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ABSTRACT 

AN ENERGY-EFFICIENT PERMUTATION FLOWSHOP 

SCHEDULING 

Temizceri, Fatma Talya 

Msc, Industrial Engineering 

Advisor: Prof. Dr. M. Arslan ÖRNEK 

Co-Advisor: Prof. Dr. M. Fatih TAŞGETİREN 

July 2018, 57 pages 

In this thesis, to solve permutation flowshop scheduling problem (PFSP), a 

bi-objective mixed integer linear programming model with the objectives of 

minimizing the total energy consumption (TEC) and makespan is proposed in 

order to see the trade-off between them. Heuristic algorithms; iterated greedy 

(IGALL) algorithm, which is recently adapted in literature, and variable block 

insertion heuristic (VBIH) are presented. To test the performance of the 

algorithms, extensive experimental evaluations are carried out on the well-known 

benchmark suite of Taillard (Taillard, 1993). 

Permutation flowshop scheduling problem is a well-known problem in 

literature. The permutation flowshop represents a particular case of the flowshop-

scheduling problem, having as goal of an optimal schedule out of the n! possible 

sequences for n jobs on m machines on which these n jobs are to be processed. 

Thus, it is classified as complex combinatorial optimization problem. Energy 

consumption consideration in role of scheduling can be very seldom seen in the 

literature, even though many service-oriented scheduling articles and studies for 

PFSP have been adapted. Mostly, maximum completion time is considered as an 

only criterion.  There is a considerable gap between makespan and energy 

consumption criteria. An effective way to improve energy efficiency in a 

production plant should address to design scheduling strategies, which aims to 

reduce the energy consumption of the process. Since there is a multi-objective 

decision model in this thesis, there is no single optimal solution, which 

simultaneously optimizes all the objectives. The effort of this thesis is to 
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effectively implement the constraint method for generating the Pareto optimal 

solutions and the aim of the thesis is to show the trade-off between minimizing 

makespan and total energy consumption while providing a managerial sense 

where energy saving may result in reduced service level and vice versa. 

The augmented-epsilon constraint method is employed for generating the 

Pareto optimal solution sets for small sized instances. For larger instances, the 

augmented epsilon-constraint method with a time limit is used on CPLEX for 

approximating the Pareto solution sets. As the heuristic methods, a very recent 

iterated greedy algorithm (IGALL) and an energy-efficient variable block insertion 

heuristic (VBIH) algorithm are proposed with employing the speed scaling 

strategy similar to those proposed in (Ding et al., 2016) and (Mansorui et al., 

2016) from the literature. First, the performance of VBIH and IGALL algorithms on 

small sized problems are given, then, it is shown that the VBIH and IGALL 

algorithms are extremely effective for solving larger instances when compared to 

the time-limited CPLEX.  

Key Words:  permutation flowshop scheduling, makespan, energy efficient 

scheduling, multi-objective optimization, heuristic optimization, 

iterated greedy algorithm, variable block insertion algorithm. 
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ÖZ 

ENERJİ ETKİN PERMÜTASYON AKIŞ TİPİ ÇİZELGELEME 

Temizceri, Talya 

Yüksek Lisans Tezi, Endüstri Mühendisliği Bölümü 

Danışman: Prof. Dr. M. Arslan ÖRNEK 

Yardımcı Danışman: Prof. Dr. M. Fatih TAŞGETİREN  

Temmuz 2018, 57 sayfa  

Bu çalışmada, iki amaçlı bir permütasyon akış tipi çizelgeleme problemi 

(PATÇP) ele alınmış ve bu iki amaç arasındaki değişimin görülebilmesi için 

toplam enerji tüketimini ve maksimum tamamlanma zamanını en aza indirecek 

hedefler için iki amaçlı karışık tamsayılı doğrusal programlama modeli 

önerilmiştir. Literatürde çok sayıda çok amaçlı PATÇP’nin sunulmasına rağmen, 

bu problemin enerji tüketimi açısından değerlendirilmesi çok nadirdir. Enerji-

etkin akış tipi çizelgeleme probleminde, küçük boyutlu problemler üretilmiştir ve 

Pareto optimal çözüm setlerini üretmek için epsilon kısıtlama yöntemi 

(AUGMECON) kullanılmıştır. Daha büyük boyutlu problemler için ise, CPLEX 

üzerinde belirlenmiş zaman sınırı ile epsilon-kısıtlama yöntemi kullanılarak 

Pareto çözüm setlerine yaklaşılmıştır. Çözüm yöntemi olarak, Iteratif açgözlü 

algoritması (IGALL) ve değişken blok yerleştirme (VBIH) algoritması 

kullanılmıştır. IGALL ve VBIH algoritmalarının performansları ilk olarak küçük 

boyutlu, daha sonra, büyük boyutlu problemler üzerinde denenmiştir. IGALL ve 

VBIH algoritması küçük boyutlu problemleri kolayca çözebilmektedir. Bu iki 

algoritmanın, büyük boyutlu problemleri çözmek için, zaman-sınırlı CPLEX ile 

karşılaştırıldığında son derece etkili olduğu gösterilmiştir. 

Anahtar Kelimeler:  permütasyon akış tipi çizelgeleme, toplam üretim süresi 

enerji etkin çizelgeleme, çok amaçlı eniyileme, sezgisel 

eniyileme, döngülü (iteratif) açgözlü algoritması, değişken 

blok yerleştirme algoritması 

  



viii 

 

 

 



ix 

ACKNOWLEDGEMENTS 

 Firstly, I would like to express my sincere gratitude to my advisor Prof. 

Mustafa Arslan Örnek for the continuous support of my MSc study, for his 

guidance, encouragement, and immense knowledge.  

 I would also like to thank my thesis co-advisor Prof. Mehmet Fatih 

Taşgetiren for my thesis and related researches, for his patience, motivation, and 

support. The door to Prof. Taşgetiren office was always open whenever I had a 

question about my research.  

 Besides my advisors, I would like to thank the rest of my thesis committee: 

Prof. Şeyda Topaloğlu Yıldız and Asst. Prof. Adalet Öner, for their insightful 

comments and encouragement, but also my sincere thanks goes to Dr. Efthymia 

Staiou for her professional, precious and also mother-like support; and to Asst. 

Prof. Mahmut Ali Gökçe for his valuable comments and recommendations.  

 I want to express the deepest appreciation to my soulmate Ozan Sudabaş for 

his patience and encouragement, to my sisters, Şeyda Özcan and Gizem Sağım, 

also to my very close friends and officemates, Gülce Haner and Syed Shah Sultan 

Mohiuddin Qadri for their invaluable suggestions, and being so continuously 

supportive. 

 I specially acknowledge my colleague, Hande Öztop for her support and , 

stimulating discussions. 

 Last but not the least; I must express my very profound gratitude and 

enduring love to my parents for providing me with continuous encouragement 

throughout my years of study and through the process of researching and writing 

this thesis. This accomplishment would not have been possible without them and 

their precious support. Thank you. 

Fatma Talya TEMİZCERİ 

İzmir, 2018 

 



x 

 

 

 



xi 

TEXT OF OATH 

 I declare and honestly confirm that my study, titled “AN ENERGY-

EFFICIENT PERMUTATION FLOWSHOP SCHEDULING” and presented as a 

Master’s Thesis, has been written without applying to any assistance inconsistent 

with scientific ethics and traditions. I declare, to the best of my knowledge and 

belief, that all content and ideas drawn directly or indirectly from external sources 

are indicated in the text and listed in the list of references. 

Fatma Talya TEMİZCERİ 

 

……………………………….. 

 

September 6, 2018 

 

 

 

 

  



xii 

  

 



xiii 

TABLE OF CONTENTS 

ABSTRACT ....................................................................................................... iv 

ÖZ ..................................................................................................................... vii 

ACKNOWLEDGEMENTS ................................................................................ ix 

TEXT OF OATH ................................................................................................ xi 

TABLE OF CONTENTS .................................................................................. xiii 

LIST OF FIGURES ........................................................................................... xv 

LIST OF TABLES ........................................................................................... xvii 

INDEX of SYMBOLS AND ABBREVIATIONS ............................................ xvii 

CHAPTER 1 INTRODUCTION .......................................................................... 1 

1.1. Research Goal ............................................................................................... 3 

1.2. Methodology ................................................................................................. 4 

CHAPTER 2 AN ENERGY-EFFICIENT PERMUTATION FLOWSHOP 

SCHEDULING PROBLEM ................................................................................ 5 

 CHAPTER 3 BI-OBJECTIVE MATHEMATICAL MODEL FOR 

ENERGY EFFICIENT PERMUTATION FLOWSHOP ...................................... 7 

3.1. Terminology ................................................................................................. 7 

CHAPTER 4 HEURISTIC ALGORITHMS ...................................................... 13 

4.1. Energy Efficient IGALL Algorithm ............................................................... 13 

4.1.1. Solution Representation ........................................................................... 14 

4.1.2. Initial Population ...................................................................................... 14 

4.1.3. Destruction and Construction Procedure ................................................... 15 

4.1.4. Makespan Minimization ........................................................................... 16 

4.1.5. Energy Minimization ............................................................................... 17 



xiv 

4.2. Energy-Efficient VBIH Algorithm .............................................................. 18 

4.2.1. Initial Population ...................................................................................... 20 

4.2.2. Block Insertion Procedure ........................................................................ 20 

4.2.3. Energy Efficient Insertion Local Search ................................................... 21 

4.2.4. Energy-Efficient Uniform Crossover and Mutation ................................... 22 

4.2.5. The Archive Set........................................................................................ 23 

CHAPTER 5 COMPUTATIONAL RESULTS .................................................. 25 

5.1. Computational Results of IGALL Algorithm ................................................. 27 

5.2. Computational Results of VBIH Algorithm ................................................. 30 

CHAPTER 6 CONCLUSIONS AND FUTURE RESEARCH ............................ 34 

REFERENCES .................................................................................................. 36 

APPENDIX 1 – Mathematical Model Results by CPLEX for Small Sized 

Instances ............................................................................................................ 40 

APPENDIX 2 – IGALL Results for Small Sized Instances ................................... 41 

APPENDIX 3 – VBIH Results for Small Sized Instances ................................... 42 

APPENDIX 4 – Mathematical Model Results for Large Instances (20jobs) ........ 43 

APPENDIX 5 – IGALL Results for Large Instances (20 jobs) .............................. 44 

APPENDIX 6 – VBIH Results for Large Instances (20 Jobs) ............................. 48 

APPENDIX 7 – Mathematical Model Results for Large Instances (50 Jobs) ...... 51 

APPENDIX 8 – IGALL Results for Large Instances (50 jobs) .............................. 52 

APPENDIX 9 – VBIH Results for Large Instances (50 jobs).............................. 55 

 



xv 

LIST OF FIGURES 

Figure 1.1.  A Gantt Chart for a PFSP Example.................................................. 2 

Figure 3.2.  Pareto-Optimal Solutions for the instance 5x5_01 ......................... 10 

Figure 3.2.  Pareto-Optimal Solutions for the instance 5x10_01 ....................... 10 

Figure 3.3.  Pareto-Optimal Solutions for the instance 5x20_01 ....................... 11 

Figure 3.4.  Non-Dominated Solution Set of instance 20x5_01 ......................... 12 

Figure 3.5.  Non-Dominated Solution Set of instance 50x5_01 ......................... 12 

Figure 4.3.  IGALL Algorithm ............................................................................ 13 

Figure 4.2.  Solution Representation for IGALL Algorithm ................................ 14 

Figure 4.3.  NEH Constructive Heuristic .......................................................... 14 

Figure 4.4.  Insertion Local Search ................................................................... 17 

Figure 4.5.  Variable Block Insertion Heuristic................................................. 19 

Figure 4.6.  Solution Representation for VBIH Algorithm ................................ 19 

Figure 5.1.  Pareto Optimal Solution Set of 5x5_01 with Mathematical 

Model vs IGALL ............................................................................. 28 

Figure 5.2.  Non-dominated Solution Set of 20x5_01 with Mathematical 

Model vs IGALL ............................................................................. 29 

