

BORNOVA / İZMİR

MAY 2018

YAŞAR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MASTER THESIS

AIR QUALITY TIME SERIES FORECASTING

WITH GENETIC PROGRAMMING

SU TAŞBAŞ

THESIS ADVISOR: ASST.PROF. DR. KORHAN KARABULUT

DEPARTMENT OF COMPUTER ENGINEERING

PRESENTATION DATE: 17.05.2018

v

ABSTRACT

AIR QUALITY TIME SERIES FORECASTING WITH GENETIC

PROGRAMMING

Taşbaş, Su

MSc, Computer Engineering

Advisor: Asst. Prof. Dr. Korhan Karabulut

May 2018

In this study, air quality time series forecasting is performed by using genetic

programming. Based on the reports of World Health Organization and the other

environmental agencies, it has been shown how crucial air quality forecasting is to

prevent deaths and health issues caused by air pollution. The primary aim of this study

is to contribute to increasing the usage of genetic programming for air quality

forecasting and to show its competitiveness with several machine learning algorithms

and autoregressive integrated moving average (ARIMA) model. The hourly

meteorological data for one-year length is utilized to forecast sulphur dioxide and

particulate matter gas concentrations. The forecasting problem was identified as a

symbolic regression problem and the Java-based Evolutionary Computation Research

system (ECJ) was utilized to apply genetic programming to the problem. In order to

demonstrate the performance of genetic programming, the forecast results were

compared to the results that were collected from several decision tree algorithms and

an ARIMA model. The comparisons showed that genetic programming performed

better even than the ensemble learning method.

Key Words: genetic programming, air quality, time series forecasting

vii

ÖZ

GENETİK PROGRAMLAMA İLE HAVA KALİTESİ ZAMANA BAĞLI

SERİ TAHMİNLEME

Taşbaş, Su

Yüksek Lisans Tezi, Bilgisayar Mühendisliği Bölümü

Danışman: Dr. Öğrt. Üyesi Korhan Karabulut

Mayıs 2018

Bu çalışmada, genetik programlama kullanılarak hava kalitesi zamana bağlı seri

tahminleme gerçekleştirilmiştir. Dünya Sağlık Örgütü ve diğer çevre ajanslarının

raporlarına dayanarak, hava kirliliğinin neden olduğu ölümleri ve sağlık sorunlarını

önlemek için hava kalitesi tahminlemenin ne kadar önemli olduğu gösterilmiştir. Bu

çalışmanın temel amacı, hava kalitesi tahmini için genetik programlamanın

kullanımını arttırmaya ve makine öğrenmesi yöntemleri ve otoregresif bütünleşmiş

hareketli ortalama (ARIMA) ile yarışabilirliğini göstermeye katkıda bulunmaktır.

Çalışmada bir yıl süreyle saatlik olarak ölçülmüş meteorolojik veriler kükürt dioksit

ve parçacık madde gaz yoğunlaşmalarını tahmin etmek için kullanılmıştır. Zamana

bağlı seri tahminleme problemi sembolik regresyon problemi olarak tanımlanmış ve

Java tabanlı Evrimsel Hesaplama Araştırma sistemi (ECJ) kullanılmıştır. Tahminleme

sonuçları genetik programlamanın performansını göstermek için çeşitli karar ağacı

algoritmalarından ve ARIMA modelinden elde edilen sonuçlarla karşılaştırılmıştır.

Karşılaştırmalar genetik programlamanın topluluk öğrenme yönteminden bile daha iyi

performans sergilediğini göstermiştir.

Anahtar Kelimeler: genetik programlama, hava kalitesi, zamana bağlı seri

tahminleme

ix

ACKNOWLEDGEMENTS

First, I would like to thank my supervisor Korhan Karabulut for his guidance and

patience during this study. I would also like to thank Prof. Dr. Tolga Elbir from

Department of Environmental Engineering of Dokuz Eylül University for providing

us data and helping us in understanding the details.

I would like to express my enduring love to my parents, who are always supportive,

loving and caring to me in every possible way in my life.

Su TAŞBAŞ

İzmir, 2018

xiii

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ .. vii

ACKNOWLEDGEMENTS .. ix

TEXT OF OATH .. xi

TABLE OF CONTENTS .. xiii

LIST OF FIGURES ... xv

LIST OF TABLES ... xvii

SYMBOLS AND ABBREVIATIONS ... xix

 CHAPTER 1 INTRODUCTION .. 1

 CHAPTER 2 BACKGROUND .. 5

2.1. Air Quality ... 5

2.2. Time Series Forecasting ... 11

2.3. Genetic Programming .. 14

 CHAPTER 3 PREVIOUS WORK... 21

3.1. Genetic Programming .. 21

3.2. ARIMA, ANN and FTS ... 23

3.3. Data Mining Algorithms Used in This Study ... 25

3.4. Air Quality Modeling Systems ... 26

 CHAPTER 4 IMPLEMENTATION... 29

4.1. Data Preparation ... 29

4.2. Defining the Problem as a Symbolic Regression Problem ... 31

4.3. Methodology of Training and Evaluating Prediction Performance 32

4.4. Parameter Setting ... 35

4.5. Performance Evaluation of the Genetic Programming Model 39

 CHAPTER 5 CONCLUSIONS AND FUTURE RESEARCH .. 45

REFERENCES .. 49

APPENDIX 1 – ECJ Function Set Parameter Settings .. 55

APPENDIX 2 – Experimental Design Plots .. 61

APPENDIX 3 – GP and Decision Tree Algorithm Results ... 67

xiv

APPENDIX 4 – R Code used for ARIMA forecasting .. 75

APPENDIX 5 – Example GP Tree Graphs .. 77

xv

 LIST OF FIGURES

Figure 2.1. AQI Levels (USEPA, 2014) ... 6

Figure 2.2. AQI Health Advise (EPA USA, 2007) ... 6

Figure 2.3. Pollutant-Specific Sensitive Groups (USEPA, 2013) ... 7

Figure 2.4. AQI Breakpoints (USEPA, 2013) .. 9

Figure 2.5. AirNow AQI Calculator (USEPA, n.d.) ... 10

Figure 2.6. Real-time AQI (WAQI, n.d.) .. 11

Figure 2.7. Time Series Patterns (Krajewski, Ritzman, & Malhotra, 2007) 12

Figure 2.8. Fundamental steps of genetic programming (Koza et al., 2003) 16

Figure 2.9 GP syntax tree representation of max (x + x, x + 3*y) (Poli et al., 2008) 18

Figure 2.10 Examples of genetic programming operations (Lane, Sozou, Addis, & Gobet,

2016) .. 19

Figure 4.1. Train and test sets split points... 31

Figure 4.2. If-then-else operation .. 32

Figure 4.3. The first experimental design generated by R DoE plugin 37

Figure 4.4. The second experimental design generated by R DoE plugin 39

Figure A2.1. The interval plots of the parameters used in the first experiment for the RMSE

measurements of PM forecasting with GP when the maximum tree depth is seven.

 .. 61

Figure A2.2. The interval plots of the parameters used in the first experiment or the RMSE

measurements of SO2 forecasting with GP when the maximum tree depth is seven.

 .. 62

Figure A2.3. The interval plots of the parameters used in the used in the first experiment for

correlation coefficient (R) measurements of PM forecasting with GP when the

maximum tree depth is seven. .. 63

Figure A2.4. The interval plots of the parameters used in the used in the first experiment for

correlation coefficient (R) measurements of SO2 forecasting with GP when the

maximum tree depth is seven. .. 64

xvi

Figure A2.5. The interval plots of the parameters used in the second experiment for the

RMSE measurements of PM forecasting using GP .. 65

Figure A2.6. The interval plots of the parameters used in the second experiment for the

RMSE measurements of SO2 forecasting using GP .. 65

Figure A2.7. The interval plots of the parameters used in the second experiment for the

correlation coefficient (R) measurements of PM forecasting using GP 66

Figure A2.8. The interval plots of the parameters used in the second experiment for the

correlation coefficient (R) measurements of SO2 forecasting using GP 66

Figure A5.1. SO2 Tree Graph .. 77

Figure A5.2. PM Tree Graph ... 77

xvii

LIST OF TABLES

Table 4.1. t-test comparisons over averages of 25 runs of GP and decision tree algorithms 41

Table 4.2. ARIMA forecast results ... 43

Table A3.1. GP's PM forecasting results .. 67

Table A3.2. Random Forest's PM forecasting results ... 68

Table A3.3. Random Tree’s PM forecasting results ... 69

Table A3.4. Rep Tree's PM forecasting results ... 70

Table A3.5. GP's SO2 forecasting results .. 71

Table A3.6. Random Forest's SO2 forecasting results... 72

Table A3.7. Random Tree's SO2 forecasting results ... 73

Table A3.8. Rep Tree's SO2 forecasting results .. 74

xix

SYMBOLS AND ABBREVIATIONS

ABBREVIATIONS:

WHO World Health Organization

EPA Environmental Protection Agency

EEA European Environment Agency

ANN Artificial Neural Networks

ML Machine Learning

GP Genetic Programming

SO2 Sulphur Dioxide

PM Particulate Matter

ECJ Evolutionary Computation for Java

DOE Design of Experiments

FTS Fuzzy Time Series

ERC Ephemeral Random Constant

ARIMA Autoregressive Integrated Moving Average

xx

1

CHAPTER 1

INTRODUCTION

Air quality is one of the most important health problems nowadays to people of all

ages. Air pollution affects all countries and societies. Ambient air pollution kills about

three million people per year (World Health Organization, 2016). Approximately 94%

of worldwide deaths occur due to the non-communicable diseases in adults. Examples

are cardiovascular diseases (heart attack and ischemic heart disease), chronic

obstructive pulmonary disease and lung cancer. The remaining deaths are due to acute

lower respiratory tract infections in children under five years of age (World Health

Organization, 2016).

Based on the information gathered from the reports of World Health Organization

(WHO) and the other environmental agencies, it has been revealed how critical air

quality forecasting is in order to avoid deaths and health problems caused by air

pollution. This study contributes to the solution of the problem identified in this

direction.

The ambient air quality is decreasing for certain reasons such as warming in the cold

seasons, traffic pollution and harmful gas emissions near the residential section of the

industry. The air quality fluctuates with the lower or higher concentration of the

pollutant gases in the atmosphere over a period. Therefore, air quality forecasting is an

example of the time series forecasting. Time series forecasting is mainly performed by

artificial neural networks (ANN) and the traditional forecasting methods such as

ARIMA (Graff, Escalante, Ornelas-Tellez, & Tellez, 2016). In this research, genetic

programming (GP) is applied to an air quality time series-forecasting problem.

The Environmental Engineering Department of Dokuz Eylül University delivered air

quality data used in this research. It involves one-year of hourly measures of

meteorological attributes, Sulphur dioxide (SO2) and particulate matter (PM) gases

that were recorded in 2013. The meteorological attributes are temperature, air pressure,

humidity, wind speed, and wind direction. Time stamping attributes, such as the year,

month, day and hour are included as well.

2

As an initial step, data pre-processing was applied to the data. First, it was decided

which attributes should be discarded. Year and month information was removed.

Instead, weekday attribute was included and utilized for input. Second, non-numerical

attributes were transformed to numerical values. For example, wind direction attribute

instances were in the form of compass directions. Additionally, weekday and hour

attributes were trivial to use as numerical. Therefore, these categorical attributes were

transformed to the numerical values by disjunctive coding technique. New columns

were included referring to the conversion. Sixteen columns for wind direction attribute,

twenty-four columns for hour attribute and seven columns for weekday attribute were

added. For example, wind direction attribute has sixteen divisions such as

northeast(NE) and south-southwest (SSW). Therefore, sixteen columns took the place

of the wind direction attribute. The same process was applied to the hour attribute and

weekday attribute.

The second part of the pre-processing was normalization. After all the attributes were

transformed to numerical values, normalization was applied to the whole data. To

accomplish this, minimum, maximum and standard deviation values of all occurrences

were found and utilized in normalization calculations.

The next part of the pre-processing was adding moving average values of both

observed Sulphur dioxide and particulate matter gases. Moving average values of

gases were accepted as input attributes. The final pre-processing step was breaking

down the whole data into training and test sets. Training and test set partitioning was

performed by trend evaluation. Sulphur dioxide and particulate matter gases have

different trend tracks. Therefore, percentage splits show a variance.

After pre-processing was completed, the final version of data was ready to use in

Evolutionary Computation for Java (ECJ) framework (Luke, 1998). With ECJ, the

problem was set as a symbolic regression problem. All the attributes and operations,

such as addition and multiplication, were defined as node object classes. Function set

and other genetic programming settings of the problem were constructed in the

parameter files. In the function set, attributes were applied as terminals and operations

are accepted as non-terminals. Fitness evaluation was carried out on training sets. Error

measures were calculated and written to both statistics and text files from test sets

fitness evaluations. Recursive pre-process operations for the nodes were implemented

3

on the tree structures. Trees were written in dot style and visualized by Graphviz

(Ellson, Gansner, Koutsofios, North, & Woodhull, 2002) application.

After initial experiments with the default ECJ Koza parameter setting, it turned out

that the results could be better according to the data mining algorithms’ results.

Moreover, windowing approach was applied to the observed pollutant values as input

but it made no progress. Therefore, the design of experiments (DoE) method was

practiced. The experiments were handled in three stages. Different genetic

programming parameters with varying values were attempted. Crossover, mutation,

tournament selection, elitism and population size are example genetic programming

parameters of experiment combinations.

At the final stage, the experiment results were compared to the Weka classifier tree

algorithm runs. A batch file was formed and covered three classifier algorithms'

contexts. Each algorithm ran for twenty-five times, same as the genetic programming

experiments. Moreover, the genetic programming model was compared to an ARIMA

model to observe the performance comparison of genetic programming in compliance

with a traditional approach for the time series forecasting.

The contribution of this research is as follows:

 In the previous air quality forecasting studies, the Genetic Programming approach

has been applied less than other methods (traditional approaches such as ARIMA,

and artificial neural networks).

 Genetic programming produced better results than ensemble learning methods

such as Random Forests and Random Tree.

 The distinctive advantage of genetic programming is producing a tree model as the

problem solution.

There are several issues as the future work of this research. The initial point is the

result models of the implemented genetic programming program. After final

experiments, twenty-five distinct models are developed. The tree structures in the

models might be expanded by changing the tree breeding algorithms in genetic

programming. In this research, ECJ library was used as it is. Modifying the ECJ’s

breeding functions may further improve generated tree models in forthcoming studies.

4

The second point is the models themselves. Neural networks are black box systems.

Therefore, genetic programming is a stronger choice for circumstances which may

need model analyses. The generated tree models may be investigated for air quality

study. For example, the meteorological attributes used in the result trees may provide

a view to further researches on the same or comparable data.

