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ABSTRACT 

AIR QUALITY TIME SERIES FORECASTING WITH GENETIC 

PROGRAMMING 

Taşbaş, Su 

MSc, Computer Engineering 

Advisor: Asst. Prof. Dr. Korhan Karabulut 

May 2018 

In this study, air quality time series forecasting is performed by using genetic 

programming. Based on the reports of World Health Organization and the other 

environmental agencies, it has been shown how crucial air quality forecasting is to 

prevent deaths and health issues caused by air pollution. The primary aim of this study 

is to contribute to increasing the usage of genetic programming for air quality 

forecasting and to show its competitiveness with several machine learning algorithms 

and autoregressive integrated moving average (ARIMA) model. The hourly 

meteorological data for one-year length is utilized to forecast sulphur dioxide and 

particulate matter gas concentrations. The forecasting problem was identified as a 

symbolic regression problem and the Java-based Evolutionary Computation Research 

system (ECJ) was utilized to apply genetic programming to the problem. In order to 

demonstrate the performance of genetic programming, the forecast results were 

compared to the results that were collected from several decision tree algorithms and 

an ARIMA model. The comparisons showed that genetic programming performed 

better even than the ensemble learning method. 

Key Words: genetic programming, air quality, time series forecasting
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ÖZ 

GENETİK PROGRAMLAMA İLE HAVA KALİTESİ ZAMANA BAĞLI 

SERİ TAHMİNLEME 

Taşbaş, Su 

Yüksek Lisans Tezi, Bilgisayar Mühendisliği Bölümü 

Danışman: Dr. Öğrt. Üyesi Korhan Karabulut 

Mayıs 2018 

Bu çalışmada, genetik programlama kullanılarak hava kalitesi zamana bağlı seri 

tahminleme gerçekleştirilmiştir. Dünya Sağlık Örgütü ve diğer çevre ajanslarının 

raporlarına dayanarak, hava kirliliğinin neden olduğu ölümleri ve sağlık sorunlarını 

önlemek için hava kalitesi tahminlemenin ne kadar önemli olduğu gösterilmiştir. Bu 

çalışmanın temel amacı, hava kalitesi tahmini için genetik programlamanın 

kullanımını arttırmaya ve makine öğrenmesi yöntemleri ve otoregresif bütünleşmiş 

hareketli ortalama (ARIMA) ile yarışabilirliğini göstermeye katkıda bulunmaktır. 

Çalışmada bir yıl süreyle saatlik olarak ölçülmüş meteorolojik veriler kükürt dioksit 

ve parçacık madde gaz yoğunlaşmalarını tahmin etmek için kullanılmıştır. Zamana 

bağlı seri tahminleme problemi sembolik regresyon problemi olarak tanımlanmış ve 

Java tabanlı Evrimsel Hesaplama Araştırma sistemi (ECJ) kullanılmıştır. Tahminleme 

sonuçları genetik programlamanın performansını göstermek için çeşitli karar ağacı 

algoritmalarından ve ARIMA modelinden elde edilen sonuçlarla karşılaştırılmıştır. 

Karşılaştırmalar genetik programlamanın topluluk öğrenme yönteminden bile daha iyi 

performans sergilediğini göstermiştir. 

Anahtar Kelimeler: genetik programlama, hava kalitesi, zamana bağlı seri 

tahminleme
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CHAPTER 1 

INTRODUCTION 

Air quality is one of the most important health problems nowadays to people of all 

ages. Air pollution affects all countries and societies. Ambient air pollution kills about 

three million people per year (World Health Organization, 2016). Approximately 94% 

of worldwide deaths occur due to the non-communicable diseases in adults. Examples 

are cardiovascular diseases (heart attack and ischemic heart disease), chronic 

obstructive pulmonary disease and lung cancer. The remaining deaths are due to acute 

lower respiratory tract infections in children under five years of age (World Health 

Organization, 2016).  

Based on the information gathered from the reports of World Health Organization 

(WHO) and the other environmental agencies, it has been revealed how critical air 

quality forecasting is in order to avoid deaths and health problems caused by air 

pollution. This study contributes to the solution of the problem identified in this 

direction. 

The ambient air quality is decreasing for certain reasons such as warming in the cold 

seasons, traffic pollution and harmful gas emissions near the residential section of the 

industry. The air quality fluctuates with the lower or higher concentration of the 

pollutant gases in the atmosphere over a period. Therefore, air quality forecasting is an 

example of the time series forecasting. Time series forecasting is mainly performed by 

artificial neural networks (ANN) and the traditional forecasting methods such as 

ARIMA  (Graff, Escalante, Ornelas-Tellez, & Tellez, 2016). In this research, genetic 

programming (GP) is applied to an air quality time series-forecasting problem.  

The Environmental Engineering Department of Dokuz Eylül University delivered air 

quality data used in this research. It involves one-year of hourly measures of 

meteorological attributes, Sulphur dioxide (SO2) and particulate matter (PM) gases 

that were recorded in 2013. The meteorological attributes are temperature, air pressure, 

humidity, wind speed, and wind direction. Time stamping attributes, such as the year, 

month, day and hour are included as well. 
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As an initial step, data pre-processing was applied to the data. First, it was decided 

which attributes should be discarded. Year and month information was removed. 

Instead, weekday attribute was included and utilized for input. Second, non-numerical 

attributes were transformed to numerical values. For example, wind direction attribute 

instances were in the form of compass directions. Additionally, weekday and hour 

attributes were trivial to use as numerical. Therefore, these categorical attributes were 

transformed to the numerical values by disjunctive coding technique. New columns 

were included referring to the conversion. Sixteen columns for wind direction attribute, 

twenty-four columns for hour attribute and seven columns for weekday attribute were 

added. For example, wind direction attribute has sixteen divisions such as 

northeast(NE) and south-southwest (SSW). Therefore, sixteen columns took the place 

of the wind direction attribute. The same process was applied to the hour attribute and 

weekday attribute. 

The second part of the pre-processing was normalization. After all the attributes were 

transformed to numerical values, normalization was applied to the whole data. To 

accomplish this, minimum, maximum and standard deviation values of all occurrences 

were found and utilized in normalization calculations. 

The next part of the pre-processing was adding moving average values of both 

observed Sulphur dioxide and particulate matter gases. Moving average values of 

gases were accepted as input attributes. The final pre-processing step was breaking 

down the whole data into training and test sets. Training and test set partitioning was 

performed by trend evaluation. Sulphur dioxide and particulate matter gases have 

different trend tracks. Therefore, percentage splits show a variance. 

After pre-processing was completed, the final version of data was ready to use in 

Evolutionary Computation for Java (ECJ) framework (Luke, 1998). With ECJ, the 

problem was set as a symbolic regression problem. All the attributes and operations, 

such as addition and multiplication, were defined as node object classes. Function set 

and other genetic programming settings of the problem were constructed in the 

parameter files. In the function set, attributes were applied as terminals and operations 

are accepted as non-terminals. Fitness evaluation was carried out on training sets. Error 

measures were calculated and written to both statistics and text files from test sets 

fitness evaluations. Recursive pre-process operations for the nodes were implemented 
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on the tree structures. Trees were written in dot style and visualized by Graphviz 

(Ellson, Gansner, Koutsofios, North, & Woodhull, 2002) application. 

After initial experiments with the default ECJ Koza parameter setting, it turned out 

that the results could be better according to the data mining algorithms’ results. 

Moreover, windowing approach was applied to the observed pollutant values as input 

but it made no progress. Therefore, the design of experiments (DoE) method was 

practiced. The experiments were handled in three stages. Different genetic 

programming parameters with varying values were attempted. Crossover, mutation, 

tournament selection, elitism and population size are example genetic programming 

parameters of experiment combinations. 

At the final stage, the experiment results were compared to the Weka classifier tree 

algorithm runs. A batch file was formed and covered three classifier algorithms' 

contexts. Each algorithm ran for twenty-five times, same as the genetic programming 

experiments. Moreover, the genetic programming model was compared to an ARIMA 

model to observe the performance comparison of genetic programming in compliance 

with a traditional approach for the time series forecasting. 

The contribution of this research is as follows: 

 In the previous air quality forecasting studies, the Genetic Programming approach 

has been applied less than other methods (traditional approaches such as ARIMA, 

and artificial neural networks). 

 Genetic programming produced better results than ensemble learning methods 

such as Random Forests and Random Tree.          

 The distinctive advantage of genetic programming is producing a tree model as the 

problem solution. 

There are several issues as the future work of this research. The initial point is the 

result models of the implemented genetic programming program. After final 

experiments, twenty-five distinct models are developed. The tree structures in the 

models might be expanded by changing the tree breeding algorithms in genetic 

programming. In this research, ECJ library was used as it is. Modifying the ECJ’s 

breeding functions may further improve generated tree models in forthcoming studies. 



4 

The second point is the models themselves. Neural networks are black box systems. 

Therefore, genetic programming is a stronger choice for circumstances which may 

need model analyses. The generated tree models may be investigated for air quality 

study. For example, the meteorological attributes used in the result trees may provide 

a view to further researches on the same or comparable data. 

The third point is the design of experiments. In this research, three experiments were 

performed and each of them involves various combinations of genetic programming 

parameters. The tested parameter combinations in this research might be utilized to 

determine the parameter combinations of future experiments.   

Another improvable argument of the research is the moving average computation 

technique. In this research, the simple moving average calculation was utilized as input 

for forecasting. For further explorations, other moving average calculations, such as 

cumulative moving average or weighted moving average, may yield better results. 

The final objective is that new air quality time series forecasting might be implemented 

with genetic programming by practicing this research. As it was pointed out before, air 

quality estimating is not commonly studied by genetic programming. Therefore, such 

as traffic-related air quality time series data might be inspected with the same 

procedures in this research. 

The thesis outline was planned as follows. Chapter 1 is the introduction of the research. 

Chapter 2 contains background information such as air quality, time series forecasting 

and genetic programming. Chapter 3 involves the previous research. In chapter 4, the 

implementation and the thesis study was explained in detail. Chapter 5 includes the 

conclusion and future research. 
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CHAPTER 2 

BACKGROUND 

2.1. Air Quality 

Clean air is one of the most vital needs for a healthy society. Therefore, in recent years, 

air quality forecasting has awakened considerable social awareness. Developing 

online and offline systems of pollutant gas concentrations to monitor and forecast are 

crucial in terms of preventing serious health problems. Major attempts have been 

performed by academics in air quality forecasting which mostly focus on the 

concentrations forecasting of PM10, PM2.5, SO2, NOx, CO and O3 (Wang, Wei, Luo, 

Yue, & Grunder, 2017). 

For several years, modelling methods based on analytical and numerical approaches 

have been applied further and further repeatedly to analyze the relations between air 

pollution and disorders or deaths, causing serious disputes on the importance of the 

data gathered and on the demand for proper education of professionals in these fields 

(Oliveri Conti, Heibati, Kloog, Fiore, & Ferrante, 2017).   

Air Quality Index (AQI) is a number to state the quality of air. It reports the pollution 

degree of the air, and the possible health effects which may occur. The AQI is mainly 

utilized to how people may be affected within a few hours or days after being exposed 

to pollutants in the air. Air quality index may vary from country to country. Countries 

have diversified levels with different ranges of the air quality indices according to their 

national air quality criterions.  

Air quality indexes are sorted by categories and each category have their own color, 

description, and health-related advises or warning.  Figure 2.1 and Figure 2.2 show the 

related AQI values, corresponding summary and details of concerns and related color 

that are used in the USA. 
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Figure 2.1. AQI Levels (USEPA, 2014) 

 

Figure 2.2. AQI Health Advise (EPA USA, 2007) 

The higher values of the AQI indicate the more air pollution and the more critical 

health problems might be seen. Being exposed to air pollution for both short-period of 

time, such as over a few hours or days, and long-period of time, which is over months 

or years, is relevant to the health effects. These health effects are acute health 

conditions, which occur with short-term exposure, and persistent health impacts, 

which occur with long-term exposure (EEA, 2017).   

In addition, according to  USEPA’s technical assistance document published in 2013 

(USEPA, 2013), pollutant sensitive groups are categorized on the basis of which 
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groups can be affected after the air quality exceeds 100, that is when it starts to become 

unhealthy for sensitive groups. The groups are as shown Figure 2.3. 