Figure 5.3.  Pareto Optimal Solution Set of 5x5_01 with Mathematical 

Model vs VBIH ............................................................................. 30 

Figure 5.4.  Non-dominated Solution Set of 20x5_01 with Mathematical 

Model vs VBIH ............................................................................. 31 

  

 
 



xvi 

 
 
 
 
 
 
 
 

 



xvii 

LIST OF TABLES 

Table 3.1.  Notation ............................................................................................ 8 

Table 5.1.  Comparison of IGALL and Mathematical Model on Small Sized 

Instances .......................................................................................... 28 

Table 5.2.  Comparison of IGALL and Mathematical Model on Large 

Instances .......................................................................................... 29 

Table 5.3.  Comparison of VBIH and Mathematical Model on Small Sized 

Instances .......................................................................................... 31 

Table 5.4.  Comparison of VBIH and Mathematical Model on Large 

Instances .......................................................................................... 32 

Table 5.5.  Comparison of IGALL and VBIH on Small Instances ........................ 32 

Table 5.6.  Comparison of IGALL and VBIH on Large Instances ........................ 33 

 

  



xviii 

 

 



xix 

INDEX OF SYMBOLS AND ABBREVIATIONS 

Symbols Explanations 

N  Set of jobs ሺ𝑖, 𝑘 ∈ 𝑁 ൌ ሼ1, … , |𝑁|ሽሻ 

M   Set of machines ሺ𝑗 ∈ 𝑀 ൌ ሼ1, … , |𝑀|ሽሻ 

L   Set of speed levels ሺ𝑙 ∈ 𝐿 ൌ ሼ1, … , |𝐿|ሽሻ 

D   A very large number 

𝑝௜௝   Processing time of job 𝑖 on machine 𝑗 

𝑣௟  Speed factor of speed 𝑙 

𝜆௟  Processing conversion factor for speed 𝑙 

𝜑௝  Conversion factor for idle time on machine 𝑗 

𝜏௝  Power of machine 𝑗 

𝑦௜௝௟  ቄ1 if job i is processed at speed l on machine j
0 otherwise    

𝑥௜௞  ൜
1 if job i precedes job k
0 otherwise ሺi ൏ kሻ   

𝐶௜௝  Completion time of job 𝑖 on machine 𝑗 

𝜃௝  Idle time on machine 𝑗 

𝜋, 𝜋௜  Job permutation, 𝑖௧௛ job of  permutation 

𝐶ሺ𝑖, 𝑘ሻ  Completion time of 𝜋௜ on machine 𝑘 



xx 

𝐶௠௔௫  Makespan (Maximum Completion Time of Jobs) 

P Set of problem instances 

𝑠௜  Individual solution 

𝑠ሺ𝜋, 𝑣ሻ 𝑜𝑟 𝑠ሺ𝜋௜, 𝑣௜ሻ  Solution of job permutation with speed levels 

𝑠஽ሺ𝜋௜, 𝑣௜ሻ  Partial solution 

𝑠ோሺ𝜋௜, 𝑣௜ሻ  Destruction sequence 

𝑓ሺ𝜋ሻ  Objective function value of the permutation 

Ω Archive set 

x Archive size 

𝑟  Uniform random number in 𝑈ሺ0, 1ሻ 

𝐶𝑅  Crossover probability 

𝑀𝑅  Mutation probability 

𝑏  Block size 

𝑏𝑀𝑜𝑣𝑒ሺሻ  Block insertion move procedure 

𝜏𝑃  Temperature for acceptance criterion 

𝑠௕ሺ𝜋௜, 𝑣௜ሻ  Block to be removed 

𝑠௣ሺ𝜋௜, 𝑣௜ሻ  Partial solution after removal  

𝑅௣  Ratio of the Pareto-optimal solutions 

𝐼𝐺𝐷  Inverted generational distance 

𝐼  Non-dominated solution set 

𝑑ሺ𝑣, 𝐼ሻ  Minimum Euclidean distance between 𝑣 and 𝐼 



xxi 

𝐷𝑆  Distribution spacing  

𝑑௜  Minimum Euclidean distance between solution 𝑖 and  

its closest neighbour in 𝐼 

𝐶  Coverage of two sets 

NP Population size 

𝐶𝐷  Crowding distance 

Abbreviations: 

FSP Flowshop scheduling problem 

PFSP Permutation Flowshop Scheduling Problem 

TEC Total Energy Consumption 

MILP Mixed Integer Linear Programming 

IGALL Iterated Greedy Algorithm 

DC Destruction and construction procedure 

VBIH Variable Block Insertion Heuristic 

EE_VBIH Energy-efficient VBIH algorithm 

AUGMECON Augmented ε-constraint method 

EE_PFSP Energy efficient permutation flowshop scheduling problem 

TLM_CMAX Time Limited Solutions of Cmax on CPLEX 

TLM_TEC Time Limited Solutions of TEC on CPLEX 

  

   

  



xxii 

 

  

  

 

 



1 

CHAPTER 1 

INTRODUCTION 

One of the important decision-making processes in both manufacturing and 

service industries is production scheduling. Considerable improvements in 

productivity, reduction in cost and time can be achieved by efficient production 

schedules.  

In the classical flowshop scheduling problem (FSP), we are given a set of n 

jobs that are to be processed on m machines. Each job consists of m operations, 

and each operation is to be performed by one of the m machines. In the FSP, all 

the jobs follow the same route, meaning that the operations that comprise a job are 

always performed in the same order. In its simplest form, it is usually assumed 

that all the jobs are ready at time zero, and that preemptions are not allowed, 

which means that if the process of a job has started in a given machine, it cannot 

be interrupted. While all these restrictions also hold for the PFSP, in the latter it is 

also assumed that the queues in front of the machines operate under a FIFO 

discipline, and therefore, the order in which the jobs are to be processed is the 

same for each machine. Under this simplifying assumption, solving the PFSP 

consists of finding a solution 𝜋 ൌ  ሼ𝜋ଵ, 𝜋ଶ, … , 𝜋௡ሽ representing the solution in 

which the jobs will be processed by the system so that a given performance 

measure is optimized. The flow shop scheduling problem is normally classified as 

a complex combinatorial optimization problem due to the nature of the system. 

Generally, the aim is to minimize the makespan, mean flow time, earliness, 

tardiness, idle time etc.  

The processing times of jobs on the machines are assumed to be 

deterministic and non-negative. Johnson (1954) indicated that when the number of 

machines is two, the optimal solution for most common criteria, which is 

makespan (total completion time), can be determined in FSP.  

The permutation flowshop scheduling problem (PFSP) has been a widely 

studied research problem, mainly because of the extensive set of applications 
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found in real industrial settings. According to Garey et al. (1976), the form of this 

kind of problems is known to be NP-Complete when the number of machines is 

greater than or equal to three and the schedules to be considered increases to (n!)m. 

In case where the same sequence, or permutation, of jobs, is maintained 

throughout the production process, in other words ‘only’ n! schedules have to be 

considered, flow shop classification turns into permutation flow shop (PFSP). 

Sayadi et al. (2010) explained the permutation flowshop as an operating discipline 

in flowshops where sequence changes among machines are not allowed.  

More formally, given an arbitrary solution 𝜋, job 𝜋𝑖 is the job at the 𝑖th 

position of solution 𝜋. Let 𝐶ሺ𝑖, 𝑘ሻ be the completion time of job 𝜋௜ on machine k 

at position 𝑖. Following this notation, completion times of jobs at each machine 

are computed as in equations (1) to (4), where 𝑝గ೔,ೖ
 be the processing time of job 

𝜋௜ at the 𝑘௧ℎ machine in the system. The makespan for the solution 𝜋, denoted as 

𝐶௠௔௫ሺ𝜋ሻ, is the completion time of the last job in the solution (i.e., 𝑛) on the last 

machine (i.e., m). It is simply denoted as 𝐶ሺ𝑛, 𝑚ሻ and computed as follows: 

𝐶ሺ1,1ሻ  ൌ  𝑝గభ,భ
      (1) 

𝐶ሺ𝑖, 1ሻ  ൌ  𝐶ሺ𝑖 െ  1,1ሻ  ൅  𝑝గ೔,భ
         ∀𝑖 ൌ  2, … , 𝑛       (2) 

𝐶ሺ1, 𝑘ሻ ൌ   𝐶ሺ1, 𝑘 െ  1ሻ  ൅  𝑝గభ,ೖ
     ∀𝑘 ൌ  2, … , 𝑚     (3)  

          𝐶ሺ𝑖, 𝑘ሻ ൌ maxሼ𝐶ሺ𝑖 െ  1, 𝑘ሻ, 𝐶ሺ𝑖, 𝑘 െ  1ሻሽ ൅  𝑝గ೔,ೖ
          

 ∀𝑖 ൌ  2, … , 𝑛; ∀𝑘 ൌ  2, … , 𝑚     (4) 

For a better understanding, a Gantt chart is presented in Fig.1.1 for a simple 

PFSP example which has 5 jobs and 2 machines. The processing times of jobs are 

𝑝௜௝ ൌ ቂ4 1
3 2

   5
4

   2
3

  5
6

ቃ where 𝑝௜௝  is the processing time of job 𝑖 on machine 𝑗. 

 
Figure 1.1. A Gantt Chart for a PFSP Example 
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The objective of minimizing the makespan is a general aim whilst in real 

life many scheduling problems are multi-objective. A massive amount of energy 

usage and worldwide greenhouse gas emission, manufacturers have started to 

investigate solutions in order to reduce energy consumption and carbon footprints 

in the production process. Turning on and off have been intended by 

manufacturers. Although it can be a solution to reduce energy consumption, this 

strategy may not be applicable to all manufacturing processes. With the growing 

attention to global warming; sustainability, green scheduling, and reduction in 

energy consumption have become popular concepts. Nevertheless, researches and 

studies on these concepts have rarely been adopted in literature. In order to fill the 

gap in the literature, we consider the problem of minimizing makespan and total 

energy consumption in m machines. Since the PFSP is an NP-Hard problem when 

m ≥ 3, and solving the problem with multiple objectives require much more 

computational effort and time. It will be impractical to solve the problem 

optimally with MILP for large instances. Heuristic or meta-heuristic algorithms 

can provide a better solution with acceptable time consumption for computation. 

Well-known instances of Taillard (1993) are used for computations and analysis. 

We argue that a trade-off will occur between optimizing makespan and energy 

consumption by obtaining the Pareto optimal set between two objectives. Thus, 

analysing and evaluating the trade-off in an efficient way will support the decision 

makers when scheduling the operations in the manufacturing process. 

There have been many studies in programming formulations for flowshop 

problems in literature. Tseng et al. (2004) concluded that Manne’s model 

provided dichotomous constraint approach, which was superior to other 

assignment problem approaches of Wagner’s all-integer, and Wilson’s mixed 

integer programming (MILP). (Manne, 1960; Pan, 1997; Wagner, 1959; Wilson, 

1989). Manne’s model is used for problem-solving method (see Manne, 1960). 

1.1. Research Goal 

 In this thesis, the aim is to minimize the makespan, as a means to 

maximize the utilization rate of the machines, which maximizes the throughput of 

the system, and at the same time total energy consumption (TEC). As per the 

makespan criterion, the PFSP has been proven in different studies to be NP-hard 
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in the strong sense for several objective functions by Johnson (1954), Pan (1997) 

and Sayadi et al. (2010) respectively, and it is still very difficult to solve with 

exact methods. Therefore, heuristic algorithms should be employed to obtain near-

optimal solutions. A bi-objective mixed integer linear programming model for the 

objectives of minimizing the total energy consumption and the makespan in order 

to see the trade-off between them is proposed. 

