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ABSTRACT

SIEVE ARRAY SCANNING TECHNIQUES FOR NUMBER FIELD SIEVE
ALGORITHM

Murat, Ozan
Msc, Computer Engineering
Advisor: Asst.Prof. Hiiseyin HISIL, Ph.D.
September 2018

In this thesis, we investigate the lattice sieving step of the celebrated General
Number Field Sieve (GNFS) algorithm. In particular, we focus on the fast
determination of smooth entries in the sieved lattice and their convertion to exponent
vectors. There are several ways to accomplish this step. We provide our experiments

and discuss the impact of our modifications.

Key Words: Quadratic Sieve Algorithm, Number Field Sieve Algorithm, Integer

factorization, Sieving, Line sieve, Lattice sieve.
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SAYI CiSMI ELEK ALGORITMASI ICIN ELEK DizZiSI TARAMA
TEKNIKLERI

Murat, Ozan
Yiiksek Lisans, Bilgisayar Miihendisligi
Danisman: Yrd.Dog.Dr. Hiiseyin HISIL
Eylil 2018

Bu tezde, Genel Sayr Cismi Elegi (GNFS) algoritmasinin kafes elegi adimi
incelenmigtir. Ozellikle, elekten gegirilmis bir kafeste yer alan diizgiin (smooth)
girdilerin ve bu girdilerin istel vektér seklinde ifadesinin hizh sekilde
hesaplanmasina odaklanilmistir. Bu hesaplamalarin yapilmasi i¢in birgok alternatif
yol bulunmaktadir. Bu konuda deneyler sunulmus ve sonuglarimin etkileri

tartisilmustir.

Anahtar Kelimeler: Kuadratik Elek Algoritmasi, Say1 Cismi Elegi Algoritmasi,
Carpanlara Ayirma, Elek, Cizgi Elegi, Kafes Elegi.

vii






ACKNOWLEDGEMENTS

First I would like to express my gratitude to my supervisor Dr. Hiiseyin Hisil for his
encouragement, patience and guidence during the study.

I would also like to thank my dear friend F. Bedirhan Yildiz for his support and
friendship.

I would also like to thank my colleagues in Yasar University Departmant of

Computer Engineering for their motivation.

Finally, I would like to express my special thanks to my dear family for their endless

love, patience, encouragement and support.

Ozan Murat
[zmir, 2018

X






TEXT OF OATH

I declare and honestly confirm that my study, titled “SIEVE ARRAY SCANNING
TECHNIQUES FOR NUMBER FIELD SIEVE ALGORITHM” and presented as a
Master’s Thesis, has been written without applying to any assistance inconsistent
with scientific ethics and traditions. I declare, to the best of my knowledge and
belief, that all content and ideas drawn directly or indirectly from external sources

are indicated in the text and listed in the list of references.

Ozan Murat

Signature

September 10, 2018

Xi






TABLE OF CONTENTS

FRONT MATTER i
ABSTRACT . . . . . v
OZ . o o vii
ACKNOWLEDGEMENTS . . . ... ... .. .. ... .. ... ... ix
TEXT OF OATH . . . . . . . . . .. ®i
LISTOF TABLES 2 ¢ ¢ ¢ « 5 95 5 ¢ 5 68 6 6 0 v ma s ommoms o momn s xiv
LIST OF FIGURES . . . . . . . ... ... . . . . .. ... ..., XV
LIST OF CODES « 2 w5 2 6 556 12 5 5 55 § 8 5 & 5o m s r o m ;o s xvii

1 THESIS STATEMENT 1
Led. DUFTIMATICIN & i ¢ 2 52 1 6 8 @ 6 5 5 6 8 8 % 6 66 s ommw o 2
1.2 THESIS GOALS AND CONTRIBUTIONS . . . . ... ... ... 2
1.3 OUTLINE OF THESIS. . . . . . . . .. ... ... ... ..... 3

2 INTRODUCTION 5
2.1 INTEGER FACTORIZATION . . . . . ... ... ... ...... 5
2.2 BASIC CONSTRUCTION . . . . . ... ... ... ... . .... 7
2.3 SMOOTHNESS AND FACTORBASE . . . . ... ... ..... 8

2.4 POMERANCE’S SIEVE AND MONTGOMERY’S POLYNOMIALS 8§
2.5 POLLARD’S ANALOGY FOR USING ALGEBRAIC INTEGERS 9
2.6 DISTRIBUTED RELATION COLLECTION . .. ... ... .. 10
2.7 DISTRIBUTED/PARALLEL LINEAR ALGEBRA . .. ... .. 10

xiil



3 THE NFS ALGORITHM ' 13

3.1 A QUICK REVIEW OF ALGEBRAIC NUMBER THEORY . . . 13
3.2 OVERVIEW OF NFS «:c: s s s s s s s wasscmsmssnms s 14
3.3 THE POLYNOMIAL f AND AUXILIARY PARAMATERS ... 16
34 FACTORBASES . : « ¢ s ¢ s 5 0 0 ¢ s 855 ¢ s s 8565 8 @ 86 s 17
3.5 COLLECTING RELATIONS WITH SIEVING . ... ... ... 19
3.6 NFSIN ACTION: A TOY EXAMPLE . .. ... ......... 26
4 ALTERNATIVE SCANNING METHODS 35

5 IMPLEMENTING NFS WITH ALTERNATIVE SCANNING 43

5.1 STRUCTURED DATA FOR HOUSE-KEEPING . .. ... ... 44
52 PARAMATER SELECTION . .. ... ... ... ........ 45
5.3 POLYNOMIAL SELECTION . . . ... ... ... ... ..... 45
5.4 FACTOR BASE GENERATION .. ... ............. 46
5.5, ALGEBRAIC FACTOR BASE . . . .. .. ... ... ...... 46
5.6 RATIONAL FACTORBASE . o = v s o wss s 1 5 mns s 0w 47

5.7 SIEVING WITH: LINE SIEVING AND LATTICE SIEVING BY ROWS 47

5.8 SCANNING SIEVE ARRAY . . . . . ... ... ... ... .... 49
5.9 EXPONENT VECTOR GENERATION AND STORING. . . . . 50
5.10 LINEAR ALGEBRA WITH THE HELP OF MAGMA . . . . .. 50
6 CONCLUSION 53

REFERENCES 54

Xiv



LIST OF TABLES

4.1 Timing results for 100-bit number
4.2  Timing results for 150-bit number

4.3 Timing results for 200-bit number

XV



xvi



LIST OF FIGURES

4.1 Test result for 100-bit inputs
4.2  Test result for 150-bit inputs

4.3 Test result for 200-Bit Input

xvii



XVviii



LIST OF CODES

4.1 ../elekmini/src/nfs/computenfs.c . . . .. ... ... ... ... 35
5.1 ../elekmini/src/ elekmininfsh . . . ... ... ..., 44
5.2 ../elekmini/src/ elekmininfs.h . . . ... ... L. 44
5.3 project/magma_scripts.txt . . . . ... ... 45
5.4 .. /elekmini/src/nfs/init_poly.c . . . .. .. ... .. .. ... ... 45
5.5 project/magma scripts.txt . . . . . ... 46
5.6 ../elekmini/src/nfs/initfb.c . . . ..., 46
5.7 ../elekmini/src/nfs/init fb.e . . . ... 47
5.8 ../elekmini/src/nfs/computenfs.c . . . .. ... ... ... 48
5.9 ../elekmini/src/nfs/initfb.c . . . ... 48
5.10 ../elekmini/src/nfs/compute nfs.c . . . . . ... ... L. 48
5.11 ../elekmini/src/nfs/computenfs.c . . . . . ... . ... ... ... 49
5.12 ../elekmini/src/nfs/computenfs.c . . . . .. ... ... 49
5.13 ../elekmini/src/nfs/compute_relations.c . . . . .. ... ... ... 50
6.1 ../elekmini/src/ elekmininfsh . . . ... ... ... ... ... .. 59
6.2 ../elekmini/src/nfs/init data.c . . . .. ... ... 60
6.3 ../elekmini/src/nfs/init fb.e . . . . ... 0L 62
6.4 ../elekmini/src/nfs/init_poly.c . . . ... ... ... ... ... 64
6.5 ../elekmini/src/nfs/computenfs.c . . . .. ... ... ... 66

Xix






CHAPTER 1

THESIS STATEMENT

Integers have played a crucial role in the history of mathematics. Several
algebraic constructions were built upon the abstraction of integers; e.g. as
groups, rings, modules, fields, etc. Therefore, a deeper understanding of integers
has always fascinated several number theorists, algebraists, mathematicians,
computer scientists, and engineers. One of the most primitive properties of
integers its unique factorization property. The fundamental theorem of number
theory states that every integer can be factored into its prime factors in a
unique way (up to reordering of the factors). Finding these prime factors drew
increasing attention by mathematicians. Integer factorization started to become
a more algorithmic research area after advent of fast factorization methods.
Cryptanalysis has also an indispensable force on the improvements on integer
factorization literature.

Number Field Sieve (NFS) is by far the most sophisticated integer
factorization algorithm which has several main steps where each main step has its
own minor steps. There are several variations of each step allowing implementers
a variety of ways to code NFS algorithm according to their expectations and
limitations of the underlying hardware. There is also vast literature on each one
of these steps.

This thesis project grew out of an interest on learning the fastest integer
factorization algorithm for large integers: the NFS algorithm. It was soon
understood that a distributed software that runs an optimized NFS requires a
long lasting team effort and is clearly beyond the scope of this work. On the other
hand, understanding the steps of the algorithm, implementation of single-core

versions those steps with a high level mathematical tool, and finally localizing



on the optimization of a specific step of NFS with the target of improving was
decided a plausible attempt. We built our motivation in this direction and stated

our research question in the following section.

1.1 MOTIVATION

This master thesis aims to answer the following research questions.

Can we design and implement a fast scanning stage for
NFS algorithm? How does different variations compare
in performance with each other? What is the optimum

strategy for detecting smooth integers?

In order to answer these research questions, we started by building a stand
alone C implementation of NFS algorithm to cover all steps up to the linear
algebra step. Our implementation gave us a solid play ground to test different
variations of implementation and measure the speed-ups that are gained with
modifications. Then, we applied comprehensive tests on the alternative methods

that have potential to answer the target research questions.

1.2 THESIS GOALS AND CONTRIBUTIONS

This thesis sets the following goals in order to answer the research questions of

Section 1.1.

e Learning integer factorization algorithms of exponential and sub-
exponential time complexities. Implementing these algorithms in Magma
language.

e Implementing comprehensive versions of QS and NFS in C language with
assembly support at time critical parts.

e Reverse engineering the libraries: Cado-NFS  (Team, 2017),
GGNFS (Monico, 2005), msieve (Papadopoulos, ).



e Applying the modifications that will answer the research questions in our
home built software. Make comprehensive experiments and derive verifiable

conclusions.
The thesis makes the following contributions:

e A basic C/Magma based QS and NFS implementations are built and tested.
e The lattice sieve method is implemented using the sieve by row technique.

e Six different scanning phase scenarios were implemented, tested,

benchmarked, and compared.

1.3 OUTLINE OF THESIS

The thesis is organized as follows. Chapter 2 presents a background information
on integer factorization. Chapter 2 is not meant to be a comprehensive treatment
but rather depicts a story line with an emphasis on the development of NFS
algorithm. Chapter 3 provides a detailed explanation of NFS algorithm mostly
excluding the linear algebra phase. The chapter puts more weight on the
discussion of the scanning step that comes right after the sieving step. The
readers can find a up-to-date literature review on NFS in Section 3.2 of Chapter 3.
Chapter 4 addresses the research questions provided in Section 1.1. Chapter 5
provides implementation details, speed experiments, and evaluations. Chapter 6
derives conclusions out of this thesis and states possible future research directions

in the light of gained experience.






CHAPTER 2

INTRODUCTION

This chapter provides an overview of developments in integer factorization that
finally lead to the Number Field Sieve (NFS) algorithm. The selected topics do
not cover all algorithms but rather the most notable milestones. Nevertheless,
we provide pointers to literature for interested readers.

This chapter is organized as follows. Section 2.1 introduces the notion
of integer factorization, celebrated algorithms in this area of research, and
the industry has driven motivations behind studying the integer factorization
problem. Section 2.2 explains the basic idea behind Quadratic Sieve (QS)
and NFS algorithms, with historic pointers. Section 2.3 states the notion
of smoothness and factor bases whose construction is a preliminary step of
both QS and NFS algorithms. Sections 2.4 and 2.5 explains the birth of QS
and NFS algorithms. Section 2.6 briefly points to the fully parallel nature
of relation collection phase. Section 2.7 summarizes flag point results in the
linear algebra phase including fast nullspace computation algorithms on sparse-
matrices, and their parallelization over computer clusters or distributed networks.
Sections 2.6 and 2.7 are not in the scope of this thesis. They are only included

for completeness of the discussion.

2.1 INTEGER FACTORIZATION

Composite integers are integers which contain more than one prime factors. The
fundamental theorem of number theory ensures that every composite integer is a
product of positive powers of primes. Furthermore, the prime powers appearing

in this product are unique up to reordering.



Integer factorization is the act of determining each prime factor of a composite
integer. This can be performed in polynomial-time if all of the prime factors are
known to be very small in advance, by trial division algorithm. Such composite
integers are called smooth integers. On the other hand, the story is not the
same for non-smooth composite integers. For instance, no polynomial-time
factorization algorithm has been known to date for a composite integer which is
the product of two suitably selected large primes. Such a factorization is widely
assumed to be intractable.

Over years, integer factorization has become a challenging area for
researchers. For this reason, several algorithms have been developed for factoring
small-, medium-, large-sized! integers. Chronologically, Quadratic Sieve (QS),
Number Field Sieve (NFS) and Elliptic Curve Factorization method (ECM) are
the most known algorithms for factorizing integers. QS was introduced by Carl
Pomerance in 1982. Today, QS is known to be the fastest algorithm for factoring
integers of medium-size. ECM was developed by Lenstra in 1985. ECM is
typically used as a special purpose algorithm for factoring smooth integers.
NFS was announced by Pollard in 1988. Among these algorithms, NFS is the
fastest algorithm known to date for factorizing composite large numbers. The
original version of NFS was used for factoring integers of a special form. Several
improvements have been made on NFS over time and now NFS comes in two
flavors: Special Number Field Sieve (SNFS) and General Number Field Sieve
(GNFS). GNFS is the fastest known generic purpose algorithm and it is mostly
used for factoring large integers that are a product of two large prime integers.

RSA is a famous cryptographic algorithm and the conjectured security of
RSA is based on the hardness of the factorization problem. RSA algorithm was
published by Ron Rivest, Adi Shamir and Leonard Adleman in 1977. After the

introduction of RSA, integer factorization has become a challenging and popular

1Roughly speaking, integers smaller than 28° are small-sized; integers between 285 and
2350 are medium-sized, and integers greater than 23°0 are large-sized integers. These
bounds heavily depend on the available computational technology, algorithmic improvements,
implementations. Therefore, the bounds tend to change over time.



research area. Researchers have been working on improvements of factorization
algorithms both mathematically and computationally. RSA uses a pair of keys
(private key and public key). The private key must be kept a secret to decrypt
the encrypted message. Without the knowledge of the secret key, attacking RSA
cryptosystem is performed by factoring the underlying modulus n. The latest
factorization record is known as RSA-768 (Kleinjung et al., 2010) which factored
a 768 bit RSA modulus. Therefore, users typically prefer 1024, 2048 or higher

bit moduli for securing their data.