 

Figure 2.3. Pollutant-Specific Sensitive Groups (USEPA, 2013) 

According to the European Environment Agency’s report in 2017, the major sectors 

contributing most to air pollutant emissions in Europe are transportation, commercial, 

institutional and household sectors, energy production and distribution, industrial 

energy use, industrial processes and product use, agriculture and waste. Moreover, 

traffic and household emissions, which are described as emission sectors with low 

emission heights, usually have more impact to the health effects and surface densities 

in the urban sections than high emission heights (EEA, 2017). 

In Turkey, air pollution is a severe environmental problem due to rapid urbanization 

and economic growth. In some major urban areas such and industrial centers, air 

pollution threatens health because SO2 and particulate concentrations in these areas 

are above the national air quality standards (Büke & Köne, 2016; OECD, 2008). The 

national air quality index was created by adapting the EPA air quality index to Turkey's 

national legislation and boundary values. The national boundary values of nearly all 

pollutants utilized for air quality index calculation exceed EPA’s boundary values. In 

Turkey, the Ministry of Environment and Urbanization provides real time air quality 

index data by cities through the national air quality monitoring network (MoEU, n.d.).  

Air pollutants can be classified as primary or secondary. Primary pollutants are 

straightly transmitted to the atmosphere. Primary pollutants are primary PM, BC, 

Sulphur oxides (SOx), NOx (which consists of both NO and NO2), NH3, CO, methane 

(CH4), NMVOCs, C6H6, particular metals, and polycyclic aromatic hydrocarbons 

(PAH, including BaP). Secondary air pollutants are built in the atmosphere from 
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precursor pollutants. Secondary pollutants have secondary PM, O3 and NO2. Air 

pollutants might have a natural, anthropogenic or varied basis, resting on their causes 

or the origins of their harbingers (EEA, 2017). 

To date, the biggest environmental risk for health, which is responsible for about one 

in every nine deaths annually, is air pollution as both ambient (outdoor) and household 

(indoor). Ambient (outdoor) air pollution, primarily from non-communicable diseases, 

kills about 3 million people each year. Only one in ten people live in a city that 

complies with the WHO Air Quality Act (World Health Organization, 2016). Air 

pollution affects economies and societies’ quality of life and carries on to rise in a 

worrisome manner. Therefore, air pollution is a public health emergency. 

Since air pollution sources also produce pollutants that cause climate change (e.g. CO2 

or black carbon), air pollution is used as a sign of sustainable development. Policies 

for air pollution provide numerous benefits to human health. In addition, these benefits 

apply not only to air quality improvements but also to other health benefits such as the 

prevention of injury or the activation of physical activity. 

The first and essential step to be taken by public authorities at both national and 

municipality levels is to monitor air quality to overwhelm the multi-sectoral challenge 

of air pollution. Besides, there are still large monitoring and reporting differences 

between high-wage countries and low- and middle-wage counterparts. The vast 

majority of air quality data still comes from Europe and the United States; Africa, 

South East Asia and the Eastern Mediterranean remain behind.  

Non-communicable diseases in adults, such as cardiovascular disorders (stroke and 

ischemic heart disease), chronic obstructive pulmonary disease and lung cancer, cause 

about 94% of deaths worldwide. Acute lower respiratory tract infections observed in 

children under the age of five are the cause of remaining deaths. Ambient air pollution 

affects all regions of the world, even though, West Pacific and Southeast Asia are the 

most effected regions. Diseases caused by ambient air pollution kill about 3 million 

people per year (World Health Organization, 2016). 

Air quality index is calculated by using a piecewise linear function of the polluted 

concentration. The equation is: 
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𝐼𝑝 =  
𝐼𝐻𝑖 −  𝐼𝐿𝑜

𝐵𝑃𝐻𝑖 − 𝐵𝑃𝐿𝑜
 (𝐶𝑝 − 𝐵𝑃𝐿𝑜) +  𝐼𝐿𝑜 

  

(1)  

where, 

𝐼𝑝 = the index for pollutant 𝑝,  

𝐶𝑝 = the truncated concentration of pollutant 𝑝,  

𝐵𝑃𝐻𝑖 = the concentration breakpoint that is greater than or equal to 𝐶𝑝,  

𝐵𝑃𝐿𝑜 = the concentration breakpoint that is less than or equal to 𝐶𝑝,  

𝐼𝐻𝑖 = the AQI value corresponding to 𝐵𝑃𝐻𝑖,  

𝐼𝐿𝑜 = the AQI value corresponding to 𝐵𝑃𝐿𝑜. 

Table of breakpoints shown in Figure 2.4 for the AQI level is used for finding the 

concentration and equation result index breakpoints. If there are more than one 

pollutant measurements, then the highest AQI value is accepted. 

 

Figure 2.4. AQI Breakpoints (USEPA, 2013) 
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1 In some areas, AQI based on 1-hour ozone values would be more protective measure 

than 8-hour vales. In these cases, 1-hour ozone value might be considered when 

calculating the AQI. 

2 Higher AQI values (≥ 301) are not determined by 8-hour O3 values. 1-hour O3 

concentrations are used for calculating the AQI values of 301 or higher. 

3 These numbers might differ according to the different promulgated SHL for PM2.5. 

4 Higher AQI values (≥ 200) are not identified by 1-hour SO2 values. 24-hour SO2 

concentrations are used for calculating the AQI values of  200 or greater (USEPA, 

2013). 

 

There are also online AQI calculators available. For example, US Environmental 

Protection Agency (USEPA) has an AQI calculator at the AirNow website, which is 

shown in (Figure 2.5).  

 

Figure 2.5. AirNow AQI Calculator (USEPA, n.d.) 

Online air quality forecasting systems might give warnings for possible health 

complications that may be associated with air quality. For example, World Air Quality 



11 

Index project’s website (Retrieved March 28, 2018, from http://aqicn.org) is available 

to monitor instant or forecasted AQI values by countries and cities (Figure 2.6). 

 

Figure 2.6. Real-time AQI (WAQI, n.d.) 

2.2. Time Series Forecasting 

A time series is a collection of observations, each recorded at a particular time. If 

observations are made at constant time periods, the time series is a discrete-time time 

series. When observations are acquired perpetually over some time period, the time 

series is a continuous-time time series (Brockwell & Davis, 2002). A time series model 

is used for forecasting future values by using observed time series values. Time series 

data might have typical characteristics such as trend, seasonality and cyclical pattern.  

A trend is a tendency or continuous alteration to comparatively greater or smaller 

measures over a long duration. Each trend in time series is called as a trend cycle and 

a trend might not be linear (R. J Hyndman & Athanasopoulos, 2013). When a trend 

pattern demonstrates a general increasing aspect, it is called as an uptrend, and when 

a trend pattern displays a general descending aspect, it is called as a downtrend. Time 

series may have varying aspect move from an uptrend to a downtrend. Horizontal 

trends may occur when there is no trend.  

A seasonal pattern or seasonality occurs when a time series, which shows a repeating 

pattern at stationary periods, is affected by seasonal elements such as seasons of the 

year, holidays, etc. If the variations in a time series do not belong to a fixed time period, 

the cyclical pattern appears (R. J Hyndman & Athanasopoulos, 2013). Illustrations of 

different patterns are given in Figure 2.7. 
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Figure 2.7. Time Series Patterns (Krajewski, Ritzman, & Malhotra, 2007) 

Time series are used in statistics, management, health, tourism, energy, pollution, 

manufacturing, etc. (Aladag & Egrioglu, 2012). Time series forecasting is widely 

implemented as financial forecasting (Sapankevych & Sankar, 2009), gene expression 

(Bar-Joseph, 2004), meteorological forecasting such as ozone forecasting (Paci, 

Gelfand, & Holland, 2013), sea water level forecasting (Ali Ghorbani, Khatibi, Aytek, 

Makarynskyy, & Shiri, 2010) and wind speed forecasting (Graff, Pena, & Medina, 

2013), air quality forecasting (Rahman, Lee, Suhartono, & Latif, 2015).  

The most common methods used for time series forecasting are traditional methods 

such as simple moving average, exponential smoothing and autoregressive integrated 

moving average (ARIMA) (Poncela, 2004). ARIMA model was proposed by Box–

Jenkins in 1976 and it is one of the first time series models. ARIMA is extensible for 

autoregressive (AR), moving average (MA), autoregressive moving average (ARMA), 

and autoregressive integrated moving average (ARIMA). The crucial restriction of the 

ARIMA model is that the model can only perform efficiently with the stationary and 

linear time series (Rahman et al., 2015). 

Esling & Agon (2012) and Fu (2011) survey data mining methods applied to time-

series data. The other popular time series forecasting methods are neural networks (Qiu, 

Zhang, Ren, Suganthan, & Amaratunga, 2014), support vector machines 

(Sapankevych & Sankar, 2009), and evolutionary algorithms such as genetic 

programming (Santini & Tettamanzi, 2001) (Ahalpara, 2010). Additionally, 

combinations of these methods are getting more and more prevailing to achieve better 
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results in time series forecasting (Cortez, Rocha, & Neves, 2001) (Aladag & Egrioglu, 

2012) (Ferreira, Vasconcelos, & Adeodato, 2007) (Lee & Tong, 2011). 

Moreover, there are several software tools utilized for time series forecasting. For 

example, R Project (R Core Team, 2017) has a software package called as forecast, 

which can apply automatic ARIMA model applications on time series data (Rob J. 

Hyndman & Khandakar, 2008). Furthermore, Weka (Hall et al., 2009) has a software 

package called time series forecasting to model time series and provides sample data 

to experiment with time series modelling and forecasting (Bouckaert et al., 2013).  

To assess the forecast performance of a time series model, the measure of differences 

between the observed values and the values predicted by the model is utilized. There 

are several methods used for calculating the forecast error. 

Pearson coefficient correlation (R) is a statistical measure to show the statistical 

relevance between two values in the range of -1 to 1. While values near to 1 indicate a 

strong correlation, values approaching -1 indicate an opposite correlation, and values 

around 0 show a weak relationship. The formula is: 

𝑅 =  
∑(𝑋 − �̅�)(𝑌 − �̅�)

√∑(𝑋 − �̅�)2  √∑(𝑌 − �̅�)2 

 

(1)  

 

(2)  

𝑋 indicates observed values, �̅� indicates mean of 𝑋, 𝑌 indicates predicted values and 

�̅� indicates mean of 𝑌.  

Let  𝜃𝑖 indicate predicted values, 𝜃𝑖 indicates observed values and �̅� indicates a mean 

value of 𝜃𝑖 for the rest of the error measure formulas. 

The root-mean-square error (RMSE) is a commonly used measure of the differences 

between forecasted and observed values. The formula is: 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
 ∑(𝜃𝑖 −  𝜃𝑖)2

𝑁

𝑖=1
 

 

(3)  
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In time series forecasting, mean absolute error (MAE), which is also used in statistics 

as well, is used as a measurement of differences between observed and predicted 

values. The formula is: 

𝑀𝐴𝐸 =  
1

𝑁
 ∑ | 𝜃𝑖 −  𝜃𝑖| 

𝑁

𝑖=1

 (4)  

 

The relative absolute error (RAE) is the significance of the difference between the 

observed and the predicted values in terms of percentage. The higher relative absolute 

error indicates the bigger difference between the actual and predicted values. The 

formula is: 

𝑅𝐴𝐸 =  
∑ | 𝜃𝑖 −  𝜃𝑖| 𝑁

𝑖=1

∑ | �̅� − 𝜃𝑖| 𝑁
𝑖=1

 (5)  

 

Similarly, root relative squared error (RRSE) is another used forecasting accuracy 

measurement. The formula is: 

𝑅𝑅𝑆𝐸 =  √
∑ (𝜃𝑖 −  𝜃𝑖) 

2
𝑁
𝑖=1

∑ (�̅� −  𝜃𝑖) 
2

𝑁
𝑖=1

 (6)  

 

The certainty of estimates conducted by a time series model might particularly be 

established by examining how closely the model operates on new data which are not 

utilized when fitting the model (Hyndman & Athanasopoulos, 2013). For model fitting 

and model testing, the time series data are split into a training set and a test set. The 

time series model is constructed based on the training time series data and forecasting 

performance of the model is evaluated on the test time series data.  

2.3. Genetic Programming 

Genetic programming (GP) is an assortment of evolutionary computation approaches, 

which provide computers to solve problems systematically without demanding the 

user to determine the formation of the solution beforehand (Poli, Langdon, & McPhee, 

2008). Genetic programming is an endeavor to answer one of the essential questions 

in computer science as follows: 
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“How can computers learn to solve problems without being explicitly programmed? 

In other words, how can computers be made to do what needs to be done, without 

being told exactly how to do it?” (Koza, 1994). 