The third point is the design of experiments. In this research, three experiments were

performed and each of them involves various combinations of genetic programming

parameters. The tested parameter combinations in this research might be utilized to

determine the parameter combinations of future experiments.

Another improvable argument of the research is the moving average computation

technique. In this research, the simple moving average calculation was utilized as input

for forecasting. For further explorations, other moving average calculations, such as

cumulative moving average or weighted moving average, may yield better results.

The final objective is that new air quality time series forecasting might be implemented

with genetic programming by practicing this research. As it was pointed out before, air

quality estimating is not commonly studied by genetic programming. Therefore, such

as traffic-related air quality time series data might be inspected with the same

procedures in this research.

The thesis outline was planned as follows. Chapter 1 is the introduction of the research.

Chapter 2 contains background information such as air quality, time series forecasting

and genetic programming. Chapter 3 involves the previous research. In chapter 4, the

implementation and the thesis study was explained in detail. Chapter 5 includes the

conclusion and future research.

5

CHAPTER 2

BACKGROUND

2.1. Air Quality

Clean air is one of the most vital needs for a healthy society. Therefore, in recent years,

air quality forecasting has awakened considerable social awareness. Developing

online and offline systems of pollutant gas concentrations to monitor and forecast are

crucial in terms of preventing serious health problems. Major attempts have been

performed by academics in air quality forecasting which mostly focus on the

concentrations forecasting of PM10, PM2.5, SO2, NOx, CO and O3 (Wang, Wei, Luo,

Yue, & Grunder, 2017).

For several years, modelling methods based on analytical and numerical approaches

have been applied further and further repeatedly to analyze the relations between air

pollution and disorders or deaths, causing serious disputes on the importance of the

data gathered and on the demand for proper education of professionals in these fields

(Oliveri Conti, Heibati, Kloog, Fiore, & Ferrante, 2017).

Air Quality Index (AQI) is a number to state the quality of air. It reports the pollution

degree of the air, and the possible health effects which may occur. The AQI is mainly

utilized to how people may be affected within a few hours or days after being exposed

to pollutants in the air. Air quality index may vary from country to country. Countries

have diversified levels with different ranges of the air quality indices according to their

national air quality criterions.

Air quality indexes are sorted by categories and each category have their own color,

description, and health-related advises or warning. Figure 2.1 and Figure 2.2 show the

related AQI values, corresponding summary and details of concerns and related color

that are used in the USA.

6

Figure 2.1. AQI Levels (USEPA, 2014)

Figure 2.2. AQI Health Advise (EPA USA, 2007)

The higher values of the AQI indicate the more air pollution and the more critical

health problems might be seen. Being exposed to air pollution for both short-period of

time, such as over a few hours or days, and long-period of time, which is over months

or years, is relevant to the health effects. These health effects are acute health

conditions, which occur with short-term exposure, and persistent health impacts,

which occur with long-term exposure (EEA, 2017).

In addition, according to USEPA’s technical assistance document published in 2013

(USEPA, 2013), pollutant sensitive groups are categorized on the basis of which

7

groups can be affected after the air quality exceeds 100, that is when it starts to become

unhealthy for sensitive groups. The groups are as shown Figure 2.3.

Figure 2.3. Pollutant-Specific Sensitive Groups (USEPA, 2013)

According to the European Environment Agency’s report in 2017, the major sectors

contributing most to air pollutant emissions in Europe are transportation, commercial,

institutional and household sectors, energy production and distribution, industrial

energy use, industrial processes and product use, agriculture and waste. Moreover,

traffic and household emissions, which are described as emission sectors with low

emission heights, usually have more impact to the health effects and surface densities

in the urban sections than high emission heights (EEA, 2017).

In Turkey, air pollution is a severe environmental problem due to rapid urbanization

and economic growth. In some major urban areas such and industrial centers, air

pollution threatens health because SO2 and particulate concentrations in these areas

are above the national air quality standards (Büke & Köne, 2016; OECD, 2008). The

national air quality index was created by adapting the EPA air quality index to Turkey's

national legislation and boundary values. The national boundary values of nearly all

pollutants utilized for air quality index calculation exceed EPA’s boundary values. In

Turkey, the Ministry of Environment and Urbanization provides real time air quality

index data by cities through the national air quality monitoring network (MoEU, n.d.).

Air pollutants can be classified as primary or secondary. Primary pollutants are

straightly transmitted to the atmosphere. Primary pollutants are primary PM, BC,

Sulphur oxides (SOx), NOx (which consists of both NO and NO2), NH3, CO, methane

(CH4), NMVOCs, C6H6, particular metals, and polycyclic aromatic hydrocarbons

(PAH, including BaP). Secondary air pollutants are built in the atmosphere from

8

precursor pollutants. Secondary pollutants have secondary PM, O3 and NO2. Air

pollutants might have a natural, anthropogenic or varied basis, resting on their causes

or the origins of their harbingers (EEA, 2017).

To date, the biggest environmental risk for health, which is responsible for about one

in every nine deaths annually, is air pollution as both ambient (outdoor) and household

(indoor). Ambient (outdoor) air pollution, primarily from non-communicable diseases,

kills about 3 million people each year. Only one in ten people live in a city that

complies with the WHO Air Quality Act (World Health Organization, 2016). Air

pollution affects economies and societies’ quality of life and carries on to rise in a

worrisome manner. Therefore, air pollution is a public health emergency.

Since air pollution sources also produce pollutants that cause climate change (e.g. CO2

or black carbon), air pollution is used as a sign of sustainable development. Policies

for air pollution provide numerous benefits to human health. In addition, these benefits

apply not only to air quality improvements but also to other health benefits such as the

prevention of injury or the activation of physical activity.

The first and essential step to be taken by public authorities at both national and

municipality levels is to monitor air quality to overwhelm the multi-sectoral challenge

of air pollution. Besides, there are still large monitoring and reporting differences

between high-wage countries and low- and middle-wage counterparts. The vast

majority of air quality data still comes from Europe and the United States; Africa,

South East Asia and the Eastern Mediterranean remain behind.

Non-communicable diseases in adults, such as cardiovascular disorders (stroke and

ischemic heart disease), chronic obstructive pulmonary disease and lung cancer, cause

about 94% of deaths worldwide. Acute lower respiratory tract infections observed in

children under the age of five are the cause of remaining deaths. Ambient air pollution

affects all regions of the world, even though, West Pacific and Southeast Asia are the

most effected regions. Diseases caused by ambient air pollution kill about 3 million

people per year (World Health Organization, 2016).

Air quality index is calculated by using a piecewise linear function of the polluted

concentration. The equation is:

9

𝐼𝑝 =
𝐼𝐻𝑖 − 𝐼𝐿𝑜

𝐵𝑃𝐻𝑖 − 𝐵𝑃𝐿𝑜
 (𝐶𝑝 − 𝐵𝑃𝐿𝑜) + 𝐼𝐿𝑜

(1)

where,

𝐼𝑝 = the index for pollutant 𝑝,

𝐶𝑝 = the truncated concentration of pollutant 𝑝,

𝐵𝑃𝐻𝑖 = the concentration breakpoint that is greater than or equal to 𝐶𝑝,

𝐵𝑃𝐿𝑜 = the concentration breakpoint that is less than or equal to 𝐶𝑝,

𝐼𝐻𝑖 = the AQI value corresponding to 𝐵𝑃𝐻𝑖,

𝐼𝐿𝑜 = the AQI value corresponding to 𝐵𝑃𝐿𝑜.

Table of breakpoints shown in Figure 2.4 for the AQI level is used for finding the

concentration and equation result index breakpoints. If there are more than one

pollutant measurements, then the highest AQI value is accepted.

Figure 2.4. AQI Breakpoints (USEPA, 2013)

10

1 In some areas, AQI based on 1-hour ozone values would be more protective measure

than 8-hour vales. In these cases, 1-hour ozone value might be considered when

calculating the AQI.

2 Higher AQI values (≥ 301) are not determined by 8-hour O3 values. 1-hour O3

concentrations are used for calculating the AQI values of 301 or higher.

3 These numbers might differ according to the different promulgated SHL for PM2.5.

4 Higher AQI values (≥ 200) are not identified by 1-hour SO2 values. 24-hour SO2

concentrations are used for calculating the AQI values of 200 or greater (USEPA,

2013).

There are also online AQI calculators available. For example, US Environmental

Protection Agency (USEPA) has an AQI calculator at the AirNow website, which is

shown in (Figure 2.5).

Figure 2.5. AirNow AQI Calculator (USEPA, n.d.)

Online air quality forecasting systems might give warnings for possible health

complications that may be associated with air quality. For example, World Air Quality

11

Index project’s website (Retrieved March 28, 2018, from http://aqicn.org) is available

to monitor instant or forecasted AQI values by countries and cities (Figure 2.6).

Figure 2.6. Real-time AQI (WAQI, n.d.)

2.2. Time Series Forecasting

A time series is a collection of observations, each recorded at a particular time. If

observations are made at constant time periods, the time series is a discrete-time time

series. When observations are acquired perpetually over some time period, the time

series is a continuous-time time series (Brockwell & Davis, 2002). A time series model

is used for forecasting future values by using observed time series values. Time series

data might have typical characteristics such as trend, seasonality and cyclical pattern.

A trend is a tendency or continuous alteration to comparatively greater or smaller

measures over a long duration. Each trend in time series is called as a trend cycle and

a trend might not be linear (R. J Hyndman & Athanasopoulos, 2013). When a trend

pattern demonstrates a general increasing aspect, it is called as an uptrend, and when

a trend pattern displays a general descending aspect, it is called as a downtrend. Time

series may have varying aspect move from an uptrend to a downtrend. Horizontal

trends may occur when there is no trend.

A seasonal pattern or seasonality occurs when a time series, which shows a repeating

pattern at stationary periods, is affected by seasonal elements such as seasons of the

year, holidays, etc. If the variations in a time series do not belong to a fixed time period,

the cyclical pattern appears (R. J Hyndman & Athanasopoulos, 2013). Illustrations of

different patterns are given in Figure 2.7.

12

Figure 2.7. Time Series Patterns (Krajewski, Ritzman, & Malhotra, 2007)

Time series are used in statistics, management, health, tourism, energy, pollution,

manufacturing, etc. (Aladag & Egrioglu, 2012). Time series forecasting is widely

implemented as financial forecasting (Sapankevych & Sankar, 2009), gene expression

(Bar-Joseph, 2004), meteorological forecasting such as ozone forecasting (Paci,

Gelfand, & Holland, 2013), sea water level forecasting (Ali Ghorbani, Khatibi, Aytek,

Makarynskyy, & Shiri, 2010) and wind speed forecasting (Graff, Pena, & Medina,

2013), air quality forecasting (Rahman, Lee, Suhartono, & Latif, 2015).

The most common methods used for time series forecasting are traditional methods

such as simple moving average, exponential smoothing and autoregressive integrated

moving average (ARIMA) (Poncela, 2004). ARIMA model was proposed by Box–

Jenkins in 1976 and it is one of the first time series models. ARIMA is extensible for

autoregressive (AR), moving average (MA), autoregressive moving average (ARMA),

and autoregressive integrated moving average (ARIMA). The crucial restriction of the

ARIMA model is that the model can only perform efficiently with the stationary and

linear time series (Rahman et al., 2015).

Esling & Agon (2012) and Fu (2011) survey data mining methods applied to time-

series data. The other popular time series forecasting methods are neural networks (Qiu,

Zhang, Ren, Suganthan, & Amaratunga, 2014), support vector machines

(Sapankevych & Sankar, 2009), and evolutionary algorithms such as genetic

programming (Santini & Tettamanzi, 2001) (Ahalpara, 2010). Additionally,

combinations of these methods are getting more and more prevailing to achieve better

13

results in time series forecasting (Cortez, Rocha, & Neves, 2001) (Aladag & Egrioglu,

2012) (Ferreira, Vasconcelos, & Adeodato, 2007) (Lee & Tong, 2011).

Moreover, there are several software tools utilized for time series forecasting. For

example, R Project (R Core Team, 2017) has a software package called as forecast,

which can apply automatic ARIMA model applications on time series data (Rob J.

Hyndman & Khandakar, 2008). Furthermore, Weka (Hall et al., 2009) has a software

package called time series forecasting to model time series and provides sample data

to experiment with time series modelling and forecasting (Bouckaert et al., 2013).

To assess the forecast performance of a time series model, the measure of differences

between the observed values and the values predicted by the model is utilized. There

are several methods used for calculating the forecast error.

Pearson coefficient correlation (R) is a statistical measure to show the statistical

relevance between two values in the range of -1 to 1. While values near to 1 indicate a

strong correlation, values approaching -1 indicate an opposite correlation, and values

around 0 show a weak relationship. The formula is:

𝑅 =
∑(𝑋 − �̅�)(𝑌 − �̅�)

√∑(𝑋 − �̅�)2 √∑(𝑌 − �̅�)2

(1)

(2)

𝑋 indicates observed values, �̅� indicates mean of 𝑋, 𝑌 indicates predicted values and

�̅� indicates mean of 𝑌.

Let 𝜃𝑖 indicate predicted values, 𝜃𝑖 indicates observed values and �̅� indicates a mean

value of 𝜃𝑖 for the rest of the error measure formulas.

The root-mean-square error (RMSE) is a commonly used measure of the differences

between forecasted and observed values. The formula is:

𝑅𝑀𝑆𝐸 = √
1

𝑁
 ∑(𝜃𝑖 − 𝜃𝑖)2

𝑁

𝑖=1

(3)

14

In time series forecasting, mean absolute error (MAE), which is also used in statistics

as well, is used as a measurement of differences between observed and predicted

values. The formula is:

𝑀𝐴𝐸 =
1

𝑁
 ∑ | 𝜃𝑖 − 𝜃𝑖|

𝑁

𝑖=1

 (4)

The relative absolute error (RAE) is the significance of the difference between the

observed and the predicted values in terms of percentage. The higher relative absolute

error indicates the bigger difference between the actual and predicted values. The

formula is:

𝑅𝐴𝐸 =
∑ | 𝜃𝑖 − 𝜃𝑖| 𝑁

𝑖=1

∑ | �̅� − 𝜃𝑖| 𝑁
𝑖=1

 (5)

Similarly, root relative squared error (RRSE) is another used forecasting accuracy

measurement. The formula is:

𝑅𝑅𝑆𝐸 = √
∑ (𝜃𝑖 − 𝜃𝑖)

2
𝑁
𝑖=1

∑ (�̅� − 𝜃𝑖)
2

𝑁
𝑖=1

 (6)

The certainty of estimates conducted by a time series model might particularly be

established by examining how closely the model operates on new data which are not

utilized when fitting the model (Hyndman & Athanasopoulos, 2013). For model fitting

and model testing, the time series data are split into a training set and a test set. The

time series model is constructed based on the training time series data and forecasting

performance of the model is evaluated on the test time series data.