2.2 BASIC CONSTRUCTION

Both QS and NF'S, and their predecessors rely on a very basic principle in number
theory due to Fermat. Fermat’s method expresses an integer n as a difference of
two squares, 2% —y?, with the pair (z,y) different from ((n+1)/2, (n—1)/2). Such
a pair gives a nontrivial factorization n = (z — y)(z + y) with z > y/n. Finding
such an z and y exhaustively leads to an exponential time algorithm. However,
there are possible improvements which made subexponential complexities to
be achieved. Kraitchik described an empiric result in 1920s to speed up the

procedure by collecting suitable z; producing the congruence

y? = 1_[(9512 —n) = fo = (H :z:i>2 (mod n).

Dixon showed how to construct such a collection of z; systematically by
incorporating a predefined factor base, negative x; values, and linear algebra.
We do not give full details here since these techniques are very well-documented
in the literature. The main emphasis that should be made here is that the most
sophisticated methods of the modern era of factorization have their roots from

historic results.



2.3 SMOOTHNESS AND FACTOR BASE

Kraitchik/Dixon method exploits the smoothness notion of integers. An
analogous idea was later carried over to the construction of the NFS algorithm.

Therefore, it is necessary to define this simple yet useful term, clearly.

Definition 2.3.1 A positive integer is called B-smooth if all of its prime factors

s smaller than or equal to B.

We will extend this definition later when dealing with the NFS algorithm. When
deciding whether a given number is B-smooth using a computer program, it is
useful to have all primes smaller than equal to B precomputed, sorted, and stored

in an array. Such an array of primes is called a factor base.

2.4 POMERANCE’S SIEVE AND MONT-

GOMERY’S POLYNOMIALS

Collecting relations for incremental values of z; is cumbersome since each value

2 _
i

z n is to be factored and kept if smooth. Pomerance showed a method to
quickly determine possibly smooth z? — n by an ancient method named sieving
whose working principle dates back to Eratosthenes.

Pomerance’s original suggestion of using the sieving technique benefits from
the single polynomial 22 —n. However, the values of z? —n increase quadratically
as z; moves away from linearly from /n. Montgomery brought a very useful
solution to this problem by showing how to use other quadratic polynomials
to collect relations. We skip details of Montgomery’s improvement and its
successors; and refer to (Pomerance, 1985), (D. Silverman, 1987) for a complete
treatment. The collection of all improvements on Fermat difference of squares
method to Pollard’s 1988 work —see below— is today accepted in the nomenclature

of Quadratic Sieve. QS is the fastest algorithm for factoring integers in range

100 to 350 bits.



2.5 POLLARD’S ANALOGY FOR USING
ALGEBRAIC INTEGERS

NFS was developed by Pollard in 1988 to factor numbers of the special form
2% + k. This idea first evolved in the special number field sieve (SNFS) that can
only work on numbers of specific form 2* + s. Today, if the term of NFS used
without any qualification, it refers to the general number field sieve(GNFS). We
also mean GNFS when using the acronym NFS. GNFS is a generalization of the
SNFS algorithm. It can factor any number apart from an integer N that is a
power of a prime. It is the fastest known algorithm for factoring integers that
are over 350 bits. NF'S is shown to be practical for integers up to 768 bits. With
improvements on NFS implementations, both bounds are extending over years
leading a wider use of NF'S.

NFS can be viewed as an improvement QS, which allows an integration of
rings with the notion of smoothness besides Z and Z/nZ into the algorithm.
The idea is to use the notion of smoothness in some suitably selected ring such
as a ring of algebraic integers. Additionally, if there is a mapping between the
ring and Z/nZ then one can produce congruence of squares as in QS. We delay

further details to Chapter 3. NFS factors composite n in heuristic expected time

exp((c+ o(1))(log n)1/3 (loglog n)2/3)

as n — oo, see (Lenstra et al., 1990). Here ¢ = (64/9)'/% ~ 1.9. The algorithm
tries to find two perfect squares; one from Z and the other from Z[a] where o
is an algebraic integer satisfying a polynomial with integer coefficients. One can
then find a nontrivial factor of n using congruence of squares method with the
help of a map from Z[a| to Z. The algorithm has 3 main processes: parameter

and polynomial select, sieving and linear algebra.



2.6 DISTRIBUTED RELATION COLLEC-
TION

Both in QS and NFS, the relation collection can be easily distributed over
a TCP/IP network. Clients are typically responsible for finding relations
individually and reporting to a central server. Since clients do not need to
communicate with each other but only with the server, it is fairly easy to design
an infrastructure with socket programming. In addition, multi-threaded clients
can dedicate as many cores as needed without requiring additional software.
Cado-NFS readily provides a comprehensively distributed relation collection
layer. The main challenge here is to find enough number of clients that can
dedicate their computational power. These issues are not within the scope of

this work. Therefore, we skip further discussion here.

2.7 DISTRIBUTED/PARALLEL LINEAR

ALGEBRA

The goal of the linear algebra step is to determine a suitable subset of the
collected relations. This subset leads to the desired perfect squares that will
eventually lead to the factorization by Fermat’s difference of squares method.
The relations are typically stored in a very sparse matrix over Fy. This matrix
can contain around 10'® entries in a real-life challenge, where only ~ 1/10° of
the entries are 1. Storing such a matrix requires special data structures that
exploit the sparsity and fit all data in about 100GB of memory. We refer to
(Kleinjung et al., 2010) for details.

More specifically, the linear algebra step computes the nullspace of the matrix.
This is typically done with specially designed algorithms that can work efficiently

with sparse matrices:
1. Block-Lanczos algorithm (Montgomery, 1995) for QS. Block-Lanczos

10



algorithm can be run in a parallel high-speed mesh network of processors.
The matrix is smaller in comparison to NFS in the feasible region of the

QS algorithm.

2. Block-Wiedemann algorithm (Coppersmith, 1994) for NFS, see cf.
(Kleinjung et al., 2010).  Block-Wiedemann algorithm is suitable for
distributed networks. The matrix can be much larger than in QS. A major
milestone in reducing the complexity of the algorithm was announced by

Thomé in (Thomé, 2001).

The naive methods such as Gaussian elimination does not suit well with such
computation since Gauss elimination will destroy the sparsity of the matrix and
thus leading to an unfeasible memory requirement.

As in Section 2.5, distributed or parallel linear algebra algorithms are not in

the scope of this work. Therefore, further discussion is omitted.

11
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CHAPTER 3

THE NFS ALGORITHM

NF'S is based on a concept introduced by John Pollard (Pollard, 1993a) in 1988,
which is used to factor numbers of special form z® 4+ k& where %k is a small
integer. Pollard’s new technique made the use of an algebraic number field in
factoring integers for the first time. Lenstra et. al (Lenstra et al., 1990) used
this concept to build the Special Number Field Sieve (SNFS) algorithm which is
applicable to integers of special form ¢ F s with r,e, s € Z and e > 0. In 1990,

SNFS (Lenstra et al., 1993) was used to factor the ninth Fermat number
Fy =2 41 = pg - pug - poo,

where po, psg, and pgg have 9, 49, and 99 decimal digits. The SNFS algorithm
was later modified in order to factor arbitrary integers under the name General

Number Field Sieve (GNFS) algorithm in (Buhler et al., 1993).

3.1 A QUICK REVIEW OF ALGEBRAIC
NUMBER THEORY

Algebraic Number Theory has a vast literature which can easily shadow the
main purpose of this thesis. Therefore, we give definitions that are relevant
to efficient implementation of the NFS algorithm. An algebraic number is the
zero of a polynomial with integer coefficients (Wagstaff, 2013). The algebraic
number is called algebraic integer if the polynomial is monic. Q(«) is the smallest
algebraic number field containing the algebraic number a. Z[a] represents the

set of all algebraic integers in Q(a). The algorithm uses a ring homomorphism

13



f which is defined from the set algebraic integers Z[a] to Z,. In summary we
have, Z C Z[a] € Q(a). Z[a] is a Dedekind domain, and therefore, has unique
factorization of ideals into prime ideals. These prime ideals are the building
blocks of NFS algorithm, which are treated as smooth elements. We refer to
(Cohen, 1993) and (Milne, 2009) for further reading. A homomoprhism f from

aring R; to a ring Rs is a function f: R; — Ry such that

f(1R1) = 1R27

flr+s) = f(r)+f(s),
frs) = f(r)f(s)

for all r,e € R; (Stewart and Tall, 2001). The algorithm uses ring
homomorphism f from the algebraic integer Z[a] to Z,. These concepts will

be used in the thesis.

3.2 OVERVIEW OF NFS

We are now at a level to explain a high-level overview of NF'S algorithm that can

find a nontrivial factor of an integer n. NFS starts by selecting a polynomial

f(z) = como + c121 + - + caz® (3.1)

with ¢; € Z. The polynomial f is chosen to satisfy two properties simultaneously:
e f isirreducible over Z,

e f(m)=0 (mod n) for some m € Z.

Let o be a complex root of f. Then Q(«) defines a number field that contains

the ring Z[a]. Furthermore, there exists a natural ring homomorphism

¢: Zla] - Z/nZ

14



that sends a to m. NFS tries to construct the set S of several pairs (a,b) with

a,b € Z that gives

B = ]] (a+ba) and [ (a+bm) =4

(a,b)esS (a,b)es

simultaneously and therefore, leads to the congruence

2> =6(8) 9B =98> =0 | [] (a+ba)

(a,b)eS
= H o(a+ba) = H (a+bm) = ¢ (mod n)
(a,b)es (a,b)€S

(3.2)

for some =z € Z. Such a congruence immediately yields the desired difference of
squares n = 2> —y? = (z+y)(z —y). The factors (z +y) and (z — y) are proper
factors with probability ~ 1/2.

In the above discussion, .S is constructed from pairs (a, b) each of which is
e [B;-smooth for a + ba € Z[a],
e [By-smooth for a +bm € Z

simultaneously for some pair of smoothness bounds B; and By on Z and Z[a],
respectively.

NF'S implementations splits the algorithm into the following steps

1. Selecting the polynomial along with auxiliary parameters
2. Forming the factor bases

3. Collecting relations with a suitable sieving method

4. Select relations which yield the perfect squares

5. Compute the square root

6. Find a proper factor of n

15



We give more details on each one of these steps. The main focus of this thesis is

on the third item.

3.3 THE POLYNOMIAL f AND AUXILIARY

PARAMATERS

The first step of GNFS is the polynomial selection. As in mention above, the
reason the GNFS had outpassed the quadratic sieve in running time is using a ring
other than Z/nZ, that is created by complex root v and irreducible polynomial.
The most time-consuming step is the sieve step of the algorithm finding enough
relation that to find non-trivial dependencies in the linear algebra step that will
construct a difference of squares. If one can make the values a 4+ ba and a + bm
more likely to be smooth then, the spend time in sieving step will be reduced.
So, the selection of polynomial can affect running time of the sieving step(norm
of the algebraic integer is defined by N(a + ba) = (—b?) f(—a/b)).

The polynomial selection methods can be divided into two groups. These
are linear search and non-linear search methods. In linear methods, one can try
to find two polynomial with one linear and other the higher degree, while non-
linear method tries to find two non-linear polynomials. There are several linear
search methods base-m method, Murphy’s improvement of latter or Kleinjung’s
method. In this thesis, we discuss only method base-m.

The polynomial selection step aims to find a pair of polynomials, f and g
which share a common root modulo n. The polynomial f is called the algebraic
polynomial and g is called the rational polynomial. The linear polynomial is the
g and higher degree polynomial is the f. The initial step to generate polynomial
f is to select the degree of polynomial d. A simple method is to pick d =
((3 - logn)/log(log(n))). In practice is usually between 3 and 10. However, its
optimal value does slowly tend to infinity with n (Stevenhagen, 2008). After

deciding the degree of the f, we can generate the polynomial f using the base-m

16



method. First m is selected to be close to n/?.

Definition 3.3.1 The base-m representation of an is as follows:

with ¢; < m/2. We define the polynomials as follows;

Flo)= Zcix, and g(z) =x —m. (3.3)

In this way, we have monic and linear polynomial g(z) and nonlinear and
monic polynomial f(x). If the polynomial f(z) is not reducible, it can be used
to directly factor n, if that fails, one of the factors can be used instead of f(z). For
any given n to be factored, there may be a number of choices for f and integer m
with f(m) =0 (mod n). As mention above, the running time of finding relations
heavily depends on a good choice of f. In real life implementations, it has been
observed that a polynomial f can be accepted to be better than one other if
more pairs (a, b) with a + bm and a + ba are found to be smooth with respect to
the same input parameters.

There are sophisticated techniques to determine a good polynomial. On the
other hand, this is not in the scope of this thesis. Therefore, we skip further
discussion here and refer readers to (Kleinjung, 2006), (B. A., 2010).

3.4 FACTOR BASES

The factor bases in the algorithm are used to test the smoothness of integers or
algebraic integers. The algorithm has two distinct factor base that store primes
up to bound. The algebraic factor base store the primes for testing smoothness
of a + ba and rational factor base store primes for testing smoothness of a + bm.

The factor bases are essential for finding smoothness relations for constructing
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the matrix that store exponent vectors for every (a,b) are smooth over both

algebraic and rational factor base.

Algebraic factor base. The algebraic factor base (AFB) consists of prime
ideals of O, especially, first-degree prime ideals are one with a small norm.
The first step to construct AFB is to select bound B;. Following this, one can

construct pairs (r;, p;) that represent first degree prime ideals up to B;.

Definition 3.4.1 A first degree prime ideal p of a Dedekind domain D 1s a

prime ideal of D such that N(p) = p for some prime p.

Theorem 1 (Briggs, 1998) Let f(z) be monic, wrreducible polynomial with
integer coefficients and o € C a root of f(x). The set of pairs (r,p) where p is a
prime integer and r € Z/pZ with f(r) =0 (mod p) is in bijective correspondence

with the set of all first degree prime ideals of Z[a].

Notice that a prime can occur up to d times in algebraic factor base because
f may have d distinct root modulo p. The ideal a + ba is smooth over AFB if
its factors completely over the primes of the AFB. Factoring over AFB is similar
to process of factoring over RFB. However, we do not test if the ideal a + ba is
smooth, but rather we test the norm of an ideal N(a+ba) = (—b)¢f(—a/b). If a
and b coprime, N(a+ba) has factors p and a = —rb (mod p) for a unique root r
of f modulo p then the prime ideal corresponding to the pair (r,p) divides ideal

a + ba.

Rational factor base. The rational side polynomial g(z) with d = 1 so the
algebraic number field Q(ay) is simply @ hence, the first degree prime ideals in
(@ are the regular primes. The rational factor base consists of integer primes up
to some bound B,. Elements of rational factor base can also be expressed in
pairs as in algebraic factor base. In this context, we compute and store pairs

(m mod pj,p;) up to Bs.
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Quadratic characters. One problem with the norm of the algebraic number
is that if the norm is square that does not imply that an algebraic integer is
also square. To overcome this obstruct Adleman (Adleman, 1991) suggested the
use of quadratic characters. When set of (a,b) pairs have been found, a further
test is needed to determine whether or not the product of the corresponding
elements a 4 ba: € Z[a] is a perfect square in Z[a]. This problem is solved by
using ‘quadratic characters.” An integer cannot be a square if it is not a square
module some given prime. Using this fact the quadratic characters ensures that
an algebraic number is also square. The quadratic character base is a small set
of first-degree prime ideals of Z[a] that do not exist in the algebraic factor base.
The norm of an algebraic integer a + bar doesn’t guarantee that the algebraic
integer is square in Z[a]. To solve this problem we add a few more entries to the
exponent vector. Choose several prime ¢ is greater than the largest prime p in
algebraic factor base. For each of these ¢’s find solution r to f(r) = (mod n)
with f'(r) # 0 (mod q). For each prime g and each (a,b) pair, calculate the
Legendre symbol ((a + br)/q) insert its value in the exponent vector and extend

the linear algebra to ensure that

H(a—f-br):l

a,besS q

for every g. The result set of S will very likely to be produced squares in the

algebraic side.