The question was answered as that computers can be set up by natural selection. 

Especially, it was explained that the field-independent genetic programming paradigm 

can develop computer programs which solve or nearly solve diverse problems in 

distinct fields (Koza, 1992).   

Genetic programming is an improvement over the traditional genetic algorithm. The 

genetic algorithm makes a population of individuals into a new generation of the 

population. Each individual in the population has a related fitness value. The genetic 

algorithm adopts the Darwinian doctrine of reproduction and survival of the fittest and 

naturally resulting genetic activities such as crossover (recombination) and mutation. 

In genetic programming, each individual of a population refers a computer program 

(Koza, 1992).  

Genetic programming has a wide range of application areas. For example, human-

competitive studies are antenna design (Lohn et al., 2003) and search algorithm 

evaluation in Chess (Hauptman & Sipper, 2007). Moreover, image and signal 

processing with genetic programming is commonly applied. The examples are satellite 

image processing for environmental studies (Chami & Robilliard, 2002) and signal 

processing algorithm evaluations (Holladay & Robbins, 2007). Furthermore, financial 

trading (Austin, Bates, Dempster, Leemans, & Williams, 2004; Potvin, Soriano, & 

Maxime, 2004) and economic modelling (Duyvesteyn & Kaymak, 2005) are one of 

the most popular practiced subjects in genetic programming.  

In addition, genetic programming is widely used in medicine, such as cancer research 

(Worzel, Yu, Almal, & Chinnaiyan, 2009), and bioinformatics, such as biological 

modelling (Jacob & Burleigh, 2005). The other example areas are industrial process 

control (Castillo, Kordon, & Smits, 2006), time series prediction such as financial time 

series prediction (Santini & Tettamanzi, 2001), real-time crash prediction 

(Chengcheng Xu, Wang, & Liu, 2013) and meteorology prediction (Rodriguez-

Vazquez, 2001). 

There are several widely used genetic programming tools and frameworks. In this 

study, the ECJ Evolutionary Computation Toolkit (Luke, 1998) which is written in 
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Java and is popular particularly with its genetic programming facilities is utilized. 

Moreover, EpochX (Otero, Castle, & Johnson, 2012) and JGAP (Chen, Chuang, & 

Tsai, 2001) are other open source genetic programming frameworks written in Java. 

Furthermore, TinyGP (Poli et al., 2008) is a symbolic regression centered genetic 

programming system which has implementations both in C and Java programming 

languages. Additionally, GPLAB is a genetic programming system for MATLAB 

(Silva, 2007). In addition, HeuristicLab framework, written in C# language, is utilized 

for genetic programming applications (Wagner & Affenzeller, 2002). 

In this research, time series prediction is handled as a symbolic regression problem 

with genetic programming. Symbolic regression discovers the best suitable model of 

the space of mathematical expressions for a given dataset without establishing any 

inferences related to the structure of the model function (Poli, Langdon & McPhee, 

2008). Symbolic regression is one of the most broadly examined applications of 

genetic programming (Bautu, Bautu, & Luchian, 2005; Hoai, McKay, Essam, & Chau, 

2002; Shengwu & Weiwu, 2003).  

The essential preparation steps for a genetic programming run are as noted below and 

in Figure 2.8: 

1. Specifying the terminal set, 

2. Specifying the function set, 

3. Determining the fitness measure, 

4. Determining the parameters to control the run, 

5. Specifying the termination criterion of the run. 

 

Figure 2.8. Fundamental steps of genetic programming (Koza et al., 2003) 

The first two preliminary steps are utilized to determine the search space. The terminal 

set might contain variables and numerical constants. The function set might simply 
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contain the arithmetic functions such as multiplication, division, addition and 

subtraction, and conditional statements. At the third step, the main target of the search 

is defined by the fitness measure. 

The fourth and fifth steps specify how the run is conducted. There are a number of 

control parameters in genetic programming. The example basic control parameters are 

the population size, the maximum number of generations, crossover, mutation and 

reproduction probabilities, the maximum depth of the program tree, the selection 

method of parents and the elitism (Koza, 1992). The termination criterion indicates 

when the run should be completed. For example, the number of generations can be 

specified as a control parameter and the run is terminated by reaching the maximum 

number of generations (Banzhaf, Koza, Ryan, Spector, & Jacob, 2000). 

After completing the preliminary steps, the execution process is started by launching 

the genetic programming run. The execution steps are as indicated below: 

1. Randomly generate an initial population of computer programs which consist of 

functions and terminals. 

2. Iteratively produce a generation from the population until the termination criterion 

is fulfilled by following the sub-steps: 

a. Implement each program in the population and assign its fitness utilizing 

the fitness measure of the problem. 

b. Choose by allowing reselection of one or two individual program(s) from 

the population with a probability according to fitness. 

c. Produce the new individual program(s) for the population by performing 

the next  genetic operations with indicated probabilities on the selected 

individuals in step (2.b): 

i. Reproduction: Replicate the chosen individual program to the new 

population. 

ii. Crossover: Generate new offspring program(s) for the new 

population by recombining arbitrarily selected fragments from two 

chosen programs. 
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iii. Mutation: Produce one new offspring program for the new 

population by randomly modifying an arbitrarily selected fragment 

of one chosen program. 

iv. Architecture-altering operations: Choose an architecture-altering 

operation from the present genetic operations and produce one new 

offspring program for the new population by implementing the 

adopted architecture-altering operation to one chosen program. 

3. After completing the termination criterion, pick the best program (the best-so-far 

individual) in the population generated during the run and assign as the result of 

the run. 

The result might be a solution or an approximate solution to the problem if the run is 

successful (Banzhaf et al., 2000). In genetic programming, computer programs and the 

problem solution are generally declared as syntax trees (S-expressions) rather than 

code lines (Poli et al., 2008). Figure 2.9 shows the representation of the program 

max (𝑥 + 𝑥, 𝑥 + 3 ∗ 𝑦). 

 

Figure 2.9 GP syntax tree representation of  max (𝑥 + 𝑥, 𝑥 + 3 ∗ 𝑦) (Poli et al., 2008) 

 

Examples of mutation and crossover operations made on the individuals are shown in 

Figure 2.10. 
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Figure 2.10 Examples of genetic programming operations (Lane, Sozou, Addis, & 

Gobet, 2016) 
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CHAPTER 3  

PREVIOUS WORK 

3.1. Genetic Programming 

Recently, Graff et al. (Graff et al., 2016) published a study that uses a similar 

methodology to this research. The study presents a comparison between genetic 

programming and traditional approaches for wind speed forecasting. Various types of 

time series from M1 and M3 competitions at different intervals such as a monthly, 

quarterly, and yearly were used for forecasting. Two different genetic programming 

systems were utilized. One is a steady-state system with tournament selection, and the 

other is enhanced with the resilient back-propagation (RPROP) method for the tree 

constants optimization. Various time series with different periods such as 

yearly, quarterly and hourly were used. Three function sets with different operators 

were utilized to the impact on the prediction quality.  

The research focuses on the effect of using different function sets rather than tuning 

the traditional GP parameters. Tree simplification was conducted by RPROP method. 

This procedure was applied to forecast the wind speed using genetic 

programming. Symmetric mean absolute percentage error (sMAPE) was used for 

measuring the performance. The study reveals that particular configurations of genetic 

programming are competitive against the traditional forecasters and genetic 

programming performs better scientifically in a number of cases. 

There is another study which focuses on a traffic flow data time series prediction by 

Xu, Li and Wang (C. Xu, Li, & Wang, 2016). This study presents a hybrid model using 

ARIMA and GP for short-term traffic volume forecasting. Several periods of traffic 

flow ranging between five, ten, and fifteen minutes were predicted in this study. The 

aim of combining models is improving the chance of obtaining the linear and nonlinear 

patterns, and better prediction performance. 

The study reported two advantages of genetic programming. The first advantage is 

producing mathematical equations as solutions which can be used practically in 

engineering applications. The other advantage is the solution of genetic programming 
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takes precedence over the black-box solutions in artificial intelligence models. The 

study claimed that machine running time is the crucial disadvantage of genetic 

programming. However, the study also indicated that the calibrated models of genetic 

programming could reduce the required time.  

Genetic programming was utilized to forecast the non-linear elements of the traffic 

flow time series in this study. Basic arithmetic operators, trigonometric functions such 

as sin and cos, and square operations were included in the function set. Reproduction 

operations were eliminated and crossover with the mutation is applied. The mean 

absolute error (MAE) was utilized for the fitness function. However, for a better 

comparison, three other error measurements were used as well, such as the mean 

relative error (MRE), the mean square error (MSE), and the mean square relative error 

(MSRE). 

The results of the study showed that developing a hybrid model obtains better forecast 

performance than ARIMA models. Moreover, the results indicated that predictions of 

the hybrid model have a higher correlation with the observed values. Therefore, the 

hybrid approach can obtain the attributes of the time series data better. The study 

concluded that hybrid models might be utilized for online traffic management and 

control. 

Vazquez and Escolar (Vázquez & Escolar, 2001) conducted another time series 

forecasting with genetic programming. The aim of the study is meteorological time 

series prediction by using genetic programming. The non-linear Auto-Regressive 

Moving Average with exogenous inputs (NARMAX) model was used as a base while 

implementing the genetic programming. 

The residual variance metric and the long-term prediction error (LTPE) were utilized 

to measure the model performance. The time interval in data is fifteen minutes with 

thirty-seven days. The data columns are date, time, temperature, relative humidity, 

wind velocity, wind direction and ground radiation. The study focuses on forecasting 

the temperature. Without using reproduction, crossover and mutation operations were 

utilized. Six days were used to carry on the experiment. The first four days were 

accepted as a training set, and the remaining two days are utilized for forecasting.  

The experiment results showed that the model representation is robust. Genetic 

programming was easily applicable to the different models such as the single-input-
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single-output (SISO), the multiple-input single output (MISO) and its expansion to the 

multiple-input-multiple-output (MIMO). Moreover, the study revealed that the 

developed modelling problem approach with genetic programming is a viable 

settlement for the meteorological time series forecasting. 

Furthermore, Graff, Pena and Medina (Graff et al., 2013) presented a study on wind 

speed forecasting with genetic programming. In this study, two different genetic 

programming systems were compared to the ARIMA for time series prediction. One 

genetic programming system used traditional fitness function and the other genetic 

programming system used modified fitness function. The input time series data 

contains one-year hourly wind speed measures. The data was split in two. In the first 

split, 291 days were evaluated as training and the next day was evaluated as a test. In 

the second split, 327 days were evaluated as training and the 328th day was evaluated 

as a test. 

Two ARIMA models were constructed for different time horizons prediction. One-step 

to six-step forecasting were performed and repeated for covering all the data. Ten 

separate runs were conducted for each system. From the ten best individuals of runs, 

the one whose prediction was better in both one-step and multiple step forecasting was 

chosen. For the performance comparison, the symmetric mean absolute error was 

utilized.  

The study results showed that genetic programming results were efficient for short-

term time series forecasting against the traditional forecasting methods such as 

ARIMA. Moreover, it was reported that genetic programming with modified fitness 

function produced better results than the traditional fitness function usage. Therefore, 

modifications for the fitness function could be beneficial for more accurate forecasting. 

3.2. ARIMA, ANN and FTS 

Rahman, Lee, Suhartono and Latif (Rahman et al., 2015) conducted the first relevant 

study about air quality forecasting. The study involves a time series forecasting model 

of monthly air quality index values by three different statistical models such as the 

Box–Jenkins approach of seasonal autoregressive integrated moving average 

(ARIMA), artificial neural network (ANN) and fuzzy time series (FTS). Data were 

collected from three different areas in Johor, Malaysia between 2000 and 2009. A 

performance comparison was made by utilizing the mean absolute percentage error 
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(MAPE), mean absolute error (MAE), mean square error (MSE), and root mean square 

error (RMSE). 

The ultimate goal of the study was developing the accurate statistical forecasting 

models and using the models to observe the air quality status. The data is split into 

training and test sets. The period from 2000 to 2008 was accepted as the training set 

and the data from 2009 were accepted as the test set. Twelve examinations were 

conducted in total. While using the Box-Jenkins modelling approach, writers included 

seasonal components in the ARIMA model, and it is called as SARIMA model. 

Moreover, the artificial neural network was utilized as a multi-layer perceptron (MLP).  