2.3. Genetic Programming

Genetic programming (GP) is an assortment of evolutionary computation approaches,

which provide computers to solve problems systematically without demanding the

user to determine the formation of the solution beforehand (Poli, Langdon, & McPhee,

2008). Genetic programming is an endeavor to answer one of the essential questions

in computer science as follows:

15

“How can computers learn to solve problems without being explicitly programmed?

In other words, how can computers be made to do what needs to be done, without

being told exactly how to do it?” (Koza, 1994).

The question was answered as that computers can be set up by natural selection.

Especially, it was explained that the field-independent genetic programming paradigm

can develop computer programs which solve or nearly solve diverse problems in

distinct fields (Koza, 1992).

Genetic programming is an improvement over the traditional genetic algorithm. The

genetic algorithm makes a population of individuals into a new generation of the

population. Each individual in the population has a related fitness value. The genetic

algorithm adopts the Darwinian doctrine of reproduction and survival of the fittest and

naturally resulting genetic activities such as crossover (recombination) and mutation.

In genetic programming, each individual of a population refers a computer program

(Koza, 1992).

Genetic programming has a wide range of application areas. For example, human-

competitive studies are antenna design (Lohn et al., 2003) and search algorithm

evaluation in Chess (Hauptman & Sipper, 2007). Moreover, image and signal

processing with genetic programming is commonly applied. The examples are satellite

image processing for environmental studies (Chami & Robilliard, 2002) and signal

processing algorithm evaluations (Holladay & Robbins, 2007). Furthermore, financial

trading (Austin, Bates, Dempster, Leemans, & Williams, 2004; Potvin, Soriano, &

Maxime, 2004) and economic modelling (Duyvesteyn & Kaymak, 2005) are one of

the most popular practiced subjects in genetic programming.

In addition, genetic programming is widely used in medicine, such as cancer research

(Worzel, Yu, Almal, & Chinnaiyan, 2009), and bioinformatics, such as biological

modelling (Jacob & Burleigh, 2005). The other example areas are industrial process

control (Castillo, Kordon, & Smits, 2006), time series prediction such as financial time

series prediction (Santini & Tettamanzi, 2001), real-time crash prediction

(Chengcheng Xu, Wang, & Liu, 2013) and meteorology prediction (Rodriguez-

Vazquez, 2001).

There are several widely used genetic programming tools and frameworks. In this

study, the ECJ Evolutionary Computation Toolkit (Luke, 1998) which is written in

16

Java and is popular particularly with its genetic programming facilities is utilized.

Moreover, EpochX (Otero, Castle, & Johnson, 2012) and JGAP (Chen, Chuang, &

Tsai, 2001) are other open source genetic programming frameworks written in Java.

Furthermore, TinyGP (Poli et al., 2008) is a symbolic regression centered genetic

programming system which has implementations both in C and Java programming

languages. Additionally, GPLAB is a genetic programming system for MATLAB

(Silva, 2007). In addition, HeuristicLab framework, written in C# language, is utilized

for genetic programming applications (Wagner & Affenzeller, 2002).

In this research, time series prediction is handled as a symbolic regression problem

with genetic programming. Symbolic regression discovers the best suitable model of

the space of mathematical expressions for a given dataset without establishing any

inferences related to the structure of the model function (Poli, Langdon & McPhee,

2008). Symbolic regression is one of the most broadly examined applications of

genetic programming (Bautu, Bautu, & Luchian, 2005; Hoai, McKay, Essam, & Chau,

2002; Shengwu & Weiwu, 2003).

The essential preparation steps for a genetic programming run are as noted below and

in Figure 2.8:

1. Specifying the terminal set,

2. Specifying the function set,

3. Determining the fitness measure,

4. Determining the parameters to control the run,

5. Specifying the termination criterion of the run.

Figure 2.8. Fundamental steps of genetic programming (Koza et al., 2003)

The first two preliminary steps are utilized to determine the search space. The terminal

set might contain variables and numerical constants. The function set might simply

17

contain the arithmetic functions such as multiplication, division, addition and

subtraction, and conditional statements. At the third step, the main target of the search

is defined by the fitness measure.

The fourth and fifth steps specify how the run is conducted. There are a number of

control parameters in genetic programming. The example basic control parameters are

the population size, the maximum number of generations, crossover, mutation and

reproduction probabilities, the maximum depth of the program tree, the selection

method of parents and the elitism (Koza, 1992). The termination criterion indicates

when the run should be completed. For example, the number of generations can be

specified as a control parameter and the run is terminated by reaching the maximum

number of generations (Banzhaf, Koza, Ryan, Spector, & Jacob, 2000).

After completing the preliminary steps, the execution process is started by launching

the genetic programming run. The execution steps are as indicated below:

1. Randomly generate an initial population of computer programs which consist of

functions and terminals.

2. Iteratively produce a generation from the population until the termination criterion

is fulfilled by following the sub-steps:

a. Implement each program in the population and assign its fitness utilizing

the fitness measure of the problem.

b. Choose by allowing reselection of one or two individual program(s) from

the population with a probability according to fitness.

c. Produce the new individual program(s) for the population by performing

the next genetic operations with indicated probabilities on the selected

individuals in step (2.b):

i. Reproduction: Replicate the chosen individual program to the new

population.

ii. Crossover: Generate new offspring program(s) for the new

population by recombining arbitrarily selected fragments from two

chosen programs.

18

iii. Mutation: Produce one new offspring program for the new

population by randomly modifying an arbitrarily selected fragment

of one chosen program.

iv. Architecture-altering operations: Choose an architecture-altering

operation from the present genetic operations and produce one new

offspring program for the new population by implementing the

adopted architecture-altering operation to one chosen program.

3. After completing the termination criterion, pick the best program (the best-so-far

individual) in the population generated during the run and assign as the result of

the run.

The result might be a solution or an approximate solution to the problem if the run is

successful (Banzhaf et al., 2000). In genetic programming, computer programs and the

problem solution are generally declared as syntax trees (S-expressions) rather than

code lines (Poli et al., 2008). Figure 2.9 shows the representation of the program

max (𝑥 + 𝑥, 𝑥 + 3 ∗ 𝑦).

Figure 2.9 GP syntax tree representation of max (𝑥 + 𝑥, 𝑥 + 3 ∗ 𝑦) (Poli et al., 2008)

Examples of mutation and crossover operations made on the individuals are shown in

Figure 2.10.

19

Figure 2.10 Examples of genetic programming operations (Lane, Sozou, Addis, &

Gobet, 2016)

20

21

CHAPTER 3

PREVIOUS WORK

3.1. Genetic Programming

Recently, Graff et al. (Graff et al., 2016) published a study that uses a similar

methodology to this research. The study presents a comparison between genetic

programming and traditional approaches for wind speed forecasting. Various types of

time series from M1 and M3 competitions at different intervals such as a monthly,

quarterly, and yearly were used for forecasting. Two different genetic programming

systems were utilized. One is a steady-state system with tournament selection, and the

other is enhanced with the resilient back-propagation (RPROP) method for the tree

constants optimization. Various time series with different periods such as

yearly, quarterly and hourly were used. Three function sets with different operators

were utilized to the impact on the prediction quality.

The research focuses on the effect of using different function sets rather than tuning

the traditional GP parameters. Tree simplification was conducted by RPROP method.

This procedure was applied to forecast the wind speed using genetic

programming. Symmetric mean absolute percentage error (sMAPE) was used for

measuring the performance. The study reveals that particular configurations of genetic

programming are competitive against the traditional forecasters and genetic

programming performs better scientifically in a number of cases.

There is another study which focuses on a traffic flow data time series prediction by

Xu, Li and Wang (C. Xu, Li, & Wang, 2016). This study presents a hybrid model using

ARIMA and GP for short-term traffic volume forecasting. Several periods of traffic

flow ranging between five, ten, and fifteen minutes were predicted in this study. The

aim of combining models is improving the chance of obtaining the linear and nonlinear

patterns, and better prediction performance.

The study reported two advantages of genetic programming. The first advantage is

producing mathematical equations as solutions which can be used practically in

engineering applications. The other advantage is the solution of genetic programming

22

takes precedence over the black-box solutions in artificial intelligence models. The

study claimed that machine running time is the crucial disadvantage of genetic

programming. However, the study also indicated that the calibrated models of genetic

programming could reduce the required time.

Genetic programming was utilized to forecast the non-linear elements of the traffic

flow time series in this study. Basic arithmetic operators, trigonometric functions such

as sin and cos, and square operations were included in the function set. Reproduction

operations were eliminated and crossover with the mutation is applied. The mean

absolute error (MAE) was utilized for the fitness function. However, for a better

comparison, three other error measurements were used as well, such as the mean

relative error (MRE), the mean square error (MSE), and the mean square relative error

(MSRE).

The results of the study showed that developing a hybrid model obtains better forecast

performance than ARIMA models. Moreover, the results indicated that predictions of

the hybrid model have a higher correlation with the observed values. Therefore, the

hybrid approach can obtain the attributes of the time series data better. The study

concluded that hybrid models might be utilized for online traffic management and

control.

Vazquez and Escolar (Vázquez & Escolar, 2001) conducted another time series

forecasting with genetic programming. The aim of the study is meteorological time

series prediction by using genetic programming. The non-linear Auto-Regressive

Moving Average with exogenous inputs (NARMAX) model was used as a base while

implementing the genetic programming.

The residual variance metric and the long-term prediction error (LTPE) were utilized

to measure the model performance. The time interval in data is fifteen minutes with

thirty-seven days. The data columns are date, time, temperature, relative humidity,

wind velocity, wind direction and ground radiation. The study focuses on forecasting

the temperature. Without using reproduction, crossover and mutation operations were

utilized. Six days were used to carry on the experiment. The first four days were

accepted as a training set, and the remaining two days are utilized for forecasting.

The experiment results showed that the model representation is robust. Genetic

programming was easily applicable to the different models such as the single-input-

23

single-output (SISO), the multiple-input single output (MISO) and its expansion to the

multiple-input-multiple-output (MIMO). Moreover, the study revealed that the

developed modelling problem approach with genetic programming is a viable

settlement for the meteorological time series forecasting.

Furthermore, Graff, Pena and Medina (Graff et al., 2013) presented a study on wind

speed forecasting with genetic programming. In this study, two different genetic

programming systems were compared to the ARIMA for time series prediction. One

genetic programming system used traditional fitness function and the other genetic

programming system used modified fitness function. The input time series data

contains one-year hourly wind speed measures. The data was split in two. In the first

split, 291 days were evaluated as training and the next day was evaluated as a test. In

the second split, 327 days were evaluated as training and the 328th day was evaluated

as a test.

Two ARIMA models were constructed for different time horizons prediction. One-step

to six-step forecasting were performed and repeated for covering all the data. Ten

separate runs were conducted for each system. From the ten best individuals of runs,

the one whose prediction was better in both one-step and multiple step forecasting was

chosen. For the performance comparison, the symmetric mean absolute error was

utilized.

The study results showed that genetic programming results were efficient for short-

term time series forecasting against the traditional forecasting methods such as

ARIMA. Moreover, it was reported that genetic programming with modified fitness

function produced better results than the traditional fitness function usage. Therefore,

modifications for the fitness function could be beneficial for more accurate forecasting.

3.2. ARIMA, ANN and FTS

Rahman, Lee, Suhartono and Latif (Rahman et al., 2015) conducted the first relevant

study about air quality forecasting. The study involves a time series forecasting model

of monthly air quality index values by three different statistical models such as the

Box–Jenkins approach of seasonal autoregressive integrated moving average

(ARIMA), artificial neural network (ANN) and fuzzy time series (FTS). Data were

collected from three different areas in Johor, Malaysia between 2000 and 2009. A

performance comparison was made by utilizing the mean absolute percentage error

24

(MAPE), mean absolute error (MAE), mean square error (MSE), and root mean square

error (RMSE).

The ultimate goal of the study was developing the accurate statistical forecasting

models and using the models to observe the air quality status. The data is split into

training and test sets. The period from 2000 to 2008 was accepted as the training set

and the data from 2009 were accepted as the test set. Twelve examinations were

conducted in total. While using the Box-Jenkins modelling approach, writers included

seasonal components in the ARIMA model, and it is called as SARIMA model.

Moreover, the artificial neural network was utilized as a multi-layer perceptron (MLP).

To find the best model statistically, root mean squared error is used as the determinant

indicator. The study results revealed that the traditional ARIMA model surpassed the

FTS model in two stations. These stations are located in urban areas. FTS model

performance was better in the suburban area. In all three stations, artificial neural

network method generated the most accurate predictions. In addition, writers reported

that the basic form of ANN might be utilized for further prediction of pollutant gases

because ANN is convenient for estimating the changing series with seasonal and trend

characteristics, especially air quality time series.

There is another study conducted by Peng et al. (Peng et al., 2017), which was based

on the air pollutant concentrations forecasting which includes machine learning and

an artificial neural network together. The study utilized a nonlinear machine learning

algorithm by the randomized neural network, which is the extreme learning machine

(ELM). The forecast data contains hourly spot concentrations up to forty-eight hours

for six stations across Canada. The main concern of the study is the updatable forecast

models in terms of real-time forecasting. To achieve this, the authors reported the need

for developing nonlinear updatable models for real-time prediction. The study focuses

on a proficient non-linear machine learning method for air quality forecasting. The

method was easy to be updated when new data is available.

The data was split as two years for training and three years for testing the model. Four

air quality prediction models were examined and the climatology is utilized for

performance comparisons. The models were the multiple linear regression (MLR),

Online Sequential Multiple Linear Regression (OSMLR), Multi-layer Perceptron

Neural Network (MLPNN), and Online Sequential Extreme Learning Machine

25

(OSELM). Mean absolute error (MAE), coefficient correlation and mean error

measure metrics were used as forecast statistics. The results showed the capabilities of

the updatable non-linear machine learning methods. The study revealed that these

models might improve air quality predictions significantly. Moreover, it was reported

that using the non-linear modelling and reasonable model updating together would be

advantageous.

3.3. Machine Learning Algorithms Used in This Study

Random Forest, Random Tree and Rep Tree algorithms are utilized to compare genetic

programming performance in this study.

Random Forest is an ensemble machine learning algorithm. It is a combination of the

Bagging algorithm and the random subspace method, which utilizes

multiple randomized decision trees as the base classifier (Sammut & Webb, 2017). It

performs classification and regression tasks (Breiman, 2001). Random Forests is a

supervised learning approach and operates in accordance with the easy yet practical

“divide and conquer” technique which samples portions of the data, builds a

randomized tree predictor on each small sample and gathers the predictors

together (Biau & Scornet, 2015).

