

YAŞAR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

PHD THESIS

MALWARE DETECTION FOR THE ANDROID
PLATFORM USING MACHINE LEARNING

TECHNIQUES

GÖKÇER PEYNİRCİ

THESIS ADVISOR: ASSIST. PROF. DR. KORHAN KARABULUT

CO-ADVISOR: ASSIST. PROF. DR. METE EMİNAĞAOĞLU

COMPUTER ENGINEERING

PRESENTATION DATE: 07.06.2018

BORNOVA / İZMİR
JUNE 2018

ABSTRACT

Malware Detection for the Android Platform using Machine Learning Techniques
Peynirci, Gökçer

Ph.D., Computer Engineering

Advisor: Assist. Prof. Dr. Korhan KARABULUT

Co-Advisor: Assist. Prof. Dr. Mete EMİNAĞAOĞLU

June 2018

Android is the mobile operating system most frequently targeted by malware in the

smartphone market with a significantly higher total market share in comparison to its

competitors in addition to a much higher total number of applications. Detection of

malware before it is published on the Google Play Store or any unofficial application

market is very important owing to the end users’ typical security inadequacy. In this

Ph.D. thesis, a novel methodology of feature selection is proposed along with an

Android malware detection approach that implements the proposed feature selection

methodology. The machine learning approach proposed in this thesis makes use of

permissions, API calls, and strings as features, which are statically extractable from

the Android executables (APK files). In the proposed feature selection approach, a

document frequency-based approach was designed and implemented that differs from

the existing methods in the literature. The proposed methodology was tested upon two

universal benchmark datasets that contain Android malware samples and promising

results were obtained by using several binary classification algorithms and some

ensemble learning models.

Key Words: information security, Android, malware detection, data mining, machine

learning, feature selection

iii

ÖZ

ANDROID PLATFORMU İÇİN MAKİNE ÖĞRENMESİ TEKNİKLERİ

KULLANARAK KÖTÜCÜL YAZILIM TESPİTİ

Peynirci, Gökçer

Doktora Tezi, Bilgisayar Mühendisliği

Danışman: Dr. Öğr. Üyesi Korhan KARABULUT

Yardımcı Danışman: Dr. Öğr. Üyesi Mete EMİNAĞAOĞLU

Haziran 2018

Android mobil işletim sisteminin, rakiplerine kıyasla sahip olduğu oldukça yüksek

toplam pazar payının yanında toplamda sayısal olarak çok daha fazla uygulamaya

sahip olması dolayısıyla kötücül yazılımlar tarafından en sık hedef alınan mobil

platform olduğu bilinmektedir. Son kullanıcının, tipik güvenlik yetersizliğine bağlı

olarak, kötücül yazılımın Google Play Store veya herhangi bir resmi olmayan

uygulama mağazasında yayımlanmadan önce tespit edilmesi hayati bir öneme sahiptir.

Bu tezde, makine öğrenmesi teknikleri kullanarak yeni bir Android kötücül yazılım

tespit metodolojisi yanında yeni bir öznitelik seçim metodolojisi ortaya konmuştur. Bu

çalışmada sunulan makine öğrenmesi yaklaşımı, Android uygulamalarından (APK

dosyaları) statik olarak çıkarılabilen, izinler (permissions), Uygulama Programlama

Arayüzü çağrıları (API calls) ve katar (string) özelliklerini kullanmaktadır. Sunulan

özellik seçim metodolojisinde literatürdeki mevcut yöntemlerden farklı olarak, belge

sıklığı tabanlı (document frequency-based) bir yöntem tasarlanıp uygulanmıştır.

Önerilen yöntem, Android kötücül yazılım örnekleri barındıran iki evrensel temel

ölçüt veri kümesi ile test edilmiş ve bazı ikili sınıflandırma algoritmaları yanı sıra bazı

topluluk (ensemble) yöntemine dayalı algoritmalar da kullanılarak literatürdeki diğer

modeller ve yöntemlere göre daha başarılı sayılabilecek yüksek doğrulukta sonuçlar

elde edilmiştir.

Anahtar Kelimeler: bilgi güvenliği, Android, kötücül yazılım tespiti, veri

madenciliği, makine öğrenmesi, öznitelik seçimi

iv

ACKNOWLEDGEMENTS

I would like to give my special thanks and gratitude to my advisors Assist. Prof. Dr.

Korhan KARABULUT and Assist. Prof. Dr. Mete EMINAĞAOĞLU for their

precious guidance, efforts and patience during this Ph.D. study.

I would like to give my sincere thanks to my cousin Alican Peynirci for his support in

graphic design issues throughout the writing and the printing of this thesis.

I would also like to express gratitude to my parents, who were supportive through the

hard times and never lost their trust in me through this long journey.

Gökçer Peynirci

İzmir, 2018

v

TABLE OF CONTENTS

ABSTRACT ... iii

ÖZ ... iv

ACKNOWLEDGEMENTS .. v

TEXT OF OATH .. vi

TABLE OF CONTENTS .. vii

LIST OF FIGURES ... x

LIST OF TABLES ... x

SYMBOLS AND ABBREVIATIONS ... xi

CHAPTER 1 INTRODUCTION ... 1

1.1. Android Malware ... 2

1.2. Machine Learning and Data Mining .. 2

1.3. Data Mining for Information Security.. 3

1.4. Data Mining for Cyber Security ... 4

1.5. Machine Learning and Data Mining for Malware Detection ... 5

1.6. Dealing with Advanced Threats ... 6

1.7. Thesis Contributions .. 7

 CHAPTER 2 BACKGROUND .. 8

2.1. Malware: A Brief Definition .. 8

2.2. The Android Software Stack .. 8

2.2.1. Linux Kernel .. 9

2.2.2. Libraries ... 9

2.2.3. Android Runtime.. 10

2.2.4. Application Framework ... 10

2.2.5. Applications ... 10

2.3. Dalvik Virtual Machine .. 11

2.4. Android Applications ... 11

2.4.1. Components of an Android Application .. 12

2.4.2. The Manifest File ... 14

2.4.3. Application Permission Structure .. 15

vii

2.4.4. Android Application Programming Interface (API) ... 16

2.5. Android’s Build Process ... 17

2.6. Malware Analysis Techniques .. 20

2.6.1. Static Analysis .. 20

2.6.2. Dynamic Analysis ... 21

2.7. Android Malware Infection Vectors ... 22

2.7.1. Client-Side Software Vulnerabilities .. 22

2.7.2. Vulnerabilities in the Smartphone’s OS ... 22

2.7.3. Social Engineering .. 22

2.7.4. Third Party App Stores ... 22

2.7.5. Brute Forcing the User’s Accounts ... 23

2.7.6. Drive-By Downloads on the Android ... 23

2.8. Relevant Data Mining and Machine Learning Background ... 23

2.8.1. K-Nearest Neighbor (K-NN) .. 24

2.8.2. Support Vector Machines (SVMs) ... 24

2.8.3. Decision Trees .. 25

2.8.4. Naive Bayes .. 27

2.8.5. Neural Networks ... 28

2.8.6. Radial Basis Function (RBF) .. 30

2.8.7. Ensemble Learning Methods .. 31

 CHAPTER 3 LITERATURE REVIEW .. 33

3.1. Approaches for Malware Detection on the Android that use Machine Learning

Methods ... 33

3.2. Approaches that Utilize Text Mining for Malware Detection 46

 CHAPTER 4 PROPOSED METHODOLOGY .. 49

4.1. Data Collection and Pre-processing .. 49

4.2. Feature Extraction ... 50

4.2.1 Permissions .. 50

4.2.2. API Calls ... 51

4.2.3. Strings ... 52

viii

4.3. A Novel Document Frequency-Based Approach to Feature Selection................. 52

4.3.1. Term Frequency ... 52

4.3.2. Inverse Document Frequency .. 53

4.3.3. Description of the Document Frequency-Based Approach 53

4.4. The Architecture of the Android Malware Detection Methodology 57

4.4.1. Combined Feature Set Model .. 58

4.4.2. Classification of Android Malware via Machine Learning 58

4.5. Limitations of the Proposed Methodology .. 59

 CHAPTER 5 EXPERIMENTS AND RESULTS ... 61

5.1. Standard Metrics used for Evaluating the Classifiers ... 64

5.1.1. Confusion Matrix and the Related Metrics .. 64

5.2. Cross-validation .. 66

5.2.1. 10-fold Cross-Validation .. 66

5.3. Results from the First MalGenome Dataset ... 67

5.4. Results from the Second MalGenome Dataset .. 68

5.5. Results from the AndroZoo Dataset ... 76

 CHAPTER 6 CONCLUSIONS .. 79

6.1. Summary of Thesis Contributions .. 79

6.2. Directions for Future Work .. 81

6.2.1. New Experiments with Bigger Datasets ... 81

6.2.2. Additional Research for Ensemble Classifiers with the AndroZoo Dataset

 ... 81

6.2.3. Alternative Methodologies for Feature Selection ... 82

6.2.4. Malware Detection Tool for Android Platforms ... 82

REFERENCES... 83

APPENDIX 1 – Descriptions of the Selected Attributes for the MalGenome Dataset .. 90

APPENDIX 2 – Descriptions of the Selected Attributes for the AndroZoo Dataset...... 93

APPENDIX 3 – Detailed Results Obtained in WEKA for the First MalGenome Dataset

 ... 95

APPENDIX 4 – Detailed Results Obtained in WEKA for the AndroZoo Dataset 134

ix

LIST OF FIGURES

Figure 2.1. Android Software Stack (ZDNet, 2008) ... 9

Figure 2.2. Building and Running an Application in Android (stuff.mit.edu, 2016) 17

Figure 2.3. Creation of the Final APK Archive File (stuff.mit.edu, 2016) 19

Figure 2.4. Support Vector Machine (SVM) (Han, Kamber, & Pei, 2006) 25

Figure 2.5. Artificial Neural Network that contains one hidden layer................................... 29

Figure 4.1. Malware detection process used in this thesis ... 57

Figure 5.1. 10-fold Cross-Validation ... 66

LIST OF TABLES

Table 3.1. Results Comparison of the Approaches in the Literature Review 45

Table 4.1. Selected attributes from the MalGenome dataset ... 56

Table 4.2. Selected attributes from the AndroZoo dataset ... 56

Table 5.1. Confusion Matrix .. 65

Table 5.2. MalGenome Dataset Accuracy Values ... 67

Table 5.3. MalGenome Dataset True Positive Rates ... 67

Table 5.4. MalGenome Dataset True Negative Rates .. 68

Table 5.5. MalGenome 2nd Dataset Accuracy Values Part 1 ... 69

Table 5.6. MalGenome 2nd Dataset Accuracy Values Part 2 ... 70

Table 5.7. MalGenome 2nd Dataset True Positive Rates Part 1 ... 71

Table 5.8. MalGenome 2nd Dataset True Positive Rates Part 2 ... 72

Table 5.9. MalGenome 2nd Dataset True Negative Rates Part 1 .. 74

Table 5.10. MalGenome 2nd Dataset True Negative Rates Part 2 .. 75

Table 5.11. AndroZoo Dataset Accuracy Values .. 77

Table 5.12. AndroZoo Dataset True Positive Rates .. 77

Table 5.13. AndroZoo Dataset True Negative Rates ... 77

x

SYMBOLS AND ABBREVIATIONS

ABBREVIATIONS:

Malware malicious software

IT Information Technology

APT Advanced Persistent Threat

app applications

malcode malicious code

DDoS Distributed Denial of Service

DOD Department of Defense

IDS Intrusion Detection System

IDF Inverse Document Frequency

API Application Programming Interface

BFGS Broyden–Fletcher–Goldfarb–Shanno

OS Operating System

Dalvik VM Dalvik Virtual Machine

VM Virtual Machine

GPS Global Positioning System

APK Android Package

JIT Just in Time

CFG Control Flow Graph

UID User ID

DEX Dalvik Executable

URIs Uniform Resource Indicators

JRE Java Runtime Environment

ANN Artificial Neural Network

xi

SVM Support Vector Machine

k-NN k-Nearest Neighbor

WEKA Waikato Environment for Knowledge Analysis

MLP Multilayer Perceptron

RBF Radial Basis Function

F-score Fisher score

IDS Intrusion Detection System

PART Partial Decision Trees

RIDOR Ripple-Down Rule

TF Term Frequency

TF-IDF Term Frequency–Inverse Document Frequency

MalGenome Android Malware Genome

C&C Command and Control

NNge Non-Nested Generalized Exemplars

LAC Lazy Associative Classifier

SYMBOLS:

N The number of cases in the training set.

D The training set and the associated class labels.

X A data tuple or a row in database.

H A hypothesis that states the sample X belongs to a predefined class C.

k The number of the training samples.

xii

CHAPTER 1

INTRODUCTION

As the information security industry becomes more aligned with providing protection

through utilizing cyber intelligence each year, the need for expertise in data mining

and machine learning increases as well. The problem of malicious software (malware)

detection on the Android, Microsoft Windows or any other platform has never been

solved completely and this can be attributed to security weaknesses in the state of the

art computing platforms and digital communication protocols we have in use today.

New types and versions of malware are produced by cyber criminals every day, for

which no unique detection signature is readily available. Even if the cybersecurity

experts come up with a very good idea and model to detect malware today, malware

with unique features may be produced that is unlike any malware we have seen to date,

that surpasses the technicality and complexity of the malware we have seen so far.

Even though the field of data mining for malware detection is not very new, it is still

in progress for improvement with academic studies focusing on this field and possible

industrial applications of the proposed methodologies. Malware developers

continuously strive to develop less detectable and more catastrophic (causing more

damage, having more functionality, becoming widespread etc.) malware applications.

This, in turn, creates a strict requirement of encountering these types of threats that put

the security experts in a position of sustained adaptation and response to the

dynamically changing Information Technology (IT) landscape shaped every day by

improvements in malware and other security threats.

To assess the importance of malware in the current security landscape irrespective of

computing platform, we need to look at what Advanced Persistent Threats (APTs),

targeted cyber attacks and threats from state-sponsored actors have in common: the

common element is the use of malware at some stage of their cyber attacks.

This study was proposed with the motivation that utilization of machine learning and

data mining for detection of Android malware applications that could lead to new

1

opportunities to make the mobile landscape more secure. Being aware of the past

successful research in this field, I hope my results, findings and conclusions will be a

valuable contribution.

1.1. Android Malware

As our mobile phones integrate into our personal and professional lives more and more

each day, they are targeted by cyber criminals more frequently than ever. Since these

devices contain valuable private information and access to financial services such as

internet banking or e-commerce purchases, making sure that adequate security is

provided on the mobile phone is essential for every user.

Android applications (apps) can be obtained either via the official app store (Google

Play Store), or via third-party unofficial stores such as GetJar or Slide ME. The Google

Play Store was constructed with the intention to make a store that fulfills all app

requirements of the typical user and at the same time provides the adequate amount of

security for the downloaders of the apps. Towards this endeavor, Android phones come

with a security option that prevents app installs from third-party stores, which can be

turned off by users. However, it is not recommended to be turned off for typical users.

The reason for such precautions is the possibility that the adversaries may have

injected benign looking Android apps with malicious code (malcode). In order to

compute and assess the level of threat that the users face from third-party store app

download, we need to look at the percentage of malware infections from the Google

Play compared to malware infections from the third-party app stores. According to an

analysis conducted by Cheetah Mobile (CheetahMobile, 2014), malware coming from

third-party markets account for 99.86% of all malware infections compared to only

0.14% from the Google Play.

1.2. Machine Learning and Data Mining

Machine learning is a kind of artificial intelligence whereby an algorithm or method

will extract patterns out of data. The aim is to automatically infer and generalize

patterns from data. Machine learning can be incorporated into many facets of our

digital life including but not limited to: face recognition, handwriting digit recognition,

spam filtering in an email, and product recommendations from e-commerce sites. To

elaborate on one of the examples, in handwriting digit recognition, the aim is to infer

2

associations between drawn shapes and particular letters, while taking into account

variations of the same letter.

Machine learning lies at the intersection of computer science, engineering, and

statistics. Any field that needs to interpret and act on data can benefit from machine

learning techniques. Data mining is a similar field to machine learning, in which we

use many techniques of machine learning. However, in data mining, the part played

by databases is stronger.

Data mining is also known as “knowledge-discovery in databases” and it is an

extension of exploratory data analysis and has the same goals: the discovery of

unknown and unanticipated structure in the data. The chief distinction lies in the size

and dimensionality of the datasets involved. Data mining, in general, deals with much

more massive datasets for which highly interactive analysis is not feasible (Wegman,

2002).

Let us note the difference between learning from a fully labeled set of examples and a

fully unlabelled set. If learning is being performed from a fully labeled set of examples

as it is in the case of this thesis, it is called supervised learning. On the other hand,

unsupervised learning is performed on a fully unlabelled set as opposed to a labeled

set. The activity of learning from labeled or unlabelled sets is called discovery or

mining. There is also a mid-ground between supervised learning and unsupervised

learning, which is semi-supervised learning, where a partially set of examples are used

for the learning activity.

We can talk about four different styles of learning in data mining applications. The

first one is classification learning, where the learning needs to happen from a set of

classified examples. The second one is association learning, where any association

among features is sought, while the third one is clustering, where groups of examples

that belong together are sought and the last one is numeric prediction, where the

outcome to be predicted is not a discrete class but a numeric quantity (Witten & Frank,

2005).

1.3. Data Mining for Information Security

Data mining is considered as a promising solution to the ever-growing problem of

information security. Application of data mining related solutions to information

3

security emerges as an alternative method of solving problems. Various information

security applications make use of data mining or machine learning techniques such as

classification, clustering or association rule mining. Induction algorithms are

incorporated in such solutions that explore data in order to discover hidden patterns

and build predictive models. Such techniques and algorithms have proved to tackle

most of the information security challenges effectively.

In order to prevent and thwart the risks to information security, attack pattern

generalization and discovery present a great opportunity for data mining and

information security communities. Classification, association rules, and clustering

mechanisms can be incorporated into the data at hand, both before and after an

information security compromise that maps the attack patterns of each individual

attack. Powerful software solutions can be implemented that incorporate

aforementioned techniques in order to deal with latest threats and risks such as

Distributed Denial of Service (DDoS) attacks, host-based intrusions, access control

violations and malicious code detection.

Several data mining use cases applied to information security related issues include

(Bhatnagar & Sharma, 2012):

• Identification of various anomalies and malware in the system by classifying the

benign and anomalous activities into different groups and classifying incoming

data accordingly.

• Extraction of various security requirements, performing fuzzing techniques to

identify vulnerabilities, defining and finding audit trails and establishing

security policies.

• Detection of various cybercrimes, such as credit card fraud, money laundering

frauds and other financial crimes and classifying criminals into classes

according to behavior.

1.4. Data Mining for Cyber Security

Intrusion detection and malware detection are two areas heavily researched in data

mining for cybersecurity. Even though both areas are fairly new compared to many

classical theoretical computer science topics, there has been active research going on

4

in these topics for 17 years now, considering the first research paper on data mining

for malware detection was released in 2001 (Schultz, Eskin, Zadok, & Stolfo, 2001).

Cyberspace is defined as “a global domain within the information environment

consisting of the interdependent network of information technology infrastructures,

including the Internet, telecommunication networks, computer systems, and embedded

processors and controllers” in the Joint Publication 1-02, Department of Defense (DoD)

Dictionary of Military and Associated Terms (DoD, 2010).

Massive amounts of data are collected by sensors placed at cyber systems such as

firewalls, Intrusion Detection System (IDS), and anti-virus. This data, either network

traffic data or log data is ripe for application of data mining for the purpose of

unearthing valuable patterns and relationships to be used in security research. Data

mining may enable us new capabilities that were not possible before. Apart from all

the tactical operations necessary to defend a cyber-system, it has become vital to

continuously sift through vast amounts of sensor data that could be made more efficient

with advances in data mining techniques to accurately map the attack surface, collect

and integrate data, extract knowledge and produce useful visualizations (Blowers et

al., 2014). Strategic coordination of all the sources of data is becoming a central piece

of effective cyber defense. This accumulation of data from various sources can easily

become what we call big data.

Dealing with large and fast-growing sources of data obliged us to build new techniques,

models and a new kind of computing infrastructure to process, analyze and store data.

Amongst many considerations when dealing with massive amounts of data, one

challenge is in having a computing infrastructure that can ingest, validate, and analyze

high volumes (size and/or rate) of data. Another challenge is in assessing mixed data

(structured and unstructured) from multiple sources. It is often very difficult to deal

with unpredictable content with no apparent schema or structure, and often a challenge

enabling real-time or near-real-time collection, analysis, and results (Villars, Olofson,

& Eastwood, 2011).

1.5. Machine Learning and Data Mining for Malware Detection

The security industry is locked inside the endless loop of generating a specific

signature to one kind of malware only for this specific kind of malware to be later

modified to evade the present detection mechanisms (David & Netanyahu, 2015). This

5

never-ending loop puts the security industry in a position of attempting to defend

against all attack vectors from the full cyberattack spectrum with the attackers

continually improving their tools and attack methods.

Instead of taking the approach of one unique signature to one malware sample, data

mining and machine learning propose a fundamentally different approach to tackle the

problem of detecting malware.

Once malcode injection occurs, the traffic or the app is not the same as it was before;

there are clear indications of that malcode injection somewhere in the traffic or the

source code. Such changes that occur through injection of malcode provide us the

ability to learn about such changes to measure the degree of maliciousness of an

executable in order to determine whether the file in question is a benign one or a

malicious one.

Data mining is a kind of prediction in which we look for meaningful patterns amongst

data and from these make classifications, form clusters or predict numeric values.

Either within the network traffic or source code of an app, it is in a clean state when

there are no malcode injections inside the traffic or source code of the app.

1.6. Dealing with Advanced Threats

Cyber adversaries are getting more sophisticated every day and targeting organizations,

corporations, and governments. We are facing what we call advanced threats, which is

beyond the attack sophistication threshold we are used to and it involves advanced

malware, targeted attacks, and APTs. The primary aim of such adversaries is to conduct

industrial espionage, undermine business and financial operations, and/or sabotage

critical infrastructure. Many organizations today lack the workforce with the adequate

skills to combat such threats.

Traditional approaches to security, which can be defined as security systems that

leverage a rule, pattern, signature, or algorithm, based approach to detect malware or

cyberattacks, are no longer effective against advanced threats. The main pitfall of

traditional approaches to security is the requirement of constant updates and influx of

rules, signatures or patterns to identify and mitigate each individual malware or threat.

Software and hardware solutions with data analytics at its core are rapidly becoming

the cornerstone of protection in cyber and information security domains. Advances in

6

machine learning is a promising approach to deal with the ever-changing and evolving

advanced threats. Machine learning techniques are finding widespread applications

and implementations in dealing with a wide range of security issues with many

machine learning techniques, algorithms, and tools being used by security experts and

researchers to tackle some of the most advanced threats we are facing today.

Machine learning, when utilized in the right way can benefit us with faster

identification of previously unidentified vulnerabilities in software or hardware,

detection of complex cyber attacks and malware, and mitigation of insider threats

through detection of anomalous user behavior.

1.7. Thesis Contributions

The main contributions of this thesis will be twofold:

• A novel methodology of feature selection in the machine learning process for

malware detection against malicious Android executables.

• An exploration of ensemble learning methods and techniques among several

machine learning algorithms for Android malware detection that utilizes

permissions, Application Programming Interface (API) calls, and strings as

features.

The feature selection methodology proposed in this thesis differs from the

methodologies already present in the literature in accordance with selecting attributes

that have the lowest possible Inverse Document Frequency (IDF) values in the

malware dataset and at the same time the highest possible IDF values in the benign

dataset, which is different from the present approaches in the literature.

Secondly, the methodology of Android malware detection using machine learning

techniques is new, based on exploring ensemble learning with different algorithms by

using specific sets of selected features.

I hope these two main contributions of this thesis, will be valuable towards the efforts

of researchers and the security industry in combating and providing better detection

against Android malware detection.

7

CHAPTER 2

BACKGROUND

In this chapter, a broad academic background of essential topics composing this thesis

will be provided in order to make sure the reader is adequately familiar with them to

understand the following chapters.

2.1. Malware: A Brief Definition

Referred to by many names including malicious software, malicious code or malcode,

malware is basically software produced to harm a target system either by cyber

espionage, encrypting of files to ask for ransom (ransomware) or erasing of critical

Operating System (OS) files to make it unusable.

This definition platform independently applies to all the programs that could be

considered as a malware, the key point for different platforms is that Android malware

must be executable on the Android OS, whereas a Microsoft Windows malware must

be executable on the Windows platform. Malware that is executable on multiple

platforms may also be produced depending on how portable the written code is.

2.2. The Android Software Stack

As illustrated in Figure 2.1., the Android Software Stack is composed of four main

layers and the green items are components written in native code (C/C++), while blue

items are Java components interpreted and executed by the Dalvik Virtual Machine

(Dalvik VM). The bottom red layer is the Linux kernel components that run in the

kernel space.

8

Figure 2.1. Android Software Stack (ZDNet, 2008)

In the following subsections, Android abstraction layers are discussed starting from

the Linux Kernel.

2.2.1. Linux Kernel

A specialized version of the Linux Kernel with a few special additions is utilized by

the Android. The additions include wakelocks (mechanisms to indicate that apps need

to have the device stay on), a memory management system that is more aggressive in

preserving memory, the Binder IPC driver, and other features that are important for a

mobile embedded platform like the Android.

2.2.2. Libraries

The Libraries component exposes a set of native C/C++ libraries to the Application

Framework and Android Runtime. These libraries are mostly external with only minor

modifications such as OpenSSL, WebKit, and bzip2. The crucial C libraries,

codenamed the Bionic, were ported from BSD’s libc and were rewritten to support

ARM hardware and Android’s own implementation of pthreads based on Linux futexes.

9

2.2.3. Android Runtime

Android Runtime, which acts as a middleware component, consists of the Dalvik VM

and a set of Core Libraries. The Dalvik VM is responsible for the execution of

applications on the Android and is discussed in detail in Section 2.3.

The core libraries are an implementation of general purpose APIs and there are two

different types of core libraries:

1. Core libraries for the Dalvik VM.

2. Core libraries for Java programming language interoperability.

The first category of core libraries is used in processing or modifying Virtual Machine

(VM) specific information and is generally used when bytecode has to be loaded into

memory. The second category coming from the Apaches Harmony enables Java

interoperability by implementing the popular Java packages such as java.lang and

java.util.

2.2.4. Application Framework

The Application Framework layer provides many higher-level services to apps in the

form of Java classes where the developers are allowed to inherit in their own apps.

Most components in this layer are implemented as official system apps and run as

background processes on the device.

Some components are responsible for managing baseline phone functions such as

receiving phone calls, receiving text messages or monitoring battery usage, while some

have more focused uses cases such as providing access to the system’s location

services given the phone has Global Positioning System (GPS) capabilities.

2.2.5. Applications

On the top of the Android framework, there are applications. All apps such as home,

contact, settings, games, browsers use the Android framework that, in turn, uses the

Android runtime and libraries. Android runtime and native libraries use the Linux

Kernel. Android apps are discussed in more detail in Section 2.4.

10

2.3. Dalvik Virtual Machine

A runtime comprises of software instructions that execute when a program is running.

These instructions are tasked with translating the applications' code into the machine

code that the device is capable of running. Android makes use of a virtual machine as

its runtime environment in order to run the Android Package (APK) files that constitute

an Android application.

Dalvik has been the default virtual machine that runs applications on top of device

hardware since Android was started back in 2007. Dalvik runtime uses Just-in-Time

(JIT) compilation method first introduced in Android 2.2 Froyo, in order to interpret

the bytecode. JIT means applications are partially compiled and built, in addition,

meaning each time an application is launched, and it must be compiled first. Introduced

as an improvement over the previous conventional interpreter approach that compiled

and ran code line by line, the downside is the huge overhead when launching

applications.

Two major advantages of this approach are as follows: Firstly, as the code is isolated

from the core, in case of an intentional or unintentional security threat, the risk is

contained within the virtual machine, thus, not affecting the primary OS. Secondly, the

code can be compiled on another platform and can still be executed on the mobile

platform using the virtual machine.

2.4. Android Applications

Android applications are in an executable format as APK files. APK files are signed

compressed files that contain the app’s bytecode along with all its data, resources,

third-party libraries and a manifest file that describes the app itself.

Android apps are run in a sandboxed environment to improve security. Apps receive a

unique Linux User ID (UID) from the Android OS during installation on the device.

Access permissions to the files of an app are set in a way to enable the app itself only

to access them. Each app is granted its own VM during runtime resulting in app code

that is completely isolated from other applications.

11

 2.4.1. Components of an Android Application

The essential building blocks of an Android application are components. Each Android

application is composed of four standard components that manage different parts of

the application’s functions. These four types of application components are explained

below:

2.4.1.1. Activities

Activities provide a single screen and an interface. Each application may have

activities for carrying out different tasks such as reading e-mail for an e-mail

application or depicting available routes in a navigation application. Each activity

works independently from each other to form a cohesive user experience for a specific

app. A different app can start activities belonging to another app (as long as permission

is given), for example, a camera app may start the activity in the e-mail app in order

to e-mail a photograph.

2.4.1.2. Services

Services provide background functionality for long-term operations that do not require

an interface. Services are similar to activities; on the other hand, the only main

difference is that there is no requirement of an interface for each activity. An example

of a service may be music playing in the background while the user is using another

app or downloading data over the network without blocking user interaction by use of

an activity. Services can be started by other components of the app such as an activity

or a broadcast receiver.

2.4.1.3. Content providers

Shared app data are managed by content providers. The data may be stored in the file

system, an SQLite database or any other persistent storage location the app can access.

As long as the content provider allows it, other apps can query or even modify the data.

Android system provides a content provider that manages the user's contacts

information and an app with the required permissions can send queries to the content

provider in order to read and write information about a particular contact.

2.4.1.4. Broadcast receivers

A broadcast receiver listens for specific system-wide broadcast announcements to pick

them up if they were the intended recipient. While many broadcasts originate from the

12

system such as low battery, apps can also initiate broadcasts, for instance, to let other

apps know that some data has been downloaded to the device and is available for them

to use.

Broadcast receivers are generally used to act as a gateway to other components and do

not have a user interface. They are tasked with initiating a background service to

perform a task based on a specific event.

There are two types of broadcasts: non-ordered and ordered. Non-ordered broadcasts

are sent to all interested receivers at the same time, on the other hand, ordered

broadcasts are first sent to the receiver with the highest priority, before being

forwarded to the receiver with the second highest priority. An example of a non-

ordered broadcast is the battery low announcement, while an example to the ordered

broadcast is an incoming SMS text message announcement.

Upon receiving an ordered broadcast, the receiver may decide to abort the broadcast

so that it is not forwarded to other receivers. This allows vendors to develop

alternatives to the official Android apps such as an alternative text message manager

that can disable the official Android messaging application by using a higher priority

receiver and aborting the broadcast after handling the incoming message.

2.4.1.5. Intents

Android’s solution to establishing communication amongst application components is

handled using a message routing system based on Uniform Resource Indicators (URIs).

Asynchronous messages called “intents” are used to activate components such as

activities, services and broadcast receivers. Intents are nearly equivalent to parameters

passed to API calls and the fundamental differences between API calls and intents’ way

of invoking components are listed below:

• API calls are synchronous while intent based invocations are asynchronous.

• API calls are compile-time bindings while intent based calls are run-time

bindings.