1.2. Methodology 

 In accordance with the research goal, this thesis presents a multi-objective 

mixed integer-programming model (MIP) which is developed for the PFSP using 

speed-scaling strategy. The speed-scaling strategy can be described as a job-based 

strategy which is the same for all machines and for each machine a different speed 

scaling is employed. As the PFSP is NP-hard, some toy instances are developed 

from literature by reducing their sizes. Then, these toy instances are solved with 

CPLEX to find Pareto-optimal solution sets. For larger instances, the time-limited 

CPLEX method is employed to obtain non-dominated solutions as a heuristic 

method. On the other hand, as heuristic algorithms, a multi-objective energy 

efficient iterated greedy (IGALL) algorithm, which is proposed recently as a variant 

of traditional IG algorithms by Stützle et al. (2017), and a very recent variable 

block insertion heuristic (VBIH) algorithm by Tasgetiren et al. (2017) are 

proposed. Because we thought IGALL algorithm could be inadequate, we searched 

for a new solution. VBIH algorithm was used to verify the results that we found 

by IGALL.  The performances of VBIH and IGALL with CPLEX are compared.  

 This thesis is organized as follows: Literature reviews on permutation 

flowshop scheduling, energy consumption in scheduling and multi-objective 

optimization, along with the scope of the thesis are provided in Chapter 2. 

Analysis of the mathematical model for permutation flow shop scheduling 

problem and details of heuristic algorithms are given in Chapter 3, and Chapter 4, 

respectively. Computational results are presented in Chapter 5. Lastly, Conclusion 

and Future Research are summarized in Chapter 6.  
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CHAPTER 2 

AN ENERGY-EFFICIENT PERMUTATION FLOWSHOP 

SCHEDULING PROBLEM 

According to Pinedo (2008), a flowshop can be explained if there are n jobs 

and m machines in series such that all jobs have to be processed on each machine 

and to follow the same route. Every job queues up for the next machine after 

completion on one machine. Permutation flowshop is referred if the First in First 

out (FIFO), which is one of the operating disciplines, is in effect and if flow shops 

that do not allow sequence changes between machines where that sequence or 

permutation of jobs is maintained throughout. On the other hand, Aghezzaf and 

Landeghem (2002) indicated that finding a sequence for given n jobs with the 

same orders at m machines in accordance with a certain performance measure is 

defined as the flowshop-scheduling problem.  

In the production scheduling literature, tardiness and flow time-based 

performance measures have been generally discussed in order to measure 

production efficiency and customer satisfaction. However, energy efficiency in 

production scheduling has been rarely considered. Recently, the energy 

consumption has become a key concern for manufacturing sector because of the 

negative environmental impacts such as gas emissions (CO2) and global warming. 

As the manufacturing facilities consume high energy, they are forced to reduce 

their energy consumption by developing more energy efficient scheduling systems 

(Fang et al., 2011). 

Gahm et al. (2016) outlined an energy efficient scheduling framework for 

manufacturing companies by classifying three dimensions of energy efficient 

scheduling approaches such as energetic coverage, energy supply and energy 

demand. As a pioneering study, it was concluded that once machines are turned 

off at idle times, a considerable amount of energy can be saved (Mouzon et al., 

2007). Later on, this turn off strategy was employed in single machine scheduling 
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problem that minimizes total energy consumption and total tardiness in (Mouzon 

and Yildirim, 2008). Similarly, turn off strategy was employed for the flexible 

flowshop problem in (Dai et al, 2013). Even though the turn off strategy is good at 

providing energy savings, it may not be suitable for some shop floors. 

Dai et al. (2011) first developed a speed scaling strategy for the energy-

efficient FSP due to the inefficiency of the turn off strategy. They considered 

operation speed as an independent variable that can be adjusted to improve energy 

efficiency. Later, a MIP formulation was given in (Dai et al., 2013), for the PFSP 

considering makespan as an objective and peak power consumption as a 

constraint. In addition, Ding et al. (2016) used the speed scaling strategy for the 

PFSP that minimizes the total carbon emissions and the makespan. 

Recently, a multiobjective genetic algorithm was presented by Zhang and 

Chiong (2016) in order to minimize the total weighted tardiness and total energy 

consumption in a job shop scheduling. Mansouri et al. (2016) studied variable 

speed levels for the two machines PFSP with sequence-dependent setup times and 

proposed some lower bounds as well as a heuristic. In addition, an energy 

efficient permutation flowshop scheduling using backtracking algorithm was 

developed by Lu et al. (2017) whereas in (Yin et al., 2016), an energy efficient 

evolutionary algorithm for single machine scheduling with sequence-dependent 

setup times. 

This thesis presents a multi-objective IGALL and VBIH algorithm for the 

energy-efficient PFSP considering speed scaling strategy. Note that similar speed 

scaling strategy was used in (Ding et al., 2016) and (Mansouri et al., 2016). In fact, 

from these two notable papers was an inspiration. In these two works, they 

employed a matrix representation for speed scaling strategy. In other words, for 

each machine, a different speed scaling strategy is employed. However, this thesis 

employs a simple job-based speed scaling strategy where the same speed strategy 

is used on all machines. 
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CHAPTER 3 

BI-OBJECTIVE MATHEMATICAL MODEL FOR ENERGY 

EFFICIENT PERMUTATION FLOWSHOP  

The preceding chapter provides insights into mixed integer linear programs 

as mathematical modelling for flowshops and extension for energy efficiency. As 

mentioned before, a regular permutation flowshop scheduling problem has such 

two major components as a set of N jobs and set of M machines. Accordingly the 

objective is to obtain a schedule that minimizes a specific performance criterion, 

e.g., makespan. Tseng et al. (2004) conducted an empirical analysis for four 

different integer-programming models to evaluate their relative effectiveness of 

the regular permutation flowshop problems. These competing models were 

compared according to their computer solution times based on the complexity of 

the problem. 

3.1. Terminology 

As mentioned in the previous chapters, the problem is a multi-objective 

problem, since there are two objectives which are conflicting with each other. For 

that reason, dominance relation concepts indicated by Deb (2001) are presented 

when solving the PFSP. 

Dominance relation. In multi-objective minimization problems, a feasible 

solution 𝜋௜  dominates another solution 𝜋௝  if the two following conditions are 

satisfied (denoted as 𝜋௜ ≻  𝜋௝): 

 ∀𝑝 ∈  1, . . , 𝑃; 𝑓௣ሺ𝜋௜ሻ  ൑  𝑓௣ሺ𝜋௝ሻ 

 ∃𝑝 ∈  1, . . , 𝑃; 𝑓௣ሺ𝜋௜ሻ  ൏  𝑓௣ሺ𝜋௝ሻ  

A solution 𝜋௜ weakly dominates another solution 𝜋௝ (denoted as 𝜋௜  ≼  𝜋௝ ) 

if : 

 ∀𝑝 ∈  1, . . , 𝑃; 𝑓௣ሺ𝜋௜ሻ ൑ 𝑓௣൫𝜋௝൯ 

  A solution 𝜋௜ is indifferent to another solution 𝜋௜ (denoted as 𝜋௜ ~ 𝜋௝) if : 
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 ∀𝑝 ∈  1, . . , 𝑃; 𝑓௣ሺ𝜋௜ሻ ≰ 𝑓௣ ൫𝜋௝൯ ∧ 𝑓௣൫𝜋௝൯ ≰  𝑓௣ሺ𝜋௜ሻ 

Non-dominated set. Amongst a set of solutions 𝑆, the non-dominated set of 

solutions are the elements of the set 𝑆∗ non-dominated by any element of the set 𝑆. 

Pareto-optimal set. The non-dominated set of the entire feasible search 

space 𝐼  is called the Pareto-optimal solutions. 

In this chapter, we formulate the problem as a bi-objective PFSP examining 

a trade-off between 𝐶௠௔௫ and 𝑇𝐸𝐶. The notation is given in Table 3.1. 

Table 3.1. Notation 

Indexes 
 𝑙                 Index of speed levels ሺ𝑙 ∈ 𝐿 ൌ ሼ1, … , |𝐿|ሽሻ 
 𝑗                 Index for machines  ሺ𝑗 ∈ 𝑀 ൌ ሼ1, … , |𝑀|ሽሻ 
𝑖 and 𝑘        Index for jobs ሺ𝑖, 𝑘 ∈ 𝑁 ൌ ሼ1, … , |𝑁|ሽሻ

Parameters 
𝑝௜௝  Processing time of job 𝑖 on machine j  
𝑣௟ Speed factor of speed 𝑙  
𝜆௟ Processing conversion factor for speed 𝑙  
𝜑௝ Conversion factor for idle time on machine j  
τ௝ Power of machine j (kW) 
𝐷 A very large number 

Decision Variables 
𝑦௜௝௟  1 if job 𝑖 is processed at speed 𝑙 on machine 𝑗;  0,otherwise 
𝑥௜௞ 1 if job 𝑖 precedes job 𝑘; 0 otherwise (𝑖 ൏ 𝑘) 
C௜௝ Completion time of job 𝑖 on machine 𝑗 

       𝜃௝      Idle time on machine 𝑗 
𝐶௠௔௫ Maximum completion time (makespan) 
𝑇𝐸𝐶 Total energy consumption (kWh) 

The bi-objective MILP formulation is given below: 

𝑀𝑖𝑛 𝐶௠௔௫, 𝑇𝐸𝐶 (1) 

s.t. 

𝐶௜ଵ ൒ ∑ ௉೔భ௬೔భ೗

௩೗
௟∈௅                                           ሺ1 ൑ 𝑖 ൑ 𝑁ሻ (2) 

𝐶௜௝  െ  𝐶௜,௝ିଵ ൒  ∑
௉೔ೕ௬೔ೕ೗

௩೗
௟∈௅                         ሺ2 ൑ 𝑗 ൑ 𝑀; 1 ൑ 𝑖 ൑ 𝑁ሻ (3) 

𝐶௜௝  െ  𝐶௞௝  ൅ 𝐷𝑥௜,௞ ൒ ∑
௉೔ೕ௬೔ೕ೗

௩೗
௟∈௅              ሺ1 ൑ 𝑗 ൑ 𝑀; 1 ൑ 𝑖 ൏ 𝑘 ൑ 𝑁ሻ (4) 

𝐶௜௝  െ  𝐶௞௝  ൅ 𝐷𝑥௜௞  ൑ 𝐷 െ  ∑
௉ೖೕ௬ೖೕ೗

௩೗
௟∈௅     ሺ1 ൑ 𝑗 ൑ 𝑀; 1 ൑ 𝑖 ൏ 𝑘 ൑ 𝑁ሻ  (5)       
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𝐶௠௔௫ ൒  𝐶௜ெ                                                      ሺ1 ൑ 𝑖 ൑ 𝑁ሻ             (6)       

∑ 𝑦௜௝௟௟∈௅ ൌ 1;                                                   ሺ1 ൑ 𝑖 ൑ 𝑁; 1 ൑ 𝑗 ൑ 𝑀ሻ  (7)       

𝑦௜௝௟  ൌ  𝑦௜,௝ାଵ,௟                                      ሺ1 ൑ 𝑖 ൑ 𝑁; 1 ൑ 𝑗 ൏ 𝑀; 1 ൑ 𝑙 ൑ Lሻ  (8)          

θ௝ ൌ  𝐶௠௔௫  െ  ∑ ∑
௉೔ೕ௬೔ೕ೗

௩೗
௟∈௅

ே
௜ୀଵ                     ሺ1 ൑ 𝑗 ൑ 𝑀ሻ                            (9) 

𝑇𝐸𝐶 ൌ  ∑ ∑ ∑
௉೔ೕதೕ஛೗

଺଴௩೗
𝑦௜௝௟௟∈௅

ெ
௝ୀଵ

ே
௜ୀଵ   ൅  ∑

ఝೕఏೕதೕ

଺଴
ெ
௝ୀଵ                  (10) 

The objective function (1) minimizes 𝐶௠௔௫ and 𝑇𝐸𝐶. Constraint (2) ensures 

that the completion time of each job on machine 1 is greater than or equal to its 

processing time on machine 1. Constraint (3) states that a job can start only after 

its preceding operation has been completed. Constraints (4) and (5) guarantee that 

job i either precedes job k or vice versa in the sequence, but not both. Constraint 

(6) computes the maximum completion time of all jobs on the last machine, in 

other words, computes the makespan. Constraint (7) and (8) ensure that exactly 

one speed level is selected for each job and the same speed level is employed on 

every machine. Constraint (9) calculates the idle time of each machine and 

constraint (10) computes the total energy consumption as proposed in (Mansouri 

et al., 2016). 