To find the best model statistically, root mean squared error is used as the determinant 

indicator. The study results revealed that the traditional ARIMA model surpassed the 

FTS model in two stations. These stations are located in urban areas. FTS model 

performance was better in the suburban area. In all three stations, artificial neural 

network method generated the most accurate predictions. In addition, writers reported 

that the basic form of ANN might be utilized for further prediction of pollutant gases 

because ANN is convenient for estimating the changing series with seasonal and trend 

characteristics, especially air quality time series. 

There is another study conducted by Peng et al. (Peng et al., 2017), which was based 

on the air pollutant concentrations forecasting which includes machine learning and 

an artificial neural network together. The study utilized a nonlinear machine learning 

algorithm by the randomized neural network, which is the extreme learning machine 

(ELM). The forecast data contains hourly spot concentrations up to forty-eight hours 

for six stations across Canada. The main concern of the study is the updatable forecast 

models in terms of real-time forecasting. To achieve this, the authors reported the need 

for developing nonlinear updatable models for real-time prediction. The study focuses 

on a proficient non-linear machine learning method for air quality forecasting. The 

method was easy to be updated when new data is available.  

The data was split as two years for training and three years for testing the model. Four 

air quality prediction models were examined and the climatology is utilized for 

performance comparisons. The models were the multiple linear regression (MLR), 

Online Sequential Multiple Linear Regression (OSMLR), Multi-layer Perceptron 

Neural Network (MLPNN), and Online Sequential Extreme Learning Machine 
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(OSELM). Mean absolute error (MAE), coefficient correlation and mean error 

measure metrics were used as forecast statistics. The results showed the capabilities of 

the updatable non-linear machine learning methods. The study revealed that these 

models might improve air quality predictions significantly. Moreover, it was reported 

that using the non-linear modelling and reasonable model updating together would be 

advantageous. 

3.3. Machine Learning Algorithms Used in This Study 

Random Forest, Random Tree and Rep Tree algorithms are utilized to compare genetic 

programming performance in this study. 

Random Forest is an ensemble machine learning algorithm. It is a combination of the 

Bagging algorithm and the random subspace method, which utilizes 

multiple randomized decision trees as the base classifier (Sammut & Webb, 2017). It 

performs classification and regression tasks (Breiman, 2001). Random Forests is a 

supervised learning approach and operates in accordance with the easy yet practical 

“divide and conquer” technique which samples portions of the data, builds a 

randomized tree predictor on each small sample and gathers the predictors 

together (Biau & Scornet, 2015). 

Random Tree is a supervised learning method. It is an ensemble learning algorithm 

which builds diverse separate learners. To construct a random set of data for building a 

decision tree, it uses a bagging idea. By utilizing the best split of all variables, each 

tree node is split. On the other hand, each tree node is split by utilizing the best among 

the subgroup of estimators randomly selected at that node in a random forest (Kalmegh, 

2015). Random Tree performs no pruning and selects a test according to a 

certain number of arbitrary features at each node. To build random forests, Random 

Forest uses bagging technique on random trees ensembles (Witten, Frank, & Hall, 

2011). 

Rep (Reduced Error Pruning) Tree creates a decision or regression tree utilizing 

information gain or variance reduction and prunes it by reduced-error pruning (Witten 

et al., 2011). Rep Tree is a fast decision tree learner and sorts values for numeric 

attributes one time only. Missing values are handled by splitting the corresponding 

instances into fragments (Dhakate, Patil, Rajeswari, & Abin, 2014). Rep Tree builds 

multiple trees in various iterations with the regression tree logic and chooses the best 
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one from all constructed trees. In pruning phase, the mean square error measurement 

is utilized on the estimations performed by the tree (Jayanthi & Sasikala, 2013).  

3.4. Air Quality Modeling Systems 

Next, there was another study conducted by Zhou et al. (Zhou et al., 2017) related to 

weather and forecast/chemistry model. In this study, comprehensive assessment of The 

Regional Atmospheric Environmental Modeling System for eastern China (RAEMS) 

was conducted. The fully online coupled weather research and forecasting/chemistry 

(WRF-Chem) model was established. The system generated daily predictions upto 

seventy-two-hours for a two years’ period (2014-2015). The authors reported that 

online systems might be advantageous in terms of analyzing the interactive relations 

between meteorology and chemistry. RAEMS is an online system and it perpetually 

supplies meteorological forecasts via SMS. Moreover, it was indicated that RAEMS 

is proficient at non-permanent fluctuation and spatial dispersion of vital pollutant gases 

over eastern China. 

The study produced forecasts with different lengths such as twenty-four, forty-eight 

and seventy-two hours. Prediction evaluations were done for a three-day output 

approach to distinguish performances between different time lengths. Average 

pollutant concentrations of 131 cities are forecasted during the study. Various error 

measure metrics were utilized for performance comparison, such as root mean squared 

error and correlation coefficient. It is shown that the overall results of the study on 

meteorological values, such as temperature, relative humidity and precipitation, were 

forecasted accurately. On the other hand, writers indicated that the model 

overestimates wind speed. However, the results were conventionally satisfactory for 

air quality modelling. 

Elbir et al. (Elbir, Kara, Bayram, Altiok, & Dumanoglu, 2011) presented a study of 

traffic-related air pollution forecasting with an operational street pollution model 

(OSPM). The particulate matter (PM10) concentrations in five different street canyons 

in Izmir, Turkey was predicted. Some of the streets showed symmetric canyon 

characteristics and others showed asymmetric canyon characteristics. 

Writers reported that traffic was one of the crucial air pollution cause in the city. In this 

study, different street canyon models constructed to observe the effects of traffic 

emissions in street canyons. Therefore, contributions from dissimilar sources were 
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accepted as the background pollution. The traffic volume information was categorized 

as motorcycle, passenger cars, vans, and trucks and buses. In addition to the traffic-

related parameters, meteorological parameters were collected as well. One week long 

hourly measurements were utilized as data. Statistical investigations conducted by 

utilizing the correlation coefficient of determination (R2), the fractional bias (FB), and 

the index of agreement (IA) metrics. 

Results showed that at the symmetric canyons, the model performed statistically good 

forecasts. The study showed that for the symmetric canyons, the predictions of non-

permanent changes of the model were accurate. On the other hand, results concluded 

that the model did not perform well for the asymmetric street canyons. Thus, the 

writers reported that the OSPM model might be utilized as a forecasting tool in terms 

of the streets' traffic-related air pollution detection. 
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CHAPTER 4 

IMPLEMENTATION 

4.1. Data Preparation 

To begin with, Environmental Engineering Department of Dokuz Eylül University 

delivered the air quality data. It contains hourly meteorological and pollutant gas 

measures for Çanakkale in 2013. Every data row has the month, day and hour columns. 

The date starts from January 1 and ends in 31th of December. The data pre-processing 

was required because there were empty cells in the hour and observed gas columns. 

First, the missing hour values were filled in the initial data. Then, the pollutant gas 

attribute rows with empty cells were discarded separately. 

As the next step, data were examined for the redundant columns. Since the hourly 

measures are more meaningful in terms of the air quality prediction, year and month 

attributes were removed. Instead of the excluded attributes, weekday column is 

included. In addition, instead of using the initial values of SO2 and PM gas measures, 

using the temporal fluctuations is more meaningful to forecast. Thus, differences 

between rows were calculated by subtracting previous cell values from the initial cell 

values and utilized as observed gas measures. Eventually, there are nine attributes in 

the data. These attributes are the hour, weekday, wind speed, humidity, air pressure, 

temperature, wind direction, SO2 and PM measures. 

After the data cleansing process, normalization was required to be implemented. Since 

the scale of the attributes varies, it is difficult to correlate the relationship between the 

attributes. To achieve this, a common scale for all the attributes was provided by 

normalization. Before normalization, non-numeric attribute values were converted to 

numeric values. For a better application, categorical and date attributes needed to be 

revised. For example, wind direction attribute has the compass direction values such 

as ‘N’, ‘NNW’, and ‘SE’. Wind direction and date attributes were impractical to be 

utilized as numerical values. Therefore, they were transformed from nominal values to 

numerical values by disjunctive coding technique. 
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To apply disjunctive coding method, new columns were added up to the number of 

categories in each attribute. For example, wind direction has sixteen categories. 

Therefore, instead of one wind direction attribute, sixteen categories were utilized to 

generate wind direction columns. For instance, if a row’s wind direction value is ‘S’, 

S column’s value was set to one and other wind direction columns’ values were set to 

zero. The same procedure was applied to date attributes as well. Although date attribute 

values were numerical, they were trivial to be utilized as numerical. Therefore, hour 

and weekday attributes were discarded and new columns were included up to twenty-

four for hour attribute and seven for weekday attribute. 

After all the attributes were transformed to numerical values, the standard deviation 

and mean values were calculated. T-statistic normalization was applied to all attributes. 

The general t-statistic formula is: 

𝑔(𝑥, 𝑋) =  
𝑥 −  �̅�

𝑠
 

(7)  

 

where 𝑥  indicates observed values, 𝑠  indicates the standard deviation of 𝑥 , and �̅� 

indicates the mean of 𝑥. 

The pre-processing operation steps were applied separately for both SO2 and PM 

values. The two new datasets were utilized as input for forecasting individually. Before 

completing the data pre-processing, the simple moving average values of both 

observed pollutants were calculated to improve prediction by highlighting the hourly 

patterns in data. To achieve this, the average of the summation of each value of SO2 

and PM columns with the previous values was calculated. The computed values were 

included in the dataset as the moving average attribute. The simple moving average 

formula is:  

𝑥𝑆𝑀𝐴 =  
1

𝑛
∑ 𝑥𝑝−𝑖

𝑛−1

𝑖=0

 (8)  

 

Where 𝑛 is the number of previous values and 𝑥𝑝 indicates observed values. 

Next, train and test set split percentages were identified by inspecting both data sets. 

According to the trend analysis, 70% of data was defined as a training set and 30% of 

data was defined as a test set. Since the data is a time series data, the splitting was 
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applied sequentially instead of doing it randomly. Training and test set split points for 

SO2 and PM values are shown in Figure 4.1. Training and test sets were converted to 

the attribute-relation file format (ARFF) by using Weka. Thus, the data pre-processing 

was completed. 

 

 

Figure 4.1. Train and test sets split points 

4.2. Defining the Problem as a Symbolic Regression Problem 

After preparing the datasets, the air quality forecasting was defined as a Symbolic 

Regression problem in ECJ framework (version 25). Firstly, except for the observed 

gas attributes, all attributes in the dataset were defined as Java classes individually as 

required by the framework. These attributes were used as problem inputs. Therefore, 

each of them had an index value, which was matched to the dataset order. By this way, 

when the genetic programming tree was bred, the program understands which input 

attribute corresponds to which Java class. 

Moreover, each attribute class was utilized as a terminal tree node. Each attribute class 

includes a common function, which returns the number of expected children by the 

node attribute. Since these attributes are terminal nodes, the number of expected 

children for each of them is zero. In addition, an Ephemeral Random Constant (ERC) 

class was used a terminal node. In this research, ECJ’s RegERC Java class was utilized 

to generate random constants. It has an interval between -1.0 and 1.0. 

On the other hand, there are other node classes, which require expected children. These 

are the non-terminal tree nodes. Some arithmetic and the logical operations were 

defined as non-terminal nodes. Arithmetic operations are addition, subtraction, 

multiplication, division, square root and square functions. Logical operations are if-

then-else, equal, greater than, greater than equal, less than and less than equal functions. 
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Square root and square functions require one excepted children. The if-then-else 

function needs three excepted children. The first child is utilized as the condition, the 

second child is used as the true consequent, and the third child is used as the false 

consequent.  

Logical operations have a special case. As it was indicated before, there are categorical 

attributes values in the dataset. These attributes were useless to be utilized in 

arithmetical operations. Therefore, logical operations became a necessity. Since the 

categorical attributes were normalized by using one and zeros with the disjunctive 

coding technique, logical operations implementation differed from other operations. 

Except for if-then-else operation, other logical operations compare two children. Since 

the first child of if-then-else operation is a condition, its value must be true or false. To 

achieve this, the other logical operations own a common Boolean variable. This was 

provided by an interface, which obligates overriding a function that returns a Boolean 

variable. The comparison result of two children nodes was assigned to the Boolean 

variable. If-then-else operation calls the function and utilizes its return value as a 

condition. The structure of the if-then-else operation is shown in Figure 4.2. 

  

Figure 4.2. If-then-else operation 

In addition, all the node Java classes are obligated to own a name attribute. The name 

variable was assigned and returned with a function. For instance, the addition operation 

node name was defined as ‘+’, or greater than equal operation node name was defined 

as ‘>=’, etc. 

