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ABSTRACT 

Malware Detection for the Android Platform using Machine Learning Techniques 
Peynirci, Gökçer 

Ph.D., Computer Engineering 

Advisor: Assist. Prof. Dr. Korhan KARABULUT 

Co-Advisor: Assist. Prof. Dr. Mete EMİNAĞAOĞLU 

June 2018 

Android is the mobile operating system most frequently targeted by malware in the 

smartphone market with a significantly higher total market share in comparison to its 

competitors in addition to a much higher total number of applications. Detection of 

malware before it is published on the Google Play Store or any unofficial application 

market is very important owing to the end users’ typical security inadequacy. In this 

Ph.D. thesis, a novel methodology of feature selection is proposed along with an 

Android malware detection approach that implements the proposed feature selection 

methodology. The machine learning approach proposed in this thesis makes use of 

permissions, API calls, and strings as features, which are statically extractable from 

the Android executables (APK files). In the proposed feature selection approach, a 

document frequency-based approach was designed and implemented that differs from 

the existing methods in the literature. The proposed methodology was tested upon two 

universal benchmark datasets that contain Android malware samples and promising 

results were obtained by using several binary classification algorithms and some 

ensemble learning models. 

Key Words: information security, Android, malware detection, data mining, machine 

learning, feature selection 
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ÖZ 

ANDROID PLATFORMU İÇİN MAKİNE ÖĞRENMESİ TEKNİKLERİ 

KULLANARAK KÖTÜCÜL YAZILIM TESPİTİ 

Peynirci, Gökçer 

Doktora Tezi, Bilgisayar Mühendisliği 

Danışman: Dr. Öğr. Üyesi Korhan KARABULUT 

Yardımcı Danışman: Dr. Öğr. Üyesi Mete EMİNAĞAOĞLU 

 

Haziran 2018 

Android mobil işletim sisteminin, rakiplerine kıyasla sahip olduğu oldukça yüksek 

toplam pazar payının yanında toplamda sayısal olarak çok daha fazla uygulamaya 

sahip olması dolayısıyla kötücül yazılımlar tarafından en sık hedef alınan mobil 

platform olduğu bilinmektedir. Son kullanıcının, tipik güvenlik yetersizliğine bağlı 

olarak, kötücül yazılımın Google Play Store veya herhangi bir resmi olmayan 

uygulama mağazasında yayımlanmadan önce tespit edilmesi hayati bir öneme sahiptir. 

Bu tezde, makine öğrenmesi teknikleri kullanarak yeni bir Android kötücül yazılım 

tespit metodolojisi yanında yeni bir öznitelik seçim metodolojisi ortaya konmuştur. Bu 

çalışmada sunulan makine öğrenmesi yaklaşımı, Android uygulamalarından (APK 

dosyaları) statik olarak çıkarılabilen, izinler (permissions), Uygulama Programlama 

Arayüzü çağrıları (API calls) ve katar (string) özelliklerini kullanmaktadır. Sunulan 

özellik seçim metodolojisinde literatürdeki mevcut yöntemlerden farklı olarak, belge 

sıklığı tabanlı (document frequency-based) bir yöntem tasarlanıp uygulanmıştır. 

Önerilen yöntem, Android kötücül yazılım örnekleri barındıran iki evrensel temel 

ölçüt veri kümesi ile test edilmiş ve bazı ikili sınıflandırma algoritmaları yanı sıra bazı 

topluluk (ensemble) yöntemine dayalı algoritmalar da kullanılarak literatürdeki diğer 

modeller ve yöntemlere göre daha başarılı sayılabilecek yüksek doğrulukta sonuçlar 

elde edilmiştir.  

Anahtar Kelimeler: bilgi güvenliği, Android, kötücül yazılım tespiti, veri 

madenciliği, makine öğrenmesi, öznitelik seçimi
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CHAPTER 1 

INTRODUCTION 

As the information security industry becomes more aligned with providing protection 

through utilizing cyber intelligence each year, the need for expertise in data mining 

and machine learning increases as well. The problem of malicious software (malware) 

detection on the Android, Microsoft Windows or any other platform has never been 

solved completely and this can be attributed to security weaknesses in the state of the 

art computing platforms and digital communication protocols we have in use today.  

New types and versions of malware are produced by cyber criminals every day, for 

which no unique detection signature is readily available. Even if the cybersecurity 

experts come up with a very good idea and model to detect malware today, malware 

with unique features may be produced that is unlike any malware we have seen to date, 

that surpasses the technicality and complexity of the malware we have seen so far.  

Even though the field of data mining for malware detection is not very new, it is still 

in progress for improvement with academic studies focusing on this field and possible 

industrial applications of the proposed methodologies. Malware developers 

continuously strive to develop less detectable and more catastrophic (causing more 

damage, having more functionality, becoming widespread etc.) malware applications. 

This, in turn, creates a strict requirement of encountering these types of threats that put 

the security experts in a position of sustained adaptation and response to the 

dynamically changing Information Technology (IT) landscape shaped every day by 

improvements in malware and other security threats. 

To assess the importance of malware in the current security landscape irrespective of 

computing platform, we need to look at what Advanced Persistent Threats (APTs), 

targeted cyber attacks and threats from state-sponsored actors have in common: the 

common element is the use of malware at some stage of their cyber attacks.  

This study was proposed with the motivation that utilization of machine learning and 

data mining for detection of Android malware applications that could lead to new 
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opportunities to make the mobile landscape more secure. Being aware of the past 

successful research in this field, I hope my results, findings and conclusions will be a 

valuable contribution. 

1.1. Android Malware 

As our mobile phones integrate into our personal and professional lives more and more 

each day, they are targeted by cyber criminals more frequently than ever. Since these 

devices contain valuable private information and access to financial services such as 

internet banking or e-commerce purchases, making sure that adequate security is 

provided on the mobile phone is essential for every user. 

Android applications (apps) can be obtained either via the official app store (Google 

Play Store), or via third-party unofficial stores such as GetJar or Slide ME. The Google 

Play Store was constructed with the intention to make a store that fulfills all app 

requirements of the typical user and at the same time provides the adequate amount of 

security for the downloaders of the apps. Towards this endeavor, Android phones come 

with a security option that prevents app installs from third-party stores, which can be 

turned off by users. However, it is not recommended to be turned off for typical users. 

The reason for such precautions is the possibility that the adversaries may have 

injected benign looking Android apps with malicious code (malcode). In order to 

compute and assess the level of threat that the users face from third-party store app 

download, we need to look at the percentage of malware infections from the Google 

Play compared to malware infections from the third-party app stores. According to an 

analysis conducted by Cheetah Mobile (CheetahMobile, 2014), malware coming from 

third-party markets account for 99.86% of all malware infections compared to only 

0.14% from the Google Play. 

1.2. Machine Learning and Data Mining 

Machine learning is a kind of artificial intelligence whereby an algorithm or method 

will extract patterns out of data. The aim is to automatically infer and generalize 

patterns from data. Machine learning can be incorporated into many facets of our 

digital life including but not limited to: face recognition, handwriting digit recognition, 

spam filtering in an email, and product recommendations from e-commerce sites. To 

elaborate on one of the examples, in handwriting digit recognition, the aim is to infer 
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associations between drawn shapes and particular letters, while taking into account 

variations of the same letter. 

Machine learning lies at the intersection of computer science, engineering, and 

statistics. Any field that needs to interpret and act on data can benefit from machine 

learning techniques. Data mining is a similar field to machine learning, in which we 

use many techniques of machine learning. However, in data mining, the part played 

by databases is stronger. 

Data mining is also known as “knowledge-discovery in databases” and it is an 

extension of exploratory data analysis and has the same goals: the discovery of 

unknown and unanticipated structure in the data. The chief distinction lies in the size 

and dimensionality of the datasets involved. Data mining, in general, deals with much 

more massive datasets for which highly interactive analysis is not feasible (Wegman, 

2002). 

Let us note the difference between learning from a fully labeled set of examples and a 

fully unlabelled set. If learning is being performed from a fully labeled set of examples 

as it is in the case of this thesis, it is called supervised learning.  On the other hand, 

unsupervised learning is performed on a fully unlabelled set as opposed to a labeled 

set. The activity of learning from labeled or unlabelled sets is called discovery or 

mining. There is also a mid-ground between supervised learning and unsupervised 

learning, which is semi-supervised learning, where a partially set of examples are used 

for the learning activity.  

We can talk about four different styles of learning in data mining applications. The 

first one is classification learning, where the learning needs to happen from a set of 

classified examples. The second one is association learning, where any association 

among features is sought, while the third one is clustering, where groups of examples 

that belong together are sought and the last one is numeric prediction, where the 

outcome to be predicted is not a discrete class but a numeric quantity (Witten & Frank, 

2005). 

1.3. Data Mining for Information Security 

Data mining is considered as a promising solution to the ever-growing problem of 

information security.  Application of data mining related solutions to information 
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security emerges as an alternative method of solving problems.  Various information 

security applications make use of data mining or machine learning techniques such as 

classification, clustering or association rule mining. Induction algorithms are 

incorporated in such solutions that explore data in order to discover hidden patterns 

and build predictive models. Such techniques and algorithms have proved to tackle 

most of the information security challenges effectively. 

In order to prevent and thwart the risks to information security, attack pattern 

generalization and discovery present a great opportunity for data mining and 

information security communities. Classification, association rules, and clustering 

mechanisms can be incorporated into the data at hand, both before and after an 

information security compromise that maps the attack patterns of each individual 

attack. Powerful software solutions can be implemented that incorporate 

aforementioned techniques in order to deal with latest threats and risks such as 

Distributed Denial of Service (DDoS) attacks, host-based intrusions, access control 

violations and malicious code detection. 

Several data mining use cases applied to information security related issues include 

(Bhatnagar & Sharma, 2012): 

• Identification of various anomalies and malware in the system by classifying the 

benign and anomalous activities into different groups and classifying incoming 

data accordingly. 

• Extraction of various security requirements, performing fuzzing techniques to 

identify vulnerabilities, defining and finding audit trails and establishing 

security policies. 

• Detection of various cybercrimes, such as credit card fraud, money laundering 

frauds and other financial crimes and classifying criminals into classes 

according to behavior. 

1.4. Data Mining for Cyber Security 

Intrusion detection and malware detection are two areas heavily researched in data 

mining for cybersecurity.  Even though both areas are fairly new compared to many 

classical theoretical computer science topics, there has been active research going on 
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in these topics for 17 years now, considering the first research paper on data mining 

for malware detection was released in 2001 (Schultz, Eskin, Zadok, & Stolfo, 2001). 

Cyberspace is defined as “a global domain within the information environment 

consisting of the interdependent network of information technology infrastructures, 

including the Internet, telecommunication networks, computer systems, and embedded 

processors and controllers” in the Joint Publication 1-02, Department of Defense (DoD) 

Dictionary of Military and Associated Terms (DoD, 2010). 

Massive amounts of data are collected by sensors placed at cyber systems such as 

firewalls, Intrusion Detection System (IDS), and anti-virus. This data, either network 

traffic data or log data is ripe for application of data mining for the purpose of 

unearthing valuable patterns and relationships to be used in security research. Data 

mining may enable us new capabilities that were not possible before. Apart from all 

the tactical operations necessary to defend a cyber-system, it has become vital to 

continuously sift through vast amounts of sensor data that could be made more efficient 

with advances in data mining techniques to accurately map the attack surface, collect 

and integrate data, extract knowledge and produce useful visualizations (Blowers et 

al., 2014). Strategic coordination of all the sources of data is becoming a central piece 

of effective cyber defense. This accumulation of data from various sources can easily 

become what we call big data. 

Dealing with large and fast-growing sources of data obliged us to build new techniques, 

models and a new kind of computing infrastructure to process, analyze and store data. 

Amongst many considerations when dealing with massive amounts of data, one 

challenge is in having a computing infrastructure that can ingest, validate, and analyze 

high volumes (size and/or rate) of data. Another challenge is in assessing mixed data 

(structured and unstructured) from multiple sources. It is often very difficult to deal 

with unpredictable content with no apparent schema or structure, and often a challenge 

enabling real-time or near-real-time collection, analysis, and results (Villars, Olofson, 

& Eastwood, 2011). 

1.5. Machine Learning and Data Mining for Malware Detection 

The security industry is locked inside the endless loop of generating a specific 

signature to one kind of malware only for this specific kind of malware to be later 

modified to evade the present detection mechanisms (David & Netanyahu, 2015). This 
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never-ending loop puts the security industry in a position of attempting to defend 

against all attack vectors from the full cyberattack spectrum with the attackers 

continually improving their tools and attack methods.   

Instead of taking the approach of one unique signature to one malware sample, data 

mining and machine learning propose a fundamentally different approach to tackle the 

problem of detecting malware.  

Once malcode injection occurs, the traffic or the app is not the same as it was before; 

there are clear indications of that malcode injection somewhere in the traffic or the 

source code. Such changes that occur through injection of malcode provide us the 

ability to learn about such changes to measure the degree of maliciousness of an 

executable in order to determine whether the file in question is a benign one or a 

malicious one. 

Data mining is a kind of prediction in which we look for meaningful patterns amongst 

data and from these make classifications, form clusters or predict numeric values. 

Either within the network traffic or source code of an app, it is in a clean state when 

there are no malcode injections inside the traffic or source code of the app.  

1.6. Dealing with Advanced Threats 

Cyber adversaries are getting more sophisticated every day and targeting organizations, 

corporations, and governments. We are facing what we call advanced threats, which is 

beyond the attack sophistication threshold we are used to and it involves advanced 

malware, targeted attacks, and APTs. The primary aim of such adversaries is to conduct 

industrial espionage, undermine business and financial operations, and/or sabotage 

critical infrastructure. Many organizations today lack the workforce with the adequate 

skills to combat such threats.  

Traditional approaches to security, which can be defined as security systems that 

leverage a rule, pattern, signature, or algorithm, based approach to detect malware or 

cyberattacks, are no longer effective against advanced threats. The main pitfall of 

traditional approaches to security is the requirement of constant updates and influx of 

rules, signatures or patterns to identify and mitigate each individual malware or threat.  

Software and hardware solutions with data analytics at its core are rapidly becoming 

the cornerstone of protection in cyber and information security domains. Advances in 
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machine learning is a promising approach to deal with the ever-changing and evolving 

advanced threats. Machine learning techniques are finding widespread applications 

and implementations in dealing with a wide range of security issues with many 

machine learning techniques, algorithms, and tools being used by security experts and 

researchers to tackle some of the most advanced threats we are facing today. 

Machine learning, when utilized in the right way can benefit us with faster 

identification of previously unidentified vulnerabilities in software or hardware, 

detection of complex cyber attacks and malware, and mitigation of insider threats 

through detection of anomalous user behavior. 

1.7. Thesis Contributions 

The main contributions of this thesis will be twofold: 

• A novel methodology of feature selection in the machine learning process for 

malware detection against malicious Android executables. 

• An exploration of ensemble learning methods and techniques among several 

machine learning algorithms for Android malware detection that utilizes 

permissions, Application Programming Interface (API) calls, and strings as 

features. 

The feature selection methodology proposed in this thesis differs from the 

methodologies already present in the literature in accordance with selecting attributes 

that have the lowest possible Inverse Document Frequency (IDF) values in the 

malware dataset and at the same time the highest possible IDF values in the benign 

dataset, which is different from the present approaches in the literature. 

Secondly, the methodology of Android malware detection using machine learning 

techniques is new, based on exploring ensemble learning with different algorithms by 

using specific sets of selected features. 

I hope these two main contributions of this thesis, will be valuable towards the efforts 

of researchers and the security industry in combating and providing better detection 

against Android malware detection. 
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CHAPTER 2 

BACKGROUND 

In this chapter, a broad academic background of essential topics composing this thesis 

will be provided in order to make sure the reader is adequately familiar with them to 

understand the following chapters. 

2.1. Malware: A Brief Definition 

Referred to by many names including malicious software, malicious code or malcode, 

malware is basically software produced to harm a target system either by cyber 

espionage, encrypting of files to ask for ransom (ransomware) or erasing of critical 

Operating System (OS) files to make it unusable. 

This definition platform independently applies to all the programs that could be 

considered as a malware, the key point for different platforms is that Android malware 

must be executable on the Android OS, whereas a Microsoft Windows malware must 

be executable on the Windows platform. Malware that is executable on multiple 

platforms may also be produced depending on how portable the written code is. 

2.2. The Android Software Stack 

As illustrated in Figure 2.1., the Android Software Stack is composed of four main 

layers and the green items are components written in native code (C/C++), while blue 

items are Java components interpreted and executed by the Dalvik Virtual Machine 

(Dalvik VM). The bottom red layer is the Linux kernel components that run in the 

kernel space. 
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Figure 2.1. Android Software Stack (ZDNet, 2008) 

In the following subsections, Android abstraction layers are discussed starting from 

the Linux Kernel. 

2.2.1. Linux Kernel 

A specialized version of the Linux Kernel with a few special additions is utilized by 

the Android. The additions include wakelocks (mechanisms to indicate that apps need 

to have the device stay on), a memory management system that is more aggressive in 

preserving memory, the Binder IPC driver, and other features that are important for a 

mobile embedded platform like the Android. 

2.2.2. Libraries 

The Libraries component exposes a set of native C/C++ libraries to the Application 

Framework and Android Runtime. These libraries are mostly external with only minor 

modifications such as OpenSSL, WebKit, and bzip2. The crucial C libraries, 

codenamed the Bionic, were ported from BSD’s libc and were rewritten to support 

ARM hardware and Android’s own implementation of pthreads based on Linux futexes. 
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2.2.3. Android Runtime 

Android Runtime, which acts as a middleware component, consists of the Dalvik VM 

and a set of Core Libraries. The Dalvik VM is responsible for the execution of 

applications on the Android and is discussed in detail in Section 2.3. 

The core libraries are an implementation of general purpose APIs and there are two 

different types of core libraries: 

1. Core libraries for the Dalvik VM. 

2. Core libraries for Java programming language interoperability. 

The first category of core libraries is used in processing or modifying Virtual Machine 

(VM) specific information and is generally used when bytecode has to be loaded into 

memory. The second category coming from the Apaches Harmony enables Java 

interoperability by implementing the popular Java packages such as java.lang and 

java.util. 

2.2.4. Application Framework 

The Application Framework layer provides many higher-level services to apps in the 

form of Java classes where the developers are allowed to inherit in their own apps. 

Most components in this layer are implemented as official system apps and run as 

background processes on the device. 

Some components are responsible for managing baseline phone functions such as 

receiving phone calls, receiving text messages or monitoring battery usage, while some 

have more focused uses cases such as providing access to the system’s location 

services given the phone has Global Positioning System (GPS) capabilities. 

2.2.5. Applications 

On the top of the Android framework, there are applications. All apps such as home, 

contact, settings, games, browsers use the Android framework that, in turn, uses the 

Android runtime and libraries. Android runtime and native libraries use the Linux 

Kernel. Android apps are discussed in more detail in Section 2.4. 
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2.3. Dalvik Virtual Machine 

A runtime comprises of software instructions that execute when a program is running. 

These instructions are tasked with translating the applications' code into the machine 

code that the device is capable of running. Android makes use of a virtual machine as 

its runtime environment in order to run the Android Package (APK) files that constitute 

an Android application. 

Dalvik has been the default virtual machine that runs applications on top of device 

hardware since Android was started back in 2007. Dalvik runtime uses Just-in-Time 

(JIT) compilation method first introduced in Android 2.2 Froyo, in order to interpret 

the bytecode. JIT means applications are partially compiled and built, in addition, 

meaning each time an application is launched, and it must be compiled first. Introduced 

as an improvement over the previous conventional interpreter approach that compiled 

and ran code line by line, the downside is the huge overhead when launching 

applications. 

Two major advantages of this approach are as follows: Firstly, as the code is isolated 

from the core, in case of an intentional or unintentional security threat, the risk is 

contained within the virtual machine, thus, not affecting the primary OS. Secondly, the 

code can be compiled on another platform and can still be executed on the mobile 

platform using the virtual machine. 

2.4. Android Applications 

Android applications are in an executable format as APK files. APK files are signed 

compressed files that contain the app’s bytecode along with all its data, resources, 

third-party libraries and a manifest file that describes the app itself. 

Android apps are run in a sandboxed environment to improve security. Apps receive a 

unique Linux User ID (UID) from the Android OS during installation on the device. 

Access permissions to the files of an app are set in a way to enable the app itself only 

to access them. Each app is granted its own VM during runtime resulting in app code 

that is completely isolated from other applications. 
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 2.4.1. Components of an Android Application 

The essential building blocks of an Android application are components. Each Android 

application is composed of four standard components that manage different parts of 

the application’s functions. These four types of application components are explained 

below: 

2.4.1.1. Activities 

Activities provide a single screen and an interface. Each application may have 

activities for carrying out different tasks such as reading e-mail for an e-mail 

application or depicting available routes in a navigation application. Each activity 

works independently from each other to form a cohesive user experience for a specific 

app. A different app can start activities belonging to another app (as long as permission 

is given), for example, a camera app may start the activity in the e-mail app in order 

to e-mail a photograph.  

2.4.1.2. Services 

Services provide background functionality for long-term operations that do not require 

an interface. Services are similar to activities; on the other hand, the only main 

difference is that there is no requirement of an interface for each activity. An example 

of a service may be music playing in the background while the user is using another 

app or downloading data over the network without blocking user interaction by use of 

an activity. Services can be started by other components of the app such as an activity 

or a broadcast receiver. 

2.4.1.3. Content providers 

Shared app data are managed by content providers. The data may be stored in the file 

system, an SQLite database or any other persistent storage location the app can access. 

As long as the content provider allows it, other apps can query or even modify the data. 

Android system provides a content provider that manages the user's contacts 

information and an app with the required permissions can send queries to the content 

provider in order to read and write information about a particular contact. 

2.4.1.4. Broadcast receivers 

A broadcast receiver listens for specific system-wide broadcast announcements to pick 

them up if they were the intended recipient. While many broadcasts originate from the 
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system such as low battery, apps can also initiate broadcasts, for instance, to let other 

apps know that some data has been downloaded to the device and is available for them 

to use. 

Broadcast receivers are generally used to act as a gateway to other components and do 

not have a user interface. They are tasked with initiating a background service to 

perform a task based on a specific event. 

There are two types of broadcasts: non-ordered and ordered. Non-ordered broadcasts 

are sent to all interested receivers at the same time, on the other hand, ordered 

broadcasts are first sent to the receiver with the highest priority, before being 

forwarded to the receiver with the second highest priority. An example of a non-

ordered broadcast is the battery low announcement, while an example to the ordered 

broadcast is an incoming SMS text message announcement.  

Upon receiving an ordered broadcast, the receiver may decide to abort the broadcast 

so that it is not forwarded to other receivers. This allows vendors to develop 

alternatives to the official Android apps such as an alternative text message manager 

that can disable the official Android messaging application by using a higher priority 

receiver and aborting the broadcast after handling the incoming message. 

2.4.1.5. Intents 

Android’s solution to establishing communication amongst application components is 

handled using a message routing system based on Uniform Resource Indicators (URIs). 

Asynchronous messages called “intents” are used to activate components such as 

activities, services and broadcast receivers.  Intents are nearly equivalent to parameters 

passed to API calls and the fundamental differences between API calls and intents’ way 

of invoking components are listed below: 

• API calls are synchronous while intent based invocations are asynchronous. 

• API calls are compile-time bindings while intent based calls are run-time 

bindings. 

In order to listen for an intent, intent filters need to be implemented that specifies the 

types of intent that an activity, service, or broadcast receiver can respond to.  An intent 

filter declares the capabilities of a component. It specifies the tasks an activity or 
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service can achieve and which types of broadcasts a receiver can handle. It allows the 

corresponding component to receive Intents of the declared type.  

Intent filters are typically defined in the AndroidManifest.xml file. An Intent Filters is 

defined by its category, action and data filters. It can also contain additional metadata. 

When an intent is broadcast and received by the relevant listener, the intent filter is 

invoked by the Android platform to accomplish the job. This means, both of the 

components are not aware of each other’s existence and can still work together to give 

the desired result for the end user. 

Some intents may require specific permissions to be sent, while system intents can be 

sent by processes that have the system’s UID. The latter, cannot be sent by an 

application regardless of the permissions they hold and they can only be sent by the 

system processes. 

2.4.2. The Manifest File 

Every Android application must have an “AndroidManifest.xml” file. It is some sort 

of a configuration file in which references to the implemented components exist. This 

file describes each component of the application and the components’ interaction 

among themselves. All the components of an application must be declared in this file, 

which resides in the root of the app project directory.  Activities and services that are 

not declared in the manifest cannot be run. 

Broadcast receivers, on the other hand, can either be declared in the manifest or may 

be registered later dynamically via the registerReceiver() method. The manifest 

additionally specifies application requirements such as special hardware requirements 

(e.g., camera, temperature sensor), or the minimal API version required to run the app. 

In order to access the protected components (e.g., external storage, accessing the 

contact’s list), an application must be granted the corresponding permission. The list 

of permissions required by the app must be defined in the app’s AndroidManifest.xml. 

This way, during runtime, the Android OS can prompt the user to grant the specific 

required permission(s) to enable the app to access these components through specific 

APIs. 
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Inside the OS, the protected components have a unique Linux group ID, granting of 

the corresponding permission makes the app’s VM a member of the corresponding 

unique group, thus enabling access to the restricted components. 

2.4.3. Application Permission Structure 

Permissions in the Android OS are enforced using permission validation mechanisms 

that must be invoked by some key components. Particularly, the system process is 

tasked with implementing the permission validation mechanism with several 

invocations spread throughout the API. The key components forming the Android 

permission enforcement model will be explained below. 

Third-party applications on the Android platform are provided with an extensive API 

that provides access to phone hardware, settings, and user data. Access to security or 

privacy sensitive parts of the API is governed by the permissions security feature. Prior 

to installation of each application, the user is presented with a list of permission she/he 

must accept in order for the application to function properly. Each application 

developer must determine the required list of permissions beforehand and if the user 

spots something dubious, they can cancel the installation altogether. 

This gives a user the chance to evaluate an application as potentially dangerous or 

benign to some level. However, the fact that most people are negligent about reading 

such information is the weakest point of this security technique employed by the 

Android OS. 

There are 134 (Felt et al., 2012) officially defined application permissions in total 

divided into four protection levels, each level enforcing a different security policy. 

From low risk to high risk there are: 

2.4.3.1. Normal Permissions 

Includes permissions that present the lowest risk to the user thanks to the use of API 

calls that cannot be used to do harm. They provide access only to isolated application-

level features, posing minimal risk to other applications, the system, or the user. Such 

types of permissions are given automatically without requiring the explicit consent of 

the user. 

2.4.3.2. Dangerous Permissions 

15 



Permissions falling in this category have access to API calls that could be potentially 

malicious and could enable access to private user data. They provide a wider access 

range to device resources and give requesting applications control over the device that 

can affect the user negatively. Applications requiring these kinds of permissions will 

ask for the user’s explicit approval prior to installation. 

2.4.3.3. Signature Permission 

A type of permission that the system grants only if the requesting application is signed 

with the same certificate as the application that declared the permission. Given the 

certificates match, the system automatically grants the permission without asking for 

the user's explicit approval. 

2.4.3.4. SignatureOrSystem Permission 

This permission type is granted only to applications that reside in the system image or 

that are signed with the same certificate as the application that declared the permission. 

This permission type should normally be avoided, as the protection level provided by 

the signature permission should be enough regardless of where an application is stored. 

This permission is reserved for certain special situations such as when multiple 

vendors want to embed applications inside the system image and need to share specific 

features of the application explicitly.  