In order to listen for an intent, intent filters need to be implemented that specifies the

types of intent that an activity, service, or broadcast receiver can respond to. An intent

filter declares the capabilities of a component. It specifies the tasks an activity or

13

service can achieve and which types of broadcasts a receiver can handle. It allows the

corresponding component to receive Intents of the declared type.

Intent filters are typically defined in the AndroidManifest.xml file. An Intent Filters is

defined by its category, action and data filters. It can also contain additional metadata.

When an intent is broadcast and received by the relevant listener, the intent filter is

invoked by the Android platform to accomplish the job. This means, both of the

components are not aware of each other’s existence and can still work together to give

the desired result for the end user.

Some intents may require specific permissions to be sent, while system intents can be

sent by processes that have the system’s UID. The latter, cannot be sent by an

application regardless of the permissions they hold and they can only be sent by the

system processes.

2.4.2. The Manifest File

Every Android application must have an “AndroidManifest.xml” file. It is some sort

of a configuration file in which references to the implemented components exist. This

file describes each component of the application and the components’ interaction

among themselves. All the components of an application must be declared in this file,

which resides in the root of the app project directory. Activities and services that are

not declared in the manifest cannot be run.

Broadcast receivers, on the other hand, can either be declared in the manifest or may

be registered later dynamically via the registerReceiver() method. The manifest

additionally specifies application requirements such as special hardware requirements

(e.g., camera, temperature sensor), or the minimal API version required to run the app.

In order to access the protected components (e.g., external storage, accessing the

contact’s list), an application must be granted the corresponding permission. The list

of permissions required by the app must be defined in the app’s AndroidManifest.xml.

This way, during runtime, the Android OS can prompt the user to grant the specific

required permission(s) to enable the app to access these components through specific

APIs.

14

Inside the OS, the protected components have a unique Linux group ID, granting of

the corresponding permission makes the app’s VM a member of the corresponding

unique group, thus enabling access to the restricted components.

2.4.3. Application Permission Structure

Permissions in the Android OS are enforced using permission validation mechanisms

that must be invoked by some key components. Particularly, the system process is

tasked with implementing the permission validation mechanism with several

invocations spread throughout the API. The key components forming the Android

permission enforcement model will be explained below.

Third-party applications on the Android platform are provided with an extensive API

that provides access to phone hardware, settings, and user data. Access to security or

privacy sensitive parts of the API is governed by the permissions security feature. Prior

to installation of each application, the user is presented with a list of permission she/he

must accept in order for the application to function properly. Each application

developer must determine the required list of permissions beforehand and if the user

spots something dubious, they can cancel the installation altogether.

This gives a user the chance to evaluate an application as potentially dangerous or

benign to some level. However, the fact that most people are negligent about reading

such information is the weakest point of this security technique employed by the

Android OS.

There are 134 (Felt et al., 2012) officially defined application permissions in total

divided into four protection levels, each level enforcing a different security policy.

From low risk to high risk there are:

2.4.3.1. Normal Permissions

Includes permissions that present the lowest risk to the user thanks to the use of API

calls that cannot be used to do harm. They provide access only to isolated application-

level features, posing minimal risk to other applications, the system, or the user. Such

types of permissions are given automatically without requiring the explicit consent of

the user.

2.4.3.2. Dangerous Permissions

15

Permissions falling in this category have access to API calls that could be potentially

malicious and could enable access to private user data. They provide a wider access

range to device resources and give requesting applications control over the device that

can affect the user negatively. Applications requiring these kinds of permissions will

ask for the user’s explicit approval prior to installation.

2.4.3.3. Signature Permission

A type of permission that the system grants only if the requesting application is signed

with the same certificate as the application that declared the permission. Given the

certificates match, the system automatically grants the permission without asking for

the user's explicit approval.

2.4.3.4. SignatureOrSystem Permission

This permission type is granted only to applications that reside in the system image or

that are signed with the same certificate as the application that declared the permission.

This permission type should normally be avoided, as the protection level provided by

the signature permission should be enough regardless of where an application is stored.

This permission is reserved for certain special situations such as when multiple

vendors want to embed applications inside the system image and need to share specific

features of the application explicitly.

This model of Android security is static as an application needs to obtain a permission

once and the list of permissions the application has cannot be modified during the

lifetime of the application on the device.

2.4.4. Android Application Programming Interface (API)

The Android public API is composed of 8,648 distinct methods (Chin, Felt,

Greenwood, & Wagner, 2011), some of which are protected by permissions. However,

no centralized policies are in place to execute permission checks when an API is called.

The Android API framework has two distinct parts, one of them is a library residing in

each application’s virtual machine and another is an implementation of the API that

runs as a system process. The library provides the necessary means for interacting with

the API implementation.

16

The API implementation in the system process is not bound by the restrictions brought

about by the permissions systems, while the API library runs bound by the set of

permissions accepted during the installation of the application.

There are three steps to handle API calls in the Android OS:

Firstly, the application invokes the public API in the library, secondly, the library

invokes a private interface (an RPC stub) and lastly, the RPC stub starts an RPC request

that makes the system process instruct a system service to perform the desired

operation.

The API implementation in the system process holds the corresponding permission

checks for each application. The permission validation mechanism is called to check

whether the invoking application has the necessary permissions.

2.5. Android’s Build Process

The Android build process consists of compiling the Android modules and packaging

them into .apk files according to the given build settings. The .apk file for each

application contains all the information necessary to run an application on a device

including compiled .dex files (.class files converted to Dalvik bytecode), a binary

version of the AndroidManifest.xml file, compiled resources (resources.arsc) and

decompiled resource files for an application.

Given the developer is using Android development tools, the build system can sign the

application when building it for debugging, whereas a certificate to sign the app must

be obtained and used when building the app for release.

An illustration of building and running an application can be seen in Figure 2.2.

Figure 1.2. Building and Running an Application in Android (stuff.mit.edu, 2016)

17

The steps required to be carried in order to create the final APK file from an

application’s resource files are explained in the following paragraphs.

The Android Asset Packaging Tool takes and compiles an application’s resource files

such as the AndroidManifest.xml file and the XML files for the activities. Any

existing .aidl interfaces are converted into Java interfaces. All the Java code, including

the R.java and .aidl files, is compiled and .class files are output. The dex tool converts

the .class files and third-party libraries into Dalvik bytecode in order to package them

in the final .apk file.

Apkbuilder tool takes all non-compiled resources (such as images), compiled

resources, and the .dex files for packaging into an .apk file. After building the APK

file, it must be signed with either a debug or release key before installing it to a device.

As the last step, given the application is being signed in release mode, it must be

aligned using the zipalign tool in order to decrease memory usage during execution. A

detailed illustration of the above process can be seen in Figure 2.3.

18

Figure 2.3. Creation of the Final APK Archive File (stuff.mit.edu, 2016)

19

2.6. Malware Analysis Techniques

If we consider a mobile anti-virus company that uses a signature-based Android

malware detection method, the following scenario would be possible. After receiving

a sample worth analyzing, they need to find a pattern that correctly identifies the

sample. The identified signature should be generic enough to match the other variants

of the same malware and at the same time should not produce false positives (Egele,

Scholte, Kirda, & Kruegel, 2008). This manual inspection method is both labor

intensive and likely to produce errors. Assuming that the source code is not available

for analysis, as is the general case, the analysis needs to be performed on the binary

level.

In this section, two main techniques of analyzing malware, which are static and

dynamic analysis, will be explained.

2.6.1. Static Analysis

In static analysis or reverse engineering of a malicious binary, the file in question is

examined without actually executing its code. In static analysis, the aim is to arrive at

an intermediate representation of the program that has the same control and data flows

as the original program source code. This includes the use of techniques such as

disassembling, decompiling, unpacking etc., in order to arrive at a human

understandable piece of code.

This type of analysis can provide useful results in analyzing compiler-generated

binaries. However, it is mostly inadequate in identifying obfuscated, polymorphic or

metamorphic code. In order to conduct static analysis of obfuscated malware, it must

be de-obfuscated first by using corresponding de-obfuscation techniques.

When compiling the source code of a program into a binary executable, some

information such as the size of data structures or variables are lost which can make the

task of analysis and detection harder through static analysis. However, static analysis

can still bear useful results, for example, producing a call graph can give an analyst an

overview of what functions are invoked from what parts of the code (Egele et al., 2008).

20

2.6.2. Dynamic Analysis

In dynamic analysis, the behavior of the executable is monitored during execution,

thus giving us the ability to oversee the tasks performed by it. The program’s

instructions are executed either by single step execution, dynamic instrumentation or

whole system emulation to obtain a trace of the application’s executed instructions

(Roundy & Miller, 2010). The obtained trace is used to construct an analysis artifact,

which is used to shed light on the program’s unpacking behavior.

The main drawback of this approach is that some malware may contain functionality

triggered only under certain conditions, meaning the malware may hide its true

function unless certain conditions are met and may be resistant against running in

virtual environments or use of sandboxing techniques.

Different techniques can be used to conduct a dynamic analysis of an executable, such

as function call monitoring, function parameter analysis or information flow tracking.

A brief description of each technique is given below.

Firstly, in function call monitoring, function calls are intercepted by a process called

hooking by the invocation of a special hook function. This function implements the

required analysis functionality by recording its invocation to a log file or analyzing

input parameters. Secondly, in function parameter analysis, the focus is on the actual

values that are passed when a function is invoked. This tracking of parameters and

function return values enables the correlation of individual function calls that operate

on the same object. Lastly, in information flow tracking, the focus is on how the

program processes data and the aim is to shed light on the propagation of “interesting”

data throughout program execution (Egele et al., 2008).

The analysis component that supervises the operations of the program under inspection

needs to be executed in a higher OS privilege level compared to that of the program in

order to prevent access to the analysis component. Otherwise, if both are on the same

privilege level, the analysis component will have to employ stealth techniques to hide

its presence from the program (Egele et al., 2008).

A hybrid approach can be employed in which the code is dynamically analyzed for

pieces of code where static analysis fails.

21

2.7. Android Malware Infection Vectors

Malware may use various infection vectors to infect a smartphone. In this section, the

most likely vectors for Android malware infection are detailed.

2.7.1. Client-Side Software Vulnerabilities

Vulnerabilities in applications may be exploited to execute code on a target system

remotely. This software may take the form of a web browser, PDF reader, Java

Runtime Environment (JRE) or any program with exploitable bugs in its source code.

Old versions of these applications or even up to date versions may share common

vulnerabilities that can be exploited by malware for infection and spreading.

2.7.2. Vulnerabilities in the Smartphone’s OS

Given the smartphone’s OS is not entirely free of security vulnerabilities, hackers may

exploit such vulnerabilities to infect the phone with malware. In other words, keeping

the Android OS up to date can be a great barrier against malware infection.

2.7.3. Social Engineering

Mostly overlooked, but a common vector of infection for malware is through use of

social engineering techniques. This technique exploits not software vulnerabilities but

human psychology through elements of shock and surprise. An e-mail claiming to

come from your bank with a malicious attachment or requiring the installation of

malware disguised, as fake codecs to view a shocking video are examples of how

social engineering attacks may be carried out. The goal of such techniques is to trick a

user to install the malware on their system by their own actions.

2.7.4. Third Party App Stores

The third party app stores for Android are known for their weak security precautions

and they are responsible for the biggest rate of malware infection on the Android

platform. This is considered as the most popular way for malware distribution for most

malware authors.

22

2.7.5. Brute Forcing the User’s Accounts

Any weak or default password of a user account for a remotely accessible service, be

it FTP or SSH, is susceptible to remote brute-force attacks. Likewise, some malware

are programmed to launch brute-force attacks autonomously on specific user accounts

in order to propagate inside the network to be able to infect other devices.

2.7.6. Drive-By Downloads on the Android

Another common infection vector for malware is drive-by downloads. It usually works

by exploiting a vulnerability in the target’s web browser to download and execute

malicious code on the target computer. Drive-by downloads follow a pull-based

scheme (Provos, Mavrommatis, Rajab, & Monrose, 2008), namely, the user

unknowingly initiates the connection to download malicious code in contrast to push

based schemes in which attackers actively discover and exploit vulnerabilities present

on services of a network or a computer.

2.8. Relevant Data Mining and Machine Learning Background

Data mining is the processing large amounts of data to uncover unseen patterns and

the types of learning that can be used are classification, clustering, association or

anomaly detection. The work in this thesis falls under the classification (malware or

benign) type of data mining using supervised learning. In supervised learning, a set of

labeled input is fed into the data mining model for learning, which in turn classifies it

into a class, in our case, malicious or benign.

Data mining can be further categorized as predictive data mining and descriptive data

mining. In predictive data mining, the aim is to deduct values from given datasets and

in descriptive data mining, the aim is to deduct patterns that describe the dataset.

Many data mining models and algorithms can be used for the task of malware detection

such as Artificial Neural Networks (ANNs), Support Vector Machines (SVMs),

decision trees, association rule mining, k-Nearest Neighbour (k-NN) and others. Each

of these models can perform better under certain circumstances, as well as performing

worse under certain circumstances, namely, each one has its strengths and weaknesses.

No one algorithm or model can meet all the expectations at once.

23

The group of machine learning algorithms and techniques that are essential for an

adequate understanding of this Ph.D. work will be explained in detail in this section.

2.8.1. K-Nearest Neighbor (K-NN)

The method k-NN aka Instance-based Learner (Aha, Kibler, & Albert, 1991) has a high

computation cost when given large datasets and was first described in the early 1950s.

Based on learning by analogy, which is a comparison of a chosen instance with

instances that are close to it in distance wise. When given an unknown tuple, a k-NN

classifier searches the pattern space for the k training tuples that are closest to the

unknown tuple. These k training tuples are the k “nearest neighbors” of the unknown

tuple. “Closeness” is defined in terms of a distance metric, such as the Euclidean

distance metric or the Manhattan distance metric.

The Euclidean distance between two points or tuples, for 𝑥𝑥1 = (𝑥𝑥11, 𝑥𝑥12, . . . , 𝑥𝑥1𝑛𝑛) and

𝑥𝑥2 = (𝑥𝑥21, 𝑥𝑥22, . . . , 𝑥𝑥2𝑛𝑛) is computed by:

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥1, 𝑥𝑥2) = ��(𝑥𝑥1𝑖𝑖 − 𝑥𝑥2𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

2.8.2. Support Vector Machines (SVMs)

SVMs (Cortes & Vapnik, 1995) are a very powerful method that has been utilized in a

wide variety of applications. It can be used to classify both linear and nonlinear data.

For nonlinear data, a nonlinear mapping technique is used to transform the original

training data into a higher dimension. The linear optimal separating hyperplane is

searched within this new dimension. The hyperplane classifier or linear separability is

the basic concept in SVMs. To achieve linear separability, SVM applies two basic ideas:

margin maximization and kernels, namely mapping input space to a higher dimension

space. The expectation is that the hyperplane with the larger margin will be more

accurate at classifying future data tuples than the hyperplane with the smaller margin.

Owing to their ability to model complex nonlinear decision boundaries they are highly

accurate and much less prone to overfitting compared to other data mining models,

SVMs can be used for prediction or classification in areas including but not limited to

handwritten digit recognition, object recognition, and speaker identification.

24

Figure 3.4. Support Vector Machine (SVM) (Han, Kamber, & Pei, 2006)

2.8.3. Decision Trees

Classification by decision tree involves constructing a decision tree, it is essentially a

collection of decision nodes in which the internal nodes of a decision tree correspond

to attributes and leaf nodes correspond to class labels (Kolter & Maloof, 2004).

Attributes and values of an instance are used by a performance element to traverse the

tree from the root to a leaf. A predictive model is used that maps observations about

an item to conclusions about the item's target value.

In classification trees, the target variable can take a finite set of values. Leaves

represent class labels and branches represent conjunctions of features that lead to those

class labels. In regression trees, the target variable can take continuous values.

A tree is traversed from the root to a leaf to collect values of attributes for prediction

of the leaf node. The attribute that best splits the training set into their corresponding

classes is selected to build the decision tree.

A node, branches, and children are assigned for each attribute and its values, the

examples are distributed to corresponding child nodes. This process is repeated

recursively until a node contains examples of the same class and lastly, it stores the

class label. The gain ratio is mostly used for attribute selection which is based on

25

information gain (Patel & Upadhyay, 2012). In order to prevent or lessen overfitting

in decision trees, pruning of the tree is mostly employed, which removes sub-trees that

are likely to perform poorly on test data and are likely to be redundant information.

2.8.3.1. C4.5

C4.5 (Quinlan, 1986, 1993) is a decision tree learner algorithm that precedes C5.0,

which is a proprietary learner and closed source. As the source code for C4.5 is

publicly available, it will be described instead of the C5.0. J48 is the decision tree

algorithm that was used during the experiments in this Ph.D. work, and it is an open

source Java based implementation of the C4.5 Decision Tree algorithm that is available

in the Waikato Environment for Knowledge Analysis (WEKA) (Weka, 2018) Platform.

C4.5 constructs decision trees using a top-down recursive divide-and-conquer manner.

A top-down approach is followed by most decision trees that starts with a training set

and their corresponding class labels.

C4.5 recursively partitions the training set into smaller subsets during the tree

construction process. The attributes are selected depending on the gain ratio criterion

and a decision tree is built up in which a specific classification rule is represented by

each path from the root to any selected leaf.

2.8.3.2. Random Forest

The Random Forest (Breiman, 2001; Tin Kam, 1995) decision tree classifier, classifies

a sample based on the majority vote of classification generated by multiple

classification trees. K trees are independently generated by this classifier, which makes

it easily parallelizable.

A full binary tree of a given depth is constructed for each tree and the features used in

each tree are selected in a random way, in other words, the same feature can be present

more than one time. This derives an algorithm that votes the classification results of K

random trees, in other words, it is an ensemble learner composed of K decision trees.

Each tree is grown using the following procedure (Breiman & Cutler, 2011):

• Let us denote the number of cases in the training set as “N”. From the original

data, sample N cases at random with replacement are selected. This sample will

compose the training set for growing the tree.

26

• Given there are “M” input variables, a number “m<<M” is specified in a way

that at each node, m variables are selected randomly out of the M and the best

split on these m is used for splitting the node. During the process of forest

growing, the value of m is held constant.

• Each tree is grown as much as possible without pruning.

Given most of the selected features are relevant this algorithm produces the best results,

as the feature subset selected for any given tree are small.

2.8.4. Naive Bayes

The Naive Bayes classifier is categorized as a statistical classifier, specializing in the

prediction of class membership probabilities, such as predicting the probability of a

given sample belonging to a particular class. Bayes’ theorem is named after Thomas

Bayes, a scientist who did early work in probability and the decision theory.

Let X be a data tuple or a row in the database. In terms of the Bayes’ theorem, X is

considered as an "evidence". Hence, it must be described by measurements made on a

set of n attributes. Let H be a hypothesis that states the sample X belongs to a

predefined class C. In classification problems, one needs to determine 𝑃𝑃 = (𝐻𝐻|𝑋𝑋) ,

where P is the probability that the hypothesis H holds given the "evidence" or the

observed sample X. Namely, the probability that the sample X belongs to the class C

has to be found, given that we know the attribute description of X.

The working principles of the Naïve Bayes classifier will be given in formulas below

(Han et al., 2006):

Let D stand for the training set and the associated class labels. An n-dimensional

attribute vector represents each sample that are denoted by 𝑋𝑋 = (𝑥𝑥1,𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛) and

depicts n measurements made on the sample from n attributes, which are given by

𝐴𝐴1,𝐴𝐴2, . . . ,𝐴𝐴𝑛𝑛 , respectively.

If there are m classes denoted by 𝐶𝐶1,𝐶𝐶2, . . . ,𝐶𝐶𝑚𝑚 and there is a sample X, then the

classifier will predict that X belongs to the class with the highest posterior probability,

conditioned on X. In other words, the naïve Bayesian classifier predicts that the sample

X belongs to the class 𝐶𝐶𝑖𝑖 if and only if,

𝑃𝑃(𝐶𝐶𝑖𝑖|𝑋𝑋) > 𝑃𝑃(𝐶𝐶𝑗𝑗|𝑋𝑋) , for 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚, 𝑗𝑗 ≠ 𝑖𝑖.

27

Hence, 𝑃𝑃(𝐶𝐶𝑖𝑖|𝑋𝑋) is maximized for the class 𝐶𝐶𝑖𝑖 and it is called the maximum posteriori

hypothesis. By Bayes’ theorem,

𝑃𝑃(𝐶𝐶𝑖𝑖|𝑋𝑋) =
𝑃𝑃(𝑋𝑋|𝐶𝐶𝑖𝑖)𝑃𝑃(𝐶𝐶𝑖𝑖)

𝑃𝑃(𝑋𝑋)

In this equation, only 𝑃𝑃(𝑋𝑋|𝐶𝐶𝑖𝑖)𝑃𝑃(𝐶𝐶𝑖𝑖) need be maximized as 𝑃𝑃(𝑋𝑋) is constant for all

classes. Given the class prior probabilities are unknown, it is assumed that the classes

are equally likely, implying, P (𝐶𝐶1) = P (𝐶𝐶2) = … P (𝐶𝐶𝑚𝑚), and thus 𝑃𝑃(𝑋𝑋|𝐶𝐶𝑖𝑖) would need

to be maximized. Otherwise, 𝑃𝑃(𝑋𝑋|𝐶𝐶𝑖𝑖)𝑃𝑃(𝐶𝐶𝑖𝑖) would have to be maximized.

The fact that datasets commonly have many attributes, makes computing 𝑃𝑃(𝑋𝑋|𝐶𝐶𝑖𝑖)

exceedingly computationally expensive. The naive assumption of class conditional

independence is made in order to reduce the computational cost of computing 𝑃𝑃(𝑋𝑋|𝐶𝐶𝑖𝑖).

This assumption implies that the given the class label of the tuple, the values of the

attributes are conditionally independent from one another, in other words, there are no

dependence relationships among the attributes. Thus,

𝑃𝑃(𝑋𝑋|𝐶𝐶𝑖𝑖) = �𝑃𝑃(𝑥𝑥𝑘𝑘|𝐶𝐶𝑖𝑖)
𝑛𝑛

𝑘𝑘=1

 = P(𝑋𝑋1|𝐶𝐶𝑖𝑖) 𝑥𝑥P(𝑋𝑋2|𝐶𝐶𝑖𝑖)𝑥𝑥. . . 𝑥𝑥P(𝑋𝑋𝑛𝑛 |𝐶𝐶𝑖𝑖)

2.8.5. Neural Networks

A Neural Network is a fine-grained, parallel, distributed model of computation

characterized by the following list of distinctive features:

• It contains a large number of simple, neuron-like processing elements, which are

called nodes or, units.

• Typically, a large number of weighted (positive or negative real values), directed

connections are present between pairs of nodes.

• Local processing carried out by each node computes a function, which is also

dependent on the outputs of a number of other nodes inside the network.

Each node computes a simple function from their input values, which are the weighted

outputs from the other nodes. Given there are n inputs to a node, the node’s output, or

activation, is definable by:

28

 𝑎𝑎𝑖𝑖
(𝑘𝑘) = g (∑ Θ𝑖𝑖,𝑗𝑗𝑘𝑘 𝑥𝑥𝑗𝑗)𝑛𝑛

𝑗𝑗=0

In this equation 𝑎𝑎𝑖𝑖
(𝑘𝑘)is the activation of the node “i” in the layer “k”, and 𝜃𝜃𝑘𝑘 is a matrix

of weights controlling function mapping from the layer “k” to the layer “k + 1”. Hence,

each node computes a function g of a linear combination of its inputs.

Figure 4.5. Artificial Neural Network that contains one hidden layer

2.8.5.1. Multilayer Perceptron (MLP)

A Multilayer Perceptron (MLP) is a feedforward artificial neural network that

generates a set of outputs from a set of inputs. It is characterized by several layers of

input nodes which are connected as a directed graph between the input and output

layers. An MLP has at least three layers of nodes and each node is a neuron that utilizes

a nonlinear activation function, except for the input nodes. MLP uses a supervised

learning technique called backpropagation for training the network (Rumelhart,

Hinton, & Williams, 1986; Van Der Malsburg, 1986). The fact that it has multiple

layers and uses non-linear activation make it different from a linear perceptron. Thus,

it can distinguish data that is not linearly separable (Cybenko, 1989). Since there are

multiple layers of neurons, MLP is a deep learning technique.

MLP is widely used for solving problems that require supervised learning as well as

in research areas such as computational neuroscience and parallel distributed

29

processing. Current application fields include but not limited to speech recognition,

image recognition and machine translation.

2.8.5.2. Backpropagation Algorithm

In artificial neural networks, backpropagation, short for "backward propagation of

errors," is a method that is used to calculate a gradient required in the calculation of

the weights that will be used in the network (Goodfellow, Bengio, & Courville, 2016).

The method, when input an artificial neural network and an error function is used to

calculate the gradient of the error function with respect to the neural network's weights,

The calculation of the gradient proceeds backwards through the network adds to the

algorithm’s name “backwards”, in the procedure of calculating gradient proceeds

backwards through the network the gradient of the final layer of weights are calculated

first and the gradient of the first layer of weights is calculated last. During the

computation of the gradient for the previous layer, partial computations of the gradient

from one layer are reused. Efficient computation of the gradient at each layer is

achieved through this backwards flow of the error information.

2.8.6. Radial Basis Function (RBF)

Radial Basis Functions (RBFs) focus on the rebuilding of unknown functions from

known data (supervised learning). The functions are generally multivariate, and they

may be solutions of partial differential equations that satisfy specific additional

conditions. However, the rebuilding of multivariate functions from data can only be

accomplished if the space furnishing the “trial" functions is not fixed in advance, but

is data dependent (Mairhuber, 1956).

A radial basis function, RBF, 𝜙𝜙(𝑥𝑥) is a function defined in relation to the origin or a

certain point c, that is 𝜙𝜙(𝑥𝑥) = 𝑓𝑓(||x-c||) where the norm is generally the Euclidean

norm but can also be another type of measure.

The RBF learning model assumes that the hypothesis set ℎ(𝑥𝑥) is influenced by the

dataset 𝐷𝐷 = (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛), n = 1 … N for a new observation 𝑥𝑥, in the following way:

ℎ(𝑥𝑥) = �𝑤𝑤𝑛𝑛𝑥𝑥 exp(−γ ||𝑥𝑥 − 𝑥𝑥𝑛𝑛||2
𝑁𝑁

𝑛𝑛=1

)

30

This equation implies that each 𝑥𝑥𝑖𝑖 of the dataset influences the observation in a

Gaussian shape. Given a data point that is far away from the observation, its influence

becomes residual due to the exponential decay of the tails of the Gaussian. This is an

example of a localized function (𝑥𝑥 → ∞ ⇒ 𝜙𝜙(𝑥𝑥) → 0); however, other types of radial

functions can also be used, such as:

Multi-quadratic: 𝜙𝜙(𝑥𝑥) = �𝑥𝑥2 + γ2

Thin plate spline: 𝜙𝜙(𝑥𝑥) = 𝑥𝑥2 ln(𝑥𝑥)

2.8.7. Ensemble Learning Methods

Ensemble classifiers are utilized due to the fact that the classification accuracy of a

group of classifiers is typically higher compared to the accuracy of a single classifier

(Dietterich, 2000; Martínez-Muñoz & Suárez, 2007; Polikar, 2006). A binary tree is

constructed by the base classifier in which each node operates on one of the features

from the dataset. Weighted voting is used to combine the predictions of the individual

base classifier to decide the class of the test samples. When selecting the individual

classifiers there are two important criteria that must be satisfied: accuracy must be

above a certain threshold, in other words, it must be at least better than results from a

random guess and a degree of diversification between the classifiers must be present

that often leads to different errors on the new dataset (Saha, Pal, & Konar, 2016).

2.8.7.1. Boosting

Boosting is a method of enhancing the performance of individual classifiers by

combining multiple machine learning algorithms. During the boosting process, a set

of weighted models are produced via iterative learning of the model from a weighted

dataset. Afterwards, the model is evaluated, and the dataset is reweighted on the basis

of the model’s performance.

Boosting emerged from the idea of combining simple rules to form an ensemble in

order to enhance the performance of a single ensemble member. Let ℎ1,ℎ2, … , ℎ𝑇𝑇

denote a set of hypotheses, and consider the following composite ensemble hypothesis:

ℎ(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(�𝛼𝛼𝑡𝑡ℎ𝑡𝑡(𝑥𝑥))
𝑇𝑇

𝑡𝑡=1

31

In this equation, each ℎ(𝑥𝑥) is a classifier that produces values ±1 , and 𝛼𝛼𝑡𝑡 denotes the

coefficient with which the member ℎ𝑡𝑡 is combined. During the boosting procedure,

both 𝛼𝛼𝑡𝑡 and the hypothesis ℎ𝑡𝑡 are to be learned.

The boosting procedure updates the weight of each sample at each iteration, to ensure

that the misclassified ones get more weighting during the next iteration. In other words,

boosting focuses on the samples which are harder to classify.

The AdaBoost algorithm which refers to adaptive boosting (Bishop, 2006; Han et al.,

2006; Hastie, Tibshirani, & Friedman, 2001) is the most widely known and used

boosting algorithm, it was also utilized in the experiments of this Ph.D. thesis.

The AdaBoost algorithm works as follows: the weights for all the classified samples

are updated each time AdaBoost creates a new weak classifier, given the process is

iterated T times. The weights of the samples that were misclassified are increased and

the weights of the samples that were correctly classified are decreased. This process

continues in a loop with each new set of weighted samples (Saha et al., 2016).

It is called adaptive due to the fact that it focuses on samples that were misclassified

in the previous iterations.

2.8.7.2. Bagging

In Bagging or Bootstrap Aggregating, the classifiers are trained by different datasets

which are obtained from bootstrapping the original dataset, in other words, a subset of

the dataset is constructed via randomly selecting n samples with replacement from the

original dataset. This resampling procedure, which is repeated T times, explores the

diversity among the weak classifiers. At the final step, majority voting on the outputs

of the weak learners determines the class of an unknown sample (Saha et al., 2016).

32

CHAPTER 3

LITERATURE REVIEW

In this chapter, a broad literature review on the topic of malware detection approaches

on the Android using machine learning techniques is given.

3.1. Approaches for Malware Detection on the Android that use

Machine Learning Methods

Approaches to detecting malware on Android can be broadly categorized into two

categories. The first category aims to detect Android malware prior to its installation

on the device (static analysis) and the second category aims to detect after installation

via monitoring of run-time behavior (dynamic analysis). Some of the low-level

features extracted in the static analysis include calls to external libraries, strings, and

byte sequences, while more detailed features such as the list of API calls or the

graphical representations of the control flow may be utilized as well (Cesare & Xiang,

2010). The main problem with the dynamic analysis is the significant overhead

incurred compared to the overhead incurred when using a static analysis method.

One of the first studies on the Android permission model, its internal components and

interactions were published by (Enck, Ongtang, & McDaniel, 2009). Following this

study, a solution based on monitoring events occurring at the Linux kernel was

proposed by Schmidt et al. (A. D. Schmidt et al., 2008). Features which were extracted

from the Linux kernel, such as system calls and latest modified files, were used to

create a baseline model of smartphone usage. Because Android was still in infancy at

the time, no tests on real Android devices could be carried out.

Shortly after, the same authors (A.-D. Schmidt et al., 2009) implemented a method for

static analysis of the APK files to extract function calls in the Android environment.

In their study, they compared function call lists to malware APK files in order to

classify the function calls.

In order to identify specific privacy violations, a methodology for static analysis of

Android applications was implemented by SCanDroid (Fuchs, Chaudhuri, & Foster,

33

2009) that works by extracting the security specifications from the manifest file and

checking whether all data flows are consistent with the predefined specifications.

