Algorithm. The fitness of our proposed warehouse is calculated with the Ant Colony 

Optimisation Algorithm and to compare our proposed warehouse layout efficiency, 

we select Design B layout as a base.  

There wasn’t many research that non-traditional warehouse proposed for order 

picking operation. We can say that; this thesis is a gain for literature as a non-

traditional warehouse design. However, results show that X-shape non-traditional 

warehouse is not the best alternative compare to traditional warehouses under 

random storage policy. With same dimension warehouse as Design B, X-shape shows 

improvement in route length on the average 5.9%, but also loses capacity on the 

average %27 because of with cross aisles, the proposed layout needs more area to 

balance the capacity. Even though there is a slight improvement for total tour length 

in warehouse that has 3:1 shape ratio with equal capacity, this layout needs more area 

than traditional one.   

In light of results, the proposed warehouse is not a good version of Design B under 

these assumptions. If a long warehouse is to be constructed (like 3:1 shape) and there 

are no space concerns, we can recommend our layouts developed for small pick list 

size to sector managers. On the other hand, X-shape designs are not preferable for 

other shape ratio. Of course, there is a chance to get improvement for changing 

assumptions. So for future work, this idea can evolve under different acceptances. 

Different warehouse operation like single command or different P&D location, 

developments can be seen over traditional layouts. 
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APPENDIX 1 – SYMMETRICAL CASES 

In Figure A1.1, there are 20 different scenarios for the variable 𝑚 where  𝑚 ∈ [0,2]. 

In every four class (A, B, C, D), 𝑚 is fixed at bounds that written above them and 𝛽 

angle is increased as shown in the figures. 

 

Figure A1.1 Scenarios of m in [0,2]. 

In the section 2.1, there is an argument for the restriction of 𝑚. To prove that; if we 

add 2 to 𝑚 in A3, 𝑚 will be in [2, 2.5]. With the same 𝛽 angle, we get exactly the 

same layout as A3. In addition, some symmetric and identical conditions have been 

identified from these warehouse design representations. For example; A3 and C3 are 

identical & A3 and B3 are symmetric to 𝑥 axis. Thus, as it can be seen all third 

representations in all classes are the same warehouse layout. 
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APPENDIX 2 – FIRST PALLET REPLACEMENT 

In this table of equations, one edge of each pallet is denoted by 𝑝 and pallet corners 

are denoted by k.  

Table A2.1 Equations for Construction of Pallet. 

 
Representative 

Pallet Type 
long k short k 

𝛼
𝑖<

 9
0
 º

 

(Q) 

 

𝛼𝑖< 45º 

k=1 
𝑝√2

2
× sin(45+∝) 

𝑝√2

2
× cos(45+∝)   

k=2 
𝑝√2

2
× sin(45+∝) −

𝑝√2

2
× cos(45+∝) 

k=3 −
𝑝√2

2
× sin(45+∝) −

𝑝√2

2
× cos(45+∝) 

k=4 −
𝑝√2

2
× sin(45+∝) 

𝑝√2

2
× cos(45+∝) 

(R) 

 

𝛼𝑖> 45 º 

k=1 
𝑝√2

2
× cos(45−∝) −

𝑝√2

2
× sin(45−∝) 

k=2 −
𝑝√2

2
× cos(45−∝) −

𝑝√2

2
× sin(45−∝) 

k=3 −
𝑝√2

2
× cos(45−∝) 

𝑝√2

2
× sin(45−∝) 

k=4 
𝑝√2

2
× cos(45−∝) 

𝑝√2

2
× sin(45−∝) 
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Representative 

Pallet Type 
long k short k 

𝛼
𝑖>

 9
0
 º

 

(S) 

 

𝛼𝑖< 135 º 

k=1 −
𝑝√2

2
× sin(45−∝) 

𝑝√2

2
× cos(45−∝) 

k=2 −
𝑝√2

2
× sin(45−∝) −

𝑝√2

2
× cos(45−∝) 

k=3 
𝑝√2

2
× sin(45−∝) −

𝑝√2

2
× cos(45−∝) 

k=4 −
𝑝√2

2
× sin(45−∝) 

𝑝√2

2
× cos(45−∝) 

(T) 

 

𝛼𝑖> 135 º 

k=1 −
𝑝√2

2
× sin(45−∝) −

𝑝√2

2
× cos(45−∝) 

k=2 
𝑝√2

2
× sin(45−∝) −

𝑝√2

2
× cos(45−∝) 

k=3 −
𝑝√2

2
× sin(45−∝) 

𝑝√2

2
× cos(45−∝) 

k=4 
𝑝√2

2
× sin(45−∝) 

𝑝√2

2
× cos(45−∝) 
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APPENDIX 3 – PSEUDOCODE OF SPEED-UP ROUTE LENGTH 

CALCULATION ALGORITHM  

 

 

Algorithm 1: Speed-up Route Length Calculation Algorithm 

Let 𝐿 be a list of required 𝑛 locations and 𝑚 P&D points. 