3.5 COLLECTING RELATIONS WITH SIEV-

ING

The aim of the sieving part is to find relations which correspond to pairs of
integer pair (a, b) with ged(a, b) = 1 such that f(a,b) and g(a, b) are both smooth.

The first step is to choose smoothness bounds B; and Bs. f(a,b) is considered

19



smooth if no prime exceeding B; divides it (similar for g(a,b)). f(a,b) or g(a,b)
values that divisible by prime p form a regular pattern in Z2. There are two
sieve methods for finding smooth (a,b) pairs. These are line sieve and lattice
sieve. Lattice sieve has two different implementation: sieve by row and sieve
by vectors. In linear algebra step, to find the factor of n, we need at least

#RFB+#AFB+#QCB+2 smooth pairs.

Line sieve. The line sieve method has the same idea with sieving in the QS
method. The difference is NFS has two separate sieving lines for rational and
algebraic sides and two free variables a and b.

To see how sieving method can be used, let p be fixed prime in the rational
factor base and fix some value for b with b > 0 to start sieving. After that any
a € Z p divides (a + bm) if and only if a + bm = 0 (mod p). This refers that
a = —bm (mod p) and thus a is necessary to be of the form a = —bm + kp for
some k € Z. As a result, this gives possible (a, b) pairs that have a+bm divisible
by p for fixed integer b and prime p.

Sieving over the rational factor base begins with a ‘sieve array’ of computer
memory with a single position allocated for each —u < a < u. In order to track
that pairs are smooth, set up an array with one sieve value for every a-values
then initialize every element in the array to 0. For each prime p from RFB, one
computes the finite set of values a = —bm + kp for k € Z with —u < a < w.
For each such a in the set that divisible by prime p, log, p will be added to the
position corresponding to a in the sieve array. After this has been performed all
primes in RFB, the sieve array is scanned for values which are log(a + bm) or
close to log(a + bm) will be pairs (a,b) that may be smooth over RFB.

Sieving over the algebraic factor base progresses in exactly the same manner
as mention for rational factor base. However, because of the representation of
first degree prime ideals of Z[a] as pair of integer (7, p) that divides ideal a + ba

if and only if divides N(a + ba). This occurs if and only if a = —br (mod p).
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So, (a,b) pairs with ideal a + ba is divisible by (r,p) must have a of the form
a= —br+ kpfor k € Z.

This procedure is then continued for the next value of b until sufficient pairs
(a,b) have been found with a + bm and N(a,b) smooth to allow for the linear
algebra step. Note that, if b = 0 mod p then there does not exist an (a,b)
and N(a + ba) = 0 mod p, because the condition of a and b being coprime.
If b = 0modp, then a = 0 mod p thus, a and b have common factor that

contradicting the condition of ged(a,b) = 1.

Lattice sieve. Lattice sieve was proposed by Pollard (Pollard, 1993b) for find
smooth pairs (a,b). Lattice sieve is a variation of ‘special ¢’ method for QS of
Davis and Holdridge (Davis and Holdridge, 1984) . Lattice sieving with proper
parameter selection lets us consider only a fraction of all (a,b) pairs. Lattice
sieve requires noticeably more memory than the Line Sieve method. However,
in practice lattice sieving is more efficient than line sieving (for large integers).

Lattice sieve starts with partitioning of the factor base into two parts. We define

S: the small primes: p < By,

M: the medium primes: By < p < B;

where the ratio between both bound should be between 0.1 and 0.5 as mention

in (Pollard, 1993b). The algorithm also uses the large primes:

L: the large primes: B; < p < By

where Bs is much larger than B;.

After that, we construct the set @) that store special ¢’s. Prime pairs (g, s) are
selected from M to construct (). For any v = (g, s) € Q let L, be the lattice with
basis (¢,0) and (s, 1) (Golliver et al., 1994) in the (a, b) plane. L, corresponds to

the pairs (a,b) for that ¢ divides N(a — ba) and r = a/b (mod q) for v € Q. To
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carry out lattice sieving for special ¢ pair, we calculate reduced basis to find two
shortest vector Vy = (ag, bp) and Vi = (ay,b;) which generate the lattice. Then

the a typical point of the lattice is: c¢- Vp +e - V7.

(a,b) =(c-ap+e-aj,c-byp+e-b) (3.4)

For accept point (a,b) as a smooth a and b need to be coprime. So, it is
necessary to that ¢ and e be coprime. However, it can happen that ¢ and b
coprime and a = b = 0 (mod ¢). In that case, ¢ | a and ¢ | b satisfy our
conditions.

The sieving region A in the c¢,e-plane is chosen relatively small, usually
(depending on size of the n) —C' < ¢ < C and 0 < e < E. Belonging (c,e) € A
represents the point in the lattice. Note that, negative values of b may produce
by (3.4). If that occurs sings of a and b is changed. There is a two variation of
lattice sieving: sieving by rows and sieving by vectors.

Lattice sieving by row similar to line sieving on the g-lattice. Let r be the
solution f(z) (mod q) for ¢ € Q). We initialize a sieve array S with size of 2-C-E
and initialize all values in sieve array to 0. To finding first location in the lattice

that the factor base prime hits, one can solve for ¢ in

cap + eay
Cbo + €b1

Il

r (mod p) (3.5)

with fixed e and prime pair (r,p) € AFB. This process is applied to all primes
in AFB that p < ¢g. For the rational side, we sieve the number a — bm with all
the primes in RFB. The sieving by row is good for small primes, but bad for the
larger primes one since no integers are to be sieved in many rows.

Sieving by vector consider the points on a p-sublattice of the g-sublattice. For
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prime (p,r) from AFB, the basis for sublattice L, , in the (c, e) plane is given by

Qg — T - by

U = (p,0) and Uy = ( mod p, 1) : (3.6)

r-b; —a;

Then, we generate two short vectors which generate the lattice
Vi = (c1,e1) and Vo = (cg, €9).
A typical point of lattice is: d- Vi + f- V5 ie
(c,e)=(d-c1+ f-co,d e+ feq).

As shown above, linear combinations of V7 and V5 give points (a, b) such that
pq | N(a,b). In the lattice sieve, the number of integers is sieved by lattice sieve

is much less than the linear sieve by a factor:

_ log(1/k)
Wy oni
qEM
and still collect most of the relations found by other method.
Franke and Kleinjung (Franke and Kleinjung, 2005) give the details of an
efficiently compute the indices in the sieve. One can also use bucket sieving

(Aoki and Ueda, 2004) to reduce cache misses for larger p’s.

Scanning the sieve array. In this step, the algorithm scanned sieve arrays
for possible candidates for smooth (a,b) pairs. The candidates are decided by
if the sieve array value of candidate pair (a,b) is larger than some predefined
threshold. After that, these pair (a,b) is tested if it is smooth over factor base.
The smoothness test can be done via ECM or trial division. Trial division is
a process to determine if a non-zero integer k£ is B-smooth. One can say k is
B-smooth if p divides k for all primes p < B, while replacing k with k/p. At

the end of the process if kK = 1 then k is B — smooth and accepted as a relation.
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After trial division sometimes k may have value of 1 < k < B? then one can
apply large prime variation to k. Large prime factor should be larger than B but
less than B2

The candidate smooth pairs are determined by if sieve array values of greater
than a threshold. Then, we construct a + bm and N(a + ba) for smoothness
test. Then, a 4+ bm and N(a + ba) can be tested for smoothness with using trial
division function and factor bases. If both algebraic and rational side is passed
the smoothness test we construct exponent vector. The first entry of vector refers
the sign of the a + bm. After sign entry, #RFB entry represents exponents of
primes that divide a + bm. #AFB entry is represent exponents of the primes
that divide N(a + ba). At the end of the vector, we append #QCB entry that

represents quadratic character values for a + ba.

Filtering. The relations that are gathered by the sieving process may contain
many duplicates (a,b) pairs. For find solution in linear algebra process, the
duplicates will be removed. Duplicate relations are deleted first. Because
those relations may lead to a trivial solution of the matrix that only trivial
factorization. In practice, duplicate relations are inevitable because of the lattice
sieving. In lattice sieve, many special g-primes will generate identical relations.
Line sieving will not produce duplicates in theory. However, from interrupted
and re-started sieving process or overlapping of values of b may produce duplicate
relations. After duplicate relations removal, the number of relations will be
decreased while the number of the factor base primes that occurs in relations
stays the same. So, duplicate relations makes hard to predict the number of
useful relations found by lattice sieving. The lattice sieving over an estimated
range of special ¢ values: in the small sampling data, the ratio of duplicates to
unique relations will be very small, but in the complete data set, it is often as

large as 30%, see (Kruppa, 2010).
Definition 3.5.1 The excess as defined as the difference between the number of
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rows (relations ) and the number of columns (ideals). The excess must be positive

to find the solution in the linear algebra step.

The next phase of filtering is the deletion of relations containing singleton
ideals. The aim is the finding a subset of relations that in the product of these
relations every prime ideal occurs to an even power. So, relations containing
a prime ideal in an odd power that does not occur another relation cannot be
part of any solution and can be extracted from the matrix. So, by doing this,
one creates a new singleton, and singleton removal can be repeated until no
singleton relation remains. Each singleton relation deletion contains at least one
prime ideal that occurs nowhere else in the other relations. So, the number of
relation decrease by 1 the number of remaining prime ideals also decrease by
1 hence, the excess does not decrease in this step. At the end of the singleton

deletion, if the excess is positive, then matrix could be built and solve.

Linear algebra. The aim of the linear algebra step is, founded a set of relations

produced by sieving step, to obtain a subset S such that satisfies

B = H (a+ba) and H (a+bm) = ¢?

(a,b)es (a,b)eS

To find such a subset S, sieving process must collect enough relations.
Factorization of a + bm in Z and ideal a + ba into primes, modulo 2 of the
exponent of the each primes construct the row vectors over IFy. These row vectors
form a matrix that contains a row for each relations and a column for each prime
which occurs in the relations. This produces a very sparse and large matrix,
because of each relations has only a small number of primes. With, using linear
algebra method as mention in 2.7 and find a dependency among the binary

vectors corresponding (a, b) pairs.

Computing the square root. In this chapter, we describe the finding the

square root part of the algorithm. There are several approaches to calculating
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the square root of algebraic side integer. This problem has been solved since the
beginning of the research for the GNFS. The most used algorithm date back to
1993, one of the included algorithms in “The development of the Number Field
Sieve” (K. Lenstra and W. Lenstra, 1993) by Couveignes (Couveignes, 1993).
Couveignes square root method base on Chinese Remainder Theorem (CRT),
and is only applicable under the condition that the number field degree d be
odd. the Another algorithm is proposed by Montgomery (Montgomery, 1994).
The algorithm based on lattice reduction for calculating square roots in algebraic
number fields. It uses little memory and it is fast but, the implementation of
the algorithm is more complex than others. For the rational side, finding square
root is a simple task, since we know the prime factorization of the product.
When the square root is calculated, the algorithm outputs the factor of the
number n. However, sometimes S that constructed by the set of S founded in
the linear algebra step does not yield a square or that the difference of squares
yields a trivial factor (n or 1). For this reason, we seek more relations than the
number of columns of the matrix so, we will have more than one solution for the

linear equation.

Finding a proper factor of n. All process that are above to generate
congruence of difference 22 = y? (mod n) to find proper factor of n. Any other
representation of n as 22 — y? gives a nontrivial factorization n = (z — y)(z +y)
such that z > /n. If n is composite and not a prime power then there is at least

1/2 chance that ged, , ,, and ged, ., are non-trivial factors of n.

3.6 NFS IN ACTION: A TOY EXAMPLE

It is helpful to see an example that exemplifies the different stage of the algorithm.
This goal will be achieved by factorizing the integer 53743 using GNFS. Although
numbers of such small integers would never be factored with using GNF'S, this

small integer makes a useful example.

26



The polynomial. We start with the choice of d, m, and polynomial f(z).
The first parameter to decide before factoring n = 53743 is the degree d of the
polynomial f(z) which the rest of the algorithm depends on it. A trivial method
to pick a degree d ~ (3log(n)/log(log(n))))*/? for this particular n. Next, m
should be chosen m ~ n'/?, which in our case m should be around 53743%/3 ~ 37.
The base-m method and the value m = 37 is used in this example. The base-m

expansion of n:
53743 =373 4+2.372+9-37+19 (3.7)

produces the polynomial f(z) = 2®+2-2>+9-z+19 for that f(m) =0 (mod n)

because f(z) was constructed with f(37) = 53743.

Factor bases. Algebraic factor base consists of first degree prime ideals of
Z[o]. These primes represented as pair (r,p) where r is the root of f(z) =
23+ 2-22+ 9.2+ 19 and p is a prime. The size of the algebraic factor base
depends on bound B; and degree d of the f(z). In this case By is 107. To
compute the algebraic factor base, one can find roots of f(x) modulo p < B;.
For prime p = 53 the function f(z) may have d distinct roots r. In this case our
algebraic factor base primes for p are (2, 53), (24,53), and (25, 53). We compute

pairs (r,p) for every prime p < B;.

AFB = { (3,7), (10,11), (3,13), (8,17), (10, 17), (14, 17),
(6,19), (11,19), (15, 23), (1,31), (28, 37), (24, 41),
(8,43), (2,53), (24, 53), (25, 53), (57, 67), (56, 79),
(62,83), (11,89), (36,101), (68,101), (96, 101),

(32,103), (82, 103), (90, 103) ] (3.8)

The rational factor base consists of primes integers up to a particular bound
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B, that generally determined by heuristically. In this example, we set bound B,
to 31. The rational factor base can be stored as pairs (m (mod p),p). We can

compute m modulo for every prime p up to bound Bs.

RFB = [ (1,2),(1,3),(2,5), (2,7), (4,11), (11, 13),

(3,17), (18,19), (14, 23), (8, 29), (6, 31) } (3.9)

The quadratic character base consists of the primes that are larger than the
algebraic factor base bound 103. Quadratic character base is used for increasing
the probability of algebraic side integer to be square at the end of the algorithm.

For n = 53743 quadratic character base is listed below.
QCB = | (92,109), (76,127), (74, 139), (75, 139), (127, 139) ]

Sieve. For n, the sieving interval is chosen that —1000 < a < 1000 and positive
integer b that starting at 1 and advance until more than enough (a, b) pairs are
found that a + bm and a + ba are smooth. To guarantee a linear dependence
among the exponent vectors associated with pairs, the algorithm need to find
more than 42 pairs. Two sieve arrays in memory will be created. One for a+bm
and the other N(a + ba) each with size 2000 entries for all a values for fixed b.
Sieving smooth values for a + bm proceed like as in 3.5. For prime p = 7 and
b = 3, the values of a that a+ bm is divisible by p are of the form a = —3m + 7k
for k € Z. After that, log p have added to these a values. This process is applied
every element in 3.9. A similar process is followed with pairs (7, p) in 3.8 for sieve
array N(a + ba). When sieving process is finished, each sieve array is scanned
for positions that the values are close to log(a + bm) and log(N(a + ba)). For

next b, whole process is repeated.
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Scanning the sieve array. In this process, we look at the sieve values that
exceed the defined threshold for both sides. Then using (a,b) values of sieve
entry we construct a + bm and a + ba to test the smoothness. If the value is
smooth we add this (a, b) to the matrix as a relation.