Bläsing et al. (Bläsing, Batyuk, Schmidt, Camtepe, & Albayrak, 2010) proposed a

dynamic analysis methodology that makes use of an Android application sandbox.

After performing static analysis by dissembling Android APK files in order to detect

malicious patterns, dynamic analysis is carried out that execute applications in a

sandbox. During the execution of the file in question in the sandbox, relevant events

such as opened files, accessed files, and battery consumption are monitored. An

application simulating user interaction called “ADB Monkey” was made use of, which

can be seen as the main drawback of this proposed method due to the fact that the

simulated user interaction may not clearly represent the real world user interaction

patterns.

Wu et al. proposed DroidMat (D. Wu, Mao, Wei, Lee, & Wu, 2012) that makes use of

several features including permissions, deployment of components, intent messages

and API calls. They collected their malware samples from the “Contagio mobile”

(ContagioMobile, 2016) website and the benign samples were downloaded from the

Google Play Store. They had 238 malware and 1500 benign application samples in

their dataset. A number of different types of clustering algorithms were used to classify

applications as benign or malicious and a detection rate of 97.87% was achieved.

Developers of DroidAPIMiner (Aafer, Du, & Yin, 2013) proposed an approach that

relies on API level information within the bytecode representation of APK files. More

specifically, they utilize requested permissions, critical API calls, package-level

information and app parameters in their machine learning process for Android malware

detection. They developed a tool called the DroidAPIMiner built on top of the

Androguard libraries and used the RapidMiner (RapidMiner, 2017) application to

build their machine learning classification models. Their dataset was collected from

three different sources, for the malware samples they used McAfee repositories and

the MalGenome project, for the benign samples they used the Google Play store. They

analyzed around 20,000 apps, out of which 3987 of them are malware apps and about

16000 of them are apps collected from the Google Play Store. In their approach, they

used the ID5 decision tree (Quinlan, 1986), C4.5 decision tree (Quinlan, 1993), k-NN

(Aha et al., 1991) and SVM (V Vapnik, 1995) machine learning algorithms. They

34

achieved 99% accuracy and 2.2% false positive rates on their dataset using the K-NN

classifier.

TaintDroid (Enck et al.), an information flow tracking tool for Android, enables

dynamic taint tracking capability. In order to provide enhanced visibility and control

over how an application uses private data, it simultaneously monitors multiple sources

of sensitive data. Real-time analysis of applications is achieved by leveraging

Android’s virtualized execution environment, the Dalvik VM. Multiple sources of

private data are labeled according to four levels of monitoring, namely variable level,

method level, file level and message level. Similar to the working principle of an IDS,

an alarm is raised in case the labeled data leaves the system through an untrusted third-

party application.

A study on Android permissions focusing on how to conduct effective risk

communication was published by (Peng et al., 2012). Specifically, they proposed

applying probabilistic learning methods to calculate risk scores according to the

requested permissions of an Android app. They conducted their experiments on real-

world datasets and their results showed that probabilistic general models significantly

outperform the existing approaches, and that the Naive Bayes models provide for a

promising risk scoring approach.

Droidbox (Lantz, Desnos, & Yang) is built on top of TaintDroid with the added

functionality of monitoring the Android API and reporting on the file system and

network activity as well as the use of cryptographic operations and cell phone usage

by using a patched Dalvik VM. A timeline view of the monitored activity is presented

to the user which makes it useful for manually identifying malware by viewing its

observed behavior.

ComDroid (Chin et al., 2011) performs static analysis of decompiled bytecode of

Android applications to find Android Intents sent with weak permissions.

Crowdroid proposed by Burguera et al. (Burguera, Zurutuza, & Nadjm-Tehrani, 2011),

is a dynamic analysis and machine learning based framework. It recognizes Trojan-

like malware on Android smartphones, by analyzing the number of times a system call

has been issued that requires user interaction by an application during the processing

of a request. The monitored features are analyzed in the cloud and the collected

35

observations are classified using K-Means, reaching a claimed detection rate of 100%

for the malware samples they had implemented themselves.

Yerima et al. (Yerima, Sezer, McWilliams, & Muttik, 2013) present an approach based

on Bayesian classification models obtained from static code analysis. The models were

built from a collection of code and app characteristics that provide indicators of

potential malicious activities. These models were evaluated with real malware samples

reaching the highest detection rate of 90.60%.

A classification approach with high accuracy was proposed by (Elish, Shu, Yao, Ryder,

& Jiang, 2015) in which a data-flow feature on how user inputs trigger sensitive API

invocations was extracted statically. Their approach was evaluated on 1433 malware

and 2684 benign samples and achieved 2.1% false negative and 2.0% false positive

rates. They based their classification method on enforcing carefully chosen benign

properties in apps that are observable in benign samples, while not observable in

malware samples. It was claimed by the authors that, this enforcement of benign

properties through app classification will give the defenders an edge against combating

malware.

A broad analysis of Android applications to detect on-device malware was performed

by (Arp et al., 2014). The researchers built an app called “Drebin” and favored

conducting initial extensive static analysis in order to avoid depletion of limited

resources of a smartphone quickly. Their space of extracted features was decided to be

as large as possible and is organized in sets of strings, that include permissions, API

calls, and network addresses. All the extracted features are later embedded in a joint

vector space with the aim of automatically identifying typical patterns indicative of

maliciousness. Their experiments were conducted with 5,560 malware samples and

123,453 benign apps from a number of app markets. Malware detection rate of 94%

and false-positive rate of 1% were achieved by utilizing the SVM machine learning

classifier.

Malicious Android applications Detection through String analysis (MADS) (Sanz et

al., 2013), extracts strings from Android APK files in order to construct machine

learning classifiers to detect Android malware. 333 unique malware samples and 333

unique benign samples were used in their experiments. They employed text mining to

represent each different Android application. 6 different algorithms which are, Naive

36

Bayes, Bayesian Network, SVM, k-NN, J48 and Random Forest were used in their

experiments within the WEKA machine learning platform, with each algorithm

configured to use the default configuration. They used the k-fold cross-validation

technique in order to get their test results. They achieved the highest accuracy of 94.70%

using the SVM Poly algorithm.

Authors of (S. Wu, Wang, Li, & Zhang, 2016) proposed an Android malware detection

method that uses dataflow APIs as features within a machine learning approach. They

conducted a thorough analysis to extract the dataflow-related API-level features and

to improve the k-NN classification model. By further optimizing the dataflow-related

API list, the efficiency of the sensitive data transmission analysis was increased

considerably. Their dataset contained 1160 benign and 1050 malicious samples, and

they obtained accuracy rates as high as 97.66%. The dataflow API was the only feature

used during the whole data mining process.

Constituting a real-time malware detection system, TStructDroid (Shahzad, Akbar,

Khan, & Farooq, 2013) uses various methods such as time-series feature logging,

segmentation and frequency information extraction from the data. A novel information

processing framework was proposed to extract the hidden patterns in the execution

traces. Their detection system depends on majority voting on a segment of feature

instances to make a decision about an executing application. J48 decision tree based

classifier was preferred to be used by the framework. In standard cross-validation tests,

they received accuracy in the range of 90 - 93.6% and false positive (FP) rate of 5.4 -

7.3%. However, in real-world scenarios, in which they used zero-day malware, they

claim to reach promising results with 98% accuracy and less than 1% false alarm rate

with a dataset containing only 110 benign and 110 malware Android APK files.

DroidScope (Yan & Yin, 2012) is a multilevel semantic analysis tool that performs

dynamic profiling and information tracking to detect malicious behavior and privacy

leaks on the Android platform. It performs instruction trace and API call monitoring

and uses taint analysis to discover leakage of sensitive information. Has been tested

on a dataset of just two Android malicious files.

A multilevel anomaly detection technique for detecting Android malware (MADAM)

was proposed by Dini et al. (Dini, Martinelli, Saracino, & Sgandurra, 2012) that

operates in the kernel and the user-space at the same time. The multilevel view of the

37

system makes it possible to deduce a rich feature space that enables detection of

previously unknown malware. The framework operates in training, learning and

operation phases. In the classification phase, the k-NN algorithm is used. By

incorporating new feature vectors in training and learning sets at runtime, the machine

learning model aims to improve detection rates. They reached an average accuracy of

93% and a false positive rate of 5% on 10 malicious and 50 benign apps.

Smartdroid, proposed by (Zheng et al., 2012), is a hybrid automatic malware detection

framework that monitors user's interaction with the interface. Activity control graphs

and function call graphs are built by a static path selector during static analysis.

Function call graphs are updated for indirect and event-driven API calls. For dynamic

analysis, Android framework code is modified and a restrictive component is added to

limit the new activities that are created after interacting with the user interface.

An approach utilizing ensemble learning was proposed by Yerima et al. (Yerima, Sezer,

& Muttik, 2015) for Android malware detection. Their aim was improving Android

malware detection accuracy by combining static analysis with the efficiency and

performance advantages of utilizing the ensemble of machine learning algorithms.

2925 malware and 3938 benign applications collected from the McAfee’s internal

repository were used in their experiments. The method proposed by them, utilized a

large feature space to leverage the power of ensemble learning and achieved detection

accuracy rates ranging between 97.3% and 99%.

Authors of Mlifdect (Wang, Zhang, Su, & Li, 2017) claim that the traditional machine

learning based malware detection methods have limited detection accuracy due to the

utilization of single classification algorithms. They propose a novel approach that

leverages parallel machine learning and information fusion techniques for better

Android malware detection. They extract eight types of features via static analysis that

include permissions, API calls, and deployment of components. They developed a

parallel machine learning detection model in order to speed up the process of

classification. Their dataset is composed of 8,385 apps, out of which 3,982 are malware

and the rest are benign. Their malware samples were collected from the Drebin (Arp

et al., 2014) and MalGenome (Zhou & Jiang, 2012) projects, and their benign samples

were downloaded from the Google Play Store. The proposed approach can classify

Android benign and malware apps with 99.7% accuracy.

38

Authors in (Alzaylaee, Yerima, & Sezer, 2017) utilize real phones in their research for

automated feature extraction in an attempt to alleviate the problem of anti-emulator

techniques’ usage by Android malware in order to evade detection. Dynamic features

were automatically extracted from Android phones and through several experiments a

comparative analysis of emulator based vs. device based detection were performed.

They used 222 malware samples obtained from the MalGenome project and 1222

benign samples obtained from Intel Security (McAfee Labs). A real phone and an

emulator environment created by a Santoku Linux Virtual Box (SantokuLinux, 2018)

based machine were used during the experiments. WEKA data mining platform was

utilized in their experiments and from the 178 extracted features, 100 of them were

selected after ranking them by using the InfoGain (information gain) feature ranking

algorithm in WEKA. They used the linear SVM, Naive Bayes, Simple Logistic, MLP,

PART (Partial Decision Trees), Random Forest, and J48 Decision Tree algorithms in

their experiments. Several different experiments were conducted, in which emulator

to real device machine learning detection was compared, and comparison of the results

to several previous works was made (Amos, Turner, & White, 2013; W.-C. Wu & Hung,

2014). Their results from the phone-based analysis achieved up to 0.926 F-measure

along with 93.1% true positive rate (TPR), but also a poor performance of 14.85%

false positive rate (FPR) using the Random Forest classifier and phone-based

experiments were found to achieve better rates overall compared to emulator based

experiments.

Authors in (Yerima, Sezer, & Muttik, 2014) propose a parallel machine learning based

classification approach for early detection of Android malware. From the parallel

combination of heterogeneous classifiers, a composite classification model was

developed. Static features are extracted to be used in the learning phase of the model

development. Three features are extracted which are: API related features, app

permissions and the standard OS as well as Android framework commands. The

machine learning classifiers used during the experiments are Decision Tree, SL, Naive

Bayes, PART, and RIDOR (Ripple-Down Rule). A composite model of the

aforementioned heterogeneous classifiers was utilized in various parallel combination

machine learning schemes. 125 permissions along with 54 API calls and commands

related features were extracted. 6,863 applications from the McAfee’s internal

repository were collected with 2,925 malicious apps and 3,938 benign apps. Among

39

all the classifier results, the PART classifier achieved the highest detection ratio at

95.8%.

Another approach that uses permissions and API calls as features within a machine

learning context was proposed by Peiravian and Zhu (Peiravian & Zhu, 2013). Several

classifiers such as SVMs, Decision tree and Bagging were utilized in the experiments.

They constructed three benchmark datasets, each with the same number of samples,

but with different numbers of features. They gathered 2510 samples, out of which 1260

of them are malware and the remaining 1250 are benign samples. They eliminated

malware with identical feature values from the dataset and ended up with 610 malware

samples from 49 different malware families of the MalGenome dataset. The benign

applications were downloaded from the Google Play Store’s 25 different app

categories. Their approach achieved the highest detection ratios using the SVM

classifier with an accuracy percentage of 96.88% and a recall percentage of 94.8%.

In a more recent study published by Alatwi et al. (Alatwi, Oh, Fokoue, & Stackpole,

2016), the authors argue that category based machine learning classifiers enable

considerable higher average detection rates in comparison to non-category based

classifiers. For each category, a malware detection classifier is trained separately. They

associate between the apps' features and the features that are needed to deliver its

category's functionality, in other words, an association is formed between the features

that the app requests and a common set of features for its category. APK files were

reverse engineered into their native JAVA source codes and the permissions, broadcast

receivers and API calls features were extracted. They constructed three datasets, 70%

of each dataset was used for training and the 30% for testing. The datasets were also

randomly shuffled in each round of the 50 iterations that were used to average the

performance of the classifiers. Category based and non-category based SVM

classifiers were used during the experiments and their results were compared. It was

shown that, category based classifier achieves an average accuracy ratio of 98.72%,

compared to the non-category based classifier’s average accuracy ratio of 94.58%.

In the study published by (Mariconti et al., 2017), the authors present MAMADROID,

which is an Android malware detection system that relies on app behavior.

MAMADROID builds a behavioral model from the sequence of abstracted API calls

as a Markov chain, and uses it to extract features and perform classification. Its

performance was tested on a dataset of 8.5K benign and 35.5K malicious apps

40

collected over a period of six years. The fact that MAMADROID relies on the

sequence of abstracted API calls performed by an app rather than their use or frequency

is its novelty. They claim that using the sequence of abstracted calls as features enables

modelling of behavior in a more complex way. By building a statistical model to

represent the transitions between the API calls performed by an app, they model these

transitions as Markov chains, and use them to extract features and perform

classification. In the classification phase, four different classifiers which are: Random

Forest, 1-NN, 3-NN and SVM were used. Achieving the highest F-measure of 99%, it

was shown to maintain a good detection performance ratio over three years: by

achieving an F-measure value of 87% one year after the model has been trained, and

an F-measure value of 73% after two years.

A recent study published by (Onwuzurike et al., 2018) builds on MAMADROID to

analyze the performance of static, dynamic and hybrid analysis methods, using the

same modeling approach as (Mariconti et al., 2017).In order to port MAMADROID

to dynamic analysis, CHIMP (Almeida et al., 2018) was modified, which is a platform

recently proposed to crowdsource human inputs for app testing. API calls’ sequences

were extracted from the traces produced while executing the app on a CHIMP virtual

device. The developed system was named AUNTIEDROID and it is instantiated by

using both pseudorandom input generators such as Monkey (Monkey, 2018) and user-

generated inputs. The main distinction of AUNTIEDROID from MAMADROID is

that, the former is based on behavioral models extracted through dynamic analysis, not

static analysis as in the case of the latter. For their dataset, the authors re-used the set

of 2,568 benign apps labeled as “new benign” in (Mariconti et al., 2017), and 2,692

Android malware from VirusShare (VirusShare, 2018). The authors note that

combining static and dynamic analysis yields the best results by achieving an F-

measure of 0.92 and static analysis is claimed to be at least as effective as dynamic

analysis.

An improved Naive Bayes classifier, called the Normalized Bernoulli Naïve Bayes

was proposed by (Sayfullina et al., 2015) to detect Android malware. They extract

most of their 13 groups of features from three main Android files, which are

AndroidManifest.xml, classes.dex and resources.arsc. Over 120,000 files from the

year of 2014 with trustworthy malware or benign labels were obtained from F-Secure.

The Bernoulli Naive Bayes model was chosen due to the relevance of using binary

41

features in two class classification problems. The Bernoulli Naive Bayes model was

modified by tuning the Laplace smoothing parameter and normalizing the sum of log-

factors by the length of the file. The Normalized Bernoulli Naive Bayes that they

presented outperformed Bernoulli Naive Bayes in the accuracy rates and enabled better

overall class separation. On 10,000 training and 10,000 test samples they achieved

TPR (True Positive Rate) of 82.10% and FPR (False Positive Rate) of just 0.1%.

In a study published by (Dhaya & Poongodi, 2014), the authors apply the n-gram

concept to find vulnerabilities in the apps by considering the source code as signatures.

They decompile the APK files and extract the API call, Call flow and Device memory

features. The main tasks carried out by the system are using static analysis to find bugs

in the apps before publication at an app store and comparison of the n-gram signatures

of samples to signatures which were already stored. The authors claim their method is

effective in detecting malware in Android.

A hybrid approach combining static and dynamic analysis was proposed by (Lindorfer,

Neugschwandtner, & Platzer, 2015) called MARVIN. It leverages machine learning

techniques to assess the risk associated with Android apps by producing a malice score

for each. Both static and dynamic analysis are performed in an off-device manner and

a comprehensive feature set is utilized to represent the properties and the behavioral

aspects of each app. Their feature selection is based on using the F-score (Fisher score)

(Chen & Lin, 2006) metric. Their dataset was comprised of 135,000 Android apps that

included 15,000 malicious samples. MARVIN achieved a 98.24% detection rate and

an FPR of less than 0.04%.

In another study that employs online machine learning, the authors (Abdurrahman

Pektaş, Çavdar, & Acarman, 2016) utilized the Cuckoo Sandbox (CuckooSandbox,

2018) file analysis reports to extract behavioral features from Android malware. They

obtained their malware samples from the VirusShare (VirusShare, 2018) malware

sharing platform and evaluated their online machine learning algorithm on 2000

samples belonging to 18 families. They employed the 10-fold cross-validation

approach and achieved the highest classification accuracy of 89%.

In a study published by (Milosevic, Dehghantanha, & Choo, 2017), the authors present

two machine learning aided approaches for static analysis of Android malware: one

based on utilizing the requested permissions of an app as features, the other based on

42

source code analysis using a bag of words representation model. The M0Droid

(Damshenas, Dehghantanha, Choo, & Mahmud, 2015) dataset that contains only 200

malicious and 200 benign samples, was utilized for the training and testing of the

machine learning models. Their permission-based analysis is computationally

lightweight and using the modified Weka 3.6.6 library for Android, was integrated into

the permission scanner in OWASP Seraphimdroid application (Milosevic, 2018). In

their source code based approach, they first decompile the APK files, and afterwards

the decompiled code is utilized within a text mining classification approach that uses

the bag of words model. They tokenize the source codes they obtain from the APK

files into unigrams that are used as a bag of words. Several machine learning

algorithms were utilized for the experiments including J48, Naive Bayes, SVM with

SMO, Random Forests, JRIP, Logistic Regression and AdaBoostM1 with SVM base

as well as ensemble learning with combinations of three and five algorithms that use

majority voting. Their source code based classification achieved an F-score of 95.1%,

while the permissions based approach obtained an F-measure of 89%.

In Dendroid (Suarez-Tangil, Tapiador, Peris-Lopez, & Blasco, 2014), the authors use

text mining approaches to automatically analyze smartphone malware samples and

families based on the code structures present in their software components. The code

structures represent the Control Flow Graph (CFG) of each method available in the

app classes. They constructed their dataset by selecting a subsample from the samples

available in the MalGenome Project, containing 1231 malware samples grouped into

33 families. They extract all different code structures from their dataset and a vector

space model is used to associate a unique feature vector with each malware sample

and family. By reformulating the modelling process followed in text mining

applications, they achieved measurement of similarity between malware samples,

which in turn was used to automatically classify them into families. They also

investigate the application of hierarchical clustering over the feature vectors obtained

for each malware family. The resulting dendograms resemble the so-called

phylogenetic trees for biological species, enabling them to reason about evolutionary

relationships among the malware families. Their experimental results came out with

promising high detection accuracies.

In the approach proposed by Coronado-De-Alba et al. (Coronado-De-Alba,

Rodríguez-Mota, & Ambrosio, 2016), the authors present a meta-ensemble classifier

43

for Android malware detection and employ static analysis of the samples. They

gathered 1531 malware and 1531 benign samples, while the malware samples were

collected from the Drebin (Arp et al., 2014) project, the benign samples were collected

from the Google Play Store. Their original dataset contained 3062 samples with 660

features which were selected from permissions, intents, hardware and software. Chi-

squared and Relief feature selection algorithms were used on their balanced and

unbalanced datasets. WEKA was used for running the classifiers by using the default

parameter settings for each classifier. 10-fold cross-validation was used for getting the

results. On their datasets, they applied all the possible classifiers in accordance with

the characteristics of the datasets. They obtained the highest detection rate of 97.56%

using the meta-ensemble RandomForest with 200 trees based in RandomCommittee.

The largest measurement of Android malware behavior reported in the literature was

carried out by (Suarez-Tangil & Stringhini, 2018), in which they analyzed over 1.28

million malicious samples belonging to 1.2K families collected from the years 2010

to 2017. As human analysis efforts fell short due to the scale of the study, specific tools

were developed for the automated analysis of the dataset. Focusing specifically on

repackaging malware, they aim to understand how the behavior of Android malware

evolved from 2010 to 2017. In this type of threats, benign apps are piggybacked with

a malicious payload, called a rider. To address the problem of separating the malicious

part from the benign part of the repackaging malware, they employed differential

analysis. All their samples, both benign and malware were collected from AndroZoo.

In order to establish a systematic way of extracting rider methods, they mine methods

that are common to members of the same family. For identifying which methods are

common among samples of the same family, they build on top of Dendroid, the work

that was mentioned previously. They extended Dendroid to recursively extract

fragments from all available resources within the app of type DEX (Dalvik Executable)

or APK. From the 1.2 million apps in their dataset they observed 155.7 million number

of methods, out of which about 1.3 million were rider methods. Their research notes

Android malware evolved rapidly from 2010 to 2017 and evidences the importance of

developing anti-malware systems that are resilient to such changes.

Another recent study utilized deep learning to construct an automatic framework for

Android malware detection. In their paper, the authors propose MalDozer (Karbab,

Debbabi, Derhab, & Mouheb, 2018), which uses neural networks on API method calls

44

for Android app classification. By automatically extracting the raw sequence of an

app's API method calls, MalDozer learns the malicious and the benign patterns from

the actual samples in order to detect Android malware. MalDozer was evaluated on the

following datasets: The MalGenome Dataset, Drebin Dataset, their MalDozer dataset

that contain 20,000 samples and a merged dataset of 33,000 malware samples along

with 38,000 benign apps that were downloaded from the Google Play Store. In the

experiments conducted on the aforementioned datasets, MalDozer achieved an F1-

score between 96% and 99%. Additionally, on the same datasets, MalDozer correctly

classified each malware to their corresponding families with an F1-score between 96%

and 98%.

Table 3.1. Results Comparison of the Approaches in the Literature Review

Name Year Features # of
Malware # of Benign Accuracy

DroidMat 2012

Permissions,
deployment

of
components,

intent
messages and

API calls

238 1500 97.87%

DroidAPIMiner 2013

Requested
permissions,
critical API

calls,
package-level
information

and app
parameters

3987 16000 99%

Elish et al. 2015 A data-flow
feature 1433 2684 2.1% (FN)

2.0% (FP)
MADS 2013 Strings 333 333 94.70%

Wu et al. 2016 Dataflow
APIs 1160 1050 97.66%

TStructDroid 2013 - 110 110 90 - 93.6%
MADAM 2012 - 10 50 93%

Yerima et al. 2015 Large feature
space 2925 3938 97.3% - 99%

Mlifdect 2017

Eight types of
features

extracted via
static analysis

3982 4403 99.7%

45

3.2. Approaches that Utilize Text Mining for Malware Detection

In this section existing approaches that utilize text mining in their malware detection

research will be mentioned by including the Windows OS in addition to the Android.

In (Firdausi, Lim, Erwin, & Nugroho, 2010) the authors used Term Frequency (TF)

weight in data pre-processing and built their dataset upon it.

Yerima et al. 2014

API related
features, app
permissions
and Android
framework
commands

2925 3938 95.8%

Alzaylaee et al. 2017 Dynamic
features 222 1222 93.1% (TPR)

Peiravian et al. 2013 Permissions
and API calls 1260 1250 96.88%

Alatwi et al. 2016

Permissions,
broadcast

receivers and
API calls

- - 98.72%

MARVIN 2015 Comprehensive
feature set 15,000 120,000 98.24%

Coronado-De-
Alba et al. 2016

Permissions,
intents,

hardware and
software

1531 1531 97.56%

MalDozer 2018
Raw sequence
of an app's API

method calls
33,000 38,000 96% - 99% (F1-

score)

Pektas et al. 2018 Behavioral
features 2000 - 89%.

Milosevic et al. 2017 Source code
analysis 200 200 95.1% (F-measure)

Sayfullina et al. 2015 13 groups of
features 10,000 10,000 82.10% (TPR)

MAMADROID 2017
Sequence of

abstracted API
calls

35,500 8,500 99% (F-measure)

AUNTIEDROID 2018

Behavioral
models

extracted
through
dynamic
analysis

2568 2692 92% (F-measure)

46

In (Moskovitch et al., 2008) authors heavily used the Term Frequency-Inverse

Document Frequency (TF-IDF) approach, parsed Windows binaries and used the n-

gram method by taking each n-gram term as equal to a word in the textual domain.

Representing a text file as a bag of words, they used the vector space model (Salton,

Wong, & Yang, 1975). They have looked for terms with the highest Document

Frequency (DF) values.

Authors of (Sanz et al., 2013) used a text mining approach to represent each Android

APK file on the vector space model. They constructed a textual representation of an

executable that is formed by strings. They employed the TF-IDF weighing schema to

assign weights to each APK file.

In another study published by Lin et al. (Lin, Wang, Xiao, & Eckert, 2015) a generic

and efficient algorithm to classify malware was proposed that combines the selection

and the extraction of features. They extract n-gram feature space data from behavior

logs; build an SVM classifier for malware classification; select a subset of features;

transform high-dimensional feature vectors into low-dimensional feature vectors; and

finally select the models. Their experiments were conducted on a real-world dataset

with 4,288 samples from nine families. In feature selection analysis using the TF-IDF

algorithm they calculate the effective feature set, specifically they based the feature

weightings on the TF-IDF value to determine which feature set yields the optimal

accuracy and learning times. Different from the approach proposed in this thesis, they

applied the n-gram model in their data. Another considerable difference is the fact that

they consider samples with the largest IDF values, such as the ones that appear only in

one sample, as having substantial effect, which is in direct contrast to the feature

selection approach proposed by this thesis.

In the study published by (A. Pektaş & Acarman, 2018), the TF and IDF metrics are

used to assign weights to features extracted as a result of n-gram search over API call

sequences. They compute the weight of each feature as the product of these two metrics.

Similar to the above studies, they carry out feature selection starting from the features

with the lowest IDF values as they represent the features that rarely occur in the

document corpus.

Different from the above approaches, the approach proposed in this thesis does not

take a classical approach to text mining. Relevant permission, API call, and strings

47

feature selections were made according to their Delta-IDF values. The Delta-IDF

introduced in this Ph.D thesis enables selection of attributes with the lowest possible

IDF values in the malware while at the same time having the highest possible IDF

values in the benign samples. This indicates the novelty of the feature selection

approach proposed in this Ph.D. research.

48

CHAPTER 4

PROPOSED METHODOLOGY

To the best of my knowledge, no other past study in the literature makes use of the

combination of permissions, API calls and strings as features in the machine learning

process for Android malware detection. Each of the three features collected from APK

files using reverse engineering present opportunities for classifying an Android

executable as malicious or benign. This chapter gives the details of the proposed

methodology for malware detection on the Android platform.

4.1. Data Collection and Pre-processing

Two distinct academically recognized and available datasets were utilized during this

Ph.D. study. The first one is prepared from the Android Malware Genome

(MalGenome) (Zhou & Jiang, 2012) project, and provides 1,260 Android malware

samples belonging to 49 different families. The second one is prepared with the

permission from the authors in (Allix, Bissyandé, Klein, & Traon, 2016), by

downloading malware samples from the vast collection of APK repository in the

AndroZoo dataset.

Malware samples from the MalGenome project were downloaded as a ZIP file, from

which randomly selected 250 malware files were used for constructing the first dataset.

A subset of the CSV file provided by AndroZoo was transferred into a MySQL

database in order to be able to run SQL queries on it. By utilizing the SQL queries, I

was able to obtain 1300 Malware samples with a VirusTotal detection number of at

least 20. VirusTotal is an online malware scanning service that works by aggregating

the scanning capabilities of many commercial antivirus products. The benign samples

totaling 300 were manually downloaded from the Google Play Store. In other words,

the AndroZoo malware samples that were detected as malicious by at least 20 different

antivirus products were included in the second dataset.

49

Two sets of malware samples collected from the MalGenome and AndroZoo datasets

along with the 300 benign samples downloaded from the Google Play Store were

added to another PostgreSQL database by using a Python script I developed. All the

tuples inside the database contained the following columns: app_name, app_path,

app_perms, app_apis, and app_strings. Once APK samples are added to the database,

each one is reverse engineered to extract the list of requested permissions, API calls,

and strings.

4.2. Feature Extraction

One of the core parts of this research has been based upon extensive feature extraction

work. In trying to get the best results from a predictive model, a key requirement is

making the best of the extracted data or data at hand by selecting the best set of features

to be used in the data mining process.

Feature extraction can be explained as the process of transforming raw data into a set

of features that adequately input the underlying problem to the predictive models, with

the aim of improving model accuracy for never before processed data.

The file features from the APK samples were extracted through the use of reverse

engineering. Libraries from the open source Androguard tool (Androguard, 2017)

written in Python for disassembling and decompiling Android applications were

utilized for extraction of the permissions, API calls and the strings features.

The extracted features were converted into bit vectors with 1s representing the

presence and 0s representing the absence of a feature for a given APK sample

respectively. These were stored in files in CSV format, which were later used in the

machine learning process.

4.2.1 Permissions

Android for a long time depended on presenting users with a list of all of the requested

permissions by the app for acceptance before app installation. With Android’s version

6.0 (API level 23) update, this method of asking a user for accepting the list of all the

permissions the app requires was revamped into, asking for permission acceptance at

the time it was required by the app during runtime.

50

All the permissions an application requires are declared in the AndroidManifest.xml

file. The format for declaring a permission is:

<uses-permission android:name="string"

 android:maxSdkVersion="integer" />

Each Android application contains several strings for permission usage such as

“android.permission.CAMERA” or “android.permission.READ_LOGS”. As can be

seen from the examples, a permission name typically includes the package name as a

prefix. The default format of the Manifest file is binary XML format, in other words,

it needs to be parsed programmatically in order to extract the permission strings.

Permission names are deemed suitable for use in machine learning for malware

detection due to a number of factors. First, the requirement that an app must be granted

specific permissions to be able to use certain phone features through API calls. For

instance, an app without the CAMERA permission will not be able to use the phone’s

camera to take photos or record videos. Second, certain combinations of permissions

may be associated with malicious behaviour as such a malware that utilizes SMS to

spread to the list of contacts in your phone’s address book, while at the same time

carrying out cyber espionage operations must possess a specific combination of

permissions including READ_CONTACTS, SEND_SMS, INTERNET, CAMERA,

and RECORD_AUDIO.