Random Tree is a supervised learning method. It is an ensemble learning algorithm

which builds diverse separate learners. To construct a random set of data for building a

decision tree, it uses a bagging idea. By utilizing the best split of all variables, each

tree node is split. On the other hand, each tree node is split by utilizing the best among

the subgroup of estimators randomly selected at that node in a random forest (Kalmegh,

2015). Random Tree performs no pruning and selects a test according to a

certain number of arbitrary features at each node. To build random forests, Random

Forest uses bagging technique on random trees ensembles (Witten, Frank, & Hall,

2011).

Rep (Reduced Error Pruning) Tree creates a decision or regression tree utilizing

information gain or variance reduction and prunes it by reduced-error pruning (Witten

et al., 2011). Rep Tree is a fast decision tree learner and sorts values for numeric

attributes one time only. Missing values are handled by splitting the corresponding

instances into fragments (Dhakate, Patil, Rajeswari, & Abin, 2014). Rep Tree builds

multiple trees in various iterations with the regression tree logic and chooses the best

26

one from all constructed trees. In pruning phase, the mean square error measurement

is utilized on the estimations performed by the tree (Jayanthi & Sasikala, 2013).

3.4. Air Quality Modeling Systems

Next, there was another study conducted by Zhou et al. (Zhou et al., 2017) related to

weather and forecast/chemistry model. In this study, comprehensive assessment of The

Regional Atmospheric Environmental Modeling System for eastern China (RAEMS)

was conducted. The fully online coupled weather research and forecasting/chemistry

(WRF-Chem) model was established. The system generated daily predictions upto

seventy-two-hours for a two years’ period (2014-2015). The authors reported that

online systems might be advantageous in terms of analyzing the interactive relations

between meteorology and chemistry. RAEMS is an online system and it perpetually

supplies meteorological forecasts via SMS. Moreover, it was indicated that RAEMS

is proficient at non-permanent fluctuation and spatial dispersion of vital pollutant gases

over eastern China.

The study produced forecasts with different lengths such as twenty-four, forty-eight

and seventy-two hours. Prediction evaluations were done for a three-day output

approach to distinguish performances between different time lengths. Average

pollutant concentrations of 131 cities are forecasted during the study. Various error

measure metrics were utilized for performance comparison, such as root mean squared

error and correlation coefficient. It is shown that the overall results of the study on

meteorological values, such as temperature, relative humidity and precipitation, were

forecasted accurately. On the other hand, writers indicated that the model

overestimates wind speed. However, the results were conventionally satisfactory for

air quality modelling.

Elbir et al. (Elbir, Kara, Bayram, Altiok, & Dumanoglu, 2011) presented a study of

traffic-related air pollution forecasting with an operational street pollution model

(OSPM). The particulate matter (PM10) concentrations in five different street canyons

in Izmir, Turkey was predicted. Some of the streets showed symmetric canyon

characteristics and others showed asymmetric canyon characteristics.

Writers reported that traffic was one of the crucial air pollution cause in the city. In this

study, different street canyon models constructed to observe the effects of traffic

emissions in street canyons. Therefore, contributions from dissimilar sources were

27

accepted as the background pollution. The traffic volume information was categorized

as motorcycle, passenger cars, vans, and trucks and buses. In addition to the traffic-

related parameters, meteorological parameters were collected as well. One week long

hourly measurements were utilized as data. Statistical investigations conducted by

utilizing the correlation coefficient of determination (R2), the fractional bias (FB), and

the index of agreement (IA) metrics.

Results showed that at the symmetric canyons, the model performed statistically good

forecasts. The study showed that for the symmetric canyons, the predictions of non-

permanent changes of the model were accurate. On the other hand, results concluded

that the model did not perform well for the asymmetric street canyons. Thus, the

writers reported that the OSPM model might be utilized as a forecasting tool in terms

of the streets' traffic-related air pollution detection.

28

29

CHAPTER 4

IMPLEMENTATION

4.1. Data Preparation

To begin with, Environmental Engineering Department of Dokuz Eylül University

delivered the air quality data. It contains hourly meteorological and pollutant gas

measures for Çanakkale in 2013. Every data row has the month, day and hour columns.

The date starts from January 1 and ends in 31th of December. The data pre-processing

was required because there were empty cells in the hour and observed gas columns.

First, the missing hour values were filled in the initial data. Then, the pollutant gas

attribute rows with empty cells were discarded separately.

As the next step, data were examined for the redundant columns. Since the hourly

measures are more meaningful in terms of the air quality prediction, year and month

attributes were removed. Instead of the excluded attributes, weekday column is

included. In addition, instead of using the initial values of SO2 and PM gas measures,

using the temporal fluctuations is more meaningful to forecast. Thus, differences

between rows were calculated by subtracting previous cell values from the initial cell

values and utilized as observed gas measures. Eventually, there are nine attributes in

the data. These attributes are the hour, weekday, wind speed, humidity, air pressure,

temperature, wind direction, SO2 and PM measures.

After the data cleansing process, normalization was required to be implemented. Since

the scale of the attributes varies, it is difficult to correlate the relationship between the

attributes. To achieve this, a common scale for all the attributes was provided by

normalization. Before normalization, non-numeric attribute values were converted to

numeric values. For a better application, categorical and date attributes needed to be

revised. For example, wind direction attribute has the compass direction values such

as ‘N’, ‘NNW’, and ‘SE’. Wind direction and date attributes were impractical to be

utilized as numerical values. Therefore, they were transformed from nominal values to

numerical values by disjunctive coding technique.

30

To apply disjunctive coding method, new columns were added up to the number of

categories in each attribute. For example, wind direction has sixteen categories.

Therefore, instead of one wind direction attribute, sixteen categories were utilized to

generate wind direction columns. For instance, if a row’s wind direction value is ‘S’,

S column’s value was set to one and other wind direction columns’ values were set to

zero. The same procedure was applied to date attributes as well. Although date attribute

values were numerical, they were trivial to be utilized as numerical. Therefore, hour

and weekday attributes were discarded and new columns were included up to twenty-

four for hour attribute and seven for weekday attribute.

After all the attributes were transformed to numerical values, the standard deviation

and mean values were calculated. T-statistic normalization was applied to all attributes.

The general t-statistic formula is:

𝑔(𝑥, 𝑋) =
𝑥 − �̅�

𝑠

(7)

where 𝑥 indicates observed values, 𝑠 indicates the standard deviation of 𝑥 , and �̅�

indicates the mean of 𝑥.

The pre-processing operation steps were applied separately for both SO2 and PM

values. The two new datasets were utilized as input for forecasting individually. Before

completing the data pre-processing, the simple moving average values of both

observed pollutants were calculated to improve prediction by highlighting the hourly

patterns in data. To achieve this, the average of the summation of each value of SO2

and PM columns with the previous values was calculated. The computed values were

included in the dataset as the moving average attribute. The simple moving average

formula is:

𝑥𝑆𝑀𝐴 =
1

𝑛
∑ 𝑥𝑝−𝑖

𝑛−1

𝑖=0

 (8)

Where 𝑛 is the number of previous values and 𝑥𝑝 indicates observed values.

Next, train and test set split percentages were identified by inspecting both data sets.

According to the trend analysis, 70% of data was defined as a training set and 30% of

data was defined as a test set. Since the data is a time series data, the splitting was

31

applied sequentially instead of doing it randomly. Training and test set split points for

SO2 and PM values are shown in Figure 4.1. Training and test sets were converted to

the attribute-relation file format (ARFF) by using Weka. Thus, the data pre-processing

was completed.

Figure 4.1. Train and test sets split points

4.2. Defining the Problem as a Symbolic Regression Problem

After preparing the datasets, the air quality forecasting was defined as a Symbolic

Regression problem in ECJ framework (version 25). Firstly, except for the observed

gas attributes, all attributes in the dataset were defined as Java classes individually as

required by the framework. These attributes were used as problem inputs. Therefore,

each of them had an index value, which was matched to the dataset order. By this way,

when the genetic programming tree was bred, the program understands which input

attribute corresponds to which Java class.

Moreover, each attribute class was utilized as a terminal tree node. Each attribute class

includes a common function, which returns the number of expected children by the

node attribute. Since these attributes are terminal nodes, the number of expected

children for each of them is zero. In addition, an Ephemeral Random Constant (ERC)

class was used a terminal node. In this research, ECJ’s RegERC Java class was utilized

to generate random constants. It has an interval between -1.0 and 1.0.

On the other hand, there are other node classes, which require expected children. These

are the non-terminal tree nodes. Some arithmetic and the logical operations were

defined as non-terminal nodes. Arithmetic operations are addition, subtraction,

multiplication, division, square root and square functions. Logical operations are if-

then-else, equal, greater than, greater than equal, less than and less than equal functions.

32

Square root and square functions require one excepted children. The if-then-else

function needs three excepted children. The first child is utilized as the condition, the

second child is used as the true consequent, and the third child is used as the false

consequent.

Logical operations have a special case. As it was indicated before, there are categorical

attributes values in the dataset. These attributes were useless to be utilized in

arithmetical operations. Therefore, logical operations became a necessity. Since the

categorical attributes were normalized by using one and zeros with the disjunctive

coding technique, logical operations implementation differed from other operations.

Except for if-then-else operation, other logical operations compare two children. Since

the first child of if-then-else operation is a condition, its value must be true or false. To

achieve this, the other logical operations own a common Boolean variable. This was

provided by an interface, which obligates overriding a function that returns a Boolean

variable. The comparison result of two children nodes was assigned to the Boolean

variable. If-then-else operation calls the function and utilizes its return value as a

condition. The structure of the if-then-else operation is shown in Figure 4.2.

Figure 4.2. If-then-else operation

In addition, all the node Java classes are obligated to own a name attribute. The name

variable was assigned and returned with a function. For instance, the addition operation

node name was defined as ‘+’, or greater than equal operation node name was defined

as ‘>=’, etc.

4.3. Methodology of Training and Evaluating Prediction Performance

The problem was defined in a GPProblem Java class. Training and test sets were read

from files in this class. First, the training set was read line by line. For every single

line, input attributes were read and put into an array. At the end of every line, the array

was added to an array list, which was stored as training input set. After reading input

33

attributes, output attribute was read and the same process was repeated for the training

set. The same steps were applied to test set as well. Therefore, there were four array

lists, which were training input set, training output set, test input set and test output set.

Training sets were utilized in problem evaluation and test sets were utilized in post-

evaluation step. Populating array lists was executed in the setup function.

The problem’s individual evaluation was executed in evaluate function. First, pre-

processing was applied to tree nodes recursively. It started from the deepest level

children and ended at the topmost level children.

One of the main problems in genetic programming is bloat that is the trees grow too

large. A preprocessing step was added, in order to eliminate useless nodes. For the non-

terminal operations addition and subtraction, children whose values were zero were

checked and the sub-trees were eliminated from the tree. To achieve this, the sub-tree

child node was assigned to the other non-zero value child node. For instance, if there

was a summation parent node, and children nodes’ values were zero and an arbitrary

double value, then summation node and its children nodes were eliminated from the

tree. Instead, the child node of the parent node of summation node was assigned to the

non-zero node, which was the other child node of the summation node.

Moreover, child nodes with zero and one values were checked for division and

multiplication operations as well. If a child node was multiplied or divided by one, the

same process was applied by the previous control operation. However, if zero, or child

with value zero node was the dividend in a division sub-tree multiplies a child node,

then the same process was applied but the new child node was assigned to zero value

node.

For the if-then-else node, the consequent children nodes were checked in the tree pre-

processing. If both of the nodes’ values were the same, then the same operation was

conducted with the arithmetical operations and the first consequent child node was

assigned as the new child node to the parent node of the if-then-else node.

After the tree pre-processing operation, training input set instances were utilized one

by one in a loop. In every step, the instance of input attributes was assigned to an array.

As it was indicated before, ECJ matches the attributes with the corresponding Java

classes, which has the same index information. For example, if the wind speed attribute

was the first attribute of the input instances, then the wind speed attribute was the first

34

element in the instance array and it was matched with the wind direction Java class,

whose index was zero as well.

Next, in the same loop, training output set’s value at the same index was assigned to a

variable, which was an observed pollutant value. The individual’s tree was evaluated

and produced a value. The value was used as the forecasted value. The square of the

differences of the observed and predicted values was summed in the loop. After the

loop ends, the summation was divided by the training set size. Eventually, the square

root function was applied to the final value and fitness of the individual was calculated.

The training set fitness was computed by using the root mean square error (RMSE)

measure. The KozaFitness Java class was utilized as the individuals’ fitness setup.

Moreover, if-then-else nodes were checked recursively at the tree post-processing as

well. To achieve this, two integer variables were added to if-then-else node class as

true and false counts. The count values were increased according to the condition

node’s true or false value. At the post-processing, these counts were compared to the

data size for eliminating tautology and fallacy. If the true or false count was matched

with the data size, the parent node’s child node was changed by the if node’s true or

false child node.

As the final step of individual evaluation, the individual was checked as evaluated.

Therefore, if the individual does not change, the next time individual evaluation can

be skipped. Eventually, individual evaluation step was completed.

After evaluation process on the training data, post-processing was applied to the test

data by using the best individual from the training evaluation. This process was

conducted in the describe function. The same steps with the evaluation process were

applied. Since there was only one individual (the best performing individual), post

evaluation was applied only once. The test set was utilized in a loop likewise. For the

fitness evaluation, five error metrics were calculated. These were the root mean square

error, mean absolute error, correlation coefficient, relative absolute error and root

relative squared error measures. After computations, results were written to both stat

files and separate text files. Thus, the symbolic regression problem evaluation was

completed.

35

4.4. Parameter Setting

Next step was configuring the genetic programming settings. In ECJ, settings are kept

in parameter files. As it was mentioned before, ECJ links the attribute Java classes to

the input file instance attributes in the tree evaluation process. To achieve this, function

set was defined in a parameter file. The function set must have a size and each function

needs a constraint. All the terminal and non-terminal node functions were added to a

function set. Each had varied constraints. For instance, categorical attributes like wind

direction attribute or weekday attribute had a Boolean constraint. On the other hand,

an if-then-else operation had a different constraint, who had three children and its

children had different types. The parameter file used for setting the terminal and non-

terminal nodes is given in Appendix 1.

After defining the function set and function constraints, the population size and the

number of generations were configured. The symbolic regression problem Java class

was also assigned to the related genetic programming problem parameter. Moreover,

since the double data type was used in tree evaluations and node constraint types, a

Java class was created and utilized as the problem data. All the non-terminal and

terminal node attributes and functions used the same data type.

Next, the common genetic programming parameters were defined based on the default

Koza parameters in ECJ. Desired parameters were modified. For example, in Koza

settings, mutation is not used in breeding operations. While conducting experiments,

mutation pipeline was utilized and its probability was configured as well. The

crossover probability, elitism, tournament selection size, the tree builder, the minimum

and the maximum tree depth, and the number of jobs parameter settings were modified

with respect to the experiment configurations.