This model of Android security is static as an application needs to obtain a permission 

once and the list of permissions the application has cannot be modified during the 

lifetime of the application on the device.  

2.4.4.  Android Application Programming Interface (API) 

The Android public API is composed of 8,648 distinct methods (Chin, Felt, 

Greenwood, & Wagner, 2011), some of which are protected by permissions. However, 

no centralized policies are in place to execute permission checks when an API is called.  

The Android API framework has two distinct parts, one of them is a library residing in 

each application’s virtual machine and another is an implementation of the API that 

runs as a system process. The library provides the necessary means for interacting with 

the API implementation. 
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The API implementation in the system process is not bound by the restrictions brought 

about by the permissions systems, while the API library runs bound by the set of 

permissions accepted during the installation of the application. 

There are three steps to handle API calls in the Android OS: 

Firstly, the application invokes the public API in the library, secondly, the library 

invokes a private interface (an RPC stub) and lastly, the RPC stub starts an RPC request 

that makes the system process instruct a system service to perform the desired 

operation. 

The API implementation in the system process holds the corresponding permission 

checks for each application. The permission validation mechanism is called to check 

whether the invoking application has the necessary permissions.  

2.5. Android’s Build Process 

The Android build process consists of compiling the Android modules and packaging 

them into .apk files according to the given build settings. The .apk file for each 

application contains all the information necessary to run an application on a device 

including compiled .dex files (.class files converted to Dalvik bytecode), a binary 

version of the AndroidManifest.xml file, compiled resources (resources.arsc) and 

decompiled resource files for an application. 

Given the developer is using Android development tools, the build system can sign the 

application when building it for debugging, whereas a certificate to sign the app must 

be obtained and used when building the app for release. 

An illustration of building and running an application can be seen in Figure 2.2. 

 

Figure 1.2. Building and Running an Application in Android (stuff.mit.edu, 2016) 
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The steps required to be carried in order to create the final APK file from an 

application’s resource files are explained in the following paragraphs. 

The Android Asset Packaging Tool takes and compiles an application’s resource files 

such as the AndroidManifest.xml file and the XML files for the activities. Any 

existing .aidl interfaces are converted into Java interfaces. All the Java code, including 

the R.java and .aidl files, is compiled and .class files are output. The dex tool converts 

the .class files and third-party libraries into Dalvik bytecode in order to package them 

in the final .apk file. 

Apkbuilder tool takes all non-compiled resources (such as images), compiled 

resources, and the .dex files for packaging into an .apk file. After building the APK 

file, it must be signed with either a debug or release key before installing it to a device. 

As the last step, given the application is being signed in release mode, it must be 

aligned using the zipalign tool in order to decrease memory usage during execution. A 

detailed illustration of the above process can be seen in Figure 2.3. 
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Figure 2.3. Creation of the Final APK Archive File (stuff.mit.edu, 2016) 
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2.6. Malware Analysis Techniques 

If we consider a mobile anti-virus company that uses a signature-based Android 

malware detection method, the following scenario would be possible. After receiving 

a sample worth analyzing, they need to find a pattern that correctly identifies the 

sample. The identified signature should be generic enough to match the other variants 

of the same malware and at the same time should not produce false positives (Egele, 

Scholte, Kirda, & Kruegel, 2008). This manual inspection method is both labor 

intensive and likely to produce errors. Assuming that the source code is not available 

for analysis, as is the general case, the analysis needs to be performed on the binary 

level. 

In this section, two main techniques of analyzing malware, which are static and 

dynamic analysis, will be explained. 

2.6.1. Static Analysis 

In static analysis or reverse engineering of a malicious binary, the file in question is 

examined without actually executing its code.  In static analysis, the aim is to arrive at 

an intermediate representation of the program that has the same control and data flows 

as the original program source code. This includes the use of techniques such as 

disassembling, decompiling, unpacking etc., in order to arrive at a human 

understandable piece of code. 

This type of analysis can provide useful results in analyzing compiler-generated 

binaries. However, it is mostly inadequate in identifying obfuscated, polymorphic or 

metamorphic code.  In order to conduct static analysis of obfuscated malware, it must 

be de-obfuscated first by using corresponding de-obfuscation techniques. 

When compiling the source code of a program into a binary executable, some 

information such as the size of data structures or variables are lost which can make the 

task of analysis and detection harder through static analysis. However, static analysis 

can still bear useful results, for example, producing a call graph can give an analyst an 

overview of what functions are invoked from what parts of the code (Egele et al., 2008). 
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2.6.2. Dynamic Analysis 

In dynamic analysis, the behavior of the executable is monitored during execution, 

thus giving us the ability to oversee the tasks performed by it. The program’s 

instructions are executed either by single step execution, dynamic instrumentation or 

whole system emulation to obtain a trace of the application’s executed instructions 

(Roundy & Miller, 2010). The obtained trace is used to construct an analysis artifact, 

which is used to shed light on the program’s unpacking behavior.  

The main drawback of this approach is that some malware may contain functionality 

triggered only under certain conditions, meaning the malware may hide its true 

function unless certain conditions are met and may be resistant against running in 

virtual environments or use of sandboxing techniques. 

Different techniques can be used to conduct a dynamic analysis of an executable, such 

as function call monitoring, function parameter analysis or information flow tracking. 

A brief description of each technique is given below. 

Firstly, in function call monitoring, function calls are intercepted by a process called 

hooking by the invocation of a special hook function. This function implements the 

required analysis functionality by recording its invocation to a log file or analyzing 

input parameters. Secondly, in function parameter analysis, the focus is on the actual 

values that are passed when a function is invoked. This tracking of parameters and 

function return values enables the correlation of individual function calls that operate 

on the same object. Lastly, in information flow tracking, the focus is on how the 

program processes data and the aim is to shed light on the propagation of “interesting” 

data throughout program execution (Egele et al., 2008).  

The analysis component that supervises the operations of the program under inspection 

needs to be executed in a higher OS privilege level compared to that of the program in 

order to prevent access to the analysis component. Otherwise, if both are on the same 

privilege level, the analysis component will have to employ stealth techniques to hide 

its presence from the program (Egele et al., 2008). 

A hybrid approach can be employed in which the code is dynamically analyzed for 

pieces of code where static analysis fails. 
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2.7. Android Malware Infection Vectors 

Malware may use various infection vectors to infect a smartphone. In this section, the 

most likely vectors for Android malware infection are detailed. 

2.7.1. Client-Side Software Vulnerabilities 

Vulnerabilities in applications may be exploited to execute code on a target system 

remotely. This software may take the form of a web browser, PDF reader, Java 

Runtime Environment (JRE) or any program with exploitable bugs in its source code. 

Old versions of these applications or even up to date versions may share common 

vulnerabilities that can be exploited by malware for infection and spreading. 

2.7.2. Vulnerabilities in the Smartphone’s OS 

Given the smartphone’s OS is not entirely free of security vulnerabilities, hackers may 

exploit such vulnerabilities to infect the phone with malware. In other words, keeping 

the Android OS up to date can be a great barrier against malware infection.  

2.7.3. Social Engineering 

Mostly overlooked, but a common vector of infection for malware is through use of 

social engineering techniques. This technique exploits not software vulnerabilities but 

human psychology through elements of shock and surprise. An e-mail claiming to 

come from your bank with a malicious attachment or requiring the installation of 

malware disguised, as fake codecs to view a shocking video are examples of how 

social engineering attacks may be carried out. The goal of such techniques is to trick a 

user to install the malware on their system by their own actions. 

2.7.4. Third Party App Stores 

The third party app stores for Android are known for their weak security precautions 

and they are responsible for the biggest rate of malware infection on the Android 

platform. This is considered as the most popular way for malware distribution for most 

malware authors. 
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2.7.5. Brute Forcing the User’s Accounts 

Any weak or default password of a user account for a remotely accessible service, be 

it FTP or SSH, is susceptible to remote brute-force attacks. Likewise, some malware 

are programmed to launch brute-force attacks autonomously on specific user accounts 

in order to propagate inside the network to be able to infect other devices. 

2.7.6. Drive-By Downloads on the Android 

Another common infection vector for malware is drive-by downloads. It usually works 

by exploiting a vulnerability in the target’s web browser to download and execute 

malicious code on the target computer.  Drive-by downloads follow a pull-based 

scheme (Provos, Mavrommatis, Rajab, & Monrose, 2008), namely, the user 

unknowingly initiates the connection to download malicious code in contrast to push 

based schemes in which attackers actively discover and exploit vulnerabilities present 

on services of a network or a computer. 

2.8. Relevant Data Mining and Machine Learning Background 

Data mining is the processing large amounts of data to uncover unseen patterns and 

the types of learning that can be used are classification, clustering, association or 

anomaly detection. The work in this thesis falls under the classification (malware or 

benign) type of data mining using supervised learning. In supervised learning, a set of 

labeled input is fed into the data mining model for learning, which in turn classifies it 

into a class, in our case, malicious or benign.  

Data mining can be further categorized as predictive data mining and descriptive data 

mining. In predictive data mining, the aim is to deduct values from given datasets and 

in descriptive data mining, the aim is to deduct patterns that describe the dataset.  

Many data mining models and algorithms can be used for the task of malware detection 

such as Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), 

decision trees, association rule mining, k-Nearest Neighbour (k-NN) and others.  Each 

of these models can perform better under certain circumstances, as well as performing 

worse under certain circumstances, namely, each one has its strengths and weaknesses. 

No one algorithm or model can meet all the expectations at once. 
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The group of machine learning algorithms and techniques that are essential for an 

adequate understanding of this Ph.D. work will be explained in detail in this section. 

2.8.1. K-Nearest Neighbor (K-NN) 

The method k-NN aka Instance-based Learner (Aha, Kibler, & Albert, 1991) has a high 

computation cost when given large datasets and was first described in the early 1950s. 

Based on learning by analogy, which is a comparison of a chosen instance with 

instances that are close to it in distance wise. When given an unknown tuple, a k-NN 

classifier searches the pattern space for the k training tuples that are closest to the 

unknown tuple. These k training tuples are the k “nearest neighbors” of the unknown 

tuple. “Closeness” is defined in terms of a distance metric, such as the Euclidean 

distance metric or the Manhattan distance metric. 

The Euclidean distance between two points or tuples, for 𝑥𝑥1 = (𝑥𝑥11, 𝑥𝑥12, . . . , 𝑥𝑥1𝑛𝑛) and 

𝑥𝑥2 = (𝑥𝑥21, 𝑥𝑥22, . . . , 𝑥𝑥2𝑛𝑛) is computed by: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥1, 𝑥𝑥2) = ��(𝑥𝑥1𝑖𝑖 − 𝑥𝑥2𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1  

2.8.2. Support Vector Machines (SVMs) 

SVMs (Cortes & Vapnik, 1995) are a very powerful method that has been utilized in a 

wide variety of applications. It can be used to classify both linear and nonlinear data. 

For nonlinear data, a nonlinear mapping technique is used to transform the original 

training data into a higher dimension. The linear optimal separating hyperplane is 

searched within this new dimension. The hyperplane classifier or linear separability is 

the basic concept in SVMs. To achieve linear separability, SVM applies two basic ideas: 

margin maximization and kernels, namely mapping input space to a higher dimension 

space. The expectation is that the hyperplane with the larger margin will be more 

accurate at classifying future data tuples than the hyperplane with the smaller margin.  

Owing to their ability to model complex nonlinear decision boundaries they are highly 

accurate and much less prone to overfitting compared to other data mining models, 

SVMs can be used for prediction or classification in areas including but not limited to 

handwritten digit recognition, object recognition, and speaker identification.  
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Figure 3.4. Support Vector Machine (SVM) (Han, Kamber, & Pei, 2006) 

2.8.3. Decision Trees 

Classification by decision tree involves constructing a decision tree, it is essentially a 

collection of decision nodes in which the internal nodes of a decision tree correspond 

to attributes and leaf nodes correspond to class labels (Kolter & Maloof, 2004). 

Attributes and values of an instance are used by a performance element to traverse the 

tree from the root to a leaf. A predictive model is used that maps observations about 

an item to conclusions about the item's target value. 

In classification trees, the target variable can take a finite set of values. Leaves 

represent class labels and branches represent conjunctions of features that lead to those 

class labels. In regression trees, the target variable can take continuous values.  

A tree is traversed from the root to a leaf to collect values of attributes for prediction 

of the leaf node. The attribute that best splits the training set into their corresponding 

classes is selected to build the decision tree. 

A node, branches, and children are assigned for each attribute and its values, the 

examples are distributed to corresponding child nodes. This process is repeated 

recursively until a node contains examples of the same class and lastly, it stores the 

class label. The gain ratio is mostly used for attribute selection which is based on 
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information gain (Patel & Upadhyay, 2012). In order to prevent or lessen overfitting 

in decision trees, pruning of the tree is mostly employed, which removes sub-trees that 

are likely to perform poorly on test data and are likely to be redundant information. 

2.8.3.1. C4.5 

C4.5 (Quinlan, 1986, 1993) is a decision tree learner algorithm that precedes C5.0, 

which is a proprietary learner and closed source. As the source code for C4.5 is 

publicly available, it will be described instead of the C5.0. J48 is the decision tree 

algorithm that was used during the experiments in this Ph.D. work, and it is an open 

source Java based implementation of the C4.5 Decision Tree algorithm that is available 

in the Waikato Environment for Knowledge Analysis (WEKA) (Weka, 2018) Platform. 

C4.5 constructs decision trees using a top-down recursive divide-and-conquer manner. 

A top-down approach is followed by most decision trees that starts with a training set 

and their corresponding class labels. 

C4.5 recursively partitions the training set into smaller subsets during the tree 

construction process. The attributes are selected depending on the gain ratio criterion 

and a decision tree is built up in which a specific classification rule is represented by 

each path from the root to any selected leaf. 

2.8.3.2. Random Forest 

The Random Forest (Breiman, 2001; Tin Kam, 1995) decision tree classifier, classifies 

a sample based on the majority vote of classification generated by multiple 

classification trees. K trees are independently generated by this classifier, which makes 

it easily parallelizable. 

A full binary tree of a given depth is constructed for each tree and the features used in 

each tree are selected in a random way, in other words, the same feature can be present 

more than one time. This derives an algorithm that votes the classification results of K 

random trees, in other words, it is an ensemble learner composed of K decision trees. 

Each tree is grown using the following procedure (Breiman & Cutler, 2011): 

• Let us denote the number of cases in the training set as “N”. From the original 

data, sample N cases at random with replacement are selected. This sample will 

compose the training set for growing the tree. 
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• Given there are “M” input variables, a number “m<<M” is specified in a way 

that at each node, m variables are selected randomly out of the M and the best 

split on these m is used for splitting the node. During the process of forest 

growing, the value of m is held constant. 

• Each tree is grown as much as possible without pruning. 

Given most of the selected features are relevant this algorithm produces the best results, 

as the feature subset selected for any given tree are small. 

2.8.4. Naive Bayes 

The Naive Bayes classifier is categorized as a statistical classifier, specializing in the 

prediction of class membership probabilities, such as predicting the probability of a 

given sample belonging to a particular class. Bayes’ theorem is named after Thomas 

Bayes, a scientist who did early work in probability and the decision theory. 

Let X be a data tuple or a row in the database. In terms of the Bayes’ theorem, X is 

considered as an "evidence". Hence, it must be described by measurements made on a 

set of n attributes. Let H be a hypothesis that states the sample X belongs to a 

predefined class C. In classification problems, one needs to determine 𝑃𝑃 = (𝐻𝐻|𝑋𝑋) , 

where P is the probability that the hypothesis H holds given the "evidence" or the 

observed sample X. Namely, the probability that the sample X belongs to the class C 

has to be found, given that we know the attribute description of X. 

The working principles of the Naïve Bayes classifier will be given in formulas below 

(Han et al., 2006): 

Let D stand for the training set and the associated class labels. An n-dimensional 

attribute vector represents each sample that are denoted by 𝑋𝑋 = (𝑥𝑥1,𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛)  and 

depicts n measurements made on the sample from n attributes, which are given by 

𝐴𝐴1,𝐴𝐴2, . . . ,𝐴𝐴𝑛𝑛  , respectively. 

If there are m classes denoted by 𝐶𝐶1,𝐶𝐶2, . . . ,𝐶𝐶𝑚𝑚  and there is a sample X, then the 

classifier will predict that X belongs to the class with the highest posterior probability, 

conditioned on X. In other words, the naïve Bayesian classifier predicts that the sample 

X belongs to the class 𝐶𝐶𝑖𝑖 if and only if, 

𝑃𝑃(𝐶𝐶𝑖𝑖|𝑋𝑋) > 𝑃𝑃(𝐶𝐶𝑗𝑗|𝑋𝑋) , for 1 ≤ 𝑗𝑗 ≤ 𝑚𝑚, 𝑗𝑗 ≠ 𝑖𝑖. 
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Hence, 𝑃𝑃(𝐶𝐶𝑖𝑖|𝑋𝑋) is maximized for the class 𝐶𝐶𝑖𝑖 and it is called the maximum posteriori 

hypothesis. By Bayes’ theorem, 

𝑃𝑃(𝐶𝐶𝑖𝑖|𝑋𝑋) =  
𝑃𝑃(𝑋𝑋|𝐶𝐶𝑖𝑖 )𝑃𝑃(𝐶𝐶𝑖𝑖)

𝑃𝑃(𝑋𝑋)  

In this equation, only 𝑃𝑃(𝑋𝑋|𝐶𝐶𝑖𝑖 )𝑃𝑃(𝐶𝐶𝑖𝑖) need be maximized as 𝑃𝑃(𝑋𝑋) is constant for all 

classes. Given the class prior probabilities are unknown, it is assumed that the classes 

are equally likely, implying, P (𝐶𝐶1) = P (𝐶𝐶2) = … P (𝐶𝐶𝑚𝑚), and thus 𝑃𝑃(𝑋𝑋|𝐶𝐶𝑖𝑖) would need 

to be maximized. Otherwise, 𝑃𝑃(𝑋𝑋|𝐶𝐶𝑖𝑖 )𝑃𝑃(𝐶𝐶𝑖𝑖) would have to be maximized.   

The fact that datasets commonly have many attributes, makes computing 𝑃𝑃(𝑋𝑋|𝐶𝐶𝑖𝑖) 

exceedingly computationally expensive. The naive assumption of class conditional 

independence is made in order to reduce the computational cost of computing  𝑃𝑃(𝑋𝑋|𝐶𝐶𝑖𝑖). 

This assumption implies that the given the class label of the tuple, the values of the 

attributes are conditionally independent from one another, in other words, there are no 

dependence relationships among the attributes. Thus,  

𝑃𝑃(𝑋𝑋|𝐶𝐶𝑖𝑖) =  �𝑃𝑃(𝑥𝑥𝑘𝑘|𝐶𝐶𝑖𝑖) 
𝑛𝑛

𝑘𝑘=1
 

                                               = P(𝑋𝑋1|𝐶𝐶𝑖𝑖) 𝑥𝑥P(𝑋𝑋2|𝐶𝐶𝑖𝑖)𝑥𝑥. . . 𝑥𝑥P(𝑋𝑋𝑛𝑛 |𝐶𝐶𝑖𝑖)  

2.8.5. Neural Networks 

A Neural Network is a fine-grained, parallel, distributed model of computation 

characterized by the following list of distinctive features: 

• It contains a large number of simple, neuron-like processing elements, which are 

called nodes or, units. 

• Typically, a large number of weighted (positive or negative real values), directed 

connections are present between pairs of nodes. 

• Local processing carried out by each node computes a function, which is also 

dependent on the outputs of a number of other nodes inside the network. 

Each node computes a simple function from their input values, which are the weighted 

outputs from the other nodes. Given there are n inputs to a node, the node’s output, or 

activation, is definable by: 
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 𝑎𝑎𝑖𝑖
(𝑘𝑘) = g (∑ Θ𝑖𝑖,𝑗𝑗𝑘𝑘 𝑥𝑥𝑗𝑗)𝑛𝑛

𝑗𝑗=0  

In this equation 𝑎𝑎𝑖𝑖
(𝑘𝑘)is the activation of the node “i” in the layer “k”, and 𝜃𝜃𝑘𝑘 is a matrix 

of weights controlling function mapping from the layer “k” to the layer “k + 1”. Hence, 

each node computes a function g of a linear combination of its inputs. 

 

Figure 4.5. Artificial Neural Network that contains one hidden layer 

2.8.5.1. Multilayer Perceptron (MLP) 

A Multilayer Perceptron (MLP) is a feedforward artificial neural network that 

generates a set of outputs from a set of inputs. It is characterized by several layers of 

input nodes which are connected as a directed graph between the input and output 

layers. An MLP has at least three layers of nodes and each node is a neuron that utilizes 

a nonlinear activation function, except for the input nodes. MLP uses a supervised 

learning technique called backpropagation for training the network (Rumelhart, 

Hinton, & Williams, 1986; Van Der Malsburg, 1986). The fact that it has multiple 

layers and uses non-linear activation make it different from a linear perceptron. Thus, 

it can distinguish data that is not linearly separable (Cybenko, 1989). Since there are 

multiple layers of neurons, MLP is a deep learning technique.  

MLP is widely used for solving problems that require supervised learning as well as 

in research areas such as computational neuroscience and parallel distributed 
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processing. Current application fields include but not limited to speech recognition, 

image recognition and machine translation. 

2.8.5.2. Backpropagation Algorithm 

In artificial neural networks, backpropagation, short for "backward propagation of 

errors," is a method that is used to calculate a gradient required in the calculation of 

the weights that will be used in the network (Goodfellow, Bengio, & Courville, 2016). 

The method, when input an artificial neural network and an error function is used to 

calculate the gradient of the error function with respect to the neural network's weights,  

The calculation of the gradient proceeds backwards through the network adds to the 

algorithm’s name “backwards”, in the procedure of calculating gradient proceeds 

backwards through the network the gradient of the final layer of weights are calculated 

first and the gradient of the first layer of weights is calculated last. During the 

computation of the gradient for the previous layer, partial computations of the gradient 

from one layer are reused. Efficient computation of the gradient at each layer is 

achieved through this backwards flow of the error information. 

2.8.6. Radial Basis Function (RBF) 

Radial Basis Functions (RBFs) focus on the rebuilding of unknown functions from 

known data (supervised learning). The functions are generally multivariate, and they 

may be solutions of partial differential equations that satisfy specific additional 

conditions. However, the rebuilding of multivariate functions from data can only be 

accomplished if the space furnishing the “trial" functions is not fixed in advance, but 

is data dependent (Mairhuber, 1956).  

A radial basis function, RBF, 𝜙𝜙(𝑥𝑥) is a function defined in relation to the origin or a 

certain point c, that is 𝜙𝜙(𝑥𝑥) = 𝑓𝑓( ||x-c||) where the norm is generally the Euclidean 

norm but can also be another type of measure. 

The RBF learning model assumes that the hypothesis set ℎ(𝑥𝑥) is influenced by the 

dataset 𝐷𝐷 = (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛), n = 1 … N for a new observation 𝑥𝑥, in the following way: 

ℎ(𝑥𝑥) = �𝑤𝑤𝑛𝑛𝑥𝑥 exp(−γ ||𝑥𝑥 − 𝑥𝑥𝑛𝑛||2
𝑁𝑁

𝑛𝑛=1

) 
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This equation implies that each 𝑥𝑥𝑖𝑖  of the dataset influences the observation in a 

Gaussian shape. Given a data point that is far away from the observation, its influence 

becomes residual due to the exponential decay of the tails of the Gaussian. This is an 

example of a localized function (𝑥𝑥 → ∞ ⇒ 𝜙𝜙(𝑥𝑥) → 0); however, other types of radial 

functions can also be used, such as: 

Multi-quadratic: 𝜙𝜙(𝑥𝑥) =  �𝑥𝑥2 + γ2 

Thin plate spline: 𝜙𝜙(𝑥𝑥) = 𝑥𝑥2 ln(𝑥𝑥) 

2.8.7. Ensemble Learning Methods 

Ensemble classifiers are utilized due to the fact that the classification accuracy of a 

group of classifiers is typically higher compared to the accuracy of a single classifier 

(Dietterich, 2000; Martínez-Muñoz & Suárez, 2007; Polikar, 2006). A binary tree is 

constructed by the base classifier in which each node operates on one of the features 

from the dataset. Weighted voting is used to combine the predictions of the individual 

base classifier to decide the class of the test samples. When selecting the individual 

classifiers there are two important criteria that must be satisfied: accuracy must be 

above a certain threshold, in other words, it must be at least better than results from a 

random guess and a degree of diversification between the classifiers must be present 

that often leads to different errors on the new dataset (Saha, Pal, & Konar, 2016). 

2.8.7.1. Boosting 

Boosting is a method of enhancing the performance of individual classifiers by 

combining multiple machine learning algorithms. During the boosting process, a set 

of weighted models are produced via iterative learning of the model from a weighted 

dataset. Afterwards, the model is evaluated, and the dataset is reweighted on the basis 

of the model’s performance. 

Boosting emerged from the idea of combining simple rules to form an ensemble in 

order to enhance the performance of a single ensemble member. Let ℎ1,ℎ2, … , ℎ𝑇𝑇 

denote a set of hypotheses, and consider the following composite ensemble hypothesis: 

ℎ(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(�𝛼𝛼𝑡𝑡ℎ𝑡𝑡(𝑥𝑥))
𝑇𝑇

𝑡𝑡=1
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In this equation, each ℎ(𝑥𝑥) is a classifier that produces values ±1 , and  𝛼𝛼𝑡𝑡 denotes the 

coefficient with which the member  ℎ𝑡𝑡 is combined. During the boosting procedure, 

both 𝛼𝛼𝑡𝑡 and the hypothesis  ℎ𝑡𝑡 are to be learned. 

The boosting procedure updates the weight of each sample at each iteration, to ensure 

that the misclassified ones get more weighting during the next iteration. In other words, 

boosting focuses on the samples which are harder to classify. 

The AdaBoost algorithm which refers to adaptive boosting (Bishop, 2006; Han et al., 

2006; Hastie, Tibshirani, & Friedman, 2001) is the most widely known and used 

boosting algorithm, it was also utilized in the experiments of this Ph.D. thesis. 

The AdaBoost algorithm works as follows: the weights for all the classified samples 

are updated each time AdaBoost creates a new weak classifier, given the process is 

iterated T times. The weights of the samples that were misclassified are increased and 

the weights of the samples that were correctly classified are decreased. This process 

continues in a loop with each new set of weighted samples (Saha et al., 2016). 

It is called adaptive due to the fact that it focuses on samples that were misclassified 

in the previous iterations. 

2.8.7.2. Bagging 

In Bagging or Bootstrap Aggregating, the classifiers are trained by different datasets 

which are obtained from bootstrapping the original dataset, in other words, a subset of 

the dataset is constructed via randomly selecting n samples with replacement from the 

original dataset. This resampling procedure, which is repeated T times, explores the 

diversity among the weak classifiers. At the final step, majority voting on the outputs 

of the weak learners determines the class of an unknown sample (Saha et al., 2016).  
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CHAPTER 3 

LITERATURE REVIEW 

In this chapter, a broad literature review on the topic of malware detection approaches 

on the Android using machine learning techniques is given. 

3.1. Approaches for Malware Detection on the Android that use 

Machine Learning Methods 

Approaches to detecting malware on Android can be broadly categorized into two 

categories. The first category aims to detect Android malware prior to its installation 

on the device (static analysis) and the second category aims to detect after installation 

via monitoring of run-time behavior (dynamic analysis).  Some of the low-level 

features extracted in the static analysis include calls to external libraries, strings, and 

byte sequences, while more detailed features such as the list of API calls or the 

graphical representations of the control flow may be utilized as well (Cesare & Xiang, 

2010). The main problem with the dynamic analysis is the significant overhead 

incurred compared to the overhead incurred when using a static analysis method.  