4.2.2. API Calls

Permissions enable implementation of API calls by an app, while the list of officially

defined permissions is limited to 134 (Felt et al., 2012), the total number of API calls

is much higher, precisely, there are 8,648 (Chin et al., 2011) distinct API Calls.

Similar to permissions, API calls can be effectively utilized as a feature in the data

mining process as an indicator of maliciousness for detection of malware at a lower

level compared to permissions. Androguard was utilized in the extraction of API Calls.

As it is not possible to access the original source code of an Android app from its APK

file (executable) an intermediate version of the code from the file must be produced

which in the case of this thesis is the Dalvik Bytecode. By using the code that utilizes

the Androguard libraries, Dalvik Bytecode representations of each APK sample were

produced by reverse engineering each.

51

This bytecode representation of each APK sample that I extracted, was utilized for

counting the number of each API calls’ appearance in each sample’s source code and

for calculating the TF and the IDF values corresponding to each distinct API call within

each APK sample.

4.2.3. Strings

Strings are a general feature of an executable that can be utilized both in the Windows

and Android platforms for conducting static malware analysis. Extracting strings from

an executable can be easy as running a one-line command in the Windows command

line, just like it is the case in the Android. For mass string extraction from the APK

samples, the Androguard libraries were utilized. In contrast to its relative simplicity of

obtaining from an executable, it carries valuable information that can be linked to

maliciousness, such as keywords indicating potential malware or IP addresses that can

indicate the call back IP address for a malicious executable that aims to connect to the

Command and Control (C&C) servers for data exfiltration.

4.3. A Novel Document Frequency-Based Approach to Feature

Selection

After extraction of the three distinct features from the set of collected APK samples,

the requirement to make attribute selection amongst all the extracted set of attributes

from each feature emerged. In this section, a novel TF-IDF approach to feature

selection phase in machine learning for malware detection on the Android is presented.

The extracted data belonging to the three categories of features were input to the TF

and IDF calculating Python code for the calculation of each attributes’ corresponding

values. The output values were used as the main criteria of selection in the feature

selection phase of the data mining process.

4.3.1. Term Frequency

TF (Term Frequency) is generally used within a text mining, document classification,

or information retrieval context. TF is calculated by counting the number of times a

word appears in a document, the document in the case of this thesis is the APK file.

The term frequency is the count of a feature’s (such as a permission, API call or string)

appearance in an APK file, calculated by:

52

𝑇𝑇𝑇𝑇 =
𝑓𝑓𝑖𝑖

∑ 𝑓𝑓𝑗𝑗𝑛𝑛
𝑗𝑗=1

In the above equation, 𝑓𝑓𝑖𝑖 is the number of times the string i appears in the APK file

and ∑ 𝑓𝑓𝑗𝑗𝑛𝑛
𝑗𝑗=1 is the sum of frequencies of each of the string in the APK file.

4.3.2. Inverse Document Frequency

The IDF is the measurement of a specific term’s occurrence within a document. In this

Ph.D. work, the presence of specific strings within APK files were considered as the

occurrence of specific features. It can be calculated as follows:

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑇𝑇
𝐶𝐶

In the above equation, 𝑇𝑇 is the total number of APK files and 𝐶𝐶 is the number of APK

files containing the given string.

TF and IDF values are used together as a weighted specific metric named as TF-IDF

in text mining and document classification contexts and it is calculated as follows:

TF-IDF = TF x IDF

The IDF and TF-IDF values start becoming closer to zero, given an attribute or feature

appears in greater numbers of files. The weighted TF-IDF is normalized in some

alternative approaches by using the below equation:

𝑇𝑇𝑇𝑇 − 𝐼𝐼𝐼𝐼𝐼𝐼 = �0.5 + 0.5
𝑓𝑓𝑡𝑡,𝑞𝑞

𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑓𝑓𝑡𝑡,𝑞𝑞
� . 𝑙𝑙𝑙𝑙𝑙𝑙10

𝑁𝑁
𝑛𝑛𝑡𝑡

As a result of the above normalization, solutions differ typically by a few percent and

such error ranges are prevalent in the literature. The error may be due to simulation

rather than the analytical models when a study compares its analytical results to the

simulation and reports errors of only a few percent.

4.3.3. Description of the Document Frequency-Based Approach

Contrary to the classical TF-IDF approaches of feature selection that was utilized by

the following authors on the Windows platform in (Moskovitch et al., 2008) the

approach in this thesis proposes selecting attributes with the lowest possible IDF

values in the malware samples and at the same time the highest possible IDF values in

the benign samples. This thesis argues that attributes with the lowest IDF values

53

represent the most evenly distributed attributes among the complete sample sets’

extracted collection of attributes, while attributes with the highest IDF values are the

ones that appear the most sparsely. This even distribution in turn indicates a higher

frequency of occurrence for the corresponding attribute amongst the total set of

attributes. Hence, selecting attributes with this methodology enables better learning of

malware features, as the selected attributes are the ones that appear most frequently

and evenly distributed in the malware dataset while appearing the least possible

frequently and the most sparsely in the benign dataset.

In case of duplicating IDF values amongst the attributes, TF values of the

corresponding attributes can be compared to make the final decision about which

attribute to include in the data mining process. The one with a higher TF value would

be selected, since a higher TF indicates a higher frequency of occurrence for an

attribute among the executables (APK files).

In order to achieve selection of attributes that appear most frequently in the malware

dataset while appearing the least possible frequently in the benign dataset, the results

of the calculation of Delta-IDF is used and the ones with the highest values are taken

to conduct learning for categorizing according to maliciousness. Delta-IDF value can

be simply calculated as:

Delta-IDF = (IDF Benign) – (IDF Malware)

In deciding the number of features to be selected from the whole extracted feature set,

some basic statistical measures such as the percentile have been used. In this approach,

the features that are above the 90th percentile, or in other words within the top 10%

segment have been chosen after sorting them according to their Delta-IDF values.

If the dataset size was much larger, after z-score standardization the normalized Delta-

IDF values would be observed and the attributes that have z-scores above +2 sigma or

+1 sigma would have been chosen. The Delta-IDF value can also be simplified as

below:

𝐿𝐿𝐿𝐿𝐿𝐿 𝑁𝑁 𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.
𝑛𝑛𝑏𝑏 ∶ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.
𝑛𝑛𝑚𝑚 ∶ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.

𝐼𝐼𝐼𝐼𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑙𝑙𝑙𝑙𝑙𝑙10
𝑁𝑁
𝑛𝑛𝑏𝑏

𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑙𝑙𝑙𝑙𝑙𝑙10
𝑁𝑁
𝑛𝑛𝑚𝑚

54

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 − 𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑙𝑙𝑙𝑙𝑙𝑙10
𝑁𝑁
𝑛𝑛𝑏𝑏

 − 𝑙𝑙𝑙𝑙𝑙𝑙10
𝑁𝑁
𝑛𝑛𝑚𝑚

 = 𝑙𝑙𝑙𝑙𝑙𝑙10
𝑛𝑛𝑚𝑚
𝑛𝑛𝑏𝑏

As a result, Delta-IDF values can be effectively found out by calculating 𝑙𝑙𝑙𝑙𝑙𝑙10
𝑛𝑛𝑚𝑚
𝑛𝑛𝑏𝑏

 .

In order to derive smaller sample datasets, the methodology of statistical random

sampling without replacement was employed.

For the parameters given below:

 N = population size

 µ = distribution ratio

 E = margin of error

 σ = standard deviation of the population

Zα/2 = upper critical value for the standard normal distribution within the chosen

confidence level, the sample size n can be calculated as follows:

𝑛𝑛 =
𝜇𝜇(1 − 𝜇𝜇)

� 𝐸𝐸
𝑍𝑍𝛼𝛼 2�

�
2

Since the population is limited, by using the correction factor the formula given above

can be evaluated as follows:

𝑛𝑛 =
𝑁𝑁𝑁𝑁(1 − 𝜇𝜇)

𝜇𝜇(1− 𝜇𝜇) + (𝑁𝑁 − 1) � 𝐸𝐸
𝑍𝑍𝛼𝛼 2�

�
2

For the first subsample dataset, the new sample size was chosen depending on the

following criteria:

Confidence interval (accepted margin of error) = 2%

Confidence level = 98%

The sample size for the second subsample was chosen similarly depending on the

following criteria:

Confidence interval (accepted margin of error) = 1%

Confidence level = 95%

55

Using these statistical sampling parameters and the equations given above, the sample

sizes for the first and second subsample datasets were determined to be 3315 and 9100,

respectively, which satisfies the minimum sample size limits regarding the original

dataset size and the chosen sampling parameters. To sum up, these two subsample

datasets were derived with these given sizes by random selection and sampling from

the original dataset.

By implementing the methodology explained above for feature selection, 18

permissions, 8 API calls and 11 strings were selected for the MalGenome dataset, and

13 permissions, 9 API calls and 4 strings were selected for the AndroZoo dataset. The

selected attributes are given in tables Table 4.1. and Table 4.2.

Table 4.1. Selected attributes from the MalGenome dataset

Permissions Permissions (cont.) API calls Strings

BROADCAST_STICKY SEND_SMS getSubscriberId Parse

CALL_PHONE SYSTEM_ALERT_WINDOW sendTextMessage Add

CAMERA WRITE_APN_SETTINGS createFromPdu iterator

DISABLE_KEYGUARD WRITE_CONTACTS getSimSerialNumber schedule

GET_ACCOUNTS WRITE_EXTERNAL_STORAGE getExtraInfo setId

READ_CALENDAR WRITE_HISTORY_BOOKMARKS getPaint Digest

READ_LOGS WRITE_SMS seekTo Callback

READ_PHONE_STATE TruncateAt entrySet

READ_SMS findPointerIndex

RECEIVE_SMS getEdgeFlags

RESTART_PACKAGES getFinalX

Table 4.2. Selected attributes from the AndroZoo dataset

Permissions Permissions (cont.) API calls Strings

REORDER_TASKS SEND_SMS getAttributeUnsignedIntValue remoteexception

CLEAR_APP_CACHE WRITE_CONTACTS setKeywords Credentials

MANAGE_DOCUMENTS RESTART_PACKAGES setAppName remoteinput

WRITE_HISTORY_BOOKMARKS BROADCAST_STICKY getCurrencyCode doubleclick

READ_HISTORY_BOOKMARKS isSurrogatePair

KILL_BACKGROUND_PROCESSES allowCoreThreadTimeOut

ACCESS_MOCK_LOCATION requestAd

ACCESS_GPS displayAd
ACCESS_LOCATION_EXTRA_
COMMANDS FilenameFilter

According to the differing datasets at hand for other application scenarios, the actual

selected attributes will be different, however feature selection with this novel TF-IDF

approach will enable achieving the best possible learning of the malicious features

56

within a dataset of Android samples, resulting in high detection accuracy and low false

positive rates.

4.4. The Architecture of the Android Malware Detection

Methodology

The high-level view of my Android malware detection via machine learning and data

mining methodology is depicted in Figure 4.1.

Figure 4.1. Malware detection process used in this thesis

After extraction of the three different feature sets from each APK sample, a thorough

analysis was carried out to include only the best discriminative features inside the data

mining process for malware detection on the Android. Feature vectors are generated

from each training instance using the selected feature set. The feature vectors are used

57

to train the selected classifiers. When a new APK sample must be tested, first the

features selected during training are extracted from the executable in order to be able

to generate a feature vector. This feature vector is classified using the selected classifier

to predict whether the executable is benign or malicious.

After extraction of the three different feature sets which are permissions, API calls and

strings, the Android malware detection methodology proposed in this thesis merge

them into one feature set, called the combined feature set. These features are used for

the training of the machine learning algorithms (classifiers) in WEKA that were later

run for detection of malicious Android apps.

Three different sets of features are selected to maximize the differentiating factors in

the combined feature set between malicious and benign instances. This implies that

permissions or API calls alone may not lead to high degrees of maliciousness when

viewed in singularity, however a combination of a specific permissions, a group of API

calls and specific strings contained in one APK sample, may indicate a very high

probability of maliciousness, leading to a detection by the malware detection tool.

The aim of selecting this specific set of features is to enable learning of malicious

associations between combinations of certain sets of permissions, API calls, and

strings.

4.4.1. Combined Feature Set Model

In the combined feature set model, the three types of features, which are permissions,

API calls, and strings, were extracted individually from each sample, however, were

later merged inside the combined feature set. This combination and reduction

processes of the feature set were possible as a result of the Delta-IDF value scoring

based feature selection which was detailed in the previous section.

Python scripts were used for putting together the combined feature set among the

whole possible sets of attributes that were extracted in the feature extraction phase of

the data mining process. The script selected attributes from the three feature sets based

on the calculated Delta-IDF values.

4.4.2. Classification of Android Malware via Machine Learning

Research and development of automatic classification methods have become essential

due to the exponential increase and proliferation of Android malware. Static extraction

58

of APIs has been a widely used method in successful detection efforts against malware

historically.

The framework developed in this thesis makes adequate use of supportive features that

are permissions and strings in addition to the API calls. I was able to construct a

combined feature set that enabled high detection rates against Android malware via an

extensive study on the theoretical aspects, as well as the practical aspects of the

research topic.

The implementation of the methodology presented in this thesis is not an automatic

way of classifying Android malware. However, the proposed methodology could be

integrated into an equivalent automatic Android malware detection implementation

without any constraints or limitations.

The way the proposed method was implemented in the experiments conducted for this

thesis was by making use of the data mining platform WEKA. The results produced

by the machine learning algorithms on WEKA were used as detection ratios to simulate

how the selected algorithms would perform in real-world use cases given the specific

datasets. The results from the WEKA data mining experiments provided the

classification of the APK samples inside the datasets as malware or benign, the True

Positive (TP) designated the ratio of successful malware classifications, the True

Negative (TN) designated the ratio of successful benign classifications and the

weighted average designated the accuracy of the approach. The weighted average in

that sense corresponds to the detection ratio with successful malware and benign

detections combined, while TP corresponds to successful malware detections alone

and TN corresponds to successful benign classifications alone.

4.5. Limitations of the Proposed Methodology

The model of Android detection on the Android presented in this thesis has a few

limitations and in this section, they will be discussed.

Firstly, it does not directly handle obfuscated API calls or encrypted/packed APK files.

There are tools available to unpack the packed executables automatically and they may

be applied for de-obfuscation/decryption to use their output within this methodology.

Such a feature was not implemented, but may be integrated into the data mining

procedure in the future.

59

Secondly, the current implementation is an off-device detection mechanism, which

means it was not directly deployed on an Android device to detect malware. The off-

device detection mechanism can be particularly useful in the case of security scans

before publishing on an app store.

Finally, this malware detection methodology exhibits the typical limitation of static

analysis that is the inability to detect the type of malware attacks, in which the payload

is stored in a remote host and retrieved after the app is executed on the target platform.

However, the objectives of this thesis were to obtain an acceptable degree of detection

accuracy and to provide a new methodology for feature selection in machine learning

based Android malware detection, which were both achieved successfully.

60

CHAPTER 5

EXPERIMENTS AND RESULTS

In this chapter, the experiments run on the WEKA will be evaluated and analyzed to

determine the employed machine algorithms’ suitability for malware detection on the

Android platform.

Attributes from the three features were selected by using the approach proposed in this

thesis and the WEKA’s “. arff” extension files with the selected attributes were

prepared for use in the data mining experiments using WEKA.

The majority of the well-known data mining and machine learning algorithms,

including some combinations of ensemble algorithms, were experimented and tested

with the Weka version 3.9.1. Test results of adequately performing algorithms will be

given in tables of accuracy, TPR and true negative rate (TNR).

Several machine learning algorithms for binary classification present in Weka were

applied to the MalGenome and AndroZoo datasets. While a few of these algorithms

were decision tree models such as ID3 and J48, RandomForest, which is an ensemble

learner of different decision trees, was also used in the experiments. A Naive Bayes

algorithm and an instance based learner algorithm the k-NN were also used.

Additionally, several basic function-based classifiers such as radial basis function and

some rule-based classifiers such as FURIA, MODLEM, OneR, LAC, and NNGE were

also included in the tests, combinations of ensemble learning using either majority

voting or average of probabilities were also included and the ones with the best

accuracy values are given in the result tables.

AdaBoost M1, which is a meta-learner, was used with NNGE, which is a rule-based

classifier. AdaBoost M1’s results are also included taking into consideration their

promising accuracy values. Several different types of artificial neural networks such

as MLP and SVMs were also used in the experiments. A brief description of the

machine learning algorithms used during the tests on WEKA will be given below:

61

ID3 (Iterative Dichotomiser 3) (Quinlan, 1986): An algorithm invented by Ross

Quinlan, which is used to generate a decision tree from a dataset in decision tree

learning. ID3 is generally used in the machine learning and natural language

processing domains and is the precursor to the C4.5 algorithm (Quinlan, 1993).

J48: An implementation of the algorithm ID3 developed by the WEKA project team,

uses an enhanced implementation of C4.5.

RandomForest (Breiman, 2001): An meta-ensemble learner and classifier algorithm

that constructs and uses a forest of trees. It is composed of K decision trees such as

CART, C4.5 or ID3, however in WEKA, it is implemented as K “random” decision

trees.

FURIA (Fuzzy Unordered Rule Induction Algorithm) (Hühn & Huellermeier, 2009):

A rule-based classifier that uses fuzzy logic and fuzzy rule induction, FURIA is an

extension of the well-known RIPPER algorithm, which is a state-of-the-art rule learner,

the advantages of RIPPER such as simple and comprehensible rule sets are preserved.

FURIA includes a number of modifications and extensions such as learning fuzzy rules

instead of conventional rules and contains unordered rule sets instead of rule lists.

Additionally, FURIA uses an efficient rule stretching method when dealing with

uncovered examples. It was shown that, in terms of classification accuracy, FURIA

significantly outperforms the original RIPPER, along with other machine learning

algorithms such as the C4.5.

MODLEM (Stefanowski, 1998): A machine learning algorithm that induces a

minimum set of rules. These rules can be adopted as a classifier. It is a sequential

covering algorithm, which was invented to cope with numeric data without using

discretization. This algorithm considers nominal and numeric attributes as equal, and

to find the best rule condition during rule induction, attribute's space is searched.

However, numeric attribute's conditions are more precise and closely describe the class.

Some aspects of this algorithm were taken from the Rough Set Theory that states the

class definition can be described according to its lower or upper approximation.

NNge (Non-nested Generalized Exemplars) (Salzberg, 1991): A rule-based and

nearest-neighbor-like classifier algorithm that uses non-nested generalized exemplars

where these hyper-rectangles are implemented as “if-then” rules. Generalization is

performed by merging exemplars and constructing hyper-rectangles in attribute space

62

which represent conjunctive rules with internal disjunction. Each time a new sample

is added to the database, generalization is carried out by combining the sample with

the nearest neighbor of the same class.

LAC (Lazy Associative Classifier) (Veloso, Jr., & Zaki, 2006): Uses associative rules

to execute classifications. Unlike other a-priori-based classifiers, the LAC algorithm

computes association rules on a demand-driven basis. LAC projects the training data

only on features in the test dataset, in other words from all the training instances, only

the samples that share at least one feature with the test samples are used. For each

instance to be classified, it filters the training set, thus producing only useful rules for

that instance. LAC outperforms traditional associative classifiers in both speed and

accuracy.

OneR (Holte, 1993): A simple rule-based classifier that builds and uses only one single

rule for classification of the instances in a way that uses the minimum-error attribute

for prediction, discretizes the numeric attributes. In order to create a rule for a predictor,

a frequency table for each predictor constructed against the target. OneR has been

shown to produce rules that are only slightly less accurate than state-of-the-art machine

learning algorithms while at the same time producing rules that are simple for humans

to read and interpret.

AdaBoost M1 (Freund & Schapire, 1996): A meta-learner type of algorithm that boosts

the classification performance of a classifier by using the Adaboost M1 method.

Radial Basis Function (Frank, 2014): A classifier algorithm that implements radial

basis function networks, which is trained in total supervised type of machine learning.

Radial Basis Function uses WEKA's optimization class by minimizing squared error

with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method.

MLP (Haykin, 2009): An artificial neural network that uses the feed-forward learning

model that has one or more hidden layers. Achieves the differential error and the

corresponding weight updates by backpropagation with the gradient descent

methodology.

SVM with Sequential Minimal Optimization (SMO): A specialized support vector

machine classifier which implements John Platt’s SMO (Platt, 1998) algorithm for the

training phase. Given labeled training data (supervised learning), SVM (V. Vapnik &

Lerner, 1963) is a discriminative classifier that constructs a separating hyperplane with

63

maximum margin, which categorizes the test samples into their predicted classes. In

two dimensional space, this hyperplane becomes a line that divides a plane into two

parts in which each class lays in either side.

Naive Bayes (John & Langley, 1995): A probabilistic classifier based on Bayes’

theorem that assumes strong independence between the features.

k-NN: An instance-based learner type of algorithm which is based on the comparison

of an undefined sample with the k training samples that happen to be the nearest

neighbors of the undefined sample.

Train, 10-fold cross-validation and test set methods of running machine learning

algorithms in Weka were used in the experiments. The highest level of attention was

given to the obtained rates of TPR, representing the rate of malware samples correctly

detected as malware and the true negative rate, representing the percentage of benign

samples correctly identified as benign. The weighted average in Weka, which is the

mathematical average of TP and TN rates, is the accuracy and malware detection rate

of the approach proposed by this Ph.D. thesis.

For evaluation of the conducted experiments, four standard metrics were used:

• TPR, which is the proportion of correctly classified instances.

• FPR is the proportion of incorrectly classified instances.

• Precision, which is the number of true positives divided by the total number of

elements labeled as belonging to the positive class.

• Area under Curve (AUC) provides the relation between false negatives and false

positives.

5.1. Standard Metrics used for Evaluating the Classifiers

In order to measure the performance of each classifier, important values such as the

numbers of correct or incorrect classifications were taken into consideration. Detailed

descriptions of the used classification metrics will be given next.

5.1.1. Confusion Matrix and the Related Metrics

In table 4.2., a confusion matrix for computing the evaluation indicators is described.

64

Table 5.1. Confusion Matrix

 Predicted Class
 Positive Negative

 Positive True Positive (TP) False Negative (FN)
Actual Class

 Negative False Positive (FP) True Negative (TN)

A confusion matrix contains the following entries:

• True Positives: malware samples predicted to be malware.

• True Negatives: benign samples predicted to be benign.

• False Positives: benign samples predicted to be malware.

• False Negatives: malware samples predicted to be benign.

The following metrics are calculable by the aforementioned confusion matrix

components.

TPR signifies the ratio of correctly identified malware applications, given by:

𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

Likewise, TNR signifies the ratio of correctly identified benign applications and it is
calculated by:

𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

FPR represents the ratio of malware-infested applications incorrectly identified as

benign, given by:

𝐹𝐹𝐹𝐹𝐹𝐹 =
𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇

The accuracy of a classifier is defined by the probability of correctly predicting the

class of an unclassified sample (Baldi, Brunak, Chauvin, Andersen, & Nielsen, 2000).

In the case of this thesis accuracy is an indicator representing the system’s ratio of

successful detection, expressed as the proportion of accurately identified benign and

malware samples. We can calculate accuracy by:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)

(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹)

65

As the number of positive (malicious) and benign (negative) samples in each dataset

used in the experiments are equal, there is no need to use metrics such as Precision, F-

Score or Kappa Statistics and it is enough to take into account the accuracy and TPR

metrics in evaluating the success of the malware detection approach.

5.2. Cross-validation

A standard statistical method used for estimating the generalization error of a

predictive model, cross-validation is a method of model validation that works by

dividing data into two segments. One segment is used to train the machine learning

classifier while the other segment is used to test it.

5.2.1. 10-fold Cross-Validation

10-fold cross-validation was used as a method of evaluating the success of the data

mining algorithms on WEKA on the AndroZoo and MalGenome datasets. The

procedure for carrying out 10-fold cross-validation is as follows: using the other 9

subsets as the training set a model is built and its performance is evaluated on the

current subset. Each subset is used for testing exactly once and the result of the cross-

validation is the average of the performances obtained from the 10 rounds.

The main disadvantage of this method is requiring the training phase be rerun from

scratch 10 times, meaning it will take 10 times as many computations to perform the

evaluation.

Figure 5.1. 10-fold Cross-Validation

66

5.3. Results from the First MalGenome Dataset

The dataset constructed using the MalGenome malware samples was subsampled into

five different datasets with one training set containing 250 benign samples and 250

malware samples and 4 test sets composed of 125 malware and 125 benign samples.

From the 500 benign records collected from the Google Play Store, benign samples

were chosen randomly, similarly, from the 1000 malware records collected from the

MalGenome Project, malware samples were chosen randomly. Each of the malware

samples among the training dataset and each of the test datasets were chosen in a way

ensuring that no duplicate records were present in the dataset. The machine learning

algorithms that achieved the highest detection ratios during the experiments for the

first MalGenome dataset, including several well-known types of classification

algorithms such as decision trees, functional models, artificial neural networks, Naive

Bayes and rule-based classifiers are given in tables Table 5.2., Table 5.3., and Table

5.4. The FURIA algorithm achieved the highest 10-fold cross-validation accuracy ratio

of 0.984 among all the machine learning algorithms.

Table 2.2. MalGenome Dataset Accuracy Values

 Algorithm Name and Parameters Train (500
instances)

10-fold x-
val. (500

instances)

Test set 1
(250

instances)

Test set 2
(250

instances)

Test set 3
(250

instances)

Test set 4
(250

instances)
Radial Basis Function 0.984 0.980 0.984 0.956 0.956 0.976
Multilayer Perceptron (learning rate=0.3, momentum=0.2,
one hidden layer with 8 nodes, 500 iterations) 0.992 0.978 0.972 0.960 0.940 0.964
Id3 (decision tree) 0.998 0.970 0.948 0.960 0.968 0.964
k-NN (k nearest neighbors, k = 1) 0.998 0.976 0.952 0.940 0.932 0.956
NaiveBayes 0.962 0.962 0.984 0.956 0.944 0.960
J48 (improved version of C4.5 decision tree) 0.986 0.972 0.940 0.960 0.964 0.960
SVM (Support Vector Machine with Sequential Minimal
Optimization) 0.986 0.978 0.972 0.956 0.952 0.972
FURIA (fuzzy unordered rule induction classifier) 0.984 0.984 0.940 0.960 0.960 0.964
RandomForest (ensemble of decision trees) 0.998 0.980 0.960 0.948 0.940 0.964
NNGE / AdaBoostM1 (Non-nested Generalized Exemplars
rule based classification with AdaBoost M1 meta-learner) 0.998 0.974 0.972 0.972 0.960 0.972
Ensemble by Voting (majority voting) 3 classifiers (LAC,
NNGE, MODLEM) 0.998 0.972 0.996 0.976 0.980 0.992
Ensemble by Voting (majority voting) 3 classifiers (OneR,
NNGE, MODLEM) 0.998 0.970 1.000 0.988 0.992 0.992
Ensemble by Voting (majority voting) 4 classifiers (OneR,
LAC, NNGE, MODLEM) 0.980 0.968 0.996 0.992 0.980 0.976

Table 5.3. MalGenome Dataset True Positive Rates

Algorithm Name and Parameters Train (500
instances)

10-fold x-
val. (500

instances)

Test set 1
(250

instances)

Test set 2
(250

instances)

Test set 3
(250

instances)

Test set 4
(250

instances)
Radial Basis Function 0.972 0.972 0.968 0.912 0.912 0.952
Multilayer Perceptron (learning rate=0.3, momentum=0.2,
one hidden layer with 8 nodes, 500 iterations) 0.990 0.972 0.928 0.912 0.900 0.914
Id3 (decision tree) 0.996 0.968 0.896 0.920 0.936 0.928
k-NN (k nearest neighbors, k = 1) 0.996 0.964 0.904 0.880 0.864 0.912
NaiveBayes 0.972 0.972 0.984 0.936 0.952 0.984
J48 (improved version of C4.5 decision tree) 0.972 0.964 0.880 0.920 0.928 0.920
SVM (Support Vector Machine with Sequential Minimal
Optimization) 0.976 0.968 0.944 0.912 0.904 0.944

67

FURIA (fuzzy unordered rule induction classifier) 0.972 0.972 0.880 0.920 0.920 0.928
RandomForest (ensemble of decision trees) 0.996 0.972 0.920 0.896 0.880 0.928
NNGE / AdaBoostM1 (Non-nested Generalized Exemplars
rule based classification with AdaBoost M1 meta-learner) 0.996 0.968 0.944 0.944 0.920 0.944
Ensemble by Voting (majority voting) 3 classifiers (LAC,
NNGE, MODLEM) 0.996 0.968 0.992 0.952 0.960 0.984
Ensemble by Voting (majority voting) 3 classifiers (OneR,
NNGE, MODLEM) 0.996 0.972 1.000 0.976 0.984 0.984
Ensemble by Voting (majority voting) 4 classifiers (OneR,
LAC, NNGE, MODLEM) 0.976 0.972 0.992 0.984 0.984 0.984

Table 5.4. MalGenome Dataset True Negative Rates

Algorithm Name and Parameters
Train (500
instances)

10-fold x-
val. (500

instances)

Test set 1
(250

instances)

Test set 2
(250

instances)

Test set 3
(250

instances)

Test set 4
(250

instances)
Radial Basis Function 0.996 0.988 1.000 1.000 1.000 1.000
Multilayer Perceptron (learning rate=0.3, momentum=0.2,
one hidden layer with 8 nodes, 500 iterations) 0.994 0.984 1.016 1.008 0.980 1.014
Id3 (decision tree) 1.000 0.972 1.000 1.000 1.000 1.000
k-NN (k nearest neighbors, k = 1) 1.000 0.988 1.000 1.000 1.000 1.000
NaiveBayes 0.952 0.952 0.984 0.976 0.936 0.936
J48 (improved version of C4.5 decision tree) 1.000 0.980 1.000 1.000 1.000 1.000
SVM (Support Vector Machine with Sequential Minimal
Optimization) 0.996 0.988 1.000 1.000 1.000 1.000
FURIA (fuzzy unordered rule induction classifier) 0.996 0.996 1.000 1.000 1.000 1.000
RandomForest (ensemble of decision trees) 1.000 0.988 1.000 1.000 1.000 1.000
NNGE / AdaBoostM1 (Non-nested Generalized Exemplars
rule based classification with AdaBoost M1 meta-learner) 1.000 0.980 1.000 1.000 1.000 1.000
Ensemble by Voting (majority voting) 3 classifiers (LAC,
NNGE, MODLEM) 1.000 0.976 1.000 1.000 1.000 1.000
Ensemble by Voting (majority voting) 3 classifiers (OneR,
NNGE, MODLEM) 1.000 0.968 1.000 1.000 1.000 1.000
Ensemble by Voting (majority voting) 4 classifiers (OneR,
LAC, NNGE, MODLEM) 0.984 0.964 1.000 1.000 0.976 0.968

5.4. Results from the Second MalGenome Dataset

In an attempt to get results from a larger dataset that include all of the MalGenome

dataset’s malware samples, a new dataset was formed that include all the 1260 malware

samples in the MalGenome Project. The number of available benign samples remained

300, however by using SMOTE (Synthetic Minority Over-sampling Technique), the

number of benign samples was up-sampled (over-sampled) to construct a balanced

dataset in WEKA. Results for the balanced and the imbalanced dataset constructed

only with the physically available benign samples will be presented in the same tables.