𝐿 = {𝑃1, 𝑃2, … , 𝑃𝑛, 𝑃𝑛+1, … , 𝑃𝑛+𝑚} where the first n point indicates requested 

locations, the last 𝑚 points are the P&D points 

 

For {𝑖 = 1, 𝑖 ≤ ȁ𝐿ȁ, 𝑖 + +}  

For {𝑗 = 1, 𝑗 < ȁ𝐿ȁ, 𝑗 + +} 

If 𝑃𝑖 and 𝑃𝑗 are picking locations 

If locations 𝑃𝑖 and 𝑃𝑗 are on the same aisle; 

𝑑𝑖𝑗 =  ห𝑃𝑖𝑥
− 𝑃𝑗𝑥

ห + ቚ𝑃𝑖𝑦
− 𝑃𝑗𝑦

ቚ 

If locations 𝑃𝑖 and 𝑃𝑗 are on the different aisle; 

Let 𝑃𝑖1 and 𝑃𝑖2 are the respective travel nodes (intersects) at aisle 𝑖, 

𝑃𝑗1 and 𝑃𝑗2 are the respective travel nodes (intersects) at aisle 𝑗. 

𝐾𝜖{𝑃𝑖1, 𝑃𝑖2 } and 𝑅𝜖{𝑃𝑗1, 𝑃𝑗2 }, for all points of {𝑘, 𝑟 } 

𝑘 = 1, 𝑘 ≤ ȁ𝐾ȁ;  𝑟 = 1, 𝑟 ≤ ȁ𝑅ȁ 

𝑑𝑘𝑟 =  ට൫𝑃𝑖𝑥
− 𝑃𝑖𝑘𝑥

൯
2

+ (𝑃𝑖𝑦
− 𝑃𝑖𝑘𝑦

)
2

+ ට൫𝑃𝑗𝑥
− 𝑃𝑗𝑟𝑥

൯
2

+ (𝑃𝑗𝑦
− 𝑃𝑗𝑟𝑦

)
2

+ 𝐷𝑇൫𝑃𝑖𝑘 − 𝑃𝑗𝑟൯ 

𝑑 is the minimum of 𝑑𝑘𝑟 
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Let 𝑇 be a set of locations including all 𝑚 P&D points and all 𝑘 travel nodes. 

𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑚, 𝑡𝑚+1, … , 𝑡𝑘}  𝐷𝑇 = ൦

0 𝑡1𝑡2 … 𝑡1𝑡𝑘

𝑡2𝑡1 0 … …
…

𝑡𝑘𝑡1

…
…

0
𝑡𝑘𝑡𝑘−1

𝑡𝑘−1𝑡𝑘

0

൪ 

For {𝑖 = 1, 𝑖 ≤ ȁ𝑇ȁ, 𝑖 + +}  

For {𝑗 = 1, 𝑗 < ȁ𝑇ȁ, 𝑗 + +} 

If 𝑡𝑖 and 𝑡𝑗 are P&D points  

𝐷𝑡൫𝑡𝑖𝑡𝑗൯ =  ห𝑡𝑖𝑥
− 𝑡𝑗𝑥

ห +  ቚ𝑡𝑖𝑦
− 𝑡𝑗𝑦

ቚ 

If 𝑡𝑖 and 𝑡𝑗 are travel nodes but they belong to same aisle (they are the        

intersection points of same aisle)  

Else  

Use Dijkstra Algorithm 

 

 

 

 

A 

{
 

{
 

P&D Points Travel Nodes 
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APPENDIX 4 – ANT COLONY OPTIMISATION 

 

Figure A4.1 Flowchart of Ant Colony Optimization Algorithm. 
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APPENDIX 5 – X-SHAPE WAREHOUSE DESIGNS 

 

For 3 pick For 5 pick 

For 10 pick For 20 pick 

For 30 pick For 40 pick 
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Figure A5.1 Warehouse Representations of 1:1 Shape Ratio. 
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For 3 pick 

For 5 pick 

For 10 pick 



45 

 

Figure A5.2 Warehouse Representations of 2:1 Shape Ratio. 
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Figure A5.3 Warehouse Representations of 3:1 Shape Ratio. 
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APPENDIX 6 – RESULT TABLES 

 

Table A6.1 Features of Best X-shape and Design B with Equal Sizes. 