One of the first studies on the Android permission model, its internal components and 

interactions were published by (Enck, Ongtang, & McDaniel, 2009). Following this 

study, a solution based on monitoring events occurring at the Linux kernel was 

proposed by Schmidt et al. (A. D. Schmidt et al., 2008). Features which were extracted 

from the Linux kernel, such as system calls and latest modified files, were used to 

create a baseline model of smartphone usage. Because Android was still in infancy at 

the time, no tests on real Android devices could be carried out. 

Shortly after, the same authors (A.-D. Schmidt et al., 2009) implemented a method for 

static analysis of the APK files to extract function calls in the Android environment. 

In their study, they compared function call lists to malware APK files in order to 

classify the function calls. 

In order to identify specific privacy violations, a methodology for static analysis of 

Android applications was implemented by SCanDroid (Fuchs, Chaudhuri, & Foster, 
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2009) that works by extracting the security specifications from the manifest file and 

checking whether all data flows are consistent with the predefined specifications. 

Bläsing et al. (Bläsing, Batyuk, Schmidt, Camtepe, & Albayrak, 2010) proposed a 

dynamic analysis methodology that makes use of an Android application sandbox. 

After performing static analysis by dissembling Android APK files in order to detect 

malicious patterns, dynamic analysis is carried out that execute applications in a 

sandbox. During the execution of the file in question in the sandbox, relevant events 

such as opened files, accessed files, and battery consumption are monitored. An 

application simulating user interaction called “ADB Monkey” was made use of, which 

can be seen as the main drawback of this proposed method due to the fact that the 

simulated user interaction may not clearly represent the real world user interaction 

patterns. 

Wu et al. proposed DroidMat  (D. Wu, Mao, Wei, Lee, & Wu, 2012) that makes use of 

several features including permissions, deployment of components, intent messages 

and API calls. They collected their malware samples from the “Contagio mobile” 

(ContagioMobile, 2016) website and the benign samples were downloaded from the 

Google Play Store. They had 238 malware and 1500 benign application samples in 

their dataset. A number of different types of clustering algorithms were used to classify 

applications as benign or malicious and a detection rate of 97.87% was achieved. 

Developers of DroidAPIMiner (Aafer, Du, & Yin, 2013) proposed an approach that 

relies on API level information within the bytecode representation of APK files. More 

specifically, they utilize requested permissions, critical API calls, package-level 

information and app parameters in their machine learning process for Android malware 

detection. They developed a tool called the DroidAPIMiner built on top of the 

Androguard libraries and used the RapidMiner (RapidMiner, 2017) application to 

build their machine learning classification models. Their dataset was collected from 

three different sources, for the malware samples they used McAfee repositories and 

the MalGenome project, for the benign samples they used the Google Play store. They 

analyzed around 20,000 apps, out of which 3987 of them are malware apps and about 

16000 of them are apps collected from the Google Play Store. In their approach, they 

used the ID5 decision tree (Quinlan, 1986), C4.5 decision tree (Quinlan, 1993), k-NN 

(Aha et al., 1991) and SVM (V Vapnik, 1995) machine learning algorithms. They 
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achieved 99% accuracy and 2.2% false positive rates on their dataset using the K-NN 

classifier. 

TaintDroid (Enck et al.), an information flow tracking tool for Android, enables 

dynamic taint tracking capability. In order to provide enhanced visibility and control 

over how an application uses private data, it simultaneously monitors multiple sources 

of sensitive data. Real-time analysis of applications is achieved by leveraging 

Android’s virtualized execution environment, the Dalvik VM. Multiple sources of 

private data are labeled according to four levels of monitoring, namely variable level, 

method level, file level and message level. Similar to the working principle of an IDS, 

an alarm is raised in case the labeled data leaves the system through an untrusted third-

party application. 

A study on Android permissions focusing on how to conduct effective risk 

communication was published by (Peng et al., 2012). Specifically, they proposed 

applying probabilistic learning methods to calculate risk scores according to the 

requested permissions of an Android app. They conducted their experiments on real-

world datasets and their results showed that probabilistic general models significantly 

outperform the existing approaches, and that the Naive Bayes models provide for a 

promising risk scoring approach. 

Droidbox (Lantz, Desnos, & Yang) is built on top of TaintDroid with the added 

functionality of monitoring the Android API and reporting on the file system and 

network activity as well as the use of cryptographic operations and cell phone usage 

by using a patched Dalvik VM. A timeline view of the monitored activity is presented 

to the user which makes it useful for manually identifying malware by viewing its 

observed behavior. 

ComDroid (Chin et al., 2011) performs static analysis of decompiled bytecode of 

Android applications to find Android Intents sent with weak permissions. 

Crowdroid proposed by Burguera  et al. (Burguera, Zurutuza, & Nadjm-Tehrani, 2011), 

is a dynamic analysis and machine learning based framework. It recognizes Trojan-

like malware on Android smartphones, by analyzing the number of times a system call 

has been issued that requires user interaction by an application during the processing 

of a request. The monitored features are analyzed in the cloud and the collected 
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observations are classified using K-Means, reaching a claimed detection rate of 100% 

for the malware samples they had implemented themselves. 

Yerima et al. (Yerima, Sezer, McWilliams, & Muttik, 2013) present an approach based 

on Bayesian classification models obtained from static code analysis. The models were 

built from a collection of code and app characteristics that provide indicators of 

potential malicious activities. These models were evaluated with real malware samples 

reaching the highest detection rate of 90.60%. 

A classification approach with high accuracy was proposed by (Elish, Shu, Yao, Ryder, 

& Jiang, 2015) in which a data-flow feature on how user inputs trigger sensitive API 

invocations was extracted statically.  Their approach was evaluated on 1433 malware 

and 2684 benign samples and achieved 2.1% false negative and 2.0% false positive 

rates. They based their classification method on enforcing carefully chosen benign 

properties in apps that are observable in benign samples, while not observable in 

malware samples. It was claimed by the authors that, this enforcement of benign 

properties through app classification will give the defenders an edge against combating 

malware. 

A broad analysis of Android applications to detect on-device malware was performed 

by (Arp et al., 2014). The researchers built an app called “Drebin” and favored 

conducting initial extensive static analysis in order to avoid depletion of limited 

resources of a smartphone quickly. Their space of extracted features was decided to be 

as large as possible and is organized in sets of strings, that include permissions, API 

calls, and network addresses. All the extracted features are later embedded in a joint 

vector space with the aim of automatically identifying typical patterns indicative of 

maliciousness. Their experiments were conducted with 5,560 malware samples and 

123,453 benign apps from a number of app markets. Malware detection rate of 94% 

and false-positive rate of 1% were achieved by utilizing the SVM machine learning 

classifier. 

Malicious Android applications Detection through String analysis (MADS) (Sanz et 

al., 2013), extracts strings from Android APK files in order to construct machine 

learning classifiers to detect Android malware.  333 unique malware samples and 333 

unique benign samples were used in their experiments.  They employed text mining to 

represent each different Android application. 6 different algorithms which are, Naive 
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Bayes, Bayesian Network, SVM, k-NN, J48 and Random Forest were used in their 

experiments within the WEKA machine learning platform, with each algorithm 

configured to use the default configuration. They used the k-fold cross-validation 

technique in order to get their test results. They achieved the highest accuracy of 94.70% 

using the SVM Poly algorithm. 

Authors of (S. Wu, Wang, Li, & Zhang, 2016) proposed an Android malware detection 

method that uses dataflow APIs as features within a machine learning approach. They 

conducted a thorough analysis to extract the dataflow-related API-level features and 

to improve the k-NN classification model. By further optimizing the dataflow-related 

API list, the efficiency of the sensitive data transmission analysis was increased 

considerably. Their dataset contained 1160 benign and 1050 malicious samples, and 

they obtained accuracy rates as high as 97.66%. The dataflow API was the only feature 

used during the whole data mining process. 

Constituting a real-time malware detection system, TStructDroid (Shahzad, Akbar, 

Khan, & Farooq, 2013) uses various methods such as time-series feature logging, 

segmentation and frequency information extraction from the data. A novel information 

processing framework was proposed to extract the hidden patterns in the execution 

traces. Their detection system depends on majority voting on a segment of feature 

instances to make a decision about an executing application. J48 decision tree based 

classifier was preferred to be used by the framework. In standard cross-validation tests, 

they received accuracy in the range of 90 - 93.6% and false positive (FP) rate of 5.4 - 

7.3%. However, in real-world scenarios, in which they used zero-day malware, they 

claim to reach promising results with 98% accuracy and less than 1% false alarm rate 

with a dataset containing only 110 benign and 110 malware Android APK files. 

DroidScope (Yan & Yin, 2012) is a multilevel semantic analysis tool that performs 

dynamic profiling and information tracking to detect malicious behavior and privacy 

leaks on the Android platform. It performs instruction trace and API call monitoring 

and uses taint analysis to discover leakage of sensitive information. Has been tested 

on a dataset of just two Android malicious files. 

A multilevel anomaly detection technique for detecting Android malware (MADAM) 

was proposed by Dini et al. (Dini, Martinelli, Saracino, & Sgandurra, 2012) that 

operates in the kernel and the user-space at the same time. The multilevel view of the 
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system makes it possible to deduce a rich feature space that enables detection of 

previously unknown malware. The framework operates in training, learning and 

operation phases. In the classification phase, the k-NN algorithm is used.  By 

incorporating new feature vectors in training and learning sets at runtime, the machine 

learning model aims to improve detection rates. They reached an average accuracy of 

93% and a false positive rate of 5% on 10 malicious and 50 benign apps. 

Smartdroid, proposed by (Zheng et al., 2012), is a hybrid automatic malware detection 

framework that monitors user's interaction with the interface. Activity control graphs 

and function call graphs are built by a static path selector during static analysis. 

Function call graphs are updated for indirect and event-driven API calls. For dynamic 

analysis, Android framework code is modified and a restrictive component is added to 

limit the new activities that are created after interacting with the user interface. 

An approach utilizing ensemble learning was proposed by Yerima et al.  (Yerima, Sezer, 

& Muttik, 2015) for Android malware detection. Their aim was improving Android 

malware detection accuracy by combining static analysis with the efficiency and 

performance advantages of utilizing the ensemble of machine learning algorithms. 

2925 malware and 3938 benign applications collected from the McAfee’s internal 

repository were used in their experiments. The method proposed by them, utilized a 

large feature space to leverage the power of ensemble learning and achieved detection 

accuracy rates ranging between 97.3% and 99%. 

Authors of Mlifdect (Wang, Zhang, Su, & Li, 2017) claim that the traditional machine 

learning based malware detection methods have limited detection accuracy due to the 

utilization of single classification algorithms. They propose a novel approach that 

leverages parallel machine learning and information fusion techniques for better 

Android malware detection. They extract eight types of features via static analysis that 

include permissions, API calls, and deployment of components. They developed a 

parallel machine learning detection model in order to speed up the process of 

classification. Their dataset is composed of 8,385 apps, out of which 3,982 are malware 

and the rest are benign. Their malware samples were collected from the Drebin (Arp 

et al., 2014) and MalGenome (Zhou & Jiang, 2012) projects, and their benign samples 

were downloaded from the Google Play Store. The proposed approach can classify 

Android benign and malware apps with 99.7% accuracy. 
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Authors in (Alzaylaee, Yerima, & Sezer, 2017) utilize real phones in their research for 

automated feature extraction in an attempt to alleviate the problem of anti-emulator 

techniques’ usage by Android malware in order to evade detection. Dynamic features 

were automatically extracted from Android phones and through several experiments a 

comparative analysis of emulator based vs. device based detection were performed. 

They used 222 malware samples obtained from the MalGenome project and 1222 

benign samples obtained from Intel Security (McAfee Labs). A real phone and an 

emulator environment created by a Santoku Linux Virtual Box (SantokuLinux, 2018) 

based machine were used during the experiments. WEKA data mining platform was 

utilized in their experiments and from the 178 extracted features, 100 of them were 

selected after ranking them by using the InfoGain (information gain) feature ranking 

algorithm in WEKA. They used the linear SVM, Naive Bayes, Simple Logistic, MLP, 

PART (Partial Decision Trees), Random Forest, and J48 Decision Tree algorithms in 

their experiments. Several different experiments were conducted, in which emulator 

to real device machine learning detection was compared, and comparison of the results 

to several previous works was made (Amos, Turner, & White, 2013; W.-C. Wu & Hung, 

2014). Their results from the phone-based analysis achieved up to 0.926 F-measure 

along with 93.1% true positive rate (TPR), but also a poor performance of 14.85% 

false positive rate (FPR) using the Random Forest classifier and phone-based 

experiments were found to achieve better rates overall compared to emulator based 

experiments. 

Authors in (Yerima, Sezer, & Muttik, 2014) propose a parallel machine learning based 

classification approach for early detection of Android malware. From the parallel 

combination of heterogeneous classifiers, a composite classification model was 

developed. Static features are extracted to be used in the learning phase of the model 

development. Three features are extracted which are: API related features, app 

permissions and the standard OS as well as Android framework commands. The 

machine learning classifiers used during the experiments are Decision Tree, SL, Naive 

Bayes, PART, and RIDOR (Ripple-Down Rule). A composite model of the 

aforementioned heterogeneous classifiers was utilized in various parallel combination 

machine learning schemes. 125 permissions along with 54 API calls and commands 

related features were extracted. 6,863 applications from the McAfee’s internal 

repository were collected with 2,925 malicious apps and 3,938 benign apps. Among 
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all the classifier results, the PART classifier achieved the highest detection ratio at 

95.8%. 

Another approach that uses permissions and API calls as features within a machine 

learning context was proposed by Peiravian and Zhu (Peiravian & Zhu, 2013). Several 

classifiers such as SVMs, Decision tree and Bagging were utilized in the experiments. 

They constructed three benchmark datasets, each with the same number of samples, 

but with different numbers of features. They gathered 2510 samples, out of which 1260 

of them are malware and the remaining 1250 are benign samples. They eliminated 

malware with identical feature values from the dataset and ended up with 610 malware 

samples from 49 different malware families of the MalGenome dataset. The benign 

applications were downloaded from the Google Play Store’s 25 different app 

categories. Their approach achieved the highest detection ratios using the SVM 

classifier with an accuracy percentage of 96.88% and a recall percentage of 94.8%. 

In a more recent study published by Alatwi et al. (Alatwi, Oh, Fokoue, & Stackpole, 

2016), the authors argue that category based machine learning classifiers enable 

considerable higher average detection rates in comparison to non-category based 

classifiers. For each category, a malware detection classifier is trained separately. They 

associate between the apps' features and the features that are needed to deliver its 

category's functionality, in other words, an association is formed between the features 

that the app requests and a common set of features for its category. APK files were 

reverse engineered into their native JAVA source codes and the permissions, broadcast 

receivers and API calls features were extracted. They constructed three datasets, 70% 

of each dataset was used for training and the 30% for testing. The datasets were also 

randomly shuffled in each round of the 50 iterations that were used to average the 

performance of the classifiers. Category based and non-category based SVM 

classifiers were used during the experiments and their results were compared. It was 

shown that, category based classifier achieves an average accuracy ratio of 98.72%, 

compared to the non-category based classifier’s average accuracy ratio of 94.58%. 

In the study published by (Mariconti et al., 2017), the authors present MAMADROID, 

which is an Android malware detection system that relies on app behavior. 

MAMADROID builds a behavioral model from the sequence of abstracted API calls 

as a Markov chain, and uses it to extract features and perform classification. Its 

performance was tested on a dataset of 8.5K benign and 35.5K malicious apps 
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collected over a period of six years. The fact that MAMADROID relies on the 

sequence of abstracted API calls performed by an app rather than their use or frequency 

is its novelty. They claim that using the sequence of abstracted calls as features enables 

modelling of behavior in a more complex way.  By building a statistical model to 

represent the transitions between the API calls performed by an app, they model these 

transitions as Markov chains, and use them to extract features and perform 

classification. In the classification phase, four different classifiers which are: Random 

Forest, 1-NN, 3-NN and SVM were used. Achieving the highest F-measure of 99%, it 

was shown to maintain a good detection performance ratio over three years: by 

achieving an F-measure value of 87% one year after the model has been trained, and 

an F-measure value of 73% after two years. 

A recent study published by (Onwuzurike et al., 2018) builds on MAMADROID to 

analyze the performance of static, dynamic and hybrid analysis methods, using the 

same modeling approach as (Mariconti et al., 2017).In order to port MAMADROID 

to dynamic analysis, CHIMP (Almeida et al., 2018) was modified, which is a platform 

recently proposed to crowdsource human inputs for app testing. API calls’ sequences 

were extracted from the traces produced while executing the app on a CHIMP virtual 

device. The developed system was named AUNTIEDROID and it is instantiated by 

using both pseudorandom input generators such as Monkey (Monkey, 2018) and user-

generated inputs. The main distinction of AUNTIEDROID from MAMADROID is 

that, the former is based on behavioral models extracted through dynamic analysis, not 

static analysis as in the case of the latter. For their dataset, the authors re-used the set 

of 2,568 benign apps labeled as “new benign” in (Mariconti et al., 2017), and 2,692 

Android malware from VirusShare (VirusShare, 2018). The authors note that 

combining static and dynamic analysis yields the best results by achieving an F-

measure of 0.92 and static analysis is claimed to be at least as effective as dynamic 

analysis. 

An improved Naive Bayes classifier, called the Normalized Bernoulli Naïve Bayes 

was proposed by (Sayfullina et al., 2015) to detect Android malware. They extract 

most of their 13 groups of features from three main Android files, which are 

AndroidManifest.xml, classes.dex and resources.arsc. Over 120,000 files from the 

year of 2014 with trustworthy malware or benign labels were obtained from F-Secure. 

The Bernoulli Naive Bayes model was chosen due to the relevance of using binary 
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features in two class classification problems. The Bernoulli Naive Bayes model was 

modified by tuning the Laplace smoothing parameter and normalizing the sum of log-

factors by the length of the file. The Normalized Bernoulli Naive Bayes that they 

presented outperformed Bernoulli Naive Bayes in the accuracy rates and enabled better 

overall class separation. On 10,000 training and 10,000 test samples they achieved 

TPR (True Positive Rate) of 82.10% and FPR (False Positive Rate) of just 0.1%.  

In a study published by (Dhaya & Poongodi, 2014), the authors apply the n-gram 

concept to find vulnerabilities in the apps by considering the source code as signatures. 

They decompile the APK files and extract the API call, Call flow and Device memory 

features. The main tasks carried out by the system are using static analysis to find bugs 

in the apps before publication at an app store and comparison of the n-gram signatures 

of samples to signatures which were already stored. The authors claim their method is 

effective in detecting malware in Android.  

A hybrid approach combining static and dynamic analysis was proposed by (Lindorfer, 

Neugschwandtner, & Platzer, 2015) called MARVIN. It leverages machine learning 

techniques to assess the risk associated with Android apps by producing a malice score 

for each. Both static and dynamic analysis are performed in an off-device manner and 

a comprehensive feature set is utilized to represent the properties and the behavioral 

aspects of each app. Their feature selection is based on using the F-score (Fisher score) 

(Chen & Lin, 2006) metric. Their dataset was comprised of 135,000 Android apps that 

included 15,000 malicious samples. MARVIN achieved a 98.24% detection rate and 

an FPR of less than 0.04%.  

In another study that employs online machine learning, the authors (Abdurrahman 

Pektaş, Çavdar, & Acarman, 2016) utilized the Cuckoo Sandbox (CuckooSandbox, 

2018) file analysis reports to extract behavioral features from Android malware. They 

obtained their malware samples from the VirusShare (VirusShare, 2018) malware 

sharing platform and evaluated their online machine learning algorithm on 2000 

samples belonging to 18 families. They employed the 10-fold cross-validation 

approach and achieved the highest classification accuracy of 89%. 

In a study published by (Milosevic, Dehghantanha, & Choo, 2017), the authors present 

two machine learning aided approaches for static analysis of Android malware: one 

based on utilizing the requested permissions of an app as features, the other based on 
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source code analysis using a bag of words representation model. The M0Droid 

(Damshenas, Dehghantanha, Choo, & Mahmud, 2015) dataset that contains only 200 

malicious and 200 benign samples, was utilized for the training and testing of the 

machine learning models. Their permission-based analysis is computationally 

lightweight and using the modified Weka 3.6.6 library for Android, was integrated into 

the permission scanner in OWASP Seraphimdroid application (Milosevic, 2018). In 

their source code based approach, they first decompile the APK files, and afterwards 

the decompiled code is utilized within a text mining classification approach that uses 

the bag of words model. They tokenize the source codes they obtain from the APK 

files into unigrams that are used as a bag of words. Several machine learning 

algorithms were utilized for the experiments including J48, Naive Bayes, SVM with 

SMO, Random Forests, JRIP, Logistic Regression and AdaBoostM1 with SVM base 

as well as ensemble learning with combinations of three and five algorithms that use 

majority voting. Their source code based classification achieved an F-score of 95.1%, 

while the permissions based approach obtained an F-measure of 89%. 

In Dendroid (Suarez-Tangil, Tapiador, Peris-Lopez, & Blasco, 2014), the authors use 

text mining approaches to automatically analyze smartphone malware samples and 

families based on the code structures present in their software components. The code 

structures represent the Control Flow Graph (CFG) of each method available in the 

app classes.  They constructed their dataset by selecting a subsample from the samples 

available in the MalGenome Project, containing 1231 malware samples grouped into 

33 families. They extract all different code structures from their dataset and a vector 

space model is used to associate a unique feature vector with each malware sample 

and family. By reformulating the modelling process followed in text mining 

applications, they achieved measurement of similarity between malware samples, 

which in turn was used to automatically classify them into families. They also 

investigate the application of hierarchical clustering over the feature vectors obtained 

for each malware family. The resulting dendograms resemble the so-called 

phylogenetic trees for biological species, enabling them to reason about evolutionary 

relationships among the malware families. Their experimental results came out with 

promising high detection accuracies. 

In the approach proposed by Coronado-De-Alba et al. (Coronado-De-Alba, 

Rodríguez-Mota, & Ambrosio, 2016), the authors present a meta-ensemble classifier 

43 



for Android malware detection and employ static analysis of the samples. They 

gathered 1531 malware and 1531 benign samples, while the malware samples were 

collected from the Drebin (Arp et al., 2014) project, the benign samples were collected 

from the Google Play Store. Their original dataset contained 3062 samples with 660 

features which were selected from permissions, intents, hardware and software. Chi-

squared and Relief feature selection algorithms were used on their balanced and 

unbalanced datasets. WEKA was used for running the classifiers by using the default 

parameter settings for each classifier. 10-fold cross-validation was used for getting the 

results. On their datasets, they applied all the possible classifiers in accordance with 

the characteristics of the datasets. They obtained the highest detection rate of 97.56% 

using the meta-ensemble RandomForest with 200 trees based in RandomCommittee. 

The largest measurement of Android malware behavior reported in the literature was 

carried out by (Suarez-Tangil & Stringhini, 2018), in which they analyzed over 1.28 

million malicious samples belonging to 1.2K families collected from the years 2010 

to 2017. As human analysis efforts fell short due to the scale of the study, specific tools 

were developed for the automated analysis of the dataset. Focusing specifically on 

repackaging malware, they aim to understand how the behavior of Android malware 

evolved from 2010 to 2017. In this type of threats, benign apps are piggybacked with 

a malicious payload, called a rider. To address the problem of separating the malicious 

part from the benign part of the repackaging malware, they employed differential 

analysis. All their samples, both benign and malware were collected from AndroZoo. 

In order to establish a systematic way of extracting rider methods, they mine methods 

that are common to members of the same family. For identifying which methods are 

common among samples of the same family, they build on top of Dendroid, the work 

that was mentioned previously. They extended Dendroid to recursively extract 

fragments from all available resources within the app of type DEX (Dalvik Executable) 

or APK. From the 1.2 million apps in their dataset they observed 155.7 million number 

of methods, out of which about 1.3 million were rider methods. Their research notes 

Android malware evolved rapidly from 2010 to 2017 and evidences the importance of 

developing anti-malware systems that are resilient to such changes. 

Another recent study utilized deep learning to construct an automatic framework for 

Android malware detection. In their paper, the authors propose MalDozer (Karbab, 

Debbabi, Derhab, & Mouheb, 2018), which uses neural networks on API method calls 
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for Android app classification. By automatically extracting the raw sequence of an 

app's API method calls, MalDozer learns the malicious and the benign patterns from 

the actual samples in order to detect Android malware. MalDozer was evaluated on the 

following datasets: The MalGenome Dataset, Drebin Dataset, their MalDozer dataset 

that contain 20,000 samples and a merged dataset of 33,000 malware samples along 

with 38,000 benign apps that were downloaded from the Google Play Store. In the 

experiments conducted on the aforementioned datasets, MalDozer achieved an F1-

score between 96% and 99%. Additionally, on the same datasets, MalDozer correctly 

classified each malware to their corresponding families with an F1-score between 96% 

and 98%. 

Table 3.1. Results Comparison of the Approaches in the Literature Review 

Name Year Features # of 
Malware # of Benign Accuracy 

DroidMat 2012 

Permissions, 
deployment 

of 
components, 

intent 
messages and 

API calls 

238 1500 97.87% 
 

DroidAPIMiner 2013 

Requested 
permissions, 
critical API 

calls, 
package-level 
information 

and app 
parameters 

3987 16000 99% 

Elish et al. 2015 A data-flow 
feature 1433 2684 2.1% (FN) 

2.0% (FP) 
MADS 2013 Strings 333 333 94.70% 

Wu et al. 2016 Dataflow 
APIs 1160 1050 97.66% 

TStructDroid 2013 - 110 110 90 - 93.6% 
MADAM 2012 - 10 50 93% 

Yerima et al. 2015 Large feature 
space 2925 3938 97.3% - 99% 

Mlifdect 2017 

Eight types of 
features 

extracted via 
static analysis 

3982 4403 99.7% 
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3.2. Approaches that Utilize Text Mining for Malware Detection 

In this section existing approaches that utilize text mining in their malware detection 

research will be mentioned by including the Windows OS in addition to the Android. 

In (Firdausi, Lim, Erwin, & Nugroho, 2010) the authors used Term Frequency (TF) 

weight in data pre-processing and built their dataset upon it. 

Yerima et al. 2014 

API related 
features, app 
permissions 
and Android 
framework 
commands 

2925 3938 95.8% 

Alzaylaee et al. 2017 Dynamic 
features 222 1222 93.1% (TPR) 

Peiravian et al. 2013 Permissions 
and API calls 1260 1250 96.88% 

Alatwi et al. 2016 

Permissions, 
broadcast 

receivers and 
API calls 

- - 98.72% 

MARVIN 2015 Comprehensive 
feature set 15,000 120,000 98.24% 

Coronado-De-
Alba et al. 2016 

Permissions, 
intents,  

hardware and 
software 

1531 1531 97.56% 

MalDozer 2018 
Raw sequence 
of an app's API 

method calls 
33,000 38,000 96% - 99% (F1-

score) 

Pektas et al. 2018 Behavioral 
features 2000 - 89%. 

