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ABSTRACT 

NOISE ANALYSIS OF AUTOMOTIVE BRAKE SYSTEMS 

Ertekin, Zeynep 

MSc, Electrical Electronics Engineering 

Advisor: Asst. Prof. Dr. Nalan Özkurt 

May 2018 

In this thesis, air disc brakes are investigated in terms of noise using signal processing 

tools. Inspired by the literature view, sound and vibration data are used in order to 

detect faults, moreover; many algorithms are proposed to classify the type of the 

dysfunction. Sounds recorded from a noiseless, a less noisy and a noisy brake by a data 

acquisition board, are analyzed in time domain, in frequency domain and in time-

frequency domain, respectively.  

The mean, variance, number of zero crossings, maximum, minimum, and entropy of 

time windows are calculated and the brakes are classified as noisy and less noisy using 

k nearest neighbor classification algorithm. The same procedure is repeated for 

frequency domain considering features mean, variance, spectral roll-off, maximum 

and entropy. Since time-frequency domain analysis will reveal the characteristics of 

the sound signals better, qualitative and quantitative analysis has been accomplished 

by using continuous and discrete wavelet transform. It has been shown that the 

discrimination between the noisy and less noisy brakes signals can be observed in 

time-frequency domain clearly. 

Key Words: Disc brake systems, noise, wavelet transform, frequency domain, k 

nearest neighbor (k-NN algorithm)
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ÖZ 

OTOMOBİL FREN SİSTEMLERİNDE SES ANALİZİ 

Ertekin, Zeynep 

Yüksek Lisans Tezi, Elektrik Elektronik Mühendisliği 

Danışman: Dr. Nalan Özkurt 

Mayıs 2018 

 

Bu çalışmada hava diskli frenler, sinyal işleme araçları kullanılarak gürültü açısından 

incelenmiştir. Literatür taramasından esinlenerek, hataları tespit etmek için ses ve 

titreşim verileri kullanılmış; hata tipini sınıflandırmak için birçok algoritma 

önerilmiştir. Bir veri toplama kartı ile gürültüsüz, daha az gürültülü ve gürültülü bir 

frenden kaydedilen sesler, zaman alanında, frekans alanında ve zaman-frekans 

alanlarında sırasıyla analiz edilmiştir. 

 

Ortalama, varyans, sıfır geçiş sayısı, en büyük, en küçük ve entropi değerleri zaman 

penceresinde hesaplanmış ve en yakın komşu algoritması kullanılarak frenler sesli 

(gürültülü) ve az sesli olarak sınıflandırılmıştır. Aynı prosedür, ortalama, varyans, 

spektral yuvarlama, en büyük ve entropi gibi frekans öznitelikleri için tekrarlanmıştır. 

Zaman-frekans ortamı analizi, ses sinyallerinin özelliklerini daha iyi ortaya 

çıkaracağından, sürekli ve ayrık dalgacık dönüşümü kullanılarak nitel ve nicel 

analizler gerçekleştirilmiştir. Gürültülü ve daha az gürültülü fren sinyalleri arasındaki 

ayrımın, zaman-frekans alanında açıkça görülebileceği gösterilmiştir. 

 

Anahtar Kelimeler: Disk fren sistemleri, gürültü, dalgacık, frekans bölgesi, k-en 

yakın komşuluk 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Description of the Problem 

 
In mechanical systems, unexpected noise or vibration might occur eventually due to 

friction or other physical faults. These symptoms can be seen separately or together. 

Noise and vibration data have been analyzed frequently in automotive industry in order 

to increase customer satisfaction. Investigation of noise and vibration data in 

multicomponent systems requires a clear data acquisition process and a profound 

examination. In this thesis, two types of faulty brakes which have been reported by 

drivers to manufacturers with noisy label have been investigated using signal 

processing tools in order to prove the physical fault. 

   

1.2. Aim of the Research 

The aim of this research is to conduct a detailed investigation of brake noises. Most of 

the brake noises are produced due to the friction of components in the brake. However 

since the friction phenomenon keeps its unclear mechanism, unwanted sounds from 

brakes are hard to explain and analyze. 

  

Globally, in automotive industry, faults in brakes are highly important since they 

assure safety. Due to the fact that, any problem in brakes are investigated deeply until 

satisfying answers are obtained. By the perspective of consumers, this concludes as an 

absence of their vehicle during the examination, by the perspective of manufacturers, 

this refers to work labor and time. Right in this point, automatic and semi-automatic 

fault detection systems importance can be seen. An innovative approach, investigation 

of brake noises without dismounting the brake has been performed in this thesis.  
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Time domain and frequency domain and time-frequency domain analysis for noisy 

brakes have been carried out, respectively. It has been concluded that analyzing sound 

and or vibration data in order to classify brakes with respect to noises could be a novel 

approach. Features such as mean, variance, spectral centroid, spectral roll-off, number 

of zero crossings, maximum, minimum, and entropy have been investigated to classify 

less noisy and noisy brakes. Since time-frequency domain analysis will show the 

characteristics of the sound signals better, qualitative and quantitative analysis has 

been accomplished using continuous and discrete wavelet transform.  

The results are promising that, some qualitative and quantitative features can be used 

in order to determine brake faults. In the near future, it’s been foreseen that, noise and 

vibration data fed devices will be used to classify disorders not only for brakes but also 

for other multicomponent systems. 

1.3. Literature Review 

Brake system is undoubtly one of the most important control mechanisms in an 

automobile. A properly working brake system should provide the vehicle to rest in an 

appropriate time. 

Brakes Can Be Classified Considering Their “Working” Mechanisms As Frictional, 

Pumping Or Electromagnetically Acting Systems. Sometimes One Brake System May 

Use A Combination Of Above Mentioned Mechanisms. In Order To Slow Or Stop A 

Moving Vehicle, It Should Be Mechanically, Hydraulically, Pneumatically Or 

Electromagnetically Forced. In A Near Future, The Conventional Hydraulic Brake 

Systems Will Replaced By Electrically Operated Brakes Also Called “Brake-By-

Wire” (Hwang, 2012).  

 

There are moving components in a brake system and eventually they may wear off due 

to friction. Therefore, effectiveness and safety of the brake system become unreliable. 

The disorders of a brake system can be understood following some symptoms or 

warning indicators such as odor of brake lining, vibrations, noise and monitoring 

digital images on the car. The engineering problem focused on this thesis is, the 
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identification and classification of the brake noises caused by faulty brakes. Various 

fault detection approaches are encountered in different applications of engineering. 

Fault diagnosis techniques can be classified as hardware redundancy and analytical 

redundancy (Hwang, 2011). Clonal Selection Classification (CSCA), Decision Tree 

Classifier (DTC), Current Ripples (CR) in electric parking brakes (EPB) are recent 

methods used for solution of these kind of engineering problems.  

 

Analyzing sound signals (noise) may be an appropriate approach in detection of faulty 

brakes. Jegadeeshwaran and Sugumaran monitored a hydraulic brake system through 

vibration analysis. In this work, a Clonal Selection Classification Algorithm (CSCA) 

for brake fault diagnosis has been utilized (Jegadeeshwaran, 2015). Signals were 

acquired using a piezoelectric transducer and statistical parameters extracted from the 

vibration signals were evaluated. The same authors studied fault diagnosis of hydraulic 

brake system by means of “Machine learning approach”. They evaluated a number  of 

statistical parameters namely standard error, kurtosis, sample variance, skewness, 

standard deviation, minimum, maximum, count, mean, median and range 

(Jegadeeshwaran, 2015). 

 

Liu and co-workers proposed a Support Vector Machine (SVM) framework for fault 

detection in electro-pneumatic braking system of High Speed Trains (HSTs). The 

proposed framework consisting of feature and vector selection, model construction and 

decision boundary is validated on 15 public datasets in comparison to three of the most 

popular SVM models for unbalanced data (Liu, 2017).  

 

Investigation of brake noise is also another promising way, which mostly requires 

time-frequency analysis together.  Rhee and colleagues classified brake noise into two 

major categories; (a) low frequency rigid body vibration (about 100 - 1000 Hz), called 

brake roughness, judder, moan or groan; (b) medium and high frequency vibration 

(about 1000 - 18 000 Hz), called squeal or squeak. Every single brake noise has 

peerless characteristics and thus probably unique excitation mechanisms (Rhee, 1989). 

Some of the brake noises, which are both reported by the drivers and experimentally 

verified, could be solved by readjustments on operating conditions and optimizations 

on brake components such as brake pad/shoe assemblies. 
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A study from Delphi Chassis Systems, agrees with Rhee and his friends and they 

showed that this type of noise is induced by friction substance excitation at the rotor 

and lining interface (Dunlap, 1999). 

 

There are six different mechanisms of squeal generation offered in the literature 

namely; stick-slip, negative friction – velocity slope, sprag-slip, modal coupling, 

splitting the doublet modes and hammering (Ghazaly, 2014).  

 

Gajre and Talbar have analyzed vibration data acquired from a brake using quantitative 

features like standard deviation, mod, median, skewness and classified these features 

with a fuzzy logic algorithm (Gajre, 2016). 

 

Hongquan and his co-workers have investigated brake cylinder pressure sensor fault 

and gas leakage fault where a cylinder and a pipe together (Zhou, 2017). 

 

In a review article where vibration and noise signals are mostly investigated, Shannon 

entropy coefficients of noise data recorded from internal combustion engine have been 

given into artificial neural network and the success rate has been more than 95 % 

(Henriquez, 2014). 