A matrix exponents vectors. Rows of the matrix correspond to an (a, b) pairs
found in sieving process. For this example, column size of the matrix is 43,
because of 26 first degree prime ideals in the algebraic factor base, 11 primes in
rational factor base, 5 first degree prime ideal in the quadratic character base
and one bit for the sign of a + bm. To demonstrate how the matrix formed, the
row entry (—5,4) found in sieving will be examined. For (—5,4) rational side
integer a+bm = —5+4-37 = 143. The first bit of the row vector set 0 because,
a + bm is positive integer. First 11 entries in the row vector are prepared from

factorization of a + bm = 143 over RFB:
143 =29.3%: 59,79 . 111 . 13- 179 192 . 230 . 290 . 310

which all RFB primes used to show factorization of a + bm = 143. Then, the

exponent vector for pair (—5,4) is
(0,0,0,0,1,1,0,0,0,0,0)

over Fs.

Second step is to compute the norm of an algebraic number. The norm of
algebraic integer can be compute with N(a + ba) = (=b)?f(—a/b). In this case,
it can be computed with d = 3 and f(z) = z® + 22% + 9z + 19 like

N(a+ba) = (—b)? - <_—a3 12% g% 19)
b3 b? b
=a’ — 2a%b + 9ab® — 19°.

Thus, the norm of the —5+4a is N(—5+4a) = (—5)® —2(—5)*-4+9- (-5)-

29



42 — 1943 = —2261 and —2261 = —1-7-17-19 gives the factorization of the
norm over the primes p that shown in Table 3.8. The next 26 bits in the row
vector for (—5,4):

(1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0).

The last step is to compute a quadratic character vector for —5+4a according
to 3.4. For every pair (s,q) in quadratic character base, the Legendre symbol
(%) will be calculated. For example, pair (76,127) from the quadratic

character base an example yields

—Ed: 79 _q
127 o

In this case, 1 is stored the vector coordinate which corresponds (76,127). This
process is applied the remaining (s, ¢) pairs of the quadratic character base which

construct final 5 bits in the row vector for (—5,4).

(0,1,0,1,0)
The final form of the 42-bit row vector (exponent vector) for (—5,4) is
(0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0).

The whole process is applied to rest of the (a, b) pairs which are found in sieving

process to construct the 43 x 42 binary matrix B.
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(a,8) pairs = | (1,1), (~2,1), (=3,1), (=6,1), (~8,1),
(~10,1), (~11, 1), (—24, 1), (=25, 1), (=32, 1),
(—65,1), (=68, 1), (—82,1), (—94, 1), (=367, 1),
(1,1),(3,1),(5,1),(7,1), (8, 1),
(9,1),(13,1),(21,1),(23,1),(77,1),
(78,1), (—41,2), (—207,2), (=373, 2), (1,2),
(3:2):(7,2),(=7,3),(1,3), (4,3),
(5,3),(10,3), (43,3), (—1,4), (—5,4),

(—43,4), (13,4), (27, 4) ]

Linear algebra. The GF(2) matrix that we constructed for n = 53743 with

the size of 43x42 shown in below
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We find the nullspace of the matrix. Every row in nullspace may give the
positions of relations that construct a set S. In our case, the third row of the

nullspace constructs perfect squares in Z and Z[a].
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Finding a proper factor of n. In the last part of the algorithm we have
y = 21111 (mod 53743) and z = 29064 (mod 53743). The next step is the

prepare congruence of squares

20064 = 21111%  (mod 53743)

to find non-trivial factor of 53743. Then, ged(29064 — 21111, n) or ged (29064 +
21111, n) return factor of 53743. The factors of 53743 are 223 and 241.

33



34



CHAPTER 4

ALTERNATIVE SCANNING METHODS

In the scanning part, we try to find (a,b) pair that yield as a relation to
constructing our matrix. Scanning step has two phase first scanning sieve arrays
and find candidate (a,b) that will be smooth and second test these (a,b) pairs
smoothness with the trial division functions. In the first step, we look the sieve
array values that correspond (a, b) pairs, if the value exceeds for defined threshold
value then, (a,b) is accepted as candidate. In the second step, we check if the
(a,b) is smooth over factor bases. In our implementation, we have two sides
algebraic and rational. So, when we found the (a,b) is a candidate, we construct
a — bm (rational side) and norm of the algebraic side to test smoothness for
both sides. Smoothness testing process will be performed functions trialDivA
(for algebraic side) and trialDivZ (for rational side). The implementation of

scanning part in C language shown below:

1 for (i = 0; i < (d->ar * 2); i++) {

2| #if THRESHOLD_MODE ==

3 if ((d->arrSieveR[i] > d->thrR) && (d->arrSieveA[i] > d->thrA)) {
4

5| #elif THRESHOLD_MODE ==

6 if ((d->arrSieveR[i] > d->thrR)) {

7| #elif THRESHOLD_MODE ==

8 if ((d->arrSieveA[i] > d->thra)) {

9| #endif

10 if (i < d->ar) {

11 a=ix* (-1);

12 } else {

13 a =i - d->ar;

14 }

15 /* GCD(a,b) = 1 check */

16 gcd = binary_gcd(a, b);

17 if (ged == 1) {

18| #if TRIAL_DIV_MODE ==

19 mpz_normi(d, resO, a, b, T2); /* a-b*alpha */
20 check = trialDivisionA(d, fb, arrTriald, resO, b, a, fp);
21| #elif TRIAL_DIV_MODE ==
22 mpz_mul_ui(T3, d->m, b);
23 mpz_set_si(resi, a);

24 mpz_sub(resl, resi, T3); /* a-b*m %/
25 check = trialDivisionZ(d, fb, arrTrialR, resi, a);
26| #endif
27 if (check == 1) {
28| #if TRIAL_DIV_MODE ==
29 /* a-b*m */
30 mpz_mul_ui(T3, d->m, b);
31 mpz_set_si(resi, a);
32 mpz_sub(resi, resi, T3);
33 check = trialDivisionZ(d, fb, arrTrialR, resi, a);
34| #elif TRIAL_DIV_MODE ==
35 mpz_normi(d, resO, a, b, T2); /* a-b*alpha */
36 check = trialDivisionA(d, fb, arrTrialA, resO, b, a);
37| #endif
38
39 if (check == 1) {
40 rows += nfs_relation_processing(d, fb, fulls, partials, arrTrialR,

arrTrialA, resO, resi, TO, Ti, sign, a, b, rows, hashtable_p,
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hashtable_r, &half_to_full_rel);

41 }

42 }

43 } else {

44 //printf("GCD a and be not equal 1\n");
45 }

46 }

47 }

Code 4.1: ../elekmini/src/nfs/compute_nfs.c

We have 2 parameters and 2 functions that use in the scanning process.
Parameters are d->thrR and d->thrA. The functions are trial division functions
mention above. Different results can be obtained by using different combinations
of these parameters and functions. In our own NFS implementation, we used
these combinations to calculate the time spent in the scanning for n with different
sizes. When these tests are performed, 6 different combinations are defined. We
will use the THR keyword for the parameters and the TrialDiv keyword for the

order of trial division functions. The combinations are listed below:

e Both / TrialDivA : While scanning sieve array we accept (a,b) if
sieve value that represents (a,b) exceed both rational and algebraic side

threshold. Then, first check the smoothness of the algebraic side.

e Both / TrialDivZ : While scanning sieve array we accept (a,b) if
sieve value that represents (a,b) exceed both rational and algebraic side

threshold. Then, first check the smoothness of the rational side.

e Algebraic / TrialDivZ : While scanning sieve array we accept (a,b) if
sieve value that represents (a,b) exceed algebraic side threshold. Then,

first check the smoothness of the rational side.

e Algebraic / TrialDivA : While scanning sieve array we accept (a,b) if
sieve value that represents (a,b) exceed algebraic side threshold. Then,

first check the smoothness of the algebraic side.

e Rational / TrialDivA : While scanning sieve array we accept (a,b) if
sieve value that represents (a, b) exceed rational side threshold. Then, first

check the smoothness of the algebraic side.
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THR / TrialDiv | Time (msec)

Both / TrialDivA 0.1421

Both / TrialDivZ 0.1431
Algebraic / TrialDivZ 0.3214
Algebraic / TrialDivA 1.8486
Rational / TrialDivA 17.4626
Rational / TrialDivZ 19.1303

Table 4.1: Timing results for 100-bit number

e Rational / TrialDivZ : While scanning sieve array we accept (a,b) if
sieve value that represents (a, b) exceed rational side threshold. Then, first

check the smoothness of the rational side.

100 Bits. The first test was done on

n = 737774618560715804003035572653.

Parameter for n are RFB bound 20000, AFB bound 30000, threshold for rational
sieve array 30, threshold for algebraic sieve array 50, sieving range is —50000 <
a < 50000, and degree of polynomial 3. In the following table, the time spent in

scanning for 1 relation is given according to different combinations.

TrialDivA TrialDivZ TrialDivZ TrialDivA
Both Both Algebraic Algebraic

Figure 4.1: Test result for 100-bit inputs
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150 Bits. The second test was done on

n = 2257727241354194125292213943385759534140088451.

Parameters for n are RFB bound 80000, AFB bound 100000, threshold for
rational sieve array 35, threshold for algebraic sieve array 55, sieving range is
—200000 < a < 200000, and degree of polynomial 4. In the following table, the

time spent in scanning for 1 relation is given according to different combinations.

THR / TrialDiv | Time (msec)

Both / TrialDivA 0.8408
Both / TrialDivZ 0.8788
Algebraic / TrialDivZ 1.7272
Algebraic / TrialDivA 7.4516

Rational / TrialDivA 251.9948

Rational / TrialDivZ 292.6532

Table 4.2: Timing results for 150-bit number

TrialDivA TrialDivZ TrialDivZ TrialDivA
Both Both Algebraic Algebraic

Figure 4.2: Test result for 150-bit inputs
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200 Bits. The third test was done on

n = 90377629292003121684002147101760858109247336549001090677693.

Parameters for n are RFB bound 160000, AFB bound 200000, threshold for
rational sieve array 40, threshold for algebraic sieve array 60, sieving range is
—350000 < a < 350000, and degree of polynomial 4. In the following table, the

time spent in scanning for 1 relation is given according to different combinations.

THR / TrialDiv | Time (msec)

Both / TrialDivA 4.612
Both / TrialDivZ 4.937
Algebraic / TrialDivZ 14.055

Algebraic / TrialDivA 107.358

Rational / TrialDivA 2605.028

Rational / TrialDivZ 2693.768

Table 4.3: Timing results for 200-bit number

120

100

80

60

TrialDivA TrialDivZ TrialDivZ TrialDivA
Both Both Algebraic Algebraic

Figure 4.3: Test result for 200-Bit Input

Rational / TrialDivA and Rational/TrialDivZ. According to the results

of the tests performed, only the rational scan is considered to have the worst
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performance. As the size of the numbers increases, the time difference between
other combinations is greatly increased. The reason is that the increase in the
size of the numbers n causes the sieve arrays to increase in size. In each line of
sieving, there will be far more smooth a — bm then smooth N(a,b). So, we have
too may candidate (a, b) pairs are tested in trial division functions, and (a, b) are
not algebraic smooth most of the time thus, we spend unnecessary time in trial

division function.

Algebraic / TrialDivA and Algebraic / TrialDivZ. It has better
performance than the checking rational side threshold. As mention above, we
have far too many smooth rational (a,b) than the algebraic side. So, checking
algebraic side threshold decrease the number of the (a,b) to test in the trial
division step. If we came to order of trial division function, we know that the
number exceeds the threshold of the algebraic side. This means that the N(a,b)
is highly likely to be smooth thus, to be accepted (a,b) as a relation depending
on the rational side smoothness. For this reason, if we check the first smoothness
of the rational side, we can avoid doing extra divisions and norm calculation for

the algebraic side.

Both/TrialDivA and Both/TrialDivZ. As aresult of our testing, checking
both side threshold and checking first the smoothness of the algebraic side is more
efficient than the other combinations. Because, checking both side thresholds
help us to reduce the number of (a,b) pairs that send to trial division functions.
So, we spend less time in trial division functions and avoid unnecessary division
operation. As mention above we have far too many a — bm smooth in the
sieving range. So, in this case, the rational side is most likely to be smooth
then, accepting the (a,b) pairs as a relation mostly depend on the smoothness
of N(a,b). Firstly checking whether the algebraic side is smooth is working as a
kind of early abort mechanism to save us from the unnecessary division done in

trialDivZ.
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In conclusion, if one wants to implement NFS algorithm efficiently, the best
option for scanning part is to accept (a,b) pairs that the corresponding sieve
values in both sieve arrays exceed the threshold bound. This way one can reduce
the number that is tested in trial division functions. This also reduces the time
spent in the scanning proccess. The norm of an algebraic integer a — ba (in the
algebraic side) is generated by using the function N(a,b). Consequently, there
will be less number of smooth values per line in the sieving phase in comparison

to the rational side using the integer a — bm.
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CHAPTER 5

IMPLEMENTING NFS WITH
ALTERNATIVE SCANNING

This chapter contains low-level implementation details of the NFS algorithm.
Our first task is to implement the steps of NFS excluding the linear algebra step.

The implemented steps include;

1. Structured data for house-keeping,

2. Parameter selection,

3. Polynomial selection,

4. Factor base generation,

5. Sieving with: Line sieving and lattice sieving by rows,
6. Scanning sieve array,

7. Exponent vector generation and storing,

8. Linear algebra with the help of Magma,

We then modify the scanning step (in bold face) with respect to methods
discussed in Chapter 4.

Our implementation is written in C language. On the other hand, we call
Magma routines from C on-the-fly fashion at some non-time-critic moments in

order to simplify the code development and focus more on the relevant parts.

We now explain the main parts of our software. The complete source code

can be found in Appendix-6.
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5.1 STRUCTURED DATA FOR HOUSE-

KEEPING

We store algorithm related parameters in structs. We have two main structs for
parameters.

NFS-data stores parameters related to factor base bound for algebraic and
rational, coefficients and degree of polynomial, the number n that we want to
factor, unique root m that f(m) = (mod n), sieve arrays for both line and
lattice sieve, and sieve ranges for lattice and line sieving.

FB-nfs stores factor bases that generated with respect to factor bases bound
that define in NFS-data, quadratic characters and special-q primes that generate

for lattice sieving.

1| typedef struct {
2| mpz_t n;

3| mpz_t m;

4 ui B_r;

5 ui B_a;

6 ui b;

7 ui ar;

8 ui rangeC;

9| ui rangeE;

10 uc d;

11 ui thrR;

12 ui thrA;

13 ui thrLatticeA;
14| wui thrLatticeR;

15 ui 1pb0;

16| wui 1pbi;

17 ui smallSieveSize;

18 double *arrSieveR;

19 double *arrSievel;

20 double *arrLatticeSieveA;
21| double *arrLatticeSieveR;
22| char #*poly;

23| mpz_t *polyCoefficent;
24|} DATA_nfs_t[1], *DATA_nfs;

Code 5.1: ../elekmini/src/_elekmini_nfs.h

typedef struct {

ui asize;

ui rsize;

ui gsize;

ui sqgsize;

ui *pr;

ui *pa;

ui *pq;

ui *psq;

ui *qroots;

ui *roots;

ui *rroots;

ui *sqroots;

ui *sqi;

us *1r;

us *la;

LV_nfs_t *rbsv;
} FB_nfs_t[1], *FB_nfs;

Code 5.2: ../elekmini/src/_elekmini_nfs.h

e el e e el
ONDUR W OWONO0 U WN =
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5.2 PARAMATER SELECTION

Some parameters need to be specified in order for the algorithm to start working.
These parameters is defined in the init_data.c. In this class, for specific n we
define factor base bounds, threshold bounds, sieve array size, the degree of the

algebraic side polynomial, and large prime bounds for both sides.