Milosevic et al. 2017 Source code 
analysis 200 200 95.1% (F-measure) 

Sayfullina et al. 2015 13 groups of 
features 10,000 10,000 82.10% (TPR) 

MAMADROID 2017 
Sequence of 

abstracted API 
calls 

35,500 8,500 99% (F-measure) 

AUNTIEDROID 2018 

Behavioral 
models 

extracted 
through 
dynamic 
analysis 

2568 2692 92% (F-measure) 
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In (Moskovitch et al., 2008) authors heavily used the Term Frequency-Inverse 

Document Frequency (TF-IDF) approach, parsed Windows binaries and used the n-

gram method by taking each n-gram term as equal to a word in the textual domain. 

Representing a text file as a bag of words, they used the vector space model  (Salton, 

Wong, & Yang, 1975). They have looked for terms with the highest Document 

Frequency (DF) values. 

Authors of (Sanz et al., 2013) used a text mining approach to represent each Android 

APK file on the vector space model. They constructed a textual representation of an 

executable that is formed by strings.  They employed the TF-IDF weighing schema to 

assign weights to each APK file. 

In another study published by Lin et al. (Lin, Wang, Xiao, & Eckert, 2015) a generic 

and efficient algorithm to classify malware was proposed that combines the selection 

and the extraction of features. They extract n-gram feature space data from behavior 

logs; build an SVM classifier for malware classification; select a subset of features; 

transform high-dimensional feature vectors into low-dimensional feature vectors; and 

finally select the models. Their experiments were conducted on a real-world dataset 

with 4,288 samples from nine families. In feature selection analysis using the TF-IDF 

algorithm they calculate the effective feature set, specifically they based the feature 

weightings on the TF-IDF value to determine which feature set yields the optimal 

accuracy and learning times. Different from the approach proposed in this thesis, they 

applied the n-gram model in their data. Another considerable difference is the fact that 

they consider samples with the largest IDF values, such as the ones that appear only in 

one sample, as having substantial effect, which is in direct contrast to the feature 

selection approach proposed by this thesis.   

In the study published by (A. Pektaş & Acarman, 2018),  the TF and IDF metrics are 

used to assign weights to features extracted as a result of n-gram search over API call 

sequences. They compute the weight of each feature as the product of these two metrics. 

Similar to the above studies, they carry out feature selection starting from the features 

with the lowest IDF values as they represent the features that rarely occur in the 

document corpus. 

Different from the above approaches, the approach proposed in this thesis does not 

take a classical approach to text mining. Relevant permission, API call, and strings 
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feature selections were made according to their Delta-IDF values. The Delta-IDF 

introduced in this Ph.D thesis enables selection of attributes with the lowest possible 

IDF values in the malware while at the same time having the highest possible IDF 

values in the benign samples. This indicates the novelty of the feature selection 

approach proposed in this Ph.D. research.  
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CHAPTER 4 

PROPOSED METHODOLOGY 

To the best of my knowledge, no other past study in the literature makes use of the 

combination of permissions, API calls and strings as features in the machine learning 

process for Android malware detection. Each of the three features collected from APK 

files using reverse engineering present opportunities for classifying an Android 

executable as malicious or benign. This chapter gives the details of the proposed 

methodology for malware detection on the Android platform. 

4.1. Data Collection and Pre-processing 

Two distinct academically recognized and available datasets were utilized during this 

Ph.D. study. The first one is prepared from the Android Malware Genome 

(MalGenome) (Zhou & Jiang, 2012) project, and provides 1,260 Android malware 

samples belonging to 49 different families. The second one is prepared with the 

permission from the authors in (Allix, Bissyandé, Klein, & Traon, 2016), by 

downloading malware samples from the vast collection of APK repository in the 

AndroZoo dataset. 

Malware samples from the MalGenome project were downloaded as a ZIP file, from 

which randomly selected 250 malware files were used for constructing the first dataset. 

A subset of the CSV file provided by AndroZoo was transferred into a MySQL 

database in order to be able to run SQL queries on it. By utilizing the SQL queries, I 

was able to obtain 1300 Malware samples with a VirusTotal detection number of at 

least 20. VirusTotal is an online malware scanning service that works by aggregating 

the scanning capabilities of many commercial antivirus products. The benign samples 

totaling 300 were manually downloaded from the Google Play Store. In other words, 

the AndroZoo malware samples that were detected as malicious by at least 20 different 

antivirus products were included in the second dataset. 
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Two sets of malware samples collected from the MalGenome and AndroZoo datasets 

along with the 300 benign samples downloaded from the Google Play Store were 

added to another PostgreSQL database by using a Python script I developed. All the 

tuples inside the database contained the following columns: app_name, app_path, 

app_perms, app_apis, and app_strings. Once APK samples are added to the database, 

each one is reverse engineered to extract the list of requested permissions, API calls, 

and strings. 

4.2. Feature Extraction 

One of the core parts of this research has been based upon extensive feature extraction 

work. In trying to get the best results from a predictive model, a key requirement is 

making the best of the extracted data or data at hand by selecting the best set of features 

to be used in the data mining process. 

Feature extraction can be explained as the process of transforming raw data into a set 

of features that adequately input the underlying problem to the predictive models, with 

the aim of improving model accuracy for never before processed data. 

The file features from the APK samples were extracted through the use of reverse 

engineering. Libraries from the open source Androguard tool (Androguard, 2017) 

written in Python for disassembling and decompiling Android applications were 

utilized for extraction of the permissions, API calls and the strings features. 

The extracted features were converted into bit vectors with 1s representing the 

presence and 0s representing the absence of a feature for a given APK sample 

respectively. These were stored in files in CSV format, which were later used in the 

machine learning process. 

4.2.1 Permissions 

Android for a long time depended on presenting users with a list of all of the requested 

permissions by the app for acceptance before app installation. With Android’s version 

6.0 (API level 23) update, this method of asking a user for accepting the list of all the 

permissions the app requires was revamped into, asking for permission acceptance at 

the time it was required by the app during runtime. 
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All the permissions an application requires are declared in the AndroidManifest.xml 

file. The format for declaring a permission is: 

<uses-permission android:name="string"  

                                android:maxSdkVersion="integer" /> 

Each Android application contains several strings for permission usage such as 

“android.permission.CAMERA” or “android.permission.READ_LOGS”. As can be 

seen from the examples, a permission name typically includes the package name as a 

prefix. The default format of the Manifest file is binary XML format, in other words, 

it needs to be parsed programmatically in order to extract the permission strings. 

Permission names are deemed suitable for use in machine learning for malware 

detection due to a number of factors. First, the requirement that an app must be granted 

specific permissions to be able to use certain phone features through API calls. For 

instance, an app without the CAMERA permission will not be able to use the phone’s 

camera to take photos or record videos. Second, certain combinations of permissions 

may be associated with malicious behaviour as such a malware that utilizes SMS to 

spread to the list of contacts in your phone’s address book, while at the same time 

carrying out cyber espionage operations must possess a specific combination of 

permissions including READ_CONTACTS, SEND_SMS, INTERNET, CAMERA, 

and RECORD_AUDIO.  

4.2.2. API Calls 

Permissions enable implementation of API calls by an app, while the list of officially 

defined permissions is limited to 134 (Felt et al., 2012), the total number of API calls 

is much higher, precisely, there are 8,648 (Chin et al., 2011) distinct API Calls. 

Similar to permissions, API calls can be effectively utilized as a feature in the data 

mining process as an indicator of maliciousness for detection of malware at a lower 

level compared to permissions. Androguard was utilized in the extraction of API Calls. 

As it is not possible to access the original source code of an Android app from its APK 

file (executable) an intermediate version of the code from the file must be produced 

which in the case of this thesis is the Dalvik Bytecode. By using the code that utilizes 

the Androguard libraries, Dalvik Bytecode representations of each APK sample were 

produced by reverse engineering each. 
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This bytecode representation of each APK sample that I extracted, was utilized for 

counting the number of each API calls’ appearance in each sample’s source code and 

for calculating the TF and the IDF values corresponding to each distinct API call within 

each APK sample. 

4.2.3. Strings 

Strings are a general feature of an executable that can be utilized both in the Windows 

and Android platforms for conducting static malware analysis. Extracting strings from 

an executable can be easy as running a one-line command in the Windows command 

line, just like it is the case in the Android. For mass string extraction from the APK 

samples, the Androguard libraries were utilized. In contrast to its relative simplicity of 

obtaining from an executable, it carries valuable information that can be linked to 

maliciousness, such as keywords indicating potential malware or IP addresses that can 

indicate the call back IP address for a malicious executable that aims to connect to the 

Command and Control (C&C) servers for data exfiltration. 

4.3. A Novel Document Frequency-Based Approach to Feature 

Selection 

After extraction of the three distinct features from the set of collected APK samples, 

the requirement to make attribute selection amongst all the extracted set of attributes 

from each feature emerged. In this section, a novel TF-IDF approach to feature 

selection phase in machine learning for malware detection on the Android is presented.   

The extracted data belonging to the three categories of features were input to the TF 

and IDF calculating Python code for the calculation of each attributes’ corresponding 

values. The output values were used as the main criteria of selection in the feature 

selection phase of the data mining process. 

4.3.1. Term Frequency 

TF (Term Frequency) is generally used within a text mining, document classification, 

or information retrieval context. TF is calculated by counting the number of times a 

word appears in a document, the document in the case of this thesis is the APK file. 

The term frequency is the count of a feature’s (such as a permission, API call or string) 

appearance in an APK file, calculated by: 
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𝑇𝑇𝑇𝑇 =
𝑓𝑓𝑖𝑖

∑ 𝑓𝑓𝑗𝑗𝑛𝑛
𝑗𝑗=1

 

In the above equation, 𝑓𝑓𝑖𝑖 is the number of times the string i appears in the APK file 

and ∑ 𝑓𝑓𝑗𝑗𝑛𝑛
𝑗𝑗=1 is the sum of frequencies of each of the string in the APK file. 

4.3.2. Inverse Document Frequency 

The IDF is the measurement of a specific term’s occurrence within a document. In this 

Ph.D. work, the presence of specific strings within APK files were considered as the 

occurrence of specific features. It can be calculated as follows: 

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑇𝑇
𝐶𝐶 

In the above equation, 𝑇𝑇 is the total number of APK files and 𝐶𝐶 is the number of APK 

files containing the given string. 

TF and IDF values are used together as a weighted specific metric named as TF-IDF 

in text mining and document classification contexts and it is calculated as follows: 

TF-IDF = TF x IDF 

The IDF and TF-IDF values start becoming closer to zero, given an attribute or feature 

appears in greater numbers of files. The weighted TF-IDF is normalized in some 

alternative approaches by using the below equation:    

𝑇𝑇𝑇𝑇 − 𝐼𝐼𝐼𝐼𝐼𝐼 = �0.5 + 0.5 
𝑓𝑓𝑡𝑡,𝑞𝑞

𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑓𝑓𝑡𝑡,𝑞𝑞
� . 𝑙𝑙𝑙𝑙𝑙𝑙10

𝑁𝑁
𝑛𝑛𝑡𝑡 

As a result of the above normalization, solutions differ typically by a few percent and 

such error ranges are prevalent in the literature. The error may be due to simulation 

rather than the analytical models when a study compares its analytical results to the 

simulation and reports errors of only a few percent. 

4.3.3. Description of the Document Frequency-Based Approach 

Contrary to the classical TF-IDF approaches of feature selection that was utilized by 

the following authors on the Windows platform in (Moskovitch et al., 2008) the 

approach in this thesis proposes selecting attributes with the lowest possible IDF 

values in the malware samples and at the same time the highest possible IDF values in 

the benign samples. This thesis argues that attributes with the lowest IDF values 
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represent the most evenly distributed attributes among the complete sample sets’ 

extracted collection of attributes, while attributes with the highest IDF values are the 

ones that appear the most sparsely. This even distribution in turn indicates a higher 

frequency of occurrence for the corresponding attribute amongst the total set of 

attributes. Hence, selecting attributes with this methodology enables better learning of 

malware features, as the selected attributes are the ones that appear most frequently 

and evenly distributed in the malware dataset while appearing the least possible 

frequently and the most sparsely in the benign dataset.  

In case of duplicating IDF values amongst the attributes, TF values of the 

corresponding attributes can be compared to make the final decision about which 

attribute to include in the data mining process. The one with a higher TF value would 

be selected, since a higher TF indicates a higher frequency of occurrence for an 

attribute among the executables (APK files). 

In order to achieve selection of attributes that appear most frequently in the malware 

dataset while appearing the least possible frequently in the benign dataset, the results 

of the calculation of Delta-IDF is used and the ones with the highest values are taken 

to conduct learning for categorizing according to maliciousness. Delta-IDF value can 

be simply calculated as: 

Delta-IDF = (IDF Benign) – (IDF Malware) 

In deciding the number of features to be selected from the whole extracted feature set, 

some basic statistical measures such as the percentile have been used. In this approach, 

the features that are above the 90th percentile, or in other words within the top 10% 

segment have been chosen after sorting them according to their Delta-IDF values.  

If the dataset size was much larger, after z-score standardization the normalized Delta-

IDF values would be observed and the attributes that have z-scores above +2 sigma or 

+1 sigma would have been chosen. The Delta-IDF value can also be simplified as 

below: 

𝐿𝐿𝐿𝐿𝐿𝐿 𝑁𝑁 𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 
𝑛𝑛𝑏𝑏 ∶  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 
𝑛𝑛𝑚𝑚 ∶  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 

𝐼𝐼𝐼𝐼𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑙𝑙𝑙𝑙𝑙𝑙10
𝑁𝑁
𝑛𝑛𝑏𝑏

                                                                                                                          

𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑙𝑙𝑙𝑙𝑙𝑙10
𝑁𝑁
𝑛𝑛𝑚𝑚
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 − 𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑙𝑙𝑙𝑙𝑙𝑙10
𝑁𝑁
𝑛𝑛𝑏𝑏

 − 𝑙𝑙𝑙𝑙𝑙𝑙10
𝑁𝑁
𝑛𝑛𝑚𝑚

  =  𝑙𝑙𝑙𝑙𝑙𝑙10
𝑛𝑛𝑚𝑚
𝑛𝑛𝑏𝑏

                                                                    

As a result, Delta-IDF values can be effectively found out by calculating 𝑙𝑙𝑙𝑙𝑙𝑙10
𝑛𝑛𝑚𝑚
𝑛𝑛𝑏𝑏

  . 

In order to derive smaller sample datasets, the methodology of statistical random 

sampling without replacement was employed.  

For the parameters given below: 

 N = population size 

 µ = distribution ratio 

 E = margin of error 

 σ = standard deviation of the population  

Zα/2 = upper critical value for the standard normal distribution within the chosen 

confidence level, the sample size n can be calculated as follows: 

 

      

𝑛𝑛 =
𝜇𝜇(1 − 𝜇𝜇)

� 𝐸𝐸
𝑍𝑍𝛼𝛼 2�

�
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Since the population is limited, by using the correction factor the formula given above 

can be evaluated as follows:  

 

       

𝑛𝑛 =
𝑁𝑁𝑁𝑁(1 − 𝜇𝜇)

𝜇𝜇(1− 𝜇𝜇) + (𝑁𝑁 − 1) � 𝐸𝐸
𝑍𝑍𝛼𝛼 2�

�
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For the first subsample dataset, the new sample size was chosen depending on the 

following criteria:  

Confidence interval (accepted margin of error) = 2% 

Confidence level = 98% 

The sample size for the second subsample was chosen similarly depending on the 

following criteria: 

Confidence interval (accepted margin of error) = 1% 

Confidence level = 95% 
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Using these statistical sampling parameters and the equations given above, the sample 

sizes for the first and second subsample datasets were determined to be 3315 and 9100, 

respectively, which satisfies the minimum sample size limits regarding the original 

dataset size and the chosen sampling parameters. To sum up, these two subsample 

datasets were derived with these given sizes by random selection and sampling from 

the original dataset. 

By implementing the methodology explained above for feature selection, 18 

permissions, 8 API calls and 11 strings were selected for the MalGenome dataset, and 

13 permissions, 9 API calls and 4 strings were selected for the AndroZoo dataset. The 

selected attributes are given in tables Table 4.1. and Table 4.2. 

 

Table 4.1. Selected attributes from the MalGenome dataset 

Permissions Permissions (cont.) API calls Strings 

BROADCAST_STICKY SEND_SMS getSubscriberId Parse 

CALL_PHONE SYSTEM_ALERT_WINDOW sendTextMessage Add 

CAMERA WRITE_APN_SETTINGS createFromPdu iterator 

DISABLE_KEYGUARD WRITE_CONTACTS getSimSerialNumber schedule 

GET_ACCOUNTS WRITE_EXTERNAL_STORAGE getExtraInfo setId 

READ_CALENDAR WRITE_HISTORY_BOOKMARKS getPaint Digest 

READ_LOGS WRITE_SMS seekTo Callback 

READ_PHONE_STATE  TruncateAt entrySet 

READ_SMS   findPointerIndex 

RECEIVE_SMS   getEdgeFlags 

RESTART_PACKAGES   getFinalX 
 

Table 4.2. Selected attributes from the AndroZoo dataset 

Permissions Permissions (cont.) API calls Strings 

REORDER_TASKS SEND_SMS getAttributeUnsignedIntValue remoteexception 

CLEAR_APP_CACHE WRITE_CONTACTS setKeywords Credentials 

MANAGE_DOCUMENTS RESTART_PACKAGES setAppName remoteinput 

WRITE_HISTORY_BOOKMARKS BROADCAST_STICKY getCurrencyCode doubleclick 

READ_HISTORY_BOOKMARKS  isSurrogatePair  

KILL_BACKGROUND_PROCESSES  allowCoreThreadTimeOut  

ACCESS_MOCK_LOCATION  requestAd  

ACCESS_GPS  displayAd  
ACCESS_LOCATION_EXTRA_ 
COMMANDS  FilenameFilter  

According to the differing datasets at hand for other application scenarios, the actual 

selected attributes will be different, however feature selection with this novel TF-IDF 

approach will enable achieving the best possible learning of the malicious features 
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within a dataset of Android samples, resulting in high detection accuracy and low false 

positive rates.  

4.4. The Architecture of the Android Malware Detection 

Methodology 

The high-level view of my Android malware detection via machine learning and data 

mining methodology is depicted in Figure 4.1. 

 

Figure 4.1. Malware detection process used in this thesis 
  

After extraction of the three different feature sets from each APK sample, a thorough 

analysis was carried out to include only the best discriminative features inside the data 

mining process for malware detection on the Android. Feature vectors are generated 

from each training instance using the selected feature set. The feature vectors are used 
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to train the selected classifiers. When a new APK sample must be tested, first the 

features selected during training are extracted from the executable in order to be able 

to generate a feature vector. This feature vector is classified using the selected classifier 

to predict whether the executable is benign or malicious. 

After extraction of the three different feature sets which are permissions, API calls and 

strings, the Android malware detection methodology proposed in this thesis merge 

them into one feature set, called the combined feature set. These features are used for 

the training of the machine learning algorithms (classifiers) in WEKA that were later 

run for detection of malicious Android apps. 

Three different sets of features are selected to maximize the differentiating factors in 

the combined feature set between malicious and benign instances. This implies that 

permissions or API calls alone may not lead to high degrees of maliciousness when 

viewed in singularity, however a combination of a specific permissions, a group of API 

calls and specific strings contained in one APK sample, may indicate a very high 

probability of maliciousness, leading to a detection by the malware detection tool. 

The aim of selecting this specific set of features is to enable learning of malicious 

associations between combinations of certain sets of permissions, API calls, and 

strings.  

4.4.1. Combined Feature Set Model 

In the combined feature set model, the three types of features, which are permissions, 

API calls, and strings, were extracted individually from each sample, however, were 

later merged inside the combined feature set. This combination and reduction 

processes of the feature set were possible as a result of the Delta-IDF value scoring 

based feature selection which was detailed in the previous section. 

Python scripts were used for putting together the combined feature set among the 

whole possible sets of attributes that were extracted in the feature extraction phase of 

the data mining process. The script selected attributes from the three feature sets based 

on the calculated Delta-IDF values.  

4.4.2. Classification of Android Malware via Machine Learning 

Research and development of automatic classification methods have become essential 

due to the exponential increase and proliferation of Android malware. Static extraction 
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of APIs has been a widely used method in successful detection efforts against malware 

historically. 

The framework developed in this thesis makes adequate use of supportive features that 

are permissions and strings in addition to the API calls. I was able to construct a 

combined feature set that enabled high detection rates against Android malware via an 

extensive study on the theoretical aspects, as well as the practical aspects of the 

research topic. 

The implementation of the methodology presented in this thesis is not an automatic 

way of classifying Android malware. However, the proposed methodology could be 

integrated into an equivalent automatic Android malware detection implementation 

without any constraints or limitations. 

The way the proposed method was implemented in the experiments conducted for this 

thesis was by making use of the data mining platform WEKA. The results produced 

by the machine learning algorithms on WEKA were used as detection ratios to simulate 

how the selected algorithms would perform in real-world use cases given the specific 

datasets. The results from the WEKA data mining experiments provided the 

classification of the APK samples inside the datasets as malware or benign, the True 

Positive (TP) designated the ratio of successful malware classifications, the True 

Negative (TN) designated the ratio of successful benign classifications and the 

weighted average designated the accuracy of the approach. The weighted average in 

that sense corresponds to the detection ratio with successful malware and benign 

detections combined, while TP corresponds to successful malware detections alone 

and TN corresponds to successful benign classifications alone. 

4.5. Limitations of the Proposed Methodology 

The model of Android detection on the Android presented in this thesis has a few 

limitations and in this section, they will be discussed.  

Firstly, it does not directly handle obfuscated API calls or encrypted/packed APK files. 

There are tools available to unpack the packed executables automatically and they may 

be applied for de-obfuscation/decryption to use their output within this methodology. 

Such a feature was not implemented, but may be integrated into the data mining 

procedure in the future. 
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Secondly, the current implementation is an off-device detection mechanism, which 

means it was not directly deployed on an Android device to detect malware. The off-

device detection mechanism can be particularly useful in the case of security scans 

before publishing on an app store.  

Finally, this malware detection methodology exhibits the typical limitation of static 

analysis that is the inability to detect the type of malware attacks, in which the payload 

is stored in a remote host and retrieved after the app is executed on the target platform. 

However, the objectives of this thesis were to obtain an acceptable degree of detection 

accuracy and to provide a new methodology for feature selection in machine learning 

based Android malware detection, which were both achieved successfully.  

60 



 

CHAPTER 5 

EXPERIMENTS AND RESULTS 

In this chapter, the experiments run on the WEKA will be evaluated and analyzed to 

determine the employed machine algorithms’ suitability for malware detection on the 

Android platform.  

Attributes from the three features were selected by using the approach proposed in this 

thesis and the WEKA’s “. arff” extension files with the selected attributes were 

prepared for use in the data mining experiments using WEKA.  

The majority of the well-known data mining and machine learning algorithms, 

including some combinations of ensemble algorithms, were experimented and tested 

with the Weka version 3.9.1. Test results of adequately performing algorithms will be 

given in tables of accuracy, TPR and true negative rate (TNR). 

Several machine learning algorithms for binary classification present in Weka were 

applied to the MalGenome and AndroZoo datasets. While a few of these algorithms 

were decision tree models such as ID3 and J48, RandomForest, which is an ensemble 

learner of different decision trees, was also used in the experiments. A Naive Bayes 

algorithm and an instance based learner algorithm the k-NN were also used.  

Additionally, several basic function-based classifiers such as radial basis function and 

some rule-based classifiers such as FURIA, MODLEM, OneR, LAC, and NNGE were 

also included in the tests, combinations of ensemble learning using either majority 

voting or average of probabilities were also included and the ones with the best 

accuracy values are given in the result tables.                           

AdaBoost M1, which is a meta-learner, was used with NNGE, which is a rule-based 

classifier. AdaBoost M1’s results are also included taking into consideration their 

promising accuracy values. Several different types of artificial neural networks such 

as MLP and SVMs were also used in the experiments. A brief description of the 

machine learning algorithms used during the tests on WEKA will be given below:       
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ID3 (Iterative Dichotomiser 3) (Quinlan, 1986): An algorithm invented by Ross 

Quinlan, which is used to generate a decision tree from a dataset in decision tree 

learning. ID3 is generally used in the machine learning and natural language 

processing domains and is the precursor to the C4.5 algorithm (Quinlan, 1993). 

J48:  An implementation of the algorithm ID3 developed by the WEKA project team, 

uses an enhanced implementation of C4.5. 

RandomForest (Breiman, 2001): An meta-ensemble learner and classifier algorithm 

that constructs and uses a forest of trees. It is composed of K decision trees such as 

CART, C4.5 or ID3, however in WEKA, it is implemented as K “random” decision 

trees. 

FURIA (Fuzzy Unordered Rule Induction Algorithm) (Hühn & Huellermeier, 2009): 

A rule-based classifier that uses fuzzy logic and fuzzy rule induction, FURIA is an 

extension of the well-known RIPPER algorithm, which is a state-of-the-art rule learner, 

the advantages of RIPPER such as simple and comprehensible rule sets are preserved. 

FURIA includes a number of modifications and extensions such as learning fuzzy rules 

instead of conventional rules and contains unordered rule sets instead of rule lists. 

Additionally, FURIA uses an efficient rule stretching method when dealing with 

uncovered examples. It was shown that, in terms of classification accuracy, FURIA 

significantly outperforms the original RIPPER, along with other machine learning 

algorithms such as the C4.5. 

MODLEM (Stefanowski, 1998): A machine learning algorithm that induces a 

minimum set of rules. These rules can be adopted as a classifier. It is a sequential 

covering algorithm, which was invented to cope with numeric data without using 

discretization. This algorithm considers nominal and numeric attributes as equal, and 

to find the best rule condition during rule induction, attribute's space is searched. 

However, numeric attribute's conditions are more precise and closely describe the class. 

Some aspects of this algorithm were taken from the Rough Set Theory that states the 

class definition can be described according to its lower or upper approximation. 

NNge (Non-nested Generalized Exemplars) (Salzberg, 1991): A rule-based and 

nearest-neighbor-like classifier algorithm that uses non-nested generalized exemplars 

where these hyper-rectangles are implemented as “if-then” rules. Generalization is 

performed by merging exemplars and constructing hyper-rectangles in attribute space 
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which represent conjunctive rules with internal disjunction. Each time a new sample 

is added to the database, generalization is carried out by combining the sample with 

the nearest neighbor of the same class.  

LAC (Lazy Associative Classifier) (Veloso, Jr., & Zaki, 2006): Uses associative rules 

to execute classifications. Unlike other a-priori-based classifiers, the LAC algorithm 

computes association rules on a demand-driven basis. LAC projects the training data 

only on features in the test dataset, in other words from all the training instances, only 

the samples that share at least one feature with the test samples are used. For each 

instance to be classified, it filters the training set, thus producing only useful rules for 

that instance. LAC outperforms traditional associative classifiers in both speed and 

accuracy. 

OneR (Holte, 1993): A simple rule-based classifier that builds and uses only one single 

rule for classification of the instances in a way that uses the minimum-error attribute 

for prediction, discretizes the numeric attributes. In order to create a rule for a predictor, 

a frequency table for each predictor constructed against the target. OneR has been 

shown to produce rules that are only slightly less accurate than state-of-the-art machine 

learning algorithms while at the same time producing rules that are simple for humans 

to read and interpret. 

AdaBoost M1 (Freund & Schapire, 1996): A meta-learner type of algorithm that boosts 

the classification performance of a classifier by using the Adaboost M1 method. 

Radial Basis Function (Frank, 2014): A classifier algorithm that implements radial 

basis function networks, which is trained in total supervised type of machine learning. 

Radial Basis Function uses WEKA's optimization class by minimizing squared error 

with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method. 

MLP (Haykin, 2009): An artificial neural network that uses the feed-forward learning 

model that has one or more hidden layers. Achieves the differential error and the 

corresponding weight updates by backpropagation with the gradient descent 

methodology. 