In addition, stat files were modified as well. At the end of each run, one stat file was

created. Instead of printing all the generations’ individual details, the best individual

details such as the training data fitness, test data error measurements and the tree model

were written to the stat files. The tree model output style was defined as the graph

description language format (DOT). The definition was made by the print style

parameter. The output tree models were examined by using the Graphviz (Ellson et al.,

2002) program.

36

Moreover, the terminal output details were modified as well. Since the necessary

details were written to the stat files, the used parameters were written to the console

for parameter usage controls. These modifications were configured in the parameter

files by setting the related parameters.

After the program setup was completed, experiments were conducted. First, default

Koza parameter configuration was utilized, and the program was run based on the

Koza parameters. The results were compared to the Weka classifier tree algorithms

such as Random Forest, Random Tree and Rep Tree algorithms. In Weka, the training

data was defined as a training set and test data was assigned as a test set. The training

and the test data were the same in both ECJ and Weka. It was observed that tree

algorithms’ results were better. Therefore, parameters were modified and the

comparison was conducted again. At first, every run for each change was conducted

by the same seed values. When the improvement was detected, multiple runs were

conducted by using the random seeds and comparisons were made according to the

runs’ results. The results again showed that ECJ results were still worse. To bring a

different approach, windowing method was tried.

The previous instance or more than one previous instances’ observed output values

were utilized as input for the instance in a manner similar to the moving average

method. Instead of average, the exact values were used. The window size was

broadened up to five. After observing each of the windowing results, it turned out that

the error measures were needed to improve. To achieve this, the full factorial design

approach was used. After investigating each of the changes of the results based on the

parameter modifications, certain parameter effects were observed and included in the

experiment combinations. Three experiments were conducted. The full-factorial

experimental design was generated in the R Project (R Core Team, 2017). Since the

correlation coefficient and the root mean squared error are the commonly used error

metrics, these errors metrics of experiments results were investigated and utilized to

determine the best parameter combinations.

In the first experiment, population size, elite count, tournament size, crossover rate and

the maximum depth of tree parameters were changed. It was not known that which

parameters were effective, so it was not known how effective these were. Therefore,

the first experiment was designed in this way. The number of generations and the tree

builder parameters remained the same. 1215 runs with 750 generations for each run

37

were conducted. The tree builder was set to Full Builder. The crossover and

reproduction rates changed according to the experiment result. For example, if the

crossover rate was set to 0.70, the reproduction rate was set to 0.30 respectively. Elite

count experiment was set as the percentage of the given population. For instance, if

the population size was two hundred and fifty and the elite count rate is 0.1, then the

elite count was calculated as twenty-five. Mutation operation was not used in the first

experiment. The seed parameter varied by the experiment design. The number of breed

threads and the evaluation threads were set to four. Each experiment was repeated for

five times. The parameter tuning was applied as:

 Generations = 750 (constant)

 Tree Builder = Full Builder (constant)

 Population Size: {250, 500, 750}

 Tournament Size: {2, 5, 7}

 Elite Count Percentage: {0.01, 0.05, 0.1}

 Crossover Rate: {0.7, 08, 0.9}

 Tree Size: {5, 6, 7}

 The number of jobs for each experiment = 5

 35 x 5 = 1215 runs

The execution order determined by the Design of Experiment (DoE) plugin for R is

shown in Figure 4.3.

Figure 4.3. The first experimental design generated by R DoE plugin

The first experimental results were analyzed in R Project by considering both

correlation coefficient and root mean squared error measures metrics. The interval

name run.no.in.std.order run.no run.no.std.rp popSize tournamentSize eliteCount crossoverProbability Blocks

1 64 1 64.1 250 2 0.05 0.9 0.1

2 22 2 22.1 250 5 0.1 0.7 0.1

3 55 3 55.1 250 2 0.01 0.9 0.1

4 56 4 56.1 500 2 0.01 0.9 0.1

5 51 5 51.1 750 5 0.1 0.8 0.1

6 78 6 78.1 750 5 0.1 0.9 0.1

7 30 7 30.1 750 2 0.01 0.8 0.1

8 45 8 45.1 750 7 0.05 0.8 0.1

9 58 9 58.1 250 5 0.01 0.9 0.1

10 42 10 42.1 750 5 0.05 0.8 0.1

38

plots of significance for effects are included in Appendix 2. The bigger values of the

population size, the tree size and the elite count percentage gave better results. The

population size was set to one thousand. Since bigger values of the tournament size

and crossover rates did not improve the results, smaller values were selected in order

to save computation time. The tournament size was set to two. The maximum tree size

was selected as seven based on the reasonable tree models. It was observed that when

the tree size was bigger, the generated tree models were more comprehensible. It was

not planned to increase the maximum tree size more than seven because this time the

tree models became too complex to obtain a reasonable prediction. Therefore, the

second experimental design was made with parameters, which created an alteration

respectively.

In the second experiment, the mutation was included as well. The probability rate was

assigned as the same as the first experiment. If the experiment indicated the mutation

usage, the second pipeline was set to mutation pipeline instead of reproduction pipeline.

In addition, the number of generations was increased to two-thousand and the

population size was set to one-thousand. Since the population size was not changed,

the percentage used for the elite count was eliminated. The maximum depth of the tree

parameter was assigned as seven and the tournament size was set to two. Each

experiment was conducted for five times. The parameter tuning was applied as:

 Generations = 2000 (constant)

 Tree Builder = Full Builder (constant)

 Population Size = 1000 (constant)

 Tree Size = 7 (constant)

 Tournament Size = 2 (constant)

 Elite Count: {100, 150, 200}

 Crossover Rate: {0.25, 0.5, 0.75}

 Mutation Usage: {T, F} (indicates the usage of mutation or reproduction pipeline)

 The number of jobs for each experiment = 5

 32 x 2 x 5 = 90 runs

39

The execution order determined by the Design of Experiment (DoE) plugin for R is

shown in Figure 4.3.

Figure 4.4. The second experimental design generated by R DoE plugin

In the second experiment, a parameter file was overridden for mutation usage to

override the pipeline source at run-time. Hence, the parameter file was modified based

on the experiment parameters. If the experiment indicated mutation usage, the

parameter file was overridden to set the second pipeline source to mutation pipeline.

The experiment results again analyzed with R. The better results’ parameter variables

were selected as the final experiment. It was observed that final experiment parameters

for SO2 and PM datasets are varied. Therefore, two different parameter tunings were

applied to data sets.

4.5. Performance Evaluation of the Genetic Programming Model

In the final experiment, seed values were set randomly by using time variable in ECJ.

The number of jobs parameter was assigned to twenty-five. The population size,

tournament size, tree builder and the number of generations remained the same. Elitism

and pipeline probabilities were changed. The parameter values selected for SO2

forecasting were:

 Generations = 2000 (constant)

 Tree Builder = Full Builder (constant)

 Population Size = 1000 (constant)

 Tree Size = 7 (constant)

 Tournament Size = 2 (constant)

 Elite Count: 100

name run.no.in.std.order run.no run.no.std.rp EliteCount CrossoverRate useMutation Blocks

1 15 1 15.1 200 0.5 FALSE 0.1

2 13 2 13.1 100 0.5 FALSE 0.1

3 18 3 18.1 200 0.75 FALSE 0.1

4 10 4 10.1 100 0.25 FALSE 0.1

5 16 5 16.1 100 0.75 FALSE 0.1

6 8 6 8.1 150 0.75 TRUE 0.1

7 7 7 7.1 100 0.75 TRUE 0.1

8 5 8 5.1 150 0.5 TRUE 0.1

9 4 9 4.1 100 0.5 TRUE 0.1

10 17 10 17.1 150 0.75 FALSE 0.1

40

 Crossover Rate: 0.25

 Mutation Usage: false

 The number of jobs = 25

 Seed = time

The parameter values selected for PM forecasting were:

 Generations = 2000 (constant)

 Tree Builder = Full Builder (constant)

 Population Size = 1000 (constant)

 Tree Size = 7 (constant)

 Tournament Size = 2 (constant)

 Elite Count: 200

 Crossover Rate: 0.25

 Mutation Usage: false

 The number of jobs = 25

 Seed = time

The detailed results obtained by the developed GP and the Weka algorithms are given

in Appendix 3. The resulting error measures obtained in the final experiment were

compared to the Weka tree algorithms’ results. It was noticed that the average values

of the five error measures were better than the Weka algorithms’ average error

measures. Moreover, the statistical significance testing (t-test) approach was applied

to the final results as well. Each of the Weka algorithms’ averages of 25 runs was

compared to the genetic programming regarding the t-test. The significance level for

the t-test was set to 0.05. The results of the t-test are shown in Table 4.1. The test was

conducted for all the error measure metrics such as the correlation coefficient, mean

absolute error, root mean squared error, relative absolute error and root relative squared

error. The significance test scores showed that the genetic programming was better

than Weka classifier tree algorithms at forecasting for both SO2 and PM gas measures

in every metric.

41

Table 4.1. t-test comparisons over averages of 25 runs of GP and decision tree

algorithms
SO2

Correlation

coefficient

Mean

absolute

error

Root mean

squared error

Relative

absolute

error

Root relative

squared error

GP vs

Random

Tree

0.0x10-12 0.0x10-12 0.0x10-12 0.0x10-12 0.0x10-12

GP vs

Random

Forest

0.0x10-12 0.0x10-12 0.0x10-12 0.0x10-12 0.0x10-12

GP vs Rep

Tree

0.3644x10-8 0.0x10-12 0.1704x10-8 0.0x10-12 0.0x10-12

PM

Correlation

coefficient

Mean

absolute

error

Root mean

squared error

Relative

absolute

error

Root relative

squared error

GP vs

Random

Tree

0.0x10-12 0.0x10-12 0.0x10-12 0.0x10-12 0.0x10-12

GP vs

Random

Forest

0.0x10-12 0.0x10-12 0.0x10-12 0.0x10-12 0.0x10-12

GP vs Rep

Tree

0.18022x10-7 0. 29x10-10 0.7249x10-8 0.0x10-12 0.0x10-12

The Random Tree algorithm produced the worst results for both of the gas measures.

While the correlation coefficient result for PM was better than SO2, the remaining error

results were worse than SO2. The Random Forest tree algorithm produced better results

in every error metrics than the Random Tree algorithm for both of the gas measures.

While the correlation coefficient, relative absolute error and root relative squared error

results were better for PM, mean absolute error and root mean square error measures

were worse than SO2 error measures. The Rep Tree algorithm was the best of all tree

algorithms for each error metrics. It was observed that the coefficient correlation,

42

relative absolute error and root relative squared error results were better for SO2

pollutant forecasting. The other error measures were better for PM. In addition to these

results, the genetic programming produced significantly better results than the other

algorithms. The results showed that for each error metrics, SO2 pollutant prediction

was slightly better than PM pollutant prediction.

As the final comparison, genetic programming’s performance was compared to an

ARIMA model using R Project. R Project (R Core Team, 2017) is an open source

framework for statistical computing. The forecast package in R Project supports

automatically generated optimal ARIMA models (Dalinina, 2017). The sample

implementation code was included in Appendix 4. While constructing the ARIMA

model, the time series data was utilized as it is. Only the pollutant gas values were

converted to their normalized forms. In addition, moving average values were added

to the model. The seasonal component of the time series was calculated by the stl

function. The frequency parameter utilized for constructing a time series object was

set daily since the data consists of the hourly measures. Then, seasonal adjustment

function was used to eliminate the seasonality from the time series.

Next, since the time series were required to be stationary to use the ARIMA model, the

augmented Dickey-Fuller (ADF) test was applied to the data. Therefore, it was

confirmed that the air quality time series was stationary. Next, the data was split into

a training set and a test set. The data was divided into a train set and test set similar to

the genetic programming and Weka tree algorithm experiments. The train set was

utilized for constructing the ARIMA model. The test set was used for forecasting. The

model was constructed based on the training set and the forecasting was made based

on the test set.

The different point of the experiment was that with ARIMA, the data was handled as

a time series. On the other hand, with genetic programming, the numerical prediction

as a regression on the time series data was conducted. The experiment results differed

for SO2 and PM gases. The mean absolute error and the root mean squared error

measure metrics were analyzed for performance comparison. It was observed that

ARIMA model performed better at the SO2 gas prediction for both of the error measure

metrics. On the other hand, the genetic programming model produced better result of

SO2 forecasting than ARIMA model for mean absolute error measure metric.

43

Table 4.2. ARIMA forecast results

PM RMSE MAE SO2 RMSE MAE

ARIMA

Training

set

0.2386032 0.1591638 Training

set

0.4971606 0.2060416

Test set 0.6214668 0.410306 Test set 0.3912609 0.1772004

GP

Test set

(average)

0.764172898 0.486630375 Test set

(average)

0.44337426 0.167358973

Test set

(best)

0.760064331 0.481893545 Test set

(best)

0.435097259 0.163717903

44

45

CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

In this study, air quality time series prediction is conducted by genetic programming

approach. The forecasting problem is defined as a symbolic regression problem using

the ECJ framework. One year-long air quality metric measurements per hour in

Çanakkale region are utilized as input data, and SO2 and PM gas measures are used as

the observed data. The aim of this research is constructing a numerical prediction

model by using genetic programming on the given dataset. The dataset is evaluated as

a time series. Moreover, normalization, windowing and moving average calculations

are utilized in order to obtain better forecasting results.

Different genetic programming parameter combinations are tested to determine the

best combination of parameters. The default Koza parameter settings in ECJ is used as

an initial step. To understand the success of the problem fitness, Weka classifier tree

algorithms are run on the same dataset to make a comparison. These algorithms are

Rep Tree, Random Forest and Random tree algorithms. Train set and test set division

is applied to the data. Test set error measure metrics are utilized for comparison such

as the correlation coefficient and root mean squared error. It is observed that Koza

parameter settings produce worse results than tree algorithms. Thus, a full factorial

design approach is utilized.

In the first design of experiment test, different values of genetic programming

parameters such as crossover probability, tournament selection size and population

size are considered. The first results show us that some parameters with certain values

can provide better results. Therefore, the second experiment is carried out by focusing

on the prominent parameters. Constructed tree models are taken into consideration as

well during the decision process for the next experiments’ parameter combinations.

The success of the solution does not only depend on the problem fitness but also on

generated genetic programming tree models. The second experiment results’ analysis

revealed that SO2 and PM gas prediction success varies with different combinations.

46

Hence, the concluding experiment has two different parameter settings for SO2 and

PM gas forecasting separately.