 

Lei and his friends searched vibration data acquired from shaft in time-frequency 

domain with adaptive neuro-fuzzy inference system (ANFIS) approach, and obtained 

100 % success using 140 train and 70 test data (Lei, 2008). 
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Discrete Wavelet Transform (DWT) method has been used since the early 2000s, a 

group of researchers have used this technique in order to detect faults of ball bearing 

race (Prabhakar, 2002). Several approaches are offered in literature, such as usage of 

good heat dissipation materials or suitable friction plate in order to reduce friction 

rooted physical affects (Jin, 2011) but these recommendations are not very effective 

for all cases, since every noise signal has unique characteristics. 
 

By Wu and Liu, DWT has been used to detect faults in an internal combustion engine 

and feature selection technique based on energy spectrum, in order to categorize types 

of faults. 
 

By a detailed literature search, it is concluded that analyzing sound signals (noise) may 

be an appropriate approach for error detection. 

 

1.4. Brake Systems 

 

The brakes can be classified considering following parameters;  

By source of power, 

By method of application, 

Considering method of operation, 

According to braking contact and applied brake force. 

According to the source of power, the brakes can be listed as mechanical, hydraulic, 
vacuum, magnetic, and electrical or air brakes. With respect to method of application, 
they are encountered as foot brakes, parking or hand brakes. They can also be listed as 
manual, power operated or servo. According to the braking contact they may be 
internal-expanding brakes or external-contracting brakes.  On the basis of action the 
brakes are front wheel or rear wheel brakes. Finally, brakes can also be classified as 
single acting or double acting ones. 
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Most of the automobiles we see at the traffic every day, are using an antilock brake 

system (ABS) whereas semi-trucks and trailers use pneumatic brake systems. 

In a disc brake the hydraulically linked calipers squeeze pairs of pads against 

a disc in order to create friction that slows down the rotation. The released energy 

is converted into heat that must be dispersed (Halderman 1996). In case of drum 

brakes, the stopping power arises from friction between the pads and a brake drum. 

 

Hydraulic braking systems use the hydraulic pressure to force the brake shoes. 

They may be single circuit or dual circuit systems. It is an application of Pascal’s 

Law. 

 

The brake-by-wire technology controls the brakes by electrical means. This 

mechanism is also linked to the hydraulic pump system and when brake pedal is 

pushed the information from electronic wires is sent to the cars computer where 

the applied force is calculated. 

 

Antilock Braking System (ABS) consists of an electrical control unit, a hydraulic 

actuator and an individual wheel speed sensors.  These components work together 

to prevent brakes from locking up. 

In case of air brakes hydraulic fluid is replaced by air to activate a standard disc 

brake. This kind of brakes are mostly used in buses and lorries. 

 

As discussed above, braking is one of the most important tools we use every day 

and due to developing technology braking systems are getting smarter, safer and 

more complex. This complexity poses some issues as, noise and vibration defaults. 

From many drivers and operators, from the simplest passenger car to engineering 

vehicles, countless complaints due to noise and vibration have been reported not 

only from brakes but also from bearings, rotors and engines. These complaints led 

manufacturers and researches to study in the fields of fault detection using sound 

processing techniques. The fundamental motivation behind this thesis is to add a 

constructive perspective to this area for those who would like to investigate fault 

detection of brakes or other mechanical components in a moving vehicle. 
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Figure 1.1. Air Disc Brake 

 

 

 

1.5. Outline of Thesis  

 

In Chapter 1, a literature review has been given about related works with similar 

techniques. Inspired by these works, outline of this thesis has been formed. 

 

Chapter 2 includes fundamental ideas behind the Fourier Transform (FT) and theory 

of Wavelet Transform (WT), with the advantages and disadvantages of these signal 

processing methods. 

 

In Chapter 3, time domain, frequency domain and time-frequency domain analysis of 

brake signals have been performed. The corresponding outputs have been given by 

graphics and tables.  

 

In Chapter 4, the outputs of the complete analysis have been argued on. Future search, 

expectation from further investigations have been written. 
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CHAPTER 2 

TIME, FREQUENCY AND TIME-FREQUENCY DOMAIN 

TECHNIQUES 

 
In this chapter, concepts of Fourier Transform and Wavelet Transform will be given 

in detail. 

 

2.1. Fourier Series and Fourier Transform 

Fourier Transform (FT) is undoubtly one of the most important mathematical 

developments in 20th century. In practice, periodic signals are commonly used such as 

square wave, triangular wave or sinusoid and so on. In order to analyze these signals 

in terms of frequency, Fourier Series (FS) expansion is used. This approach claims 

that, any periodic signal can be shown by Fourier series which includes the sum of a 

series of sine and/or cosine functions plus a direct current (DC) term. FS has 3 different 

forms; first one is sine-cosine, second one is amplitude-phase and third one is complex 

exponential (Tan, 2013). In this thesis, amplitude–phase form FT has been used while 

investigating braking intervals. 

 

FT is a commonly used mathematical tool which enables the frequency spectral 

analysis for a non-periodic signal. It is defined as, 

 

𝑋𝑋(𝜔𝜔) = � 𝑥𝑥(𝑡𝑡)𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑡𝑡,                                                   (1)
∞

−∞

 

 

and the inverse Fourier Transform is given as, 

 

𝑥𝑥(𝑡𝑡) =
1

2𝜋𝜋
� 𝑋𝑋(𝜔𝜔)𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝜔𝜔,
∞

−∞

                                                (2) 

where 𝑥𝑥(𝑡𝑡) denotes a non-periodic signal and 𝑋𝑋(𝜔𝜔) represents the FT of the 𝑥𝑥(𝑡𝑡), 

given in equation (1) and (2). This spectrum is a complex function that can be easily 

written as 
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𝑋𝑋(𝜔𝜔) =  |𝑋𝑋(𝜔𝜔)|∠∅(𝜔𝜔),                                                          (3)  

 

where |𝑋𝑋(𝜔𝜔)| is the amplitude of the continuous spectrum and 𝐿𝐿∅(𝜔𝜔) represents the 

related phase. 

 

Discrete Fourier Transform (DFT) basically transforms any time domain signal to the 

frequency domain by summing at instants separated by sample times, calculated by; 

 

𝑋𝑋(𝑘𝑘) = �𝑥𝑥(𝑛𝑛)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋 𝑁𝑁⁄ = �𝑥𝑥(𝑛𝑛)𝑊𝑊𝑁𝑁
𝑘𝑘𝜋𝜋 

𝑁𝑁−1

𝜋𝜋=0

,
𝑁𝑁−1

𝜋𝜋=0

                                (4) 

 
for 𝑘𝑘 =0, 1, .. , 𝑁𝑁 − 1, 

 

Where 𝑥𝑥(𝑛𝑛) is the time domain signal, namely sequence and 𝑋𝑋(𝑘𝑘) refers to the DFT 

coefficients. 𝑛𝑛 Represents the sample number of the sequence whereas 𝑘𝑘 denotes the 

frequency index. 

 

Where  𝑊𝑊𝑁𝑁 is given as a form of Euler’s identity, 

 

𝑊𝑊𝑁𝑁 = 𝑒𝑒−𝑗𝑗2𝜋𝜋 𝑁𝑁⁄ = cos(
2𝜋𝜋
𝑁𝑁

) − 𝑗𝑗 sin �
2𝜋𝜋
𝑁𝑁
� ,                                     (5) 

 
A computationally efficient implementation is of DFT is called as Fast Fourier 

Transform (FFT) and it is widely used for obtaining frequency spectrum of the digital 

signals. 

 

𝑋𝑋[𝑘𝑘] = � 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝜋𝜋[𝑛𝑛]𝑊𝑊𝑁𝑁/2
𝑘𝑘𝜋𝜋

𝑁𝑁 2⁄ −1

𝜋𝜋=0

+ 𝑊𝑊𝑁𝑁
𝑘𝑘 � 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜[𝑛𝑛]𝑊𝑊𝑁𝑁

2

𝑘𝑘𝜋𝜋,                   (6)
𝑁𝑁 2⁄ −1

𝜋𝜋=0

 

 
𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒𝜋𝜋[𝑘𝑘] +  𝑊𝑊𝑁𝑁

𝑘𝑘𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜[𝑘𝑘],                                                (7) 
 
Where𝑋𝑋𝑒𝑒𝑒𝑒𝑒𝑒𝜋𝜋[𝑘𝑘] , 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜[𝑘𝑘]  are the 𝑁𝑁

2
 point DFT transforms of the even and odd 

components of 𝑥𝑥(𝑛𝑛)  respectively. In the equation above, N point DFT has been 

divided into 𝑁𝑁
2

 point DFTs. The divide and obtain procedure provides a fast and 

sufficient analysis. 
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2.1.1. Disadvantages of Fourier Transform 
 
FT shows, what frequency components are present in the signal, which means that the 

time information is lost. It is suitable for stationary signals like, white Gaussian Noise. 

However, sometimes it is required to know, where in time did this frequency 

component occur?  

 

   
 
Figure 2.1. From time domain to frequency domain (Dallas, 2014) 
 
 
In Figure 2.1, the representation does not bring out how the frequency contents of the 

signal change within time; or it does not give information if the two main frequencies 

are continuously existing or only at particular intervals. Since the temporal structure 

of the signal cannot be observed, the advantages of the Fourier transform is somehow 

bounded.  