SVM with Sequential Minimal Optimization (SMO): A specialized support vector 

machine classifier which implements John Platt’s SMO (Platt, 1998) algorithm for the 

training phase. Given labeled training data (supervised learning), SVM (V. Vapnik & 

Lerner, 1963) is a discriminative classifier that constructs a separating hyperplane with 
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maximum margin, which categorizes the test samples into their predicted classes. In 

two dimensional space, this hyperplane becomes a line that divides a plane into two 

parts in which each class lays in either side. 

Naive Bayes (John & Langley, 1995): A probabilistic classifier based on Bayes’ 

theorem that assumes strong independence between the features. 

k-NN: An instance-based learner type of algorithm which is based on the comparison 

of an undefined sample with the k training samples that happen to be the nearest 

neighbors of the undefined sample. 

Train, 10-fold cross-validation and test set methods of running machine learning 

algorithms in Weka were used in the experiments. The highest level of attention was 

given to the obtained rates of TPR, representing the rate of malware samples correctly 

detected as malware and the true negative rate, representing the percentage of benign 

samples correctly identified as benign. The weighted average in Weka, which is the 

mathematical average of TP and TN rates, is the accuracy and malware detection rate 

of the approach proposed by this Ph.D. thesis. 

For evaluation of the conducted experiments, four standard metrics were used: 

• TPR, which is the proportion of correctly classified instances. 

• FPR is the proportion of incorrectly classified instances. 

• Precision, which is the number of true positives divided by the total number of 

elements labeled as belonging to the positive class. 

• Area under Curve (AUC) provides the relation between false negatives and false 

positives. 

5.1. Standard Metrics used for Evaluating the Classifiers 

In order to measure the performance of each classifier, important values such as the 

numbers of correct or incorrect classifications were taken into consideration. Detailed 

descriptions of the used classification metrics will be given next. 

5.1.1. Confusion Matrix and the Related Metrics 

In table 4.2., a confusion matrix for computing the evaluation indicators is described. 
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Table 5.1. Confusion Matrix 

   Predicted Class  
  Positive   Negative 

 Positive  True Positive (TP)  False Negative (FN) 
Actual Class     

 Negative False Positive (FP)  True Negative (TN) 

 
A confusion matrix contains the following entries: 

• True Positives: malware samples predicted to be malware. 

• True Negatives: benign samples predicted to be benign. 

• False Positives: benign samples predicted to be malware. 

• False Negatives: malware samples predicted to be benign. 

The following metrics are calculable by the aforementioned confusion matrix 

components. 

TPR signifies the ratio of correctly identified malware applications, given by: 

𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 

Likewise, TNR signifies the ratio of correctly identified benign applications and it is 
calculated by: 

𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

FPR represents the ratio of malware-infested applications incorrectly identified as 

benign, given by: 

𝐹𝐹𝐹𝐹𝐹𝐹 =
𝐹𝐹𝐹𝐹

𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇 

The accuracy of a classifier is defined by the probability of correctly predicting the 

class of an unclassified sample (Baldi, Brunak, Chauvin, Andersen, & Nielsen, 2000). 

In the case of this thesis accuracy is an indicator representing the system’s ratio of 

successful detection, expressed as the proportion of accurately identified benign and 

malware samples. We can calculate accuracy by: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)

(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹) 
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As the number of positive (malicious) and benign (negative) samples in each dataset 

used in the experiments are equal, there is no need to use metrics such as Precision, F-

Score or Kappa Statistics and it is enough to take into account the accuracy and TPR 

metrics in evaluating the success of the malware detection approach. 

5.2. Cross-validation 

A standard statistical method used for estimating the generalization error of a 

predictive model, cross-validation is a method of model validation that works by 

dividing data into two segments. One segment is used to train the machine learning 

classifier while the other segment is used to test it. 

5.2.1. 10-fold Cross-Validation 

10-fold cross-validation was used as a method of evaluating the success of the data 

mining algorithms on WEKA on the AndroZoo and MalGenome datasets. The 

procedure for carrying out 10-fold cross-validation is as follows: using the other 9 

subsets as the training set a model is built and its performance is evaluated on the 

current subset. Each subset is used for testing exactly once and the result of the cross-

validation is the average of the performances obtained from the 10 rounds. 

The main disadvantage of this method is requiring the training phase be rerun from 

scratch 10 times, meaning it will take 10 times as many computations to perform the 

evaluation. 

 

Figure 5.1. 10-fold Cross-Validation 
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5.3. Results from the First MalGenome Dataset 

The dataset constructed using the MalGenome malware samples was subsampled into 

five different datasets with one training set containing 250 benign samples and 250 

malware samples and 4 test sets composed of 125 malware and 125 benign samples. 

From the 500 benign records collected from the Google Play Store, benign samples 

were chosen randomly, similarly, from the 1000 malware records collected from the 

MalGenome Project, malware samples were chosen randomly. Each of the malware 

samples among the training dataset and each of the test datasets were chosen in a way 

ensuring that no duplicate records were present in the dataset. The machine learning 

algorithms that achieved the highest detection ratios during the experiments for the 

first MalGenome dataset, including several well-known types of classification 

algorithms such as decision trees, functional models, artificial neural networks, Naive 

Bayes and rule-based classifiers are given in tables Table 5.2., Table 5.3., and Table 

5.4. The FURIA algorithm achieved the highest 10-fold cross-validation accuracy ratio 

of 0.984 among all the machine learning algorithms. 

Table 2.2. MalGenome Dataset Accuracy Values 

 Algorithm Name and Parameters Train (500 
instances) 

10-fold x-
val. (500 

instances) 

Test set 1 
(250 

instances) 

Test set 2 
(250 

instances) 

Test set 3 
(250 

instances) 

Test set 4 
(250 

instances) 
Radial Basis Function  0.984 0.980 0.984 0.956 0.956 0.976 
Multilayer Perceptron (learning rate=0.3, momentum=0.2, 
one hidden layer with 8 nodes, 500 iterations) 0.992 0.978 0.972 0.960 0.940 0.964 
Id3 (decision tree) 0.998 0.970 0.948 0.960 0.968 0.964 
k-NN (k nearest neighbors, k = 1) 0.998 0.976 0.952 0.940 0.932 0.956 
NaiveBayes 0.962 0.962 0.984 0.956 0.944 0.960 
J48 (improved version of C4.5 decision tree) 0.986 0.972 0.940 0.960 0.964 0.960 
SVM (Support Vector Machine with Sequential Minimal 
Optimization) 0.986 0.978 0.972 0.956 0.952 0.972 
FURIA (fuzzy unordered rule induction classifier) 0.984 0.984 0.940 0.960 0.960 0.964 
RandomForest (ensemble of decision trees) 0.998 0.980 0.960 0.948 0.940 0.964 
NNGE / AdaBoostM1 (Non-nested Generalized Exemplars 
rule based classification with AdaBoost M1 meta-learner) 0.998 0.974 0.972 0.972 0.960 0.972 
Ensemble by Voting (majority voting) 3 classifiers (LAC, 
NNGE, MODLEM) 0.998 0.972 0.996 0.976 0.980 0.992 
Ensemble by Voting (majority voting) 3 classifiers (OneR, 
NNGE, MODLEM) 0.998 0.970 1.000 0.988 0.992 0.992 
Ensemble by Voting (majority voting) 4 classifiers (OneR, 
LAC, NNGE, MODLEM) 0.980 0.968 0.996 0.992 0.980 0.976 

 
Table 5.3. MalGenome Dataset True Positive Rates 

Algorithm Name and Parameters Train (500 
instances) 

10-fold x-
val. (500 

instances) 

Test set 1 
(250 

instances) 

Test set 2 
(250 

instances) 

Test set 3 
(250 

instances) 

Test set 4 
(250 

instances) 
Radial Basis Function  0.972 0.972 0.968 0.912 0.912 0.952 
Multilayer Perceptron (learning rate=0.3, momentum=0.2, 
one hidden layer with 8 nodes, 500 iterations) 0.990 0.972 0.928 0.912 0.900 0.914 
Id3 (decision tree) 0.996 0.968 0.896 0.920 0.936 0.928 
k-NN (k nearest neighbors, k = 1) 0.996 0.964 0.904 0.880 0.864 0.912 
NaiveBayes 0.972 0.972 0.984 0.936 0.952 0.984 
J48 (improved version of C4.5 decision tree) 0.972 0.964 0.880 0.920 0.928 0.920 
SVM (Support Vector Machine with Sequential Minimal 
Optimization) 0.976 0.968 0.944 0.912 0.904 0.944 
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FURIA (fuzzy unordered rule induction classifier) 0.972 0.972 0.880 0.920 0.920 0.928 
RandomForest (ensemble of decision trees) 0.996 0.972 0.920 0.896 0.880 0.928 
NNGE / AdaBoostM1 (Non-nested Generalized Exemplars 
rule based classification with AdaBoost M1 meta-learner) 0.996 0.968 0.944 0.944 0.920 0.944 
Ensemble by Voting (majority voting) 3 classifiers (LAC, 
NNGE, MODLEM) 0.996 0.968 0.992 0.952 0.960 0.984 
Ensemble by Voting (majority voting) 3 classifiers (OneR, 
NNGE, MODLEM) 0.996 0.972 1.000 0.976 0.984 0.984 
Ensemble by Voting (majority voting) 4 classifiers (OneR, 
LAC, NNGE, MODLEM) 0.976 0.972 0.992 0.984 0.984 0.984 

 
Table 5.4. MalGenome Dataset True Negative Rates 

Algorithm Name and Parameters 
Train (500 
instances) 

10-fold x-
val. (500 

instances) 

Test set 1 
(250 

instances) 

Test set 2 
(250 

instances) 

Test set 3 
(250 

instances) 

Test set 4 
(250 

instances) 
Radial Basis Function  0.996 0.988 1.000 1.000 1.000 1.000 
Multilayer Perceptron (learning rate=0.3, momentum=0.2, 
one hidden layer with 8 nodes, 500 iterations) 0.994 0.984 1.016 1.008 0.980 1.014 
Id3 (decision tree) 1.000 0.972 1.000 1.000 1.000 1.000 
k-NN (k nearest neighbors, k = 1) 1.000 0.988 1.000 1.000 1.000 1.000 
NaiveBayes 0.952 0.952 0.984 0.976 0.936 0.936 
J48 (improved version of C4.5 decision tree) 1.000 0.980 1.000 1.000 1.000 1.000 
SVM (Support Vector Machine with Sequential Minimal 
Optimization) 0.996 0.988 1.000 1.000 1.000 1.000 
FURIA (fuzzy unordered rule induction classifier) 0.996 0.996 1.000 1.000 1.000 1.000 
RandomForest (ensemble of decision trees) 1.000 0.988 1.000 1.000 1.000 1.000 
NNGE / AdaBoostM1 (Non-nested Generalized Exemplars 
rule based classification with AdaBoost M1 meta-learner) 1.000 0.980 1.000 1.000 1.000 1.000 
Ensemble by Voting (majority voting) 3 classifiers (LAC, 
NNGE, MODLEM) 1.000 0.976 1.000 1.000 1.000 1.000 
Ensemble by Voting (majority voting) 3 classifiers (OneR, 
NNGE, MODLEM) 1.000 0.968 1.000 1.000 1.000 1.000 
Ensemble by Voting (majority voting) 4 classifiers (OneR, 
LAC, NNGE, MODLEM) 0.984 0.964 1.000 1.000 0.976 0.968 

 

5.4. Results from the Second MalGenome Dataset 

In an attempt to get results from a larger dataset that include all of the MalGenome 

dataset’s malware samples, a new dataset was formed that include all the 1260 malware 

samples in the MalGenome Project. The number of available benign samples remained 

300, however by using SMOTE (Synthetic Minority Over-sampling Technique), the 

number of benign samples was up-sampled (over-sampled) to construct a balanced 

dataset in WEKA. Results for the balanced and the imbalanced dataset constructed 

only with the physically available benign samples will be presented in the same tables. 

The machine learning algorithms that performed the best results in this second 

MalGenome dataset are given in tables Table 5.5, Table 5.6, Table 5.7, Table 5.8, Table 

5.9 and Table 5.10.  

The experiment types and the dataset details in tables Table 5.5, Table 5.7 and Table 

5.9 will be detailed in the following sentence. In the first column of these tables, the 

10-fold cross-validation results of 1260 malware and 250 benign samples are given, in 

the second column, 10-fold cross-validation of 1260 malware and 1260 benign 
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samples (produced by SMOTE) are given, the third column correspond to the train 

results of the 840 malware and 840 benign samples and the fourth column correspond 

to the results of using a test set that contains 420 malware and 420 benign samples. 

The experiment types and the dataset details in tables Table 5.6, Table 5.8 and Table 

5.10 will be detailed in the following sentence. In the first column of these tables, 1/3 

test split (hold-out) results of 1510 instances with a test size of 422 malware and 81 

benign samples are given, in the second column, 1/3 test split (hold-out) results of 

2520 instances with a test size of 420 malware and 420 benign samples are given, the 

third column correspond to the train results of 840 malware and 840 benign samples, 

and the fourth column correspond to using a test set of 420 malware and 420 benign 

samples. 

Table 5.5. MalGenome 2nd Dataset Accuracy Values Part 1 

 Algorithm Name and Parameters 
10-fold-xval  

(1510 instances) 
1260 mal + 250 

ben 

SMOTE-
balanced-10-

fold-xval 
(2520 

instances) 
1260 mal + 
1260 ben 

SMOTE-
balanced-
TRAIN  
(1680 

instances) 840 
mal + 840 ben 

SMOTE-
balanced-
TEST (840 

instances) 420 
mal + 420 ben 

Radial Basis Function  0.984 0.994 0.992 0.994 

Multilayer Perceptron (learning rate=0.3, momentum=0.2, one hidden layer with 8 
nodes, 500 iterations) 0.983 0.992 0.997 0.99 

Multilayer Perceptron (default param. in Weka lr=0.3, mom=0.2, hidden: 19. 500 
iter.) 0.981 0.992 0.997 0.99 

1-NN (1/d weighted) 0.983 0.992 0.999 0.99 

NaiveBayes 0.983 0.958 0.958 0.961 

BayesianLogisticRegression 0.984 0.991 0.993 0.992 

VotedPerceptron 0.985 0.991 0.99 0.989 

SVM (Support Vector Machine) 0.986 0.992 0.995 0.988 

Lazy Bayesian Rules Classifier (LBR) 0.988 0.992 0.995 0.992 

FURIA (fuzzy unordered rule induction) 0.983 0.993 0.996 0.987 

MODLEM (rough set-based rule classifier with default param.) 0.97 0.986 0.999 0.988 

LAC (lazy associative rule-based with default param.) 0.953 0.959 0.958 0.961 

OneR (rule-based)* 0.982 0.957 0.957 0.957 

NNGE (rule-based with default param.) 0.977 0.989 0.999 0.993 

JRIP (rule-based Repeated Incremental Pruning to Produce Error Reduction 
(RIPPER)) 0.985 0.993 0.994 0.993 

RIDOR (rule-nased RIpple-DOwn Rule learner) 0.982 0.993 0.996 0.993 

Id3 (decision tree) 0.976 0.99 0.999 0.992 

J48 (improved version of C4.5 decision tree) 0.984 0.993 0.994 0.993 
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CART (decision tree) 0.983 0.992 0.994 0.993 

Functional Tree (decision tree) 0.988 0.99 0.997 0.989 

DecisionStump (decision tree)* 0.982 0.957 0.957 0.957 

NBTree (NaiveBayes decision tree) 0.985 0.992 0.993 0.989 

LMT (logistic model trees - decision tree) 0.983 0.992 0.999 0.992 

RandomForest (ensemble of decision trees) 0.983 0.992 0.999 0.992 

NNGE / AdaBoostM1 0.981 0.992 0.999 0.99 

Ensemble by Voting (majority voting) 2 classifiers (LAC, NNGE) 0.977 0.989 0.999 0.993 

Ensemble by Voting (majority voting) 3 classifiers (OneR, J48, RBF classifier) 0.983 0.994 0.993 0.994 

Ensemble by Voting (majority voting) 3 classifiers (OneR, FunctionalTree, 
LazyBayesianRules) 0.989 0.994 0.996 0.99 

Ensemble by Voting (majority voting) 3 classifiers (J48, FunctionalTree, 
LazyBayesianRules) 0.989 0.994 0.996 0.993 

JRIP / RealAdaBoost 0.983 0.993 0.998 0.989 

Ensemble by Voting (majority voting) 4 classifiers (JRIP, OneR, FunctionalTree, 
LazyBayesianRules) 0.988 0.993 0.995 0.992 

 
Table 5.6. MalGenome 2nd Dataset Accuracy Values Part 2 

 Algorithm Name and Parameters 
1/3 Test split (hold-

out) (1510 instances) 
test size: 422 mal + 81 

ben 

SMOTE-balanced-
1/3 Test split (hold-

out) (2520 
instances) test size: 
420 mal + 420 ben 

Imbalanced-TRAIN 
(1005 instances) 840 

mal + 165 ben 

Imbalanced-TEST 
(505 instances) 420 

mal + 85 ben 

Radial Basis Function  0.988 0.995 0.983 0.984 

Multilayer Perceptron (learning rate=0.3, 
momentum=0.2, one hidden layer with 8 nodes, 500 
iterations) 

0.988 0.996 0.995 0.988 

Multilayer Perceptron (default param. in Weka lr=0.3, 
mom=0.2, hidden: 19. 500 iter.) 0.982 0.996 0.995 0.982 

1-NN (1/d weighted) 0.986 0.996 0.999 0.984 

NaiveBayes 0.988 0.956 0.982 0.984 

BayesianLogisticRegression 0.988 0.996 0.987 0.988 

VotedPerceptron 0.99 0.994 0.981 0.982 

SVM (Support Vector Machine) 0.986 0.995 0.99 0.98 

Lazy Bayesian Rules Classifier (LBR) 0.99 0.992 0.982 0.984 

FURIA (fuzzy unordered rule induction) 0.988 0.996 0.993 0.978 

MODLEM (rough set-based rule classifier with default 
param.) 0.964 0.995 0.999 0.972 

LAC (lazy associative rule-based with default param.) 0.952 0.957 0.956 0.952 

OneR (rule-based)* 0.986 0.956 0.982 0.982 

NNGE (rule-based with default param.) 0.976 0.993 0.999 0.982 
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JRIP (rule-based Repeated Incremental Pruning to 
Produce Error Reduction (RIPPER)) 0.988 0.996 0.99 0.982 

RIDOR (rule-nased RIpple-DOwn Rule learner) 0.988 0.988 0.987 0.98 

Id3 (decision tree) 0.98 0.993 0.999 0.98 

J48 (improved version of C4.5 decision tree) 0.99 0.996 0.989 0.982 

CART (decision tree) 0.99 0.996 0.982 0.982 

Functional Tree (decision tree) 0.988 0.995 0.994 0.984 

DecisionStump (decision tree)* 0.986 0.956 0.982 0.982 

NBTree (NaiveBayes decision tree) 0.86 0.99 0.99 0.99 

LMT (logistic model trees - decision tree) 0.988 0.994 0.988 0.984 

RandomForest (ensemble of decision trees) 0.984 0.996 0.999 0.988 

NNGE / AdaBoostM1 0.984 0.995 0.999 0.984 

Ensemble by Voting (majority voting) 2 classifiers 
(LAC, NNGE) 0.964 0.967 0.999 0.982 

Ensemble by Voting (majority voting) 3 classifiers 
(OneR, J48, RBF classifier) 0.986 0.996 0.983 0.984 

Ensemble by Voting (majority voting) 3 classifiers 
(OneR, FunctionalTree, LazyBayesianRules) 0.99 0.995 0.984 0.984 

Ensemble by Voting (majority voting) 3 classifiers (J48, 
FunctionalTree, LazyBayesianRules) 0.99 0.996 0.99 0.986 

JRIP / RealAdaBoost 0.992 0.995 0.999 0.978 

Ensemble by Voting (majority voting) 4 classifiers (JRIP, 
OneR, FunctionalTree, LazyBayesianRules) 0.988 0.995 0.989 0.988 

 
Table 5.7. MalGenome 2nd Dataset True Positive Rates Part 1 

 Algorithm Name and Parameters 
10-fold-xval  

(1510 instances) 
1260 mal + 250 

ben 

SMOTE-
balanced-10-fold-

xval (2520 
instances) 1260 
mal + 1260 ben 

SMOTE-balanced-
TRAIN  (1680 

instances) 840 mal + 
840 ben 

SMOTE-balanced-
TEST (840 instances) 

420 mal + 420 ben 

Radial Basis Function  0.993 0.99 0.99 0.99 

Multilayer Perceptron (learning rate=0.3, momentum=0.2, one 
hidden layer with 8 nodes, 500 iterations) 0.989 0.988 0.994 0.988 

Multilayer Perceptron (default param. in Weka lr=0.3, 
mom=0.2, hidden: 19. 500 iter.) 0.989 0.988 0.994 0.988 

1-NN (1/d weighted) 0.991 0.988 0.998 0.986 

NaiveBayes 0.991 0.992 0.993 0.99 

BayesianLogisticRegression 0.994 0.988 0.99 0.988 

VotedPerceptron 0.991 0.987 0.988 0.983 

SVM (Support Vector Machine) 0.993 0.989 0.993 0.988 

Lazy Bayesian Rules Classifier (LBR) 0.991 0.986 0.992 0.986 
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FURIA (fuzzy unordered rule induction) 0.991 0.99 0.994 0.986 

MODLEM (rough set-based rule classifier with default param.) 0.993 0.99 0.998 0.988 

LAC (lazy associative rule-based with default param.) 0.994 0.992 0.993 0.99 

OneR (rule-based)* 0.994 0.994 0.994 0.993 

NNGE (rule-based with default param.) 0.989 0.989 0.998 0.99 

JRIP (rule-based Repeated Incremental Pruning to Produce 
Error Reduction (RIPPER)) 0.989 0.99 0.993 0.988 

RIDOR (rule-nased RIpple-DOwn Rule learner) 0.94 0.99 0.993 0.988 

Id3 (decision tree) 0.989 0.989 0.998 0.988 

J48 (improved version of C4.5 decision tree) 0.99 0.991 0.993 0.988 

CART (decision tree) 0.99 0.989 0.993 0.988 

Functional Tree (decision tree) 0.972 0.99 0.994 0.988 

DecisionStump (decision tree)* 0.994 0.994 0.994 0.993 

NBTree (NaiveBayes decision tree) 0.992 0.99 0.993 0.988 

LMT (logistic model trees - decision tree) 0.992 0.99 0.998 0.988 

RandomForest (ensemble of decision trees) 0.991 0.99 0.998 0.988 

NNGE / AdaBoostM1 0.991 0.99 0.998 0.988 

Ensemble by Voting (majority voting) 2 classifiers (LAC, 
NNGE) 0.989 0.989 0.998 0.99 

Ensemble by Voting (majority voting) 3 classifiers (OneR, J48, 
RBF classifier) 0.994 0.995 0.993 0.99 

Ensemble by Voting (majority voting) 3 classifiers (OneR, 
FunctionalTree, LazyBayesianRules) 0.994 0.993 0.994 0.988 

Ensemble by Voting (majority voting) 3 classifiers (J48, 
FunctionalTree, LazyBayesianRules) 0.992 0.991 0.994 0.988 

JRIP / RealAdaBoost 0.99 0.99 0.998 0.986 

Ensemble by Voting (majority voting) 4 classifiers (JRIP, 
OneR, FunctionalTree, LazyBayesianRules) 0.994 0.992 0.994 0.988 

 
Table 5.8. MalGenome 2nd Dataset True Positive Rates Part 2 

 Algorithm Name and Parameters 
1/3 Test split (hold-

out) (1510 instances) 
test size: 422 mal + 

81 ben 

SMOTE-
balanced-1/3 Test 

split (hold-out) 
(2520 instances) 
test size: 420 mal 

+ 420 ben 

Imbalanced-
TRAIN (1005 

instances) 840 mal 
+ 165 ben 

Imbalanced-TEST 
(505 instances) 420 

mal + 85 ben 

Radial Basis Function  0.998 0.991 0.993 0.993 

Multilayer Perceptron (learning rate=0.3, momentum=0.2, one 
hidden layer with 8 nodes, 500 iterations) 0.993 0.993 0.994 0.986 

Multilayer Perceptron (default param. in Weka lr=0.3, 
mom=0.2, hidden: 19. 500 iter.) 0.995 0.993 0.994 0.988 
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1-NN (1/d weighted) 0.995 0.993 1 0.988 
NaiveBayes 0.995 0.993 0.992 0.99 

BayesianLogisticRegression 0.998 0.993 0.994 0.993 

VotedPerceptron 0.998 0.993 0.993 0.993 

SVM (Support Vector Machine) 0.998 0.991 0.993 0.981 
Lazy Bayesian Rules Classifier (LBR) 0.995 0.984 0.992 0.99 

FURIA (fuzzy unordered rule induction) 0.998 0.993 0.993 0.981 

MODLEM (rough set-based rule classifier with default param.) 
0.998 0.998 1 0.99 

LAC (lazy associative rule-based with default param.) 0.998 0.993 0.995 0.993 

OneR (rule-based)* 0.998 0.995 0.994 0.993 
NNGE (rule-based with default param.) 0.993 0.991 0.999 0.99 

JRIP (rule-based Repeated Incremental Pruning to Produce 
Error Reduction (RIPPER)) 0.995 0.993 0.99 0.979 
RIDOR (rule-nased RIpple-DOwn Rule learner) 0.991 0.977 0.994 0.988 

Id3 (decision tree) 0.998 0.993 1 0.986 
J48 (improved version of C4.5 decision tree) 0.993 0.993 0.994 0.988 

CART (decision tree) 0.993 0.993 0.994 0.993 
Functional Tree (decision tree) 0.995 0.993 0.994 0.99 

DecisionStump (decision tree)* 0.998 0.995 0.994 0.993 
NBTree (NaiveBayes decision tree) 0.991 0.991 0.992 0.99 

LMT (logistic model trees - decision tree) 0.998 0.993 0.994 0.993 
RandomForest (ensemble of decision trees) 0.995 0.993 0.999 0.99 
NNGE / AdaBoostM1 0.998 0.991 0.999 0.99 

Ensemble by Voting (majority voting) 2 classifiers (LAC, 
NNGE) 0.995 0.991 0.999 0.99 

Ensemble by Voting (majority voting) 3 classifiers (OneR, J48, 
RBF classifier) 0.998 0.993 0.994 0.993 

Ensemble by Voting (majority voting) 3 classifiers (OneR, 
FunctionalTree, LazyBayesianRules) 0.998 0.993 0.994 0.993 

Ensemble by Voting (majority voting) 3 classifiers (J48, 
FunctionalTree, LazyBayesianRules) 0.995 0.993 0.994 0.99 

JRIP / RealAdaBoost 0.998 0.993 1 0.99 

Ensemble by Voting (majority voting) 4 classifiers (JRIP, 
OneR, FunctionalTree, LazyBayesianRules) 0.995 0.993 0.994 0.99 
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Table 5.9. MalGenome 2nd Dataset True Negative Rates Part 1 

 Algorithm Name and Parameters 
10-fold-xval  

(1510 instances) 
1260 mal + 250 

ben 

SMOTE-
balanced-10-

fold-xval (2520 
instances) 1260 
mal + 1260 ben 

SMOTE-
balanced-

TRAIN  (1680 
instances) 840 
mal + 840 ben 

SMOTE-
balanced-TEST 
(840 instances) 
420 mal + 420 

ben 

Radial Basis Function  0.94 0.998 0.994 0.998 

Multilayer Perceptron (learning rate=0.3, momentum=0.2, one hidden layer with 8 
nodes, 500 iterations) 