The outcome of the experiments revealed that with certain parameter combinations,

the genetic programming is more successful than other classifier tree algorithms for

both SO2 and PM gas prediction. The comparative analysis with the other algorithms

is conducted by using statistical tests. The pair-wise t-test comparisons for each of five

error measure metrics prove that genetic programming achieves better results. The

significance of the comparison outcomes is that the genetic programming performed

even better than the Random Forest, which is one the most frequently practiced

ensemble learning methods. Random Forest uses more than one learning algorithm to

achieve better predictive performance and generally produces a very good result.

Additionally, to observe the level of performance of the genetic programming in

comparison to the traditional time series prediction approaches, an ARIMA model is

developed and tested as well. The prediction results of the ARIMA model showed that

ARIMA model performed better than genetic programming.

As a conclusion, it can be suggested that there are several contributions of this study.

First, it is proven that genetic programming holds out a successful approach to the time

series forecasting. The capabilities of genetic programming might be enhanced further

with additional research. Moreover, the previous research is limitedly carried out on

air quality time series forecasting with genetic programming. Most of the previous

studies are based on machine learning, the traditional methodologies such as ARIMA

models, or artificial neural network techniques. Genetic programming might get ahead

not only with better results but provide a solution model as well. In this research, the

tree models produced by genetic programming might be advantageous in many ways.

For example, the models may serve as an inference regarding air quality time series

analysis. Mostly used attributes in the generated models may be investigated further

in future studies based on the same dataset. It may reveal hidden characteristics of the

time series data, which may be unprecedented.

There are a number of aspects, which might be accepted as future work. Firstly, the

tree models produced by genetic programming may be enhanced. In this study, tree

breeding algorithms in ECJ are used without any modifications. The modification is

applied after the tree breeding process is completed. The changes mainly focus on

47

making logical and arithmetic operations more sensible. For example, division by one

or multiplication by one or zero, etc. In future studies, breeding operations might be

considered to increase the quality of the generated tree models.

Secondly, the runtime of genetic programming might be reduced in prospecting studies.

The biggest disadvantage of forecasting with genetic programming is the length of

runtime. The runtime is longer than other algorithms’ runtime length. However, the

disadvantage might be resolved by using a more powerful CPU. If the genetic

programming is run with a more powerful CPU, the runtime may be shortened.

Next, the factorial design approach may be enhanced by making inferences from the

tested experiments in this research. A considerable amount of parameter combinations

with variant values are experimented with and analyzed by R Project. Without trying

the same combinations, new experiments might be designed by including unattempted

combinations. Moreover, according to the outcome of this study, tested combinations

may be extended further. Therefore, the time spent on experiments would be utilized

for new trials. Moreover, the chance of obtaining better tree model solutions with better

fitness might be increased.

Another improvable aspect of future work is the moving average method. In this

research, the moving average computation is utilized by including only the previous

value before the observed value. The moving average context might be extended to

two or more previous values. This approach may yield better results in further studies.

Moreover, there are other moving average calculation methods. For example, the

simple moving average calculation is utilized in this study. In prospective studies, the

other calculations such as the cumulative moving average or the weighted moving

average techniques might be utilized as well.

The final aspect is implementing the genetic programming on the other problems of

air quality time series analysis. As it was indicated before, time series forecasting with

genetic programming is not widely used. Moreover, previous studies related to the air

quality forecasting with genetic programming are even fewer. Thus, this research

serves as a beneficial model of air quality forecasting by genetic programming. By

investigating the methods used in this research, different applications of air quality

time series utilizing the same or different genetic programming frameworks might be

48

used. For example, a traffic-related air quality dataset might be modelled as time series

and predicted by following the similar steps and techniques.

As a conclusion, the number of studies based on air quality time series forecasting with

genetic programming should be increased. Most of the previous studies focused on the

artificial neural network or traditional methodologies such as ARIMA models for time

series forecasting. Moreover, the studies, which used genetic programming for time

series prediction are seldom, none of them investigated air quality time series. As a

result of this study, genetic programming has proven to be statistically successful in

air quality time series forecasting. The result obtained from this study can be used

successfully to predict the air quality using the generated tree models. Air quality,

which threatens human health in a dangerous way, is one of the most important

problems that preventive precautions must be taken against and this study has

contributed to the solution of this problem with the achieved results.

49

REFERENCES

Ahalpara, D. P. (2010). Improved forecasting of time series data of real system using

genetic programming. In GECCO ’10: Proceedings of the 12th annual

conference on Genetic and evolutionary computation (pp. 977–978).

https://doi.org/doi:10.1145/1830483.1830658

Aladag, C. H., & Egrioglu, E. (2012). Advanced Time Series Forecasting Methods.

In Advances in Time Series Forecasting (Vol. 2100, pp. 3–10).

https://doi.org/10.1007/978-3-319-31450-1

Ali Ghorbani, M., Khatibi, R., Aytek, A., Makarynskyy, O., & Shiri, J. (2010). Sea

water level forecasting using genetic programming and comparing the

performance with Artificial Neural Networks. Computers and Geosciences,

36(5), 620–627. https://doi.org/10.1016/j.cageo.2009.09.014

Austin, M. P., Bates, G., Dempster, M. A. H., Leemans, V., & Williams, S. N.

(2004). Adaptive systems for foreign exchange trading. Quantitative Finance,

4(4). https://doi.org/10.1080/14697680400008593

Banzhaf, W., Koza, J. R., Ryan, C., Spector, L., & Jacob, C. (2000). Genetic

programming. IEEE Intelligent Systems, 15(3), 74–84.

https://doi.org/10.1109/5254.846288

Bar-Joseph, Z. (2004). Analyzing time series gene expression data. Bioinformatics

(Oxford, England), 20(16), 2493–503.

https://doi.org/10.1093/bioinformatics/bth283

Bautu, E., Bautu, A., & Luchian, H. (2005). Symbolic Regression on Noisy Data

with Genetic and Gene Expression Programming. In Seventh International

Symposium on Symbolic and Numeric Algorithms for Scientific Computing

(SYNASC’05) (pp. 321–324). https://doi.org/doi:10.1109/SYNASC.2005.70

Biau, G., & Scornet, E. (2015). A Random Forest Guided Tour. ArXiv, submitted,

173–184. https://doi.org/10.1007/s11749-016-0481-7

Bouckaert, R. R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A., &

Scuse, D. (2013). WEKA Manual for Version 3-7-8, 1–327. Retrieved from

papers3://publication/uuid/24E005A2-AA1B-4614-BAF5-4D92C4F37413

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

https://doi.org/10.1023/A:1010933404324

Brockwell, P. J., & Davis, R. a. (2002). Introduction to Time Series and

Forecasting , Second Edition. https://doi.org/10.1007/b97391

Büke, T., & Köne, A. (2016). Assessing Air Quality in Turkey: A Proposed, Air

Quality Index. Sustainability, 8(1), 73. https://doi.org/10.3390/su8010073

Castillo, F., Kordon, A., & Smits, G. (2006). Robust Pareto Front Genetic

Programming Parameter Selection Based on Design of Experiments and

Industrial Data. Genetic Programming Theory and Practice {IV}, 5, 149–166.

https://doi.org/doi:10.1007/978-0-387-49650-4_10

50

Chami, M., & Robilliard, D. (2002). Inversion of oceanic constituents in case I and II

waters with genetic programming algorithms. Appl. Opt., 41(30), 6260–6275.

https://doi.org/10.1364/AO.41.006260

Chen, D. Y., Chuang, T. R., & Tsai, S. C. (2001). JGAP: A Java-based graph

algorithms platform. Software - Practice and Experience, 31(7), 615–635.

https://doi.org/10.1002/spe.379

Cortez, P., Rocha, M., & Neves, J. (2001). Evolving time series forecasting neural

network models, 1–25. https://doi.org/10.1023/B:HEUR.0000034714.09838.1e

Dalinina, R. (2017). Introduction to Forecasting with ARIMA in R. Retrieved March

28, 2018, from https://www.datascience.com/blog/introduction-to-forecasting-

with-arima-in-r-learn-data-science-tutorials

Dhakate, P. P., Patil, S., Rajeswari, K., & Abin, D. (2014). Preprocessing and

Classification in WEKA Using Different Classifiers, 4(8), 91–93.

Duyvesteyn, K., & Kaymak, U. (2005). Genetic Programming in Economic

Modelling. In Proceedings of the 2005 IEEE Congress on Evolutionary

Computation (Vol. 2, pp. 1025–1031).

https://doi.org/doi:10.1109/CEC.2005.1554803

EEA. (2017). Air quality in Europe — 2017 report. https://doi.org/10.2800/850018

Elbir, T., Kara, M., Bayram, A., Altiok, H., & Dumanoglu, Y. (2011). Comparison of

predicted and observed PM10 concentrations in several urban street canyons.

Air Quality, Atmosphere and Health, 4(2), 121–131.

https://doi.org/10.1007/s11869-010-0080-9

Ellson, J., Gansner, E., Koutsofios, L., North, S. C., & Woodhull, G. (2002).

Graphviz—open source graph drawing tools. Graph Drawing.

https://doi.org/10.1007/3-540-68339-9_34

EPA USA. (2007). AQI Forecasts: Your Advance Notification About Unhealthy Air,

(February 2007), 1–2.

Esling, P., & Agon, C. (2012). Time-series data mining. ACM Computing Surveys,

45(1), 1–34. https://doi.org/10.1145/2379776.2379788

Ferreira, T. A. E., Vasconcelos, G. C., & Adeodato, P. J. L. (2007). A New

Evolutionary Approach for Time Series Forecasting. 2007 IEEE Symposium on

Computational Intelligence and Data Mining.

https://doi.org/10.1109/CIDM.2007.368933

Fu, T. C. (2011). A review on time series data mining. Engineering Applications of

Artificial Intelligence, 24(1), 164–181.

https://doi.org/10.1016/j.engappai.2010.09.007

Graff, M., Escalante, H. J., Ornelas-Tellez, F., & Tellez, E. S. (2016). Time series

forecasting with genetic programming. Natural Computing, 16(1), 165–174.

https://doi.org/10.1007/s11047-015-9536-z

Graff, M., Pena, R., & Medina, A. (2013). Wind Speed Forecasting using Genetic

Programming, 408–415.

51

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H.

(2009). The WEKA data mining software. ACM SIGKDD Explorations, 11(1),

10–18. https://doi.org/10.1145/1656274.1656278

Hauptman, A., & Sipper, M. (2007). Evolution of an Efficient Search Algorithm for

the Mate-In-{N} Problem in Chess. Proceedings of the 10th European

Conference on Genetic Programming, 4445, 78–89.

https://doi.org/doi:10.1007/978-3-540-71605-1_8

Hoai, N. X., McKay, R. I., Essam, D., & Chau, R. (2002). Solving the symbolic

regression problem with tree-adjunct grammar guided genetic programming:

The comparative results. In Proceedings of the 2002 Congress on Evolutionary

Computation, CEC 2002 (Vol. 2, pp. 1326–1331).

https://doi.org/10.1109/CEC.2002.1004435

Holladay, K. L., & Robbins, K. A. (2007). Evolution of Signal Processing

Algorithms using Vector Based Genetic Programming. In 15th International

Conference on Digital Signal Processing (pp. 503–506).

https://doi.org/doi:10.1109/ICDSP.2007.4288629

Hyndman, R. J., & Athanasopoulos, G. (2013). Forecasting: principles and practice.

Retrieved March 28, 2018, from http://otexts.org/fpp/2/3

Hyndman, R. J., & Khandakar, Y. (2008). Automatic time series forecasting: The

forecast package for R. Journal Of Statistical Software, 27(3), C3–C3.

https://doi.org/10.18637/jss.v027.i03

Jacob, C., & Burleigh, I. (2005). Genetic Programming inside a Cell. In Genetic

Programming Theory and Practice {III} (Vol. 9, pp. 191–206).

https://doi.org/doi:10.1007/0-387-28111-8_13

Jayanthi, S. K., & Sasikala, S. (2013). Reptree Classifier for Identifying Link Spam

in Web Search Engines. ICTACT Journal on Soft Computing, 3(2), 498–505.

https://doi.org/10.21917/ijsc.2013.0075

Kalmegh, S. (2015). Analysis of WEKA Data Mining Algorithm REPTree , Simple

Cart and RandomTree for Classification of Indian News. International Journal

of Innovative Science, Engineering & Technology, 2(2), 438–446.

Koza, J. R. (1992). Genetic Programming On the Programming of Computers by

Means of Natural Selection. Massachusetts Institute of Technology.

https://doi.org/10.1016/0303-2647(94)90062-0

Koza, J. R. (1994). Introduction to genetic programming. Advances in Genetic

Programming, 22(1983), 21–42. https://doi.org/doi:10.1145/1388969.1389057

Koza, J. R., Keane, M. A., Streeter, M. J., William, M., Yu, J., Lanza, G., … Lanza,

G. (2003). Genetic Programming IV: Routine Human-Competitive Machine

Intelligence. Genetic Programming and Evolvable Machines, 6(I), 231–233.

https://doi.org/10.1007/s10710-005-7579-0

Krajewski, L. J., Ritzman, L. P., & Malhotra, M. K. (2007). Operations management

– processes and value chain. International Journal of Production Economics.

https://doi.org/10.1016/j.ijpe.2008.07.023

Lee, Y.-S., & Tong, L.-I. (2011). Forecasting time series using a methodology based

on autoregressive integrated moving average and genetic programming.

52

Knowledge-Based Systems, 24(1), 66–72.

https://doi.org/10.1016/j.knosys.2010.07.006

Lohn, J. D., Linden, D. S., Hornby, G. S., Kraus, W. F., Rodríguez-Arroyo, A., &

Seufert, S. E. (2003). Evolutionary design of an X-band antenna for NASA’s

Space Technology 5 mission. In Proceedings - NASA/DoD Conference on

Evolvable Hardware, EH (Vol. 2003–Janua, pp. 155–163).

https://doi.org/10.1109/EH.2003.1217660

Luke, S. (1998). {ECJ} Evolutionary Computation Library.

MoEU. (n.d.). Air Quality Monitoring Stations Website. Retrieved May 15, 2018,

from http://www.havaizleme.gov.tr/Default.ltr.aspx

OECD. (2008). OECD Environmental Performance Reviews: Turkey 2008. OECD

Publishing. OECD Publishing. https://doi.org/10.1787/9789264049161-en

Oliveri Conti, G., Heibati, B., Kloog, I., Fiore, M., & Ferrante, M. (2017). A review

of AirQ Models and their applications for forecasting the air pollution health

outcomes. Environmental Science and Pollution Research, 24(7), 6426–6445.

https://doi.org/10.1007/s11356-016-8180-1

Otero, F., Castle, T., & Johnson, C. (2012). EpochX: genetic programming in java

with statistics and event monitoring. Proceedings of the Fourteenth

International Conference on Genetic and Evolutionary Computation

Conference Companion , 93–100.

https://doi.org/doi:10.1145/2330784.2330800

Paci, L., Gelfand, A. E., & Holland, D. M. (2013). Spatio-temporal modeling for

real-time ozone forecasting. Spatial Statistics, 4, 79–93.

https://doi.org/10.1016/j.spasta.2013.04.003

Peng, H., Lima, A. R., Teakles, A., Jin, J., Cannon, A. J., & Hsieh, W. W. (2017).