The machine learning algorithms that performed the best results in this second

MalGenome dataset are given in tables Table 5.5, Table 5.6, Table 5.7, Table 5.8, Table

5.9 and Table 5.10.

The experiment types and the dataset details in tables Table 5.5, Table 5.7 and Table

5.9 will be detailed in the following sentence. In the first column of these tables, the

10-fold cross-validation results of 1260 malware and 250 benign samples are given, in

the second column, 10-fold cross-validation of 1260 malware and 1260 benign

68

samples (produced by SMOTE) are given, the third column correspond to the train

results of the 840 malware and 840 benign samples and the fourth column correspond

to the results of using a test set that contains 420 malware and 420 benign samples.

The experiment types and the dataset details in tables Table 5.6, Table 5.8 and Table

5.10 will be detailed in the following sentence. In the first column of these tables, 1/3

test split (hold-out) results of 1510 instances with a test size of 422 malware and 81

benign samples are given, in the second column, 1/3 test split (hold-out) results of

2520 instances with a test size of 420 malware and 420 benign samples are given, the

third column correspond to the train results of 840 malware and 840 benign samples,

and the fourth column correspond to using a test set of 420 malware and 420 benign

samples.

Table 5.5. MalGenome 2nd Dataset Accuracy Values Part 1

 Algorithm Name and Parameters
10-fold-xval

(1510 instances)
1260 mal + 250

ben

SMOTE-
balanced-10-

fold-xval
(2520

instances)
1260 mal +
1260 ben

SMOTE-
balanced-
TRAIN
(1680

instances) 840
mal + 840 ben

SMOTE-
balanced-
TEST (840

instances) 420
mal + 420 ben

Radial Basis Function 0.984 0.994 0.992 0.994

Multilayer Perceptron (learning rate=0.3, momentum=0.2, one hidden layer with 8
nodes, 500 iterations) 0.983 0.992 0.997 0.99

Multilayer Perceptron (default param. in Weka lr=0.3, mom=0.2, hidden: 19. 500
iter.) 0.981 0.992 0.997 0.99

1-NN (1/d weighted) 0.983 0.992 0.999 0.99

NaiveBayes 0.983 0.958 0.958 0.961

BayesianLogisticRegression 0.984 0.991 0.993 0.992

VotedPerceptron 0.985 0.991 0.99 0.989

SVM (Support Vector Machine) 0.986 0.992 0.995 0.988

Lazy Bayesian Rules Classifier (LBR) 0.988 0.992 0.995 0.992

FURIA (fuzzy unordered rule induction) 0.983 0.993 0.996 0.987

MODLEM (rough set-based rule classifier with default param.) 0.97 0.986 0.999 0.988

LAC (lazy associative rule-based with default param.) 0.953 0.959 0.958 0.961

OneR (rule-based)* 0.982 0.957 0.957 0.957

NNGE (rule-based with default param.) 0.977 0.989 0.999 0.993

JRIP (rule-based Repeated Incremental Pruning to Produce Error Reduction
(RIPPER)) 0.985 0.993 0.994 0.993

RIDOR (rule-nased RIpple-DOwn Rule learner) 0.982 0.993 0.996 0.993

Id3 (decision tree) 0.976 0.99 0.999 0.992

J48 (improved version of C4.5 decision tree) 0.984 0.993 0.994 0.993

69

CART (decision tree) 0.983 0.992 0.994 0.993

Functional Tree (decision tree) 0.988 0.99 0.997 0.989

DecisionStump (decision tree)* 0.982 0.957 0.957 0.957

NBTree (NaiveBayes decision tree) 0.985 0.992 0.993 0.989

LMT (logistic model trees - decision tree) 0.983 0.992 0.999 0.992

RandomForest (ensemble of decision trees) 0.983 0.992 0.999 0.992

NNGE / AdaBoostM1 0.981 0.992 0.999 0.99

Ensemble by Voting (majority voting) 2 classifiers (LAC, NNGE) 0.977 0.989 0.999 0.993

Ensemble by Voting (majority voting) 3 classifiers (OneR, J48, RBF classifier) 0.983 0.994 0.993 0.994

Ensemble by Voting (majority voting) 3 classifiers (OneR, FunctionalTree,
LazyBayesianRules) 0.989 0.994 0.996 0.99

Ensemble by Voting (majority voting) 3 classifiers (J48, FunctionalTree,
LazyBayesianRules) 0.989 0.994 0.996 0.993

JRIP / RealAdaBoost 0.983 0.993 0.998 0.989

Ensemble by Voting (majority voting) 4 classifiers (JRIP, OneR, FunctionalTree,
LazyBayesianRules) 0.988 0.993 0.995 0.992

Table 5.6. MalGenome 2nd Dataset Accuracy Values Part 2

 Algorithm Name and Parameters
1/3 Test split (hold-

out) (1510 instances)
test size: 422 mal + 81

ben

SMOTE-balanced-
1/3 Test split (hold-

out) (2520
instances) test size:
420 mal + 420 ben

Imbalanced-TRAIN
(1005 instances) 840

mal + 165 ben

Imbalanced-TEST
(505 instances) 420

mal + 85 ben

Radial Basis Function 0.988 0.995 0.983 0.984

Multilayer Perceptron (learning rate=0.3,
momentum=0.2, one hidden layer with 8 nodes, 500
iterations)

0.988 0.996 0.995 0.988

Multilayer Perceptron (default param. in Weka lr=0.3,
mom=0.2, hidden: 19. 500 iter.) 0.982 0.996 0.995 0.982

1-NN (1/d weighted) 0.986 0.996 0.999 0.984

NaiveBayes 0.988 0.956 0.982 0.984

BayesianLogisticRegression 0.988 0.996 0.987 0.988

VotedPerceptron 0.99 0.994 0.981 0.982

SVM (Support Vector Machine) 0.986 0.995 0.99 0.98

Lazy Bayesian Rules Classifier (LBR) 0.99 0.992 0.982 0.984

FURIA (fuzzy unordered rule induction) 0.988 0.996 0.993 0.978

MODLEM (rough set-based rule classifier with default
param.) 0.964 0.995 0.999 0.972

LAC (lazy associative rule-based with default param.) 0.952 0.957 0.956 0.952

OneR (rule-based)* 0.986 0.956 0.982 0.982

NNGE (rule-based with default param.) 0.976 0.993 0.999 0.982

70

JRIP (rule-based Repeated Incremental Pruning to
Produce Error Reduction (RIPPER)) 0.988 0.996 0.99 0.982

RIDOR (rule-nased RIpple-DOwn Rule learner) 0.988 0.988 0.987 0.98

Id3 (decision tree) 0.98 0.993 0.999 0.98

J48 (improved version of C4.5 decision tree) 0.99 0.996 0.989 0.982

CART (decision tree) 0.99 0.996 0.982 0.982

Functional Tree (decision tree) 0.988 0.995 0.994 0.984

DecisionStump (decision tree)* 0.986 0.956 0.982 0.982

NBTree (NaiveBayes decision tree) 0.86 0.99 0.99 0.99

LMT (logistic model trees - decision tree) 0.988 0.994 0.988 0.984

RandomForest (ensemble of decision trees) 0.984 0.996 0.999 0.988

NNGE / AdaBoostM1 0.984 0.995 0.999 0.984

Ensemble by Voting (majority voting) 2 classifiers
(LAC, NNGE) 0.964 0.967 0.999 0.982

Ensemble by Voting (majority voting) 3 classifiers
(OneR, J48, RBF classifier) 0.986 0.996 0.983 0.984

Ensemble by Voting (majority voting) 3 classifiers
(OneR, FunctionalTree, LazyBayesianRules) 0.99 0.995 0.984 0.984

Ensemble by Voting (majority voting) 3 classifiers (J48,
FunctionalTree, LazyBayesianRules) 0.99 0.996 0.99 0.986

JRIP / RealAdaBoost 0.992 0.995 0.999 0.978

Ensemble by Voting (majority voting) 4 classifiers (JRIP,
OneR, FunctionalTree, LazyBayesianRules) 0.988 0.995 0.989 0.988

Table 5.7. MalGenome 2nd Dataset True Positive Rates Part 1

 Algorithm Name and Parameters
10-fold-xval

(1510 instances)
1260 mal + 250

ben

SMOTE-
balanced-10-fold-

xval (2520
instances) 1260
mal + 1260 ben

SMOTE-balanced-
TRAIN (1680

instances) 840 mal +
840 ben

SMOTE-balanced-
TEST (840 instances)

420 mal + 420 ben

Radial Basis Function 0.993 0.99 0.99 0.99

Multilayer Perceptron (learning rate=0.3, momentum=0.2, one
hidden layer with 8 nodes, 500 iterations) 0.989 0.988 0.994 0.988

Multilayer Perceptron (default param. in Weka lr=0.3,
mom=0.2, hidden: 19. 500 iter.) 0.989 0.988 0.994 0.988

1-NN (1/d weighted) 0.991 0.988 0.998 0.986

NaiveBayes 0.991 0.992 0.993 0.99

BayesianLogisticRegression 0.994 0.988 0.99 0.988

VotedPerceptron 0.991 0.987 0.988 0.983

SVM (Support Vector Machine) 0.993 0.989 0.993 0.988

Lazy Bayesian Rules Classifier (LBR) 0.991 0.986 0.992 0.986

71

FURIA (fuzzy unordered rule induction) 0.991 0.99 0.994 0.986

MODLEM (rough set-based rule classifier with default param.) 0.993 0.99 0.998 0.988

LAC (lazy associative rule-based with default param.) 0.994 0.992 0.993 0.99

OneR (rule-based)* 0.994 0.994 0.994 0.993

NNGE (rule-based with default param.) 0.989 0.989 0.998 0.99

JRIP (rule-based Repeated Incremental Pruning to Produce
Error Reduction (RIPPER)) 0.989 0.99 0.993 0.988

RIDOR (rule-nased RIpple-DOwn Rule learner) 0.94 0.99 0.993 0.988

Id3 (decision tree) 0.989 0.989 0.998 0.988

J48 (improved version of C4.5 decision tree) 0.99 0.991 0.993 0.988

CART (decision tree) 0.99 0.989 0.993 0.988

Functional Tree (decision tree) 0.972 0.99 0.994 0.988

DecisionStump (decision tree)* 0.994 0.994 0.994 0.993

NBTree (NaiveBayes decision tree) 0.992 0.99 0.993 0.988

LMT (logistic model trees - decision tree) 0.992 0.99 0.998 0.988

RandomForest (ensemble of decision trees) 0.991 0.99 0.998 0.988

NNGE / AdaBoostM1 0.991 0.99 0.998 0.988

Ensemble by Voting (majority voting) 2 classifiers (LAC,
NNGE) 0.989 0.989 0.998 0.99

Ensemble by Voting (majority voting) 3 classifiers (OneR, J48,
RBF classifier) 0.994 0.995 0.993 0.99

Ensemble by Voting (majority voting) 3 classifiers (OneR,
FunctionalTree, LazyBayesianRules) 0.994 0.993 0.994 0.988

Ensemble by Voting (majority voting) 3 classifiers (J48,
FunctionalTree, LazyBayesianRules) 0.992 0.991 0.994 0.988

JRIP / RealAdaBoost 0.99 0.99 0.998 0.986

Ensemble by Voting (majority voting) 4 classifiers (JRIP,
OneR, FunctionalTree, LazyBayesianRules) 0.994 0.992 0.994 0.988

Table 5.8. MalGenome 2nd Dataset True Positive Rates Part 2

 Algorithm Name and Parameters
1/3 Test split (hold-

out) (1510 instances)
test size: 422 mal +

81 ben

SMOTE-
balanced-1/3 Test

split (hold-out)
(2520 instances)
test size: 420 mal

+ 420 ben

Imbalanced-
TRAIN (1005

instances) 840 mal
+ 165 ben

Imbalanced-TEST
(505 instances) 420

mal + 85 ben

Radial Basis Function 0.998 0.991 0.993 0.993

Multilayer Perceptron (learning rate=0.3, momentum=0.2, one
hidden layer with 8 nodes, 500 iterations) 0.993 0.993 0.994 0.986

Multilayer Perceptron (default param. in Weka lr=0.3,
mom=0.2, hidden: 19. 500 iter.) 0.995 0.993 0.994 0.988

72

1-NN (1/d weighted) 0.995 0.993 1 0.988
NaiveBayes 0.995 0.993 0.992 0.99

BayesianLogisticRegression 0.998 0.993 0.994 0.993

VotedPerceptron 0.998 0.993 0.993 0.993

SVM (Support Vector Machine) 0.998 0.991 0.993 0.981
Lazy Bayesian Rules Classifier (LBR) 0.995 0.984 0.992 0.99

FURIA (fuzzy unordered rule induction) 0.998 0.993 0.993 0.981

MODLEM (rough set-based rule classifier with default param.)
0.998 0.998 1 0.99

LAC (lazy associative rule-based with default param.) 0.998 0.993 0.995 0.993

OneR (rule-based)* 0.998 0.995 0.994 0.993
NNGE (rule-based with default param.) 0.993 0.991 0.999 0.99

JRIP (rule-based Repeated Incremental Pruning to Produce
Error Reduction (RIPPER)) 0.995 0.993 0.99 0.979
RIDOR (rule-nased RIpple-DOwn Rule learner) 0.991 0.977 0.994 0.988

Id3 (decision tree) 0.998 0.993 1 0.986
J48 (improved version of C4.5 decision tree) 0.993 0.993 0.994 0.988

CART (decision tree) 0.993 0.993 0.994 0.993
Functional Tree (decision tree) 0.995 0.993 0.994 0.99

DecisionStump (decision tree)* 0.998 0.995 0.994 0.993
NBTree (NaiveBayes decision tree) 0.991 0.991 0.992 0.99

LMT (logistic model trees - decision tree) 0.998 0.993 0.994 0.993
RandomForest (ensemble of decision trees) 0.995 0.993 0.999 0.99
NNGE / AdaBoostM1 0.998 0.991 0.999 0.99

Ensemble by Voting (majority voting) 2 classifiers (LAC,
NNGE) 0.995 0.991 0.999 0.99

Ensemble by Voting (majority voting) 3 classifiers (OneR, J48,
RBF classifier) 0.998 0.993 0.994 0.993

Ensemble by Voting (majority voting) 3 classifiers (OneR,
FunctionalTree, LazyBayesianRules) 0.998 0.993 0.994 0.993

Ensemble by Voting (majority voting) 3 classifiers (J48,
FunctionalTree, LazyBayesianRules) 0.995 0.993 0.994 0.99

JRIP / RealAdaBoost 0.998 0.993 1 0.99

Ensemble by Voting (majority voting) 4 classifiers (JRIP,
OneR, FunctionalTree, LazyBayesianRules) 0.995 0.993 0.994 0.99

73

Table 5.9. MalGenome 2nd Dataset True Negative Rates Part 1

 Algorithm Name and Parameters
10-fold-xval

(1510 instances)
1260 mal + 250

ben

SMOTE-
balanced-10-

fold-xval (2520
instances) 1260
mal + 1260 ben

SMOTE-
balanced-

TRAIN (1680
instances) 840
mal + 840 ben

SMOTE-
balanced-TEST
(840 instances)
420 mal + 420

ben

Radial Basis Function 0.94 0.998 0.994 0.998

Multilayer Perceptron (learning rate=0.3, momentum=0.2, one hidden layer with 8
nodes, 500 iterations)

0.952 0.997 1 0.993

Multilayer Perceptron (default param. in Weka lr=0.3, mom=0.2, hidden: 19. 500 iter.)
0.944 0.996 1 0.993

1-NN (1/d weighted) 0.94 0.996 1 0.995

NaiveBayes 0.94 0.923 0.924 0.931

BayesianLogisticRegression 0.936 0.994 0.995 0.995

VotedPerceptron 0.952 0.994 0.992 0.995

SVM (Support Vector Machine) 0.952 0.994 0.998 0.988

Lazy Bayesian Rules Classifier (LBR) 0.972 0.998 0.998 0.998

FURIA (fuzzy unordered rule induction) 0.94 0.995 0.998 0.988

MODLEM (rough set-based rule classifier with default param.)
0.852 0.982 1 0.988

LAC (lazy associative rule-based with default param.) 0.748 0.926 0.924 0.931

OneR (rule-based)* 0.924 0.92 0.919 0.921

NNGE (rule-based with default param.) 0.916 0.989 1 0.995

JRIP (rule-based Repeated Incremental Pruning to Produce Error Reduction (RIPPER))
0.964 0.995 0.995 0.998

RIDOR (rule-nased RIpple-DOwn Rule learner) 0.99 0.996 0.999 0.998

Id3 (decision tree) 0.912 0.991 1 0.995

J48 (improved version of C4.5 decision tree) 0.952 0.995 0.995 0.998

CART (decision tree) 0.944 0.994 0.995 0.998

Functional Tree (decision tree) 0.991 0.991 1 0.99

DecisionStump (decision tree)* 0.924 0.92 0.919 0.921

NBTree (NaiveBayes decision tree) 0.948 0.994 0.993 0.99

LMT (logistic model trees - decision tree) 0.94 0.994 1 0.995

RandomForest (ensemble of decision trees) 0.94 0.994 1 0.995

NNGE / AdaBoostM1 0.932 0.994 1 0.993

Ensemble by Voting (majority voting) 2 classifiers (LAC, NNGE)
0.916 0.989 1 0.995

Ensemble by Voting (majority voting) 3 classifiers (OneR, J48, RBF classifier)
0.928 0.992 0.994 0.998

74

Ensemble by Voting (majority voting) 3 classifiers (OneR, FunctionalTree,
LazyBayesianRules)

0.964 0.994 0.998 0.993

Ensemble by Voting (majority voting) 3 classifiers (J48, FunctionalTree,
LazyBayesianRules)

0.972 0.998 0.999 0.998

JRIP / RealAdaBoost 0.948 0.995 0.999 0.993

Ensemble by Voting (majority voting) 4 classifiers (JRIP, OneR, FunctionalTree,
LazyBayesianRules)

0.96 0.994 0.996 0.995

Table 5.10. MalGenome 2nd Dataset True Negative Rates Part 2

 Algorithm Name and Parameters
1/3 Test split (hold-

out) (1510 instances)
test size: 422 mal +

81 ben

SMOTE-
balanced-1/3

Test split (hold-
out) (2520

instances) test
size: 420 mal +

420 ben

Imbalanced-
TRAIN (1005
instances) 840
mal + 165 ben

Imbalanced-
TEST (505

instances) 420
mal + 85 ben

Radial Basis Function 0.938 1 0.933 0.941

Multilayer Perceptron (learning rate=0.3, momentum=0.2, one
hidden layer with 8 nodes, 500 iterations) 0.963 1 1 1

Multilayer Perceptron (default param. in Weka lr=0.3,
mom=0.2, hidden: 19. 500 iter.) 0.914 1 1 0.953

1-NN (1/d weighted) 0.938 1 0.994 0.965

NaiveBayes 0.951 0.917 0.933 0.953

BayesianLogisticRegression 0.938 1 0.952 0.965

VotedPerceptron 0.951 0.995 0.921 0.929

SVM (Support Vector Machine) 0.926 1 0.976 0.976

Lazy Bayesian Rules Classifier (LBR) 0.963 1 0.933 0.953

FURIA (fuzzy unordered rule induction) 0.938 1 0.994 0.965

MODLEM (rough set-based rule classifier with default param.) 0.79 0.993 0.994 0.882

LAC (lazy associative rule-based with default param.) 0.716 0.92 0.758 0.753

OneR (rule-based)* 0.926 0.915 0.921 0.929

NNGE (rule-based with default param.) 0.889 0.995 1 0.941
JRIP (rule-based Repeated Incremental Pruning to Produce
Error Reduction (RIPPER)) 0.951 1 0.988 1

RIDOR (rule-nased RIpple-DOwn Rule learner) 0.975 1 0.952 0.941

Id3 (decision tree) 0.889 0.993 0.994 0.953

J48 (improved version of C4.5 decision tree) 0.975 1 0.964 0.953

CART (decision tree) 0.975 1 0.921 0.929

75

Functional Tree (decision tree) 0.951 0.998 0.994 0.953

DecisionStump (decision tree)* 0.926 0.915 0.921 0.929

NBTree (NaiveBayes decision tree) 0.963 0.99 0.982 0.988

LMT (logistic model trees - decision tree) 0.938 0.995 0.958 0.941

RandomForest (ensemble of decision trees) 0.926 1 1 0.976

NNGE / AdaBoostM1 0.914 1 1 0.953

Ensemble by Voting (majority voting) 2 classifiers (LAC,
NNGE) 0.802 0.942 1 0.941

Ensemble by Voting (majority voting) 3 classifiers (OneR, J48,
RBF classifier) 0.926 1 0.927 0.941

Ensemble by Voting (majority voting) 3 classifiers (OneR,
FunctionalTree, LazyBayesianRules) 0.951 0.998 0.933 0.941

Ensemble by Voting (majority voting) 3 classifiers (J48,
FunctionalTree, LazyBayesianRules) 0.963 1 0.97 0.965

JRIP / RealAdaBoost 0.963 0.998 0.994 0.918

Ensemble by Voting (majority voting) 4 classifiers (JRIP, OneR,
FunctionalTree, LazyBayesianRules) 0.951 0.998 0.964 0.976

5.5. Results from the AndroZoo Dataset

The dataset constructed from the AndroZoo malware samples was subsampled into

four different datasets including one training set with 300 malware and 300 benign

samples, and three different test sets out of which two have 150 malware and 150

benign, and one has 200 malware and 200 benign samples. Similar to the construction

of the train and test datasets of the MalGenome dataset, the benign samples were

chosen randomly from the 600 benign records collected from the Google Play Store,

and the malware samples were chosen randomly from 1300 malware records collected

from the AndroZoo Project. The data mining process execution methods of train sets,

test sets, and 10-fold cross-validation were executed on Weka using many of the

available machine learning algorithms. The machine learning algorithms achieving the

highest detection ratios among the experiments for the AndroZoo dataset including

several well-known types of classification algorithms are given in tables Table 5.11,

Table 5.12, and Table 5.13. For this dataset, FURIA, ID3, and J48 machine learning

algorithms achieved the highest 10-fold cross-validation accuracy ratio of 0.988.

76

Table 5.11. AndroZoo Dataset Accuracy Values

Algorithm Name and Parameters Train (600
instances)

10-fold x-
val. (600

instances)

Test set 1
(300

instances)

Test set 2
(300

instances)

Test set 3
(400

instances)

Radial Basis Function 0.987 0.982 0.980 0.980 0.980
Multilayer Perceptron (learning rate=0.3, momentum=0.2, one
hidden layer with 8 nodes, 500 iterations) 0.992 0.983 0.983 0.983 0.985

Id3 (decision tree) 0.992 0.988 0.983 0.987 0.988
k-NN (k nearest neighbors, k = 1) 0.992 0.985 0.983 0.987 0.988
NaiveBayes 0.960 0.960 0.957 0.950 0.960
J48 (improved version of C4.5 decision tree) 0.988 0.988 0.980 0.983 0.980
SVM (Support Vector Machine with Sequential Minimal
Optimization) 0.990 0.985 0.983 0.983 0.983

FURIA (fuzzy unordered rule induction classifier) 0.990 0.988 0.983 0.983 0.983
RandomForest (ensemble of decision trees) 0.992 0.985 0.987 0.987 0.988
NNGE / AdaBoostM1 (Non-nested Generalized Exemplars
rule based classification with AdaBoost M1 meta-learner) 0.992 0.987 0.987 0.987 0.988
Ensemble by Voting (average of probabilities) 3 classifiers
(LAC, NNGE, MODLEM) 0.992 0.978 0.987 0.987 0.988
Ensemble by Voting (average of probabilities) 3 classifiers
(OneR, NNGE, MODLEM) 0.992 0.983 0.987 0.987 0.988
Ensemble by Voting (average of probabilities) 4 classifiers
(OneR, LAC, NNGE, MODLEM) 0.992 0.983 0.987 0.987 0.988

Table 5.12. AndroZoo Dataset True Positive Rates

 Algorithm Name and Parameters Train (600
instances)

10-fold x-
val. (600

instances)

Test set 1
(300

instances)

Test set 2
(300

instances)

Test set 3
(400

instances)
Radial Basis Function 0.990 0.990 0.987 0.980 0.975
Multilayer Perceptron (learning rate=0.3, momentum=0.2, one
hidden layer with 8 nodes, 500 iterations) 0.997 0.987 0.993 0.987 0.985

Id3 (decision tree) 0.997 0.990 0.987 0.987 0.985

k-NN (k nearest neighbors, k = 1) 0.997 0.997 0.993 0.993 0.990

NaiveBayes 1.000 1.000 0.993 0.993 0.990

J48 (improved version of C4.5 decision tree) 0.990 0.990 0.980 0.980 0.970
SVM (Support Vector Machine with Sequential Minimal
Optimization) 0.993 0.987 0.987 0.980 0.975

FURIA (fuzzy unordered rule induction classifier) 0.993 0.990 0.987 0.980 0.975

RandomForest (ensemble of decision trees) 0.997 0.987 0.993 0.987 0.985
NNGE / AdaBoostM1 (Non-nested Generalized Exemplars rule
based classification with AdaBoost M1 meta-learner) 0.997 0.993 0.993 0.987 0.985
Ensemble by Voting (average of probabilities) 3 classifiers
(LAC, NNGE, MODLEM) 0.997 0.990 0.993 0.987 0.985
Ensemble by Voting (average of probabilities) 3 classifiers
(OneR, NNGE, MODLEM) 0.997 0.987 0.993 0.987 0.988
Ensemble by Voting (average of probabilities) 4 classifiers
(OneR, LAC, NNGE, MODLEM) 0.997 0.987 0.993 0.987 0.985

 Table 5.13. AndroZoo Dataset True Negative Rates

Algorithm Name and Parameters Train (600
instances)

10-fold x-
val. (600

instances)

Test set 1
(300

instances)

Test set 2
(300

instances)

Test set 3
(400

instances)
Radial Basis Function 0.984 0.974 0.973 0.980 0.985
Multilayer Perceptron (learning rate=0.3, momentum=0.2, one
hidden layer with 8 nodes, 500 iterations) 0.987 0.977 0.973 0.979 0.985
Id3 (decision tree) 0.987 0.986 0.979 0.987 0.991
k-NN (k nearest neighbors, k = 1) 0.987 0.973 0.973 0.981 0.986
NaiveBayes 0.920 0.920 0.921 0.907 0.930

77

J48 (improved version of C4.5 decision tree) 0.986 0.986 0.980 0.986 0.990
SVM (Support Vector Machine with Sequential Minimal
Optimization) 0.987 0.983 0.979 0.986 0.991

FURIA (fuzzy unordered rule induction classifier) 0.987 0.986 0.979 0.986 0.991
RandomForest (ensemble of decision trees) 0.987 0.983 0.981 0.987 0.991
NNGE / AdaBoostM1 (Non-nested Generalized Exemplars rule
based classification with AdaBoost M1 meta-learner) 0.987 0.981 0.981 0.987 0.991
Ensemble by Voting (average of probabilities) 3 classifiers
(LAC, NNGE, MODLEM) 0.987 0.966 0.981 0.987 0.991
Ensemble by Voting (average of probabilities) 3 classifiers
(OneR, NNGE, MODLEM) 0.987 0.979 0.981 0.987 0.982
Ensemble by Voting (average of probabilities) 4 classifiers
(OneR, LAC, NNGE, MODLEM) 0.987 0.979 0.981 0.987 0.991

78

CHAPTER 6

CONCLUSIONS

In this concluding chapter, the contributions of this thesis and their potential impacts

are discussed.

6.1. Summary of Thesis Contributions

A novel feature selection methodology is proposed and implemented in this Ph.D.

study along with a new model for malware detection on the Android. The proposed

approach was tested using nearly all the available machine learning algorithms on

WEKA along with some ensembles of certain machine learning algorithms. High

accuracy values and malware detection ratios were obtained, which prove the

usefulness of the approach in real world cases.

The malware detection using machine learning methodology proposed in this thesis

achieved the highest TPRs ranging between 99.6% and 100% for the first MalGenome

dataset and ranging between 99.3% and 100% for the AndroZoo dataset.

In terms of accuracy rates in the first MalGenome dataset, ensemble learner by

majority voting of three classifiers (OneR, NNGE, MODLEM) achieved the best rates

with 99.8%, 97.2%, 99.6%, 97,6% and 99.2% for the train, 10-fold cross-validation,

test set 1, test set 2, test set 3 and test set 4 experiments, respectively.

Considering the accuracy results in the second MalGenome dataset, the JRIP /

RealAdaBoost classifier achieved the highest accuracy rate of 99.2% in the 1/3 test

split (hold-out) experiment that contains 1510 instances.

Majority voting of three classifiers (OneR, J48 and the RBF classifier) achieved the

highest TPR of 99.5% in the 10-fold cross validation experiment that include 1260

malware and 1260 benign samples.

Modlem achieved the highest TPR of 99.8% in the 1/3 hold-out experiment that

contain 2520 instances with test sizes of 420 malware and 420 benign samples.

79

The following ensembles that contain three classifiers: OneR, J48 and the RBF

classifier; OneR, FunctionalTree and the LazyBayesianRules; J48, FunctionalTree and

the LazyBayesianRules along with the ensemble that contain four classifiers: JRIP,

OneR, FunctionalTree and the LazyBayesianRules, achieved some of the best results

by obtaining the highest accuracy of 99.6% and the highest TPR of 99.8%.

For the AndroZoo dataset, the highest malware detection accuracy rates were observed

to be ranging from 98.7% to 98.8%, and these results slightly outperform the results

of the study conducted by Wu et al. (S. Wu et al., 2016), where they had achieved the

highest detection ratio of 97.66% using the k-NN classifier.

In terms of accuracy rates with the AndroZoo dataset, NNGE / AdaBoostM1 achieved

the best rates with 99.2%, 98.7%, 98.7%, 98.7% and 98.8% for the train, 10-fold cross-

validation, test set 1, test set 2 and test set 3 experiments, respectively.

Additionally, the TPR results of the AndroZoo dataset given in Table 5.12, range from

97% to 100%. In terms of the TPR values by each classifier, Naive Bayes achieved the

best results with 100% for train and 10-fold cross-validation, and 99.3% for test sets 1

and 2, and 99% for the test set 3. The k-NN classifier produced the second best results

in terms of TPR with 99.7% for train and 10-fold cross-validation, and 99.3% for test

sets 1 and 2, and 99% for the test set 3.

Several ensemble learners that use majority voting achieved the highest accuracy ratios

upon four different test sets derived from the MalGenome project. Three different

ensemble models which include, one model with three classifiers (LAC, NNGE,

MODLEM), another one with three classifiers (OneR, NNGE, MODLEM), and

another ensemble model with four classifier algorithms (OneR, LAC, NNGE,

MODLEM) were the ensemble learners that achieved the highest accuracy ratios. The

test accuracies of these ensemble learners were observed to be ranging between 0.992

and 1.

Concerning the AndroZoo dataset, it was further observed that besides these three

ensemble models, another ensemble learner which is the RandomForest, AdaBoost M1

meta-learner that uses the NNGE classifier, k-NN, and ID3 achieved the highest test

accuracy values of 0.987 and 0.988.

It can be asserted that the feature selection methodology proposed in this thesis is

successful owing to the outstanding and promising accuracy values and malware

80

detection performances. A novel approach for the feature selection process that makes

use of IDF values in a different way has been designed and developed. Additionally, a

new malware detection approach that implements the proposed methodology for

feature selection and explores ensemble learning with different algorithms, has been

implemented and evaluated.