 

In figure 2.2, a non-stationary signal has been shown both in time and frequency 

domain separately. It is clear that, by applying FT, a lot of information about the signal 

is lost. FT is not suitable enough to analyze nonstationary signals. A different signal 

processing approach which is able to handle nonstationary signals, is needed. 
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Figure 2.2. Representation of a nonstationary signal, both in time and frequency 

domains (Heuser, 2014) 

 

2.1.2. Short Time Fourier Transform 

 

In order to deal with the limitations of the Fourier transform, a Fourier-like technique 

is used by Dennis Gabor in 1946. An investigation window of particular length, which 

glides throughout the signal, along the time axis, works as a “time localized” FT. This 

approach introduced by Dennis Gabor, led to the concept of short-time Fourier 

Transform (STFT).  

 

In Figure 2.3 and 2.4, there is a sliding window function g(t) centered at time t. For 

every single t, a time localized FT is done on x(t) within the window. The analysis 

window displaces along the time axis, repeating another FT. Following sequential 

operations, it is possible to obtain the FT of the entire signal. In figure 2.4. the signal 

range under the window is assumed to be almost stationary. Using STFT, a time 

domain signal can be easily decomposed into a 2D time-frequency representation. 
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Figure 2.3. Sliding window function in frequency domain, (Kumar, 2017) 

 

 

 
 

Figure 2.4. STFT application, (Gao, 2011) 

 

 

Mostly, higher resolution provides greater separation of the constituent components of 

signal, the time and frequency resolutions of the STFT technique must not be chosen 

arbitrarily at once according to the uncertainty principle of Cohen.  

 

Particularly, the multiplication of the time and frequency resolutions is lower bounded 

by  

 

𝜏𝜏.∆𝑓𝑓 ≥ 1
4𝜋𝜋

,                                                                   (8)  

 

where ∆𝜏𝜏 and ∆𝑓𝑓 denotes time and frequency resolutions, respectively. 
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Figure 2.5. STFT window sizes representation, (Gao, 2011) 

 

In figure 2.5, it is shown that regardless of the window sizes, the product of ∆𝜏𝜏 and ∆𝑓𝑓 

are always equal because of Uncertainty Principle. Although inspecting both the time 

and frequency information at the same time was a great development, fixed window 

size had continued to be challenge. 

 

When the demands of the customers and the developments in technology almost met 

during 1900s’ and early 2000s’, terms of the day entailed engineers to design more 

advanced electromechanical systems hence the fault diagnosis got harder and as a 

consequence signal processing techniques developed eventually. Conclusions of 

researches showed that observing time and frequency information at the same time, 

with a higher resolution could be a pioneering approach in order to discriminate 

obscure faults clearly.  In the early 1980’s, a French geophysicist called Jean Morlet, 
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claimed a new concept, wavelets of constant shape. Contrary to the STFT approach, 

where the window size is fixed, the wavelet technique allows flexible window sizes 

while investigating different frequency components within a signal (Mallat, 1998). 

 

Wavelet transform is an alternative technique to the STFT in order to solve resolution 

problem. It is pretty similar to STFT, only multiplied with a function of wavelet. 

Multiresolution analysis has the following advantages, 

 

1. The signal can be analyzed with different resolutions at different frequencies. 

2. At high frequencies, it gives poor frequency resolution and good time 

resolution. 

3. At low frequencies, it gives poor time resolution and good frequency resolution. 

4. More appropriate for higher frequency components of short duration and for 

lower frequency components for longer duration. 

 

In figure 2.6, a simple wavelet application representation is given. While applying 

wavelet transform, you simply cut the signal up into smaller signals, showing the same 

signal only corresponding to varying frequency bands. Solely, keeping the frequency 

at the exact time interval.  

 

 

 
 

Figure 2.6. Wavelet application, (Gao, 2011) 
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2.2. Wavelet Analysis 

 

Wavelet refers to a small wave which has to decay within a short time interval and in 

a very small area. The concept of Wavelet expands to early 1800s, the discovery of 

superposing sines and cosines by Joseph Fourier. Wavelet is an efficient and 

multipurpose tool which is widely used for signal processing. It is appropriate for the 

analysis of non-stationary or transient data. 

 

Wavelets can be used to extract information from a large variety of data, extending 

from financial data to audio or images processing.  

 

In order to perform a wavelet transform, a wavelet function ѱ(t) is needed which is a 

specifically localized and satisfies certain mathematical criteria. 

 

 
 

Figure 2.7. Four common wavelets: (a) Gaussian wave (first derivative of a 

Gaussian). (b) Mexican hat (second derivative of a Gaussian). (c) Haar. (d) Morlet 

(real part). 
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Although, there are many types of wavelets, the tricky part is to choose the right one 

for you. What you expect in the analysis and the behavior of the signal are two main 

topics that you consider while choosing your wavelet. 

 

 

2.2.1. Requirements for the Wavelet 

 

A wavelet function has to satisfy certain mathematical criteria, 

 

1. A wavelet must have finite energy. 

𝐸𝐸 = ∫ |ѱ(t)|2𝑑𝑑𝑡𝑡∞
−∞ < ∞,                                                  ( 9)                          

2. If  ѱ�  (𝜔𝜔) is the Fourier transform of ѱ(t)     

𝐶𝐶𝜑𝜑 = ∫
�ѱ�  (𝑗𝑗)�2

|𝑗𝑗|
∞
0 𝑑𝑑𝜔𝜔 < ∞,                                                 (10)       

must be satisfied. It means ѱ�(0) = 0 , namely ѱ(t) must have a zero mean. 𝐶𝐶𝜑𝜑 

refers to the admissibility constant. 

 

3. For complex wavelets, the Fourier Transform (FT) must be real and the 

negative frequencies must disappear (Addison, 2017). 

 

2.2.2. The Energy Spectrum of the Wavelet, 

 

If a wavelet satisfies admissibility condition (equation (10)), it is called band-pass 

filter. The frequency of the wavelet versus squared magnitude of the FT gives the 

energy spectrum is given by 

 

EF (𝜔𝜔) = �ѱ�  (𝜔𝜔)�
2

,                                                            (11)   

 

Denoted by fc, the standard deviation of the energy spectrum is as follows, 

fc =  �∫ f2�ѱ�  (𝑗𝑗)�2df∞
0

∫ �ѱ�  (𝑗𝑗)�2df∞
0

,                                                          (12)                
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The total energy of a wavelet is finite, as a result of Parseval’s Theorem. 

E = � |ѱ(t)|2
∞

−∞
dt,                                                              (13) 

 

In another way, the area under the energy spectrum also gives the total energy.  

 

E = ��ѱ�(𝜔𝜔)�
2

∞

−∞

d𝜔𝜔,                                                                  (14) 

 

Hence, applying Parseval’s theorem, we expect this for any function. 

 

∫ |ѱ(t)|2∞
−∞ dt = ∫ �ѱ�(𝜔𝜔)�

2∞
−∞ d𝜔𝜔,                                            (15)    

 

Practically, the wavelet function has unit energy since it is normalized.  

 

 

2.2.3. Wavelet Transform 

 

Right after choosing an appropriate mother wavelet, to make it more flexible and 

amenable, there are two basic manipulation options, “dilation” and “translation”. 

While the dilation refers to squeezing and stretching, the translation is the 

displacement (movement) along the time axis.  
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Figure 2.8. Dilation and translation of a wavelet: (a) Stretching and squeezing a 

wavelet: Dilation (a1 = a2/2; a3 = a4 × 2). (b) Moving a wavelet: Translation. 

 

In figure 2.8a, the wavelet is squeezed and stretched respectively, half and double its 

original width on the time axis. The dilation variable is denoted by “a”. The translation 

from b1 via b2 and b3, shift along the time axis is denoted by “b” in general (Addison, 

2017).  
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𝑇𝑇(𝑎𝑎, 𝑏𝑏) = 1
√𝑎𝑎
∫ 𝑥𝑥(𝑡𝑡)ѱ∗∞
−∞ �𝑗𝑗−𝑏𝑏

𝑎𝑎
�𝑑𝑑𝑡𝑡,                                        (16)  

 

The 𝑥𝑥(𝑡𝑡) function in equation (16) could be a financial index, a heart beat, an audio 

signal or even a seismic signal. In this equation, the product of the signal (audio and 

vibration in this work) and the mother wavelet are integrated, during the signal range. 

Mathematically, the convolution operation has been performed. The normalized 

wavelet is simply given by,      

 

 ѱ𝑎𝑎,𝑏𝑏(𝑡𝑡) = 1
√𝑎𝑎
ѱ �𝑗𝑗−𝑏𝑏

𝑎𝑎
� ,                                                 (17)                      

              

 

Fourier transform values of complex wavelets, (in other words analytic wavelets) are 

zero for negative frequencies due to the 3rd requirement of the wavelet. Implementing 

this information, by choosing complex wavelets, the phase and amplitude components 

of a signal can be easily separated. 
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Figure 2.9. Schematic representation of the wavelet transform in its time and 

frequency representations: (a) The convolution operation of the wavelet function with 

the signal. (b) The obtained convolution in (a) is shown in the frequency domain 

contains a product of the signal Fourier transform and the wavelet Fourier transform 

(Addison, 2017). 