Evaluating hourly air quality forecasting in Canada with nonlinear updatable

machine learning methods. Air Quality, Atmosphere and Health, 10(2), 195–

211. https://doi.org/10.1007/s11869-016-0414-3

Poli, R., Langdon, W., & McPhee, N. (2008). A field guide to genetic programming

(With contributions by JR Koza)(2008). Published vi a http://lulu. com.

Retrieved from

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:A+Field+Gui

de+to+Genetic+Programming+with+contributions+by#1

Poncela, P. (2004). Time series analysis by state space methods. International

Journal of Forecasting, 20(1), 139–141.

https://doi.org/10.1016/j.ijforecast.2003.11.005

Potvin, J. Y., Soriano, P., & Maxime, V. (2004). Generating trading rules on the

stock markets with genetic programming. Computers and Operations Research,

31(7), 1033–1047. https://doi.org/10.1016/S0305-0548(03)00063-7

Qiu, X., Zhang, L., Ren, Y., Suganthan, P., & Amaratunga, G. (2014). Ensemble

deep learning for regression and time series forecasting. In 2014 IEEE

Symposium on Computational Intelligence in Ensemble Learning (CIEL) (pp.

1–6). IEEE. https://doi.org/10.1109/CIEL.2014.7015739

53

R Core Team. (2017). R: A Language and Environment for Statistical Computing.

Vienna, Austria. Retrieved from https://www.r-project.org

Rahman, N. H. A., Lee, M. H., Suhartono, & Latif, M. T. (2015). Artificial neural

networks and fuzzy time series forecasting: an application to air quality. Quality

& Quantity, 49(6), 2633–2647. https://doi.org/10.1007/s11135-014-0132-6

Rodriguez-Vazquez, K. (2001). Genetic Programming in Time Series Modelling: An

Application to Meteorological Data. Proceedings of the 2001 Congress on

Evolutionary Computation CEC2001, 1(May), 261–266.

https://doi.org/doi:10.1109/CEC.2001.934399

Sammut, C., & Webb, G. I. (Eds.). (2017). Random Forests. In Encyclopedia of

Machine Learning and Data Mining (p. 1054). Boston, MA: Springer US.

https://doi.org/10.1007/978-1-4899-7687-1_695

Santini, M., & Tettamanzi, A. (2001). Genetic Programming for Financial Time

Series Prediction. Genetic Programming, Proceedings of EuroGP’2001, 2038,

361–370. https://doi.org/10.1007/3-540-45355-5_29

Sapankevych, N., & Sankar, R. (2009). Time series prediction using support vector

machines: A survey. IEEE Computational Intelligence Magazine, 4(2), 24–38.

https://doi.org/10.1109/MCI.2009.932254

Shengwu, X., & Weiwu, W. (2003). A new hybrid structure genetic programming in

symbolic regression. In Proceedings of the 2003 Congress on Evolutionary

Computation CEC2003 (pp. 1500–1506).

https://doi.org/doi:10.1109/CEC.2003.1299850

Silva, S. (2007). GPLAB: A Genetic Programming Toolbox for MATLAB. ECOS -

Evolutionary and Complex Systems Group, Version 3(April), 1–73.

USEPA. (n.d.). AirNow AQI Calculator. Retrieved March 28, 2018, from

www.airnow.gov/index.cfm?action=airnow.calculator

USEPA. (2013). Technical Assistance Document for the Reporting of Daily Air

Quality – the Air Quality Index (AQI). Environmental Protection, (May), 1–

28.

USEPA. (2014). Air Quality Index (AQI). A Guide to Air Quality and Your Health,

(February), 12. Retrieved from

http://airnow.gov/index.cfm?action=aqibasics.aqi

Vázquez, K. R., & Escolar, C. (2001). Genetic Programming in Time Series

Modelling : an Application To Meteorological Data. Proceedings of the 2001

Congress on Evolutionary Computation (IEEE Cat. No.01TH8546), 1(1989),

261–266. https://doi.org/10.1109/CEC.2001.934399

Wagner, S., & Affenzeller, M. (2002). The HeuristicLab Optimization Environment.

Evolutionary Computation, 1–15.

Wang, D., Wei, S., Luo, H., Yue, C., & Grunder, O. (2017). A novel hybrid model

for air quality index forecasting based on two-phase decomposition technique

and modified extreme learning machine. Science of the Total Environment, 580,

719–733. https://doi.org/10.1016/j.scitotenv.2016.12.018

54

WAQI. (n.d.). Real-time Air Quality Index (AQI). Retrieved March 28, 2018, from

http://aqicn.org

Witten, I. H., Frank, E., & Hall, M. a. (2011). Data Mining: Practical Machine

Learning Tools and Techniques (Google eBook). Complementary literature

None. https://doi.org/0120884070, 9780120884070

World Health Organization. (2016). Ambient Air Pollution: A global assessment of

exposure and burden of disease. World Health Organization, 1–131.

https://doi.org/9789241511353

Worzel, W. P., Yu, J., Almal, A. a, & Chinnaiyan, A. M. (2009). Applications of

genetic programming in cancer research. The International Journal of

Biochemistry & Cell Biology, 41(2), 405–13.

https://doi.org/10.1016/j.biocel.2008.09.025

Xu, C., Li, Z., & Wang, W. (2016). Short-term traffic flow prediction using a

methodology based on autoregressive integrated moving average and genetic

programming. Transport, 31(3).

https://doi.org/10.3846/16484142.2016.1212734

Xu, C., Wang, W., & Liu, P. (2013). A genetic programming model for real-time

crash prediction on freeways. IEEE Transactions on Intelligent Transportation

Systems, 14(2), 574–586. https://doi.org/10.1109/TITS.2012.2226240

Zhou, G., Xu, J., Xie, Y., Chang, L., Gao, W., Gu, Y., & Zhou, J. (2017). Numerical

air quality forecasting over eastern China: An operational application of WRF-

Chem. Atmospheric Environment, 153, 94–108.

https://doi.org/10.1016/j.atmosenv.2017.01.020

55

APPENDIX 1 – ECJ Function Set Parameter Settings

parent.0 = koza.params

gp.fs.size = 1

gp.fs.0 = ec.gp.GPFunctionSet

We'll call the function set "f0".

gp.fs.0.name = f0

weekday attribute terminal nodes

gp.fs.0.size = 65

gp.fs.0.func.0 = common.category.weekday.WD1

gp.fs.0.func.0.nc = booleanterminal

gp.fs.0.func.1 = common.category.weekday.WD2

gp.fs.0.func.1.nc = booleanterminal

gp.fs.0.func.2 = common.category.weekday.WD3

gp.fs.0.func.2.nc = booleanterminal

gp.fs.0.func.3 = common.category.weekday.WD4

gp.fs.0.func.3.nc = booleanterminal

gp.fs.0.func.4 = common.category.weekday.WD5

gp.fs.0.func.4.nc = booleanterminal

gp.fs.0.func.5 = common.category.weekday.WD6

gp.fs.0.func.5.nc = booleanterminal

gp.fs.0.func.6 = common.category.weekday.WD7

gp.fs.0.func.6.nc = booleanterminal

hour attribute terminal nodes

gp.fs.0.func.7 = common.category.hour.TD1

gp.fs.0.func.7.nc = booleanterminal

gp.fs.0.func.8 = common.category.hour.TD2

gp.fs.0.func.8.nc = booleanterminal

gp.fs.0.func.9 = common.category.hour.TD3

gp.fs.0.func.9.nc = booleanterminal

gp.fs.0.func.10 = common.category.hour.TD4

gp.fs.0.func.10.nc = booleanterminal

gp.fs.0.func.11 = common.category.hour.TD5

gp.fs.0.func.11.nc = booleanterminal

gp.fs.0.func.12 = common.category.hour.TD6

56

gp.fs.0.func.12.nc = booleanterminal

gp.fs.0.func.13 = common.category.hour.TD7

gp.fs.0.func.13.nc = booleanterminal

gp.fs.0.func.14 = common.category.hour.TD8

gp.fs.0.func.14.nc = booleanterminal

gp.fs.0.func.15 = common.category.hour.TD9

gp.fs.0.func.15.nc = booleanterminal

gp.fs.0.func.16 = common.category.hour.TD10

gp.fs.0.func.16.nc = booleanterminal

gp.fs.0.func.17 = common.category.hour.TD11

gp.fs.0.func.17.nc = booleanterminal

gp.fs.0.func.18 = common.category.hour.TD12

gp.fs.0.func.18.nc = booleanterminal

gp.fs.0.func.19 = common.category.hour.TD13

gp.fs.0.func.19.nc = booleanterminal

gp.fs.0.func.20 = common.category.hour.TD14

gp.fs.0.func.20.nc = booleanterminal

gp.fs.0.func.21 = common.category.hour.TD15

gp.fs.0.func.21.nc = booleanterminal

gp.fs.0.func.22 = common.category.hour.TD16

gp.fs.0.func.22.nc = booleanterminal

gp.fs.0.func.23 = common.category.hour.TD17

gp.fs.0.func.23.nc = booleanterminal

gp.fs.0.func.24 = common.category.hour.TD18

gp.fs.0.func.24.nc = booleanterminal

gp.fs.0.func.25 = common.category.hour.TD19

gp.fs.0.func.25.nc = booleanterminal

gp.fs.0.func.26 = common.category.hour.TD20

gp.fs.0.func.26.nc = booleanterminal

gp.fs.0.func.27 = common.category.hour.TD21

gp.fs.0.func.27.nc = booleanterminal

gp.fs.0.func.28 = common.category.hour.TD22

gp.fs.0.func.28.nc = booleanterminal

gp.fs.0.func.29 = common.category.hour.TD23

gp.fs.0.func.29.nc = booleanterminal

gp.fs.0.func.30 = common.category.hour.TD24

gp.fs.0.func.30.nc = booleanterminal

gp.fs.0.func.31 = canakkale.attributes.AirPressure

gp.fs.0.func.31.nc = nc0

gp.fs.0.func.32 = canakkale.attributes.WindSpeed

57

gp.fs.0.func.32.nc = nc0

wind direction attribute terminal nodes

gp.fs.0.func.33 =

canakkale.category.wind_direction.WindN

gp.fs.0.func.33.nc = booleanterminal

gp.fs.0.func.34 =

canakkale.category.wind_direction.WindNNE

gp.fs.0.func.34.nc = booleanterminal

gp.fs.0.func.35 =

canakkale.category.wind_direction.WindNE

gp.fs.0.func.35.nc = booleanterminal

gp.fs.0.func.36 =

canakkale.category.wind_direction.WindENE

gp.fs.0.func.36.nc = booleanterminal

gp.fs.0.func.37 =

canakkale.category.wind_direction.WindE

gp.fs.0.func.37.nc = booleanterminal

gp.fs.0.func.38 =

canakkale.category.wind_direction.WindESE

gp.fs.0.func.38.nc = booleanterminal

gp.fs.0.func.39 =

canakkale.category.wind_direction.WindSE

gp.fs.0.func.39.nc = booleanterminal

gp.fs.0.func.40 =

canakkale.category.wind_direction.WindSSE

gp.fs.0.func.40.nc = booleanterminal

gp.fs.0.func.41 =

canakkale.category.wind_direction.WindS

gp.fs.0.func.41.nc = booleanterminal

gp.fs.0.func.42 =

canakkale.category.wind_direction.WindSSW

gp.fs.0.func.42.nc = booleanterminal

gp.fs.0.func.43 =

canakkale.category.wind_direction.WindSW

gp.fs.0.func.43.nc = booleanterminal

gp.fs.0.func.44 =

canakkale.category.wind_direction.WindWSW

gp.fs.0.func.44.nc = booleanterminal

gp.fs.0.func.45 =

canakkale.category.wind_direction.WindW

gp.fs.0.func.45.nc = booleanterminal

gp.fs.0.func.46 =

canakkale.category.wind_direction.WindWNW

gp.fs.0.func.46.nc = booleanterminal

58

gp.fs.0.func.47 =

canakkale.category.wind_direction.WindNW

gp.fs.0.func.47.nc = booleanterminal

gp.fs.0.func.48 =

canakkale.category.wind_direction.WindNNW

gp.fs.0.func.48.nc = booleanterminal

gp.fs.0.func.49 = canakkale.attributes.AirTemperature

gp.fs.0.func.49.nc = nc0

gp.fs.0.func.50 = canakkale.attributes.Humidity

gp.fs.0.func.50.nc = nc0

logical and arithmetic function nodes

gp.fs.0.func.51 = common.functions.Mul

gp.fs.0.func.51.nc = nc2

gp.fs.0.func.52 = common.functions.Add

gp.fs.0.func.52.nc = nc2

gp.fs.0.func.53 = common.functions.Sub

gp.fs.0.func.53.nc = nc2

gp.fs.0.func.54 = common.functions.Div

gp.fs.0.func.54.nc = nc2

gp.fs.0.func.55 = common.functions.RegERC

gp.fs.0.func.55.nc = nc0

gp.fs.0.func.56 = common.functions.Square

gp.fs.0.func.56.nc = nc1

gp.fs.0.func.57 = common.functions.Sqrt

gp.fs.0.func.57.nc = nc1

gp.fs.0.func.58 = common.functions.Equal

gp.fs.0.func.58.nc = booleannode

gp.fs.0.func.59 = common.functions.GreaterThan

gp.fs.0.func.59.nc = booleannode

gp.fs.0.func.60 = common.functions.GreaterThanEqual

gp.fs.0.func.60.nc = booleannode

gp.fs.0.func.61 = common.functions.LessThan

gp.fs.0.func.61.nc = booleannode

gp.fs.0.func.62 = common.functions.LessThanEqual

gp.fs.0.func.62.nc = booleannode

gp.fs.0.func.63 = common.functions.Iff

gp.fs.0.func.63.nc = ifstatement

moving average attribute terminal node

59

gp.fs.0.func.64 = canakkale.attributes.MovingAverage

gp.fs.0.func.64.nc = nc0

60

61

APPENDIX 2 – Experimental Design Plots

Figure A2.5.1. The interval plots of the parameters used in the first experiment for the RMSE measurements of PM forecasting with GP when

the maximum tree depth is seven.

62

Figure A2.5.2. The interval plots of the parameters used in the first experiment or the RMSE measurements of SO2 forecasting with GP when the

maximum tree depth is seven.