There are common solution methods for multi-objective problems such as 

sequential optimization, goal programming, weighting method and ε-constraint 

method. In this thesis, augmented ε-constraint method was preferred to use, as it 

generates only Pareto-optimal solutions (Mavrotas, 2009). In the augmented ε-

constraint method, one of the objective functions is optimized, while other 

objective functions are defined by constraints.  

Dissimilar to the standard ε-constraint method, slack/surplus variables are 

included in these objective function constraints by converting them to equalities. 

These variables are also defined as the second term in the objective function to 

ensure the Pareto-optimality. In Pareto-optimal solutions, any objective function 

cannot be improved without worsening another objective function. 

Trade-off between 𝐶𝑚𝑎𝑥 and TEC in CPLEX results for the first instances 

of small-sized problems (5x5, 5x10, 5x20) given in Fig. 3.1, Fig. 3.2 and Fig. 3.3, 

respectively. 
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Figure 3.2. Pareto-Optimal Solutions for the instance 5x5_01 

 

 

Figure 3.3. Pareto-Optimal Solutions for the instance 5x10_01 
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Figure 3.4. Pareto-Optimal Solutions for the instance 5x20_01 

 Because of the exponentially increasing solution times, non-dominated 

solution sets are found for larger instances using a relatively higher ε level, which 

is calculated by dividing the range of 𝑇𝐸𝐶 objective function to 20 equal grids. 3 

minutes time limit is set for these large instances (20x5, 20x10, 20x20, 50x5, 

50x10 and 50x20) in each iteration, because the problem has the NP-hard nature.  

As an expected consequence of time-limit, non-dominated solution set is 

smaller than true Pareto-optimal solutions. Non-dominated solutions of the first 

instances of 20x5 and 50x5 are presented as an example in Fig.3.4 and Fig.3.5 

respectively. 
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Figure 3.5. Non-Dominated Solution Set of instance 20x5_01 

 

 
Figure 3.6. Non-Dominated Solution Set of instance 50x5_01 
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CHAPTER 4 

HEURISTIC ALGORITHMS 

4.1. Energy Efficient IGALL Algorithm 

The IG algorithm is presented in Ruiz and Stützle (2007). In the traditional 

IG algorithm, the NEH insertion heuristic is employed to obtain the initial 

solution (Nawaz et al., 1983). Then, destruction and construction (DC) procedure 

is used to generate offspring solutions in a way that a number 𝑑 of jobs is 

randomly removed from the current solution to be re-inserted into partial solution, 

sequentially. Afterwards, an insertion based local search is applied to the solution 

after the DC procedure. An acceptance criterion is used to accept the new solution 

after a local search. These simple steps are repeated until a stopping criterion is 

satisfied.  

Recently, an IGALL algorithm is presented for the PFSP with makespan 

minimization in the literature. Unlike the traditional IG algorithm, the IGALL 

algorithm applies an additional local search to partial solutions after destruction, 

which substantially improves the solution quality. The pseudo-code of the IGALL 

algorithm is given in Fig. 4.1. and details can be found in (Dubois-Lacoste et al., 

2017). In the following subsections, essential components of the proposed energy-

efficient IGALL algorithm are outlined. 

𝐏𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 𝑰𝑮𝑨𝑳𝑳 
  𝜋଴ ൌ GenerateInitial Solution 
  𝜋 ൌ  LocalSearch (𝜋଴) 
𝐝𝐨 
     𝜋ᇱ ൌ  Destruction ሺ𝜋, 𝑑ሻ                   
     𝜋 ᇱ ൌ ApplyLocalSearchToPartialSolution ሺ𝜋ᇱሻ 
     𝜋ᇱ ൌ Construction ሺ𝜋ᇱሻ 
     𝜋ᇱᇱ ൌ ApplyLocalSearchToCompleteSolution ሺ𝜋ᇱሻ 
     𝜋 ൌ AcceptionCriterion ሺ𝜋ᇱᇱ, 𝜋ሻ 
𝐰𝐡𝐢𝐥𝐞 (Termination criterion is met)   
𝐞𝐧𝐝𝐩𝐫𝐨𝐜𝐞𝐝𝐮𝐫𝐞 

Figure 4.1. IGALL Algorithm 
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4.1.1. Solution Representation  

As mentioned before, a job-based speed scaling strategy is proposed for the 

energy-efficient IGALL algorithm. To handle speed scaling strategy, a multi-

chromosome structure is used and it is composed of a permutation of 𝑛 jobs and a 

speed vector with three levels. There exist three speed levels that correspond to 

fast, normal and slow speed levels, respectively. The solution representation is 

given in Fig. 4.2. 

𝑠ሺ𝜋௜, 𝑣௜ሻ 
𝜋 5 2 1 4 3 … 𝑛 
𝑣  3 1 2 1 2 …       3 

       Figure 4.2. Solution Representation for IGALL Algorithm 
 

In Fig.4.2, a solution/individual 𝑠ሺ𝜋௜, 𝑣௜ሻ indicates that the first job 𝜋ଵ  ൌ  5 

has a slow speed level, 𝑣ଵ  ൌ  3 ; second job 𝜋ଶ  ൌ  2  has a fast speed level, 

𝑣ଶ  ൌ  1; and so on. It is worth stating that the same speed vector is used on all 

machines for a specific job in PFSP. 

4.1.2. Initial Population  

For the initial the population with size NP, the following procedure is used:  

A solution is constructed by the NEH heuristic (see Nawaz et al., 1983). The NEH 

heuristic can be outlined in Fig. 4.3. 

Step1.  s = DecreasingOrder ሺ∑ 𝑝௜௝
௠
௝ୀଵ ሻ and 𝜋ଵ  ൌ  𝑠ଵ  

Step2. For ሺ𝑖 ൌ  2 𝑡𝑜 𝑛ሻ do  

Remove job 𝜋௜ from 𝛼    

Test it in all positions in 𝛼  

Insert 𝜋௜ in 𝑠 with the lowest makespan  

Step3. EndFor  

Step4. Return 𝜋 

endprocedure 

Figure 4.3. NEH Constructive Heuristic 

Now, the procedure for constructing initial population can be summed up as 

follows:  

 Use the NEH solution as an initial solution for the IGALL algorithm with 

the makespan minimization only.  
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 Devote 10% of the total CPU time budget to IGALL algorithm to find the 

best solution 𝜋௕௘௦௧.  

 Keep 𝜋௕௘௦௧ and assign fast, normal and slow speed levels to each job in 

𝜋௕௘௦௧ and construct the first three individuals in the population. 

 For the rest of population, keep 𝜋௕௘௦௧  and assign random speed levels 

between 1 and 3 to each job in  𝜋௕௘௦௧.   

 Update the archive set 𝛺. 

4.1.3. Destruction and Construction Procedure 

The procedure is summarized as follows: 

 Remove 𝑑 jobs with their speed levels randomly from the solution 𝑠ሺ𝜋, 𝑣ሻ 

without repetition. 

 Apply insertion local search to the partial solution as shown in Fig. 4.4. 

 Assign random speed levels 𝑣௜  ൌ  𝑟𝑎𝑛𝑑ሺሻ%𝑙, ∀𝑖 ∈  1, . . , 𝑁𝑃  and 

𝑗 ∈  1, . . , 𝑑 to these 𝑑 jobs. 

 Reinsert these 𝑑 jobs with their new speed levels into the partial solution 

sequentially until a complete solution of 𝑛 jobs with their speed levels is obtained.  

 In each step, while inserting the jobs, the number of places to be inserted 

should be increased by 1. Use dominance rule ሺ≻ሻ when two solutions and/or 

partial solutions are evaluated.   

In order to clarify the DC procedure, the following example with 5 jobs and 

5 speed levels is given below: 

𝑠ሺ𝜋௜, 𝑣௜ሻ  ൌ ሼሺ5, 1ሻ, ሺ2, 1ሻ, ሺ1, 2ሻ, ሺ4, 3ሻ, ሺ3, 2ሻሽ.  

Suppose that we remove job 2 and job 4 with their speed levels. Then, we 

have two partial solutions:  

𝑠ோሺ𝜋௜, 𝑣௜ሻ  ൌ ሼሺ2, 1ሻ, ሺ4, 3ሻሽ and 𝑠஽ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ5, 1ሻ, ሺ1, 2ሻ, ሺ3, 2ሻሽ.  

The DC procedure randomly changes the speed levels of each job, 

 𝑠ோሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ2, 3ሻ, ሺ4, 2ሻሽ and 𝑠஽ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ5,1ሻ, ሺ1, 2ሻ, ሺ3, 2ሻሽ. 
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Now, the DC procedure in IGALL algorithm applies an insertion local search 

to the partial solution 𝑠஽ሺ𝜋௜, 𝑣௜ሻ first. Suppose that we have the following solution 

after the local search as follows: 

𝑠஽ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ1, 2ሻ, ሺ5, 1ሻ, ሺ3, 2ሻሽ.   

Now, the DC procedure inserts job and speed ሺ2,3ሻ into four positions in 

𝑠஽ሺ𝜋௜, 𝑣௜ሻ and four partial solutions are obtained as follows: 

𝑠஽ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ2, 3ሻ, ሺ1, 2ሻ, ሺ5, 1ሻ, ሺ3, 2ሻሽ, 

𝑠஽ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ1, 2ሻ, ሺ2, 3ሻ, ሺ5, 1ሻ, ሺ3, 2ሻሽ, 

𝑠஽ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ1, 2ሻ, ሺ5, 1ሻ, ሺ2, 3ሻ, ሺ3, 2ሻሽ, and  

𝑠஽ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ1, 2ሻ, ሺ5, 1ሻ, ሺ3, 2ሻ, ሺ2, 3ሻሽ. 

Suppose that the partial non-dominated solution is the last one amongst 

these four solutions. Then, again, the DC procedure inserts job and speed ሺ4,2ሻ 

into five positions in 𝑠஽  and five complete solutions are obtained as follows:  

𝑠஽ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ4, 2ሻ, ሺ1, 2ሻ, ሺ5, 1ሻ, ሺ3, 2ሻ, ሺ2, 3ሻ ሽ, 

𝑠஽ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ1, 2ሻ, ሺ4, 2ሻ, ሺ5, 1ሻ, ሺ3, 2ሻ, ሺ2, 3ሻሽ, 

𝑠஽ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ1, 2ሻ, ሺ5, 1ሻ, ሺ4, 2ሻ, ሺ3, 2ሻ, ሺ2, 3ሻሽ,   

𝑠஽ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ1, 2ሻ, ሺ5, 1ሻ, ሺ3, 2ሻ, ሺ4, 2ሻ, ሺ2, 3ሻሽ, and  

𝑠஽ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ1,2ሻ, ሺ5, 1ሻ, ሺ3, 2ሻ, ሺ2, 3ሻ, ሺ4, 2ሻሽ.  

Suppose that the last complete solution is the non-dominated solution and it 

is chosen by the DC procedure for the individual 𝑠௜ in the population. 

4.1.4. Makespan Minimization 

For the makespan minimization, we employ a very effective first 

improvement insertion local search given in Fig. 4.4. The local search is carried 

out for each individual in the population and it can be summarized as follows: 

 Remove job and speed ሺ𝜋∗, 𝑣∗ሻ from position 𝑗 of the solution 𝑠ሺ𝜋௜, 𝑣௜ሻ.  

 Assign a new speed level for job by 𝑣∗ ൌ 𝑟𝑎𝑛𝑑ሺሻ%3 
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 Insert removed job 𝜋∗  and speed 𝑣∗  into all possible positions of the 

incumbent solution.  

 Find the best insertion position, which dominates the incumbent solution. 

 Insert job 𝜋∗ and speed 𝑣∗ into that position and update the archive set Ω.  

 Repeat them for all the job and speed pairs. If any non-dominated solution 

is found, invoke the local search again until no non-dominated solution is 

obtained. 

Note that local search is similar to the example given in previous subsection. 