4.3. Methodology of Training and Evaluating Prediction Performance 

The problem was defined in a GPProblem Java class. Training and test sets were read 

from files in this class. First, the training set was read line by line. For every single 

line, input attributes were read and put into an array. At the end of every line, the array 

was added to an array list, which was stored as training input set.  After reading input 
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attributes, output attribute was read and the same process was repeated for the training 

set. The same steps were applied to test set as well. Therefore, there were four array 

lists, which were training input set, training output set, test input set and test output set. 

Training sets were utilized in problem evaluation and test sets were utilized in post-

evaluation step. Populating array lists was executed in the setup function. 

The problem’s individual evaluation was executed in evaluate function. First, pre-

processing was applied to tree nodes recursively. It started from the deepest level 

children and ended at the topmost level children. 

One of the main problems in genetic programming is bloat that is the trees grow too 

large. A preprocessing step was added, in order to eliminate useless nodes. For the non-

terminal operations addition and subtraction, children whose values were zero were 

checked and the sub-trees were eliminated from the tree. To achieve this, the sub-tree 

child node was assigned to the other non-zero value child node. For instance, if there 

was a summation parent node, and children nodes’ values were zero and an arbitrary 

double value, then summation node and its children nodes were eliminated from the 

tree. Instead, the child node of the parent node of summation node was assigned to the 

non-zero node, which was the other child node of the summation node. 

Moreover, child nodes with zero and one values were checked for division and 

multiplication operations as well. If a child node was multiplied or divided by one, the 

same process was applied by the previous control operation. However, if zero, or child 

with value zero node was the dividend in a division sub-tree multiplies a child node, 

then the same process was applied but the new child node was assigned to zero value 

node.   

For the if-then-else node, the consequent children nodes were checked in the tree pre-

processing. If both of the nodes’ values were the same, then the same operation was 

conducted with the arithmetical operations and the first consequent child node was 

assigned as the new child node to the parent node of the if-then-else node. 

After the tree pre-processing operation, training input set instances were utilized one 

by one in a loop. In every step, the instance of input attributes was assigned to an array. 

As it was indicated before, ECJ matches the attributes with the corresponding Java 

classes, which has the same index information. For example, if the wind speed attribute 

was the first attribute of the input instances, then the wind speed attribute was the first 
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element in the instance array and it was matched with the wind direction Java class, 

whose index was zero as well. 

Next, in the same loop, training output set’s value at the same index was assigned to a 

variable, which was an observed pollutant value. The individual’s tree was evaluated 

and produced a value. The value was used as the forecasted value. The square of the 

differences of the observed and predicted values was summed in the loop. After the 

loop ends, the summation was divided by the training set size. Eventually, the square 

root function was applied to the final value and fitness of the individual was calculated. 

The training set fitness was computed by using the root mean square error (RMSE) 

measure. The KozaFitness Java class was utilized as the individuals’ fitness setup. 

Moreover, if-then-else nodes were checked recursively at the tree post-processing as 

well. To achieve this, two integer variables were added to if-then-else node class as 

true and false counts. The count values were increased according to the condition 

node’s true or false value. At the post-processing, these counts were compared to the 

data size for eliminating tautology and fallacy. If the true or false count was matched 

with the data size, the parent node’s child node was changed by the if node’s true or 

false child node. 

As the final step of individual evaluation, the individual was checked as evaluated. 

Therefore, if the individual does not change, the next time individual evaluation can 

be skipped. Eventually, individual evaluation step was completed. 

After evaluation process on the training data, post-processing was applied to the test 

data by using the best individual from the training evaluation. This process was 

conducted in the describe function. The same steps with the evaluation process were 

applied. Since there was only one individual (the best performing individual), post 

evaluation was applied only once. The test set was utilized in a loop likewise. For the 

fitness evaluation, five error metrics were calculated. These were the root mean square 

error, mean absolute error, correlation coefficient, relative absolute error and root 

relative squared error measures. After computations, results were written to both stat 

files and separate text files. Thus, the symbolic regression problem evaluation was 

completed. 
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4.4. Parameter Setting 

Next step was configuring the genetic programming settings. In ECJ, settings are kept 

in parameter files. As it was mentioned before, ECJ links the attribute Java classes to 

the input file instance attributes in the tree evaluation process. To achieve this, function 

set was defined in a parameter file. The function set must have a size and each function 

needs a constraint. All the terminal and non-terminal node functions were added to a 

function set. Each had varied constraints. For instance, categorical attributes like wind 

direction attribute or weekday attribute had a Boolean constraint. On the other hand, 

an if-then-else operation had a different constraint, who had three children and its 

children had different types. The parameter file used for setting the terminal and non-

terminal nodes is given in Appendix 1. 

After defining the function set and function constraints, the population size and the 

number of generations were configured. The symbolic regression problem Java class 

was also assigned to the related genetic programming problem parameter. Moreover, 

since the double data type was used in tree evaluations and node constraint types, a 

Java class was created and utilized as the problem data. All the non-terminal and 

terminal node attributes and functions used the same data type.  

Next, the common genetic programming parameters were defined based on the default 

Koza parameters in ECJ. Desired parameters were modified. For example, in Koza 

settings, mutation is not used in breeding operations. While conducting experiments, 

mutation pipeline was utilized and its probability was configured as well. The 

crossover probability, elitism, tournament selection size, the tree builder, the minimum 

and the maximum tree depth, and the number of jobs parameter settings were modified 

with respect to the experiment configurations.  

In addition, stat files were modified as well. At the end of each run, one stat file was 

created. Instead of printing all the generations’ individual details, the best individual 

details such as the training data fitness, test data error measurements and the tree model 

were written to the stat files. The tree model output style was defined as the graph 

description language format (DOT). The definition was made by the print style 

parameter. The output tree models were examined by using the Graphviz (Ellson et al., 

2002) program. 
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Moreover, the terminal output details were modified as well. Since the necessary 

details were written to the stat files, the used parameters were written to the console 

for parameter usage controls. These modifications were configured in the parameter 

files by setting the related parameters. 

After the program setup was completed, experiments were conducted. First, default 

Koza parameter configuration was utilized, and the program was run based on the 

Koza parameters. The results were compared to the Weka classifier tree algorithms 

such as Random Forest, Random Tree and Rep Tree algorithms. In Weka, the training 

data was defined as a training set and test data was assigned as a test set. The training 

and the test data were the same in both ECJ and Weka. It was observed that tree 

algorithms’ results were better. Therefore, parameters were modified and the 

comparison was conducted again. At first, every run for each change was conducted 

by the same seed values. When the improvement was detected, multiple runs were 

conducted by using the random seeds and comparisons were made according to the 

runs’ results. The results again showed that ECJ results were still worse. To bring a 

different approach, windowing method was tried. 

The previous instance or more than one previous instances’ observed output values 

were utilized as input for the instance in a manner similar to the moving average 

method. Instead of average, the exact values were used. The window size was 

broadened up to five. After observing each of the windowing results, it turned out that 

the error measures were needed to improve. To achieve this, the full factorial design 

approach was used. After investigating each of the changes of the results based on the 

parameter modifications, certain parameter effects were observed and included in the 

experiment combinations. Three experiments were conducted. The full-factorial 

experimental design was generated in the R Project (R Core Team, 2017). Since the 

correlation coefficient and the root mean squared error are the commonly used error 

metrics, these errors metrics of experiments results were investigated and utilized to 

determine the best parameter combinations. 

In the first experiment, population size, elite count, tournament size, crossover rate and 

the maximum depth of tree parameters were changed. It was not known that which 

parameters were effective, so it was not known how effective these were. Therefore, 

the first experiment was designed in this way. The number of generations and the tree 

builder parameters remained the same. 1215 runs with 750 generations for each run 
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were conducted. The tree builder was set to Full Builder. The crossover and 

reproduction rates changed according to the experiment result. For example, if the 

crossover rate was set to 0.70, the reproduction rate was set to 0.30 respectively. Elite 

count experiment was set as the percentage of the given population. For instance, if 

the population size was two hundred and fifty and the elite count rate is 0.1, then the 

elite count was calculated as twenty-five. Mutation operation was not used in the first 

experiment. The seed parameter varied by the experiment design. The number of breed 

threads and the evaluation threads were set to four. Each experiment was repeated for 

five times. The parameter tuning was applied as: 

 Generations = 750 (constant) 

 Tree Builder = Full Builder (constant) 

 Population Size: {250, 500, 750} 

 Tournament Size: {2, 5, 7} 

 Elite Count Percentage: {0.01, 0.05, 0.1}  

 Crossover Rate: {0.7, 08, 0.9} 

 Tree Size: {5, 6, 7} 

 The number of jobs for each experiment = 5 

 35 x 5 = 1215 runs 

The execution order determined by the Design of Experiment (DoE) plugin for R is 

shown in Figure 4.3. 

 

Figure 4.3. The first experimental design generated by R DoE plugin 

The first experimental results were analyzed in R Project by considering both 

correlation coefficient and root mean squared error measures metrics. The interval 

name run.no.in.std.order run.no run.no.std.rp popSize tournamentSize eliteCount crossoverProbability Blocks

1 64 1 64.1 250 2 0.05 0.9 0.1

2 22 2 22.1 250 5 0.1 0.7 0.1

3 55 3 55.1 250 2 0.01 0.9 0.1

4 56 4 56.1 500 2 0.01 0.9 0.1

5 51 5 51.1 750 5 0.1 0.8 0.1

6 78 6 78.1 750 5 0.1 0.9 0.1

7 30 7 30.1 750 2 0.01 0.8 0.1

8 45 8 45.1 750 7 0.05 0.8 0.1

9 58 9 58.1 250 5 0.01 0.9 0.1

10 42 10 42.1 750 5 0.05 0.8 0.1
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plots of significance for effects are included in Appendix 2. The bigger values of the 

population size, the tree size and the elite count percentage gave better results. The 

population size was set to one thousand. Since bigger values of the tournament size 

and crossover rates did not improve the results, smaller values were selected in order 

to save computation time. The tournament size was set to two. The maximum tree size 

was selected as seven based on the reasonable tree models. It was observed that when 

the tree size was bigger, the generated tree models were more comprehensible. It was 

not planned to increase the maximum tree size more than seven because this time the 

tree models became too complex to obtain a reasonable prediction.  Therefore, the 

second experimental design was made with parameters, which created an alteration 

respectively. 

In the second experiment, the mutation was included as well. The probability rate was 

assigned as the same as the first experiment. If the experiment indicated the mutation 

usage, the second pipeline was set to mutation pipeline instead of reproduction pipeline. 

In addition, the number of generations was increased to two-thousand and the 

population size was set to one-thousand. Since the population size was not changed, 

the percentage used for the elite count was eliminated. The maximum depth of the tree 

parameter was assigned as seven and the tournament size was set to two. Each 

experiment was conducted for five times. The parameter tuning was applied as: 

 Generations = 2000 (constant) 

 Tree Builder = Full Builder (constant) 

 Population Size = 1000 (constant) 

 Tree Size = 7 (constant) 

 Tournament Size = 2 (constant) 

 Elite Count: {100, 150, 200} 

 Crossover Rate: {0.25, 0.5, 0.75} 

 Mutation Usage: {T, F} (indicates the usage of mutation or reproduction pipeline) 

 The number of jobs for each experiment = 5 

 32 x 2 x 5 = 90 runs 
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The execution order determined by the Design of Experiment (DoE) plugin for R is 

shown in Figure 4.3. 

 

Figure 4.4. The second experimental design generated by R DoE plugin 

In the second experiment, a parameter file was overridden for mutation usage to 

override the pipeline source at run-time. Hence, the parameter file was modified based 

on the experiment parameters. If the experiment indicated mutation usage, the 

parameter file was overridden to set the second pipeline source to mutation pipeline. 

The experiment results again analyzed with R. The better results’ parameter variables 

were selected as the final experiment. It was observed that final experiment parameters 

for SO2 and PM datasets are varied. Therefore, two different parameter tunings were 

applied to data sets. 

4.5. Performance Evaluation of the Genetic Programming Model 

In the final experiment, seed values were set randomly by using time variable in ECJ. 