63

Figure A2.5.3. The interval plots of the parameters used in the used in the first experiment for correlation coefficient (R) measurements of PM

forecasting with GP when the maximum tree depth is seven.

64

Figure A2.5.4. The interval plots of the parameters used in the used in the first experiment for correlation coefficient (R) measurements of SO2

forecasting with GP when the maximum tree depth is seven.

65

Figure A2.5. The interval plots of the parameters used in the second experiment for

the RMSE measurements of PM forecasting using GP

Figure A2.5.5. The interval plots of the parameters used in the second experiment

for the RMSE measurements of SO2 forecasting using GP

66

Figure A2.5.6. The interval plots of the parameters used in the second experiment

for the correlation coefficient (R) measurements of PM forecasting using GP

Figure A2.5.7. The interval plots of the parameters used in the second experiment

for the correlation coefficient (R) measurements of SO2 forecasting using GP

67

APPENDIX 3 – GP and Decision Tree Algorithm Results

Table A3.1. GP's PM forecasting results

 Correlation

coefficient

Mean

absolute

error

Root mean

squared

error

Relative

absolute

error

Root relative

squared

error

1 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

2 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

3 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

4 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

5 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

6 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

7 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

8 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

9 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

10 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

11 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

12 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

13 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

14 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

15 0.694721902 0.486832173 0.764344083 0.719945096 0.71927846

16 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

17 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

18 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

19 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

20 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

21 0.699593816 0.481893545 0.760064331 0.712641673 0.715251041

22 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

23 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

24 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

25 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465

Average 0.694916779 0.486630375 0.764172898 0.719646669 0.719117368

68

Table A3.2. Random Forest's PM forecasting results

 Correlation

coefficient

Mean

absolute

error

Root mean

squared

error

Relative

absolute

error

Root relative

squared

error

1 0.6499 0.5185 0.8177 0.766785 0.769469

2 0.6561 0.517 0.8153 0.764601 0.767247

3 0.6549 0.5157 0.8151 0.762733 0.767043

4 0.6536 0.5163 0.8163 0.763595 0.768124

5 0.6658 0.5108 0.8033 0.755422 0.755963

6 0.6536 0.5189 0.8149 0.767367 0.766891

7 0.6547 0.5161 0.8142 0.763269 0.766198

8 0.6555 0.5149 0.8135 0.761569 0.765527

9 0.6567 0.5167 0.8146 0.764183 0.766611

10 0.6524 0.5138 0.8162 0.759812 0.768066

11 0.6556 0.5177 0.8141 0.765566 0.766062

12 0.6508 0.5192 0.8173 0.767783 0.769151

13 0.6536 0.5167 0.8154 0.764122 0.767284

14 0.652 0.5167 0.8162 0.764158 0.768097

15 0.645 0.5217 0.8237 0.771556 0.775144

16 0.6512 0.5199 0.8196 0.76892 0.771301

17 0.6532 0.5158 0.8153 0.762832 0.767216

18 0.6558 0.5166 0.8149 0.763993 0.766833

19 0.6496 0.5187 0.8184 0.767185 0.770152

20 0.6574 0.5148 0.8127 0.761417 0.764793

21 0.6551 0.5161 0.8143 0.763259 0.766263

22 0.6586 0.5147 0.8097 0.761247 0.761956

23 0.6517 0.5176 0.8167 0.765433 0.768502

24 0.6492 0.5199 0.8219 0.768817 0.773411

25 0.6525 0.5175 0.8154 0.765401 0.767316

Average 0.65378 0.516892 0.815468 0.764441 0.7673848

69

Table A3.3. Random Tree’s PM forecasting results

 Correlation

coefficient

Mean

absolute

error

Root mean

squared

error

Relative

absolute

error

Root relative

squared

error

1 0.3892 0.7738 1.1218 1.144428 1.055668

2 0.3642 0.7832 1.1673 1.158355 1.098517

3 0.3171 0.8163 1.205 1.207217 1.133947

4 0.4606 0.7325 1.0541 1.083371 0.991913

5 0.387 0.7654 1.1375 1.131997 1.07045

6 0.4254 0.7328 1.1093 1.083765 1.0439

7 0.4256 0.738 1.0889 1.091397 1.024655

8 0.4666 0.7104 1.0515 1.05064 0.989503

9 0.3901 0.7448 1.1109 1.101468 1.04536

10 0.4852 0.7399 1.0748 1.094229 1.011426

11 0.4124 0.7561 1.1283 1.118227 1.061747

12 0.415 0.7558 1.1173 1.117834 1.051444

13 0.4241 0.773 1.112 1.143169 1.046434

14 0.4527 0.749 1.0771 1.107763 1.01359

15 0.4101 0.7579 1.1401 1.120824 1.072839

16 0.3527 0.7758 1.136 1.147418 1.069056

17 0.3228 0.8696 1.2859 1.286134 1.210103

18 0.4279 0.7821 1.1486 1.156624 1.080908

19 0.3705 0.7723 1.1267 1.142225 1.060292

20 0.4004 0.7562 1.0971 1.118385 1.032441

21 0.3568 0.7695 1.1371 1.137976 1.070066

22 0.3274 0.7755 1.1913 1.146868 1.121106

23 0.3759 0.7771 1.1365 1.149228 1.069506

24 0.3905 0.7553 1.1546 1.116968 1.086561

25 0.4245 0.7522 1.1093 1.112405 1.043876

Average 0.398988 0.76458 1.12876 1.1307566 1.06221232

70

Table A3.4. Rep Tree's PM forecasting results

 Correlation

coefficient

Mean

absolute

error

Root mean

squared

error

Relative

absolute

error

Root relative

squared

error

1 0.6746 0.4967 0.7845 0.734507 0.738266

2 0.684 0.4948 0.7753 0.731821 0.729597

3 0.6601 0.5084 0.7983 0.751927 0.751197

4 0.6634 0.5029 0.7953 0.743745 0.7484

5 0.6483 0.5115 0.8092 0.756415 0.761465

6 0.6786 0.4986 0.7807 0.737373 0.734668

7 0.6658 0.5033 0.7929 0.744275 0.746181

8 0.6708 0.5031 0.791 0.744025 0.744359

9 0.681 0.4969 0.7789 0.734909 0.732967

10 0.6918 0.4934 0.7679 0.72969 0.722631

11 0.6933 0.489 0.7659 0.723184 0.720772

12 0.6785 0.492 0.7807 0.727629 0.734681

13 0.6815 0.4957 0.7776 0.733072 0.731783

14 0.6754 0.5003 0.7838 0.739952 0.737601

15 0.6255 0.5099 0.8297 0.754068 0.780802

16 0.6644 0.5028 0.7943 0.743616 0.747425

17 0.6589 0.5082 0.7995 0.751647 0.752338

18 0.681 0.5009 0.7783 0.740822 0.732388

19 0.6655 0.5022 0.7931 0.742751 0.746383

20 0.6707 0.5057 0.7887 0.747888 0.742197

21 0.6768 0.4976 0.7824 0.735942 0.736253

22 0.6733 0.5011 0.7859 0.741085 0.739565

23 0.6667 0.503 0.792 0.743951 0.745319

24 0.6535 0.5102 0.8044 0.754531 0.756985

25 0.6863 0.4916 0.7729 0.727025 0.727308

Average 0.670788 0.500792 0.788128 0.740634 0.74166124

71

Table A3.5. GP's SO2 forecasting results

 Correlation

coefficient

Mean

absolute

error

Root mean

squared

error

Relative

absolute

error

Root relative

squared

error

1 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973

2 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973

3 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973

4 0.715878949 0.167701168 0.444203025 0.679979423 0.698224594

5 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973

6 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973

7 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973

8 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973

9 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973

10 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973

11 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973

12 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973

13 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973

14 0.726360377 0.169077141 0.437581005 0.68555859 0.687815711

15 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973

16 0.71606172 0.167455394 0.444083664 0.67898288 0.698036975

17 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973

18 0.730038057 0.163717903 0.435097259 0.663828443 0.683911612

19 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973

20 0.722191037 0.166979284 0.441718281 0.677052392 0.694318926

21 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973

22 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973

23 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973

24 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973

25 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973

Average 0.717270582 0.167358973 0.44337426 0.67859192 0.696921891

72

Table A3.6. Random Forest's SO2 forecasting results

 Correlation

coefficient

Mean

absolute

error

Root mean

squared

error

Relative

absolute

error

Root relative

squared

error

1 0.6206 0.2584 0.5048 1.047741 0.793441

2 0.622 0.2562 0.5024 1.038972 0.789697

3 0.6258 0.2559 0.5008 1.037807 0.787212

4 0.6068 0.2609 0.5113 1.057754 0.803751

5 0.6442 0.251 0.4912 1.017619 0.772045

6 0.6233 0.2516 0.5015 1.020101 0.788248

7 0.6197 0.257 0.5033 1.042136 0.791155

8 0.6144 0.2605 0.507 1.05625 0.7969

9 0.6122 0.2561 0.5071 1.038337 0.797043

10 0.6444 0.2424 0.4901 0.983103 0.770297

11 0.6397 0.2456 0.4932 0.995759 0.775202

12 0.6164 0.2597 0.5083 1.053246 0.798978

13 0.6187 0.2534 0.5039 1.02736 0.792137

14 0.6046 0.2605 0.5121 1.05618 0.804941

15 0.6191 0.2489 0.503 0.100923 0.790706

16 0.6176 0.2561 0.5049 1.038677 0.793553

17 0.6172 0.2539 0.5055 1.029722 0.794556

18 0.6509 0.2433 0.4865 0.986438 0.764755

19 0.6145 0.2574 0.5081 1.043874 0.798647

20 0.6263 0.2526 0.4992 1.024312 0.784655

21 0.6379 0.2465 0.4928 0.999387 0.774631

22 0.6196 0.2582 0.5046 1.046937 0.793138

23 0.6363 0.2527 0.4958 1.024798 0.779303

24 0.6125 0.2605 0.5076 1.056174 0.797891

25 0.6222 0.2559 0.5025 1.037647 0.789837

Average 0.623476 0.254208 0.5019 1.03078244 0.78890876

73

Table A3.7. Random Tree's SO2 forecasting results

 Correlation

coefficient

Mean

absolute

error

Root mean

squared

error

Relative

absolute

error

Root relative

squared

error

1 0.3065 0.4618 1.0365 1.87263 1.629202

2 0.1438 0.5983 1.4033 2.42629 2.205711

3 0.2691 0.5468 1.0726 2.217332 1.686041

4 0.2798 0.4612 0.9395 1.870081 1.476811

5 0.171 0.4903 1.0816 1.98836 1.700107

6 0.268 0.4719 0.9447 1.913465 1.484943

7 0.1694 0.5798 1.346 2.350906 2.115749

8 0.2872 0.5396 1.1604 2.188219 1.823907

9 0.2625 0.4913 1.0137 1.992249 1.59333

10 0.2871 0.5452 1.2991 2.210945 2.042013

11 0.3256 0.4711 1.0661 1.910193 1.675713

12 0.1554 0.5798 1.3217 2.351171 2.077588

13 0.2503 0.5572 1.147 2.259314 1.802992

14 0.3391 0.4563 0.9577 1.850191 1.505337

15 0.2614 0.4899 1.2138 1.986457 1.90789

16 0.2312 0.4802 1.0393 1.947138 1.633697

17 0.2976 0.5522 1.2594 2.238984 1.979555

18 0.2553 0.5192 1.1234 2.105189 1.765775

19 0.3426 0.4444 1.0296 1.802052 1.618366

20 0.1514 0.6613 1.4368 2.681736 2.258489

21 0.1583 0.4979 1.107 2.019074 1.740071

22 0.21 0.55 1.4384 2.23038 2.260917

23 0.1932 0.6031 1.2406 2.445536 1.950102

24 0.3058 0.5044 1.0606 2.04555 1.667085

25 0.1898 0.5794 1.2133 2.349532 1.907153

Average 0.244456 0.525304 1.158084 2.13011896 1.82034176

74

Table A3.8. Rep Tree's SO2 forecasting results

 Correlation

coefficient

Mean

absolute

error

Root mean

squared

error

Relative

absolute

error

Root relative

squared

error

1 0.6971 0.1867 0.4569 0.757043 0.718113

2 0.6703 0.1923 0.4724 0.779593 0.742535

3 0.6705 0.1862 0.4739 0.755033 0.74493

4 0.6622 0.1889 0.484 0.766163 0.760829

5 0.7051 0.1788 0.4524 0.724943 0.711066

6 0.6526 0.1974 0.4831 0.800406 0.759416

7 0.7104 0.1849 0.4485 0.749669 0.705042

8 0.6498 0.1984 0.4842 0.804413 0.761111

9 0.6527 0.1912 0.4901 0.775477 0.770331

10 0.6199 0.2056 0.5045 0.83365 0.793039

11 0.6552 0.1894 0.4851 0.768126 0.762433

12 0.6653 0.1969 0.4762 0.798524 0.748567

13 0.6937 0.1834 0.4621 0.743891 0.726388

14 0.6364 0.1976 0.4994 0.801303 0.784949

15 0.7015 0.1878 0.4543 0.761648 0.714112

16 0.6684 0.1929 0.4806 0.782192 0.755371

17 0.6647 0.1875 0.4861 0.760346 0.764149

18 0.7041 0.1889 0.4521 0.765933 0.710675

19 0.665 0.1884 0.4775 0.764126 0.750567

20 0.6412 0.1943 0.4913 0.787863 0.7722

21 0.6637 0.1894 0.4788 0.768136 0.752575

22 0.679 0.1965 0.4701 0.796971 0.738934

23 0.704 0.1828 0.4524 0.74132 0.711173

24 0.6577 0.1946 0.4802 0.789094 0.754757

25 0.7056 0.1924 0.4514 0.780315 0.709494

Average 0.671844 0.190928 0.473904 0.77424712 0.74491024

75

APPENDIX 4 – R Code used for ARIMA forecasting

required libraries

library(forecast)

library('tseries')

library("readxl")

daily_data = read_excel('arima_PM.xlsx', sheet="Sheet1")

moving average

daily_data$ma = ma(daily_data$PM, order=2)

seasonal component calculation

count_ma = ts(na.omit(daily_data$ma), frequency=24)

decomp = stl(count_ma, s.window="periodic")

deseasonal_cnt <- seasadj(decomp)

the augmented Dickey-Fuller (ADF) test

adf.test(count_ma, alternative = "stationary")

train set and test set splitting

training<-deseasonal_cnt[1:5716]

testing<-deseasonal_cnt[5717:8164]

model fitting and forecasting

fit<-auto.arima(training)

fcast<-forecast(fit,h=2449)

accuracy(fcast,testing)

76

77

APPENDIX 5 – Example GP Tree Graphs

Figure A5.1. SO2 Tree Graph

Figure A5.2. PM Tree Graph