Instead of removing two jobs with their speeds, the local search removes only one 

job with its speed. 

for j ൌ 1 to n do  
         Remove 𝜋∗ and 𝑣∗.  Assign 𝑣∗ ൌ randሺሻ%3  
          s∗ሺ𝜋∗, 𝑣∗ሻ ൌ InsertInBestPosition൫s௜, ሺ𝜋௜

∗, 𝑣௜
∗ሻ൯  

           if ቀf൫s∗ሺ𝜋∗, 𝑣∗ሻ൯ ≻ f൫s௜ሺ𝜋௜, 𝑣௜ሻ൯ቁ  then do  

                    s௜ሺ𝜋௜, 𝑣௜ሻ ൌ s∗ሺ𝜋∗, 𝑣∗ሻ 
                    Update archive set Ω with s∗ሺ𝜋∗, 𝑣∗ሻ   
            end if  
   end for   

Figure 4.4. Insertion Local Search 

4.1.5. Energy Minimization 

The energy-efficient IGALL algorithm given above is extremely effective for 

makespan minimization. However, energy-efficient schedules should be obtained 

too. For this reason, a local search algorithm is proposed based on uniform 

crossover operator for speed levels only. In other words, after applying energy-

efficient IGALL algorithm to each individual in the population, the same 

solution/permutation is kept for each individual in the population and make a 

uniform crossover on speed levels as follows: 

 For each individual 𝑠௜  in the population, select another individual from 

population randomly, say 𝑠௞,  

 Generate offspring by making a uniform crossover as follows: 

s௡௘௪ሺ𝜋௜, 𝑣௜ሻ ൌ ൜
𝜋௜ሺ𝑣௜ሻ 𝑖𝑓 𝑟 ൑ 𝐶𝑅ሾ𝑖ሿ 
𝜋௞ሺ𝑣௞ሻ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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where 𝑟  is a uniform random number in 𝑈ሺ0,1ሻ  and 𝐶𝑅ሾ𝑖ሿ  is the crossover 

probability, which is drawn from unit normal distribution 𝑁ሺ0.5,0.1ሻ . If 𝑠௡௘௪ 

dominates 𝑠௜  (i.e., 𝑠௡௘௪ ≻ 𝑠௜ ), 𝑠௜  is replaced by 𝑠௡௘௪ . Then, the archive set Ω is 

updated. This is repeated for all individuals in the population. 

After crossover local search, the speed levels of jobs are mutated with a 

small mutation probability as follows: 

𝑠௜ሺ𝜋௜, 𝑣௜ሻ ൌ ቊ
𝑠௜൫𝑣௜௝ ൌ 𝑟𝑎𝑛𝑑ሺሻ%3൯ 𝑖𝑓 𝑟 ൑ 𝑀𝑅ሾ𝑖ሿ

𝑠௜ሺ𝑣௜ሻ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

where 𝑟  is a uniform random number in 𝑈ሺ0,1ሻ  and 𝑀𝑅ሾ𝑖ሿ  is the mutation 

probability, which is drawn from unit normal distribution 𝑁ሺ0.05,0.01ሻ for each 

individual 𝑠௜ in the population. 

In order to clarify the crossover an example is provided. The uniform 

crossover operator is given with individual 𝑠௜ , 

 𝑠௜ሺ𝜋, 𝑣ሻ ൌ ሼሺ4, 3ሻ, ሺ1, 2ሻ, ሺ5,1ሻ, ሺ3, 2ሻ, ሺ2, 1ሻሽ, and 𝑠௞  which is randomly 

chosen from the population, 𝑠௞ሺ𝜋, 𝑣ሻ ൌ ሼ ሺ1, 2ሻ, ሺ4, 3ሻ, ሺ5,1ሻ, ሺ3, 2ሻ, ሺ2, 1ሻሽ. Note 

that we keep the permutation of individual 𝑠௜ in the offspring solution 𝑠௡௘௪ and 

make the crossover on the speed levels as follows: 

𝑠௡௘௪ሺ𝜋, 𝑣ሻ ൌ ሼ ሺ4, 3ሻ, ሺ1, 3ሻ, ሺ5,1ሻ, ሺ3, 2ሻ, ሺ2, 1ሻሽ. 

4.2. Energy-Efficient VBIH Algorithm 

 Recently, block move-based search algorithms were presented for 

scheduling problems in literature (Subramanian et al., 2014; Xu et al., 2014; 

González et al., 2017; Tasgetiren et al., 2016; Tasgetiren et al., 2016; Tasgetiren et 

al., 2017). The VBIH algorithm simply removes a block 𝑏 of jobs from the current 

solution; then it makes a number 𝑛 െ 𝑏 ൅ 1  of block insertion moves on the 

partial solution denoted as 𝑏𝑀𝑜𝑣𝑒ሺሻ  procedure. Then, the best one from the 

𝑏𝑀𝑜𝑣𝑒ሺሻ procedure is retained in order to undergo a local search procedure. If the 

new solution obtained after the local search is better than the current solution, it 

replaces the current solution. Otherwise, a simple simulated annealing-type of 

acceptance criterion is used with a constant temperature, which is suggested in 

(Osman and Potts, 1989), as follows: 
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𝑇 ൌ
∑ ∑ ௣೔ೖ

೘
ೖసభ

೙
೔సభ

ଵ଴௡௠
ൈ 𝜏𝑃, 

where 𝜏𝑃 is a parameter to be adjusted and 𝑟  is a uniform random number in  

𝑈ሺ0, 1ሻ. Initially, the block size is fixed to 𝑏 ൌ 1. As long as it improves, it retains 

the same block size ( 𝑖. 𝑒. , 𝑏 ൌ 𝑏).  Otherwise, it is increased by one (𝑖. 𝑒. , 𝑏 ൌ

𝑏 ൅ 1). The 𝑏𝑀𝑜𝑣𝑒ሺሻ procedure is carried out until the block size reaches at the 

maximum block size (i.e., 𝑏 ൑ 𝑏௠௔௫ሻ. The outline of the VBIH algorithm for a 

minimization problem is given in Fig. 4.5. 

𝜋 ൌ 𝑁𝐸𝐻  
𝜋௕௘௦௧ ൌ 𝜋   
𝑤ℎ𝑖𝑙𝑒 ሺ𝑁𝑜𝑡𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛ሻ 𝑑𝑜      
    𝑏 ൌ 1 
    𝑑𝑜{  
            𝜋ଵ ൌ 𝑏𝑀𝑜𝑣𝑒ሺ𝜋, ሻ      
            𝜋ଵ ൌ 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎሺ𝜋ଵሻ      
            𝑖𝑓 ൫𝑓ሺ𝜋ଵሻ ൑ 𝑓ሺ𝜋ሻ൯ 𝑡ℎ𝑒𝑛 𝑑𝑜ሼ  
                     𝜋 ൌ 𝜋ଵ 
           𝑖𝑓 𝑓ሺ𝜋ଵሻ ൏ 𝑓ሺ𝜋௕௘௦௧ሻ  𝑡ℎ𝑒𝑛 𝑑𝑜ሼ  
                             𝜋௕௘௦௧ ൌ 𝜋ଵ   

   𝑏 ൌ 𝑏 
            𝑒𝑙𝑠𝑒{  
                    𝑏 ൌ 𝑏 ൅ 1     
            𝑖𝑓 ൫𝑟 ൏ 𝑒𝑥𝑝൛െ൫𝑓ሺ𝜋ሻ െ 𝑓ሺ𝜋ଵሻ൯/𝑇ൟ൯  
                                𝜋 ൌ 𝜋ଵ        
           ሽ𝑒𝑛𝑑𝑖𝑓    
    ሽ𝑤ℎ𝑖𝑙𝑒ሺ𝑏 ൑ 𝑏௠௔௫) 
ሽ𝑒𝑛𝑑𝑤ℎ𝑖𝑙𝑒  
𝑟𝑒𝑡𝑢𝑟𝑛 𝜋௕௘௦௧ 𝑎𝑛𝑑 𝑓ሺ𝜋௕௘௦௧ሻ  
𝑒𝑛𝑑𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒  

Figure 4.5. Variable Block Insertion Heuristic  

 In this thesis, a job-based speed scaling strategy is also proposed for the 

energy-efficient VBIH algorithm. To handle this speed-scaling strategy, a multi-

chromosome structure is used. It is composed of a permutation of n jobs ሺ𝜋ሻ and a 

speed vector of three levels ሺ𝑣ሻ corresponding to fast, normal and slow speed 

levels. The solution representation is given in Fig. 4.6. 

𝑠ሺ𝜋, 𝑣ሻ 𝜋 6 3 2 1 4 5 … 𝑛 
𝑣 1 2 1 2 1 2 … 3 

 Figure 4.6. Solution Representation for VBIH Algorithm 
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 In Fig.4.6, a solution/individual 𝑠ሺ𝜋, 𝑣ሻ indicates that job πଵ ൌ 6 has a fast 

speed level,ሺ𝑖. 𝑒., 𝑣ଵ ൌ 1),  job 𝜋ଶ ൌ 3 has a normal speed level, ሺ𝑖. 𝑒. , 𝑣ଶ ൌ 2ሻ; 

and so on.  

4.2.1. Initial Population  

For the initial population with size NP, the following procedure is used:  A 

solution is constructed by the NEH heuristic. This solution is taken as an initial 

solution for the VBIH algorithm with makespan minimization only. Ten percent of 

the total CPU time budget is devoted to the VBIH algorithm in order to obtain a 

good starting point for the Energy Efficient Variable Block Insertion (EE_VBIH) 

algorithm.  Once the best solution s௕௘௦௧  is found by the VBIH algorithm, the first 

three solutions in population are obtained by assigning fast, normal or slow speed 

levels to each job in the best solution s௕௘௦௧ . The rest of the population is obtained 

by assigning random speed levels between 1 and 3 to each job in the best solution 

s௕௘௦௧ . The archive set Ω is initially empty and it is updated. 

4.2.2. Block Insertion Procedure 

The 𝑏𝑀𝑜𝑣𝑒ሺሻ procedure is a core function in the EE_VBIH algorithm. The 

procedure randomly removes a block 𝑏 of jobs with their speed from the current 

solution. Then, block is denoted by 𝑠௕  whereas the partial solution after removal 

will be denoted by 𝑠௣ሺ𝜋௜, 𝑣௜ሻ ൌ ቀ𝑁 െ 𝑠௕ሺ𝜋௜, 𝑣௜ሻቁ. First, speed levels in 𝑠௕ሺ𝜋௜, 𝑣௜ሻ 

are randomly changed between 1and 3. Then; similar to the one presented in 

(Dubois-Lacoste et al, 2017), the EE_VBIH algorithm applies an additional local 

search to partial solution 𝑠௣  before carrying out a block insertion. Then; the 

𝑏𝑀𝑜𝑣𝑒ሺሻ procedure carries out 𝑛 െ 𝑏 ൅ 1 block insertion moves. In other words, 

block 𝑠௕  is inserted in all possible positions in the partial solution 𝑠௣. It should be 

noted that dominance rule (≻) explained before is used when two solutions and/or 

partial solutions are compared.  

In order to explain the 𝑏𝑀𝑜𝑣𝑒ሺሻ procedure, following example would be 

useful. Suppose that we have a current solution 

𝑠ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ3, 2ሻ, ሺ1, 1ሻ, ሺ4, 3ሻ, ሺ2, 1ሻ, ሺ5, 2ሻሽ with block size 𝑏 ൌ 2. A block is 

removed and two partial solutions are obtained as follows: 
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 𝑠௕ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ1, 1ሻ, ሺ4, 3ሻሽ and 𝑠௣ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ3, 2ሻ, ሺ2, 1ሻ, ሺ5, 2ሻሽ. 

First, speed levels of 𝑠௕ሺ𝜋௜, 𝑣௜ሻ are randomly changed to, say,  

𝑠௕ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ1, 3ሻ, ሺ4, 2ሻሽ. Then; an insertion local search is applied to the 

partial solution 𝑠௣ሺ𝜋௜, 𝑣௜ሻ in a way that each job and speed pair is removed from 

𝑠௣ሺ𝜋௜, 𝑣௜ሻ and inserted into all positions without the position it is removed. The 

best non-dominated partial solution is retained.  