0.952 0.997 1 0.993 

Multilayer Perceptron (default param. in Weka lr=0.3, mom=0.2, hidden: 19. 500 iter.) 
0.944 0.996 1 0.993 

1-NN (1/d weighted) 0.94 0.996 1 0.995 

NaiveBayes 0.94 0.923 0.924 0.931 

BayesianLogisticRegression 0.936 0.994 0.995 0.995 

VotedPerceptron 0.952 0.994 0.992 0.995 

SVM (Support Vector Machine) 0.952 0.994 0.998 0.988 

Lazy Bayesian Rules Classifier (LBR) 0.972 0.998 0.998 0.998 

FURIA (fuzzy unordered rule induction) 0.94 0.995 0.998 0.988 

MODLEM (rough set-based rule classifier with default param.) 
0.852 0.982 1 0.988 

LAC (lazy associative rule-based with default param.) 0.748 0.926 0.924 0.931 

OneR (rule-based)* 0.924 0.92 0.919 0.921 

NNGE (rule-based with default param.) 0.916 0.989 1 0.995 

JRIP (rule-based Repeated Incremental Pruning to Produce Error Reduction (RIPPER)) 
0.964 0.995 0.995 0.998 

RIDOR (rule-nased RIpple-DOwn Rule learner) 0.99 0.996 0.999 0.998 

Id3 (decision tree) 0.912 0.991 1 0.995 

J48 (improved version of C4.5 decision tree) 0.952 0.995 0.995 0.998 

CART (decision tree) 0.944 0.994 0.995 0.998 

Functional Tree (decision tree) 0.991 0.991 1 0.99 

DecisionStump (decision tree)* 0.924 0.92 0.919 0.921 

NBTree (NaiveBayes decision tree) 0.948 0.994 0.993 0.99 

LMT (logistic model trees - decision tree) 0.94 0.994 1 0.995 

RandomForest (ensemble of decision trees) 0.94 0.994 1 0.995 

NNGE / AdaBoostM1 0.932 0.994 1 0.993 

Ensemble by Voting (majority voting) 2 classifiers (LAC, NNGE) 
0.916 0.989 1 0.995 

Ensemble by Voting (majority voting) 3 classifiers (OneR, J48, RBF classifier) 
0.928 0.992 0.994 0.998 
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Ensemble by Voting (majority voting) 3 classifiers (OneR, FunctionalTree, 
LazyBayesianRules) 

0.964 0.994 0.998 0.993 

Ensemble by Voting (majority voting) 3 classifiers (J48, FunctionalTree, 
LazyBayesianRules) 

0.972 0.998 0.999 0.998 

JRIP / RealAdaBoost 0.948 0.995 0.999 0.993 

Ensemble by Voting (majority voting) 4 classifiers (JRIP, OneR, FunctionalTree, 
LazyBayesianRules) 

0.96 0.994 0.996 0.995 

 
Table 5.10. MalGenome 2nd Dataset True Negative Rates Part 2 

 Algorithm Name and Parameters 
1/3 Test split (hold-

out) (1510 instances) 
test size: 422 mal + 

81 ben 

SMOTE-
balanced-1/3 

Test split (hold-
out) (2520 

instances) test 
size: 420 mal + 

420 ben 

Imbalanced-
TRAIN (1005 
instances) 840 
mal + 165 ben 

Imbalanced-
TEST (505 

instances) 420 
mal + 85 ben 

Radial Basis Function  0.938 1 0.933 0.941 

Multilayer Perceptron (learning rate=0.3, momentum=0.2, one 
hidden layer with 8 nodes, 500 iterations) 0.963 1 1 1 

Multilayer Perceptron (default param. in Weka lr=0.3, 
mom=0.2, hidden: 19. 500 iter.) 0.914 1 1 0.953 

1-NN (1/d weighted) 0.938 1 0.994 0.965 

NaiveBayes 0.951 0.917 0.933 0.953 

BayesianLogisticRegression 0.938 1 0.952 0.965 

VotedPerceptron 0.951 0.995 0.921 0.929 

SVM (Support Vector Machine) 0.926 1 0.976 0.976 

Lazy Bayesian Rules Classifier (LBR) 0.963 1 0.933 0.953 

FURIA (fuzzy unordered rule induction) 0.938 1 0.994 0.965 

MODLEM (rough set-based rule classifier with default param.) 0.79 0.993 0.994 0.882 

LAC (lazy associative rule-based with default param.) 0.716 0.92 0.758 0.753 

OneR (rule-based)* 0.926 0.915 0.921 0.929 

NNGE (rule-based with default param.) 0.889 0.995 1 0.941 
JRIP (rule-based Repeated Incremental Pruning to Produce 
Error Reduction (RIPPER)) 0.951 1 0.988 1 

RIDOR (rule-nased RIpple-DOwn Rule learner) 0.975 1 0.952 0.941 

Id3 (decision tree) 0.889 0.993 0.994 0.953 

J48 (improved version of C4.5 decision tree) 0.975 1 0.964 0.953 

CART (decision tree) 0.975 1 0.921 0.929 
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Functional Tree (decision tree) 0.951 0.998 0.994 0.953 

DecisionStump (decision tree)* 0.926 0.915 0.921 0.929 

NBTree (NaiveBayes decision tree) 0.963 0.99 0.982 0.988 

LMT (logistic model trees - decision tree) 0.938 0.995 0.958 0.941 

RandomForest (ensemble of decision trees) 0.926 1 1 0.976 

NNGE / AdaBoostM1 0.914 1 1 0.953 

Ensemble by Voting (majority voting) 2 classifiers (LAC, 
NNGE) 0.802 0.942 1 0.941 

Ensemble by Voting (majority voting) 3 classifiers (OneR, J48, 
RBF classifier) 0.926 1 0.927 0.941 

Ensemble by Voting (majority voting) 3 classifiers (OneR, 
FunctionalTree, LazyBayesianRules) 0.951 0.998 0.933 0.941 

Ensemble by Voting (majority voting) 3 classifiers (J48, 
FunctionalTree, LazyBayesianRules) 0.963 1 0.97 0.965 

JRIP / RealAdaBoost 0.963 0.998 0.994 0.918 

Ensemble by Voting (majority voting) 4 classifiers (JRIP, OneR, 
FunctionalTree, LazyBayesianRules) 0.951 0.998 0.964 0.976 

 

5.5. Results from the AndroZoo Dataset 

The dataset constructed from the AndroZoo malware samples was subsampled into 

four different datasets including one training set with 300 malware and 300 benign 

samples, and three different test sets out of which two have 150 malware and 150 

benign, and one has 200 malware and 200 benign samples. Similar to the construction 

of the train and test datasets of the MalGenome dataset, the benign samples were 

chosen randomly from the 600 benign records collected from the Google Play Store, 

and the malware samples were chosen randomly from 1300 malware records collected 

from the AndroZoo Project. The data mining process execution methods of train sets, 

test sets, and 10-fold cross-validation were executed on Weka using many of the 

available machine learning algorithms. The machine learning algorithms achieving the 

highest detection ratios among the experiments for the AndroZoo dataset including 

several well-known types of classification algorithms are given in tables Table 5.11, 

Table 5.12, and Table 5.13. For this dataset, FURIA, ID3, and J48 machine learning 

algorithms achieved the highest 10-fold cross-validation accuracy ratio of 0.988. 
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Table 5.11. AndroZoo Dataset Accuracy Values 
 

Algorithm Name and Parameters  Train (600 
instances) 

10-fold x-
val. (600 

instances) 

Test set 1 
(300 

instances) 

Test set 2 
(300 

instances) 

Test set 3 
(400 

instances) 

Radial Basis Function  0.987 0.982 0.980 0.980 0.980 
Multilayer Perceptron (learning rate=0.3, momentum=0.2, one 
hidden layer with 8 nodes, 500 iterations) 0.992 0.983 0.983 0.983 0.985 

Id3 (decision tree) 0.992 0.988 0.983 0.987 0.988 
k-NN (k nearest neighbors, k = 1) 0.992 0.985 0.983 0.987 0.988 
NaiveBayes 0.960 0.960 0.957 0.950 0.960 
J48 (improved version of C4.5 decision tree) 0.988 0.988 0.980 0.983 0.980 
SVM (Support Vector Machine with Sequential Minimal 
Optimization) 0.990 0.985 0.983 0.983 0.983 

FURIA (fuzzy unordered rule induction classifier) 0.990 0.988 0.983 0.983 0.983 
RandomForest (ensemble of decision trees) 0.992 0.985 0.987 0.987 0.988 
NNGE / AdaBoostM1 (Non-nested Generalized Exemplars 
rule based classification with AdaBoost M1 meta-learner) 0.992 0.987 0.987 0.987 0.988 
Ensemble by Voting (average of probabilities) 3 classifiers 
(LAC, NNGE, MODLEM) 0.992 0.978 0.987 0.987 0.988 
Ensemble by Voting (average of probabilities) 3 classifiers 
(OneR, NNGE, MODLEM) 0.992 0.983 0.987 0.987 0.988 
Ensemble by Voting (average of probabilities) 4 classifiers 
(OneR, LAC, NNGE, MODLEM) 0.992 0.983 0.987 0.987 0.988 

 
Table 5.12. AndroZoo Dataset True Positive Rates 

 

 Algorithm Name and Parameters Train (600 
instances) 

10-fold x-
val. (600 

instances) 

Test set 1 
(300 

instances) 

Test set 2 
(300 

instances) 

Test set 3 
(400 

instances) 
Radial Basis Function  0.990 0.990 0.987 0.980 0.975 
Multilayer Perceptron (learning rate=0.3, momentum=0.2, one 
hidden layer with 8 nodes, 500 iterations) 0.997 0.987 0.993 0.987 0.985 

Id3 (decision tree) 0.997 0.990 0.987 0.987 0.985 

k-NN (k nearest neighbors, k = 1) 0.997 0.997 0.993 0.993 0.990 

NaiveBayes 1.000 1.000 0.993 0.993 0.990 

J48 (improved version of C4.5 decision tree) 0.990 0.990 0.980 0.980 0.970 
SVM (Support Vector Machine with Sequential Minimal 
Optimization) 0.993 0.987 0.987 0.980 0.975 

FURIA (fuzzy unordered rule induction classifier) 0.993 0.990 0.987 0.980 0.975 

RandomForest (ensemble of decision trees) 0.997 0.987 0.993 0.987 0.985 
NNGE / AdaBoostM1 (Non-nested Generalized Exemplars rule 
based classification with AdaBoost M1 meta-learner) 0.997 0.993 0.993 0.987 0.985 
Ensemble by Voting (average of probabilities) 3 classifiers 
(LAC, NNGE, MODLEM) 0.997 0.990 0.993 0.987 0.985 
Ensemble by Voting (average of probabilities) 3 classifiers 
(OneR, NNGE, MODLEM) 0.997 0.987 0.993 0.987 0.988 
Ensemble by Voting (average of probabilities) 4 classifiers 
(OneR, LAC, NNGE, MODLEM) 0.997 0.987 0.993 0.987 0.985 

 

 

                   Table 5.13. AndroZoo Dataset True Negative Rates 

Algorithm Name and Parameters  Train (600 
instances) 

10-fold x-
val. (600 

instances) 

Test set 1 
(300 

instances) 

Test set 2 
(300 

instances) 

Test set 3 
(400 

instances) 
Radial Basis Function  0.984 0.974 0.973 0.980 0.985 
Multilayer Perceptron (learning rate=0.3, momentum=0.2, one 
hidden layer with 8 nodes, 500 iterations) 0.987 0.977 0.973 0.979 0.985 
Id3 (decision tree) 0.987 0.986 0.979 0.987 0.991 
k-NN (k nearest neighbors, k = 1) 0.987 0.973 0.973 0.981 0.986 
NaiveBayes 0.920 0.920 0.921 0.907 0.930 
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J48 (improved version of C4.5 decision tree) 0.986 0.986 0.980 0.986 0.990 
SVM (Support Vector Machine with Sequential Minimal 
Optimization) 0.987 0.983 0.979 0.986 0.991 

FURIA (fuzzy unordered rule induction classifier) 0.987 0.986 0.979 0.986 0.991 
RandomForest (ensemble of decision trees) 0.987 0.983 0.981 0.987 0.991 
NNGE / AdaBoostM1 (Non-nested Generalized Exemplars rule 
based classification with AdaBoost M1 meta-learner) 0.987 0.981 0.981 0.987 0.991 
Ensemble by Voting (average of probabilities) 3 classifiers 
(LAC, NNGE, MODLEM) 0.987 0.966 0.981 0.987 0.991 
Ensemble by Voting (average of probabilities) 3 classifiers 
(OneR, NNGE, MODLEM) 0.987 0.979 0.981 0.987 0.982 
Ensemble by Voting (average of probabilities) 4 classifiers 
(OneR, LAC, NNGE, MODLEM) 0.987 0.979 0.981 0.987 0.991 
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CHAPTER 6 

CONCLUSIONS 

In this concluding chapter, the contributions of this thesis and their potential impacts 

are discussed. 

6.1. Summary of Thesis Contributions 

A novel feature selection methodology is proposed and implemented in this Ph.D. 

study along with a new model for malware detection on the Android. The proposed 

approach was tested using nearly all the available machine learning algorithms on 

WEKA along with some ensembles of certain machine learning algorithms. High 

accuracy values and malware detection ratios were obtained, which prove the 

usefulness of the approach in real world cases. 

The malware detection using machine learning methodology proposed in this thesis 

achieved the highest TPRs ranging between 99.6% and 100% for the first MalGenome 

dataset and ranging between 99.3% and 100% for the AndroZoo dataset. 

In terms of accuracy rates in the first MalGenome dataset, ensemble learner by 

majority voting of three classifiers (OneR, NNGE, MODLEM) achieved the best rates 

with 99.8%, 97.2%, 99.6%, 97,6% and 99.2% for the train, 10-fold cross-validation, 

test set 1, test set 2, test set 3 and test set 4 experiments, respectively. 

Considering the accuracy results in the second MalGenome dataset, the JRIP / 

RealAdaBoost classifier achieved the highest accuracy rate of 99.2% in the 1/3 test 

split (hold-out) experiment that contains 1510 instances.  

Majority voting of three classifiers (OneR, J48 and the RBF classifier) achieved the 

highest TPR of 99.5% in the 10-fold cross validation experiment that include 1260 

malware and 1260 benign samples. 

Modlem achieved the highest TPR of 99.8% in the 1/3 hold-out experiment that 

contain 2520 instances with test sizes of 420 malware and 420 benign samples. 
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The following ensembles that contain three classifiers: OneR, J48 and the RBF 

classifier; OneR, FunctionalTree and the LazyBayesianRules; J48, FunctionalTree and 

the LazyBayesianRules along with the ensemble that contain four classifiers: JRIP, 

OneR, FunctionalTree and the LazyBayesianRules, achieved some of the best results 

by obtaining the highest accuracy of 99.6% and the highest TPR of 99.8%. 

For the AndroZoo dataset, the highest malware detection accuracy rates were observed 

to be ranging from 98.7% to 98.8%, and these results slightly outperform the results 

of the study conducted by Wu et al. (S. Wu et al., 2016), where they had achieved the 

highest detection ratio of 97.66% using the k-NN classifier.  

In terms of accuracy rates with the AndroZoo dataset, NNGE / AdaBoostM1 achieved 

the best rates with 99.2%, 98.7%, 98.7%, 98.7% and 98.8% for the train, 10-fold cross-

validation, test set 1, test set 2 and test set 3 experiments, respectively. 

Additionally, the TPR results of the AndroZoo dataset given in Table 5.12, range from 

97% to 100%. In terms of the TPR values by each classifier, Naive Bayes achieved the 

best results with 100% for train and 10-fold cross-validation, and 99.3% for test sets 1 

and 2, and 99% for the test set 3. The k-NN classifier produced the second best results 

in terms of TPR with 99.7% for train and 10-fold cross-validation, and 99.3% for test 

sets 1 and 2, and 99% for the test set 3. 

Several ensemble learners that use majority voting achieved the highest accuracy ratios 

upon four different test sets derived from the MalGenome project. Three different 

ensemble models which include, one model with three classifiers (LAC, NNGE, 

MODLEM), another one with three classifiers (OneR, NNGE, MODLEM), and 

another ensemble model with four classifier algorithms (OneR, LAC, NNGE, 

MODLEM) were the ensemble learners that achieved the highest accuracy ratios. The 

test accuracies of these ensemble learners were observed to be ranging between 0.992 

and 1. 

Concerning the AndroZoo dataset, it was further observed that besides these three 

ensemble models, another ensemble learner which is the RandomForest, AdaBoost M1 

meta-learner that uses the NNGE classifier, k-NN, and ID3 achieved the highest test 

accuracy values of 0.987 and 0.988. 

It can be asserted that the feature selection methodology proposed in this thesis is 

successful owing to the outstanding and promising accuracy values and malware 
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detection performances. A novel approach for the feature selection process that makes 

use of IDF values in a different way has been designed and developed. Additionally, a 

new malware detection approach that implements the proposed methodology for 

feature selection and explores ensemble learning with different algorithms, has been 

implemented and evaluated. 

It can be further concluded that, the machine learning algorithms utilized in this work 

were shown to obtain considerably high accuracy rates for malware detection on the 

Android platform by using the feature selection and malware detection methodologies 

proposed in this Ph.D. thesis. 

6.2. Directions for Future Work 

Further studies and directions for future work are discussed in this section. 

6.2.1. New Experiments with Bigger Datasets 

Due to time constraints and download limitations (mass download methods were not 

available) in the Google Play Store, a high amount of benign application samples could 

not be utilized in this study. Therefore, one of the future works is to increase the 

number of benign samples included in the experiments. This has already been carried 

out for the MalGenome dataset by utilizing the up-sampling statistical method of 

increasing sample size and it will also be carried out for the AndroZoo dataset by 

downloading large numbers of Android benign apps from the AndroZoo Project.  The 

similar experiments and tests will be carried out with the same and potentially some 

extra classifiers on the new dataset to observe how the methodology scales to greater 

numbers of malware and benign samples. 

6.2.2. Additional Research for Ensemble Classifiers with the 

AndroZoo Dataset  

In the MalGenome dataset, ensemble classifiers achieved the best TPR scores, in 

contrast to this, in the AndroZoo dataset, basic single classifiers such as Naive Bayes 

and the k-NN achieved the best TPR. The ensemble learners would have been expected 

to provide the best TPR scores in the AndroZoo dataset as well. This may be the 

consequence of a number of factors such as the fact that various malware types with 

different features and symptoms were included within each dataset, or the fact that 
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train and test sets were constructed randomly. The second future work will be carrying 

out some additional research into this situation. 

6.2.3. Alternative Methodologies for Feature Selection 

The novel feature selection methodology proposed in this thesis could be combined 

with different known feature selection methodologies to provide an alternative hybrid 

model of feature selection. In such a scenario, the attributes would be extracted and 

selected according to the original proposed methodology and afterwards, by using 

various ranker (such as Information Gain, Mutual Information, Chi-Square) methods 

and/or subset selection and/or Wrapper methods, from the currently selected attributes, 

some additional attributes could be discarded. The same set of classifiers would be 

used to get the results from the train and test sets constructed with this hybrid 

methodology. The results obtained by this alternative methodology would be 

compared against the results obtained using the original methodology to measure the 

success of using such a hybrid methodology. 

6.2.4. Malware Detection Tool for Android Platforms 

The fourth and final potential future study is to implement this new malware detection 

methodology as an Android application that could be deployed on mobile devices. As 

it was previously noted, the methodology proposed in this thesis is an off-line detection 

methodology. Within the time constraints of this thesis, it was not possible to build the 

actual Android application for malware detection that implements the proposed 

methodology. However, within a larger timeframe, a mobile application that 

implements the proposed malware detection methodology could be implemented and 

published on the Google Play Store.   
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APPENDIX 1 – Descriptions of the Selected Attributes for the 

MalGenome Dataset 

Permissions 

BROADCAST_STICKY: This is a permission to be able to send a sticky broadcast. A 

sticky broadcast is a broadcast that stays around following the moment it is announced 

to the system. Most broadcasts are sent, processed within the system and become 

quickly inaccessible. However, sticky broadcasts announce information that remains 

accessible beyond the point at which they are processed. A typical example is the 

battery level broadcast. Unlike most broadcasts, the battery level can be retrieved 

within applications beyond the point at which it was sent through the system. This 

means that apps can find out whatever the last battery level broadcast was. 

CALL_PHONE: This is the permission that enables making phone calls. 

CAMERA: This is the permission to be able to utilize the device’s camera given it has 

one. 

DISABLE_KEYGUARD: Allows an app to disable the keylock in addition to any 

associated password security. For example, upon receiving an incoming phone call, 

the phone disables the keylock, and re-enables the keylock when the call is finished. 

GET_ACCOUNTS: Enables an app to get the list of accounts known by the phone. 

This may include any accounts created by the apps installed by the phone owner. 

READ_CALENDAR: Grants read access to the phone’s calendar. 

READ_LOGS: Grants read access to the phone’s logs. 

READ_PHONE_STATE: Required to obtain the UUID (Universally unique identifier) 

of the device. 

READ_SMS: Grants read access to the received, drafted and sent SMS messages. 

RECEIVE_SMS: Enables an app to intercept an incoming SMS. In other words, an 

SMS incoming to the device may also be received by the app possessing this 

permission.  

RESTART_PACKAGES: Required to restart a running package. 

SEND_SMS: Enables an app to send SMS messages. 
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SYSTEM_ALERT_WINDOW: Allows an app to display content over another app. In 

other words, this permission allows a developer to display content on the screen of 

your Android device after a predefined trigger event. 

WRITE_APN_SETTINGS:  Allows applications to write the Access Point Name 

(APN) settings. APN settings are required to set up a connection to the gateway 

between your carrier's cellular network and the public Internet.  

WRITE_CONTACTS:  Allows an app to write to the device's contacts data. 

WRITE_EXTERNAL_STORAGE: Allows an app to write to the external storages 

(such as a MicroSD Card or USB Flash) connected to the device. 

WRITE_HISTORY_BOOKMARKS: Allows an app to modify the browser's history 

or bookmarks stored on a phone. This may allow the app to erase or modify browser 

data, additionally providing access to the history of websites visited using the browser 

apps on the device. 

WRITE_SMS: Allows an app to write to SMS messages stored on a phone or SIM 

card. Malicious apps may delete sensitive SMS messages using this permission. 

API calls 

getSubscriberId: Returns the unique subscriber ID, such as the IMSI (International 

Mobile Subscriber Identity) for a GSM (Global System for Mobile communication) 

phone. 

sendTextMessage: Must be called by applications that send SMS text messages. 

createFromPdu: Used for constructing an SMS text message using a raw PDU 

(Protocol Description Unit) with the specified message format. 

getSimSerialNumber: Returns the serial number of the SIM, if applicable. Returns null 

if it is unavailable. 

getExtraInfo: Report extra information concerning the network state, given it was 

provided by the lower networking layers. 

getPaint: Returns the paint required to draw the shape. 

seekTo: Implemented to adjust the playback position of an audio/video in the media 

player. 

TruncateAt: Required to truncate an input text after the specified position. 

91 



Strings 

Parse: This string is indicative of some sort of parsing code in the Android executable. 

Add: This string indicates an add operation by the corresponding sample. 

Iterator: Presence of this string indicates use of an iterator method. 

Schedule: This string indicates some sort of scheduling of program execution was 

carried out. 

setId: Indicative of use of the setId method. 

Digest: This string is indicative of the use of the “digest” package in Java required to 

generate an MD5 digest for a string. 

Callback: Indicative of the use of the “callback” method in Java that gets called when 

an event occurs.  

entrySet: Indicative of the use of the “entrySet” method in Java used for iterating over 

an object that implements the map interface. 

findPointerIndex: Indicates the use of the findPointerIndex(int) method that is required 

for obtaining the pointer index for a given pointer id in the corresponding motion event 

(mouse, pen, finger and trackball movements). 

getEdgeFlags: Indicates use of the getEdgeFlags() method that returns a bit field 

indicating which edges, if any, were touched by the corresponding motion event. 

getFinalX: Indicates use of the getFinalX() method that returns where the scroll will 

end in the Android Scroller class that extends Object. 
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APPENDIX 2 – Descriptions of the Selected Attributes for the AndroZoo 

Dataset 

Permissions  

REORDER_TASKS: Enables the app to move tasks to the foreground and 

background. The app may also do this without any user input. 

CLEAR_APP_CACHE: Required for deleting files in the cache directories of 

other applications, as a side effect other applications may start up more slowly 

due to having to re-retrieve their data. 

MANAGE_DOCUMENTS: Allows an app to manage the storage for documents. 

READ_HISTORY_BOOKMARKS: Enables an app to read the history of all URLs 

that the Browser has visited, and all of the Browser's bookmarks.  

KILL_BACKGROUND_PROCESSES: Gives an app the permission to end 

background processes of other apps, effectively causing other apps to stop running. 

ACCESS_MOCK_LOCATION: This permission allows an app to override the 

location or status returned by other location sources such as GPS or other positional 

information providers. 

ACCESS_GPS: Enables an app to utilize the GPS functions of the device. 

ACCESS_LOCATION_EXTRA_COMMANDS: Allows an app to access extra 

location provider commands. This may allow the app to interfere with the operation of 

the GPS or other positional information providing sources. 

API calls 

getAttributeUnsignedIntValue: Returns the Boolean value of 'attribute' that is 

formatted as an unsigned value. 

setKeywords: A method in the Android API used for data passing. 

setAppName: A method in the Android API to change the Android app’s name. 

getCurrencyCode: A method in the Android API to get the code of a currency specific 

to a country. 

isSurrogatePair: Determines whether the specified pair of char values is a valid 

Unicode surrogate pair. 
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allowCoreThreadTimeOut: A method of the ThreadPoolExecutor public class, sets the 

policy governing whether core threads may time out and terminate if no tasks arrive 

within the keep-alive time, become replaced if required when new tasks arrive. 

requestAd: Is a method to request advertisements from a server. 

displayAd: Is a method required for displaying advertisements. 

FilenameFilter: Presence of this string is indicative of implementation of the 

“FilenameFilter” public interface that is used to filter file names. The classes that 

implement this interface can filter directory listings in the “list” method of the File 

class. 

Strings 

remoteexception: This string indicates a remote method invoked by the app on another 

service did not complete and an exception was thrown accordingly. 

Credentials: Indicates the use of the credentials class which is a class for representing 

UNIX credentials passed via ancillary data on UNIX domain sockets.  

remoteinput: Indicates utilization of the RemoteInput object that specifies input to be 

collected from a user to be passed along with an intent. 

doubleclick: Presence of this string indicates a possible http://ad.doubleclick.net 

redirecting piece of code, which is a common malicious behavior employed by several 

Android malware families. 
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APPENDIX 3 – Detailed Results Obtained in WEKA for the First 

MalGenome Dataset 

Radial Basis Function 

Train 

=== Detailed Accuracy by Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC    ROC Area  PRC Area  Class 

                         0,972    0,004    0,996      0,972         0,984      0,968       0,991           0,994      (m) 

                         0,996    0,028    0,973      0,996         0,984      0,968       0,991           0,987      (b) 

Weighted Avg.  0,984    0,016    0,984      0,984         0,984     0,968       0,991            0,991      

 

=== Confusion Matrix === 

   a   b   <-- classified as 

 243   7 |   a = (m) 

   1 249 |   b = (b) 

10-fold x-val. 