 

 

2.2.4. Inverse Wavelet Transform 

 

The inverse wavelet transform is defined as, 

 

𝑥𝑥(𝑡𝑡) = 1
𝐶𝐶𝜑𝜑
∫ ∫ 𝑇𝑇(𝑎𝑎, 𝑏𝑏) ѱ𝑎𝑎,𝑏𝑏

𝑎𝑎2
∞
0

∞
−∞ 𝑑𝑑𝑎𝑎𝑑𝑑𝑏𝑏,                                                 (18)   

 

By integrating over dilation and translation parameters a and b, the wavelet 

transformed version turns in to original signal. Instead of using all dilation parameters 

(a scales), integration over a limited range of dilation parameters conclude as basic 

filtering. In fig. 2.10a.b.c, three components of a signal are given, in fig 2.10d the 

addition of these components shows the original composite signal.  

 

The plot of transformed signal is given in fig 2.10e. The abrupt burst of high frequency 

noise is also clearly obtained in the transformed signal. 
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Figure 2.10. The signal and the plot of its transformation. (a) Sinusoidal waveform. 

(b) Sinusoidal waveform. (c) Abrupt high frequency noise. (d) Addition of (a), (b) and 

(c). (e) The transformation plot of the embodied signal (Addison, 2017). 

 

 

 
 

 

Figure 2.11. Filtering of the embodied signal by wavelet. (a) High frequency 

components above the line are eliminated in 2.10e. (b) Rebuild signal using the plot in 
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(a). (c) Relatively small scale components are removed in fig 2.10e. (d) Rebuild signal 

using the plot in (c). Rebuilding the signal, over a range of dilation parameters (a), 

a*<a<∞. The White lines in the figures, represents the cut off scale. As the scale 

(dilation parameter, cut off) increases, the reduction of high frequency noises are more 

apparent (Addison, 2017). 

 
 
 
2.2.5. Power Spectra and Wavelet Based Energy 
 
The total energy contained in a signal is defined as, 

                     𝐸𝐸 = ∫ |𝑥𝑥(𝑡𝑡)|2∞
−∞ 𝑑𝑑𝑡𝑡 = ‖𝑥𝑥(𝑡𝑡)‖2,                                                   (19) 

 

Known that, only finite energy is useful, by using dilation and translation parameters, 

2-D wavelet energy density function can be written as, 

                       𝑃𝑃𝑠𝑠(𝑎𝑎, 𝑏𝑏) = |𝑇𝑇(𝑎𝑎, 𝑏𝑏)|2,                                                            (20) 

 

𝑃𝑃𝑠𝑠(𝑎𝑎, 𝑏𝑏) plot is called scalogram.  

 
 
2.2.6. Scalogram 
 
Scalogram which represents the local time-frequency intensity can be written as,  

 

𝑃𝑃𝑠𝑠 (𝑎𝑎, 𝑏𝑏; ѱ)≜ |Ws(a, b;ѱ|2,                                     (21)                       

                                       

By using wavelet coefficients. Scalogram shows, how energy of the signal is 

distributed over time-frequency plane. 
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2.2.7. Complex Morlet Wavelet 
 
 
Morlet Wavelet 
 
A Complex Morlet wavelet is the product of the sine wave with a Gaussian function. 

Based on this, a Complex Morlet is the multiplication of a complex sine wave with a 

Gaussian function. The FT of complex or analytic wavelets are zero for (-) frequencies. 

Using this kind of complex wavelets, it is possible to separate the phase and the 

amplitude components for a signal. Theoretically, if we take the FT of the Mexican 

Hat Wavelet (MHW), then fix the negative components in the frequency domain to 0, 

finally applying an IFT, we obtain a complex MHW. 

 

The Morlet Wavelet is commonly used and defined as, 

 

ѱ(𝑡𝑡) = 𝜋𝜋−1 4⁄ �𝑒𝑒𝑖𝑖2𝜋𝜋𝑓𝑓0𝑗𝑗 − 𝑒𝑒−
(2𝜋𝜋𝑓𝑓0)2

2 � 𝑒𝑒−
𝑡𝑡2

2 ,                              (22)  

where the central frequency is denoted by f0. The second term in the brackets 

neutralizes the contribution which comes from non-zero mean of the complex sinus 

function of the first term. Thus named as correction term which is practically, 

negligible for f0>0 and can be ignored. A simpler form of complex Morlet is written 

as, 

 

ѱ(𝑡𝑡) = 1
𝜋𝜋1 4⁄ 𝑒𝑒𝑖𝑖2𝜋𝜋𝑓𝑓0𝑗𝑗𝑒𝑒

−𝑡𝑡
2

2 ,                                                         (23)  
 
 
 

 
 
Figure 2.12. Morlet Wavelet, (Addison, 2017) 
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Given in figure 2.13, morlet wavelet, actually, is a complex sine wave under a 

Gaussian envelope. The complex sinusoidal waveform comes from equation (24) 

whereas the term 𝑒𝑒−𝑗𝑗2/2 bounds the waveform and has unit standard deviation. The 

𝜋𝜋1 4⁄  is the normalization term which guarantees that wavelet has unit energy. The FT 

of the Morlet Wavelet is given as, 

 

ѱ�(𝑓𝑓) = 𝜋𝜋1 4⁄ √2𝑒𝑒−
1
2(2𝜋𝜋𝑓𝑓−2𝜋𝜋𝑓𝑓0)2 ,                                                (24)     

   

The energy spectrum of the Morlet is written as, 

    �ѱ�(𝑓𝑓)�
2

= 2𝜋𝜋1 2⁄ 𝑒𝑒−(2𝜋𝜋𝑓𝑓−2𝜋𝜋𝑓𝑓0)2 ,                                               (25) 

 

 

 
 

 
 
Figure 2.13. (a) the morlet wavelet, (b) the energy spectrum of the Morlet is given. 
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In figure 2.13 c 2.13 d 2.13 e 2.13 f, various plots are given for different center 

frequencies and scales, (Addison, 2017). 

 
 

 
 
Figure 2.14. Morlet wavelet analysis of a two-component sinusoidal waveform. 
 
 
In the figure above, an analysis of a two component sinusoidal waveform, using Morlet 

Wavelet (Addison, 2017), with a center frequency of f0=0.849 is given. The real part 

of the wavelet transform Re{T(a,b)} the signal is given in 2.14b whereas the contoured 

and shaded version of the real part of the wavelet transform is given in 2.14c. Duly, 

two wavelet components are obvious as small waves, at the different scales, in fig 

2.14b. The phase of the wavelet transform is given in 2.14e and the modulus is shown 

in 2.14f.  
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2.2.8. Morlet Wavelet Decomposition of a Signal 
 
The Morlet Wavelet decomposition of a signal, which has an abrupt change in 

periodicity, is investigated in figure 2.15. The change in periodicity is evident on all 

analyses. Extracting and separating the signal into its constituent components is the 

goal of decomposition. 

 
 
 
Figure 2.15. (a) Original Signal (b) Morlet Wavelet Transformation (c) Phase  

(d) Real part (e) modulus (f) Imaginary part of the Wavelet transform. 
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2.3. Discrete Wavelet Transform  

It is possible to rebuild the original signal by means of infinite summations of discrete 

wavelet coefficients. This approach allows faster wavelet transformation for the quick 

calculation of the Discrete Wavelet Transform (DWT) and its inverse. Reconstruction 

of the original signal by CWT method is also possible but not as preferable as DWT 

because it brings out a challenge since the CWT includes too much redundant 

information; the reconstructed signal is an approximate representation (Addison, 

2017). Forward and backward transforms of DWT are computationally efficient, 

meanwhile capturing all the signal’s discriminative features. 

 

The fundamental DWT is computed by following the steps below, 

1. A signal is fed into a low-pass filter and a high-pass filter, namely by father 

wavelet and mother wavelet. 

2. The outputs of the filters are downsampled by 2:1 ratio, which ensures that 

the remaining coefficients have the same dimension of the input signal. 

Power-of-two logarithmic selection is defined as the ‘dyadic grid’.  

3. First two steps are repeated until the desired component of the signal is 

obtained. 

 

𝜑𝜑𝑚𝑚,𝜋𝜋(𝑡𝑡) =
1

�𝑎𝑎0𝑚𝑚
𝜑𝜑 �

𝑡𝑡 − 𝑛𝑛𝑏𝑏0𝑎𝑎0𝑚𝑚

𝑎𝑎0𝑚𝑚
� ,                                           (26) 

 
Where the integer m denotes the wavelet dilation whereas the n refers to the wavelet 

translation. Explained briefly in step 2 above, a useful selection for discrete wavelet 

parameters a0 and b0 are 2 and 1, respectively in order to provide a rapid and efficient 

computation. 
 

                          𝜑𝜑𝑚𝑚,𝜋𝜋(𝑡𝑡) = 2−
𝑚𝑚
2𝜑𝜑(2−𝑚𝑚𝑡𝑡 − 𝑛𝑛),                                                (27)              

 
Discrete dyadic grid wavelets are mostly preferred to be satisfy the feature of 

orthonormality. These wavelets are orthogonal in themselves and they are normalized 

to have unit energy given in equation below, 
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�  𝜑𝜑𝑚𝑚,𝜋𝜋(𝑡𝑡) 𝜑𝜑𝑚𝑚,́ �́�𝜋(𝑡𝑡)𝑑𝑑𝑡𝑡 = �1,  𝑖𝑖𝑓𝑓 𝑚𝑚 = 𝑚𝑚 ́  𝑎𝑎𝑛𝑛𝑑𝑑 𝑛𝑛 = �́�𝑛
0, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒

∞

−∞
,              (28) 

 

The major reason behind this is, the data kept in a wavelet coefficient Tm,n is not 

repeated anywhere hence the perfect reconstruction of the original signal without 

redundancy is possible. This feature is satisfied by virtue of orthonormality where the 

product of each wavelet with all others equals to zero, in the same dyadic grid system 

since they are all perpendicular to each other.  