The number of jobs parameter was assigned to twenty-five. The population size, 

tournament size, tree builder and the number of generations remained the same. Elitism 

and pipeline probabilities were changed. The parameter values selected for SO2 

forecasting were: 

 Generations = 2000 (constant) 

 Tree Builder = Full Builder (constant) 

 Population Size = 1000 (constant) 

 Tree Size = 7 (constant) 

 Tournament Size = 2 (constant) 

 Elite Count: 100 

name run.no.in.std.order run.no run.no.std.rp EliteCount CrossoverRate useMutation Blocks

1 15 1 15.1 200 0.5 FALSE 0.1

2 13 2 13.1 100 0.5 FALSE 0.1

3 18 3 18.1 200 0.75 FALSE 0.1

4 10 4 10.1 100 0.25 FALSE 0.1

5 16 5 16.1 100 0.75 FALSE 0.1

6 8 6 8.1 150 0.75 TRUE 0.1

7 7 7 7.1 100 0.75 TRUE 0.1

8 5 8 5.1 150 0.5 TRUE 0.1

9 4 9 4.1 100 0.5 TRUE 0.1

10 17 10 17.1 150 0.75 FALSE 0.1
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 Crossover Rate: 0.25 

 Mutation Usage: false 

 The number of jobs = 25 

 Seed = time 

The parameter values selected for PM forecasting were: 

 Generations = 2000 (constant) 

 Tree Builder = Full Builder (constant) 

 Population Size = 1000 (constant) 

 Tree Size = 7 (constant) 

 Tournament Size = 2 (constant) 

 Elite Count: 200 

 Crossover Rate: 0.25 

 Mutation Usage: false 

 The number of jobs = 25 

 Seed = time 

The detailed results obtained by the developed GP and the Weka algorithms are given 

in Appendix 3. The resulting error measures obtained in the final experiment were 

compared to the Weka tree algorithms’ results. It was noticed that the average values 

of the five error measures were better than the Weka algorithms’ average error 

measures. Moreover, the statistical significance testing (t-test) approach was applied 

to the final results as well. Each of the Weka algorithms’ averages of 25 runs was 

compared to the genetic programming regarding the t-test. The significance level for 

the t-test was set to 0.05. The results of the t-test are shown in Table 4.1. The test was 

conducted for all the error measure metrics such as the correlation coefficient, mean 

absolute error, root mean squared error, relative absolute error and root relative squared 

error. The significance test scores showed that the genetic programming was better 

than Weka classifier tree algorithms at forecasting for both SO2 and PM gas measures 

in every metric. 
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Table 4.1. t-test comparisons over averages of 25 runs of GP and decision tree 

algorithms  
SO2 

     

 
Correlation 

coefficient 

Mean 

absolute 

error 

Root mean 

squared error 

Relative 

absolute 

error 

Root relative 

squared error 

GP vs 

Random 

Tree 

0.0x10-12 0.0x10-12 0.0x10-12 0.0x10-12 0.0x10-12 

GP vs 

Random 

Forest 

0.0x10-12 0.0x10-12 0.0x10-12 0.0x10-12 0.0x10-12 

GP vs Rep 

Tree 

0.3644x10-8 0.0x10-12 0.1704x10-8 0.0x10-12 0.0x10-12 

      

PM 
     

 
Correlation 

coefficient 

Mean 

absolute 

error 

Root mean 

squared error 

Relative 

absolute 

error 

Root relative 

squared error 

GP vs 

Random 

Tree 

0.0x10-12 0.0x10-12 0.0x10-12 0.0x10-12 0.0x10-12 

GP vs 

Random 

Forest 

0.0x10-12 0.0x10-12 0.0x10-12 0.0x10-12 0.0x10-12 

GP vs Rep 

Tree 

0.18022x10-7 0. 29x10-10 0.7249x10-8 0.0x10-12 0.0x10-12 

 

The Random Tree algorithm produced the worst results for both of the gas measures. 

While the correlation coefficient result for PM was better than SO2, the remaining error 

results were worse than SO2. The Random Forest tree algorithm produced better results 

in every error metrics than the Random Tree algorithm for both of the gas measures. 

While the correlation coefficient, relative absolute error and root relative squared error 

results were better for PM, mean absolute error and root mean square error measures 

were worse than SO2 error measures.  The Rep Tree algorithm was the best of all tree 

algorithms for each error metrics. It was observed that the coefficient correlation, 



42 

relative absolute error and root relative squared error results were better for SO2 

pollutant forecasting. The other error measures were better for PM. In addition to these 

results, the genetic programming produced significantly better results than the other 

algorithms. The results showed that for each error metrics, SO2 pollutant prediction 

was slightly better than PM pollutant prediction. 

As the final comparison, genetic programming’s performance was compared to an 

ARIMA model using R Project. R Project (R Core Team, 2017) is an open source 

framework for statistical computing. The forecast package in R Project supports 

automatically generated optimal ARIMA models (Dalinina, 2017). The sample 

implementation code was included in Appendix 4. While constructing the ARIMA 

model, the time series data was utilized as it is. Only the pollutant gas values were 

converted to their normalized forms. In addition, moving average values were added 

to the model. The seasonal component of the time series was calculated by the stl 

function. The frequency parameter utilized for constructing a time series object was 

set daily since the data consists of the hourly measures.  Then, seasonal adjustment 

function was used to eliminate the seasonality from the time series.  

Next, since the time series were required to be stationary to use the ARIMA model, the 

augmented Dickey-Fuller (ADF) test was applied to the data.  Therefore, it was 

confirmed that the air quality time series was stationary. Next, the data was split into 

a training set and a test set. The data was divided into a train set and test set similar to 

the genetic programming and Weka tree algorithm experiments. The train set was 

utilized for constructing the ARIMA model. The test set was used for forecasting. The 

model was constructed based on the training set and the forecasting was made based 

on the test set.  

The different point of the experiment was that with ARIMA, the data was handled as 

a time series. On the other hand, with genetic programming, the numerical prediction 

as a regression on the time series data was conducted. The experiment results differed 

for SO2 and PM gases. The mean absolute error and the root mean squared error 

measure metrics were analyzed for performance comparison. It was observed that 

ARIMA model performed better at the SO2 gas prediction for both of the error measure 

metrics. On the other hand, the genetic programming model produced better result of 

SO2 forecasting than ARIMA model for mean absolute error measure metric. 
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Table 4.2. ARIMA forecast results  

 

 

 

 

 

 

 

 

PM RMSE MAE  SO2 RMSE MAE 

ARIMA 

Training 

set 

0.2386032 0.1591638  Training 

set 

0.4971606 0.2060416 

Test set 0.6214668 0.410306 Test set 0.3912609 0.1772004 

GP 

Test set 

(average) 

0.764172898 0.486630375  Test set 

(average) 

0.44337426 0.167358973 

Test set 

(best) 

0.760064331 0.481893545 Test set 

(best) 

0.435097259 0.163717903 
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CHAPTER 5 

CONCLUSIONS AND FUTURE RESEARCH 

In this study, air quality time series prediction is conducted by genetic programming 

approach. The forecasting problem is defined as a symbolic regression problem using 

the ECJ framework. One year-long air quality metric measurements per hour in 

Çanakkale region are utilized as input data, and SO2 and PM gas measures are used as 

the observed data. The aim of this research is constructing a numerical prediction 

model by using genetic programming on the given dataset. The dataset is evaluated as 

a time series. Moreover, normalization, windowing and moving average calculations 

are utilized in order to obtain better forecasting results. 

Different genetic programming parameter combinations are tested to determine the 

best combination of parameters. The default Koza parameter settings in ECJ is used as 

an initial step. To understand the success of the problem fitness, Weka classifier tree 

algorithms are run on the same dataset to make a comparison. These algorithms are 

Rep Tree, Random Forest and Random tree algorithms. Train set and test set division 

is applied to the data. Test set error measure metrics are utilized for comparison such 

as the correlation coefficient and root mean squared error. It is observed that Koza 

parameter settings produce worse results than tree algorithms. Thus, a full factorial 

design approach is utilized. 

In the first design of experiment test, different values of genetic programming 

parameters such as crossover probability, tournament selection size and population 

size are considered. The first results show us that some parameters with certain values 

can provide better results. Therefore, the second experiment is carried out by focusing 

on the prominent parameters. Constructed tree models are taken into consideration as 

well during the decision process for the next experiments’ parameter combinations. 

The success of the solution does not only depend on the problem fitness but also on 

generated genetic programming tree models. The second experiment results’ analysis 

revealed that SO2 and PM gas prediction success varies with different combinations. 
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Hence, the concluding experiment has two different parameter settings for SO2 and 

PM gas forecasting separately. 

The outcome of the experiments revealed that with certain parameter combinations, 

the genetic programming is more successful than other classifier tree algorithms for 

both SO2 and PM gas prediction. The comparative analysis with the other algorithms 

is conducted by using statistical tests. The pair-wise t-test comparisons for each of five 

error measure metrics prove that genetic programming achieves better results. The 

significance of the comparison outcomes is that the genetic programming performed 

even better than the Random Forest, which is one the most frequently practiced 

ensemble learning methods. Random Forest uses more than one learning algorithm to 

achieve better predictive performance and generally produces a very good result. 

Additionally, to observe the level of performance of the genetic programming in 

comparison to the traditional time series prediction approaches, an ARIMA model is 

developed and tested as well. The prediction results of the ARIMA model showed that 

ARIMA model performed better than genetic programming. 

As a conclusion, it can be suggested that there are several contributions of this study. 

First, it is proven that genetic programming holds out a successful approach to the time 

series forecasting. The capabilities of genetic programming might be enhanced further 

with additional research. Moreover, the previous research is limitedly carried out on 

air quality time series forecasting with genetic programming. Most of the previous 

studies are based on machine learning, the traditional methodologies such as ARIMA 

models, or artificial neural network techniques. Genetic programming might get ahead 

not only with better results but provide a solution model as well. In this research, the 

tree models produced by genetic programming might be advantageous in many ways. 

For example, the models may serve as an inference regarding air quality time series 

analysis. Mostly used attributes in the generated models may be investigated further 

in future studies based on the same dataset. It may reveal hidden characteristics of the 

time series data, which may be unprecedented. 

There are a number of aspects, which might be accepted as future work. Firstly, the 

tree models produced by genetic programming may be enhanced. In this study, tree 

breeding algorithms in ECJ are used without any modifications. The modification is 

applied after the tree breeding process is completed. The changes mainly focus on 
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making logical and arithmetic operations more sensible. For example, division by one 

or multiplication by one or zero, etc. In future studies, breeding operations might be 

considered to increase the quality of the generated tree models. 

Secondly, the runtime of genetic programming might be reduced in prospecting studies. 

The biggest disadvantage of forecasting with genetic programming is the length of 

runtime. The runtime is longer than other algorithms’ runtime length. However, the 

disadvantage might be resolved by using a more powerful CPU. If the genetic 

programming is run with a more powerful CPU, the runtime may be shortened. 

Next, the factorial design approach may be enhanced by making inferences from the 

tested experiments in this research. A considerable amount of parameter combinations 

with variant values are experimented with and analyzed by R Project. Without trying 

the same combinations, new experiments might be designed by including unattempted 

combinations. Moreover, according to the outcome of this study, tested combinations 

may be extended further. Therefore, the time spent on experiments would be utilized 

for new trials. Moreover, the chance of obtaining better tree model solutions with better 

fitness might be increased. 

Another improvable aspect of future work is the moving average method. In this 

research, the moving average computation is utilized by including only the previous 

value before the observed value. The moving average context might be extended to 

two or more previous values. This approach may yield better results in further studies. 

Moreover, there are other moving average calculation methods. For example, the 

simple moving average calculation is utilized in this study. In prospective studies, the 

other calculations such as the cumulative moving average or the weighted moving 

average techniques might be utilized as well. 

The final aspect is implementing the genetic programming on the other problems of 

air quality time series analysis. As it was indicated before, time series forecasting with 

genetic programming is not widely used. Moreover, previous studies related to the air 

quality forecasting with genetic programming are even fewer. Thus, this research 

serves as a beneficial model of air quality forecasting by genetic programming. By 

investigating the methods used in this research, different applications of air quality 

time series utilizing the same or different genetic programming frameworks might be 
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used. For example, a traffic-related air quality dataset might be modelled as time series 

and predicted by following the similar steps and techniques. 