=== Detailed Accuracy by Class === 

 

                           TP Rate  FP Rate  Precision  Recall   F-Measure   MCC      ROC Area  PRC Area  Class 

                           0,972    0,012    0,988      0,972     0,980      0,960    0,989        0,992     (m) 

                           0,988    0,028    0,972      0,988     0,980      0,960    0,989         0,983    (b) 

Weighted Avg.    0,980    0,020    0,980      0,980     0,980      0,960    0,989         0,988      

 

=== Confusion Matrix === 

   a   b   <-- classified as 

 243   7 |   a = (m) 

   3 247 |   b = (b) 
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Test Set 1 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,968    0,000    1,000      0,968      0,984          0,968           1,000     1,000          (m) 

                           1,000    0,032    0,969      1,000      0,984          0,968           1,000     1,000          (b) 

Weighted Avg.    0,984    0,016    0,984      0,984      0,984          0,968           1,000     1,000      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 121   4 |   a = (m) 

   0 125 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,912    0,000    1,000      0,912         0,954      0,916         1,000     1,000              (m) 

                           1,000    0,088    0,919      1,000         0,958      0,916         1,000     1,000              (b) 

Weighted Avg.    0,956    0,044    0,960      0,956         0,956      0,916         1,000     1,000      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 114  11 |   a = (m) 

   0 125 |   b = (b) 

Test Set 3 
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=== Detailed Accuracy by Class === 

  

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,912    0,000    1,000         0,912    0,954      0,916           0,999          0,999          (m) 

                           1,000    0,088    0,919         1,000    0,958      0,916           0,999          0,999          (b) 

Weighted Avg.    0,956    0,044    0,960         0,956    0,956      0,916           0,999          0,999      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 114  11 |   a = (m) 

   0 125 |   b = (b) 

Test Set  4 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,952    0,000    1,000      0,952        0,975      0,953         0,999           0,999       (m) 

                           1,000    0,048    0,954      1,000        0,977      0,953         0,999           0,999       (b) 

Weighted Avg.    0,976    0,024    0,977      0,976        0,976      0,953         0,999           0,999      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 119   6 |   a = (m) 

   0 125 |   b = (b) 

Multilayer Perceptron 

Train 
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=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,984    0,000    1,000      0,984        0,992        0,984       0,997           0,997        (m) 

                           1,000    0,016    0,984      1,000        0,992        0,984       0,997           0,996        (b) 

Weighted Avg.    0,992    0,008    0,992      0,992        0,992        0,984       0,997           0,997      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 246   4 |   a = (m) 

   0 250 |   b = (b)  

10-fold x-val. 

=== Detailed Accuracy by Class === 

 

                     TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,976    0,020    0,980         0,976    0,978            0,956       0,982          0,988        (m) 

                           0,980    0,024    0,976         0,980    0,978            0,956        0,982         0,969        (b) 

Weighted Avg.    0,978    0,022    0,978         0,978    0,978           0,956         0,982         0,979      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 244   6 |   a = (m) 

   5 245 |   b = (b)  

Test Set 1 
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=== Detailed Accuracy by Class === 

 

                         TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,944    0,000      1,000      0,944      0,971         0,945      0,995           0,996         (m) 

                           1,000    0,056      0,947      1,000      0,973         0,945       0,995           0,994        (b) 

Weighted Avg.    0,972    0,028      0,973      0,972      0,972         0,945       0,995           0,995      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 118   7 |   a = (m) 

   0 125 |   b = (b)  

Test Set 2 

=== Detailed Accuracy by Class === 

 

                       TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,920    0,000    1,000       0,920       0,958        0,923       0,974          0,982         (m) 

                           1,000    0,080    0,926       1,000       0,962        0,923       0,974          0,966         (b) 

Weighted Avg.    0,960    0,040    0,963       0,960       0,960        0,923       0,974          0,974      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 115  10 |   a = (m) 

   0 125 |   b = (b)  

Test Set 3 
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=== Detailed Accuracy by Class === 

 

                       TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                            0,880    0,000    1,000        0,880      0,936        0,886       0,981         0,986        (m) 

                            1,000    0,120    0,893        1,000      0,943        0,886       0,981         0,978        (b) 

Weighted Avg.    0,940    0,060    0,946        0,940      0,940        0,886      0,981          0,982      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 110  15 |   a = (m) 

   0 125 |   b = (b)  

Test Set 4 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,928    0,000    1,000        0,928        0,963       0,930       0,987        0,991         (m) 

                           1,000    0,072    0,933        1,000        0,965       0,930       0,987        0,981         (b) 

Weighted Avg.    0,964    0,036    0,966        0,964        0,964      0,930       0,987        0,986      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 116   9 |   a = (m) 

   0 125 |   b = (b)  

Id3 

Train 
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=== Detailed Accuracy by Class === 

 

                         TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,996    0,000    1,000        0,996        0,998      0,996       1,000           1,000          (m) 

                           1,000    0,004    0,996        1,000        0,998      0,996       1,000           1,000          (b) 

Weighted Avg.    0,998    0,002    0,998        0,998        0,998      0,996      1,000            1,000      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 249   1 |   a = (m) 

   0 250 |   b = (b) 

10-fold x-val. 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,968    0,028    0,972        0,968      0,970        0,940       0,969           0,957        (m) 

                           0,972    0,032    0,968        0,972      0,970        0,940       0,969           0,954        (b) 

Weighted Avg.    0,970    0,030    0,970        0,970      0,970        0,940      0,969           0,955      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 242   8 |   a = (m) 

   7 243 |   b = (b) 

Test Set 1 
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=== Detailed Accuracy by Class === 

 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,896    0,000      1,000      0,896      0,945         0,901      0,946          0,948         (m) 

                           1,000    0,104      0,906      1,000      0,951         0,901      0,946          0,902         (b) 

Weighted Avg.    0,948    0,052      0,953      0,948      0,948         0,901      0,946          0,925      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 112  13 |   a = (m) 

   0 125 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 

 

                       TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,920    0,000    1,000        0,920      0,958        0,923        0,958         0,960        (m) 

                           1,000    0,080    0,926        1,000      0,962        0,923         0,958         0,922       (b) 

Weighted Avg.    0,960    0,040    0,963        0,960      0,960        0,923         0,958         0,941      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 115  10 |   a = (m) 

   0 125 |   b = (b) 

Test Set 3 
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=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,936    0,000    1,000        0,936      0,967        0,938       0,967          0,968         (m) 

                           1,000    0,064    0,940        1,000      0,969        0,938       0,967          0,938         (b) 

Weighted Avg.    0,968    0,032    0,970        0,968      0,968        0,938       0,967         0,953      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 117   8 |   a = (m) 

   0 125 |   b = (b) 

Test Set 4 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                            0,928    0,000    1,000       0,928      0,963        0,930        0,963         0,964         (m) 

                            1,000    0,072    0,933       1,000      0,965        0,930        0,963         0,931         (b) 

Weighted Avg.    0,964    0,036    0,966        0,964      0,964        0,930        0,963         0,947      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 116   9 |   a = (m) 

   0 125 |   b = (b) 

k-NN 

Train 
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=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                            0,996    0,000    1,000        0,996    0,998          0,996      1,000          1,000          (m) 

                            1,000    0,004    0,996        1,000    0,998          0,996      1,000          1,000          (b) 

Weighted Avg.    0,998    0,002    0,998        0,998    0,998          0,996      1,000          1,000      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 249   1 |   a = (m) 

   0 250 |   b = (b) 

10-fold x-val. 

=== Detailed Accuracy by Class === 

 

                         TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                            0,964    0,012     0,988       0,964     0,976         0,952       0,980         0,985          (m) 

                            0,988    0,036     0,965       0,988     0,976         0,952       0,980         0,966         (b) 

Weighted Avg.    0,976    0,024     0,976       0,976     0,976         0,952       0,980         0,975      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 241   9 |   a = (m) 

   3 247 |   b = (b) 

Test Set 1 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,904    0,000    1,000        0,904     0,950         0,908       0,976          0,977        (m) 

                           1,000    0,096    0,912        1,000     0,954         0,908       0,976          0,961        (b) 

Weighted Avg.    0,952    0,048    0,956        0,952     0,952         0,908       0,976          0,969      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 113  12 |   a = (m) 

   0 125 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,880    0,000    1,000        0,880      0,936        0,886       0,961          0,967         (m) 

                           1,000    0,120    0,893        1,000      0,943        0,886       0,961           0,942        (b) 

Weighted Avg.    0,940    0,060    0,946        0,940      0,940        0,886       0,961          0,955      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 110  15 |   a = (m) 

   0 125 |   b = (b) 

Test Set 3 

=== Detailed Accuracy by Class === 
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                       TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,864    0,000    1,000        0,864    0,927          0,872       0,954        0,963          (m) 

                           1,000    0,136    0,880        1,000    0,936          0,872       0,954        0,934          (b) 

Weighted Avg.    0,932    0,068    0,940        0,932    0,932          0,872       0,954        0,948      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 108  17 |   a = (m) 

   0 125 |   b = (b) 

Test Set 4 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,912    0,000    1,000        0,912     0,954         0,916       0,964          0,968          (m) 

                           1,000    0,088    0,919        1,000     0,958         0,916       0,964          0,946          (b) 

Weighted Avg.    0,956    0,044    0,960        0,956     0,956         0,916       0,964         0,957      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 114  11 |   a = (m) 

   0 125 |   b = (b) 

NaiveBayes 

Train 
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=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,972    0,048    0,953        0,972     0,962         0,924       0,988          0,992          (m) 

                           0,952    0,028    0,971        0,952     0,962         0,924        0,988         0,982          (b) 

Weighted Avg.    0,962    0,038    0,962        0,962     0,962         0,924       0,988          0,987      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 243   7 |   a = (m) 

  12 238 |   b = (b) 

10-fold x-val 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,972    0,048    0,953        0,972     0,962         0,924       0,985         0,990         (m) 

                           0,952    0,028    0,971        0,952     0,962         0,924       0,985         0,971         (b) 

Weighted Avg.    0,962    0,038    0,962        0,962    0,962         0,924       0,985         0,981      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 243   7 |   a = (m) 

  12 238 |   b = (b) 

Test Set 1 

=== Detailed Accuracy by Class === 
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                       TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,984    0,016    0,984       0,984     0,984         0,968       0,999          0,999         (m) 

                           0,984    0,016    0,984       0,984     0,984         0,968       0,999          0,999         (b) 

Weighted Avg.    0,984    0,016    0,984       0,984     0,984        0,968       0,999          0,999      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 123   2 |   a = (m) 

   2 123 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,936    0,024    0,975        0,936     0,955         0,913       0,997          0,997         (m) 

                           0,976    0,064    0,938        0,976     0,957         0,913       0,997          0,997         (b) 

Weighted Avg.    0,956    0,044    0,957        0,956     0,956         0,913       0,997          0,997      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 117   8 |   a = (m) 

   3 122 |   b = (b) 

Test Set 3 

=== Detailed Accuracy by Class === 
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                       TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,952    0,064    0,937        0,952     0,944         0,888       0,980         0,977         (m) 

                           0,936    0,048    0,951        0,936     0,944         0,888       0,980         0,985         (b) 

Weighted Avg.    0,944    0,056    0,944        0,944     0,944         0,888       0,980         0,981      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 119   6 |   a = (m) 

   8 117 |   b = (b) 

Test Set 4 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,984    0,064    0,939        0,984     0,961         0,921       0,986          0,983         (m) 

                           0,936    0,016    0,983        0,936     0,959         0,921       0,986          0,989         (b) 

Weighted Avg.    0,960    0,040    0,961        0,960     0,960         0,921       0,986          0,986      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 123   2 |   a = (m) 

   8 117 |   b = (b) 

J48 

=== Detailed Accuracy by Class === 
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                       TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,972    0,000    1,000        0,972     0,986         0,972       0,987        0,988         (m) 

                           1,000    0,028    0,973        1,000     0,986         0,972       0,987        0,975         (b) 

Weighted Avg.    0,986    0,014    0,986        0,986     0,986         0,972       0,987        0,982      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 243   7 |   a = (m) 

   0 250 |   b = (b) 

10-fold x-val. 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,964    0,020    0,980        0,964     0,972         0,944       0,965        0,971           (m) 

                           0,980    0,036    0,965        0,980     0,972         0,944       0,965         0,927          (b) 

Weighted Avg.    0,972    0,028    0,972        0,972     0,972         0,944       0,965         0,949      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 241   9 |   a = (m) 

   5 245 |   b = (b) 

Test Set 1 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,880    0,000    1,000        0,880     0,936         0,886       0,919          0,959         (m) 

                           1,000    0,120    0,893        1,000     0,943         0,886       0,919          0,923         (b) 

Weighted Avg.    0,940    0,060    0,946        0,940     0,940         0,886       0,919          0,941      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 110  15 |   a = (m) 

   0 125 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 

 

                       TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,920    0,000    1,000        0,920     0,958        0,923       0,967         0,982          (m) 

                          1,000    0,080    0,926        1,000     0,962        0,923       0,967          0,967          (b) 

Weighted Avg.    0,960    0,040    0,963        0,960    0,960        0,923       0,967          0,975      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 115  10 |   a = (m) 

   0 125 |   b = (b) 

Test Set 3 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,928    0,000    1,000        0,928     0,963         0,930      0,944          0,971         (m) 

                           1,000    0,072    0,933        1,000     0,965         0,930      0,944          0,927         (b) 

Weighted Avg.    0,964    0,036    0,966        0,964     0,964        0,930      0,944          0,949      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 116   9 |   a = (m) 

   0 125 |   b = (b) 

Test Set 4 

=== Detailed Accuracy by Class === 

 

                    TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,920    0,000    1,000        0,920     0,958         0,923       0,959          0,978          (m) 

                           1,000    0,080    0,926        1,000     0,962         0,923       0,959          0,943          (b) 

Weighted Avg.    0,960    0,040    0,963        0,960     0,960         0,923       0,959          0,960      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 115  10 |   a = (m) 

   0 125 |   b = (b) 

 

SVM 
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Train 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,976    0,004    0,996        0,976     0,986         0,972       0,986         0,984          (m) 

                           0,996    0,024    0,976        0,996     0,986         0,972       0,986         0,975          (b) 

Weighted Avg.    0,986    0,014    0,986        0,986     0,986         0,972       0,986         0,979      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 244   6 |   a = (m) 

   1 249 |   b = (b) 

10-fold x-val. 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,968    0,012    0,988        0,968     0,978         0,956       0,978         0,972          (m) 

                           0,988    0,032    0,969        0,988     0,978         0,956       0,978         0,963          (b) 

Weighted Avg.    0,978    0,022    0,978        0,978     0,978         0,956       0,978         0,968      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 242   8 |   a = (m) 

   3 247 |   b = (b) 

Test Set 1 
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=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,944    0,000    1,000        0,944     0,971         0,945       0,972         0,972          (m) 

                           1,000    0,056    0,947        1,000     0,973         0,945       0,972         0,947          (b) 

Weighted Avg.    0,972    0,028    0,973        0,972     0,972         0,945       0,972         0,959      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 118   7 |   a = (m) 

   0 125 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,912    0,000    1,000        0,912     0,954         0,916       0,956         0,956          (m) 

                           1,000    0,088    0,919        1,000     0,958         0,916       0,956         0,919          (b) 

Weighted Avg.    0,956    0,044    0,960        0,956     0,956         0,916       0,956         0,938      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 114  11 |   a = (m) 

   0 125 |   b = (b) 

Test Set 3 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,904    0,000    1,000        0,904     0,950         0,908       0,952         0,952          (m) 

                           1,000    0,096    0,912        1,000     0,954         0,908       0,952         0,912          (b) 

Weighted Avg.    0,952    0,048    0,956        0,952     0,952         0,908       0,952         0,932      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 113  12 |   a = (m) 

   0 125 |   b = (b) 

Test Set 4 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,944    0,000    1,000        0,944     0,971         0,945       0,972          0,972         (m) 

                           1,000    0,056    0,947        1,000     0,973         0,945       0,972          0,947         (b) 

Weighted Avg.    0,972    0,028    0,973        0,972     0,972         0,945       0,972          0,959      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 118   7 |   a = (m) 

   0 125 |   b = (b) 

FURIA 

Train 
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=== Detailed Accuracy by Class === 

 

                    TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,972    0,004    0,996        0,972     0,984         0,968       0,986          0,984         (m) 

                           0,996    0,028    0,973        0,996     0,984         0,968       0,986          0,975         (b) 

Weighted Avg.    0,984    0,016    0,984        0,984     0,984         0,968       0,986          0,979      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 243   7 |   a = (m) 

   1 249 |   b = (b) 

10-fold x-val. 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,972    0,004    0,996        0,972     0,984         0,968       0,986          0,984         (m) 

                           0,996    0,028    0,973        0,996     0,984         0,968       0,986          0,974         (b) 

Weighted Avg.    0,984    0,016    0,984        0,984     0,984         0,968       0,986          0,979      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 243   7 |   a = (m) 

   1 249 |   b = (b) 

Test Set 1 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,880    0,000    1,000        0,880     0,936         0,886      0,940          0,940          (m) 

                           1,000    0,120    0,893        1,000     0,943         0,886      0,940          0,893          (b) 

Weighted Avg.    0,940    0,060    0,946        0,940     0,940         0,886      0,940          0,916      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 110  15 |   a = (m) 

   0 125 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,920    0,000    1,000        0,920     0,958         0,923       0,960         0,960           (m) 

                           1,000    0,080    0,926        1,000     0,962         0,923       0,960         0,926           (b) 

Weighted Avg.    0,960    0,040    0,963        0,960     0,960         0,923       0,960         0,943      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 115  10 |   a = (m) 

   0 125 |   b = (b) 

Test Set 3 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,920    0,000    1,000        0,920     0,958         0,923       0,960          0,960          (m) 

                           1,000    0,080    0,926        1,000     0,962         0,923       0,960          0,926          (b) 

Weighted Avg.    0,960    0,040    0,963        0,960     0,960         0,923       0,960          0,943      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 115  10 |   a = (m) 

   0 125 |   b = (b) 

Test Set 4 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,928    0,000    1,000        0,928     0,963         0,930       0,964          0,964         (m) 

                           1,000    0,072    0,933        1,000     0,965         0,930       0,964          0,933         (b) 

Weighted Avg.    0,964    0,036    0,966        0,964     0,964         0,930       0,964          0,948      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 116   9 |   a = (m) 

   0 125 |   b = (b) 

RandomForest 

Train 
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=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,996    0,000    1,000        0,996     0,998         0,996       1,000          1,000         (m) 

                           1,000    0,004    0,996        1,000     0,998         0,996       1,000          1,000         (b) 

Weighted Avg.    0,998    0,002    0,998        0,998     0,998         0,996       1,000          1,000      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 249   1 |   a = (m) 

   0 250 |   b = (b) 

10-fold x-val. 

=== Detailed Accuracy by Class === 

 

                       TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,972    0,012    0,988        0,972     0,980         0,960       0,987          0,991         (m) 

                           0,988    0,028    0,972        0,988     0,980         0,960       0,987          0,976         (b) 

Weighted Avg.    0,980    0,020    0,980        0,980     0,980         0,960       0,987         0,983      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 243   7 |   a = (m) 

   3 247 |   b = (b) 

Test Set 1 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,920    0,000    1,000        0,920     0,958         0,923       1,000          1,000         (m) 

                           1,000    0,080    0,926        1,000     0,962         0,923       1,000          1,000         (b) 

Weighted Avg.    0,960    0,040    0,963        0,960     0,960         0,923       1,000          1,000      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 115  10 |   a = (m) 

   0 125 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,896    0,000    1,000        0,896     0,945         0,901       1,000          0,999         (m) 

                           1,000    0,104    0,906        1,000     0,951         0,901       1,000          0,999         (b) 

Weighted Avg.    0,948    0,052    0,953        0,948     0,948         0,901       1,000          0,999      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 112  13 |   a = (m) 

   0 125 |   b = (b) 

Test Set 3 

=== Detailed Accuracy by Class === 
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                       TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,880    0,000    1,000        0,880     0,936         0,886       1,000          1,000         (m) 

                           1,000    0,120    0,893        1,000     0,943         0,886       1,000          1,000         (b) 

Weighted Avg.    0,940    0,060    0,946        0,940     0,940         0,886       1,000          1,000      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 110  15 |   a = (m) 

   0 125 |   b = (b) 

Test Set 4 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,928    0,000    1,000        0,928     0,963         0,930       0,999          0,999         (m) 

                           1,000    0,072    0,933        1,000     0,965         0,930       0,999          0,998         (b) 

Weighted Avg.    0,964    0,036    0,966        0,964     0,964         0,930       0,999          0,998      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 116   9 |   a = (m) 

   0 125 |   b = (b) 

NNGE / AdaBoostM1 

Train 
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=== Detailed Accuracy by Class === 

 

                    TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,996    0,000    1,000        0,996     0,998         0,996       1,000          1,000         (m) 

                           1,000    0,004    0,996        1,000     0,998         0,996       1,000          1,000         (b) 

Weighted Avg.    0,998    0,002    0,998        0,998     0,998         0,996       1,000          1,000      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 249   1 |   a = (m) 

   0 250 |   b = (b) 

10-fold x-val. 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,968    0,020    0,980        0,968     0,974          0,948       0,981         0,988         (m) 

                           0,980    0,032    0,968        0,980     0,974          0,948       0,981         0,955         (b) 

Weighted Avg.    0,974    0,026    0,974        0,974     0,974          0,948       0,981         0,971      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 242   8 |   a = (m) 

   5 245 |   b = (b) 

Test Set 1 

=== Detailed Accuracy by Class === 
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                    TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,944    0,000    1,000        0,944     0,971         0,945       0,996          0,996         (m) 

                           1,000    0,056    0,947        1,000     0,973         0,945       0,996          0,996         (b) 

Weighted Avg.    0,972    0,028    0,973        0,972     0,972         0,945       0,996          0,996      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 118   7 |   a = (m) 

   0 125 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,944    0,000    1,000        0,944     0,971         0,945       0,991          0,993         (m) 

                           1,000    0,056    0,947        1,000     0,973         0,945       0,991          0,990         (b) 

Weighted Avg.    0,972    0,028    0,973        0,972     0,972         0,945       0,991          0,991      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 118   7 |   a = (m) 

   0 125 |   b = (b) 

Test Set 3 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,920    0,000    1,000        0,920     0,958         0,923       0,995          0,995         (m) 

                           1,000    0,080    0,926        1,000     0,962         0,923       0,995          0,995         (b) 

Weighted Avg.    0,960    0,040    0,963        0,960     0,960         0,923       0,995          0,995      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 115  10 |   a = (m) 

   0 125 |   b = (b) 

Test Set 4 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,944    0,000    1,000        0,944     0,971         0,945       0,990          0,992         (m) 

                           1,000    0,056    0,947        1,000     0,973         0,945       0,990          0,987         (b) 

Weighted Avg.    0,972    0,028    0,973        0,972     0,972         0,945       0,990          0,990      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 118   7 |   a = (m) 

   0 125 |   b = (b) 

Ensemble by Voting (majority voting) 3 classifiers (LAC, NNGE, MODLEM) 

Train 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,996    0,000    1,000        0,996     0,998         0,996       0,998          0,998         (m) 

                           1,000    0,004    0,996        1,000     0,998         0,996       0,998          0,996         (b) 

Weighted Avg.    0,998    0,002    0,998        0,998     0,998         0,996       0,998          0,997      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 249   1 |   a = (m) 

   0 250 |   b = (b) 

10-fold x-val. 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,968    0,024    0,976        0,968     0,972         0,944       0,987          0,991         (m) 

                           0,976    0,032    0,968        0,976     0,972         0,944       0,987          0,978         (b) 

Weighted Avg.    0,972    0,028    0,972        0,972     0,972         0,944       0,987          0,985      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 242   8 |   a = (m) 

   6 244 |   b = (b) 

Test Set 1 

=== Detailed Accuracy by Class === 
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                    TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,992    0,000    1,000        0,992     0,996         0,992       1,000          1,000         (m) 

                           1,000    0,008    0,992        1,000     0,996         0,992       1,000          1,000         (b) 

Weighted Avg.    0,996    0,004    0,996        0,996     0,996         0,992       1,000          1,000      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 124   1 |   a = (m) 

   0 125 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 

   

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,952    0,000    1,000        0,952     0,975         0,953       1,000          1,000         (m) 

                           1,000    0,048    0,954        1,000     0,977         0,953       1,000          1,000         (b) 

Weighted Avg.    0,976    0,024    0,977        0,976     0,976         0,953       1,000          1,000      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 119   6 |   a = (m) 

   0 125 |   b = (b) 

Test Set 3 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,960    0,000    1,000        0,960     0,980         0,961       1,000          1,000         (m) 

                           1,000    0,040    0,962        1,000     0,980         0,961       1,000          1,000         (b) 

Weighted Avg.    0,980    0,020    0,981        0,980     0,980         0,961       1,000          1,000      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 120   5 |   a = (m) 

   0 125 |   b = (b) 

Test Set 4 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,984    0,000    1,000        0,984     0,992         0,984       0,999          0,999         (m) 

                           1,000    0,016    0,984        1,000     0,992         0,984       0,999          0,999         (b) 

Weighted Avg.    0,992    0,008    0,992        0,992     0,992         0,984       0,999          0,999      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 123   2 |   a = (m) 

   0 125 |   b = (b) 

Ensemble by Voting (majority voting) 3 classifiers (OneR, NNGE, MODLEM) 

Train 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,996    0,000    1,000         0,996    0,998          0,996      0,998          0,998         (m) 

                           1,000    0,004    0,996         1,000    0,998          0,996      0,998          0,996         (b) 

Weighted Avg.    0,998    0,002    0,998         0,998    0,998          0,996      0,998          0,997      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 249   1 |   a = (m) 

   0 250 |   b = (b) 

10-fold x-val. 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,972    0,032    0,968        0,972     0,970         0,940       0,970          0,955         (m) 

                           0,968    0,028    0,972        0,968     0,970         0,940       0,970          0,957         (b) 

Weighted Avg.    0,970    0,030    0,970        0,970     0,970         0,940       0,970          0,956      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 243   7 |   a = (m) 

   8 242 |   b = (b) 

Test Set 1 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           1,000    0,000    1,000        1,000     1,000         1,000       1,000          1,000         (m) 

                           1,000    0,000    1,000        1,000     1,000         1,000       1,000          1,000         (b) 

Weighted Avg.    1,000    0,000    1,000        1,000     1,000         1,000       1,000          1,000      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 125   0 |   a = (m) 

   0 125 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,976    0,000    1,000        0,976     0,988         0,976       0,988          0,988         (m) 

                           1,000    0,024    0,977        1,000     0,988         0,976       0,988          0,977         (b) 

Weighted Avg.    0,988    0,012    0,988        0,988     0,988         0,976       0,988          0,982      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 122   3 |   a = (m) 

   0 125 |   b = (b) 

Test Set 3 

=== Detailed Accuracy by Class === 

 

129 



      

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,984    0,000    1,000        0,984     0,992         0,984       0,992          0,992         (m) 

                           1,000    0,016    0,984        1,000     0,992         0,984       0,992          0,984         (b) 

Weighted Avg.    0,992    0,008    0,992        0,992     0,992         0,984       0,992          0,988      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 123   2 |   a = (m) 

   0 125 |   b = (b) 

Test Set 4 

=== Detailed Accuracy by Class === 

 

                    TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,984    0,000    1,000        0,984     0,992         0,984       0,992          0,992         (m) 

                           1,000    0,016    0,984        1,000     0,992         0,984       0,992          0,984         (b) 