 

Orthonormal wavelets have frame bounds A = B = 1 where the related wavelet family 

is said to be orthonormal basis. (A basis consists of a set of vectors in a space, where 

the vectors a linearly independent and they can be represented as linear combination 

of this set, mathematically. In other words, these vectors span the space they are in. In 

terms of signal processing, orthonormal wavelets namely, linearly independent vectors 

which can perfectly define the signal (Addison, 2017).  

 
A signal x(t) can be written as a combined series expansion with the help of 

approximation coefficients and the wavelet (detail) coefficients together, 

 

      x(t) = � Sm0,n ∅m0,n(t) +  � � Tm,nφm,n(t),
n0

n=−∞

m0

m=−∞

∞

−∞

                (29) 

 
 

In this work, wavelets of Daubechies; Db3 Db6 Db9 Db10 Db12 Db15 and Db18 are 

used from the wavelet family, given below, 

 

 
 
Figure 2.16. Daubechies wavelets 
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DWT is also known as Fast Wavelet Transformation (FWT), where coefficients of 

coefficients are calculated. 

 
Sm+1,n = 1

√2
∑ ckSm,2n+k =  1

√2
∑ ck−2nSm,kkk  ,                        (30)     

 
Tm+1 = 1

√2
∑ bkSm,2n+k = 1

√2k ∑ bk−2nSm,kk ,                           (31)           
 
In equation 30 and 31, if the approximation coefficients Sm0 ,n  is known at a pre-defined 

scale, for all scales bigger than m0, it is possible to obtain approximation and detail 

wavelet coefficients, also known as multiresolution decomposition approach. In the 

first half of WT is applied so that wavelet coefficients are computed. Shown in figure 

2.17, iterating equations 30 and 31 performs, respectively, a high-pass and low-pass 

filtering of the original signal, where (1/ √2)ck  and (1/ √2)bk  denote the filters. The 

low-pass filter allows only low frequency components to pass thus, smoothed signal 

is obtained whereas the high-pass filter permits high frequencies to pass, so that signal 

details are evaluated. The second half of WT consists of reconstruction algorithm 

(Addison, 2017). 

 
 
 
Figure 2.17. Filtering of the signal  
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In the figure above, the original signal is filtered by sliding the low-pass filter 

throughout the signal one step at a time in order to obtain the approximation coefficient 

S1,n. The detail coefficients are computed the same way but only using a high-pass 

wavelet filter coefficients. Representation of the dissolution and insertion of the 

approximation and detail coefficients for every iteration within the WT vector for any 

input signal vector is shown above. 

 

The wavelet transform vector after the full decomposition has the form W(M) = (SM, 

TM, TM−1, … Tm … T2, T1) where Tm denotes the sub-set including the coefficients 

Tm,n  at scale index m, n varies between 0 to 2M−m–1. 

 

DWT operation for noisy and less noisy brakes have been performed in 

MATLAB and related outputs are given in next chapter of the thesis. 

2.4. Wavelet Ridges 

Wavelet ridges indicate the points where energy rises up in scalogram matrix and 

converge on the instantaneous frequency of the signal within a certain resolution. In 

order to obtain Wavelet Ridges several methods can be found in a literature review 

(Özkurt, 2015). In this thesis Singular Value Decomposition (SVD) method has been 

applied to noise data acquired from brakes, to detect wavelet ridges. 

 

Scalogram Matrix is defined as 

 

P=[𝑝𝑝𝑚𝑚𝜋𝜋]MxN,                                                                                   (32)                                                                     

pmn ≜ |𝑐𝑐𝑚𝑚𝜋𝜋|2                                                        (33)                                                                             

 

and given below, complex Morlet Wavelet has been chosen as the mother wavelet. 
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𝜑𝜑(𝑡𝑡) =  1
2𝜋𝜋  ∙ 𝑒𝑒𝑗𝑗𝑗𝑗0𝑗𝑗𝑒𝑒−𝑗𝑗2/2

 ,                                                                    (34)                                               

 

ω0 represents the center frequency of the wavelet. Since it provides observation of 

magnitude and phase separately, it is immensely useful. 

 

 

SVD based ridge detection algorithm is used in this study. The scalogram matrix P∈

ℝ𝑀𝑀×𝑁𝑁 can be decomposed into singular values as 

 

P=U∑VT,                                                        (35)                                                        
 

Here, singular value matrix is given as ∑ ∈ ℝ𝑀𝑀×𝑁𝑁 whereas orthogonal matrices are 

defined as U ∈ ℝ𝑀𝑀×𝑀𝑀  and V ∈ ℝ𝑁𝑁×𝑁𝑁.  Since singular values ordered in descending 

order, when energy of the noise is assumed to be less than the energy of the signal, the 

matrix can be investigated in two parts. 

 

∑= �∑𝑠𝑠 0
0 ∑𝜋𝜋

�,                                                      (36)                                         

 

U = [𝑈𝑈𝑠𝑠 𝑈𝑈𝜋𝜋],                                                      (37) 

 

V=[𝑉𝑉𝑠𝑠 𝑉𝑉𝜋𝜋],                                                               (38)                                                            

 

Us ∈  ℝ𝑀𝑀×𝑆𝑆  , ∑𝑠𝑠 ∈  ℝ𝑆𝑆×𝑆𝑆  ve Vs ∈ ℝ𝑁𝑁×𝑆𝑆  S ≤ K=rank(P) represents the signal 

components. Noise and insignificant components are defined as  ∑𝜋𝜋 ∈ ℝ𝑀𝑀−𝑆𝑆×𝑁𝑁−𝑆𝑆, Un 

∈ ℝ𝑀𝑀×𝑀𝑀−𝑆𝑆  Vn ∈ ℝ𝑁𝑁×𝑁𝑁−𝑆𝑆. 

 

To determine S, the ratio of the energy of signal components defined by singular values 

is calculated as 

 

𝑒𝑒𝑘𝑘 ≜
𝜎𝜎𝑘𝑘
2

𝐸𝐸𝑇𝑇
  ,                                               (39)               
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where 𝐸𝐸𝑇𝑇 represents the total energy of scalogram matrix and 𝜎𝜎𝑘𝑘2 is the energy of kth 

singular value. The singular values which are greater than the given threshold took 

place in the signal matrix 

𝜀𝜀(0 < 𝜀𝜀 ≤ 1) ; 𝑒𝑒1 ≥ 𝑒𝑒2 ≥ ⋯ ≥ 𝑒𝑒𝑆𝑆 ≥  𝜀𝜀 ∑𝑠𝑠 . The rest of the K-S singular valued minor 

energy components are assumed to be noise. For signal components, scalogram matrix 

is obtained as 𝑃𝑃𝑠𝑠 = U𝑠𝑠Σ𝑠𝑠V𝑠𝑠𝑇𝑇where wavelet ridges are defined as the local maximum 

for every translation point (Özkurt, 2015). 

 

The wavelet ridges of the noisy and less noisy brakes signals have been obtained and 

analyzed in the next chapter of this thesis. 
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2.5. Fourier versus Wavelet  

 
Fourier Transform and Short Time Fourier Transform has been undoubtly a pioneer 

tool in mathematics and science. Nevertheless, choosing an appropriate window size 

for satisfactory signal decomposition with STFT approach, is not guaranteed. The 

connatural uncertainty led most of the researchers to look for new approaches. The 

idea of Wavelet Transform has started to substitute for FT and STFT since the 

beginning of 1980’s.  

 

Wavelet Analysis has been a comprehensive and an extensive method with respect to 

FT and STFT thus preferred by scientists on numerous sorts of applications in the last 

three decades (Gao, 2011). The reason behind this is quite clear; wavelets are capable 

of using various and flexible windows while investigating the characteristics of a 

signal whereas classical methods like FT and STFT lack of, given in figure 2.18. It 

cuts up the data into different frequency components and works on every component 

with a resolution matching to its scale (Graps, 1995). The biggest advantage of wavelet 

transform compared to the old style methods is definitely the ability to keep the time 

information as well as frequency. This advantage offers an amending to resolution 

problem which STFT suffers. Also, short signal fragments have an importance in WT. 

Scaling (stretch) and shifting (delaying) for every instant is the main idea behind this 

tool, which allows the researcher to manipulate the data in a more revealing way.  
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Figure 2.18. The comparison between FT, STFT and Wavelet Transform. 

In the following chapter, the audio data collected at Ege Fren from a less noisy and 

noisy brake are investigated in time domain, frequency domain and time-frequency 

domain, respectively, regarding the theoretical information, summarized in this 

chapter.  
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CHAPTER 3 

SOUND ACQUISITION AND ANALYSIS OF DISC BRAKE SYSTEM 

Sound feature extraction and classification methods have been used by researchers 

frequently. The logic behind this application involves, extracting distinguishing 

features from the sound dataset and giving them into a classifier algorithm. Various 

approaches for different kind of sound features have been used in literature. Feature 

extraction from sound data, serves as the fundamental operation in the areas of signal 

processing, from health to security, mostly for malfunction detection and classification. 