5.3 POLYNOMIAL SELECTION

We use magma scripts to generate our polynomial f (algebraic side). f generated
by using base-m expansion. We execute the magma script in C language then, the
output will be parsed and stored in struct NFS-data. The parameters which we
get from this script are coeflicients of f and m that satisfies f(m) =0 (mod n).

We do not need to store rational side polynomial because we can represent them

as a — bm.
_<x>:=PolynomialRing(Integers()); 1 gmp_sprintf(MAGMA_BUFFER, MAGMA_SCRIPT1, d->n, d->d);
£:=0; 2 char *polStr = magma_exec(MAGMA_BUFFER) ;
k:=1; 3 char *token;
repeat 4| int i = 0;
k:= NextPrime(k); 5| d->polyCoefficent = malloc((d->d + 1) * sizeof(mpz_t));
ks:=IntegerToSequence(n,m) ; 6 for (i = 0; i <= d->d; i++) {
for i:=1 to #ks do ¥ token = strsep(&polStr, ":");
if ks[i] 1t m then 8 mpz_init_set_str(d->polyCoefficent[i], token, 10);
f:= f + x~(i-1)*ks[i]; 9
end if; 10 token = strsep(&polStr, ":");
end for; 11 mpz_init_set_str(d->m, token, 10);
if Degree(f) eq d then 12| token = strsep(&polStr, ":");
break; 13| d->poly = token;
end if;
m:=m - (k*k); . @ o %
e a Code 5.4: ../elekmini/src/nfs/init_poly.c

ks:= IntegerToSequence(n,m);
for i:=1 to #ks do
if ks([i] gt Floor(m/2) then
ks[i]:= ks[i] - m;
ks[i+1]+:=1;
end if;
end for;
£:=0;
for i:=1 to #ks do
f:= £ + x~(i-1)*ks[i];
end for;

end function;

Code 5.3: project/magma._scripts.txt
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5.4 FACTOR BASE GENERATION

In GNFS, we need two factor base for smoothness testing. These are algebraic
and rational factor bases. To generate these factor bases, we need to define some
bounds for them. The bounds for algebraic and rational factor base are define
in init_data.c and stored in a struct. d->B_r and d->B_a are rational and

algebraic bounds for factor bases.

5.5 ALGEBRAIC FACTOR BASE

We use magma script to generate our algebraic factor base. We execute the

magma script in C then, the output will be parsed and stored in struct FB-nfs.

InitAlgebraicFactorBase2:= function(poly, 1 fb->pa = (ui *) malloc(sizeof(ui) * (d->B_a) / 2);
bound) 2 fb->roots = (ui *) malloc(sizeof(ui) * (d->B_a) / 2);
fbpa:=[]; 3
p:=2; 4 gmp_sprintf (MAGMA_BUFFER, MAGMA_SCRIPT, d->poly, d->B_a);
while p 1t bound do 5 char *fbStr = magma_exec(MAGMA_BUFFER) ;
PR<x>:=PolynomialRing(GF(p)); 6| char xtoken;
pol:=PR!poly; 7| while ((token = strsep(&fbStr, ":"))) {
if (HasRoot(pol)) eq true then 8 if ((G %2 ==0){
roots:=Roots(pol); 9 fb->roots[i] = atoi(token);
for i:=1 to #roots do 10 } else if ((j % 2) == 1) {
tuple:=<0,p>; 11 fb->pali] = atoi(token);
tuple[1]:=roots[i] [1]; 12 i+t
Append (~fbpa,tuple) ; 13 }
end for; 14 jt+;
end if; 15 ¥
p:=NextPrime(p); 16| fb->pa = (ui *) realloc(fb->pa, sizeof(ui) * i);
end while; 17 fb->roots = (ui *) realloc(fb->roots, sizeof(ui) * i);
return fbpa; 18 fb->asize = i;
end function;
Code 5 5. Code 5.6: ../elekmini/src/nfs/init_fb.c

project/magma_scripts.txt

The smothness test (a,b) of the algebraic side of the pairs found in the
sieving process will be performed with the primes found on the algebraic factor
base that generated above. As in mention in thesis algebraic factor base will
be stored as a pairs (r,p). The executed magma script returns string that
represent primes pairs. We parse this string in C and store p’s in array
fb->ap and 7’s in the fb->roots. The memory allocation of fb->ap and
fb->roots is performed in parser function. The magma script output is like

2:3:4:7:5:11:10:11:0:13:14:19:16:23: ...
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5.6 RATIONAL FACTOR BASE

We generate rational factor base in C language. To generate a rational factor
base we used GMP library. The rational factor base is used for the smoothness
testing of the rational side in the algorithm. We generate our rational factor
base with respect to bound d->B_r. To generate our rational factor base we use
GMP function mpz_nextprime. We manually add first prime 2 into the array
fb->pr. Then, generate and store other primes until the bound d->B_r with
mpz_nextprime. We also store (m mod p) in the array fb->rroots to use in
rational side sieve in line sieve. So, we store our rational factor base as a pair

like algebraic factor base.

while (mpz_cmp_ui(p, d->B_r) != 1) {
fb->pr[i] = (ui) mpz_get_ui(p);
mpz_mod (temp, d->m, p);
fb->rroots[i] = mpz_get_ui(temp);
it++;
mpz_nextprime(p, p);
fb->pr = (ui *) realloc(fb->pr, sizeof(ui) * i);

fb->rroots = (ui *) realloc(fb->rroots, sizeof(ui) * i);
fb->rsize = i;

QOO U W =

=

Code 5.7: ../elekmini/src/nfs/init_fb.c

5.7 SIEVING WITH: LINE SIEVING AND
LATTICE SIEVING BY ROWS

We have two different implementations of the sieving process in c lattice and
line sieving. The implementation of lattice sieve is more complicated than line
sieving. Sieving is the core process of this algorithm and most of the process
time is spent in this stage.

For line sieving in our implementation, we fixed value of b then sieve values
of a within range —d->ar < a < d->ar. We represent this sieving region with
two array, negative and positive values of a. The same sieving process will follow
for both array. In rational side sieve, we calculate smallest value of a for p that
satisfies @ = mb (mod p). The same procedure is applied to algebraic side with

little change in calculating smallest value of a for p.
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1 for (i = 0; i < fb->rsize; i++) {
2 p = fb->prl[il;
3 plog = log2((double) p);
4 posStartPoint = (b * fb->rroots[i]) % p;
5 negStartPoint = posStartPoint - p;
6 negStartPoint *= -1;
4
8 for (j = negStartPoint; j < d->ar; j = j + p) {
9 d->arrSieveR[j] = d->arrSieveR[j] + pLog;
10 }
11 for (j = posStartPoint + (d->ar); j < (d->ar * 2); j=j+p 1
12 d->arrSieveR[j] = d->arrSieveR[j] + pLog;
12 }
14| }
15

16| /* Algebraic Side Line Sieve */
17| for (i = 0; i < fb->asize; i++) {

18 p = fb->palil;

19 plog = log2(p);

20 mpz_set_ui(T0, fb->roots[il);

21 mpz_mul_ui(TO, TO, b);

22 mpz_mod_ui(TO, TO, p);

23 posStartPoint = mpz_get_ui(TO0);

24 negStartPoint = posStartPoint - p;

25 negStartPoint *= -1;

26 for (j = negStartPoint; j < d->ar; j = j + p) {
27 d->arrSieveA[j] = d->arrSieveA[j] + pLog;

28 }

29 for (j = posStartPoint + (d->ar); j < (d->ar * 2); j = j + p) {
30 d->arrSieveA[j] = d->arrSieveA[j] + pLog;

31 }

32| %

Code 5.8: ../elekmini/src/nfs/compute_nfs.c

For lattice sieve by row in our implementation, we first need to generate

special-g primes that will be used in sieving. We select our special-g primes from

computed algebraic factor base. We choose primes from algebraic factor base

with greater than given bound.

1 for (i = 0; i < fb—>asize; i++) {

2 if (fb->pali] > q_bound) {

3 fb->psqlj] = fb->palil;

4 fb->sqroots[j] = fb->roots[i];

5 fb->sqilj] = i;

6 reduceBasis(fb->rbsv[j], fb->psqljl, fb->sqroots[jl);
7 Jh+s

8 ¥

9

}

Code 5.9: ../elekmini/src/nfs/init_fb.c

For lattice sieving by rows in our implementation, as mention above we need to

find reduce basis vector of lattice Ly. So, we precalculated reduced basis with

function reducedBasis for every special-¢ and store in the fb->rbsv. Then,

lattice sieve followed as below:

1 for (k = 0; k < fb->sqilsqlndex]; k++) {

2 p = fb->palk];

3 r = fb->roots(k];

4 plog = log2((double) p);

5 j=1;

6 c_1 = calculateStartPointForLatticeSieve(fb->rbsv[sqIndex], j, p, r);
T c_d = 0;

8 for (j = 1; j < d->rangeE; j++) {

9 /* Negative part sieve (-C,0) */
10 i0 = (c_1 + c_d) % p;
11 for (i = (p - i0); i < d->rangeC; i += p) {
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12 d->arrLatticeSieveA[((j - 1) * d->rangeC) + i] += plog;
}

14 /* Positive part sieve (0, C) */

15 for (i = (d->rangeC + i0); i < (2 * d->rangeC); i += p) {

16 d->arrLatticeSieveA[((j - 1) * d->rangeC) + i] += pLog;
}

18 c_d = i0;
19 }
20| }

22 for (k = 0; k < fb->rsize; k++) {
23 p = fb->pr(k];

24 r = fb->rroots[k];

25 pLog = log2((double) p);

26 c_1 = calculateStartPointForLatticeSieve(fb->rbsv[sqIndex], j, p, 1);
27 c_d = 0;

28 for (j = 1; j < d->rangeE; j++) {

29 i0y=:(61 +sed) Hips

30 /* Negative part sieve (-C,0) */

31 for (i = (p - i0); i <= d->rangeC; i += p) {

32 d->arrLatticeSieveR[((j - 1) * d->rangeC) + i] += pLog;
33 }

34 /% Positive part sieve (0, C) */

35 for (i = (d->rangeC + i0); i <= (2 * d->rangeC); i += p) {
36 d->arrLatticeSieveR[((j - 1) * d->rangeC) + i] += plog;
37 }

38 c_d = i0;

39 }

40|

Code 5.10: ../elekmini/src/nfs/compute_nfs.c

5.8 SCANNING SIEVE ARRAY

When sieving process has finished, we scan sieve array with the values on both

side are grater or equal to threshold. If we use line sieve we have values a, b then

we construct a —bm and N(a — ba) to test for smoothness. The smoothness test

will be perform function trialDivZ (rational side) and trialDivA (algebraic

side). If we use lattice sieving, we have values c,e. We calculate a, b with given

¢, e and follow the same process mention in3.5.

for (j = 0; j < fb->rsize; j++) {
p = fb->pr(jl;
while (mpz_divisible_ui_p(res, p) > 0) {
mpz_divexact_ui(res, res, p);
arr [j1++;
¥
Code

../elekmini/src/nfs/compute_nfs.

QTSP 00 ~1 O U1 ik Lo DO =

-

11
¢ 12
13
14

for (i = 0; i < fb->asize; i++) {

114t ( mpz_cmp (A3, A2) == 0) {

p = fb->palil;

r = fb->roots[i];
mpz_set_ui(A3, b);
mpz_mul_ui(A2, A3, r);
mpz_mod_ui(A2, A2, p);
mpz_mod_ui(A3, Al, p);

while ((mpz_divisible_ui_p(res, p)) != 0) {
mpz_divexact_ui(res, res, p);
arr[i]++;
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5.9 EXPONENT VECTOR GENERATION

AND STORING

After both a—bm and N(a—ba) pass the smoothness test we accept (a, b) pair as
relations. In trialDivA and trialDivZ function construct the exponent vector
for given number. Factorization vector for rational side stored in arrTrialR and
algebraic side store in arrTrialA. Then, we merge arrTrialA, arrTrialZ as
relations. Then, we calculate legendre symbol of all quadratic characters with

using GMP function mpz_legendre_symbol and added to end of the merged

vector.
1 for (j = 0; j < fb->rsize; j++) {
2 fulls->vector[j + rows * cols] = arrTrialR[j];
3 }
4 for (j = 0; j < fb->asize; j++) {
5 fulls->vector([j + rows * cols + fb->rsize] = arrTrialA[j];
6 }
7 for (j = 0; j < fb->gsize; j++) {
8 mpz_set_si(TO, a);
9 mpz_sub_ui(T0, TO, b * fb->qroots[j]l);
10 mpz_set_ui(T1, fb->pqljl);
11 if (mpz_legendre(TO, T1) == 1) {
12 fulls->vector[j + rows * cols + fb->asize + fb->rsize] = 0;
13 } else {
14 fulls->vector[j + rows * cols + fb->asize + fb->rsize] = 1;
15 }
16 }
17
18 fulls->a[rows] = a;
19 fulls->b[rows] = b;
20 sign0 = mpz_get_si(resi);
21 if (sign0 < 0) {
22 fulls->sign(rows] = 1;
23 } else {
24 fulls->sign[rows] = 0;
25 }

Code 5.13: ../elekmini/src/nfs/compute_relations.c

5.10 LINEAR ALGEBRA WITH THE HELP

OF MAGMA

In this step, we generate txt file that written in MAGMA language to solve the
matrix that construct in the process above. The linear algebra file is generated
by function linear_algebra nfs. When enough relationships are gathered for

the linear algebraic step, we call the function to generate the file. The file stores

20



factor bases , (a,b) pairs, matrix that store exponent vectors for corresponding
(a, b) pair, polynomial f, n and m. If we execute the magma code written to the

file we can obtain the factors of the n.
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CHAPTER 6

CONCLUSION

Number Field Sieve (NFS) is a general purpose integer factorization algorithm.
NFS currently has the lowest asymptotic complexity and it has a crucial role
in research on attacking the widely used industry standard RSA cryptosystem.
NFS is composed of several steps each of which might be amenable to further
improvements and thus becoming a more serious threat against RSA in the
future.

In particular, this thesis focused on the optimization of the scanning stage
that comes right after the sieving stage. In this context, we investigated
existing techniques in literature and implementation choices in freely available
software. We reproduced these techniques in from-the-scratch C & Magma
implementations and then incorporated our modifications. In this direction, we
tried six different variations in order to get the best timings which are depicted

in Chapter 4. We came to a conclusion that the best practice is to

e to compare against the preset thresholds of both the algebraic and the
rational sides together.

e send the values from the algebraic side to smooth factorization test, which
passes the threshold test.

e send the values from the rational side to smooth factorization test, which

passes the threshold test and the smoothness test of item 2.