Suppose that the best one is 𝑠௣ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ5, 2ሻ, ሺ2, 1ሻ, ሺ3, 2ሻሽ. Finally, the 

block 𝑠௕ሺ𝜋௜, 𝑣௜ሻ is inserted into all positions in 𝑠௣ሺ𝜋௜, 𝑣௜ሻ as follows: 

 𝑠ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ𝟏, 𝟑ሻ, ሺ𝟒, 𝟐ሻ, ሺ5, 2ሻ, ሺ2, 1ሻ, ሺ3, 2ሻሽ,  

 𝑠ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ5, 2ሻ, ሺ𝟏, 𝟑ሻ, ሺ𝟒, 𝟐ሻ, ሺ2, 1ሻ, ሺ3, 2ሻሽ, 

 𝑠ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ5, 2ሻ, ሺ2, 1ሻ, ሺ𝟏, 𝟑ሻ, ሺ𝟒, 𝟐ሻ, ሺ3, 2ሻሽ, and 

 𝑠ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ5, 2ሻ, ሺ2, 1ሻ, ሺ3, 2ሻ, ሺ𝟏, 𝟑ሻ, ሺ𝟒, 𝟐ሻሽ. 

Among these four solutions, the non-dominated one is selected with respect 

to min 𝐶௠௔௫ and the archive set Ω is updated. 

4.2.3. Energy Efficient Insertion Local Search  

Regarding the local search algorithm, a very effective first-improvement 

insertion neighbourhood structure is employed for each individual 𝑠௜ in the 

population. Similar to the 𝑏𝑀𝑜𝑣𝑒ሺሻ  procedure, each job and speed level is 

removed from the current solution and inserted into all positions of the current 

solution. The non-dominated solution is retained and the archive set Ω is updated. 

The insertion local search has a size of ሺ𝑛 െ 1ሻଶ.  

 As an example, we consider the solution in previous subsection  

𝑠ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ3, 2ሻ, ሺ1, 1ሻ, ሺ4, 3ሻ, ሺ2, 1ሻ, ሺ5, 2ሻሽ.  The first job and its speed level, 

ሺ3, 2ሻ are removed from the current solution 𝑠ሺ𝜋௜, 𝑣௜ሻ. Its speed level is randomly 

changed to another speed level, say, ሺ3, 1ሻ. Then; it is inserted into all positions in 

the solution 𝑠ሺ𝜋௜, 𝑣௜ሻ as follows: 

 𝑠ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ3, 1ሻ, ሺ1, 1ሻ, ሺ4, 3ሻ, ሺ2, 1ሻ, ሺ5, 2ሻሽ, 

 𝑠ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ1, 1ሻ, ሺ3, 1ሻ, ሺ4, 3ሻ, ሺ2, 1ሻ, ሺ5, 2ሻሽ, 

 𝑠ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ1, 1ሻ, ሺ4, 3ሻ, ሺ3, 1ሻ, ሺ2, 1ሻ, ሺ5, 2ሻሽ, 
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 𝑠ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ1, 1ሻ, ሺ4, 3ሻ, ሺ2, 1ሻ, ሺ3, 1ሻ, ሺ5, 2ሻሽ, 

 𝑠ሺ𝜋௜, 𝑣௜ሻ ൌ ሼሺ1, 1ሻ, ሺ4, 3ሻ, ሺ2, 1ሻ, ሺ5, 2ሻ, ሺ3, 1ሻሽ. 

Among these five solutions, the non-dominated one is selected with respect 

to min 𝐶௠௔௫ and the archive set Ω is updated. This is repeated for the next pair of 

job and its speed level until the last job and its speed level are inserted into all 

positions. 

4.2.4. Energy-Efficient Uniform Crossover and Mutation 

In order to obtain more energy-efficient schedules, a local search algorithm 

based on uniform crossover operator by considering only speed levels is again 

proposed for the EE_VBIH algorithm, too. Note that with the same permutation, 

any change in speed levels leads to a different solution in terms of 𝐶௠௔௫ 𝑎𝑛𝑑 𝑇𝐸𝐶. 

For this reason, after having applied the VBIH algorithm to each individual in the 

population, the same permutation is kept for each individual in the population and 

a uniform crossover on speed levels is carried out as follows. The similar 

procedure with the previous subsection is followed.  

 For each individual 𝑠௜ in the population, we select another individual from 

population randomly, say 𝑠௞, a new solution is obtained in a way that taking the 

speed level is either taken from 𝑠௜ or 𝑠௞ with a crossover probability 𝐶𝑅ሾ𝑖ሿ. The 

uniform crossover is carried out as follows: 

𝑠௡௘௪ሺ𝜋௜, 𝑣௜ሻ ൌ ൜
𝑠௜ሺ𝑣௜ሻ 𝑖𝑓 𝑟 ൑ 𝐶𝑅ሾ𝑖ሿ 
𝑠௞ሺ𝑣௞ሻ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                  ∀𝑗 ∈ 1, . . , 𝑛 

where 𝑟  is a uniform random number in 𝑈ሺ0,1ሻ  and 𝐶𝑅ሾ𝑖ሿ  is the crossover 

probability, which is drawn from unit normal distribution 𝑁ሺ0.5,0.1ሻ for each 

individual 𝑠௜ in the population. If 𝑠௡௘௪ dominates 𝑠௜ (i.e., 𝑠௡௘௪ ≻ 𝑠), 𝑠௜ is replaced 

by 𝑠௡௘௪ and the archive set Ω is updated. This is repeated for all individuals in the 

population.  

 After having carried out uniform crossover for all individuals in the 

population, we mutate the population by lowering the speed levels with a small 

mutation probability as follows: 
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𝑠௜ሺ𝜋௜, 𝑣௜ሻ ൌ ቊ
𝑠௜൫𝑣௜௝ ൌ 1 ൅ 𝑟𝑎𝑛𝑑ሺሻ%2൯ 𝑖𝑓 𝑟 ൑ 𝑀𝑅ሾ𝑖ሿ

𝑠௜൫𝑣௜௝൯ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ∀𝑗 ∈ 1, . . , 𝑛;  ∀𝑖 ∈

1, . . , 𝑁𝑃 

where 𝑟  is a uniform random number in 𝑈ሺ0,1ሻ  and 𝑀𝑅ሾ𝑖ሿ  is the mutation 

probability, which is drawn from unit normal distribution 𝑁ሺ0.05,0.01ሻ for each 

individual 𝑠௜ in the population. 

4.2.5. The Archive Set 

An archive set Ω is used to store the non-dominated solutions during the 

optimization process. This archive set should be updated with non-dominated 

solutions in order to approximate the Pareto-optimal solutions. When a new non-

dominated solution is obtained, it should be added to the archive set Ω and any 

member dominated by the new non-dominated solution should be removed. 

4.2.5.1. Update Archive Set 

In order to update the archive set Ω, Pan et.al. (2009) proposed an effective 

method for updating the archive set as follows: The non-dominated solutions in Ω 

are stored in increasing order of their first objective function values. Then, their 

second objective values will be in decreasing order. The procedure for updating 

the archive set Ω can be summarized as follows:  

Step 1. Archive size is 𝑥 ൌ |Ω|  and Ω ൌ ሼ𝑎ଵ, 𝑎ଶ, . . , 𝑎௫ሽ . Initially, Ω  is 

empty and the first non-dominated solution 𝑠 will be added to the first position in 

Ω. Let 𝑗 ൌ 𝑘 ൌ 1. 

Step 2. Find a most suitable position 𝑝𝑜𝑠  for the next individual  s  in the 

archive set  Ω by the following procedure: 

𝑑𝑜{ 

     𝑗 ൌ ⌊ሺ𝑘 ൅ 𝑥ሻ/2⌋ 

     𝑖𝑓 ቀ𝑓ଵሺ𝑠ሻ ൌ 𝑓ଵ൫𝑎௝൯ቁ  𝑡ℎ𝑒𝑛 𝑗 ൌ 𝑗 

     𝑒𝑙𝑠𝑒𝑖𝑓 ቀ𝑓ଵሺ𝑠ሻ ൏ 𝑓ଵ൫𝑎௝൯ቁ  𝑡ℎ𝑒𝑛 𝑥 ൌ 𝑗 െ 1 

      𝑒𝑙𝑠𝑒  𝑘 ൌ 𝑗 ൅ 1 

𝑤ℎ𝑖𝑙𝑒ሺ𝑘 ൑ 𝑥ሻ  
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Step 3. When comparing  𝑓ଵሺ𝑠ሻ  with 𝑓ଵ൫𝑎௝൯ , following cases may occur: 

𝐶𝑎𝑠𝑒 1.  𝑖𝑓 ቀ𝑓ଵሺ𝑠ሻ ൌ 𝑓ଵ൫𝑎௝൯ቁ  𝑎𝑛𝑑  𝑖𝑓 ቀ𝑓ଶሺ𝑠ሻ ൏ 𝑓ଶ൫𝑎௝൯ቁ 𝑡ℎ𝑒𝑛 𝑝𝑜𝑠 ൌ 𝑗    

𝐶𝑎𝑠𝑒 2.  𝑖𝑓 ቀ𝑓ଵሺ𝑠ሻ ൏ 𝑓ଵ൫𝑎௝൯ቁ  

 𝑖𝑓 𝑗 ൌ 1 𝑡ℎ𝑒𝑛 𝑝𝑜𝑠 ൌ 𝑗 𝑎𝑛𝑑 𝑥 ൌ 𝑥 ൅ 1 

 𝑖𝑓 𝑗 ൐ 1 𝑎𝑛𝑑 ቀ𝑓ଶሺ𝑠ሻ ൏ 𝑓ଶ൫𝑎௝ିଵ൯ቁ  𝑡ℎ𝑒𝑛 𝑝𝑜𝑠 ൌ 𝑗 𝑎𝑛𝑑 𝑥 ൌ 𝑥 ൅ 1 

𝐶𝑎𝑠𝑒 3.  𝑖𝑓 ቀ𝑓ଵሺ𝑠ሻ ൐ 𝑓ଵ൫𝑎௝൯ቁ  𝑎𝑛𝑑 𝑖𝑓 ቀ𝑓ଶሺ𝑠ሻ ൏ 𝑓ଶ൫𝑎௝൯ቁ 𝑡ℎ𝑒𝑛 𝑝𝑜𝑠 ൌ 𝑗 𝑎𝑛𝑑 𝑥 ൌ

𝑥 ൅ 1     

If any of cases above is satisfied, solution s is added to position 𝑝𝑜𝑠, but all 

solutions dominated by 𝑠  in  Ω  should be removed. The following procedure 

removes the dominated solutions from Ω: 

Step 1.  𝐼𝑓 ሺ𝑝𝑜𝑠 ൌ 𝑥ሻ 𝑡ℎ𝑒𝑛 𝑔𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 4 

Step 2. 𝐿𝑒𝑡 𝑝𝑜𝑠 ൌ 𝑝𝑜𝑠 ൅ 1.      

 𝐼𝑓 𝑓ଶ൫𝑎௣௢௦൯ ൒ 𝑓ଶሺ𝑠ሻ 𝑡ℎ𝑒𝑛 𝑟𝑒𝑚𝑜𝑣𝑒 𝑎௣௢௦; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑔𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 4 

Step 3.  𝑖𝑓ሺ𝑝𝑜𝑠 ൏ 𝑥ሻ 𝑡ℎ𝑒𝑛 𝑔𝑜 𝑡𝑜 𝑆𝑡𝑒𝑝 2 

Step 4.  𝛺 ൌ 𝑛𝑜𝑛 െ 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 

4.2.5.2. Crowding Distance 

For a solution in Ω, the crowding distance is the sum of the normalized 

distance between its previous and next neighbors for each objective function value. 