It can be further concluded that, the machine learning algorithms utilized in this work

were shown to obtain considerably high accuracy rates for malware detection on the

Android platform by using the feature selection and malware detection methodologies

proposed in this Ph.D. thesis.

6.2. Directions for Future Work

Further studies and directions for future work are discussed in this section.

6.2.1. New Experiments with Bigger Datasets

Due to time constraints and download limitations (mass download methods were not

available) in the Google Play Store, a high amount of benign application samples could

not be utilized in this study. Therefore, one of the future works is to increase the

number of benign samples included in the experiments. This has already been carried

out for the MalGenome dataset by utilizing the up-sampling statistical method of

increasing sample size and it will also be carried out for the AndroZoo dataset by

downloading large numbers of Android benign apps from the AndroZoo Project. The

similar experiments and tests will be carried out with the same and potentially some

extra classifiers on the new dataset to observe how the methodology scales to greater

numbers of malware and benign samples.

6.2.2. Additional Research for Ensemble Classifiers with the

AndroZoo Dataset

In the MalGenome dataset, ensemble classifiers achieved the best TPR scores, in

contrast to this, in the AndroZoo dataset, basic single classifiers such as Naive Bayes

and the k-NN achieved the best TPR. The ensemble learners would have been expected

to provide the best TPR scores in the AndroZoo dataset as well. This may be the

consequence of a number of factors such as the fact that various malware types with

different features and symptoms were included within each dataset, or the fact that

81

train and test sets were constructed randomly. The second future work will be carrying

out some additional research into this situation.

6.2.3. Alternative Methodologies for Feature Selection

The novel feature selection methodology proposed in this thesis could be combined

with different known feature selection methodologies to provide an alternative hybrid

model of feature selection. In such a scenario, the attributes would be extracted and

selected according to the original proposed methodology and afterwards, by using

various ranker (such as Information Gain, Mutual Information, Chi-Square) methods

and/or subset selection and/or Wrapper methods, from the currently selected attributes,

some additional attributes could be discarded. The same set of classifiers would be

used to get the results from the train and test sets constructed with this hybrid

methodology. The results obtained by this alternative methodology would be

compared against the results obtained using the original methodology to measure the

success of using such a hybrid methodology.

6.2.4. Malware Detection Tool for Android Platforms

The fourth and final potential future study is to implement this new malware detection

methodology as an Android application that could be deployed on mobile devices. As

it was previously noted, the methodology proposed in this thesis is an off-line detection

methodology. Within the time constraints of this thesis, it was not possible to build the

actual Android application for malware detection that implements the proposed

methodology. However, within a larger timeframe, a mobile application that

implements the proposed malware detection methodology could be implemented and

published on the Google Play Store.

82

REFERENCES

Aafer, Y., Du, W., & Yin, H. (2013). DroidAPIMiner: Mining API-level features for
robust malware detection in Android. SecureComm, volume 127 of Lecture
Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering, Springer, 86–103.

Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-Based learning algorithms.
Machine Learning, 6, 37-66.

Alatwi, H. A., Oh, T., Fokoue, E., & Stackpole, B. (2016). Android malware detection
using category-based machine learning classifiers Paper presented at the
Proceedings of the 17th Annual Conference on Information Technology
Education, Boston, Massachusetts, USA.

Allix, K., Bissyandé, T. F., Klein, J., & Traon, Y. L. (2016). AndroZoo: Collecting
millions of Android apps for the research community. Paper presented at the
2016 IEEE/ACM 13th Working Conference on Mining Software Repositories
(MSR), Austin, TX.

Almeida, M., Bilal, M., Finamore, A., Leontiadis, I., Grunenberger, Y., Varvello, M.,
& Blackburn, J. (2018). CHIMP: Crowdsourcing Human Inputs for Mobile
Phones. Paper presented at the Proceedings of the 2018 World Wide Web
Conference, Lyon, France.

Alzaylaee, M. K., Yerima, S. Y., & Sezer, S. (2017). EMULATOR vs REAL PHONE:
Android malware detection using machine learning. Paper presented at the 3rd
ACM International Workshop on Security and Privacy Analytics, Scottsdale,
Arizona, USA.

Amos, B., Turner, H., & White, J. (2013, 1-5 July 2013). Applying machine learning
classifiers to dynamic Android malware detection at scale. Paper presented at
the 9th International Wireless Communications and Mobile Computing
Conference (IWCMC).

Androguard. (2017). from https://github.com/androguard on 30 October 2017
Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H., Rieck, K., & Siemens, C. (2014).

Drebin: Effective and explainable detection of Android malware in your
pocket. Paper presented at the Annual Symposium on Network and Distributed
System Security (NDSS).

Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A., & Nielsen, H. (2000). Assessing
the accuracy of prediction algorithms for classification: an overview.
Bioinformatics, 16(5), 412–424.

Bhatnagar, V., & Sharma, S. (2012). Data mining: a necessity for information security.
Journal of Knowledge Management Practice, 13(1).

Bishop, C. (2006). Pattern recognition and machine learning: Springer-Verlag New
York.

Bläsing, T., Batyuk, L., Schmidt, A.-D., Camtepe, S. A., & Albayrak, S. (2010). An
Android application sandbox system for suspicious software detection.
MALWARE’10, 55–62.

Blowers, M., Fernandez, S., Froberg, B., Williams, J., Corbin, G., & Nelson, K.
(2014). Data mining in cyber operations. In R. E. Pino, A. Kott & M. Shevenell
(Eds.), Cybersecurity Systems for Human Cognition Augmentation (Vol. 61,
pp. 61-73): Springer International Publishing.

83

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
Breiman, L., & Cutler, A. (2011). Random Forests. Retrieved April 2018, from

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S. (2011). Crowdroid: Behavior based

malware detection system for Android. Paper presented at the 1st ACM
Workshop on Security and Privacy in Smartphones and Mobile Devices,
SPSM ’11, New York, NY, USA.

Cesare, S., & Xiang, Y. (2010). Classification of malware using structured control
flow. Paper presented at the 8th Australasian Symposium on Parallel and
Distributed Computing.

CheetahMobile. (2014). 2014 Half Year Security Report. Retrieved June 2016, from
https://www.cmcm.com/blog/2014-07-18/186.html.

Chen, Y.-W., & Lin, C.-J. (2006). Combining SVMs with various feature selection
strategies. In I. Guyon, M. Nikravesh, S. Gunn & L. A. Zadeh (Eds.), Feature
Extraction: Foundations and Applications (pp. 315-324). Berlin, Heidelberg:
Springer Berlin Heidelberg.

Chin, E., Felt, A. P., Greenwood, K., & Wagner, D. (2011). Analyzing inter-
application communication in Android. Paper presented at the 9th International
Conference on Mobile Systems, Applications, and Services, MobiSys ’11,
New York, NY, USA.

ContagioMobile. (2016). Retrieved June 2016, from
http://contagiominidump.blogspot.com/.

Coronado-De-Alba, L. D., Rodríguez-Mota, A., & Ambrosio, P. J. E. (2016, 15-17
Nov. 2016). Feature selection and ensemble of classifiers for Android malware
detection. Paper presented at the 2016 8th IEEE Latin-American Conference
on Communications (LATINCOM).

Cortes, C., & Vapnik, V. (1995). Support-Vector networks. Machine Learning, AT&T
Bell Labs, Holmdel, NJ, 273-297.

CuckooSandbox. (2018). Retrieved June 2018, from https://cuckoosandbox.org/
Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.

Mathematics of Control, Signals and Systems, 2(4), 303-314. doi:
10.1007/bf02551274

Damshenas, M., Dehghantanha, A., Choo, K.-K. R., & Mahmud, R. (2015). M0Droid:
An Android behavioral-based malware detection model. Journal of
Information Privacy and Security, 11(3), 141-157. doi:
10.1080/15536548.2015.1073510

David, O. E., & Netanyahu, N. S. (2015, 12-17 July 2015). DeepSign: Deep learning
for automatic malware signature generation and classification. Paper
presented at the 2015 International Joint Conference on Neural Networks
(IJCNN).

Dhaya, R., & Poongodi, M. (2014, 8-10 May 2014). Detecting software vulnerabilities
in Android using static analysis. Paper presented at the 2014 IEEE
International Conference on Advanced Communications, Control and
Computing Technologies.

Dietterich, T. G. (2000). An experimental comparison of three methods for
constructing ensembles of decision trees: bagging, boosting, and
randomization Machine Learning, 40(2), 139-157. doi:
10.1023/a:1007607513941

Dini, G., Martinelli, F., Saracino, A., & Sgandurra, D. (2012). Madam: A multi-level
anomaly detector for Android malware. Paper presented at the 6th International

84

http://www.stat.berkeley.edu/%7Ebreiman/RandomForests/cc_home.htm
http://www.cmcm.com/blog/2014-07-18/186.html
http://contagiominidump.blogspot.com/

Conference on Mathematical Methods, Models and Architectures for
Computer Network Security: Computer Network Security, MMM-ACNS’12.

DoD. (2010). Joint Publication 1-02 Dictionary of Military and Associated Terms.
Retrieved November 2010, from
http://www.dtic.mil/doctrine/new_pubs/jp1_02.pdf.

Egele, M., Scholte, T., Kirda, E., & Kruegel, C. (2008). A survey on automated
dynamic malware-analysis techniques and tools. ACM Computing Surveys,
44(2), 1-42. doi: 10.1145/2089125.2089126

Elish, K. O., Shu, X., Yao, D. D., Ryder, B., & Jiang, X. (2015). Profiling user-trigger
dependence for Android malware detection. Computers & Security, 49(0),
255–273.

Enck, W., Gilbert, P., Chun, B., Cox, L. P., Jung, J., McDaniel, P., & Sheth, A. N.
TaintDroid: an information-flow tracking system for realtime privacy
monitoring on smartphones. Paper presented at the 9th USENIX Conference
on Operating Systems Design and Implementation, OSDI’10, Berkeley, CA,
USA.

Enck, W., Ongtang, M., & McDaniel, P. D. (2009). Understanding Android security.
IEEE Security & Privacy, 7(1), 50–57.

Felt, A. P., Ha, E., Egelman, S., Haney, A., Chin, E., & Wagner, D. (2012). Android
permissions: user attention, comprehension, and behavior. Paper presented at
the Proceedings of the Eighth Symposium on Usable Privacy and Security,
Washington, D.C.

Firdausi, I., Lim, C., Erwin, A., & Nugroho, A. S. (2010, 2-3 Dec. 2010). Analysis of
machine learning techniques used in behavior-based malware detection Paper
presented at the Second International Conference on Advances in Computing,
Control and Telecommunication Technologies (ACT).

Frank, E. (2014). Fully supervised training of Gaussian radial basis function networks
in WEKA. Department of Computer Science, University of Waikato, 1-4.

Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm.
Paper presented at the Thirteenth International Conference on Machine
Learning,, San Francisco.

Fuchs, A. P., Chaudhuri, A., & Foster, J. S. (2009). SCanDroid: automated security
certification of Android applications Technical Report CS-TR-4991,
Department of Computer Science, University of Maryland, College Park.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning: MIT Press.
Han, J., Kamber, M., & Pei, J. (2006). Data Mining: Concepts and Techniques (2nd

ed.): Morgan Kaufmann Publishers Inc.
Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical Learning.

New York, NY, USA: Springer New York Inc.
Haykin, S. (2009). Neural Networks and Learning Machines (3rd ed.). New Jersey:

Pearson Education Inc.
Holte, R. C. (1993). Very simple classification rules perform well on most commonly

used datasets. Machine Learning, 11, 63-91.
Hühn, J., & Huellermeier, E. (2009). FURIA: an algorithm for unordered fuzzy rule

induction Data Mining and Knowledge Discovery, 19(3), 293-319.
John, G. H., & Langley, P. (1995). Estimating continuous distributions in Bayesian

classifiers. Paper presented at the The Eleventh Conference on Uncertainty in
Artificial Intelligence.

Karbab, E. B., Debbabi, M., Derhab, A., & Mouheb, D. (2018). MalDozer: Automatic
framework for Android malware detection using deep learning. Digital

85

http://www.dtic.mil/doctrine/new_pubs/jp1_02.pdf

Investigation, 24, S48-S59. doi: https://doi.org/10.1016/j.diin.2018.01.007
Kolter, J. Z., & Maloof, M. A. (2004). Learning to detect malicious executables in the

wild. Paper presented at the Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining Seattle,
WA, USA: ACM, Seattle, WA, USA.

Lantz, P., Desnos, A., & Yang, K. Droidbox: Android application sandbox. available
at: https://code.google.com/p/droidbox/.

Lin, C.-T., Wang, N.-J., Xiao, H., & Eckert, C. (2015). Feature selection and extraction
for malware classification. Journal of Information Science and Engineering,
31(3), 965-992.

Lindorfer, M., Neugschwandtner, M., & Platzer, C. (2015). MARVIN: Efficient and
comprehensive mobile app classification through static and dynamic analysis.
Paper presented at the IEEE 39th Annual Computer Software and Applications
Conference.

Mairhuber, J. C. (1956). On Haar's theorem concerning Chebychev approximation
problems having unique solutions. Proceedings of the American Mathematical
Society, 7(4), 609-615.

Mariconti, E., Onwuzurike, L., Andriotis, P., Cristofaro, E. D., Ross, G., & Stringhini,
G. (2017). MaMaDroid: Detecting Android malware by building markov
chains of behavioral models. arXiv:1612.04433.

Martínez-Muñoz, G., & Suárez, A. (2007). Using boosting to prune bagging
ensembles. Pattern Recognition Letters, 28(1), 156–165.

Milosevic, N. (2018). OWASP Seraphimdroid GitHub page. Retrieved June 2018,
from https://github.com/nikolamilosevic86/owasp-seraphimdroid

Milosevic, N., Dehghantanha, A., & Choo, K.-K. R. (2017). Machine learning aided
Android malware classification. Computers & Electrical Engineering, 61, 266-
274. doi: https://doi.org/10.1016/j.compeleceng.2017.02.013

Monkey. (2018). Retrieved June 2018, from
https://developer.android.com/studio/test/monkey

Moskovitch, R., Feher, C., Tzachar, N., Berger, E., Gitelman, M., Dolev, S., & Elovici,
Y. (2008). Unknown malcode detection using opcode representation. In D.
Ortiz-Arroyo, H. L. Larsen, D. D. Zeng, D. Hicks & G. Wagner (Eds.),
Intelligence and Security Informatics: First European Conference, EuroISI
2008, Esbjerg, Denmark, December 3-5, 2008. Proceedings (pp. 204-215).
Berlin, Heidelberg: Springer Berlin Heidelberg.

Onwuzurike, L., Almeida, M., Mariconti, E., Blackburn, J., Stringhini, G., &
Cristofaro, E. D. (2018). A family of droids: Analyzing behavioral model based
Android malware detection via static and dynamic analysis. arXiv:1803.03448.

Patel, N., & Upadhyay, S. (2012). Study of various decision tree pruning methods with
their empirical comparison in WEKA. International Journal of Computer
Applications, 60 (12), 20-25.

Peiravian, N., & Zhu, X. (2013, 4-6 Nov. 2013). Machine learning for Android
malware detection using permission and API calls. Paper presented at the 2013
IEEE 25th International Conference on Tools with Artificial Intelligence.

Pektaş, A., & Acarman, T. (2018). Malware classification based on API calls and
behaviour analysis. IET Information Security, 12(2), 107-117. doi: 10.1049/iet-
ifs.2017.0430

Pektaş, A., Çavdar, M., & Acarman, T. (2016). Android malware classification by
applying online machine learning. Paper presented at the International
Symposium on Computer and Information Sciences (ISCIS).

86

Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju, R., Rotaru, C. N., Molloy, I.
(2012). Using probabilistic generative models for ranking risks of Android
apps. Paper presented at the 2012 ACM Conference on Computer and
Communications Security (CCS), New York, USA.

Platt, J. (1998). Advances in Kernel Methods - Support Vector Learning. USA: MIT
Press.

Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and
Systems Magazine, 6(3), 21–45.

Provos, N., Mavrommatis, P., Rajab, M. A., & Monrose, F. (2008). All your iFRAMEs
point to us. Paper presented at the 17th conference on Security symposium,
San Jose, CA.

Quinlan, J. R. (1986). Induction of Decision Trees. Machine Learning, 1(1), 81-106.
Quinlan, J. R. (1993). C4.5: Programs for machine learning: Morgan Kaufmann.
RapidMiner. (2017). from https://rapidminer.com/products/studio/
Roundy, K., & Miller, B. (2010). Hybrid analysis and control of malware. In S. Jha,

R. Sommer & C. Kreibich (Eds.), Recent Advances in Intrusion Detection (Vol.
6307, pp. 317-338): Springer Berlin Heidelberg.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal
representations by error propagation. In E. R. David, L. M. James & C. P. R.
Group (Eds.), Parallel distributed processing: Explorations in the
microstructure of cognition, vol. 1 (pp. 318-362): MIT Press.

Saha, S., Pal, M., & Konar, A. (2016). Ensemble classifier approach to gesture
recognition in health care using a Kinect sensor. FL, Florida, USA: Taylor &
Francis Group.

Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic
indexing. Communications of the ACM, 18, 613-620.

Salzberg, S. (1991). A nearest hyperrectangle learning method. Machine Learning,
6(3), 251–276.

SantokuLinux. (2018). Retrieved April 2018, from https://santoku-linux.com/
Sanz, B., Santos, I., Nieves, J., Laorden, C., Alonso-Gonzalez, I., & Bringas, P. G.

(2013). MADS: Malicious Android applications detection through string
analysis. Berlin Heidelberg: Springer

Sayfullina, L., Eirola, E., Komashinsky, D., Palumbo, P., Miche, Y., Lendasse, A., &
Karhunen, J. (2015, 20-22 Aug. 2015). Efficient detection of zero-day Android
malware using normalized Bernoulli Naive Bayes. Paper presented at the 2015
IEEE Trustcom/BigDataSE/ISPA.

Schmidt, A.-D., Bye, R., Schmidt, H.-G., Clausen, J., Kiraz, O., Camtepe, S. A., &
Albayrak, S. (2009). Static analysis of executables for collaborative malware
detection on Android. Paper presented at the Proceedings of the 2009 IEEE
international conference on Communications, Dresden, Germany.

Schmidt, A. D., Schmidt, H. G., Clausen, J., Yuksel, K. A., Kiraz, O., Camtepe, A., &
Albayrak, S. (2008). Enhancing security of Linux-based Android devices.
Proceedings of the 15th International Linux Kongress, Lehmann.

Schultz, M. G., Eskin, E., Zadok, E., & Stolfo, S. J. (2001). Data mining methods for
detection of new malicious executables. Paper presented at the IEEE
Symposium on Security and Privacy, Oakland, CA, USA.

Shahzad, F., Akbar, M., Khan, S., & Farooq, M. (2013). Tstructdroid: Realtime
malware detection using in-execution dynamic analysis of kernel process
control blocks on Android. National University of Computer & Emerging
Sciences, Islamabad, Pakistan, Tech. Rep.

87

Stefanowski, J. (1998). The rough set based rule induction technique for classification
problems. Paper presented at the The 6th European Congress on Intelligent
Techniques and Soft Computing, Aachen, Germany.

stuff.mit.edu. (2016). Building and Running | Android Developers. Retrieved March
2016, from
https://stuff.mit.edu/afs/sipb/project/android/docs/tools/building/index.html.

Suarez-Tangil, G., & Stringhini, G. (2018). Eight years of rider measurement in the
Android malware ecosystem: Evolution and lessons learned.

Suarez-Tangil, G., Tapiador, J. E., Peris-Lopez, P., & Blasco, J. (2014). Dendroid: A
text mining approach to analyzing and classifying code structures in Android
malware families. Expert Systems with Applications, 41(4, Part 1), 1104-1117.
doi: https://doi.org/10.1016/j.eswa.2013.07.106

Tin Kam, H. (1995, 14-16 Aug 1995). Random decision forests. Paper presented at the
3rd International Conference on Document Analysis and Recognition.

Van Der Malsburg, C. (1986). Frank Rosenblatt: Principles of Neurodynamics:
Perceptrons and the Theory of Brain Mechanisms, Berlin, Heidelberg.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York - USA:
Springer-Verlag.

Vapnik, V., & Lerner, A. (1963). Pattern recognition using generalized portrait
method. Automation and Remote Control, 24(6), 774-780.

Veloso, A., Jr., W. M., & Zaki, M. (2006). Lazy Associative Classification. Paper
presented at the The Sixth International Conference on Data Mining (ICDM),
Washington, DC, USA.

Villars, R. L., Olofson, C. W., & Eastwood, M. (2011). Big data: What it is and why
you should care. White Paper, IDC

VirusShare. (2018). Retrieved June 2018, from https://virusshare.com/
Wang, X., Zhang, D., Su, X., & Li, W. (2017). Mlifdect: Android malware detection

based on parallel machine learning and information fusion Security and
Communication Networks, 2017. doi: 10.1155/2017/6451260

Wegman, E. J. (2002). Visual Data Mining. Statistics in Medicine, 22, 1383-1397.
Weka. (2018). Weka 3: Data Mining Software in Java. Machine Learning Group at the

University of Waikato. Retrieved April 2018, from
http://www.cs.waikato.ac.nz/ml/weka/

Witten, I. H., & Frank, E. (2005). Data Mining: Practical Machine Learning Tools
and Techniques, Second Edition: Morgan Kaufmann Publishers Inc.

Wu, D., Mao, C., Wei, T., Lee, H., & Wu, K. (2012). DroidMat: Android malware
detection through Manifest and API calls tracing. Seventh Asia Joint
Conference on Information Security (Asia JCIS), 62–69.

Wu, S., Wang, P., Li, X., & Zhang, Y. (2016). Effective detection of Android malware
based on the usage of data flow APIs and machine learning. Information and
Software Technology, 75, 17-25.

Wu, W.-C., & Hung, S.-H. (2014). DroidDolphin: A dynamic Android malware
detection framework using big data and machine learning. Paper presented at
the 2014 Conference on Research in Adaptive and Convergent Systems,
Towson, Maryland.

Yan, L. K., & Yin, H. (2012). DroidScope: Seamlessly reconstructing the OS and
Dalvik semantic views for dynamic Android malware analysis. Paper presented
at the 21st USENIX Security Symposium, Bellevue, WA.
https://www.usenix.org/conference/usenixsecurity12/technical-
sessions/presentation/yan

88

http://www.cs.waikato.ac.nz/ml/weka/
http://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/yan
http://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/yan

Yerima, S. Y., Sezer, S., McWilliams, G., & Muttik, I. (2013). A new Android malware
detection approach using Bayesian classification. Paper presented at the IEEE
27th International Conference Advanced Information Networking and
Applications (AINA).

Yerima, S. Y., Sezer, S., & Muttik, I. (2014). Android malware detection using
parallel machine learning classifiers. Paper presented at the 2014 Eighth
International Conference on Next Generation Mobile Apps, Services and
Technologies.

Yerima, S. Y., Sezer, S., & Muttik, I. (2015). High accuracy Android malware
detection using ensemble learning. IET Information Security, 9(6), 313-320.
doi: 10.1049/iet-ifs.2014.0099

ZDNet. (2008). How Android works: The big picture. Retrieved September 2016,
from http://www.zdnet.com/article/how-android-works-the-big-picture/

Zheng, C., Zhu, S., Dai, S., Gu, G., Gong, X., Han, X., & Zou, W. (2012). Smartdroid:
An automatic system for revealing UI-based trigger conditions in Android
applications. Paper presented at the Second ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices.

Zhou, Y., & Jiang, X. (2012). Dissecting Android malware: characterization and
evolution. Paper presented at the 33rd IEEE Symposium on Security and
Privacy, Oakland, San Francisco, CA.

89

http://www.zdnet.com/article/how-android-works-the-big-picture/

APPENDIX 1 – Descriptions of the Selected Attributes for the

MalGenome Dataset

Permissions

BROADCAST_STICKY: This is a permission to be able to send a sticky broadcast. A

sticky broadcast is a broadcast that stays around following the moment it is announced

to the system. Most broadcasts are sent, processed within the system and become

quickly inaccessible. However, sticky broadcasts announce information that remains

accessible beyond the point at which they are processed. A typical example is the

battery level broadcast. Unlike most broadcasts, the battery level can be retrieved

within applications beyond the point at which it was sent through the system. This

means that apps can find out whatever the last battery level broadcast was.

CALL_PHONE: This is the permission that enables making phone calls.

CAMERA: This is the permission to be able to utilize the device’s camera given it has

one.

DISABLE_KEYGUARD: Allows an app to disable the keylock in addition to any

associated password security. For example, upon receiving an incoming phone call,

the phone disables the keylock, and re-enables the keylock when the call is finished.

GET_ACCOUNTS: Enables an app to get the list of accounts known by the phone.

This may include any accounts created by the apps installed by the phone owner.

READ_CALENDAR: Grants read access to the phone’s calendar.

READ_LOGS: Grants read access to the phone’s logs.

READ_PHONE_STATE: Required to obtain the UUID (Universally unique identifier)

of the device.

READ_SMS: Grants read access to the received, drafted and sent SMS messages.

RECEIVE_SMS: Enables an app to intercept an incoming SMS. In other words, an

SMS incoming to the device may also be received by the app possessing this

permission.

RESTART_PACKAGES: Required to restart a running package.

SEND_SMS: Enables an app to send SMS messages.

90

SYSTEM_ALERT_WINDOW: Allows an app to display content over another app. In

other words, this permission allows a developer to display content on the screen of

your Android device after a predefined trigger event.

WRITE_APN_SETTINGS: Allows applications to write the Access Point Name

(APN) settings. APN settings are required to set up a connection to the gateway

between your carrier's cellular network and the public Internet.

WRITE_CONTACTS: Allows an app to write to the device's contacts data.

WRITE_EXTERNAL_STORAGE: Allows an app to write to the external storages

(such as a MicroSD Card or USB Flash) connected to the device.

WRITE_HISTORY_BOOKMARKS: Allows an app to modify the browser's history

or bookmarks stored on a phone. This may allow the app to erase or modify browser

data, additionally providing access to the history of websites visited using the browser

apps on the device.

WRITE_SMS: Allows an app to write to SMS messages stored on a phone or SIM

card. Malicious apps may delete sensitive SMS messages using this permission.

API calls

getSubscriberId: Returns the unique subscriber ID, such as the IMSI (International

Mobile Subscriber Identity) for a GSM (Global System for Mobile communication)

phone.

sendTextMessage: Must be called by applications that send SMS text messages.

createFromPdu: Used for constructing an SMS text message using a raw PDU

(Protocol Description Unit) with the specified message format.

getSimSerialNumber: Returns the serial number of the SIM, if applicable. Returns null

if it is unavailable.

getExtraInfo: Report extra information concerning the network state, given it was

provided by the lower networking layers.

getPaint: Returns the paint required to draw the shape.

seekTo: Implemented to adjust the playback position of an audio/video in the media

player.

TruncateAt: Required to truncate an input text after the specified position.

91

Strings

Parse: This string is indicative of some sort of parsing code in the Android executable.

Add: This string indicates an add operation by the corresponding sample.

Iterator: Presence of this string indicates use of an iterator method.

Schedule: This string indicates some sort of scheduling of program execution was

carried out.

setId: Indicative of use of the setId method.

Digest: This string is indicative of the use of the “digest” package in Java required to

generate an MD5 digest for a string.

Callback: Indicative of the use of the “callback” method in Java that gets called when

an event occurs.

entrySet: Indicative of the use of the “entrySet” method in Java used for iterating over

an object that implements the map interface.

findPointerIndex: Indicates the use of the findPointerIndex(int) method that is required

for obtaining the pointer index for a given pointer id in the corresponding motion event

(mouse, pen, finger and trackball movements).

getEdgeFlags: Indicates use of the getEdgeFlags() method that returns a bit field

indicating which edges, if any, were touched by the corresponding motion event.

getFinalX: Indicates use of the getFinalX() method that returns where the scroll will

end in the Android Scroller class that extends Object.

92

APPENDIX 2 – Descriptions of the Selected Attributes for the AndroZoo

Dataset

Permissions

REORDER_TASKS: Enables the app to move tasks to the foreground and

background. The app may also do this without any user input.

CLEAR_APP_CACHE: Required for deleting files in the cache directories of

other applications, as a side effect other applications may start up more slowly

due to having to re-retrieve their data.

MANAGE_DOCUMENTS: Allows an app to manage the storage for documents.

READ_HISTORY_BOOKMARKS: Enables an app to read the history of all URLs

that the Browser has visited, and all of the Browser's bookmarks.

KILL_BACKGROUND_PROCESSES: Gives an app the permission to end

background processes of other apps, effectively causing other apps to stop running.

ACCESS_MOCK_LOCATION: This permission allows an app to override the

location or status returned by other location sources such as GPS or other positional

information providers.

ACCESS_GPS: Enables an app to utilize the GPS functions of the device.

ACCESS_LOCATION_EXTRA_COMMANDS: Allows an app to access extra

location provider commands. This may allow the app to interfere with the operation of

the GPS or other positional information providing sources.

API calls

getAttributeUnsignedIntValue: Returns the Boolean value of 'attribute' that is

formatted as an unsigned value.

setKeywords: A method in the Android API used for data passing.

setAppName: A method in the Android API to change the Android app’s name.

getCurrencyCode: A method in the Android API to get the code of a currency specific

to a country.

isSurrogatePair: Determines whether the specified pair of char values is a valid

Unicode surrogate pair.

93

allowCoreThreadTimeOut: A method of the ThreadPoolExecutor public class, sets the

policy governing whether core threads may time out and terminate if no tasks arrive

within the keep-alive time, become replaced if required when new tasks arrive.

requestAd: Is a method to request advertisements from a server.

displayAd: Is a method required for displaying advertisements.

FilenameFilter: Presence of this string is indicative of implementation of the

“FilenameFilter” public interface that is used to filter file names. The classes that

implement this interface can filter directory listings in the “list” method of the File

class.

Strings

remoteexception: This string indicates a remote method invoked by the app on another

service did not complete and an exception was thrown accordingly.

Credentials: Indicates the use of the credentials class which is a class for representing

UNIX credentials passed via ancillary data on UNIX domain sockets.

remoteinput: Indicates utilization of the RemoteInput object that specifies input to be

collected from a user to be passed along with an intent.

doubleclick: Presence of this string indicates a possible http://ad.doubleclick.net

redirecting piece of code, which is a common malicious behavior employed by several

Android malware families.