Our experiment results are consist with previous attempts which are only
empirically available in open source libraries CADO-NFS (Team, 2017),
GGNFS (Monico, 2005), and msieve (Papadopoulos, ). This thesis work is by
no means a complete NFS implementation. There are several other parts to be

implemented and optimized such as lattice sieve by vector, lattice sieve by vector
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Kleijung’s improvement (Kleinjung et al., 2010), better polynomial selection,
parallelization of sieving process, bucket sieving, and cache optimization. These

further topics are left as future work.
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APPENDIX

typedef struct {
mpz_t n;
mpz_t m;
ui B_r;
ui B_a;
ui b;
ui ar;
ui rangeC;
ui rangeE;
uc d;
ui thrR;
ui thri;
ui thrLatticel;
ui thrlLatticeR;
ui 1pb0;
ui 1lpbi;
ui smallSieveSize;
double *arrSieveR;
double *arrSieveA;
double *arrLatticeSieveA;
double *arrLatticeSieveR;
char *poly;
mpz_t *polyCoefficent;
} DATA_nfs_t[1], *DATA_nfs;

typedef struct {
int v1[2]; /* Reduce basis vector 1 */
int v2[2]; /* Reduce basis vector 2 */
} LV_nfs_t[1], *LV_nfs;

typedef struct {

ui asize;

ui rsize;

ui gsize;

ui sgsize;

ui *pr;

ui *pa;

ui *pg;

ui *psq;

ui *groots;

ui *roots;

ui *rroots;

ui *sqroots;

ui *sqi;

us *1r;

us *la;

LV_nfs_t *rbsv;
} FB_nfs_t[1], *FB_nfs;

typedef struct {

uc *type;

ul size;

sl *a;

ul *b;

sl *partial_a;

ul *partial_b;

uc *vector; /* exponenet vector */

uc *sign; /* sign of the a-bm */
}REL_FULL_NFS_t[1], *REL_FULL_NFS;

void init_full_relations_nfs(REL_FULL_NFS fulls, FB_nfs fb, int vectorSize);

void kill_full_relations_nfs(REL_FULL_NFS f11);

typedef struct {
sl a;
ui b;
uc s; /*Matrix of the sign */
uc *e; /*Matrix of the exponents */
} LARGE_PRIME_DATA_NFS_t[1], *LARGE_PRIME_DATA_NFS;

typedef struct {
//ui data_size;
ui data_count;
LARGE_PRIME_DATA_NFS_t *data;
} REL_PARTIAL_NFS_t[1], *REL_PARTIAL_NFS;
void init_relations_partial_nfs(REL_PARTIAL_NFS partials);
void kill_relations_partial_nfs(REL_PARTIAL_NFS partials);

99




79| #ifndef __HASH_H__
80| #define __HASH H__ 1

82| typedef struct svz_hash_entry svz_hash_entry_t;
83| typedef struct svz_hash_bucket svz_hash_bucket_t;
84| typedef struct svz_hash svz_hash_t;

86| /* begin svzint */

87| /*

88| * This structure keeps information of a specific hash table.

89| * It’s here (rather than in .c) for the benefit of cfg.c &hash_dup&.

90| */

91| struct svz_hash {

92 size_t buckets; /* number of buckets in the table */

93 size_t fill; /* number of filled buckets */

94| size_t keys; /* number of stored keys x/

95| int (*equals) (const char *, const char *); /* key string equality callback */
96 unsigned long (*code) (const char *); /* hash code calculation callback */
97| size_t (*keylen) (const char *); /* how to get the hash key length */

98| void (*destroy)(void *); /* element destruction callback */

99| svz_hash_bucket_t *table; /* hash table */

100( };

101| /* end svzint */

102

103 | typedef void (svz_hash_do_t)(void *, void *, void *);
104

105| __BEGIN_DECLS

106

107 | /*

108| #* Basic hash table functioms.

109| =/

110| svz_hash_t *svz_hash_create(size_t);

111| svz_hash_t *svz_hash_configure(svz_hash_t *hash, size_t (xkeylen)(const char *), unsigned long (*code) (
const char %), int (*equals)(const char *, const char *));
112| void svz_hash_destroy(svz_hash_t *);

113 | void *svz_hash_delete(svz_hash_t *, const char *);

114 void *svz_hash_put(svz_hash_t *, const char *, void *);

115| void *svz_hash_get(const svz_hash_t *, const char *);

116| void svz_hash_foreach(svz_hash_do_t *, svz_hash_t *, void *);
117| size_t svz_hash_size(const svz_hash_t *);

118]| char *svz_hash_contains(const svz_hash_t *, void *);

119| int svz_hash_exists(const svz_hash_t *, char *);

121| __END_DECLS

123 | #endif /* not __HASH H__ */

127| /* Initialize Process */

128 void nfs_init_data(DATA_nfs d, LV_nfs 1lv);

129| void nfs_init_poly(DATA_nfs d);

130| void nfs_init_factor_base_rational(FB_nfs fb, DATA_nfs d);

131| void nfs_init_factor_base_algebraic(FB_nfs fb, DATA_nfs d);

132| void nfs_init_quadratic_characterbase(FB_nfs fb, DATA_nfs d);

133| void nfs_init_special_q_characterbase(FB_nfs fb, DATA_nfs d, ui q_bound);
134
135
136| /* Sieving functions and Linear Algebra */

137| int compute_numberfield_sieve(REL_FULL_NFS fulls, REL_PARTIAL_NFS partials, FB_nfs fb, DATA_nfs d, POL p,
LARGE_PRIME_DATA hd, FILE *fp);

138]| int compute_numberfield_sieve_lattice(REL_FULL_NFS fulls, REL_PARTIAL_NFS partials, FB_nfs fb, DATA _nfs d,
POL p, LARGE_PRIME_DATA hd, LV_nfs lv, FILE *fp) ;

139| int nfs_relation_processing(DATA_nfs_t d, FB_nfs_t fb, REL_FULL_NFS fulls, REL_PARTIAL_NFS partials, uc *
arrTrialR, uc *arrTriald, mpz_t resO, mpz_t resi, mpz_t TO, mpz_t T1, int sign, sl a, ul b,int rows,
svz_hash_t *hashtable_p,svz_hash_t *hashtable_r, int *htfc);

140| void linear_algebra_nfs(DATA_nfs_t d, FB_nfs_t fb, REL_FULL_NFS_t r, int cnt) ;

141| //void mpz_norm(DATA_nfs d,mpz_t res, sl a, int b);

142
143| /* Util functions */

144| ui binary_gcd(sl a, int b);

145| void reduceBasis(LV_nfs lv, ui pr, int r);

146| void mpz_norm(DATA_nfs d, mpz_t res, sl a, int b, mpz_t temp);
147| int mpz_evalNorm(DATA_nfs d, mpz_t res, sl a, int b);

148| void mpz_norml(DATA_nfs d, mpz_t res, sl a, int b, mpz_t temp);
149
150| /*unsigned long ilog(unsigned long b);

151| unsigned long bitcount(unsigned long b);*/

Code 6.1: ../elekmini/src/_elekmini_nfs.h

#include "_elekmini.h"

#define TEST_ELEK_100 /* 50, 100, 200, 250, 300 */
#define LINE_SIEVE /* LINE_SIEVE, LATTTICE_SIEVE_BY_ROWS, LATTTICE_SIEVE_BY_VECTORS */
//#define LATTTICE_SIEVE_BY_ROWS
void nfs_init_data(DATA_nfs d, LV_nfs 1lv) {
mpz_init(d->n);
mpz_init(d->m);

OO ULRWN

10| #ifdef TEST_ELEK_50
11 mpz_set_str(d->n, "1053490610310707", 10);
12| d->B_r = 1000;

13 d->B_a = 1500;
14| d->thrR = 8;
15 d->thrA = 10;
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d->ar = 10000;

d->rangeE = 60;

d->rangeC = 100;

d->1pb0 = 1;

d->1pbl = 1;

d->d = 3; //Degree of the polynomial.
#endif
#ifdef TEST_ELEK_70

//mpz_set_str(d->n, "2794708678894578235763", 10);
mpz_set_str(d->n, "1180591622349498875779", 10);
d->B_r = 3000;
d->B_a = 5000;
d->thrR = 12;
d->thrA = 14;
d->ar = 16000;
d->rangeE = 80;
d->rangeC = 200;
d->1pb0 = 1;
d->1pbl = 17;
d->d = 3; //Degree of the polynomial.
#endif
#ifdef TEST_ELEK_100

mpz_set_str(d->n, "737774618560715804003035572653", 10);

//mpz_set_str(d->n, "1267650600228312155139856129339", 10);

d->B_r = 20000;

d->B_a = 30000;

d->thrR = 30;

d->thrA = 45; //50

d->thrLatticeA = 25;

d->ar = 50000;

d->rangeE = 40;

d->rangeC = 1000;

d->1pb0 = 1;

d->1pbl = 19;

d->d = 3;//Degree of the polynomial.
#endif

#ifdef TEST_ELEK_150

mpz_set_str(d->n, "2257727241354194125292213943385759534140088451", 10);

d->B_r = 80000;

d->B_a = 100000;

d->thrR = 35;

d->thrA = 55;

d->ar = 300000;

d->rangeE = 200;

d->rangeC = 10000;

d->1pb0 = 1;

d->1pbl = 23;

d->d = 4; //Degree of the polynomial.
#endif
#ifdef TEST_ELEK_200

mpz_set_str(d->n, "90377629292003121684002147101760858109247336549001090677693", 10);

d->B_r = 160000;

d->B_a = 200000;

d->thrR = 48;

d->thrA = 65;

d->ar = 350000;

d->rangeC = 10000;

d->rangeE = 200;

d->1pb0 = 1;

d->1pbl = 25;

d->smallSieveSize = 1000;

d->d = 4; //Degree of the polynomial.
#endif
#ifdef TEST_ELEK_300

mpz_set_str(d->n,
"'229819220467665407292310136245859203083400224623948937516985063841549618327517460879624657", 10) ;

//mpz_set_str(d->n,
"1018517988167243043134222844204689080525734400215764335917353275482941296434725287633102751", 10);

d->B_r =600000;

d->B_a = 1000000;

d->thrR = 55;

d->thrA = 75;

d->ar = 3000000;

d->rangeE = 10;

d->rangeC = 100;

d->1pb0 = 23;

d->1pbi = 23;

d->smallSieveSize = 5000;

d->d = 5;//Degree of the polynomial.

#endif

#ifdef LINE_SIEVE
d->arrSieveR = (double *) malloc((double) sizeof(double) * (d->arx2));
d->arrSieveA = (double *) malloc((double) sizeof(double) * (d->ar*2));

if (d->arrSieveR == NULL) {
printf(" > Cannot allocate memory for the sieve array.\n");
exit(0);
} else {
printf(" > Allocated %.01f kbytes for the sieve array.\n", ((double) ((double) sizeof(double) *(d->ar*2)
)) / 1024);
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111 if (d->arrSieveA == NULL) {
112 printf(" > Cannot allocate memory for the sieve array.\n");
113 exit(0);
114 } else {
115 printf(" > Allocated %.0lf kbytes for the sieve array.\n", ((double) ((double) sizeof(double) * (d->ar
*2))) / 1024);
116
117 | #endif
118
119 | #ifdef LATTTICE_SIEVE_BY_ROWS
120 d->arrLatticeSieveA = (double *) malloc((double) sizeof(double) * ((d->rangeC * 2) * d->rangeE));
121 d->arrLatticeSieveR = (double *) malloc((double) sizeof(double) * ((d->rangeC * 2) * d->rangeE));
122
123| if (d->arrLatticeSieveA == NULL) {
124 printf(" > Cannot allocate memory for the sieve array.\n");
125 exit(0);
126 } else {
127 printf(" > Allocated %.01f kbytes for the sieve array.\n", ((double) ((double) sizeof(double) * (d->
rangeC * 2) * d->rangeE)) / 1024);
128 1}
129
130 if (d->arrLatticeSieveR == NULL) {
131 printf(" > Cannot allocate memory for the sieve array.\n");
132 exit(0);
133 } else {
134 printf(" > Allocated %.0lf kbytes for the sieve array.\n", ((double) ((double) sizeof(double) * (d->
rangeC * 2) * d->rangeE)) / 1024);
135
136| #endif
137(}
138
139| void nfs_kill_data(DATA_nfs d) {
140 | #ifdef LINE_SIEVE
141 free(d->arrSievel);
142 free(d->arrSieveR);
143| #endif
144
145| #ifdef LATTTICE_SIEVE_BY_ROWS
146 free(d->arrLatticeSieveR);
147 free(d->arrLatticeSieved);
148 | #endif
149
150 }
Code 6.2: ../elekmini/src/nfs/init_data.c
1| #include "_elekmini.h"
2| #define VERBOSE
3
4| void nfs_init_factor_base_rational(FB_nfs fb, DATA_nfs d) {
5 int i;
6| mpz_t p, temp;
4 mpz_init(p);
8 mpz_init (temp) ;
9 fb->pr = (ui *) malloc(sizeof(ui) * (d->B_r) / 2); /* Allocate more than enough space. Trimmed after the
loop.*/
10 fb->rroots = (ui *) malloc(sizeof(ui) * (d->B_r) / 2);
11 /* Add 2 manually. */
12 fb->pr([0] = 2;
13 mpz_mod_ui(temp, d->m, 2);
14| fb->rroots[0] = mpz_get_ui(temp);
15 i=1;
16 mpz_set_ui(p, 3);
17 while (mpz_cmp_ui(p, d->B_r) != 1) {
18 fb->pr(il = (ui) mpz_get_ui(p);
19 mpz_mod(temp, d->m, p);
20 fb->rroots[i] = mpz_get_ui(temp);
21 i++;
22 mpz_nextprime(p, p);
231 )
24| fb->pr = (ui *) realloc(fb->pr, sizeof(ui) * i);
25 fb->rroots = (ui *) realloc(fb->rroots, sizeof(ui) * i);
26 fb->rsize = i;
27| mpz_clear(temp);
28| mpz_clear(p);
29
30| #ifdef VERBOSE
31| printf(" > i P (m mod p)\n");
32 printf(" > \n") ;
33 //for (i = 0; i < fb->rsize; i++) {
34| for (i = 0; i < 10; i++) {
35 printf(" > %9d %9d %9d \n", i, fb->pr[il, fb->rroots[il);
36
37| printf(" > ™ a s XA §
38 for (i = fb->rsize - 5; i < fb->rsize; i++) {
39 printf(" > %9d %49d %9d \n", i, fb->pr(il, fb->rroots[il);
40
41 fflush(stdout);
42| #endif
431}
44
45| #define MAGMA_SCRIPT "\
46| InitAlgebraicFactorBase2:= function(poly,bound) \n\
47 fbpa:=[]; \n\
48 p:=2; \n\
49 while p 1t bound do \n\
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50 PR<x>:=PolynomialRing(GF(p)); \n\

51 pol:=PR!poly; \n\

52 if (HasRoot(pol)) eq true then \n\

53 roots:=Roots(pol); \n\

54 for i:=1 to #roots do \n\

55 tuple:=<0,p>; \n\

56 tuple[1] :=roots[i] [1]; \n\

57 Append(~fbpa,tuple); \n\

58 end for; \n\

59 end if; \n\

60 p:=NextPrime(p) ; \n\

61 end while; \n\

62 return fbpa; \n\

63| end function; \n\

64| PR<x>:=PolynomialRing(Integers()); \n\

65| res:=InitAlgebraicFactorBase2(0*x+%s,%u) ; \n\

66| delim:=CodeToString(58); //The semi-colon character. \n\
67| str:=Substring(delim,1,0); \n\

68| for i:=1 to #res-1 do \n\

69 str:=str cat IntegerToString(res([i][1]) cat delim; \n\
70 str:=str cat IntegerToString(res[i][2]) cat delim; \n\
71| end for; \n\

72| str:=str cat IntegerToString(res(#res][1]) cat delim; \n\
73| str:=str cat IntegerToString(res[#res][2]); \n\