The extreme solutions have the crowding distance set to infinity. It is clear that the 

larger the crowding distance, the sparser the nearby solutions. Based on the 

storage structure of Ω, the crowding distance of a non-dominated solution 𝑎௝ is 

given as follows:  

𝐶𝐷௝ ൌ ቐ
∞ 𝑖𝑓 ሺ𝑗 ൌ 1 𝑜𝑟 𝑗 ൌ 𝑠ሻ

𝑓ଵ൫𝑎௝ାଵ൯ ൅ 𝑓ଵ൫𝑎௝ିଵ൯
𝑓ଵሺ𝑎௦ሻ െ 𝑓ଵሺ𝑎ଵሻ

൅
𝑓ଶ൫𝑎௝ିଵ൯ ൅ 𝑓ଶ൫𝑎௝ାଵ൯

𝑓ଶሺ𝑎ଵሻ െ 𝑓ଵሺ𝑎௦ሻ
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
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CHAPTER 5 

COMPUTATIONAL RESULTS 

In this thesis, a novel mathematical model and two different algorithms are 

proposed to solve energy efficient permutation flow shop scheduling problem. 

IGALL and VBIH algorithm, as mentioned in Chapter 4, are applied to energy 

efficient permutation flowshop scheduling problem from the literature. All 

instances for the mathematical model are solved with the augmented ε-constraint 

method using IBM ILOG CPLEX 12.6.3 on a Core i7, 2.60 GHz, 8 GB RAM 

computer. The IGALL and VBIH algorithm are coded in C++ programming 

language on Microsoft Visual Studio 2013 and all instances are solved on a Core 

i5, 3.20 GHz, 8 GB RAM computer. In order to test the performance of the IGALL 

and VBIH algorithms, extensive experimental evaluations are carried out on the 

well-known benchmark suite of Taillard (1993). The benchmark set is composed 

of 12 groups of the given problems with the size ranging from 20 jobs and 5 

machines to 500 jobs and 20 machines, and each group consists of ten instances. 

Only the first 60 instances from 20 jobs and 5 machines to 50 jobs and 20 

machines were employed (20x5, 20x10, 20x20, 50x5, 50x10 and 50x20). 

Initially, the ranges of each objective are obtained from payoff tables using 

lexicographic optimization, i.e. first 𝐶௠௔௫ is minimized, then 𝑇𝐸𝐶 is minimized. 

In addition, due to the computational difficulty of the bi-objective problem, we 

generate 30 small-sized instances with 5 jobs and 5 machines, 5 jobs and 10 

machines, 5 jobs and 20 machines by truncating 20x5, 20x10 and 20x20 problems. 

Population size is taken as NP=100. 𝐶௠௔௫  is minimized subject to  𝑇𝐸𝐶 . 

Afterwards, the single-objective model is solved repetitively by reducing the 

constraint on 𝑇𝐸𝐶 with a specific ε level. 

The speed and conversion parameters of (Mansouri et al., 2016) are used in 

TEC computation. There are three processing speed factors 𝑣௟ ൌ ሼ1.2, 1, 0.8ሽ and 

3 conversion factors 𝜆௟ ൌ ሼ0.6, 1, 1.5ሽ  corresponding to 3 speed levels (slow, 
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normal and fast, respectively). The power of machines are the same (60 𝑘𝑊) and 

the conversion factor for idle time is 0.05. 

For each instances thirty replications with IGALL and five replications VBIH 

algorithms are made. In each replication, both IGALL and VBIH algorithms are run 

for 10|𝑁||𝑀| milliseconds for small-sized instances and 30|𝑁||𝑀|  milliseconds 

for larger instances, where |𝑁| is the number of jobs and |𝑀| is the number of 

machines.  

For VBIH algorithm, it is important to note that initially the archive size is 

set to x ൌ 5 ൈ NP in each replication. After five replications, only non-dominated 

solutions in Ω are kept because a solution in a replication can dominate a solution 

in another replication. Due to the real values of objective functions, as many as 

non-dominated solutions are generated after five replications. However, the 

crowding distances of all these solutions are computed and only the most crowded 

solutions are reported up to s ൌ 100. 

Very close approximations is obtained for the Pareto-optimal frontiers of 

instances with 5 jobs (5x5, 5x10 and 5x20) choosing an ε level as 10-3. These 

finite numbers of Pareto-optimal solutions are named as Pareto-optimal solution 

set (𝑃). Appendix 1 gives the mathematical model solutions of the small instances 

explained above while Appendix 2 and Appendix 3 present the IGALL and VBIH 

results, respectively. 

Since very close approximations to Pareto-optimal frontiers for instances 

with 5 jobs, below performance measures are used to evaluate the solution quality 

of the IGALL and VBIH algorithms. 𝐼 refers to the non-dominated solution set of 

the IGALL and VBIH algorithms. 

 Ratio of the Pareto-optimal solutions found 

𝑅௣ ൌ |𝐼 ∩ 𝑃| |𝑃|⁄    

 Inverted Generational Distance (Coello et al., 2002) 

𝐼𝐺𝐷 ൌ ∑ 𝑑ሺ𝑣, 𝐼ሻ௩∈௉ |𝑃|⁄ , where 𝑑ሺ𝑣, 𝐼ሻ indicates the minimum Euclidean 

distance between 𝑣 and the solution in 𝐼. The low IGD value means that set 𝐼 is 

very close to set P. 
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 Distribution Spacing (Tan et al, 2006) 

DS ൌ
ቂ

భ
|಺|

∑ ሺௗ೔ିௗതሻమ
೔∈಺ ቃ

భ
మൗ

ௗത     where 𝑑̅ ൌ
∑ ௗ೔೔∈಺

|ூ|  

𝑑௜  is the minimum Euclidean distance between solution 𝑖  and its closest 

neighbour in 𝐼 . Low spacing value shows that the solutions in 𝐼  are uniformly 

distributed. 

 Due to the exponentially increasing solution times, non-dominated 

solution sets are found for larger instances using a relatively higher ε level, which 

is calculated by dividing the range of 𝑇𝐸𝐶 objective function to 20 equal grids.  

Due to the NP-hard nature of the problem, 3 minutes time limit is set in each 

iteration for these large instances (20x5, 20x10, 20x20, 50x5, 50x10 and 50x20). 

Appendix 4 and Appendix 7 give the mathematical model results as an example 

for the large instances (first instance of 20 and 50 jobs), respectively. Additionally, 

IGALL results for the first instance of 20 and 50 jobs are given in Appendix 5 and 

Appendix 8, while Appendix 6 and Appendix 9 provide VBIH results for the first 

instance of 20 and 50 jobs, respectively. 

 For large instances, non-dominated solution sets of IGALL and VBIH 

algorithms (I) and time-limited CPLEX (T) are compared with each other in terms 

of the below performance metrics and the aforementioned DS metric.  

 Cardinality: the number of non-dominated solutions found.  

 Coverage of Two Sets for a minimization problem (C) (Zitzler, 1999) 

CIT = |𝑡 ∈ 𝑇; ∃𝑖 ∈ 𝐼: 𝑖 ≼ 𝑡ሽ|/|𝑇|  where CIT equals 1 if  some solutions of I 

weakly dominate all solutions of T. 

5.1. Computational Results of IGALL Algorithm 

For the IGALL with makespan minimization only, destruction size and 

temperature for acceptance criterion are taken as 𝑑 ൌ 4 and 𝜏 ൌ 0.4.  

For small-sized problems we generated, Pareto optimal solution set of 

mathematical model and IGALL algorithm are given for the first instance of 5 jobs 

5 machines in Fig. 5.1 as an example. As seen in Fig. 5.1, IGALL is able to find all 

Pareto optimal solutions. 
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Figure 5.1. Pareto Optimal Solution Set of 5x5_01 with Mathematical Model vs IGALL 

Table 5.1 reports the comparison of 𝑅௣, IGD and DS measures for IGALL 

algorithm and mathematical model results on small-sized instances. As shown in 

the table, IGALL algorithm finds approximately 82% of the Pareto-optimal 

solutions. Especially, for eight instances, all Pareto-optimal solutions are found by 

IGALL algorithm. Furthermore, average IGD value of IGALL algorithm is very low 

(0.0003), which indicates that the IGALL provides very close approximations to the 

Pareto-optimal solution sets. In terms of distribution spacing, we can say that 

solutions in 𝐼 are evenly distributed due to the low DS value. 

Table 5.1. Comparison of IGALL and Mathematical Model on Small Sized Instances 

    CPU Time (sec) 
Instance Set Rp IGD DS CPLEX IGALL 

5x5 0.9820 0.00003 0.7000 4.04 2.52 
5x10 0.8170 0.00023 0.8346 3.96 5.01 
5x20 0.6360 0.00055 0.8902 6.06 10.02 

Average 0.8117 0.00027 0.8083 4.68 5.85 

As an example for large instances, the non-dominated solutions of 20x5_01 

for IGALL and time limited CPLEX are given in Fig. 5.2 IGALL algorithm was 

superior to the time limited CPLEX and many new non-dominated solution are 

found.  
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Figure 5.2. Non-dominated Solution Set of 20x5_01 with Mathematical Model vs IGALL 

Table 5.2 reports the average results for T and I on large instances. As 

shown in the table, IGALL generates approximately eight times as many non-

dominated solutions in very reasonable computation times. Furthermore, IGALL 

performs much better than the time-limited CPLEX in terms of coverage metric, 

since 78% of the solutions of T are weakly dominated by some solutions of I. 

Particularly, some solutions of I weakly dominate all solutions of the T , in 22 of 

the instances. In terms of distribution spacing, solutions in T are distributed more 

uniformly than the solutions in I, as a fixed ε level is employed through the 

augmented ε-constraint method in time-limited CPLEX. 

Table 5.2. Comparison of IGALL and Mathematical Model on Large Instances 

  CPU Time (sec)
Instance Set |T| |I| CTI CIT DST DSI CPLEX IGALL

20x5 18.300 175.100 0.039 0.826 0.182 1.541 3600 3.45
20x10 19.000 145.100 0.900 0.089 0.162 2.035 3600 6.11
20x20 16.090 110.900 0.007 0.896 0.299 1.831 3600 12.27
50x5 14.400 149.800 0.000 0.897 0.416 4.904 3600 8.02
50x10 9.000 104.400 0.001 0.981 0.737 4.546 3600 16.98
50x20 6.900 86.800 0.000 1.000 0.940 4.366 3600 40.81

Average 13.948 128.683 0.158 0.782 0.456 3.204 3600 14.61
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5.2. Computational Results of VBIH Algorithm 

For the VBIH with makespan minimization only, the maximum block size is 

taken as 𝑏௠௔௫ ൌ 5; and temperature for acceptance criterion are taken as 𝜏𝑃 ൌ 0.4.  

Pareto optimal solution set of mathematical model and VBIH algorithm is 

given as an example for the first instance of 5 jobs 5 machines for small sized 

problems; and VBIH algorithm was able to find all Pareto optimal solutions as 

shown in Fig. 5.3. 

 

Figure 5.3. Pareto Optimal Solution Set of 5x5_01 with Mathematical Model vs VBIH 

Table 5.3 presents the average results of 𝑅௣, IGD and DS measures for each 

small-sized instance set, where there are 10 instances in each set. As shown in the 

table, the EE_VBIH algorithm finds approximately 82% of the Pareto-optimal 

solutions. Especially, for eight instances, all Pareto-optimal solutions are found by 

EE_VBIH algorithm. Furthermore, average IGD value of EE_VBIH algorithm is 

very low (0.00027), which indicates that the EE_VBIH provides very close 

approximations to the Pareto-optimal solution sets. In terms of distribution 

spacing, we can say that solutions in 𝐼 are evenly distributed due to the low DS 

value. 
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Table 5.3. Comparison of VBIH and Mathematical Model on Small Sized Instances 

 CPU Time (sec)
Instance Set Rp IGD DS CPLEX VBIH

5x5 0.9820 0.00003 0.7000 4.04 0.31
5x10 0.8170 0.00023 0.8346 3.96 0.55
5x20 0.6360 0.00055 0.8902 6.06 1.05

Average 0.8117 0.00027 0.8083 4.68 0.64

The non-dominated solutions of 20x5_01 for VBIH and time limited 

CPLEX instances are given as an example for large instance in Fig. 5.4. It is seen 

on Fig. 5.4, VBIH algorithm is superior to the time limited CPLEX and many new 

non-dominated solution are found. 