94

APPENDIX 3 – Detailed Results Obtained in WEKA for the First

MalGenome Dataset

Radial Basis Function

Train

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,972 0,004 0,996 0,972 0,984 0,968 0,991 0,994 (m)

 0,996 0,028 0,973 0,996 0,984 0,968 0,991 0,987 (b)

Weighted Avg. 0,984 0,016 0,984 0,984 0,984 0,968 0,991 0,991

=== Confusion Matrix ===

 a b <-- classified as

 243 7 | a = (m)

 1 249 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,972 0,012 0,988 0,972 0,980 0,960 0,989 0,992 (m)

 0,988 0,028 0,972 0,988 0,980 0,960 0,989 0,983 (b)

Weighted Avg. 0,980 0,020 0,980 0,980 0,980 0,960 0,989 0,988

=== Confusion Matrix ===

 a b <-- classified as

 243 7 | a = (m)

 3 247 | b = (b)

95

Test Set 1

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,968 0,000 1,000 0,968 0,984 0,968 1,000 1,000 (m)

 1,000 0,032 0,969 1,000 0,984 0,968 1,000 1,000 (b)

Weighted Avg. 0,984 0,016 0,984 0,984 0,984 0,968 1,000 1,000

=== Confusion Matrix ===

 a b <-- classified as

 121 4 | a = (m)

 0 125 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,912 0,000 1,000 0,912 0,954 0,916 1,000 1,000 (m)

 1,000 0,088 0,919 1,000 0,958 0,916 1,000 1,000 (b)

Weighted Avg. 0,956 0,044 0,960 0,956 0,956 0,916 1,000 1,000

=== Confusion Matrix ===

 a b <-- classified as

 114 11 | a = (m)

 0 125 | b = (b)

Test Set 3

96

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,912 0,000 1,000 0,912 0,954 0,916 0,999 0,999 (m)

 1,000 0,088 0,919 1,000 0,958 0,916 0,999 0,999 (b)

Weighted Avg. 0,956 0,044 0,960 0,956 0,956 0,916 0,999 0,999

=== Confusion Matrix ===

 a b <-- classified as

 114 11 | a = (m)

 0 125 | b = (b)

Test Set 4

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,952 0,000 1,000 0,952 0,975 0,953 0,999 0,999 (m)

 1,000 0,048 0,954 1,000 0,977 0,953 0,999 0,999 (b)

Weighted Avg. 0,976 0,024 0,977 0,976 0,976 0,953 0,999 0,999

=== Confusion Matrix ===

 a b <-- classified as

 119 6 | a = (m)

 0 125 | b = (b)

Multilayer Perceptron

Train

97

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,984 0,000 1,000 0,984 0,992 0,984 0,997 0,997 (m)

 1,000 0,016 0,984 1,000 0,992 0,984 0,997 0,996 (b)

Weighted Avg. 0,992 0,008 0,992 0,992 0,992 0,984 0,997 0,997

=== Confusion Matrix ===

 a b <-- classified as

 246 4 | a = (m)

 0 250 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,976 0,020 0,980 0,976 0,978 0,956 0,982 0,988 (m)

 0,980 0,024 0,976 0,980 0,978 0,956 0,982 0,969 (b)

Weighted Avg. 0,978 0,022 0,978 0,978 0,978 0,956 0,982 0,979

=== Confusion Matrix ===

 a b <-- classified as

 244 6 | a = (m)

 5 245 | b = (b)

Test Set 1

98

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,944 0,000 1,000 0,944 0,971 0,945 0,995 0,996 (m)

 1,000 0,056 0,947 1,000 0,973 0,945 0,995 0,994 (b)

Weighted Avg. 0,972 0,028 0,973 0,972 0,972 0,945 0,995 0,995

=== Confusion Matrix ===

 a b <-- classified as

 118 7 | a = (m)

 0 125 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,920 0,000 1,000 0,920 0,958 0,923 0,974 0,982 (m)

 1,000 0,080 0,926 1,000 0,962 0,923 0,974 0,966 (b)

Weighted Avg. 0,960 0,040 0,963 0,960 0,960 0,923 0,974 0,974

=== Confusion Matrix ===

 a b <-- classified as

 115 10 | a = (m)

 0 125 | b = (b)

Test Set 3

99

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,880 0,000 1,000 0,880 0,936 0,886 0,981 0,986 (m)

 1,000 0,120 0,893 1,000 0,943 0,886 0,981 0,978 (b)

Weighted Avg. 0,940 0,060 0,946 0,940 0,940 0,886 0,981 0,982

=== Confusion Matrix ===

 a b <-- classified as

 110 15 | a = (m)

 0 125 | b = (b)

Test Set 4

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,928 0,000 1,000 0,928 0,963 0,930 0,987 0,991 (m)

 1,000 0,072 0,933 1,000 0,965 0,930 0,987 0,981 (b)

Weighted Avg. 0,964 0,036 0,966 0,964 0,964 0,930 0,987 0,986

=== Confusion Matrix ===

 a b <-- classified as

 116 9 | a = (m)

 0 125 | b = (b)

Id3

Train

100

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,996 0,000 1,000 0,996 0,998 0,996 1,000 1,000 (m)

 1,000 0,004 0,996 1,000 0,998 0,996 1,000 1,000 (b)

Weighted Avg. 0,998 0,002 0,998 0,998 0,998 0,996 1,000 1,000

=== Confusion Matrix ===

 a b <-- classified as

 249 1 | a = (m)

 0 250 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,968 0,028 0,972 0,968 0,970 0,940 0,969 0,957 (m)

 0,972 0,032 0,968 0,972 0,970 0,940 0,969 0,954 (b)

Weighted Avg. 0,970 0,030 0,970 0,970 0,970 0,940 0,969 0,955

=== Confusion Matrix ===

 a b <-- classified as

 242 8 | a = (m)

 7 243 | b = (b)

Test Set 1

101

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,896 0,000 1,000 0,896 0,945 0,901 0,946 0,948 (m)

 1,000 0,104 0,906 1,000 0,951 0,901 0,946 0,902 (b)

Weighted Avg. 0,948 0,052 0,953 0,948 0,948 0,901 0,946 0,925

=== Confusion Matrix ===

 a b <-- classified as

 112 13 | a = (m)

 0 125 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,920 0,000 1,000 0,920 0,958 0,923 0,958 0,960 (m)

 1,000 0,080 0,926 1,000 0,962 0,923 0,958 0,922 (b)

Weighted Avg. 0,960 0,040 0,963 0,960 0,960 0,923 0,958 0,941

=== Confusion Matrix ===

 a b <-- classified as

 115 10 | a = (m)

 0 125 | b = (b)

Test Set 3

102

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,936 0,000 1,000 0,936 0,967 0,938 0,967 0,968 (m)

 1,000 0,064 0,940 1,000 0,969 0,938 0,967 0,938 (b)

Weighted Avg. 0,968 0,032 0,970 0,968 0,968 0,938 0,967 0,953

=== Confusion Matrix ===

 a b <-- classified as

 117 8 | a = (m)

 0 125 | b = (b)

Test Set 4

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,928 0,000 1,000 0,928 0,963 0,930 0,963 0,964 (m)

 1,000 0,072 0,933 1,000 0,965 0,930 0,963 0,931 (b)

Weighted Avg. 0,964 0,036 0,966 0,964 0,964 0,930 0,963 0,947

=== Confusion Matrix ===

 a b <-- classified as

 116 9 | a = (m)

 0 125 | b = (b)

k-NN

Train

103

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,996 0,000 1,000 0,996 0,998 0,996 1,000 1,000 (m)

 1,000 0,004 0,996 1,000 0,998 0,996 1,000 1,000 (b)

Weighted Avg. 0,998 0,002 0,998 0,998 0,998 0,996 1,000 1,000

=== Confusion Matrix ===

 a b <-- classified as

 249 1 | a = (m)

 0 250 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,964 0,012 0,988 0,964 0,976 0,952 0,980 0,985 (m)

 0,988 0,036 0,965 0,988 0,976 0,952 0,980 0,966 (b)

Weighted Avg. 0,976 0,024 0,976 0,976 0,976 0,952 0,980 0,975

=== Confusion Matrix ===

 a b <-- classified as

 241 9 | a = (m)

 3 247 | b = (b)

Test Set 1

=== Detailed Accuracy by Class ===

104

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,904 0,000 1,000 0,904 0,950 0,908 0,976 0,977 (m)

 1,000 0,096 0,912 1,000 0,954 0,908 0,976 0,961 (b)

Weighted Avg. 0,952 0,048 0,956 0,952 0,952 0,908 0,976 0,969

=== Confusion Matrix ===

 a b <-- classified as

 113 12 | a = (m)

 0 125 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,880 0,000 1,000 0,880 0,936 0,886 0,961 0,967 (m)

 1,000 0,120 0,893 1,000 0,943 0,886 0,961 0,942 (b)

Weighted Avg. 0,940 0,060 0,946 0,940 0,940 0,886 0,961 0,955

=== Confusion Matrix ===

 a b <-- classified as

 110 15 | a = (m)

 0 125 | b = (b)

Test Set 3

=== Detailed Accuracy by Class ===

105

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,864 0,000 1,000 0,864 0,927 0,872 0,954 0,963 (m)

 1,000 0,136 0,880 1,000 0,936 0,872 0,954 0,934 (b)

Weighted Avg. 0,932 0,068 0,940 0,932 0,932 0,872 0,954 0,948

=== Confusion Matrix ===

 a b <-- classified as

 108 17 | a = (m)

 0 125 | b = (b)

Test Set 4

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,912 0,000 1,000 0,912 0,954 0,916 0,964 0,968 (m)

 1,000 0,088 0,919 1,000 0,958 0,916 0,964 0,946 (b)

Weighted Avg. 0,956 0,044 0,960 0,956 0,956 0,916 0,964 0,957

=== Confusion Matrix ===

 a b <-- classified as

 114 11 | a = (m)

 0 125 | b = (b)

NaiveBayes

Train

106

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,972 0,048 0,953 0,972 0,962 0,924 0,988 0,992 (m)

 0,952 0,028 0,971 0,952 0,962 0,924 0,988 0,982 (b)

Weighted Avg. 0,962 0,038 0,962 0,962 0,962 0,924 0,988 0,987

=== Confusion Matrix ===

 a b <-- classified as

 243 7 | a = (m)

 12 238 | b = (b)

10-fold x-val

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,972 0,048 0,953 0,972 0,962 0,924 0,985 0,990 (m)

 0,952 0,028 0,971 0,952 0,962 0,924 0,985 0,971 (b)

Weighted Avg. 0,962 0,038 0,962 0,962 0,962 0,924 0,985 0,981

=== Confusion Matrix ===

 a b <-- classified as

 243 7 | a = (m)

 12 238 | b = (b)

Test Set 1

=== Detailed Accuracy by Class ===

107

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,984 0,016 0,984 0,984 0,984 0,968 0,999 0,999 (m)

 0,984 0,016 0,984 0,984 0,984 0,968 0,999 0,999 (b)

Weighted Avg. 0,984 0,016 0,984 0,984 0,984 0,968 0,999 0,999

=== Confusion Matrix ===

 a b <-- classified as

 123 2 | a = (m)

 2 123 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,936 0,024 0,975 0,936 0,955 0,913 0,997 0,997 (m)

 0,976 0,064 0,938 0,976 0,957 0,913 0,997 0,997 (b)

Weighted Avg. 0,956 0,044 0,957 0,956 0,956 0,913 0,997 0,997

=== Confusion Matrix ===

 a b <-- classified as

 117 8 | a = (m)

 3 122 | b = (b)

Test Set 3

=== Detailed Accuracy by Class ===

108

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,952 0,064 0,937 0,952 0,944 0,888 0,980 0,977 (m)

 0,936 0,048 0,951 0,936 0,944 0,888 0,980 0,985 (b)

Weighted Avg. 0,944 0,056 0,944 0,944 0,944 0,888 0,980 0,981

=== Confusion Matrix ===

 a b <-- classified as

 119 6 | a = (m)

 8 117 | b = (b)

Test Set 4

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,984 0,064 0,939 0,984 0,961 0,921 0,986 0,983 (m)

 0,936 0,016 0,983 0,936 0,959 0,921 0,986 0,989 (b)

Weighted Avg. 0,960 0,040 0,961 0,960 0,960 0,921 0,986 0,986

=== Confusion Matrix ===

 a b <-- classified as

 123 2 | a = (m)

 8 117 | b = (b)

J48

=== Detailed Accuracy by Class ===

109

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,972 0,000 1,000 0,972 0,986 0,972 0,987 0,988 (m)

 1,000 0,028 0,973 1,000 0,986 0,972 0,987 0,975 (b)

Weighted Avg. 0,986 0,014 0,986 0,986 0,986 0,972 0,987 0,982

=== Confusion Matrix ===

 a b <-- classified as

 243 7 | a = (m)

 0 250 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,964 0,020 0,980 0,964 0,972 0,944 0,965 0,971 (m)

 0,980 0,036 0,965 0,980 0,972 0,944 0,965 0,927 (b)

Weighted Avg. 0,972 0,028 0,972 0,972 0,972 0,944 0,965 0,949

=== Confusion Matrix ===

 a b <-- classified as

 241 9 | a = (m)

 5 245 | b = (b)

Test Set 1

=== Detailed Accuracy by Class ===

110

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,880 0,000 1,000 0,880 0,936 0,886 0,919 0,959 (m)

 1,000 0,120 0,893 1,000 0,943 0,886 0,919 0,923 (b)

Weighted Avg. 0,940 0,060 0,946 0,940 0,940 0,886 0,919 0,941

=== Confusion Matrix ===

 a b <-- classified as

 110 15 | a = (m)

 0 125 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,920 0,000 1,000 0,920 0,958 0,923 0,967 0,982 (m)

 1,000 0,080 0,926 1,000 0,962 0,923 0,967 0,967 (b)

Weighted Avg. 0,960 0,040 0,963 0,960 0,960 0,923 0,967 0,975

=== Confusion Matrix ===

 a b <-- classified as

 115 10 | a = (m)

 0 125 | b = (b)

Test Set 3

=== Detailed Accuracy by Class ===

111

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,928 0,000 1,000 0,928 0,963 0,930 0,944 0,971 (m)

 1,000 0,072 0,933 1,000 0,965 0,930 0,944 0,927 (b)

Weighted Avg. 0,964 0,036 0,966 0,964 0,964 0,930 0,944 0,949

=== Confusion Matrix ===

 a b <-- classified as

 116 9 | a = (m)

 0 125 | b = (b)

Test Set 4

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,920 0,000 1,000 0,920 0,958 0,923 0,959 0,978 (m)

 1,000 0,080 0,926 1,000 0,962 0,923 0,959 0,943 (b)

Weighted Avg. 0,960 0,040 0,963 0,960 0,960 0,923 0,959 0,960

=== Confusion Matrix ===

 a b <-- classified as

 115 10 | a = (m)

 0 125 | b = (b)

SVM

112

Train

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,976 0,004 0,996 0,976 0,986 0,972 0,986 0,984 (m)

 0,996 0,024 0,976 0,996 0,986 0,972 0,986 0,975 (b)

Weighted Avg. 0,986 0,014 0,986 0,986 0,986 0,972 0,986 0,979

=== Confusion Matrix ===

 a b <-- classified as

 244 6 | a = (m)

 1 249 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,968 0,012 0,988 0,968 0,978 0,956 0,978 0,972 (m)

 0,988 0,032 0,969 0,988 0,978 0,956 0,978 0,963 (b)

Weighted Avg. 0,978 0,022 0,978 0,978 0,978 0,956 0,978 0,968

=== Confusion Matrix ===

 a b <-- classified as

 242 8 | a = (m)

 3 247 | b = (b)

Test Set 1

113

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,944 0,000 1,000 0,944 0,971 0,945 0,972 0,972 (m)

 1,000 0,056 0,947 1,000 0,973 0,945 0,972 0,947 (b)

Weighted Avg. 0,972 0,028 0,973 0,972 0,972 0,945 0,972 0,959

=== Confusion Matrix ===

 a b <-- classified as

 118 7 | a = (m)

 0 125 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,912 0,000 1,000 0,912 0,954 0,916 0,956 0,956 (m)

 1,000 0,088 0,919 1,000 0,958 0,916 0,956 0,919 (b)

Weighted Avg. 0,956 0,044 0,960 0,956 0,956 0,916 0,956 0,938

=== Confusion Matrix ===

 a b <-- classified as

 114 11 | a = (m)

 0 125 | b = (b)

Test Set 3

=== Detailed Accuracy by Class ===

114

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,904 0,000 1,000 0,904 0,950 0,908 0,952 0,952 (m)

 1,000 0,096 0,912 1,000 0,954 0,908 0,952 0,912 (b)

Weighted Avg. 0,952 0,048 0,956 0,952 0,952 0,908 0,952 0,932

=== Confusion Matrix ===

 a b <-- classified as

 113 12 | a = (m)

 0 125 | b = (b)

Test Set 4

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,944 0,000 1,000 0,944 0,971 0,945 0,972 0,972 (m)

 1,000 0,056 0,947 1,000 0,973 0,945 0,972 0,947 (b)

Weighted Avg. 0,972 0,028 0,973 0,972 0,972 0,945 0,972 0,959

=== Confusion Matrix ===

 a b <-- classified as

 118 7 | a = (m)

 0 125 | b = (b)

FURIA

Train

115

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,972 0,004 0,996 0,972 0,984 0,968 0,986 0,984 (m)

 0,996 0,028 0,973 0,996 0,984 0,968 0,986 0,975 (b)

Weighted Avg. 0,984 0,016 0,984 0,984 0,984 0,968 0,986 0,979

=== Confusion Matrix ===

 a b <-- classified as

 243 7 | a = (m)

 1 249 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,972 0,004 0,996 0,972 0,984 0,968 0,986 0,984 (m)

 0,996 0,028 0,973 0,996 0,984 0,968 0,986 0,974 (b)

Weighted Avg. 0,984 0,016 0,984 0,984 0,984 0,968 0,986 0,979

=== Confusion Matrix ===

 a b <-- classified as

 243 7 | a = (m)

 1 249 | b = (b)

Test Set 1

=== Detailed Accuracy by Class ===

116

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,880 0,000 1,000 0,880 0,936 0,886 0,940 0,940 (m)

 1,000 0,120 0,893 1,000 0,943 0,886 0,940 0,893 (b)

Weighted Avg. 0,940 0,060 0,946 0,940 0,940 0,886 0,940 0,916

=== Confusion Matrix ===

 a b <-- classified as

 110 15 | a = (m)

 0 125 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,920 0,000 1,000 0,920 0,958 0,923 0,960 0,960 (m)

 1,000 0,080 0,926 1,000 0,962 0,923 0,960 0,926 (b)

Weighted Avg. 0,960 0,040 0,963 0,960 0,960 0,923 0,960 0,943

=== Confusion Matrix ===

 a b <-- classified as

 115 10 | a = (m)

 0 125 | b = (b)

Test Set 3

=== Detailed Accuracy by Class ===

117

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,920 0,000 1,000 0,920 0,958 0,923 0,960 0,960 (m)

 1,000 0,080 0,926 1,000 0,962 0,923 0,960 0,926 (b)

Weighted Avg. 0,960 0,040 0,963 0,960 0,960 0,923 0,960 0,943

=== Confusion Matrix ===

 a b <-- classified as

 115 10 | a = (m)

 0 125 | b = (b)

Test Set 4

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,928 0,000 1,000 0,928 0,963 0,930 0,964 0,964 (m)

 1,000 0,072 0,933 1,000 0,965 0,930 0,964 0,933 (b)

Weighted Avg. 0,964 0,036 0,966 0,964 0,964 0,930 0,964 0,948

=== Confusion Matrix ===

 a b <-- classified as

 116 9 | a = (m)

 0 125 | b = (b)

RandomForest

Train

118

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,996 0,000 1,000 0,996 0,998 0,996 1,000 1,000 (m)

 1,000 0,004 0,996 1,000 0,998 0,996 1,000 1,000 (b)

Weighted Avg. 0,998 0,002 0,998 0,998 0,998 0,996 1,000 1,000

=== Confusion Matrix ===

 a b <-- classified as

 249 1 | a = (m)

 0 250 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,972 0,012 0,988 0,972 0,980 0,960 0,987 0,991 (m)

 0,988 0,028 0,972 0,988 0,980 0,960 0,987 0,976 (b)

Weighted Avg. 0,980 0,020 0,980 0,980 0,980 0,960 0,987 0,983

=== Confusion Matrix ===

 a b <-- classified as

 243 7 | a = (m)

 3 247 | b = (b)

Test Set 1

=== Detailed Accuracy by Class ===

119

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,920 0,000 1,000 0,920 0,958 0,923 1,000 1,000 (m)

 1,000 0,080 0,926 1,000 0,962 0,923 1,000 1,000 (b)

Weighted Avg. 0,960 0,040 0,963 0,960 0,960 0,923 1,000 1,000

=== Confusion Matrix ===

 a b <-- classified as

 115 10 | a = (m)

 0 125 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,896 0,000 1,000 0,896 0,945 0,901 1,000 0,999 (m)

 1,000 0,104 0,906 1,000 0,951 0,901 1,000 0,999 (b)

Weighted Avg. 0,948 0,052 0,953 0,948 0,948 0,901 1,000 0,999

=== Confusion Matrix ===

 a b <-- classified as

 112 13 | a = (m)

 0 125 | b = (b)

Test Set 3

=== Detailed Accuracy by Class ===

120

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,880 0,000 1,000 0,880 0,936 0,886 1,000 1,000 (m)

 1,000 0,120 0,893 1,000 0,943 0,886 1,000 1,000 (b)

Weighted Avg. 0,940 0,060 0,946 0,940 0,940 0,886 1,000 1,000

=== Confusion Matrix ===

 a b <-- classified as

 110 15 | a = (m)

 0 125 | b = (b)

Test Set 4

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,928 0,000 1,000 0,928 0,963 0,930 0,999 0,999 (m)

 1,000 0,072 0,933 1,000 0,965 0,930 0,999 0,998 (b)

Weighted Avg. 0,964 0,036 0,966 0,964 0,964 0,930 0,999 0,998

=== Confusion Matrix ===

 a b <-- classified as

 116 9 | a = (m)

 0 125 | b = (b)

NNGE / AdaBoostM1

Train

121

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,996 0,000 1,000 0,996 0,998 0,996 1,000 1,000 (m)

 1,000 0,004 0,996 1,000 0,998 0,996 1,000 1,000 (b)

Weighted Avg. 0,998 0,002 0,998 0,998 0,998 0,996 1,000 1,000

=== Confusion Matrix ===

 a b <-- classified as

 249 1 | a = (m)

 0 250 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,968 0,020 0,980 0,968 0,974 0,948 0,981 0,988 (m)

 0,980 0,032 0,968 0,980 0,974 0,948 0,981 0,955 (b)

Weighted Avg. 0,974 0,026 0,974 0,974 0,974 0,948 0,981 0,971

=== Confusion Matrix ===

 a b <-- classified as

 242 8 | a = (m)

 5 245 | b = (b)

Test Set 1

=== Detailed Accuracy by Class ===

122

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,944 0,000 1,000 0,944 0,971 0,945 0,996 0,996 (m)

 1,000 0,056 0,947 1,000 0,973 0,945 0,996 0,996 (b)

Weighted Avg. 0,972 0,028 0,973 0,972 0,972 0,945 0,996 0,996

=== Confusion Matrix ===

 a b <-- classified as

 118 7 | a = (m)

 0 125 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,944 0,000 1,000 0,944 0,971 0,945 0,991 0,993 (m)

 1,000 0,056 0,947 1,000 0,973 0,945 0,991 0,990 (b)

Weighted Avg. 0,972 0,028 0,973 0,972 0,972 0,945 0,991 0,991

=== Confusion Matrix ===

 a b <-- classified as

 118 7 | a = (m)

 0 125 | b = (b)

Test Set 3

=== Detailed Accuracy by Class ===

123

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,920 0,000 1,000 0,920 0,958 0,923 0,995 0,995 (m)

 1,000 0,080 0,926 1,000 0,962 0,923 0,995 0,995 (b)

Weighted Avg. 0,960 0,040 0,963 0,960 0,960 0,923 0,995 0,995

=== Confusion Matrix ===

 a b <-- classified as

 115 10 | a = (m)

 0 125 | b = (b)

Test Set 4

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,944 0,000 1,000 0,944 0,971 0,945 0,990 0,992 (m)

 1,000 0,056 0,947 1,000 0,973 0,945 0,990 0,987 (b)

Weighted Avg. 0,972 0,028 0,973 0,972 0,972 0,945 0,990 0,990

=== Confusion Matrix ===

 a b <-- classified as

 118 7 | a = (m)

 0 125 | b = (b)

Ensemble by Voting (majority voting) 3 classifiers (LAC, NNGE, MODLEM)

Train

=== Detailed Accuracy by Class ===

124

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,996 0,000 1,000 0,996 0,998 0,996 0,998 0,998 (m)

 1,000 0,004 0,996 1,000 0,998 0,996 0,998 0,996 (b)

Weighted Avg. 0,998 0,002 0,998 0,998 0,998 0,996 0,998 0,997

=== Confusion Matrix ===

 a b <-- classified as

 249 1 | a = (m)

 0 250 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,968 0,024 0,976 0,968 0,972 0,944 0,987 0,991 (m)

 0,976 0,032 0,968 0,976 0,972 0,944 0,987 0,978 (b)

Weighted Avg. 0,972 0,028 0,972 0,972 0,972 0,944 0,987 0,985

=== Confusion Matrix ===

 a b <-- classified as

 242 8 | a = (m)

 6 244 | b = (b)

Test Set 1

=== Detailed Accuracy by Class ===

125

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,992 0,000 1,000 0,992 0,996 0,992 1,000 1,000 (m)

 1,000 0,008 0,992 1,000 0,996 0,992 1,000 1,000 (b)

Weighted Avg. 0,996 0,004 0,996 0,996 0,996 0,992 1,000 1,000

=== Confusion Matrix ===

 a b <-- classified as

 124 1 | a = (m)

 0 125 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,952 0,000 1,000 0,952 0,975 0,953 1,000 1,000 (m)

 1,000 0,048 0,954 1,000 0,977 0,953 1,000 1,000 (b)

Weighted Avg. 0,976 0,024 0,977 0,976 0,976 0,953 1,000 1,000

=== Confusion Matrix ===

 a b <-- classified as

 119 6 | a = (m)

 0 125 | b = (b)

Test Set 3

=== Detailed Accuracy by Class ===

126

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,960 0,000 1,000 0,960 0,980 0,961 1,000 1,000 (m)

 1,000 0,040 0,962 1,000 0,980 0,961 1,000 1,000 (b)

Weighted Avg. 0,980 0,020 0,981 0,980 0,980 0,961 1,000 1,000

=== Confusion Matrix ===

 a b <-- classified as

 120 5 | a = (m)

 0 125 | b = (b)

Test Set 4

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,984 0,000 1,000 0,984 0,992 0,984 0,999 0,999 (m)

 1,000 0,016 0,984 1,000 0,992 0,984 0,999 0,999 (b)

Weighted Avg. 0,992 0,008 0,992 0,992 0,992 0,984 0,999 0,999

=== Confusion Matrix ===

 a b <-- classified as

 123 2 | a = (m)

 0 125 | b = (b)

Ensemble by Voting (majority voting) 3 classifiers (OneR, NNGE, MODLEM)

Train

=== Detailed Accuracy by Class ===

127

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,996 0,000 1,000 0,996 0,998 0,996 0,998 0,998 (m)

 1,000 0,004 0,996 1,000 0,998 0,996 0,998 0,996 (b)

Weighted Avg. 0,998 0,002 0,998 0,998 0,998 0,996 0,998 0,997

=== Confusion Matrix ===

 a b <-- classified as

 249 1 | a = (m)

 0 250 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,972 0,032 0,968 0,972 0,970 0,940 0,970 0,955 (m)

 0,968 0,028 0,972 0,968 0,970 0,940 0,970 0,957 (b)

Weighted Avg. 0,970 0,030 0,970 0,970 0,970 0,940 0,970 0,956

=== Confusion Matrix ===

 a b <-- classified as

 243 7 | a = (m)

 8 242 | b = (b)

Test Set 1

=== Detailed Accuracy by Class ===

128

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 1,000 0,000 1,000 1,000 1,000 1,000 1,000 1,000 (m)

 1,000 0,000 1,000 1,000 1,000 1,000 1,000 1,000 (b)

Weighted Avg. 1,000 0,000 1,000 1,000 1,000 1,000 1,000 1,000

=== Confusion Matrix ===

 a b <-- classified as

 125 0 | a = (m)

 0 125 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,976 0,000 1,000 0,976 0,988 0,976 0,988 0,988 (m)

 1,000 0,024 0,977 1,000 0,988 0,976 0,988 0,977 (b)

Weighted Avg. 0,988 0,012 0,988 0,988 0,988 0,976 0,988 0,982

=== Confusion Matrix ===

 a b <-- classified as

 122 3 | a = (m)

 0 125 | b = (b)

Test Set 3

=== Detailed Accuracy by Class ===

129

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,984 0,000 1,000 0,984 0,992 0,984 0,992 0,992 (m)

 1,000 0,016 0,984 1,000 0,992 0,984 0,992 0,984 (b)

Weighted Avg. 0,992 0,008 0,992 0,992 0,992 0,984 0,992 0,988

=== Confusion Matrix ===

 a b <-- classified as

 123 2 | a = (m)

 0 125 | b = (b)

Test Set 4

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,984 0,000 1,000 0,984 0,992 0,984 0,992 0,992 (m)

 1,000 0,016 0,984 1,000 0,992 0,984 0,992 0,984 (b)

Weighted Avg. 0,992 0,008 0,992 0,992 0,992 0,984 0,992 0,988

=== Confusion Matrix ===

 a b <-- classified as

 123 2 | a = (m)

 0 125 | b = (b)

Ensemble by Voting (majority voting) 4 classifiers (OneR, LAC, NNGE,

MODLEM)

Train

=== Detailed Accuracy by Class ===

130

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,976 0,016 0,984 0,976 0,980 0,960 0,980 0,972 (m)

 0,984 0,024 0,976 0,984 0,980 0,960 0,980 0,969 (b)

Weighted Avg. 0,980 0,020 0,980 0,980 0,980 0,960 0,980 0,970

=== Confusion Matrix ===

 a b <-- classified as

 244 6 | a = (m)

 4 246 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,972 0,036 0,964 0,972 0,968 0,936 0,968 0,951 (m)

 0,964 0,028 0,972 0,964 0,968 0,936 0,968 0,955 (b)

Weighted Avg. 0,968 0,032 0,968 0,968 0,968 0,936 0,968 0,953

=== Confusion Matrix ===

 a b <-- classified as

 243 7 | a = (m)

 9 241 | b = (b)

Test Set 1

 === Detailed Accuracy by Class ===

131

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,992 0,000 1,000 0,992 0,996 0,992 0,996 0,996 (m)

 1,000 0,008 0,992 1,000 0,996 0,992 0,996 0,992 (b)

Weighted Avg. 0,996 0,004 0,996 0,996 0,996 0,992 0,996 0,994

=== Confusion Matrix ===

 a b <-- classified as

 124 1 | a = (m)

 0 125 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,984 0,000 1,000 0,984 0,992 0,984 0,992 0,992 (m)

 1,000 0,016 0,984 1,000 0,992 0,984 0,992 0,984 (b)

Weighted Avg. 0,992 0,008 0,992 0,992 0,992 0,984 0,992 0,988

=== Confusion Matrix ===

 a b <-- classified as

 123 2 | a = (m)

 0 125 | b = (b)

Test Set 3

=== Detailed Accuracy by Class ===

132

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,984 0,024 0,976 0,984 0,980 0,960 0,980 0,969 (m)

 0,976 0,016 0,984 0,976 0,980 0,960 0,980 0,972 (b)

Weighted Avg. 0,980 0,020 0,980 0,980 0,980 0,960 0,980 0,970

=== Confusion Matrix ===

 a b <-- classified as

 123 2 | a = (m)

 3 122 | b = (b)

Test Set 4

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,984 0,032 0,969 0,984 0,976 0,952 0,976 0,961 (m)

 0,968 0,016 0,984 0,968 0,976 0,952 0,976 0,968 (b)

Weighted Avg. 0,976 0,024 0,976 0,976 0,976 0,952 0,976 0,965

=== Confusion Matrix ===

 a b <-- classified as

 123 2 | a = (m)

 4 121 | b = (b)

133

APPENDIX 4 – Detailed Results Obtained in WEKA for the AndroZoo

Dataset

Radial Basis Function

Train

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,990 0,017 0,983 0,990 0,987 0,973 0,995 0,992 (m)

 0,983 0,010 0,990 0,983 0,987 0,973 0,995 0,995 (b)

Weighted Avg. 0,987 0,013 0,987 0,987 0,987 0,973 0,995 0,994

=== Confusion Matrix ===

 a b <-- classified as

 297 3 | a = (m)

 5 295 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,990 0,027 0,974 0,990 0,982 0,963 0,993 0,991 (m)

 0,973 0,010 0,990 0,973 0,982 0,963 0,993 0,995 (b)

Weighted Avg. 0,982 0,018 0,982 0,982 0,982 0,963 0,993 0,993

=== Confusion Matrix ===

 a b <-- classified as

 297 3 | a = (m)

 8 292 | b = (b)

134

Test Set 1

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,987 0,027 0,974 0,987 0,980 0,960 0,990 0,988 (m)

 0,973 0,013 0,986 0,973 0,980 0,960 0,990 0,989 (b)

Weighted Avg. 0,980 0,020 0,980 0,980 0,980 0,960 0,990 0,989

=== Confusion Matrix ===

 a b <-- classified as

 148 2 | a = (m)

 4 146 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,980 0,020 0,980 0,980 0,980 0,960 0,992 0,991 (m)

 0,980 0,020 0,980 0,980 0,980 0,960 0,992 0,991 (b)

Weighted Avg. 0,980 0,020 0,980 0,980 0,980 0,960 0,992 0,991

=== Confusion Matrix ===

 a b <-- classified as

 147 3 | a = (m)

 3 147 | b = (b)

Test Set 3

135

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,975 0,015 0,985 0,975 0,980 0,960 0,990 0,991 (m)

 0,985 0,025 0,975 0,985 0,980 0,960 0,990 0,979 (b)

Weighted Avg. 0,980 0,020 0,980 0,980 0,980 0,960 0,990 0,985

=== Confusion Matrix ===

 a b <-- classified as

 195 5 | a = (m)

 3 197 | b = (b)

Multilayer Perceptron

Train

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,997 0,013 0,987 0,997 0,992 0,983 0,998 0,996 (m)

 0,987 0,003 0,997 0,987 0,992 0,983 0,998 0,997 (b)

Weighted Avg. 0,992 0,008 0,992 0,992 0,992 0,983 0,998 0,996

=== Confusion Matrix ===

 a b <-- classified as

 299 1 | a = (m)

 4 296 | b = (b)

10-fold x-val.