As a conclusion, the number of studies based on air quality time series forecasting with 

genetic programming should be increased. Most of the previous studies focused on the 

artificial neural network or traditional methodologies such as ARIMA models for time 

series forecasting. Moreover, the studies, which used genetic programming for time 

series prediction are seldom, none of them investigated air quality time series. As a 

result of this study, genetic programming has proven to be statistically successful in 

air quality time series forecasting. The result obtained from this study can be used 

successfully to predict the air quality using the generated tree models. Air quality, 

which threatens human health in a dangerous way, is one of the most important 

problems that preventive precautions must be taken against and this study has 

contributed to the solution of this problem with the achieved results. 
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APPENDIX 1 – ECJ Function Set Parameter Settings 

parent.0 = koza.params 

 

gp.fs.size = 1 

 

gp.fs.0 = ec.gp.GPFunctionSet 

 

# We'll call the function set "f0". 

gp.fs.0.name = f0 

 

# weekday attribute terminal nodes 

gp.fs.0.size = 65 

gp.fs.0.func.0 = common.category.weekday.WD1 

gp.fs.0.func.0.nc = booleanterminal 

gp.fs.0.func.1 = common.category.weekday.WD2 

gp.fs.0.func.1.nc = booleanterminal 

gp.fs.0.func.2 = common.category.weekday.WD3 

gp.fs.0.func.2.nc = booleanterminal 

gp.fs.0.func.3 = common.category.weekday.WD4 

gp.fs.0.func.3.nc = booleanterminal 

gp.fs.0.func.4 = common.category.weekday.WD5 

gp.fs.0.func.4.nc = booleanterminal 

gp.fs.0.func.5 = common.category.weekday.WD6 

gp.fs.0.func.5.nc = booleanterminal 

gp.fs.0.func.6 = common.category.weekday.WD7 

gp.fs.0.func.6.nc = booleanterminal 

 

# hour attribute terminal nodes 

gp.fs.0.func.7 = common.category.hour.TD1 

gp.fs.0.func.7.nc = booleanterminal 

gp.fs.0.func.8 = common.category.hour.TD2 

gp.fs.0.func.8.nc = booleanterminal 

gp.fs.0.func.9 = common.category.hour.TD3 

gp.fs.0.func.9.nc = booleanterminal 

gp.fs.0.func.10 = common.category.hour.TD4 

gp.fs.0.func.10.nc = booleanterminal 

gp.fs.0.func.11 = common.category.hour.TD5 

gp.fs.0.func.11.nc = booleanterminal 

gp.fs.0.func.12 = common.category.hour.TD6 
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gp.fs.0.func.12.nc = booleanterminal 

gp.fs.0.func.13 = common.category.hour.TD7 

gp.fs.0.func.13.nc = booleanterminal 

gp.fs.0.func.14 = common.category.hour.TD8 

gp.fs.0.func.14.nc = booleanterminal 

gp.fs.0.func.15 = common.category.hour.TD9 

gp.fs.0.func.15.nc = booleanterminal 

gp.fs.0.func.16 = common.category.hour.TD10 

gp.fs.0.func.16.nc = booleanterminal 

gp.fs.0.func.17 = common.category.hour.TD11 

gp.fs.0.func.17.nc = booleanterminal 

gp.fs.0.func.18 = common.category.hour.TD12 

gp.fs.0.func.18.nc = booleanterminal 

gp.fs.0.func.19 = common.category.hour.TD13 

gp.fs.0.func.19.nc = booleanterminal 

gp.fs.0.func.20 = common.category.hour.TD14 

gp.fs.0.func.20.nc = booleanterminal 

gp.fs.0.func.21 = common.category.hour.TD15 

gp.fs.0.func.21.nc = booleanterminal 

gp.fs.0.func.22 = common.category.hour.TD16 

gp.fs.0.func.22.nc = booleanterminal 

gp.fs.0.func.23 = common.category.hour.TD17 

gp.fs.0.func.23.nc = booleanterminal 

gp.fs.0.func.24 = common.category.hour.TD18 

gp.fs.0.func.24.nc = booleanterminal 

gp.fs.0.func.25 = common.category.hour.TD19 

gp.fs.0.func.25.nc = booleanterminal 

gp.fs.0.func.26 = common.category.hour.TD20 

gp.fs.0.func.26.nc = booleanterminal 

gp.fs.0.func.27 = common.category.hour.TD21 

gp.fs.0.func.27.nc = booleanterminal 

gp.fs.0.func.28 = common.category.hour.TD22 

gp.fs.0.func.28.nc = booleanterminal 

gp.fs.0.func.29 = common.category.hour.TD23 

gp.fs.0.func.29.nc = booleanterminal 

gp.fs.0.func.30 = common.category.hour.TD24 

gp.fs.0.func.30.nc = booleanterminal 

 

gp.fs.0.func.31 = canakkale.attributes.AirPressure 

gp.fs.0.func.31.nc = nc0 

gp.fs.0.func.32 = canakkale.attributes.WindSpeed 
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gp.fs.0.func.32.nc = nc0 

 

# wind direction attribute terminal nodes 

gp.fs.0.func.33 = 

canakkale.category.wind_direction.WindN 

gp.fs.0.func.33.nc = booleanterminal 

gp.fs.0.func.34 = 

canakkale.category.wind_direction.WindNNE 

gp.fs.0.func.34.nc = booleanterminal 

gp.fs.0.func.35 = 

canakkale.category.wind_direction.WindNE 

gp.fs.0.func.35.nc = booleanterminal 

gp.fs.0.func.36 = 

canakkale.category.wind_direction.WindENE 

gp.fs.0.func.36.nc = booleanterminal 

gp.fs.0.func.37 = 

canakkale.category.wind_direction.WindE 

gp.fs.0.func.37.nc = booleanterminal 

gp.fs.0.func.38 = 

canakkale.category.wind_direction.WindESE 

gp.fs.0.func.38.nc = booleanterminal 

gp.fs.0.func.39 = 

canakkale.category.wind_direction.WindSE 

gp.fs.0.func.39.nc = booleanterminal 

gp.fs.0.func.40 = 

canakkale.category.wind_direction.WindSSE 

gp.fs.0.func.40.nc = booleanterminal 

gp.fs.0.func.41 = 

canakkale.category.wind_direction.WindS 

gp.fs.0.func.41.nc = booleanterminal 

gp.fs.0.func.42 = 

canakkale.category.wind_direction.WindSSW 

gp.fs.0.func.42.nc = booleanterminal 

gp.fs.0.func.43 = 

canakkale.category.wind_direction.WindSW 

gp.fs.0.func.43.nc = booleanterminal 

gp.fs.0.func.44 = 

canakkale.category.wind_direction.WindWSW 

gp.fs.0.func.44.nc = booleanterminal 

gp.fs.0.func.45 = 

canakkale.category.wind_direction.WindW 

gp.fs.0.func.45.nc = booleanterminal 

gp.fs.0.func.46 = 

canakkale.category.wind_direction.WindWNW 

gp.fs.0.func.46.nc = booleanterminal 
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gp.fs.0.func.47 = 

canakkale.category.wind_direction.WindNW 

gp.fs.0.func.47.nc = booleanterminal 

gp.fs.0.func.48 = 

canakkale.category.wind_direction.WindNNW 

gp.fs.0.func.48.nc = booleanterminal 

 

gp.fs.0.func.49 = canakkale.attributes.AirTemperature 

gp.fs.0.func.49.nc = nc0 

gp.fs.0.func.50 = canakkale.attributes.Humidity 

gp.fs.0.func.50.nc = nc0 

 

# logical and arithmetic function nodes 

gp.fs.0.func.51 = common.functions.Mul 

gp.fs.0.func.51.nc = nc2 

gp.fs.0.func.52 = common.functions.Add 

gp.fs.0.func.52.nc = nc2 

gp.fs.0.func.53 = common.functions.Sub 

gp.fs.0.func.53.nc = nc2 

gp.fs.0.func.54 = common.functions.Div 

gp.fs.0.func.54.nc = nc2 

gp.fs.0.func.55 = common.functions.RegERC 

gp.fs.0.func.55.nc = nc0 

gp.fs.0.func.56 = common.functions.Square 

gp.fs.0.func.56.nc = nc1 

gp.fs.0.func.57 = common.functions.Sqrt 

gp.fs.0.func.57.nc = nc1 

gp.fs.0.func.58 = common.functions.Equal 

gp.fs.0.func.58.nc = booleannode 

gp.fs.0.func.59 = common.functions.GreaterThan 

gp.fs.0.func.59.nc = booleannode 

gp.fs.0.func.60 = common.functions.GreaterThanEqual 

gp.fs.0.func.60.nc = booleannode 

gp.fs.0.func.61 = common.functions.LessThan 

gp.fs.0.func.61.nc = booleannode 

gp.fs.0.func.62 = common.functions.LessThanEqual 

gp.fs.0.func.62.nc = booleannode 

gp.fs.0.func.63 = common.functions.Iff 

gp.fs.0.func.63.nc = ifstatement 

 

# moving average attribute terminal node 
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gp.fs.0.func.64 = canakkale.attributes.MovingAverage 

gp.fs.0.func.64.nc = nc0 
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APPENDIX 2 – Experimental Design Plots 

 

Figure A2.5.1. The interval plots of the parameters used in the first experiment for the RMSE measurements of PM forecasting with GP when 

the maximum tree depth is seven. 
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Figure A2.5.2. The interval plots of the parameters used in the first experiment or the RMSE measurements of SO2 forecasting with GP when the 

maximum tree depth is seven. 
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Figure A2.5.3. The interval plots of the parameters used in the used in the first experiment for correlation coefficient (R) measurements of PM 

forecasting with GP when the maximum tree depth is seven. 
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Figure A2.5.4. The interval plots of the parameters used in the used in the first experiment for correlation coefficient (R) measurements of SO2 

forecasting with GP when the maximum tree depth is seven. 
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Figure A2.5. The interval plots of the parameters used in the second experiment for 

the RMSE measurements of PM forecasting using GP 

 

 

 

 

 
Figure A2.5.5. The interval plots of the parameters used in the second experiment 

for the RMSE measurements of SO2 forecasting using GP 
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Figure A2.5.6. The interval plots of the parameters used in the second experiment 

for the correlation coefficient (R) measurements of PM forecasting using GP 

 

 

 

Figure A2.5.7. The interval plots of the parameters used in the second experiment 

for the correlation coefficient (R) measurements of SO2 forecasting using GP 
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APPENDIX 3 – GP and Decision Tree Algorithm Results 

Table A3.1. GP's PM forecasting results 

 Correlation 

coefficient 

Mean 

absolute 

error 

Root mean 

squared 

error 

Relative 

absolute 

error 

Root relative 

squared 

error 

1 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

2 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

3 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

4 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

5 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

6 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

7 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

8 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

9 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

10 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

11 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

12 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

13 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

14 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

15 0.694721902 0.486832173 0.764344083 0.719945096 0.71927846 

16 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

17 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

18 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

19 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

20 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

21 0.699593816 0.481893545 0.760064331 0.712641673 0.715251041 

22 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

23 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

24 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

25 0.694721902 0.48682755 0.764344088 0.719938259 0.719278465 

Average 0.694916779 0.486630375 0.764172898 0.719646669 0.719117368 
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Table A3.2. Random Forest's PM forecasting results 

 Correlation 

coefficient 

Mean 

absolute 

error 

Root mean 

squared 

error 

Relative 

absolute 

error 

Root relative 

squared 

error 

1 0.6499 0.5185 0.8177 0.766785 0.769469 

2 0.6561 0.517 0.8153 0.764601 0.767247 

3 0.6549 0.5157 0.8151 0.762733 0.767043 

4 0.6536 0.5163 0.8163 0.763595 0.768124 

5 0.6658 0.5108 0.8033 0.755422 0.755963 

6 0.6536 0.5189 0.8149 0.767367 0.766891 

7 0.6547 0.5161 0.8142 0.763269 0.766198 

8 0.6555 0.5149 0.8135 0.761569 0.765527 

9 0.6567 0.5167 0.8146 0.764183 0.766611 

10 0.6524 0.5138 0.8162 0.759812 0.768066 

11 0.6556 0.5177 0.8141 0.765566 0.766062 

12 0.6508 0.5192 0.8173 0.767783 0.769151 

13 0.6536 0.5167 0.8154 0.764122 0.767284 

14 0.652 0.5167 0.8162 0.764158 0.768097 

15 0.645 0.5217 0.8237 0.771556 0.775144 

16 0.6512 0.5199 0.8196 0.76892 0.771301 

17 0.6532 0.5158 0.8153 0.762832 0.767216 

18 0.6558 0.5166 0.8149 0.763993 0.766833 

19 0.6496 0.5187 0.8184 0.767185 0.770152 

20 0.6574 0.5148 0.8127 0.761417 0.764793 

21 0.6551 0.5161 0.8143 0.763259 0.766263 

22 0.6586 0.5147 0.8097 0.761247 0.761956 

23 0.6517 0.5176 0.8167 0.765433 0.768502 

24 0.6492 0.5199 0.8219 0.768817 0.773411 

25 0.6525 0.5175 0.8154 0.765401 0.767316 

Average 0.65378 0.516892 0.815468 0.764441 0.7673848 
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Table A3.3. Random Tree’s PM forecasting results 