Shape ratio 1:1, Width 380 PU, Length 420 PU 

Pick 
List # 

Capacity m β α1 α2 α3 α4 
X-shape 
Fitness 

Design B 
Fitness 

3 400 1.29 46.4 118.8 118.8 70.3 95.0 1,003.7 1,064.3 

5 386 1.19 47.6 75.1 85.3 96.7 85.3 1,263.9 1,312.3 

10 379 1.78 136.8 86.0 80.7 102.3 68.8 1,786.0 1,800.1 

20 376 1.09 55.4 84.3 84.2 84.0 84.4 2,404.4 2,480.5 

30 378 1.46 48.4 86.9 96.7 86.3 108.9 2,878.9 2,882.4 

40 377 1.01 39.3 70.6 89.9 69.2 75.5 3,068.3 3,135.7 

50 374 0.00 140.5 4.8 143.4 113.2 83.7 3,316.1 3,299.3 

 

Shape ratio 2:1, Width 580 PU, Length 290 PU 

Pick 
List # 

Capacity m β α1 α2 α3 α4 
X-shape 
Fitness 

Design B 
Fitness 

3 383 1.56 86.9 110.8 65.3 70.2 128.3 1,012.67 1,082.4 

5 357 1.23 28.3 109.5 85.0 78.5 98.9 1,306.4 1,358.2 

10 369 1.80 152.5 85.4 106.5 94.4 79.2 1,798.7 1,839.3 

20 337 1.08 36.9 78.5 89.0 76.6 81.1 2,405.5 2,521.4 

30 345 1.08 33.5 79.9 87.5 84.8 86.5 2,831.9 2,978.9 

40 346 1.29 35.0 84.4 94.3 100.6 98.2 3,168.2 3,313.2 

50 374 1.86 136.1 88.9 95.8 81.8 93.3 3,475.7 3,55.96 

 

Shape ratio 3:1, Width 730 PU, Length 240 PU 

Pick 
List # 

Capacity m β α1 α2 α3 α4 
X-shape 
Fitness 

Design B 
Fitness 

3 388 1.43 97.0 109.1 53.3 61.5 121.6 1,070.274 1,207.640 

5 388 1.46 95.3 111.6 63.3 67.3 115.0 1,411.955 1,586.260 

10 387 1.58 102.0 118.7 78.9 83.9 107.5 1,957.411 2,224.240 

20 327 1.81 156.1 96.7 96.0 75.5 107.1 2,548.077 2,981.780 

30 349 1.20 24.8 24.8 102.6 87.2 106.4 3.451,780 3,451.780 

40 359 1.12 26.06 82.03 92.82 96.12 105.7 3.744,560 3,744.560 

50 396 1.22 38.32 85.85 68.32 100.6 1.66 3.938,520 3,938.520 
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Table A6.2 Features of Best X-shape and Design B with Equal Capacity. 

Shape 
Ratio 

Width Length Area 
Pick List 

Size 
Capacity 

Avg Tour 
Length 

Deviat. 
of tour 

Extra 
Area 

1:1 

440 430 189.200 3 514 1,132.320 -6.4% 18.5% 

440 440 193.600 5 514 1,440.564 -9.8% 21.3% 

440 440 193.600 10 511 1,997.546 -11.0% 21.3% 

450 430 193.500 20 513 2,758.131 -11.2% 21.2% 

450 430 193.500 30 514 3,321.361 -15.2% 21.2% 

450 430 193.500 40 509 3,657.479 -16.6% 21.2% 

440 450 198.000 50 513 4,049.366 -22.7% 24.1% 

2:1 

620 310 192.200 3 500 1,104.290 -2.0% 14.3% 

640 330 211.200 5 520 1,464.271 -7.8% 25.6% 

640 320 204.800 10 509 1,992.681 -8.3% 21.8% 

650 330 214.500 20 514 2,808.315 -11.4% 27.5% 

640 330 211.200 30 515 3,356.055 -12.7% 25.6% 

640 330 211.200 40 507 3,747.147 -13.1% 25.6% 

640 330 211.200 50 505 4,144.813 -16.5% 25.6% 

3:1 

780 260 202.800 3 508 1,176.907 2.5% 15.8% 

730 290 211.700 5 513 1,569.349 1.1% 20.8% 

730 290 211.700 10 505 2,181.195 1.9% 20.8% 

840 270 226.800 20 512 2,975.779 0.2% 29.5% 

810 280 226.800 30 512 3,451.780 -2,03% 29,45% 

810 280 226.800 40 517 3,744.560 -5,79% 29,45% 

790 270 213.300 50 508 3,938.520 -7,36% 21,75% 

 