74| str; \Nn*

75

76| #define MAGMA_SCRIPTO "\

77| quadraticCharacterBase:=function(poly,bound,k) \n\

78 qcBase:=[]; \n\

79 p:=bound; \n\

80 while #qcBase 1t k do \n\

81 p:=NextPrime(p); \n\

82 PR<x>:=PolynomialRing(GF(p)); \n\

83 pol:=PR!poly; \n\

84 if (HasRoot(pol)) eq true then \n\

85 roots:= Roots(pol); \n\

86 for j:=1 to #roots do \n\

87 pA:=(]; \n\

88 if #qcBase eq k then \n\

89 break; \n\

90 end if; \n\

91 pA[1]:=Integers()!roots[jl[1]; \n\

92 pA[2] :=p; \n\

93 Append(~qcBase,pA); \n\

94 end for; \n\

95 end if; \n\

96 end while; \n\

97 return qcBase; \n\

98| end function; \n\

99| PR<x>:=PolynomialRing(Integers()); \n\
100| res:=quadraticCharacterBase(0*x+%s,%u,%u) ; \n\
101| delim:=CodeToString(58); //The semi-colon character. \mn\
102| str:=Substring(delim,1,0); \n\
103| for i:=1 to #res-1 do \n\
104 str:=str cat IntegerToString(res[i][1]) cat delim; \n\
105 str:=str cat IntegerToString(res[i][2]) cat delim; \n\
106| end for; \n\
107| str:=str cat IntegerToString(res[#res][1]) cat delim; \n\
108 str:=str cat IntegerToString(res[#res][2]); \n\
109| str;\n"

110

111| void nfs_init_factor_base_algebraic(FB_nfs fb, DATA_nfs d) {
112 int i =0, j = 0;

113 fb->pa = (ui *) malloc(sizeof(ui) * (d->B_a) / 2);

114 fb->roots = (ui *) malloc(sizeof(ui) * (d->B_a) / 2);
115

116| gmp_sprintf(MAGMA_BUFFER, MAGMA_SCRIPT, d->poly, d->B_a);
117 char *fbStr = magma_exec (MAGMA_BUFFER) ;

118 char *token;

119| while ((token = strsep(&fbStr, ":"))) {

120 if ((3%2) =0 {

121 fb->roots[i] = atoi(token);

122 } else if ((j % 2) == 1) {

123 fb->pa[i] = atoi(token);

124 itdy

125 }

126 i+

1271 }

128| fb->pa = (ui *) realloc(fb->pa, sizeof(ui) * i);

129 fb->roots = (ui *) realloc(fb->roots, sizeof(ui) * i);
130 fb->asize = i;

131

132| #ifdef VERBOSE

133| printf(" > i n p \n");

134| printf(" > \n");
135 for (i = 0; i < 10; i++) {

136 printf(" > %9d %9d %9d \n", i, fb->roots[i], fb->palil);
137 ¥

138| printf(" > gas s ¢ \EN)

139 for (i = fb->asize - 5; i < fb->asize; i++) {

140 printf(" > %9d %9d %9d \n", i, fb->roots[il, fb->palil);
141 }

142 //printf(" > %s", fbStr);

143 fflush(stdout);

144 | #endif

145| free(fbStr);

146}

147
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148| void nfs_init_quadratic_characterbase(FB_nfs fb, DATA_nfs d) {

149 int j = 0, i = 0;

150 fb->gsize = 200;

151 gmp_sprintf (MAGMA_BUFFER, MAGMA_SCRIPTO, d->poly, 999999999, fb->qgsize);
152 char *qcStr = magma_exec(MAGMA_BUFFER) ;

153 char *token;

154| £fb->pq = (ui *) malloc(sizeof(ui) * (fb->gsize + 1));

155 fb->qroots = (ui *) malloc(sizeof(ui) * (fb->gsize + 1));

156
157| while ((token = strsep(&qcStr, ":"))) {
158 if (342 ==0{

159 fb->groots[i] = atoi(token);

160 } else if ((j % 2) == 1) {

161 fb->pq[i] = atoi(token);

162 it+;

163 }

164 s

165 1}

166

167 | #ifdef VERBOSE

168| printf(" > i r p \n");
169| printf(" > \n");

170 for (i = 0; i < 10; i++) {
171 printf(" > %9d %9d %9d \n", i, fb->qroots[i], fb->pq[il);
172 }

173 printf(" > - L.o.o\n");

174| for (i = fb->gsize - 5; i < fb->gsize; i++) {

175 printf(" > %9d %9d %9d \n", i, fb->groots(il, fb->pqlil);
176 %

177 fflush(stdout);

178 | #endif

179| free(gcStr);

180| }

181
182| void nfs_init_special_q_characterbase(FB_nfs fb, DATA nfs d, ui q_bound) {
183 int i, j = 0;

184| fb->psq = (ui *) malloc(sizeof(ui) * (fb->asize));

185 fb->sqi (ui *) malloc(sizeof(ui) * (fb->asize));

186 fb->sqroots = (ui *) malloc(sizeof(ui) * (fb->asize));

187 fb->rbsv = (LV_nfs_t *) malloc(sizeof(LV_nfs_t) * fb->asize);

188
189 for (i = 0; i < fb->asize; i++) {

190 if (fb->palil > q_bound) {

191 fb->psqlj]l = fb->palil;

192 fb->sqroots[j] = fb->roots[i];

193 fb->sqij] = i;

194 reduceBasis(fb->rbsv[j], fb->psql[jl, fb->sqroots[jl);
195 G+

196 }

197 }

198| fb->sqgsize = j;

199| fb->psq = (ui *) realloc(fb->psq, sizeof(ui) * (fb->sgsize));

200 fb->sqi = (ui *) realloc(fb->sqi,sizeof(ui) * (fb->sgsize));

201 fb->sqroots = (ui *) realloc(fb->sqgroots,sizeof(ui) * (fb->sgsize));

202 fb->rbsv = (LV_nfs_t *) realloc(fb->rbsv,sizeof (LV_nfs_t) * fb->sqsize);
203
204 | #ifdef VERBOSE

205 printf (" > i T p \n");

206 printf(" > \n");
207 for (i = 0; i < 10; i++) {

208 printf(" > %9d %9d %9d \n", fb->sqil[i], fb->sqroots[i], fb->psqlil);
209| 1}

210| printf(" > 'TY o v o NEDE

211 for (i = fb->sgsize - 5; i < fb->sqgsize; i++) {

212 printf(" > %9d %9d %9d \n", fb->sqil[i], fb->sqroots[i], fb->psq[il);
213 }

214 fflush(stdout);

215| #endif

216

217(}

Code 6.3: ../elekmini/src/nfs/init_fb.c

1| #include "_elekmini.h"

2

3| /*

4| #define MAGMA_SCRIPT "\

5| InitPolynomial:=function(n,d) \n\
6 _<x>:=PolynomialRing(Integers()); \n\
7 r:=Floor(n~(1/(d+1))); \n\
8 repeat \n\

r:=NextPrime(2*r); \n\

10 ks:=IntegerToSequence(n,r); \n\
11 until #ks ne d+1; \n\
12 m:=2%r; \n\
13| repeat \n\
14 m:=m div 2; \n\
15 m:=PreviousPrime(m) ; \n\
16 ks:=IntegerToSequence(n,m); \n\
17 £:=0; \n\
18 for i:=1 to #ks do \n\
19 fi= f + x~(i-1)*ks[i]; \n\
20 end for; \n\
21 until IsIrreducible(f) and (Degree(f) eq d) and IsMonic(f); \n\
22 assert Evaluate(f,m) eq n; \n\
23 delim:=CodeToString(58); \n\
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24 str:=Substring(delim,1,0); \n\
25 cn:=Coefficients(f); \n\
26 for i:=1 to #cn do \n\
27 str:= str cat IntegerToString(cn[i]) cat delim; \n\
28| end for; \n\
29| str:= str cat IntegerToString(m) cat delim; \n\
30 assert Evaluate(f,m) eq n; \n\
31 return str,f; \n\
32| end function; \n\
33| InitPolynomial (%2d,%u) ; \n"
34| */

35

36| #define MAGMA_SCRIPT "\

37| InitPolynomial:=function(n,d) \n\
38| m:=Floor(n~(1/d)); \n\

39 _<x>:=PolynomialRing(Integers()); \n\
40 k:=1; \n\

41 repeat \n\
42 k:=NextPrime (k) ; \n\
43 ks:=IntegerToSequence(n,m) ; \n\
44 £:=0; \n\

45 for i:=1 to #ks do \n\

46 if ks[i] le m then \n\

47 f:=f + x~(i-1)*ks[i]; \n\

48 end if; \n\

49 end for; \n\

50 if IsIrreducible(f) and (Degree(f) eq d) and IsMonic(f) then \n\
51 break; n\

52 else \n\

53 m:=m - k; \n\

54 end if; \n\

55 until IsIrreduc1b1e(f) and (Degree(f) eq d) and IsMonic(f); \n\
56 //assert Evaluate(f,m) eq n; \n\
57 delim: -CodeToStrlng(SS) \n\
58 str:=Substring(delim,1, O) H \n\
59 cn:=Coefficients(f); \n\
60 for i:=1 to #cn do \n\
61 str:= str cat IntegerToString(cn[i]) cat delim; \n\
62| end for; \n\
63 str:= str cat IntegerToString(m) cat delim; \n\
64 return str,f; \n\
65| end function; \n\
66| InitPolynomial (%2d,%u) ; \n"
67

68| #define MAGMA_SCRIPT1 "\

69| InitPolynomial:=function(n,d) \n\
70| m:= Floor(a~(1/(d))); \n\

71| ks:=IntegerToSequence(n,m); \n\

72| _<x>:=PolynomialRing(Integers()); \n\

73| f:=0; \n\

74 k:=1; \n\

75| repeat \n\

76 k:= NextPrime(k); \n\

7 ks:=IntegerToSequence(n,m) ; \n\

78 for i:=1 to #ks do \n\

79 if ks([i] 1t m then \n\

80 fr= f + x"(i-1)*ks[i]; \n\

81 end if; \n\

82 end for; \n\

83 if Degree(f) eq d then \n\

84 break; \n\

85 end if; \n\

86 m:=m + (kxk); \n\

87| until (Degree(f) eq d); \n\

88 ks:= IntegerToSequence(n,m); \n\

89 for i:=1 to #ks do \n\

90 if ks[i] gt Floor(m/2) then \n\

91 ks([il:= ks[i] - m; \n\

92 ks[i+1]+:=1; \n\

93 end if; \n\

94 end for; \n\

95| £:=0; \n\

96 for i:=1 to #ks do \n\

97 fi= f + x"(i-1)*ks[i]; \n\

98 end for; \n\

99 delim:=CodeToString(58); \n\
100 str:=Substring(delim,1,0); \n\
101 cn:=Coefficients(f); \n\
102 for i:=1 to #cn do \n\
103 str:= str cat IntegerToString(cn[i]) cat delim; \n\
104| end for; \n\
105| str:= str cat IntegerToString(m) cat delim; \n\
106 return str,f; \n\
107| end function; \n\
108| InitPolynomial (%Zd,%u) ; \n"
109

110| void nfs_init_poly(DATA_nfs d) {

111 gmp_sprintf (MAGMA_BUFFER, MAGMA_SCRIPT1, d->n, d->d);
112 char *polStr = magma_exec (MAGMA_BUFFER) ;

113 char *token;

114| int i = 0;

115 d->polyCoefficent = malloc((d->d + 1) * sizeof(mpz_t));
116 for (i = 0; i <= d->d; i++) {

117 token = strsep(&polStr, ":");

118 mpz_init_set_str(d->polyCoefficent[i], token, 10);
119 }

120 token = strsep(&polStr, ":");

121 mpz_init_set_str(d->m, token, 10);

65




122| token = strsep(&polStr, ":");
123| d->poly = token;

124
125| free(polStr);
126
127 | #ifdef VERBOSE

128| printf(" > %s\n", d->poly);
129 for (1 = 0; 1 <= d->d; i++) {
130 gmp_printf("%2d ", d->polyCoefficent[il);
131 }

132 | #endif

133}

134
135| void nfs_kill_poly(DATA_nfs d) {
136 int i;

137 for (i = 0; i <= d->d; i++) {
138 mpz_clear (d->polyCoefficent[i]);
139 1}

140| mpz_clear(d->m);

141}

Code 6.4: ../elekmini/src/nfs/init_poly.c

#include "_elekmini.h"
#include "ecm.h"

#include <sys/time.h>
#include <time.h>
#include <stdio.h>
#define TRIAL_DIV_MUL
//#define TRIAL_DIV
//#define PRINT_SMOOTHS
//#define PRINT_RELATIONS

OO0 U WN -

11| #define THRESHOLD_MODE 0O
12| #define TRIAL_DIV_MODE 0
13| #define SUPPORT_PROCESSOR_x86_64 1

15| #ifdef SUPPORT_PROCESSOR_x86_64
17| #define km_mul_2(zH, zL, a, b) __asm__( \
18 "mulg %3;" \
19 ¢ "=d"((zH)), "=a"((zL)) \
20 : "a"((a)), "m"((®) \
)
22| #endif
24| int trialDivisionZ(DATA_nfs d, FB_nfs fb, uc *arr, mpz_t res, sl a) {
25 int j;
26 /* res calculation out of function */

; j < fb->rsize; j++) {

32| for (j = 0; j < fb->rsize; j++) {
33 p = fb->prl(jl;

34 while (mpz_divisible_ui_p(res, p) > 0) {
35 mpz_divexact_ui(res, res, p);

36 arr[jl++;

37 }

38 }

39

40| if (mpz_cmp_ui(res, 1) == 0 || mpz_cmp_si(res,-1) == 0 || mpz_sizeinbase(res, 2) < d->1pb0) {
41 return 1;

42| Y else {

43 //printf("Rational side is not smooth\n");
44 return 0;

45| }

46|}

47

48| int trialDivisionA(DATA_nfs d, FB_nfs fb, uc *arr, mpz_t res, int b, sl a, FILE *fp) {
49 int i;

50 mpz_t Al, A2, A3;

51 Ul Py T

52 mpz_init_set_si(Al, a);

53 mpz_init_set_si(A2, 1);

54| mpz_init(A3);

55

56 for (i = 0; i < fb->asize; i++) {
57 arr([i] = 0;

58| %

59

60 for (i = 0; i < fb->asize; i++) {
61 p= fb->palil;

62 r = fb->roots[il;

63 mpz_set_ui(A3, b);

64 mpz_mul_ui(A2, A3, r);

65 mpz_mod_ui(A2, A2, p);

66 mpz_mod_ui(A3, Al, p);

67 if ( mpz_cmp(A3, A2) == 0) {

68 while ((mpz_divisible_ui_p(res, p)) != 0) {
69 mpz_divexact_ui(res, res, p);
70 arr[i]++;

71

72 }

73| %
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75| mpz_clear(A3);
76| mpz_clear(A2);
77| mpz_clear(Al);

79| if (mpz_cmp_ui(res, 1) == 0 || mpz_cmp_si(res,-1) == 0 || mpz_sizeinbase(res, 2) < d->1pbl) {
80 return 1;

81 } else {

82 /*fprintf (fp, "a:=");

83 mpz_out_str(fp, 10, res);

84 fprintf(fp, "; Log(2,a);\n");

85 fprintf(fp, "assert IsPrime(a);\n");*/
86 return O;

87

88|}

89

90| int trialDivAWithMul(DATA_nfs d, FB_nfs fb, uc *arr, mpz_t res, int b, sl a, float *compTime) {
91 int i;
92 struct timeval t_start[1], t_end[1], t_diff[1];
93 mpz_t A1, A2, A3, res_mul;
94 ui r;
95 mpz_init_set_si(Al, a);
96 mpz_init_set_ui(res_mul, 1);
97| mpz_init_set_si(A2, 1);
98| wul mul_small = 1, mul_small_pre, zh, p;
99| mpz_init(A3);
100 for (i = 0; i < fb->asize; i++) {
101 arr[i] = 0;
}