136

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,987 0,023 0,977 0,987 0,982 0,963 0,996 0,996 (m)

 0,977 0,013 0,987 0,977 0,982 0,963 0,996 0,996 (b)

Weighted Avg. 0,982 0,018 0,982 0,982 0,982 0,963 0,996 0,996

=== Confusion Matrix ===

 a b <-- classified as

 296 4 | a = (m)

 7 293 | b = (b)

Test Set 1

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,993 0,027 0,974 0,993 0,983 0,967 0,992 0,992 (m)

 0,973 0,007 0,993 0,973 0,983 0,967 0,992 0,988 (b)

Weighted Avg. 0,983 0,017 0,984 0,983 0,983 0,967 0,992 0,990

=== Confusion Matrix ===

 a b <-- classified as

 149 1 | a = (m)

 4 146 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

137

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,987 0,020 0,980 0,987 0,983 0,967 0,991 0,993 (m)

 0,980 0,013 0,987 0,980 0,983 0,967 0,991 0,979 (b)

Weighted Avg. 0,983 0,017 0,983 0,983 0,983 0,967 0,991 0,986

=== Confusion Matrix ===

 a b <-- classified as

 148 2 | a = (m)

 3 147 | b = (b)

Test Set 3

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,985 0,015 0,985 0,985 0,985 0,970 0,990 0,993 (m)

 0,985 0,015 0,985 0,985 0,985 0,970 0,990 0,976 (b)

Weighted Avg. 0,985 0,015 0,985 0,985 0,985 0,970 0,990 0,984

=== Confusion Matrix ===

 a b <-- classified as

 197 3 | a = (m)

 3 197 | b = (b)

Id3

Train

=== Detailed Accuracy by Class ===

138

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,997 0,013 0,987 0,997 0,992 0,983 0,998 0,997 (m)

 0,987 0,003 0,997 0,987 0,992 0,983 0,998 0,997 (b)

Weighted Avg. 0,992 0,008 0,992 0,992 0,992 0,983 0,998 0,997

=== Confusion Matrix ===

 a b <-- classified as

 299 1 | a = (m)

 4 296 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,990 0,013 0,987 0,990 0,988 0,977 0,992 0,992 (m)

 0,987 0,010 0,990 0,987 0,988 0,977 0,992 0,987 (b)

Weighted Avg. 0,988 0,012 0,988 0,988 0,988 0,977 0,992 0,989

=== Confusion Matrix ===

 a b <-- classified as

 297 3 | a = (m)

 4 296 | b = (b)

Test Set 1

=== Detailed Accuracy by Class ===

139

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,987 0,020 0,980 0,987 0,983 0,967 0,991 0,988 (m)

 0,980 0,013 0,987 0,980 0,983 0,967 0,991 0,982 (b)

Weighted Avg. 0,983 0,017 0,983 0,983 0,983 0,967 0,991 0,985

=== Confusion Matrix ===

 a b <-- classified as

 148 2 | a = (m)

 3 147 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,987 0,013 0,987 0,987 0,987 0,973 0,992 0,990 (m)

 0,987 0,013 0,987 0,987 0,987 0,973 0,992 0,984 (b)

Weighted Avg. 0,987 0,013 0,987 0,987 0,987 0,973 0,992 0,987

=== Confusion Matrix ===

 a b <-- classified as

 148 2 | a = (m)

 2 148 | b = (b)

Test Set 3

=== Detailed Accuracy by Class ===

140

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,985 0,010 0,990 0,985 0,987 0,975 0,991 0,990 (m)

 0,990 0,015 0,985 0,990 0,988 0,975 0,991 0,983 (b)

Weighted Avg. 0,988 0,013 0,988 0,988 0,987 0,975 0,991 0,987

=== Confusion Matrix ===

 a b <-- classified as

 197 3 | a = (m)

 2 198 | b = (b)

k-NN

Train

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,997 0,013 0,987 0,997 0,992 0,983 0,998 0,997 (m)

 0,987 0,003 0,997 0,987 0,992 0,983 0,998 0,997 (b)

Weighted Avg. 0,992 0,008 0,992 0,992 0,992 0,983 0,998 0,997

=== Confusion Matrix ===

 a b <-- classified as

 299 1 | a = (m)

 4 296 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

141

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,997 0,027 0,974 0,997 0,985 0,970 0,995 0,995 (m)

 0,973 0,003 0,997 0,973 0,985 0,970 0,995 0,994 (b)

Weighted Avg. 0,985 0,015 0,985 0,985 0,985 0,970 0,995 0,995

=== Confusion Matrix ===

 a b <-- classified as

 299 1 | a = (m)

 8 292 | b = (b)

Test Set 1

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,993 0,027 0,974 0,993 0,983 0,967 0,995 0,992 (m)

 0,973 0,007 0,993 0,973 0,983 0,967 0,995 0,990 (b)

Weighted Avg. 0,983 0,017 0,984 0,983 0,983 0,967 0,995 0,991

=== Confusion Matrix ===

 a b <-- classified as

 149 1 | a = (m)

 4 146 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

142

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,993 0,020 0,980 0,993 0,987 0,973 0,995 0,994 (m)

 0,980 0,007 0,993 0,980 0,987 0,973 0,995 0,992 (b)

Weighted Avg. 0,987 0,013 0,987 0,987 0,987 0,973 0,995 0,993

=== Confusion Matrix ===

 a b <-- classified as

 149 1 | a = (m)

 3 147 | b = (b)

Test Set 3

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,990 0,015 0,985 0,990 0,988 0,975 0,994 0,993 (m)

 0,985 0,010 0,990 0,985 0,987 0,975 0,994 0,990 (b)

Weighted Avg. 0,988 0,013 0,988 0,988 0,987 0,975 0,994 0,991

=== Confusion Matrix ===

 a b <-- classified as

 198 2 | a = (m)

 3 197 | b = (b)

NaiveBayes

Train

=== Detailed Accuracy by Class ===

143

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 1,000 0,080 0,926 1,000 0,962 0,923 0,990 0,984 (m)

 0,920 0,000 1,000 0,920 0,958 0,923 0,990 0,992 (b)

Weighted Avg. 0,960 0,040 0,963 0,960 0,960 0,923 0,990 0,988

=== Confusion Matrix ===

 a b <-- classified as

 300 0 | a = (m)

 24 276 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 1,000 0,080 0,926 1,000 0,962 0,923 0,990 0,986 (m)

 0,920 0,000 1,000 0,920 0,958 0,923 0,990 0,993 (b)

Weighted Avg. 0,960 0,040 0,963 0,960 0,960 0,923 0,990 0,989

=== Confusion Matrix ===

 a b <-- classified as

 300 0 | a = (m)

 24 276 | b = (b)

Test Set 1

=== Detailed Accuracy by Class ===

144

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,993 0,080 0,925 0,993 0,958 0,916 0,986 0,980 (m)

 0,920 0,007 0,993 0,920 0,955 0,916 0,986 0,988 (b)

Weighted Avg. 0,957 0,043 0,959 0,957 0,957 0,916 0,986 0,984

=== Confusion Matrix ===

 a b <-- classified as

 149 1 | a = (m)

 12 138 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,993 0,093 0,914 0,993 0,952 0,903 0,985 0,982 (m)

 0,907 0,007 0,993 0,907 0,948 0,903 0,984 0,977 (b)

Weighted Avg. 0,950 0,050 0,953 0,950 0,950 0,903 0,985 0,980

=== Confusion Matrix ===

 a b <-- classified as

 149 1 | a = (m)

 14 136 | b = (b)

Test Set 3

=== Detailed Accuracy by Class ===

145

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,990 0,070 0,934 0,990 0,961 0,922 0,984 0,984 (m)

 0,930 0,010 0,989 0,930 0,959 0,922 0,984 0,975 (b)

Weighted Avg. 0,960 0,040 0,962 0,960 0,960 0,922 0,984 0,979

=== Confusion Matrix ===

 a b <-- classified as

 198 2 | a = (m)

 14 186 | b = (b)

J48

Train

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,990 0,013 0,987 0,990 0,988 0,977 0,993 0,987 (m)

 0,987 0,010 0,990 0,987 0,988 0,977 0,993 0,993 (b)

Weighted Avg. 0,988 0,012 0,988 0,988 0,988 0,977 0,993 0,990

=== Confusion Matrix ===

 a b <-- classified as

 297 3 | a = (m)

 4 296 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

146

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,990 0,013 0,987 0,990 0,988 0,977 0,984 0,973 (m)

 0,987 0,010 0,990 0,987 0,988 0,977 0,984 0,982 (b)

Weighted Avg. 0,988 0,012 0,988 0,988 0,988 0,977 0,984 0,978

=== Confusion Matrix ===

 a b <-- classified as

 297 3 | a = (m)

 4 296 | b = (b)

Test Set 1

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,980 0,020 0,980 0,980 0,980 0,960 0,989 0,979 (m)

 0,980 0,020 0,980 0,980 0,980 0,960 0,989 0,989 (b)

Weighted Avg. 0,980 0,020 0,980 0,980 0,980 0,960 0,989 0,984

=== Confusion Matrix ===

 a b <-- classified as

 147 3 | a = (m)

 3 147 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

147

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,980 0,013 0,987 0,980 0,983 0,967 0,989 0,983 (m)

 0,987 0,020 0,980 0,987 0,983 0,967 0,989 0,985 (b)

Weighted Avg. 0,983 0,017 0,983 0,983 0,983 0,967 0,989 0,984

=== Confusion Matrix ===

 a b <-- classified as

 147 3 | a = (m)

 2 148 | b = (b)

Test Set 3

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,970 0,010 0,990 0,970 0,980 0,960 0,989 0,984 (m)

 0,990 0,030 0,971 0,990 0,980 0,960 0,989 0,983 (b)

Weighted Avg. 0,980 0,020 0,980 0,980 0,980 0,960 0,989 0,984

=== Confusion Matrix ===

 a b <-- classified as

 194 6 | a = (m)

 2 198 | b = (b)

SVM

Train

=== Detailed Accuracy by Class ===

148

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,993 0,013 0,987 0,993 0,990 0,980 0,990 0,984 (m)

 0,987 0,007 0,993 0,987 0,990 0,980 0,990 0,987 (b)

Weighted Avg. 0,990 0,010 0,990 0,990 0,990 0,980 0,990 0,985

=== Confusion Matrix ===

 a b <-- classified as

 298 2 | a = (m)

 4 296 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,987 0,017 0,983 0,987 0,985 0,970 0,985 0,977 (m)

 0,983 0,013 0,987 0,983 0,985 0,970 0,985 0,979 (b)

Weighted Avg. 0,985 0,015 0,985 0,985 0,985 0,970 0,985 0,978

=== Confusion Matrix ===

 a b <-- classified as

 296 4 | a = (m)

 5 295 | b = (b)

Test Set 1

=== Detailed Accuracy by Class ===

149

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,987 0,020 0,980 0,987 0,983 0,967 0,983 0,974 (m)

 0,980 0,013 0,987 0,980 0,983 0,967 0,983 0,977 (b)

Weighted Avg. 0,983 0,017 0,983 0,983 0,983 0,967 0,983 0,975

=== Confusion Matrix ===

 a b <-- classified as

 148 2 | a = (m)

 3 147 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,980 0,013 0,987 0,980 0,983 0,967 0,983 0,977 (m)

 0,987 0,020 0,980 0,987 0,983 0,967 0,983 0,974 (b)

Weighted Avg. 0,983 0,017 0,983 0,983 0,983 0,967 0,983 0,975

=== Confusion Matrix ===

 a b <-- classified as

 147 3 | a = (m)

 2 148 | b = (b)

Test Set 3

=== Detailed Accuracy by Class ===

150

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,975 0,010 0,990 0,975 0,982 0,965 0,983 0,978 (m)

 0,990 0,025 0,975 0,990 0,983 0,965 0,983 0,971 (b)

Weighted Avg. 0,983 0,018 0,983 0,983 0,982 0,965 0,983 0,974

=== Confusion Matrix ===

 a b <-- classified as

 195 5 | a = (m)

 2 198 | b = (b)

FURIA

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,993 0,013 0,987 0,993 0,990 0,980 0,992 0,985 (m)

 0,987 0,007 0,993 0,987 0,990 0,980 0,992 0,990 (b)

Weighted Avg. 0,990 0,010 0,990 0,990 0,990 0,980 0,992 0,988

=== Confusion Matrix ===

 a b <-- classified as

 298 2 | a = (m)

 4 296 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

151

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,990 0,013 0,987 0,990 0,988 0,977 0,988 0,982 (m)

 0,987 0,010 0,990 0,987 0,988 0,977 0,988 0,983 (b)

Weighted Avg. 0,988 0,012 0,988 0,988 0,988 0,977 0,988 0,983

=== Confusion Matrix ===

 a b <-- classified as

 297 3 | a = (m)

 4 296 | b = (b)

Test Set 1

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,987 0,020 0,980 0,987 0,983 0,967 0,986 0,977 (m)

 0,980 0,013 0,987 0,980 0,983 0,967 0,986 0,983 (b)

Weighted Avg. 0,983 0,017 0,983 0,983 0,983 0,967 0,986 0,980

=== Confusion Matrix ===

 a b <-- classified as

 148 2 | a = (m)

 3 147 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

152

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,980 0,013 0,987 0,980 0,983 0,967 0,986 0,980 (m)

 0,987 0,020 0,980 0,987 0,983 0,967 0,986 0,980 (b)

Weighted Avg. 0,983 0,017 0,983 0,983 0,983 0,967 0,986 0,980

=== Confusion Matrix ===

 a b <-- classified as

 147 3 | a = (m)

 2 148 | b = (b)

Test Set 3

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,975 0,010 0,990 0,975 0,982 0,965 0,987 0,982 (m)

 0,990 0,025 0,975 0,990 0,983 0,965 0,987 0,980 (b)

Weighted Avg. 0,983 0,018 0,983 0,983 0,982 0,965 0,987 0,981

=== Confusion Matrix ===

 a b <-- classified as

 195 5 | a = (m)

 2 198 | b = (b)

RandomForest

Train

=== Detailed Accuracy by Class ===

153

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,997 0,013 0,987 0,997 0,992 0,983 0,998 0,996 (m)

 0,987 0,003 0,997 0,987 0,992 0,983 0,998 0,997 (b)

Weighted Avg. 0,992 0,008 0,992 0,992 0,992 0,983 0,998 0,997

=== Confusion Matrix ===

 a b <-- classified as

 299 1 | a = (m)

 4 296 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,987 0,017 0,983 0,987 0,985 0,970 0,996 0,996 (m)

 0,983 0,013 0,987 0,983 0,985 0,970 0,996 0,997 (b)

Weighted Avg. 0,985 0,015 0,985 0,985 0,985 0,970 0,996 0,996

=== Confusion Matrix ===

 a b <-- classified as

 296 4 | a = (m)

 5 295 | b = (b)

Test Set 1

=== Detailed Accuracy by Class ===

154

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,993 0,020 0,980 0,993 0,987 0,973 0,996 0,994 (m)

 0,980 0,007 0,993 0,980 0,987 0,973 0,996 0,995 (b)

Weighted Avg. 0,987 0,013 0,987 0,987 0,987 0,973 0,996 0,994

=== Confusion Matrix ===

 a b <-- classified as

 149 1 | a = (m)

 3 147 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,987 0,013 0,987 0,987 0,987 0,973 0,994 0,993 (m)

 0,987 0,013 0,987 0,987 0,987 0,973 0,994 0,989 (b)

Weighted Avg. 0,987 0,013 0,987 0,987 0,987 0,973 0,994 0,991

=== Confusion Matrix ===

 a b <-- classified as

 148 2 | a = (m)

 2 148 | b = (b)

Test Set 3

=== Detailed Accuracy by Class ===

155

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,985 0,010 0,990 0,985 0,987 0,975 0,993 0,992 (m)

 0,990 0,015 0,985 0,990 0,988 0,975 0,993 0,986 (b)

Weighted Avg. 0,988 0,013 0,988 0,988 0,987 0,975 0,993 0,989

=== Confusion Matrix ===

 a b <-- classified as

 197 3 | a = (m)

 2 198 | b = (b)

NNGE / AdaBoostM1

Train

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,997 0,013 0,987 0,997 0,992 0,983 0,998 0,996 (m)

 0,987 0,003 0,997 0,987 0,992 0,983 0,998 0,997 (b)

Weighted Avg. 0,992 0,008 0,992 0,992 0,992 0,983 0,998 0,997

=== Confusion Matrix ===

 a b <-- classified as

 299 1 | a = (m)

 4 296 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

156

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,993 0,020 0,980 0,993 0,987 0,973 0,995 0,995 (m)

 0,980 0,007 0,993 0,980 0,987 0,973 0,995 0,995 (b)

Weighted Avg. 0,987 0,013 0,987 0,987 0,987 0,973 0,995 0,995

=== Confusion Matrix ===

 a b <-- classified as

 298 2 | a = (m)

 6 294 | b = (b)

Test Set 1

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,993 0,020 0,980 0,993 0,987 0,973 0,997 0,994 (m)

 0,980 0,007 0,993 0,980 0,987 0,973 0,997 0,995 (b)

Weighted Avg. 0,987 0,013 0,987 0,987 0,987 0,973 0,997 0,995

=== Confusion Matrix ===

 a b <-- classified as

 149 1 | a = (m)

 3 147 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

157

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,987 0,013 0,987 0,987 0,987 0,973 0,994 0,993 (m)

 0,987 0,013 0,987 0,987 0,987 0,973 0,994 0,989 (b)

Weighted Avg. 0,987 0,013 0,987 0,987 0,987 0,973 0,994 0,991

=== Confusion Matrix ===

 a b <-- classified as

 148 2 | a = (m)

 2 148 | b = (b)

Test Set 3

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,985 0,010 0,990 0,985 0,987 0,975 0,993 0,992 (m)

 0,990 0,015 0,985 0,990 0,988 0,975 0,993 0,987 (b)

Weighted Avg. 0,988 0,013 0,988 0,988 0,987 0,975 0,993 0,989

=== Confusion Matrix ===

 a b <-- classified as

 197 3 | a = (m)

 2 198 | b = (b)

Ensemble by Voting (majority voting) 3 classifiers (LAC, NNGE, MODLEM)

Train

=== Detailed Accuracy by Class ===

158

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,997 0,013 0,987 0,997 0,992 0,983 0,992 0,985 (m)

 0,987 0,003 0,997 0,987 0,992 0,983 0,992 0,990 (b)

Weighted Avg. 0,992 0,008 0,992 0,992 0,992 0,983 0,992 0,988

=== Confusion Matrix ===

 a b <-- classified as

 299 1 | a = (m)

 4 296 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,990 0,033 0,967 0,990 0,979 0,957 0,978 0,963 (m)

 0,967 0,010 0,990 0,967 0,978 0,957 0,978 0,973 (b)

Weighted Avg. 0,978 0,022 0,979 0,978 0,978 0,957 0,978 0,968

=== Confusion Matrix ===

 a b <-- classified as

 297 3 | a = (m)

 10 290 | b = (b)

Test Set 1

=== Detailed Accuracy by Class ===

159

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,993 0,020 0,980 0,993 0,987 0,973 0,987 0,977 (m)

 0,980 0,007 0,993 0,980 0,987 0,973 0,987 0,983 (b)

Weighted Avg. 0,987 0,013 0,987 0,987 0,987 0,973 0,987 0,980

=== Confusion Matrix ===

 a b <-- classified as

 149 1 | a = (m)

 3 147 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,987 0,013 0,987 0,987 0,987 0,973 0,987 0,980 (m)

 0,987 0,013 0,987 0,987 0,987 0,973 0,987 0,980 (b)

Weighted Avg. 0,987 0,013 0,987 0,987 0,987 0,973 0,987 0,980

=== Confusion Matrix ===

 a b <-- classified as

 148 2 | a = (m)

 2 148 | b = (b)

Test Set 3

=== Detailed Accuracy by Class ===

160

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,985 0,010 0,990 0,985 0,987 0,975 0,988 0,983 (m)

 0,990 0,015 0,985 0,990 0,988 0,975 0,988 0,980 (b)

Weighted Avg. 0,988 0,013 0,988 0,988 0,987 0,975 0,988 0,981

=== Confusion Matrix ===

 a b <-- classified as

 197 3 | a = (m)

 2 198 | b = (b)

Ensemble by Voting (majority voting) 3 classifiers (OneR, NNGE, MODLEM)

Train

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,997 0,013 0,987 0,997 0,992 0,983 0,992 0,985 (m)

 0,987 0,003 0,997 0,987 0,992 0,983 0,992 0,990 (b)

Weighted Avg. 0,992 0,008 0,992 0,992 0,992 0,983 0,992 0,988

=== Confusion Matrix ===

 a b <-- classified as

 299 1 | a = (m)

 4 296 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

161

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,987 0,020 0,980 0,987 0,983 0,967 0,983 0,974 (m)

 0,980 0,013 0,987 0,980 0,983 0,967 0,983 0,977 (b)

Weighted Avg. 0,983 0,017 0,983 0,983 0,983 0,967 0,983 0,975

=== Confusion Matrix ===

 a b <-- classified as

 296 4 | a = (m)

 6 294 | b = (b)

Test Set 1

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,993 0,020 0,980 0,993 0,987 0,973 0,987 0,977 (m)

 0,980 0,007 0,993 0,980 0,987 0,973 0,987 0,983 (b)

Weighted Avg. 0,987 0,013 0,987 0,987 0,987 0,973 0,987 0,980

=== Confusion Matrix ===

 a b <-- classified as

 149 1 | a = (m)

 3 147 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

162

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,987 0,013 0,987 0,987 0,987 0,973 0,987 0,980 (m)

 0,987 0,013 0,987 0,987 0,987 0,973 0,987 0,980 (b)

Weighted Avg. 0,987 0,013 0,987 0,987 0,987 0,973 0,987 0,980

=== Confusion Matrix ===

 a b <-- classified as

 148 2 | a = (m)

 2 148 | b = (b)

Test Set 3

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,985 0,010 0,990 0,985 0,987 0,975 0,988 0,983 (m)

 0,990 0,015 0,985 0,990 0,988 0,975 0,988 0,980 (b)

Weighted Avg. 0,988 0,013 0,988 0,988 0,987 0,975 0,988 0,981

=== Confusion Matrix ===

 a b <-- classified as

 197 3 | a = (m)

 2 198 | b = (b)

Ensemble by Voting (majority voting) 4 classifiers (OneR, LAC, NNGE,

MODLEM)

Train

=== Detailed Accuracy by Class ===

163

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,987 0,020 0,980 0,987 0,983 0,967 0,983 0,974 (m)

 0,980 0,013 0,987 0,980 0,983 0,967 0,983 0,977 (b)

Weighted Avg. 0,983 0,017 0,983 0,983 0,983 0,967 0,983 0,975

=== Confusion Matrix ===

 a b <-- classified as

 296 4 | a = (m)

 6 294 | b = (b)

10-fold x-val.

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,987 0,020 0,980 0,987 0,983 0,967 0,983 0,974 (m)

 0,980 0,013 0,987 0,980 0,983 0,967 0,983 0,977 (b)

Weighted Avg. 0,983 0,017 0,983 0,983 0,983 0,967 0,983 0,975

=== Confusion Matrix ===

 a b <-- classified as

 296 4 | a = (m)

 6 294 | b = (b)

Test Set 1

=== Detailed Accuracy by Class ===

164

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,993 0,020 0,980 0,993 0,987 0,973 0,987 0,977 (m)

 0,980 0,007 0,993 0,980 0,987 0,973 0,987 0,983 (b)

Weighted Avg. 0,987 0,013 0,987 0,987 0,987 0,973 0,987 0,980

=== Confusion Matrix ===

 a b <-- classified as

 149 1 | a = (m)

 3 147 | b = (b)

Test Set 2

=== Detailed Accuracy by Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,987 0,013 0,987 0,987 0,987 0,973 0,987 0,980 (m)

 0,987 0,013 0,987 0,987 0,987 0,973 0,987 0,980 (b)

Weighted Avg. 0,987 0,013 0,987 0,987 0,987 0,973 0,987 0,980

=== Confusion Matrix ===

 a b <-- classified as

 148 2 | a = (m)

 2 148 | b = (b)

Test Set 3

=== Detailed Accuracy by Class ===

165

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0,985 0,010 0,990 0,985 0,987 0,975 0,988 0,983 (m)

 0,990 0,015 0,985 0,990 0,988 0,975 0,988 0,980 (b)

Weighted Avg. 0,988 0,013 0,988 0,988 0,987 0,975 0,988 0,981

=== Confusion Matrix ===

 a b <-- classified as

 197 3 | a = (m)

 2 198 | b = (b)

166

	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS
	TEXT OF OATH
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	SYMBOLS AND ABBREVIATIONS
	CHAPTER 1 INTRODUCTION
	1.1. Android Malware
	1.2. Machine Learning and Data Mining
	1.3. Data Mining for Information Security
	1.4. Data Mining for Cyber Security
	1.5. Machine Learning and Data Mining for Malware Detection
	1.6. Dealing with Advanced Threats
	1.7. Thesis Contributions

	2 CHAPTER 2 BACKGROUND
	2.1. Malware: A Brief Definition
	2.2. The Android Software Stack
	2.2.1. Linux Kernel
	2.2.2. Libraries
	2.2.3. Android Runtime
	2.2.4. Application Framework
	2.2.5. Applications

	2.3. Dalvik Virtual Machine
	2.4. Android Applications
	2.4.1. Components of an Android Application
	2.4.1.1. Activities
	2.4.1.2. Services
	2.4.1.3. Content providers
	2.4.1.4. Broadcast receivers
	2.4.1.5. Intents

	2.4.2. The Manifest File
	2.4.3. Application Permission Structure
	2.4.3.1. Normal Permissions
	2.4.3.2. Dangerous Permissions
	2.4.3.3. Signature Permission
	2.4.3.4. SignatureOrSystem Permission

	2.4.4. Android Application Programming Interface (API)

	2.5. Android’s Build Process
	2.6. Malware Analysis Techniques
	2.6.1. Static Analysis
	2.6.2. Dynamic Analysis

	2.7. Android Malware Infection Vectors
	2.7.1. Client-Side Software Vulnerabilities
	2.7.2. Vulnerabilities in the Smartphone’s OS
	2.7.3. Social Engineering
	2.7.4. Third Party App Stores
	2.7.5. Brute Forcing the User’s Accounts
	2.7.6. Drive-By Downloads on the Android

	2.8. Relevant Data Mining and Machine Learning Background
	2.8.1. K-Nearest Neighbor (K-NN)
	2.8.2. Support Vector Machines (SVMs)
	2.8.3. Decision Trees
	2.8.3.1. C4.5
	2.8.3.2. Random Forest

	2.8.4. Naive Bayes
	2.8.5. Neural Networks
	2.8.5.1. Multilayer Perceptron (MLP)
	2.8.5.2. Backpropagation Algorithm

	2.8.6. Radial Basis Function (RBF)
	2.8.7. Ensemble Learning Methods
	2.8.7.1. Boosting
	2.8.7.2. Bagging

	3 CHAPTER 3 LITERATURE REVIEW
	3.1. Approaches for Malware Detection on the Android that use Machine Learning Methods
	3.2. Approaches that Utilize Text Mining for Malware Detection

	4 CHAPTER 4 PROPOSED METHODOLOGY
	4.1. Data Collection and Pre-processing
	4.2. Feature Extraction
	4.2.1 Permissions
	4.2.2. API Calls
	4.2.3. Strings

	4.3. A Novel Document Frequency-Based Approach to Feature Selection
	4.3.1. Term Frequency
	4.3.2. Inverse Document Frequency
	4.3.3. Description of the Document Frequency-Based Approach

	4.4. The Architecture of the Android Malware Detection Methodology
	4.4.1. Combined Feature Set Model
	4.4.2. Classification of Android Malware via Machine Learning

	4.5. Limitations of the Proposed Methodology

	5 CHAPTER 5 EXPERIMENTS AND RESULTS
	5.1. Standard Metrics used for Evaluating the Classifiers
	5.1.1. Confusion Matrix and the Related Metrics

	5.2. Cross-validation
	5.2.1. 10-fold Cross-Validation

	5.3. Results from the First MalGenome Dataset
	5.4. Results from the Second MalGenome Dataset
	5.5. Results from the AndroZoo Dataset

	6
	7
	8 CHAPTER 6 CONCLUSIONS
	6.1. Summary of Thesis Contributions
	6.2. Directions for Future Work
	6.2.1. New Experiments with Bigger Datasets
	6.2.2. Additional Research for Ensemble Classifiers with the AndroZoo Dataset
	6.2.3. Alternative Methodologies for Feature Selection
	6.2.4. Malware Detection Tool for Android Platforms

	REFERENCES
	APPENDIX 1 – Descriptions of the Selected Attributes for the MalGenome Dataset
	APPENDIX 2 – Descriptions of the Selected Attributes for the AndroZoo Dataset
	APPENDIX 3 – Detailed Results Obtained in WEKA for the First MalGenome Dataset
	APPENDIX 4 – Detailed Results Obtained in WEKA for the AndroZoo Dataset