Weighted Avg.    0,992    0,008    0,992       0,992     0,992         0,984       0,992          0,988      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 123   2 |   a = (m) 

   0 125 |   b = (b) 

Ensemble by Voting (majority voting) 4 classifiers (OneR, LAC, NNGE, 

MODLEM) 

Train 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,976    0,016    0,984        0,976     0,980         0,960       0,980          0,972         (m) 

                           0,984    0,024    0,976        0,984     0,980         0,960       0,980          0,969         (b) 

Weighted Avg.    0,980    0,020    0,980        0,980     0,980         0,960       0,980          0,970      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 244   6 |   a = (m) 

   4 246 |   b = (b)  

10-fold x-val. 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,972    0,036    0,964        0,972     0,968         0,936       0,968          0,951         (m) 

                           0,964    0,028    0,972        0,964     0,968         0,936       0,968          0,955         (b) 

Weighted Avg.    0,968    0,032    0,968        0,968     0,968         0,936       0,968          0,953      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 243   7 |   a = (m) 

   9 241 |   b = (b)  

Test Set 1 

 === Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,992    0,000    1,000        0,992     0,996         0,992       0,996          0,996         (m) 

                           1,000    0,008    0,992        1,000     0,996         0,992       0,996          0,992         (b) 

Weighted Avg.    0,996    0,004    0,996        0,996     0,996         0,992       0,996          0,994      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 124   1 |   a = (m) 

   0 125 |   b = (b)  

Test Set 2 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,984    0,000    1,000        0,984     0,992         0,984       0,992          0,992         (m) 

                           1,000    0,016    0,984        1,000     0,992         0,984       0,992          0,984         (b) 

Weighted Avg.    0,992    0,008    0,992        0,992    0,992         0,984       0,992          0,988      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 123   2 |   a = (m) 

   0 125 |   b = (b)  

Test Set 3 

=== Detailed Accuracy by Class === 

 

                

132 



                       TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,984    0,024    0,976        0,984     0,980         0,960       0,980          0,969         (m) 

                           0,976    0,016    0,984        0,976     0,980         0,960       0,980          0,972         (b) 

Weighted Avg.    0,980    0,020    0,980       0,980     0,980         0,960       0,980          0,970      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 123   2 |   a = (m) 

   3 122 |   b = (b)  

Test Set 4 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,984    0,032    0,969        0,984     0,976         0,952       0,976          0,961         (m) 

                           0,968    0,016    0,984        0,968     0,976         0,952       0,976          0,968         (b) 

Weighted Avg.    0,976    0,024    0,976        0,976     0,976         0,952       0,976          0,965      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 123   2 |   a = (m) 

   4 121 |   b = (b) 
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APPENDIX 4 – Detailed Results Obtained in WEKA for the AndroZoo 

Dataset 

Radial Basis Function 

Train 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,990    0,017    0,983        0,990     0,987         0,973       0,995          0,992         (m) 

                           0,983    0,010    0,990        0,983     0,987         0,973       0,995          0,995         (b) 

Weighted Avg.    0,987    0,013    0,987        0,987     0,987         0,973       0,995          0,994      

 

=== Confusion Matrix === 

   a   b   <-- classified as 

 297   3 |   a = (m) 

   5 295 |   b = (b) 

10-fold x-val. 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,990    0,027    0,974        0,990     0,982         0,963       0,993          0,991         (m) 

                           0,973    0,010    0,990        0,973     0,982         0,963       0,993          0,995         (b) 

Weighted Avg.    0,982    0,018    0,982        0,982     0,982         0,963       0,993          0,993      

 

=== Confusion Matrix === 

   a   b   <-- classified as 

 297   3 |   a = (m) 

   8 292 |   b = (b) 
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Test Set 1 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,987    0,027    0,974        0,987     0,980         0,960       0,990          0,988         (m) 

                           0,973    0,013    0,986        0,973     0,980         0,960       0,990          0,989         (b) 

Weighted Avg.    0,980    0,020    0,980        0,980     0,980         0,960       0,990          0,989      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 148   2 |   a = (m) 

   4 146 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,980    0,020    0,980        0,980     0,980         0,960       0,992          0,991         (m) 

                           0,980    0,020    0,980        0,980     0,980         0,960       0,992          0,991         (b) 

Weighted Avg.    0,980    0,020    0,980        0,980     0,980         0,960       0,992          0,991      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 147   3 |   a = (m) 

   3 147 |   b = (b) 

Test Set 3 
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=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,975    0,015    0,985        0,975     0,980         0,960       0,990          0,991         (m) 

                           0,985    0,025    0,975        0,985     0,980         0,960       0,990          0,979         (b) 

Weighted Avg.    0,980    0,020    0,980        0,980     0,980         0,960       0,990          0,985      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 195   5 |   a = (m) 

   3 197 |   b = (b) 

Multilayer Perceptron 

Train 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,997    0,013    0,987        0,997     0,992         0,983       0,998          0,996         (m) 

                           0,987    0,003    0,997        0,987     0,992         0,983       0,998          0,997         (b) 

Weighted Avg.    0,992    0,008    0,992        0,992     0,992         0,983       0,998          0,996      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 299   1 |   a = (m) 

   4 296 |   b = (b) 

10-fold x-val. 

136 



=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,987    0,023    0,977        0,987     0,982         0,963       0,996          0,996         (m) 

                           0,977    0,013    0,987        0,977     0,982         0,963       0,996          0,996         (b) 

Weighted Avg.    0,982    0,018    0,982        0,982     0,982         0,963       0,996          0,996      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 296   4 |   a = (m) 

   7 293 |   b = (b) 

Test Set 1 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,993    0,027    0,974        0,993     0,983         0,967       0,992          0,992         (m) 

                           0,973    0,007    0,993        0,973     0,983         0,967       0,992          0,988         (b) 

Weighted Avg.    0,983    0,017    0,984        0,983     0,983         0,967       0,992          0,990      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 149   1 |   a = (m) 

   4 146 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,987    0,020    0,980        0,987     0,983         0,967       0,991          0,993         (m) 

                           0,980    0,013    0,987        0,980     0,983         0,967       0,991          0,979         (b) 

Weighted Avg.    0,983    0,017    0,983        0,983     0,983         0,967       0,991          0,986      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 148   2 |   a = (m) 

   3 147 |   b = (b) 

Test Set 3 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,985    0,015    0,985        0,985     0,985         0,970       0,990          0,993         (m) 

                           0,985    0,015    0,985        0,985     0,985         0,970       0,990          0,976         (b) 

Weighted Avg.    0,985    0,015    0,985        0,985     0,985         0,970       0,990          0,984      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 197   3 |   a = (m) 

   3 197 |   b = (b) 

Id3 

Train 

=== Detailed Accuracy by Class === 
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                       TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,997    0,013    0,987        0,997     0,992         0,983       0,998          0,997         (m) 

                           0,987    0,003    0,997        0,987     0,992         0,983       0,998          0,997         (b) 

Weighted Avg.    0,992    0,008    0,992        0,992     0,992         0,983       0,998          0,997      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 299   1 |   a = (m) 

   4 296 |   b = (b) 

10-fold x-val. 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,990    0,013    0,987        0,990     0,988         0,977       0,992          0,992         (m) 

                           0,987    0,010    0,990        0,987     0,988         0,977       0,992          0,987         (b) 

Weighted Avg.    0,988    0,012    0,988        0,988     0,988         0,977       0,992          0,989      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 297   3 |   a = (m) 

   4 296 |   b = (b) 

Test Set 1 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,987    0,020    0,980        0,987     0,983         0,967       0,991          0,988         (m) 

                           0,980    0,013    0,987        0,980     0,983         0,967       0,991          0,982         (b) 

Weighted Avg.    0,983    0,017    0,983        0,983     0,983         0,967       0,991          0,985      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 148   2 |   a = (m) 

   3 147 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,987    0,013    0,987        0,987     0,987         0,973       0,992          0,990         (m) 

                           0,987    0,013    0,987        0,987     0,987         0,973       0,992          0,984         (b) 

Weighted Avg.    0,987    0,013    0,987        0,987     0,987         0,973       0,992          0,987      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 148   2 |   a = (m) 

   2 148 |   b = (b) 

Test Set 3 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,985    0,010    0,990        0,985     0,987         0,975       0,991          0,990         (m) 

                           0,990    0,015    0,985        0,990     0,988         0,975       0,991          0,983         (b) 

Weighted Avg.    0,988    0,013    0,988        0,988     0,987         0,975       0,991          0,987      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 197   3 |   a = (m) 

   2 198 |   b = (b) 

k-NN 

Train 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,997    0,013    0,987        0,997     0,992         0,983       0,998          0,997         (m) 

                           0,987    0,003    0,997        0,987     0,992         0,983       0,998          0,997         (b) 

Weighted Avg.    0,992    0,008    0,992        0,992     0,992         0,983       0,998          0,997      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 299   1 |   a = (m) 

   4 296 |   b = (b) 

10-fold x-val. 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,997    0,027    0,974        0,997     0,985         0,970       0,995          0,995         (m) 

                           0,973    0,003    0,997        0,973     0,985         0,970       0,995          0,994         (b) 

Weighted Avg.    0,985    0,015    0,985        0,985     0,985         0,970       0,995          0,995      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 299   1 |   a = (m) 

   8 292 |   b = (b) 

Test Set 1 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,993    0,027    0,974        0,993     0,983         0,967       0,995          0,992         (m) 

                           0,973    0,007    0,993        0,973     0,983         0,967       0,995          0,990         (b) 

Weighted Avg.    0,983    0,017    0,984        0,983     0,983         0,967       0,995          0,991      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 149   1 |   a = (m) 

   4 146 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 
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                       TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,993    0,020    0,980        0,993     0,987         0,973    0,995          0,994         (m) 

                           0,980    0,007    0,993        0,980     0,987         0,973    0,995          0,992         (b) 

Weighted Avg.    0,987    0,013    0,987        0,987     0,987         0,973    0,995          0,993      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 149   1 |   a = (m) 

   3 147 |   b = (b) 

Test Set 3 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,990    0,015    0,985        0,990     0,988         0,975       0,994          0,993         (m) 

                           0,985    0,010    0,990        0,985     0,987         0,975       0,994          0,990         (b) 

Weighted Avg.    0,988    0,013    0,988        0,988     0,987         0,975       0,994          0,991      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 198   2 |   a = (m) 

   3 197 |   b = (b) 

NaiveBayes 

Train 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           1,000    0,080    0,926        1,000     0,962         0,923       0,990          0,984         (m) 

                           0,920    0,000    1,000        0,920     0,958         0,923       0,990          0,992         (b) 

Weighted Avg.    0,960    0,040    0,963        0,960     0,960         0,923       0,990          0,988      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 300   0 |   a = (m) 

  24 276 |   b = (b) 

10-fold x-val. 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           1,000    0,080    0,926        1,000     0,962         0,923       0,990          0,986         (m) 

                           0,920    0,000    1,000        0,920     0,958         0,923       0,990          0,993         (b) 

Weighted Avg.    0,960    0,040    0,963        0,960     0,960         0,923       0,990          0,989      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 300   0 |   a = (m) 

  24 276 |   b = (b) 

Test Set 1 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,993    0,080    0,925        0,993     0,958         0,916       0,986          0,980         (m) 

                           0,920    0,007    0,993        0,920     0,955         0,916       0,986          0,988         (b) 

Weighted Avg.    0,957    0,043    0,959        0,957     0,957         0,916       0,986          0,984      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 149   1 |   a = (m) 

  12 138 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,993    0,093    0,914        0,993     0,952         0,903       0,985          0,982         (m) 

                           0,907    0,007    0,993        0,907     0,948         0,903       0,984          0,977         (b) 

Weighted Avg.    0,950    0,050    0,953        0,950     0,950         0,903       0,985          0,980      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 149   1 |   a = (m) 

  14 136 |   b = (b) 

Test Set 3 

=== Detailed Accuracy by Class === 
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                       TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,990    0,070    0,934        0,990     0,961         0,922       0,984          0,984         (m) 

                           0,930    0,010    0,989        0,930     0,959         0,922       0,984          0,975         (b) 

Weighted Avg.    0,960    0,040    0,962        0,960     0,960         0,922       0,984          0,979      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 198   2 |   a = (m) 

  14 186 |   b = (b) 

J48 

Train 

=== Detailed Accuracy by Class === 

 

                         TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                            0,990    0,013    0,987        0,990     0,988         0,977       0,993          0,987         (m) 

                            0,987    0,010    0,990        0,987     0,988         0,977       0,993          0,993         (b) 

Weighted Avg.    0,988    0,012    0,988        0,988     0,988         0,977       0,993          0,990      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 297   3 |   a = (m) 

   4 296 |   b = (b) 

10-fold x-val. 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,990    0,013    0,987        0,990     0,988         0,977       0,984          0,973         (m) 

                           0,987    0,010    0,990        0,987     0,988         0,977       0,984          0,982         (b) 

Weighted Avg.    0,988    0,012    0,988        0,988     0,988         0,977       0,984          0,978      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 297   3 |   a = (m) 

   4 296 |   b = (b) 

Test Set 1 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,980    0,020    0,980        0,980     0,980         0,960       0,989          0,979         (m) 

                           0,980    0,020    0,980        0,980     0,980         0,960       0,989          0,989         (b) 

Weighted Avg.    0,980    0,020    0,980        0,980     0,980         0,960       0,989         0,984      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 147   3 |   a = (m) 

   3 147 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 
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                       TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,980    0,013    0,987        0,980     0,983         0,967      0,989          0,983         (m) 

                           0,987    0,020    0,980        0,987     0,983         0,967      0,989          0,985         (b) 

Weighted Avg.    0,983    0,017    0,983        0,983    0,983         0,967      0,989          0,984      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 147   3 |   a = (m) 

   2 148 |   b = (b) 

Test Set 3 

=== Detailed Accuracy by Class === 

  

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                            0,970    0,010    0,990        0,970    0,980          0,960       0,989         0,984         (m) 

                            0,990    0,030    0,971        0,990    0,980          0,960       0,989         0,983         (b) 

Weighted Avg.    0,980    0,020    0,980        0,980    0,980          0,960       0,989         0,984      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 194   6 |   a = (m) 

   2 198 |   b = (b) 

SVM 

Train 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,993    0,013    0,987        0,993     0,990         0,980       0,990          0,984         (m) 

                           0,987    0,007    0,993        0,987     0,990         0,980       0,990          0,987         (b) 

Weighted Avg.    0,990    0,010    0,990        0,990     0,990         0,980       0,990          0,985      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 298   2 |   a = (m) 

   4 296 |   b = (b) 

10-fold x-val. 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,987    0,017    0,983        0,987     0,985         0,970       0,985          0,977         (m) 

                           0,983    0,013    0,987        0,983     0,985         0,970       0,985          0,979         (b) 

Weighted Avg.    0,985    0,015    0,985        0,985     0,985         0,970       0,985          0,978      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 296   4 |   a = (m) 

   5 295 |   b = (b) 

Test Set 1 

=== Detailed Accuracy by Class === 
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                      TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,987    0,020    0,980       0,987    0,983         0,967       0,983          0,974         (m) 

                           0,980    0,013    0,987       0,980    0,983         0,967       0,983          0,977         (b) 

Weighted Avg.    0,983    0,017    0,983       0,983    0,983         0,967       0,983          0,975      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 148   2 |   a = (m) 

   3 147 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,980    0,013    0,987        0,980     0,983         0,967       0,983          0,977         (m) 

                           0,987    0,020    0,980        0,987     0,983         0,967       0,983          0,974         (b) 

Weighted Avg.    0,983    0,017    0,983        0,983     0,983         0,967       0,983         0,975      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 147   3 |   a = (m) 

   2 148 |   b = (b) 

Test Set 3 

=== Detailed Accuracy by Class === 
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                       TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,975    0,010    0,990        0,975    0,982         0,965       0,983          0,978         (m) 

                           0,990    0,025    0,975        0,990    0,983         0,965       0,983          0,971         (b) 

Weighted Avg.    0,983    0,018    0,983        0,983    0,982         0,965       0,983          0,974      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 195   5 |   a = (m) 

   2 198 |   b = (b) 

FURIA 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,993    0,013    0,987        0,993     0,990         0,980       0,992          0,985         (m) 

                           0,987    0,007    0,993        0,987     0,990         0,980       0,992          0,990         (b) 

Weighted Avg.    0,990    0,010    0,990        0,990     0,990         0,980       0,992          0,988      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 298   2 |   a = (m) 

   4 296 |   b = (b) 

10-fold x-val. 

=== Detailed Accuracy by Class === 
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                       TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,990    0,013    0,987       0,990     0,988         0,977       0,988          0,982         (m) 

                           0,987    0,010    0,990       0,987     0,988         0,977       0,988          0,983         (b) 

Weighted Avg.    0,988    0,012    0,988       0,988     0,988         0,977       0,988          0,983      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 297   3 |   a = (m) 

   4 296 |   b = (b) 

Test Set 1 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,987    0,020    0,980        0,987     0,983         0,967       0,986          0,977         (m) 

                           0,980    0,013    0,987        0,980     0,983         0,967       0,986          0,983         (b) 

Weighted Avg.    0,983    0,017    0,983        0,983     0,983         0,967       0,986          0,980      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 148   2 |   a = (m) 

   3 147 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 
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                       TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,980    0,013    0,987       0,980     0,983         0,967       0,986          0,980         (m) 

                           0,987    0,020    0,980       0,987     0,983         0,967       0,986          0,980         (b) 

Weighted Avg.    0,983    0,017    0,983       0,983     0,983         0,967       0,986          0,980      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 147   3 |   a = (m) 

   2 148 |   b = (b) 

Test Set 3 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,975    0,010    0,990        0,975     0,982         0,965       0,987          0,982         (m) 

                           0,990    0,025    0,975        0,990     0,983         0,965       0,987          0,980         (b) 

Weighted Avg.    0,983    0,018    0,983        0,983     0,982         0,965       0,987          0,981      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 195   5 |   a = (m) 

   2 198 |   b = (b) 

RandomForest 

Train 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,997    0,013    0,987        0,997     0,992         0,983       0,998          0,996         (m) 

                           0,987    0,003    0,997        0,987     0,992         0,983       0,998          0,997         (b) 

Weighted Avg.    0,992    0,008    0,992        0,992     0,992         0,983       0,998          0,997      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 299   1 |   a = (m) 

   4 296 |   b = (b) 

10-fold x-val. 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,987    0,017    0,983        0,987     0,985         0,970       0,996          0,996         (m) 

                           0,983    0,013    0,987        0,983     0,985         0,970       0,996          0,997         (b) 

Weighted Avg.    0,985    0,015    0,985        0,985     0,985         0,970       0,996          0,996      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 296   4 |   a = (m) 

   5 295 |   b = (b) 

Test Set 1 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,993    0,020    0,980        0,993     0,987         0,973       0,996          0,994         (m) 

                           0,980    0,007    0,993        0,980     0,987         0,973       0,996          0,995         (b) 

Weighted Avg.    0,987    0,013    0,987        0,987     0,987         0,973       0,996          0,994      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 149   1 |   a = (m) 

   3 147 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,987    0,013    0,987        0,987     0,987         0,973       0,994          0,993         (m) 

                           0,987    0,013    0,987        0,987     0,987         0,973       0,994          0,989         (b) 

Weighted Avg.    0,987    0,013    0,987        0,987     0,987         0,973       0,994          0,991      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 148   2 |   a = (m) 

   2 148 |   b = (b) 

Test Set 3 

=== Detailed Accuracy by Class === 
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                         TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                            0,985    0,010    0,990        0,985     0,987         0,975       0,993          0,992         (m) 

                            0,990    0,015    0,985        0,990     0,988         0,975       0,993          0,986         (b) 

Weighted Avg.    0,988    0,013    0,988        0,988     0,987         0,975       0,993          0,989      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 197   3 |   a = (m) 

   2 198 |   b = (b) 

NNGE / AdaBoostM1 

Train 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,997    0,013    0,987        0,997     0,992         0,983       0,998          0,996         (m) 

                           0,987    0,003    0,997        0,987     0,992         0,983       0,998          0,997         (b) 

Weighted Avg.    0,992    0,008    0,992        0,992     0,992         0,983       0,998          0,997      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 299   1 |   a = (m) 

   4 296 |   b = (b) 

10-fold x-val. 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,993    0,020    0,980        0,993     0,987         0,973       0,995          0,995         (m) 

                           0,980    0,007    0,993        0,980     0,987         0,973       0,995          0,995         (b) 

Weighted Avg.    0,987    0,013    0,987        0,987     0,987         0,973       0,995          0,995      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 298   2 |   a = (m) 

   6 294 |   b = (b) 

Test Set 1 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,993    0,020    0,980        0,993     0,987         0,973       0,997          0,994         (m) 

                           0,980    0,007    0,993        0,980     0,987         0,973       0,997          0,995         (b) 

Weighted Avg.    0,987    0,013    0,987        0,987     0,987         0,973       0,997          0,995      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 149   1 |   a = (m) 

   3 147 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,987    0,013    0,987        0,987     0,987         0,973       0,994          0,993         (m) 

                           0,987    0,013    0,987        0,987     0,987         0,973       0,994          0,989         (b) 

Weighted Avg.    0,987    0,013    0,987        0,987     0,987         0,973       0,994          0,991      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 148   2 |   a = (m) 

   2 148 |   b = (b) 

Test Set 3 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,985    0,010    0,990        0,985     0,987         0,975       0,993          0,992         (m) 

                           0,990    0,015    0,985        0,990     0,988         0,975       0,993          0,987         (b) 

Weighted Avg.    0,988    0,013    0,988        0,988     0,987         0,975       0,993          0,989      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 197   3 |   a = (m) 

   2 198 |   b = (b) 

Ensemble by Voting (majority voting) 3 classifiers (LAC, NNGE, MODLEM) 

Train 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,997    0,013    0,987        0,997     0,992         0,983       0,992          0,985         (m) 

                           0,987    0,003    0,997        0,987     0,992         0,983       0,992          0,990         (b) 

Weighted Avg.    0,992    0,008    0,992        0,992     0,992         0,983       0,992          0,988      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 299   1 |   a = (m) 

   4 296 |   b = (b) 

10-fold x-val. 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,990    0,033    0,967        0,990     0,979         0,957       0,978          0,963         (m) 

                           0,967    0,010    0,990        0,967     0,978         0,957       0,978          0,973         (b) 

Weighted Avg.    0,978    0,022    0,979        0,978     0,978         0,957       0,978          0,968      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 297   3 |   a = (m) 

  10 290 |   b = (b) 

Test Set 1 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,993    0,020    0,980        0,993     0,987         0,973       0,987          0,977         (m) 

                           0,980    0,007    0,993        0,980     0,987         0,973       0,987          0,983         (b) 

Weighted Avg.    0,987    0,013    0,987        0,987     0,987         0,973       0,987          0,980      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 149   1 |   a = (m) 

   3 147 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,987    0,013    0,987        0,987     0,987         0,973       0,987          0,980         (m) 

                           0,987    0,013    0,987        0,987     0,987         0,973       0,987          0,980         (b) 

Weighted Avg.    0,987    0,013    0,987        0,987     0,987         0,973       0,987          0,980      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 148   2 |   a = (m) 

   2 148 |   b = (b) 

Test Set 3 

=== Detailed Accuracy by Class === 
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                       TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,985    0,010    0,990        0,985     0,987         0,975       0,988          0,983         (m) 

                           0,990    0,015    0,985        0,990     0,988         0,975       0,988          0,980         (b) 

Weighted Avg.    0,988    0,013    0,988        0,988     0,987         0,975       0,988          0,981      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 197   3 |   a = (m) 

   2 198 |   b = (b) 

Ensemble by Voting (majority voting) 3 classifiers (OneR, NNGE, MODLEM) 

Train 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,997    0,013    0,987        0,997     0,992         0,983       0,992          0,985         (m) 

                           0,987    0,003    0,997        0,987     0,992         0,983       0,992          0,990         (b) 

Weighted Avg.    0,992    0,008    0,992        0,992     0,992         0,983       0,992          0,988      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 299   1 |   a = (m) 

   4 296 |   b = (b) 

10-fold x-val. 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,987    0,020    0,980        0,987     0,983         0,967       0,983          0,974         (m) 

                           0,980    0,013    0,987        0,980     0,983         0,967       0,983          0,977         (b) 

Weighted Avg.    0,983    0,017    0,983        0,983     0,983         0,967       0,983          0,975      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 296   4 |   a = (m) 

   6 294 |   b = (b) 

Test Set 1 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,993    0,020    0,980        0,993     0,987         0,973       0,987          0,977         (m) 

                           0,980    0,007    0,993        0,980     0,987         0,973       0,987          0,983         (b) 

Weighted Avg.    0,987    0,013    0,987        0,987     0,987         0,973       0,987          0,980      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 149   1 |   a = (m) 

   3 147 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,987    0,013    0,987        0,987     0,987         0,973       0,987          0,980         (m) 

                           0,987    0,013    0,987        0,987     0,987         0,973       0,987          0,980         (b) 

Weighted Avg.    0,987    0,013    0,987        0,987     0,987         0,973       0,987         0,980      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 148   2 |   a = (m) 

   2 148 |   b = (b) 

Test Set 3 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,985    0,010    0,990        0,985     0,987         0,975       0,988          0,983         (m) 

                           0,990    0,015    0,985        0,990     0,988         0,975       0,988          0,980         (b) 

Weighted Avg.    0,988    0,013    0,988        0,988     0,987         0,975       0,988          0,981      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 197   3 |   a = (m) 

   2 198 |   b = (b) 

Ensemble by Voting (majority voting) 4 classifiers (OneR, LAC, NNGE, 

MODLEM) 

Train 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,987    0,020    0,980        0,987     0,983         0,967       0,983          0,974         (m) 

                           0,980    0,013    0,987        0,980     0,983         0,967       0,983          0,977         (b) 

Weighted Avg.    0,983    0,017    0,983        0,983     0,983         0,967       0,983          0,975      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 296   4 |   a = (m) 

   6 294 |   b = (b) 

10-fold x-val. 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,987    0,020    0,980        0,987     0,983         0,967       0,983          0,974         (m) 

                           0,980    0,013    0,987        0,980     0,983         0,967       0,983          0,977         (b) 

Weighted Avg.    0,983    0,017    0,983       0,983     0,983         0,967       0,983          0,975      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 296   4 |   a = (m) 

   6 294 |   b = (b) 

Test Set 1 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,993    0,020    0,980        0,993     0,987         0,973       0,987          0,977         (m) 

                           0,980    0,007    0,993        0,980     0,987         0,973       0,987          0,983         (b) 

Weighted Avg.    0,987    0,013    0,987        0,987     0,987         0,973       0,987          0,980      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 149   1 |   a = (m) 

   3 147 |   b = (b) 

Test Set 2 

=== Detailed Accuracy by Class === 

 

                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,987    0,013      0,987       0,987     0,987         0,973       0,987          0,980         (m) 

                           0,987    0,013      0,987       0,987     0,987         0,973       0,987          0,980         (b) 

Weighted Avg.    0,987    0,013      0,987       0,987     0,987         0,973       0,987          0,980      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 148   2 |   a = (m) 

   2 148 |   b = (b) 

Test Set 3 

=== Detailed Accuracy by Class === 
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                        TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                           0,985    0,010    0,990        0,985     0,987         0,975       0,988          0,983         (m) 

                           0,990    0,015    0,985        0,990     0,988         0,975       0,988          0,980         (b) 

Weighted Avg.    0,988    0,013    0,988        0,988     0,987         0,975       0,988          0,981      

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 197   3 |   a = (m) 

   2 198 |   b = (b) 
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