104 for (i = 0; i < d->smallSieveSize; i++) {
105 p = fb->palil;

106 r = fb->roots[i];

107 mpz_set_ui(A3, b);

108 mpz_mul_ui(A2, A3, 1);

109 //mpz_mul_si(A2, A2, -1); /* at+bkalphax/

110 mpz_mod_ui (A2, A2, p);

111 mpz_mod_ui (A3, Al, p);

112 if ( mpz_cmp(A3, A2) == 0) {

113 if (mpz_divisible_ui_p(res, fb->pa[i]) > 0) {
114 mul_small_pre = mul_small;

115 km_mul_2(zh, mul_small, mul_small, pP);

116 if (zh > 0) {

117 mpz_divexact_ui(res, res, mul_small_pre);
118 mul_small = 1;

119 }

120 arr[i]++;

121 }

122 }

123| }

124 mpz_divexact_ui(res, res, mul_small);

125

126| for (i = 0; i < fb->asize; i++) {
127 p = fb->palil;

128 r = fb->roots[i];

129 mpz_set_ui(A3, b)

130 mpz_mul_ui(A2, A3, 1);

131 mpz_mod_ui (A2, A2, p);

132 mpz_mod_ui (A3, A1, p);

133 if ( mpz_cmp(A3, A2) == 0) {

134 while ((mpz_divisible_ui_p(res, p)) != 0) {
135 mpz_divexact_ui(res, res, p);
136 arr[i]++;

137 ¥

138 }

139 1}

140| mpz_clear(A3);
141| mpz_clear(A2);
142| mpz_clear(Al);

143
144| if (mpz_cmp_ui(res, 1) == 0 || mpz_cmp_si(res,-1) == 0) {
145 return 1;

146 } else {
147 return 0;
148| }

149| }

150
151| int trialDivZWithMul (DATA_nfs d, FB_nfs fb, uc *arr, mpz_t res, sl a, float *compTime) {
152 mpz_t res_mul;

153 ul mul_small = 1, mul_small_pre = 1, zh = 0, p;

154| mpz_init_set_ui(res_mul, 1);

155| int j;

156

157| for (j = 0; j < fb->rsize; j++) {
158 arr[j] = 0;

159 }

160

161 for (j = 0; j < d->smallSieveSize; j++) {
162 p = fb->pr(jl;

163 if (mpz_divisible_ui_p(res, fb->pr[jl) > 0) {
164 mul_small_pre = mul_small;

165 km_mul_2(zh, mul_small, mul_small, p);

166 if (zh > 0) {

167 mpz_divexact_ui(res, res, mul_small_pre) ;
168 mul_small = 1;

169 }

170 arr[jl++;

171 }
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172 }

173 mpz_divexact_ui(res, res, mul_small);
174
175| for (j = 0; j < fb->rsize; j++) {
176 p = fb->pr(jl;

177 while (mpz_divisible_ui_p(res, p) > 0) {
178 mpz_divexact_ui(res, res, p);

179 arr[jl++;

180 }

181 }

182

183 if (mpz_cmp_ui(res, 1) == 0 || mpz_cmp_si(res,-1) == 0) {
184 return 1;

185| } else {

186 return 0;

187
188|}
189
190| void sieveNFS(DATA_nfs d, FB_nfs fb, int b, int sign) {
191 int i, j, posStartPoint = 0, negStartPoint = 0;

192 mpz_t TO;

193| mpz_init(TO);

194 ui p, r;

195| double pLog;

196| /* initialize sieve array for further sieve */

197 for (i = 0; i < (d->ar * 2); i++) {

198 d->arrSieveR[i] = (double) 0;
199 d->arrSieveA[i] = (double) O0;
200 }

201

202 /* Rational Side Line Sieve */
203 for (i = 0; i < fb->rsize; i++) {
204 p = fb->pr[il;

205 plog = log2((double) p);

206 posStartPoint = (b * fb->rroots[il) % p;

207 negStartPoint = posStartPoint - p;

208 negStartPoint *= -1;

209

210 for (j = negStartPoint; j < d->ar; j =j + p) {
211 d->arrSieveR[j] = d->arrSieveR[j] + pLog;

212 }

213 for (j = posStartPoint + (d->ar); j < (d->ar * 2); j = j + p) {
214 d->arrSieveR[j] = d->arrSieveR[j] + pLog;

215 }

216 }

217

218| /% Algebraic Side Line Sieve */
219 for (i = 0; i < fb->asize; i++) {
220 p = fb->palil;

221 pLog = log2(p);

222 mpz_set_ui(TO, fb->roots[il);

223 mpz_mul_ui(TO, TO, b);

224 mpz_mod_ui(TO, TO, p);

225 posStartPoint = mpz_get_ui(T0);

226 negStartPoint = posStartPoint - p;

227 negStartPoint *= -1;

228 for (j = negStartPoint; j < d->ar; j = j + p) {
229 d->arrSieveA[j] = d->arrSieveA[j] + pLog;

230 }

231 for (j = posStartPoint + (d->ar); j < (d->ar * 2); j = j + p) {
232 d->arrSieveA[j] = d->arrSieveA[j] + pLog;

233 }

234 }

235

236 mpz_clear(TO0);

237

238|}

239

240| inline ui calculateStartPointForLatticeSieve(LV_nfs_t lv, int j, ui p, ui r) {
241 ul latticeSieveStartPoint, modInv;

242 int res;

243| mpz_t temp, tempO, templ;

244 mpz_init(templ);

245 res = 1lv->vi[0] - r * lv->vi[1];

246 mpz_init_set_si(temp, res);

247 mpz_init_set_ui(tempO, p);

248| mpz_invert(templ, temp, tempO);

249 modInv = mpz_get_ui(templ);

250| res = ((j * (r * lv->v2[1] - 1v->v2[0])) * modInv);

251 mpz_set_si(temp, res);

252 mpz_mod_ui(temp, temp, P);

253 latticeSieveStartPoint = mpz_get_ui(temp);

254 mpz_clear(tempO) ;

255| mpz_clear(temp);

256 mpz_clear(templ) ;

257 return latticeSieveStartPoint;

258 }

259
260| void latticeSieveByRowsNFS(DATA_nfs d, FB_nfs fb, int sqlndex) {
261| inti=0, j=0, k= 0;

262 ui p, r;

263| wui i0; /* Sieve start point for lattice */

264 ui ic.l, c.dj

265| double pLog;

266 for (i = 0; i < (2 * d->rangeC * d->rangeE); i++) {

267 d->arrLatticeSieveA[i] = (double) O0;
268 d->arrLatticeSieveR[i] = (double) 0;
269| 1}
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270
271| for (k = 0; k < fb->sqilsqIndex]; k++) {
272 p = fb->palk];

273 r = fb->roots[k];

274 pLog = log2((double) p);

275 j=1;

276 c_1 = calculateStartPointForLatticeSieve(fb->rbsv[sqIndex], j, p, r);
277 c_.d = 0;

278 for (j = 1; j < d->rangeE; j++) {

279 /* Negative part sieve (-C,0) */

280 i0 = (c_1 + c_d) % p;

281 for (i = (p - i0); i < d->rangeC; i += p) {

282 d->arrLatticeSieveA[((j - 1) * d->rangeC) + i] += plog;
283 3

284 /* Positive part sieve (0, C) */

285 for (i = (d->rangeC + i0); i < (2 * d->rangeC); i += p) {
286 d->arrLatticeSieveA[((j - 1) * d->rangeC) + i] += pLog;
287 }

288 c_d = i0;

289 ¥

290 }

291

292 for (k = 0; k < fb->rsize; k++) {
293 p = fb->pr[k];

294 r = fb->rroots[k];

295 pLog = log2((double) p);

296 c_1 = calculateStartPointForLatticeSieve(fb->rbsv[sqlndex], j, p, r);
297 c_d = 0;

298 for (j = 1; j < d->rangeE; j++) {

299 i0 = (c_1 + c_d) % p;

300 /* Negative part sieve (-C,0) */

301 for (i = (p - i0); i <= d->rangeC; i += p) {

302 d->arrLatticeSieveR[((j - 1) * d->rangeC) + i] += pLog;
303 }

304 /* Positive part sieve (0, C) */

305 for (i = (d->rangeC + i0); i <= (2 * d->rangeC); i += p) {
306 d->arrLatticeSieveR[((j - 1) * d->rangeC) + i] += pLog;
307 }

308 c_d = i0;

309 }

310 1}

311

312|}

313

314| /* NFS with Line Sieving */

315 int compute_numberfield_sieve(REL_FULL_NFS fulls, REL_PARTIAL_NFS partials, FB_nfs fb, DATA_nfs d, POL p,
LARGE_PRIME_DATA hd, FILE *fp) {

316 int i, j, partial_data_count = 0, cols, rows = 0, check, extra = 10;

317 int b = 1;

318| //char temp = O;

319| ui ged;

320 sl a;

321 //float timeComp = 0;

322| int sign = 0;

323 int half_to_full_rel = 0;

324 cols = fb->asize + fb->rsize + fb->gsize;

325 svz_hash_t *hashtable_p = svz_hash_create(100000); //extra_prime hash

326 svz_hash_t *hashtable_r = svz_hash_create(100000);

327| mpz_t resO, resi, TO, Ti, T2, T3;

328 mpz_init_set_ui(res0, 0);

329| mpz_init_set_ui(resi, 0);

330| mpz_init(TO)

331 mpz_init(T1);

332| mpz_init(T2)

333 mpz_init(T3);

334
335| printf("\n col
336| wuc *arrTrialA
337| wuc *arrTrialR
338
339| while (rows < cols + extra) {
340 sieveNFS(d, fb, b, 1);

: %4 \n", cols);
(uc *) malloc(sizeof(uc) * (fb->asize)); /*plus 1 because of sign informationx/
(uc *) malloc(sizeof(uc) * (fb->rsize));

nmnuon

341 for (i = 0; i < (d->ar * 2); i++) {

342 | #if THRESHOLD_MODE == 0

343 if ((d->arrSieveR[i] > d->thrR) && (d->arrSieveA[i] > d->thrA)) {
344

345| #elif THRESHOLD_MODE ==

346 if ((d->arrSieveR[i] > d->thrR)) {

347| #elif THRESHOLD_MODE ==

348 if ((d->arrSieveA[i] > d->thrA)) {

349 | #endif

350 if (i < d->ar) {

351 a=1ix* (-1);

352 } else {

353 a =i - d->ar;

354 }

355 /* GCD(a,b) = 1 check */

356 gcd = binary_gcd(a, b);

357 if (ged == 1) {

358 | #if TRIAL_DIV_MODE == 0

359 mpz_normi(d, resO, a, b, T2); /* a-b*alpha */

360 check = trialDivisionA(d, fb, arrTrialA, resO, b, a, fp);
361| #elif TRIAL_DIV_MODE ==

362 mpz_mul_ui(T3, d->m, b);

363 mpz_set_si(resl, a);

364 mpz_sub(resl, resi, T3); /* a-b*m */

365 check = trialDivisionZ(d, fb, arrTrialR, resi, a);
366 | #endif
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367
368
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455
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459
460

if (check == 1) {

#if TRIAL_DIV_MODE ==

/* a-b*m */

mpz_mul_ui(T3, d->m, b);

mpz_set_si(resl, a);

mpz_sub(resi, resi, T3);

check = trialDivisionZz(d, fb, arrTrialR, resi, a);
#elif TRIAL_DIV_MODE ==

mpz_normi(d, resO, a, b, T2); /* a-b*alpha */
check = trialDivisionA(d, fb, arrTrialA, resO, b, a);
#endif
if (check == 1) {
rows += nfs_relation_processing(d, fb, fulls, partials, arrTrialR, arrTrialA, res0O, resi, TO,
Ti, sign, a, b, rows, hashtable_p, hashtable_r, &half_to_full_rel);
}
}
} else {
//printf("GCD a and be not equal 1i\n");
}
}

printf("\n ROW is : %d \n", rows);
//printf("half to full relations count is %d\n",half_to_full_rel);
bt++;

}

linear_algebra_nfs(d, fb, fulls, rows);

free(arrTrialR);

free(arrTriald);

mpz_clear(TO0);
mpz_clear(T2);
mpz_clear(T1);
mpz_clear(T3);
mpz_clear(resl);
mpz_clear(res0) ;
return rows;

}

/* NFS Lattice Sieve By Row */
int compute_numberfield_sieve_lattice(REL_FULL_NFS fulls, REL_PARTIAL_NFS partials, FB_nfs fb, DATA_nfs d,
POL p, LARGE_PRIME_DATA hd, LV_nfs 1lv, FILE xfp) {
int j, i, cols, partial_data_count, rows = 0, check, extra = 200, sqRange = 0, c, e, b, sign = 0;
sl a;
int half_to_full_rel = O;
cols = fb->asize + fb->rsize + fb->gsize;
mpz_t resO, resi, TO, Ti, T2, T3;
mpz_init(res0);
mpz_init(resi);
mpz_init(TO);
mpz_init(T1);
mpz_init(T2);
mpz_init(T3);

(uc *) malloc(sizeof(uc) * (fb->asize));
(uc *) malloc(sizeof(uc) * (fb->rsize));

uc *arrTrialA =
uc *arrTrialR =
svz_hash_t *hashtable_p svz_hash_create(100000); //extra_prime hash
svz_hash_t *hashtable_r svz_hash_create(100000); //extra_prime hash
printf("sq-size is %d\n", fb->sqgsize);
printf("\n cols : %d \n", cols);
while (rows < cols + extra) {
latticeSieveByRowsNFS(d, fb, sqRange);
for (i = 1; i <= d->rangeE; i++) {
for (j = 0; j < (d->rangeC * 2); j++) {
if ((binary_gcd(i, j) == 1) && (d->arrLatticeSieveA[((i - 1) * d->rangeC) + (j)1 > d->thrA) && (d->
arrLatticeSieveR[((i - 1) * d->rangeC) + (j)] > d->thrR)) {

if (j < d->rangeC) {
c = -j;
} else {
c = j - d->rangeC;
}
e =1ij;
a = fb->rbsv([sqRange]->vi[0] * c + fb->rbsv[sqRange] ->v2[0] * e;
b = fb->rbsv[sqRange]->vi[i] * c + fb->rbsv[sqRangel ->v2[1] * e;

if (b < 0) {
=b* (-1);
a* (-1);

m o

}
/* GCD(a,b) = 1 check */
if (binary_gcd(a, b) == 1) {
mpz_normi(d, resO, a, b, T2);
check = trialDivisionA(d, fb, arrTrialA, res0O, b, a, fp);
if (check == 1) {
mpz_mul_ui(T3, d->m, b);
mpz_set_si(resi, a3)%
mpz_sub(resi, resi, T3);
check = trialDivisionZ(d, fb, arrTrialR, resl, a);
if (check == 1) {
rows += nfs_relation_processing(d, fb, fulls, partials, arrTrialR, arrTrialA, resO, resl, TO,
T1i, sign, a, b, rows, hashtable_p, hashtable_r, &half_to_full_rel);

}
} else {
//printf("GCD a and be not equal 1\n");
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461 }
462
463 printf("\n Found %d out of %d relations\n", rows, (cols + extra));
464 sqRange++;

465
466| )
467
468 linear_algebra_nfs(d, fb, fulls, rows);
469| free(arrTrialR);

470 free(arrTriald);

471 mpz_clear(res0);

472 mpz_clear(resl);

473| mpz_clear(TO0);

474 mpz_clear(T1);

475 mpz_clear(T2);

476 mpz_clear(T3);

477| return rows;

478}

Code 6.5: ../elekmini/src/nfs/compute_nfs.c
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