Depending upon the choice of signal processing method, the features can be directly 

taken from time domain such as zero crossing rate, or from a transformation domain, 

such as Fourier Transform (FT), Mel-frequency cepstral coefficients (MFCCCs).  In 

transform domain, spectral similarity, entropy, octaves are some of the sound data 

features, with a great success rate (Umapathy, 2007). Some methods form a pattern 

from features in order to use it for classification. Another approach is to detect 

statistical parameters and feed them into a classifier. In this study, a noisy brake, a less 

noisy (wrt noisy one) and a noiseless (with no defect) has been compared in time 

domain, in frequency domain and in time-frequency domain respectively, in this study. 

This chapter covers, the data acquisition and analysis for aforementioned domains.  
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3.1. Data Acquisition 

 

A Norsonic Type 1228 microphone has been located on the noisy disc brake with a 

proper setup. Then, by imc CRONOSflex data acquisition board given in figure 3.1, 

150 seconds braking has been recorded for each type of brake while the driver pushes 

the brake pedal manually. The imc CRONOSflex 4 channel data acquisition board has 

a resolution of 16 bit and the sampling frequency is 20 kHz. 

 

In 150 seconds record, braking instants for noisy, less noisy and noiseless brake; have 

been detected semi-automatically in Matlab by peak finder algorithm and 

inappropriate braking intervals are eliminated due to keep the data in the same 2 

seconds pattern. Every braking instant and the following 2 seconds have been named 

as braking interval. Due to outer interferences and noises, some part of the data have 

been eliminated in order to keep the braking intervals same and safe. All in all, 39 

braking intervals for less noisy brake and 30 braking intervals for noisy brake has been 

investigated in three different domains separately.  

 

In engineering applications, normalization is performed to input data (audio for this 

case) as preprocessing in order to scale the signals in same level when analysis with 

respect to comparison is held. In this thesis, since all the data are collected in same 

environment and position of the microphones kept same, normalization hasn’t been 

applied. 
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Figure 3.1. The imc CRONOSflex 4 channel data acquisition board  

 

3.2. Time Domain Analysis 

Discriminative features such as mean, variance, number of zero crossings, maximum, 

minimum, and entropy have been investigated in time domain for less noisy and noisy 

brakes. 

 

 

 

 

Figure 3.2. Two seconds braking interval representations of less noisy and noisy brake 

are shown in the figure above. 
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3.2.1. Mean  

Mean or average refers to the central tendency of the elements in a dataset. In this 

study, for every braking interval (2 seconds fragment), the record of the signal has been 

obtained and the related mean is calculated by 

 

M =
1
𝑁𝑁
� 𝑥𝑥𝜋𝜋

𝑁𝑁−1

𝜋𝜋=0

,                                                           (40) 

                                                                                  

where M denotes the mean and N is the length of the signal and 𝑥𝑥𝜋𝜋 is the braking 

interval. Average of this feature for all braking intervals of less noisy brake signals is 

-0.0013 in time domain. 

 

 

Figure 3.3. The mean of each braking interval in time domain for less noisy brake. 

 

 

Figure 3.4. The mean of each braking interval in time domain for noisy brake.  
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Average of this feature for all braking intervals of noisy brake signals is -3.25x10-4 in 

time domain.  

As can be observed from figure 3.3 and 3.4, the mean of same class of brake signals 

changes with every record and does not carry any knowledge about the signal class by 

itself.  

 

3.2.2. Maximum 

For every braking interval, maximum of the braking interval has been calculated by 

 

𝐴𝐴 = 𝑚𝑚𝑎𝑎𝑥𝑥(𝑥𝑥𝜋𝜋),𝑛𝑛 = 0,1,2 … ,𝑁𝑁 − 1,                                 (41) 

 

where 𝑥𝑥𝜋𝜋 denotes a braking interval and N is the number of brakings. Average of this 

feature for all braking intervals of less noisy brake signals is 0.57 in time domain. 

 

 

 

Figure 3.5. The maximum of each braking interval in time domain for less noisy brake. 
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Figure 3.6. The maximum of each braking interval in time domain for noisy brake. 

Average of this feature for all braking intervals of noisy brake signals is 0.79 in time 

domain.  

As can be seen from figure 3.5 and 3.6, there is a slight difference between the averages 

of the maximums of each class. 

 

3.2.3. Minimum 

For every braking interval, minimum feature has been calculated by 

𝐴𝐴 = 𝑚𝑚𝑖𝑖𝑛𝑛(𝑥𝑥𝜋𝜋),𝑛𝑛 = 0,1,2 … ,𝑁𝑁 − 1,                                   (42) 

where 𝑥𝑥𝜋𝜋 denotes a braking interval and N is the number of brakings. Average of this 

feature for all braking intervals of less noisy brake signals is -0.46 in time domain.  

 

 

Figure 3.7. The minimum of each braking interval in time domain for less noisy brake. 
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Figure 3.8.  The minimum of each braking interval in time domain for noisy brake. 

 

Average of this feature for all braking intervals of noisy brake signals is -0.94 in time 

domain. 

As can be seen from figure 3.7 and 3.8, the minimums of each class shows some 

difference. 

 

3.2.4. Variance  

Variance is an informative statistical parameter that refers to the how any random 

variable is distributed with respect to mean value. Simply, it is defined as square of the 

standard deviation. For every braking interval (2 seconds fragment), the record of the 

signal has been obtained and the related variance is calculated by 

 

𝑉𝑉 =
1

𝑁𝑁 − 1
�(𝑥𝑥𝜋𝜋 − 𝑀𝑀)2
𝑁𝑁−1

𝜋𝜋=1

,                                                      (43) 

 

where M is the mean. Average of this feature for all braking intervals of less noisy 

brake signals is 0.0087 in time domain. 
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Figure 3.9.  The variance of each braking interval in time domain for less noisy brake. 

 

 

 

Figure 3.10. The variance of each braking interval in time domain for noisy brake. 

 

Average of this feature for all braking intervals of noisy brake signals is 0.027 in time 

domain.  Variance, refers to the square of standard deviation where it is shown to be 

more informative than standard deviation. 
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3.2.5. Number of Zero Crossings 

Number of zero crossings refers to the dominant frequency in a signal spectrum. At 

first, for every braking interval (2 seconds fragment), the record of the signal has been 

obtained and the related number of zero crossings is calculated by 

 

𝑍𝑍𝑗𝑗 =
1
2
�|𝑒𝑒𝑠𝑠𝑛𝑛(𝑥𝑥[𝑛𝑛]) − 𝑒𝑒𝑠𝑠𝑛𝑛(𝑥𝑥[𝑛𝑛 − 1])|,
𝑁𝑁

𝜋𝜋=1

                            (44) 

 

where 𝑥𝑥[𝑛𝑛]  denotes the nth element of the signal and N denotes the length signal 

(Schafer, 1975). Average of this feature for all braking intervals of less noisy brake 

signals is 3.4x103 in time domain. 

 

 

 

Figure 3.11. The number of zero crossings of each braking interval in time domain for 

less noisy brake. 
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Figure 3.12.  The number of zero crossings of each braking interval in time domain 

for noisy brake. 

Average of this feature for all braking intervals of noisy brake signals is 4x103 in time 

domain. 

 

In the records of less-noisy brakes given in figure 3.11, there is a considerable inter-

class difference between the first 11 records and the remaining’s. This difference has 

a negative effect on the features’ discriminative abilities. It might be caused by the 

manual braking during record. The position of the driver’s foot might have changed 

since the same characteristic is obtained in the following graphics. 

 

3.2.6. Entropy 

Entropy is a qualitative feature used to determine the complexity of a signal. In this 

study, for each breaking interval time domain entropy is calculated as 

 
𝐻𝐻� = −∑ 𝑛𝑛(𝑥𝑥𝑘𝑘) 𝐿𝐿−1

𝑘𝑘=0 log2 𝑛𝑛(𝑥𝑥𝑘𝑘),                                                      (45) 
 

where the relative frequency of the signal magnitude is  𝑛𝑛(𝑥𝑥𝜋𝜋) = 𝜋𝜋𝑘𝑘
𝑁𝑁  and 𝑛𝑛𝑘𝑘 number of 

samples whose magnitude is in kth bin in L levels. Average of included information is 

in terms of bits and this is why it has been represented by log2.  
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Average of this feature for all braking intervals of less noisy brake signals is 1.90 in 

time domain. 

 

 

 

Figure 3.13. The entropy of each braking interval in time domain for less noisy brake. 

 

 

Figure 3.14. The entropy of each braking interval in time domain for noisy brake. 

 

Average of this feature for all braking intervals of noisy brake signals is 1.82 in time 

domain. Feature entropy obviously, didn’t show difference between two classes. 
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3.2.7. Classification Using Time Domain Features 

 

In time domain classification, features of mean, variance, number of zero crossings, 

maximum, minimum and entropy are used as explained. For 39 less noisy and 30 noisy 

brake data, these features are computed in MATLAB then the outputs are fed into kth 

nearest neighbor classification algorithm.  

K-Nearest Neighbors (k-NN) is one of the simplest machine learning method which 

classifies an input data by using its k nearest neighbors, widely used in pattern 

recognition. k-NN algorithm stores all possible cases and categorizes new cases based 

similarity. This method is applied as follows, 

1. Choose K (number of nearest neighbor, k=5) 

2. Evaluate the distance to other training data 

3. Specify kth nearest neighbors 

4. Use class labels of nearest neighbors to define the category of unknown data 

(similarity) 

Similarity is defined as the distance between two points which could be Euclidean, 

Manhattan, Chebyshev and Hamming distances and are mostly used in pattern 

recognition. 