 Correlation 

coefficient 

Mean 

absolute 

error 

Root mean 

squared 

error 

Relative 

absolute 

error 

Root relative 

squared 

error 

1 0.3892 0.7738 1.1218 1.144428 1.055668 

2 0.3642 0.7832 1.1673 1.158355 1.098517 

3 0.3171 0.8163 1.205 1.207217 1.133947 

4 0.4606 0.7325 1.0541 1.083371 0.991913 

5 0.387 0.7654 1.1375 1.131997 1.07045 

6 0.4254 0.7328 1.1093 1.083765 1.0439 

7 0.4256 0.738 1.0889 1.091397 1.024655 

8 0.4666 0.7104 1.0515 1.05064 0.989503 

9 0.3901 0.7448 1.1109 1.101468 1.04536 

10 0.4852 0.7399 1.0748 1.094229 1.011426 

11 0.4124 0.7561 1.1283 1.118227 1.061747 

12 0.415 0.7558 1.1173 1.117834 1.051444 

13 0.4241 0.773 1.112 1.143169 1.046434 

14 0.4527 0.749 1.0771 1.107763 1.01359 

15 0.4101 0.7579 1.1401 1.120824 1.072839 

16 0.3527 0.7758 1.136 1.147418 1.069056 

17 0.3228 0.8696 1.2859 1.286134 1.210103 

18 0.4279 0.7821 1.1486 1.156624 1.080908 

19 0.3705 0.7723 1.1267 1.142225 1.060292 

20 0.4004 0.7562 1.0971 1.118385 1.032441 

21 0.3568 0.7695 1.1371 1.137976 1.070066 

22 0.3274 0.7755 1.1913 1.146868 1.121106 

23 0.3759 0.7771 1.1365 1.149228 1.069506 

24 0.3905 0.7553 1.1546 1.116968 1.086561 

25 0.4245 0.7522 1.1093 1.112405 1.043876 

Average 0.398988 0.76458 1.12876 1.1307566 1.06221232 
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Table A3.4. Rep Tree's PM forecasting results 

 Correlation 

coefficient 

Mean 

absolute 

error 

Root mean 

squared 

error 

Relative 

absolute 

error 

Root relative 

squared 

error 

1 0.6746 0.4967 0.7845 0.734507 0.738266 

2 0.684 0.4948 0.7753 0.731821 0.729597 

3 0.6601 0.5084 0.7983 0.751927 0.751197 

4 0.6634 0.5029 0.7953 0.743745 0.7484 

5 0.6483 0.5115 0.8092 0.756415 0.761465 

6 0.6786 0.4986 0.7807 0.737373 0.734668 

7 0.6658 0.5033 0.7929 0.744275 0.746181 

8 0.6708 0.5031 0.791 0.744025 0.744359 

9 0.681 0.4969 0.7789 0.734909 0.732967 

10 0.6918 0.4934 0.7679 0.72969 0.722631 

11 0.6933 0.489 0.7659 0.723184 0.720772 

12 0.6785 0.492 0.7807 0.727629 0.734681 

13 0.6815 0.4957 0.7776 0.733072 0.731783 

14 0.6754 0.5003 0.7838 0.739952 0.737601 

15 0.6255 0.5099 0.8297 0.754068 0.780802 

16 0.6644 0.5028 0.7943 0.743616 0.747425 

17 0.6589 0.5082 0.7995 0.751647 0.752338 

18 0.681 0.5009 0.7783 0.740822 0.732388 

19 0.6655 0.5022 0.7931 0.742751 0.746383 

20 0.6707 0.5057 0.7887 0.747888 0.742197 

21 0.6768 0.4976 0.7824 0.735942 0.736253 

22 0.6733 0.5011 0.7859 0.741085 0.739565 

23 0.6667 0.503 0.792 0.743951 0.745319 

24 0.6535 0.5102 0.8044 0.754531 0.756985 

25 0.6863 0.4916 0.7729 0.727025 0.727308 

Average 0.670788 0.500792 0.788128 0.740634 0.74166124 
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Table A3.5. GP's SO2 forecasting results 

 Correlation 

coefficient 

Mean 

absolute 

error 

Root mean 

squared 

error 

Relative 

absolute 

error 

Root relative 

squared 

error 

1 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973 

2 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973 

3 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973 

4 0.715878949 0.167701168 0.444203025 0.679979423 0.698224594 

5 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973 

6 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973 

7 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973 

8 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973 

9 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973 

10 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973 

11 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973 

12 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973 

13 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973 

14 0.726360377 0.169077141 0.437581005 0.68555859 0.687815711 

15 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973 

16 0.71606172 0.167455394 0.444083664 0.67898288 0.698036975 

17 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973 

18 0.730038057 0.163717903 0.435097259 0.663828443 0.683911612 

19 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973 

20 0.722191037 0.166979284 0.441718281 0.677052392 0.694318926 

21 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973 

22 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973 

23 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973 

24 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973 

25 0.71606172 0.167452172 0.444083663 0.678969814 0.698036973 

Average 0.717270582 0.167358973 0.44337426 0.67859192 0.696921891 
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Table A3.6. Random Forest's SO2 forecasting results 

 Correlation 

coefficient 

Mean 

absolute 

error 

Root mean 

squared 

error 

Relative 

absolute 

error 

Root relative 

squared 

error 

1 0.6206 0.2584 0.5048 1.047741 0.793441 

2 0.622 0.2562 0.5024 1.038972 0.789697 

3 0.6258 0.2559 0.5008 1.037807 0.787212 

4 0.6068 0.2609 0.5113 1.057754 0.803751 

5 0.6442 0.251 0.4912 1.017619 0.772045 

6 0.6233 0.2516 0.5015 1.020101 0.788248 

7 0.6197 0.257 0.5033 1.042136 0.791155 

8 0.6144 0.2605 0.507 1.05625 0.7969 

9 0.6122 0.2561 0.5071 1.038337 0.797043 

10 0.6444 0.2424 0.4901 0.983103 0.770297 

11 0.6397 0.2456 0.4932 0.995759 0.775202 

12 0.6164 0.2597 0.5083 1.053246 0.798978 

13 0.6187 0.2534 0.5039 1.02736 0.792137 

14 0.6046 0.2605 0.5121 1.05618 0.804941 

15 0.6191 0.2489 0.503 0.100923 0.790706 

16 0.6176 0.2561 0.5049 1.038677 0.793553 

17 0.6172 0.2539 0.5055 1.029722 0.794556 

18 0.6509 0.2433 0.4865 0.986438 0.764755 

19 0.6145 0.2574 0.5081 1.043874 0.798647 

20 0.6263 0.2526 0.4992 1.024312 0.784655 

21 0.6379 0.2465 0.4928 0.999387 0.774631 

22 0.6196 0.2582 0.5046 1.046937 0.793138 

23 0.6363 0.2527 0.4958 1.024798 0.779303 

24 0.6125 0.2605 0.5076 1.056174 0.797891 

25 0.6222 0.2559 0.5025 1.037647 0.789837 

Average 0.623476 0.254208 0.5019 1.03078244 0.78890876 
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Table A3.7. Random Tree's SO2 forecasting results 

 Correlation 

coefficient 

Mean 

absolute 

error 

Root mean 

squared 

error 

Relative 

absolute 

error 

Root relative 

squared 

error 

1 0.3065 0.4618 1.0365 1.87263 1.629202 

2 0.1438 0.5983 1.4033 2.42629 2.205711 

3 0.2691 0.5468 1.0726 2.217332 1.686041 

4 0.2798 0.4612 0.9395 1.870081 1.476811 

5 0.171 0.4903 1.0816 1.98836 1.700107 

6 0.268 0.4719 0.9447 1.913465 1.484943 

7 0.1694 0.5798 1.346 2.350906 2.115749 

8 0.2872 0.5396 1.1604 2.188219 1.823907 

9 0.2625 0.4913 1.0137 1.992249 1.59333 

10 0.2871 0.5452 1.2991 2.210945 2.042013 

11 0.3256 0.4711 1.0661 1.910193 1.675713 

12 0.1554 0.5798 1.3217 2.351171 2.077588 

13 0.2503 0.5572 1.147 2.259314 1.802992 

14 0.3391 0.4563 0.9577 1.850191 1.505337 

15 0.2614 0.4899 1.2138 1.986457 1.90789 

16 0.2312 0.4802 1.0393 1.947138 1.633697 

17 0.2976 0.5522 1.2594 2.238984 1.979555 

18 0.2553 0.5192 1.1234 2.105189 1.765775 

19 0.3426 0.4444 1.0296 1.802052 1.618366 

20 0.1514 0.6613 1.4368 2.681736 2.258489 

21 0.1583 0.4979 1.107 2.019074 1.740071 

22 0.21 0.55 1.4384 2.23038 2.260917 

23 0.1932 0.6031 1.2406 2.445536 1.950102 

24 0.3058 0.5044 1.0606 2.04555 1.667085 

25 0.1898 0.5794 1.2133 2.349532 1.907153 

Average 0.244456 0.525304 1.158084 2.13011896 1.82034176 
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Table A3.8. Rep Tree's SO2 forecasting results 

 Correlation 

coefficient 

Mean 

absolute 

error 

Root mean 

squared 

error 

Relative 

absolute 

error 

Root relative 

squared 

error 

1 0.6971 0.1867 0.4569 0.757043 0.718113 

2 0.6703 0.1923 0.4724 0.779593 0.742535 

3 0.6705 0.1862 0.4739 0.755033 0.74493 

4 0.6622 0.1889 0.484 0.766163 0.760829 

5 0.7051 0.1788 0.4524 0.724943 0.711066 

6 0.6526 0.1974 0.4831 0.800406 0.759416 

7 0.7104 0.1849 0.4485 0.749669 0.705042 

8 0.6498 0.1984 0.4842 0.804413 0.761111 

9 0.6527 0.1912 0.4901 0.775477 0.770331 

10 0.6199 0.2056 0.5045 0.83365 0.793039 

11 0.6552 0.1894 0.4851 0.768126 0.762433 

12 0.6653 0.1969 0.4762 0.798524 0.748567 

13 0.6937 0.1834 0.4621 0.743891 0.726388 

14 0.6364 0.1976 0.4994 0.801303 0.784949 

15 0.7015 0.1878 0.4543 0.761648 0.714112 

16 0.6684 0.1929 0.4806 0.782192 0.755371 

17 0.6647 0.1875 0.4861 0.760346 0.764149 

18 0.7041 0.1889 0.4521 0.765933 0.710675 

19 0.665 0.1884 0.4775 0.764126 0.750567 

20 0.6412 0.1943 0.4913 0.787863 0.7722 

21 0.6637 0.1894 0.4788 0.768136 0.752575 

22 0.679 0.1965 0.4701 0.796971 0.738934 

23 0.704 0.1828 0.4524 0.74132 0.711173 

24 0.6577 0.1946 0.4802 0.789094 0.754757 

25 0.7056 0.1924 0.4514 0.780315 0.709494 

Average 0.671844 0.190928 0.473904 0.77424712 0.74491024 
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APPENDIX 4 – R Code used for ARIMA forecasting 

# required libraries 

library(forecast) 

library('tseries') 

library("readxl") 

daily_data = read_excel('arima_PM.xlsx', sheet="Sheet1") 

 

# moving average 

daily_data$ma = ma(daily_data$PM, order=2) 

 

# seasonal component calculation 

count_ma = ts(na.omit(daily_data$ma), frequency=24) 

decomp = stl(count_ma, s.window="periodic") 

deseasonal_cnt <- seasadj(decomp) 

 

# the augmented Dickey-Fuller (ADF) test 

adf.test(count_ma, alternative = "stationary") 

 

# train set and test set splitting 

training<-deseasonal_cnt[1:5716] 

testing<-deseasonal_cnt[5717:8164] 

 

# model fitting and forecasting 

fit<-auto.arima(training) 

fcast<-forecast(fit,h=2449) 

accuracy(fcast,testing) 
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APPENDIX 5 – Example GP Tree Graphs 

 

Figure A5.1. SO2 Tree Graph 

 

Figure A5.2. PM Tree Graph 