 

K-NN is used when a labelled dataset consisting of training cluster (x,y) is given and 

needed to determine the relationship between x and y 

𝑃𝑃(𝑦𝑦 = 𝑗𝑗,𝑋𝑋 = 𝑥𝑥) =
1
𝐾𝐾�𝐼𝐼(𝑦𝑦𝑖𝑖 = 𝑗𝑗),                                        

𝑖𝑖∈𝐴𝐴

 (46) 

where x is the feature and y is the target. In order to keep predictive accuracy at 

highest, V- cross validation approach has been used due to the lack of the data. Cross 

validation basically states that, if there exists V folds, the first step of k-NN is to train 

the algorithm using (V−1) of the folds, then test the accuracy of the algorithm where 

the first fold is neglected. This operation is repeated V times (for this study V=10) 

until each fold has been evaluated as in the test set. 

https://brilliant.org/wiki/machine-learning/
https://brilliant.org/wiki/algorithm/
https://brilliant.org/wiki/input-output/
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When the success rate of classification has been computed for each feature individually, 

it is observed that minimum and variance statistical parameters gave the best results as 

shown in figure 3.16 where k=5, 10-fold cross validation is applied and the metric 

distance is calculated as City Block since it exhibited the highest accuracy among 

cosine, Chebyshev, hamming, spearman, correlation, Euclidean, Mahalanobis, 

Minkowski, Seuclidean and Jaccard.  

 

 

Figure 3.15. Accuracy of classification using time domain features. 

 

Average of Time Domain Features 
 Less Noisy Brake Noisy Brake 
Maximum 0.57 0.79 
Minimum -0.46 -0.94 
Mean 3.25x10-4 -0.0013 
Variance 0.0087 0.027 
Number of Zero Crossings 3.4x103 4x103 
Entropy 1.90 1.82 

 

Table 3.1. Average values of features maximum, minimum, mean, variance, number 

of zero crossings and entropy for braking intervals of less noisy and noisy brake 

respectively. 

 

As can be seen from Figure 3.15 and the table above, the features minimum and 

variance exhibited best results when they have been fed into k-NN classification 

algorithm, separately.  
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3.3. Frequency Domain Analysis  

To have a complete analysis, the frequency domain features are also investigated. 

Discriminative features such as mean, variance, maximum, spectral roll-off, and 

entropy features have been investigated in frequency domain for less noisy and noisy 

brakes. 

 

 

 

 

Figure 3.16. Two seconds braking interval representations of less noisy and noisy 

brake are shown in the figure above. 

 

3.3.1. Mean of Frequency Distribution 

Mean or average refers to the central tendency of the elements in a dataset. In this 

study, for every braking interval (2 seconds fragment), the FT of the signal has been 

obtained and the related mean is calculated by 

 

𝑀𝑀𝑓𝑓 =
1
𝐿𝐿
�𝑋𝑋𝑘𝑘

𝐿𝐿−1

𝑘𝑘=0

,                                                (47) 

                                                                                  

where Mf denotes the mean and L is the length of the signal and 𝑋𝑋𝑘𝑘 is the FT. Average 

of this feature for all braking intervals of  noisy brake signals is 6.12x10-4  in frequency 

domain. 
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Figure 3.17. The mean of each braking interval in frequency domain for less noisy 

brake. 

 

                                                                                                     

 
                      

 

Figure 3.18. The mean of each braking interval in frequency domain for noisy brake. 

Average of this feature for all braking intervals of less noisy brake signals is 3.5x10-4   

in frequency domain. There is a considerable difference regarding means of frequency 

distributions as can be seen above. 

 

3.3.2. Variance 

Variance is an informative statistical parameter that refers to the how any random 

variable is distributed with respect to mean value. Simply, it is the square of standard 
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deviation. After applying FFT to the every 2 seconds braking interval, variance is 

calculated by 

𝑉𝑉𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓𝑒𝑒𝜋𝜋𝑓𝑓𝑓𝑓 =
1

𝐿𝐿 − 1
�(𝑋𝑋𝑘𝑘 −𝑀𝑀𝑓𝑓)2
𝐿𝐿−1

𝑘𝑘=1

,                               (48) 

where 𝑀𝑀𝑓𝑓 is the mean of frequency distribution. Average of this feature for all braking 

intervals of noisy brake signals is 1.8x10-6 in frequency domain. 

 

 

 

Figure 3.19. The variance of each braking interval in frequency domain for noisy 

brake. 

 

 

Figure 3.20. The variance of each braking interval in frequency domain for less noisy 

brake.  
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Average variance for all braking intervals of less noisy brake signals is 8.65x10-7 in 

frequency domain. A clear difference has been observed when the variance statistical 

parameter investigated in frequency domain. 

 

3.3.3. Maximum 

For every braking interval, maximum of the braking interval has been calculated by 

 

𝐴𝐴 = 𝑚𝑚𝑎𝑎𝑥𝑥(𝑋𝑋𝑘𝑘),    𝑘𝑘 = 0,1,2 … , 𝐿𝐿 − 1,                                 (49) 

 

where 𝑋𝑋𝑘𝑘 denotes maximum Fourier Coefficients of a braking interval and L is the 

number of frequency bins. Average of this feature for all braking intervals of less noisy 

brake signals is 0.0572 in frequency domain. 

 

 

 

Figure 3.21. The maximum of each braking interval in frequency domain for less noisy 

brake. 
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Figure 3.22. The maximum of each braking interval in frequency domain for noisy 

brake. 

 

Average of this feature for all braking intervals of noisy brake signals is 0.0645 in 

frequency domain. Unfortunately this feature didn’t show distinguishing 

characteristics in frequency domain. 

 

3.3.4. Spectral Roll-off 

Spectral roll-off point is a significant feature to determine the form of frequency 

spectrum. It is defined as Rk, which is the frequency where the 85 % of the magnitude 

distribution lies below, 

 

𝑆𝑆𝑝𝑝𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑎𝑎𝑆𝑆 𝑅𝑅𝑜𝑜𝑆𝑆𝑆𝑆 − 𝑜𝑜𝑓𝑓𝑓𝑓 = �𝑋𝑋𝑘𝑘2 = 0.85�𝑋𝑋𝑘𝑘2,
𝐿𝐿−1

𝑘𝑘=0

𝑅𝑅𝑘𝑘

𝑘𝑘=0

                     (50) 

 

where 𝑋𝑋𝑘𝑘 denotes the magnitude of kth FT coefficient for 2 seconds braking interval. 

Since the less noisy brake has less complex signal components, the spectral roll-off 

feature is greater than noisy one, as expected. Average of this feature for all braking 

intervals of noisy brake signals is 4922.74 in frequency domain. 
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Figure 3.23. The spectral roll-off of each braking interval in frequency domain for 

noisy brake. 

 

 

Figure 3.24.  The spectral roll-off of each braking interval in frequency domain for 

less noisy brake. 

 

Average of this feature for all braking intervals of less noisy brake signals is 5833.86 

in frequency domain. Spectral roll-off feature might be an informing tool while 

investigating the differences between less noisy and noisy brake as can be seen in the 

figures above. 
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3.3.5.  Entropy 

Entropy is a qualitative feature used to determine the complexity of a signal. In this 

study, regarding the 𝑛𝑛(𝑋𝑋𝑘𝑘) as relative frequency value of FT for each braking interval 

entropy is calculated by 

𝐻𝐻� = −∑ 𝑛𝑛(𝑋𝑋𝑘𝑘) 𝐿𝐿−1
𝑘𝑘=0 log2 𝑛𝑛(𝑋𝑋𝑘𝑘) ,                               (51)                                                 

 
Average of included information is in terms of bits (Duda, 2012) and this is why it has 

been represented by log2.  

 

Figure 3.25. Entropy of each braking interval in frequency domain for noisy brake. 

 

 

Figure 3.26.  Entropy of each braking interval in frequency domain for less noisy 

brake. 
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Average entropies of noisy brake signals is 0.41 while average entropies of less noisy 

brake signals is 0.16 in frequency domain. As expected, the noisy brake signals have 

more complex frequency domain pattern, therefore the entropy values are higher. 

 

3.3.6. Classification with Frequency Domain Features 

In frequency domain features mean, spectral roll-off, variance, maximum and entropy 

has been investigated for less noisy and noisy brake. Features entropy, spectral roll-off 

variance and mean have given the best results whereas maximum feature failed 

respectively. 

 

 

Figure 3.27. Spectral roll-off, maximum, variance, mean and entropy features 

classification accuracy is shown.  

 

Average of Frequency Domain Features 
 Less Noisy Brake Noisy Brake 
Maximum 0.0572 0.0645 
Mean 3.5x10-4 6.12x10-4 
Variance 8.65x10-7 1.8x10-6 
Spectral roll-off 4922.74 5833.86 
Entropy 0.16 0.41 

 

Table 3.2. Average values of features maximum, minimum, mean, variance, number 

of zero crossings and entropy for braking intervals of less noisy and noisy brake 

respectively. 
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As can be seen from Figure 3.27 and the table above, the features mean, entropy and 

variance exhibited best results when they have been fed into k-NN classification 

algorithm, separately.  

 

3.4. Time-Frequency Domain Analysis Using Complex Wavelet 

To improve the analysis, qualitative and quantitative analysis in time-frequency 

domain has been accomplished using wavelet analysis. The complex morlet wavelet 

has been used since, 

1. It has a different frequency modulation 

2. It is easy to modify both the amplitude and the phase of coefficients.   

The complex wavelet transform has been applied on the data; 30 braking interval for 

noisy brake, 39 braking interval for less noisy brake and 11 braking interval for 

noiseless brake. Heuristically, it has been observed that cmor1-10 wavelet whose 

center frequency is 10 Hz and bandwidth is 1Hz has given a good resolution in time-

frequency domain as shown in Figure 3.32, 3.33 and 3.34 respectively. The analysis 

has been performed in 400Hz – 2 kHz range which encompasses most of the signal 

energy. Noise threshold has been chosen as ε=0.01 namely, signal components whose 

energy contribution was more than 1 % have been used. In figure 3.4 and 3.7 it is clear 

that, there are far more signal components in noisy brake with respect to less noisy 

brake’s energy distribution. 

 

In Figure 3.33 and 3.34, dark blue color wavelet ridge shows where the signal has no 

energy whereas light blues and yellows represents a higher signal intensity. For all type 

of brakes, low frequency signal components have been observed during all braking 

intervals in the range of 1 kHz. However, in the range of 1-2 kHz, very intense signal 

components have been observed during the analysis of noisy brake. For noiseless brake, 

almost no wavelet ridges have been obtained except braking instant and air evacuation 

(depletion).  
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For all braking intervals, the qualitative same pattern has been observed in Matlab 

analysis. In order to evaluate the braking intervals also quantitatively, the wavelet ridge 

matrix have been considered as an image and entropy of the image has been calculated.   

In a digital image the probability of intensity or probability of gray level occurrence 

has been defined as,  

𝑝𝑝𝑓𝑓(𝑒𝑒𝑘𝑘) =
𝑛𝑛𝑘𝑘
𝑀𝑀𝑁𝑁

 𝑘𝑘 = 0, 1, 2, … . . , 𝐿𝐿 − 1,                           (52) 

 

Where 𝑀𝑀𝑁𝑁 denotes the total number of pixels in the image, 𝑛𝑛𝑘𝑘 represents the number 

of pixels which have intensity of (𝑒𝑒𝑘𝑘) and L shows the probable intensity levels. By 

using 𝑝𝑝𝑓𝑓(𝑒𝑒𝑘𝑘) entropy can be calculated. 

𝐻𝐻 � = −�𝑝𝑝𝑓𝑓(𝑒𝑒𝑘𝑘) log2 𝑝𝑝𝑓𝑓(𝑒𝑒𝑘𝑘),                                     (53)
𝐿𝐿−1

𝑘𝑘=0
 

Average of included information is in terms of bits and this is why it has been 

represented by log2. By assuming wavelet ridge matrices as image matrices, entropy 

has been calculated for every brake signal for each type of brake separately.  Matlab 

outputs have supported the observations as well. 

 

 

Figure 3.28. Comparison of entropy of wavelet ridge images for less noisy and noisy 

brakes. 
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Heuristically, cmor1-20 wavelet, which has the same center frequency with the 

previous wavelet but has a bandwidth of 20 Hz, has been chosen as a window function, 

and the difference was obvious. This complex wavelet clearly performed a higher 

resolution for noise data acquired from brakes. Given in Figure 3.29 and Figure 3.32, 

cmor1-10 vs cmor1-20 wavelet analysis for a noiseless air disc brake has been given. 

Obviously, only the air evacuation is seen whereas in figure 3.30 and figure 3.33 less 

noisy brakes are investigated using cmor1-10 and cmor1-20 respectively. The same 

wavelets are again applied on to noisy brake data where the noise components are 

detected clearly. 
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3.5. Time-frequency Domain Classification Using DWT 

In this section, the brake signals are classified into two groups by using statistical 

parameters of DWT coefficients. The block diagram of the applied algorithm is shown 

in Figure 3.35. As given in chapter 2.3 Daubechies wavelets Db3, Db6, Db9, Db10, 

Db12, Db15 and Db18 have been chosen as mother wavelets. After DWT has been 

applied for 10 levels of noisy (30) and less noisy (39) brake data; mean, standard 

deviation, energy and entropy features has been computed. These statistical parameters 

have been given into k-NN algorithm.  

 

In this part of the study, 10-fold cross validation k-NN algorithm has been used in order 

to classify brakes as noisy or less noisy. 8 types of Daubechies wavelet has been used 

for classification, considering 4 main features.  

The calculated features for db3, db6, db9, db10, db12, db15 and db18 wavelets are 

given into classification algorithm and success rates are given in figure 3.36. 

 

 

 

Figure 3.35. Process of brake classification using DWT 
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In figure 3.36, classification accuracy of noisy and less noisy brakes are given. 

It is obvious that, for level 4, 5 and 6; all the derivatives of Daubechies wavelets 

(db3, db6, db9, db10, db12, db15 and db18) gave 100 % success rate when fed into 

k-NN classification algorithm. 
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CHAPTER 4 

CONCLUSIONS AND FUTURE RESEARCH 

 

Sound and noise processing is a very promising technique as they have been referred 

in the introduction chapter. Researchers use this approach mostly in order to detect and 

classify disorders. Sometimes it is useful to follow up periodic movements or radical 

differences in a dataset. Many practical applications of noise processing can be found 

in the literature, from economy & finance to biomedical signal processing. Also in 

image processing, wavelet transform is a pioneering tool due it’s one of the biggest 

advantage, higher resolution.  

 

Since the FT has been proposed and approved in 1800s, it also triggered an innovative 

perspective for scientists. Frequency components of a signal has been informative for 

signal processing since it has been put forward but there had been one thing missing. 

At what time exactly, did that particular frequency component form? This question had 

led another approach, STFT, which provided time information with a limited 

resolution quality due to the uncertainty principle. At the end of 1990s wavelet theory 

has been put forward and developed immediately. After industrial revolution, 

manufacturing machines and processes became more and more complex and this 

entailed safer and cheaper operation with higher quality. Midproducts, final products 

and the processes as well are continuously monitored, and delays or faults are 

evaluated. This is realized by using the signals collected via sensors like temperature, 

noise, pressure, gas detector etc.. These signals are mostly in time domain and in order 

to pull out discriminative information and bring out characteristics of such signals, an 

adequate signal processing method has been proposed, Wavelet Transformation. It has 

been widely used since late 1990’s, the applications are carried out in numerous areas 

where WT keeps developing itself day by day. 

 

Lately, fault or disorder detection and classification using wavelet functions’ 

advantages is a fairly used approach. In this thesis, sound signals collected from 
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noiseless, less noisy and noisy brakes have been investigated in time domain, in 

frequency domain and in time-frequency domain respectively.  

In time domain, the raw data has been cut up into braking intervals and at the end of 

data acquisition, 39 braking intervals for less noisy and 30 braking intervals for noisy 

brake has been obtained. These intervals have been extracted semi automatically using 

peak finder algorithm. Statistical parameters have been searched in time domain and 

results have been given into k-NN classification algorithm. It has been observed that 

the variance and minimum has produced best results. 

 

A very well-known approach in frequency domain analysis, FFT has been applied to 

these signals and again features in frequency domain have been given into 

classification algorithm and immensely promising results have been obtained.  For a 

higher resolution signal spectrum, wavelet transform of these data have been practiced. 

Firstly, complex wavelet transformation has been realized for noisy and less noisy 

brakes. For every braking interval, using cmor1-10 wavelet, entropies of digital images 

have been calculated and compared in Matlab. The qualitative feature entropy has been 

observed as a distinguishing feature. The mean of less noisy brakes’ was calculated as 

2.78 and standard deviation 0.24 whereas mean of noisy brakes’ was 3.30 and standard 

deviation was 0.15 respectively. Same study has been applied once more using cmor1-

20 wavelet, and the results were not far more different as, mean of less noisy brakes’ 

was 2.48 and standard deviation was 0.3695 whereas mean of noisy brakes’ was 2.86 

and standard deviation was 0.23 respectively.  

Finally a more compact analysis has been performed, the DWT. According to this 

method, the detail and approximation coefficients of the signals has been obtained by 

successive applications of high and low pass filters. This led us to implement discrete 

wavelet transform for 10 levels and the outputs again have been fed into k- nearest 

neighborhood algorithm. Derivatives of Daubechies wavelet have been compared.  

The best success rate has been observed in Daubechies3 wavelet for level 4, 5 and 6 

and gave us hope to improve semi-automatic or automatic systems to detect faults or 

disorders.  

The classification rates up to 100% have been obtained for different features from time, 

frequency and time-frequency domain. However, the number of the measurements 
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were not adequate for making certain conclusions about the selection of features. In 

spite of the fact of insufficient data, the study covered all aspects of the analysis for a 

fault analysis system. 

 

In the thriving automobile industry, determining the root cause of a problem and repair 

of a vehicle unfortunately takes time, work labor and money. Due to the disadvantages 

of manual intervention and diagnosis, fault analysis from noise and vibration data has 

been more important than ever which encourages researchers to study on. 

 

One of the biggest trouble encountered in data acquisition process is, noise and 

vibration signals are so tender that, any outsider triggering factor between two pedaling 

moments, can impact the purity. Another challenge I observed during this study is, due 

to the nature of air disc brakes, we hear an air evacuation noise as expected. The 

problem is, during data acquisition; there must be enough time elapsed that let the 

sound residuals from the previous braking fade away. Inadequate attenuation of noise 

signals may have a negative effect on the discriminative characteristics of the features. 

This precaution is so significant to obtain clear data.    

 

In addition, one of the biggest difficulty we have confronted during this study is, lack 

of open access data sets. For the sake of development in signal processing, scientists 

must be able to perform different analysis methods compare them to argue on different 

approaches.  
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