 

Figure 5.4. Non-dominated Solution Set of 20x5_01 with Mathematical Model vs VBIH 

Table 5.4 presents the average results for T and I for each large instance set, 

where there are 10 instances in each set. As shown in the table, EE_VBIH 

generates approximately seven times as many non-dominated solutions in very 

reasonable computation times. Furthermore, EE_VBIH performs much better than 

the time-limited CPLEX in terms of coverage metric, since 85% of the solutions 

of T are weakly dominated by some solutions of I. Particularly, some solutions of 

I weakly dominate all solutions of the T , in 17 of the instances. In terms of 

distribution spacing, solutions in T are distributed more uniformly than the 
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solutions in I, as a fixed ε level is employed through the augmented ε-constraint 

method in time-limited CPLEX. 

Table 5.4. Comparison of VBIH and Mathematical Model on Large Instances 

   CPU Time (sec) 
Instance 

Set 
|T| |I| CTI CIT DST DSI CPLEX VBIH 

20x5 18.300 100.000 0.057 0.651 0.181 2.019 3600 3.19 
20x10 16.300 93.800 0.013 0.786 0.212 2.481 3600 6.59 
20x20 16.900 83.700 0.020 0.808 0.301 2.289 3600 12.72 
50x5 14.400 100.000 0.000 0.866 0.415 4.428 3600 9.86 
50x10 9.000 80.700 0.001 0.957 0.737 4.271 3600 20.8 
50x20 6.900 67.100 0.000 1.000 0.941 4.115 3600 45.44 

Average 13.633 87.550 0.015 0.845 0.464 3.267 3600 16.43 

Besides comparing mathematical model with the aforementioned 

algorithms, following part of this chapter makes pairwise comparison of the 

performances of these algorithms. Machine based average comparisons of IGALL 

and VBIH algorithms on both small sized and large instances are presented in 

Table 5.5 and Table 5.6, respectively. As shown in Table 5.5, both algorithms can 

find exactly the same solutions with the mathematical model on small sized 

instances, that is, both algorithms are verified. However, VBIH is quicker than 

IGALL in terms of finding optimal solutions. 

Table 5.5. Comparison of IGALL and VBIH on Small Instances 

Algorithm Instance Set Rp IGD DS 
CPU Time 

(sec) 

IGALL 

5x5 0.9820 0.00003 0.7000 2.52
5x10 0.8170 0.00023 0.8346 5.01
5x20 0.6360 0.00055 0.8902 10.02 

Average 0.8117 0.00027 0.8083 5.85

VBIH 

5x5 0.9820 0.00003 0.7000 0.31
5x10 0.8170 0.00023 0.8346 0.55
5x20 0.6360 0.00055 0.8902 1.05

Average 0.8117 0.00027 0.8083 0.64

According to performance metrics presented in Table 5.6, we can conclude 

that IGALL algorithm is superior to VBIH in terms of finding non-dominated 

solutions while coverage of VBIH is higher than IGALL. In terms of the average 

distribution spacing, IGALL solutions distributed more uniformly than VBIH. For 

large instances, IGALL performs quicker than VBIH. When efficiencies of the 
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algorithms are compared with these performance metrics, IGALL  algorithm is 

slightly better than VBIH algorithm. 

Table 5.6. Comparison of IGALL and VBIH on Large Instances 

Algorithm  |M| |I| CTI CIT DSI CPU Time (sec) 

IGALL 

5 162 0.019 0.861 2.148 5.73
10 125 0.450 0.535 3.290 14.62

20 96 0.003 0.948 3.098 26.54

Average 128 0.158 0.782 3.204 15.63

VBIH 

5 100 0.028 0.758 3.223 6.525
10 87 0.007 0.871 3.376 13.69
20 75 0.010 0.904 3.202 29.08

Average 87 0.015 0.845 3.267 16.43 
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CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH 

This thesis presents an energy-efficient PFSP which minimizes makespan 

and total energy consumption. A simple job-based speed scaling strategy, which is 

the same for all machines in the problem, is proposed. A multi-objective MILP 

model and two heuristic algorithms, IGALL and VBIH, are developed. Taillard’s 

benchmarks (1993) are used to generate Pareto frontiers. This benchmark set is 

composed of 12 groups of the given problems with the size ranging from 20 jobs 

and 5 machines to 500 jobs and 20 machines, and each group consists of ten 

instances. Only the first 60 instances from 20 jobs and 5 machines to 50 jobs and 

20 machines were employed (20x5, 20x10, 20x20, 50x5, 50x10 and 50x20). 

Small-sized instances were generated from to find Pareto optimal solution sets by 

truncating the instances of 20x5, 20x10 and 20x20.  

First, the MILP model is run for these toy instances and Pareto optimal 

solution sets were obtained. For the larger instances, time-limited CPLEX is 

employed to find 20 solutions for each instance.  For small sized instances, 

proposed algorithms, were able to find approximately 82% of the Pareto-optimal 

solutions. Especially, for eight instances, all Pareto-optimal solutions are found by 

EE_VBIH and IGALL algorithm. For larger instances, EE_VBIH generates 

approximately eight times as many non-dominated solutions in very reasonable 

computation times. Furthermore, IGALL performs much better than the time-

limited CPLEX in terms of coverage metric, since the IGALL algorithm dominates 

78% of the solutions of time-limited CPLEX.  EE_VBIH performs much better 

than the time-limited CPLEX in terms of coverage metric, since the EE_VBIH 

algorithm dominates 85% of the solutions of time-limited CPLEX.  

In particular, IGALL dominates all solutions of time-limited CPLEX in 22 out 

of 60 instances  and EE_VBIH weakly dominates all solutions of time-limited 

CPLEX in 17 out of 60 instances.     
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For further research, the matrix representation for speed scaling strategy can 

be easily adapted by modifying the MILP model, IGALL and EE_VBIH algorithm. 

Machine-based speed scaling strategy can be used instead of job-based speed 

scaling strategy. If the products to be produced are in lots, lot streaming can be 

applied. Some multi-objective metaheuristic algorithms can be employed and 

different performance measures such as weighted total tardiness and total flow 

time criteria can be another research direction. 
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APPENDIX 1 – Mathematical Model Results by CPLEX for Small Sized 

Instances 

MATHEMATICAL MODEL 
5x5_01 5x10_01 5x20_01 

TEC CMAX TEC CMAX TEC CMAX 
1786.2917  480.0000 3021.7500  562.5000 3486.1250  633.3333 
1754.3667  482.5000 2906.7500  565.0000 3381.6500  645.0000 
1722.2292  486.2500 2819.2000  579.0000 3355.8750  651.8333 
1714.3833  491.0000 2806.3750  594.1667 3252.4000  665.5000 
1702.3500  493.5000 2743.0000  618.7500 3151.8125  688.5000 
1682.8750  495.1667 2724.6583  619.8333 3129.9000  709.8333 
1670.4250  496.0000 2698.3000  620.3333 3022.6875  719.5833 
1650.7375  498.9167 2611.0833  635.0000 3007.9500  726.3333 
1638.2875  499.7500 2599.7583  659.5000 3003.5167  744.3333 
1615.1833  506.5000 2579.6500  661.0000 2979.1583  754.0000 
1583.0458  510.2500 2506.9583  663.0000 2912.2375  759.0833 
1567.4208  514.9167 2463.4000  664.7500 2871.8500  760.0000 
1565.9167  528.5000 2375.8500  678.7500 2769.2625  779.0000 
1533.8250  530.3333 2291.0250  701.2500 2746.4750  792.7500 
1501.4375  533.0833 2283.9125  728.5000 2642.8875  809.7500 
1499.4958  546.6667 2268.4750  754.7500 2642.6750  860.2500 
1496.4500  554.0833 2179.5500  766.0000 2639.7250  873.2500 
1464.3583  555.9167 2094.4750  788.0000 2534.0125  886.0000 
1431.9708  558.6667 2066.7000  822.7500 2519.3000  897.0000 
1431.9083  573.9167 1981.1250  843.7500 2412.0875  906.7500 
1421.9125  579.7500 3021.7500  562.5000 2408.8125  927.5000 
1400.2167  586.0000 2906.7500  565.0000 2385.9000  941.0000 
1368.0792  589.7500 2819.2000  579.0000 2278.3125  950.0000 
1350.5500  597.7500 2806.3750  594.1667 3486.1250  633.3333 
1340.3125  608.2500   3381.6500  645.0000 
1316.4625  615.7500   3355.8750  651.8333 
1284.3250  619.5000   3252.4000  665.5000 
1270.0750  630.7500   3151.8125  688.5000 
1268.1625  647.2500   3129.9000  709.8333 
1236.2375  649.7500   3022.6875  719.5833 
1204.1000  653.5000     
1198.7375  699.2500     
1196.3500  706.5000     
1192.1250  713.7500     
1160.2000  716.2500     
1128.0625  720.0000     
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APPENDIX 2 – IGALL Results for Small Sized Instances 

IGALL ALGORTIHM 
5x5_01 5x10_01 5x20_01 

TEC CMAX TEC CMAX TEC CMAX 
1786.2917  480.0000 3021.7500  562.5000 3486.1250  633.3333 
1754.3667  482.5000 2906.7500  565.0000 3381.6500  645.0000 
1722.2292  486.2500 2819.2000  579.0000 3355.8750  651.8333 
1714.3833  491.0000 2806.3750  594.1667 3252.4000  665.5000 
1702.3500  493.5000 2743.0000  618.7500 3151.8125  688.5000 
1682.8750  495.1667 2724.6583  619.8333 3129.9000  709.8333 
1670.4250  496.0000 2698.3000  620.3333 3022.6875  719.5833 
1650.7375  498.9167 2611.0833  635.0000 3007.9500  726.3333 
1638.2875  499.7500 2599.7583  659.5000 3003.5167  744.3333 
1615.1833  506.5000 2579.6500  661.0000 2979.1583  754.0000 
1583.0458  510.2500 2506.9583  663.0000 2912.2375  759.0833 
1567.4208  514.9167 2463.4000  664.7500 2871.8500  760.0000 
1565.9167  528.5000 2375.8500  678.7500 2769.2625  779.0000 
1533.8250  530.3333 2291.0250  701.2500 2746.4750  792.7500 
1501.4375  533.0833 2283.9125  728.5000 2642.8875  809.7500 
1499.4958  546.6667 2268.4750  754.7500 2642.6750  860.2500 
1496.4500  554.0833 2179.5500  766.0000 2639.7250  873.2500 
1464.3583  555.9167 2094.4750  788.0000 2534.0125  886.0000 
1431.9708  558.6667 2066.7000  822.7500 2519.3000  897.0000 
1431.9083  573.9167 1981.1250  843.7500 2412.0875  906.7500 
1421.9125  579.7500 3021.7500  562.5000 2408.8125  927.5000 
1400.2167  586.0000 2906.7500  565.0000 2385.9000  941.0000 
1368.0792  589.7500 2819.2000  579.0000 2278.3125  950.0000 
1350.5500  597.7500 2806.3750  594.1667 3486.1250  633.3333 
1340.3125  608.2500   3381.6500  645.0000 
1316.4625  615.7500   3355.8750  651.8333 
1284.3250  619.5000   3252.4000  665.5000 
1270.0750  630.7500   3151.8125  688.5000 
1268.1625  647.2500   3129.9000  709.8333 
1236.2375  649.7500   3022.6875  719.5833 
1204.1000  653.5000     
1198.7375  699.2500     
1196.3500  706.5000     
1192.1250  713.7500     
1160.2000  716.2500     
1128.0625  720.0000     

      



42 

APPENDIX 3 – VBIH Results for Small Sized Instances 

VBIH ALGORTIHM 
5x5_01 5x10_01 5x20_01 

TEC CMAX TEC CMAX TEC CMAX 
1786.2917  480.0000 3021.7500  562.5000 3486.1250  633.3333 
1754.3667  482.5000 2906.7500  565.0000 3381.6500  645.0000 
1722.2292  486.2500 2819.2000  579.0000 3355.8750  651.8333 
1714.3833  491.0000 2806.3750  594.1667 3252.4000  665.5000 
1702.3500  493.5000 2743.0000  618.7500 3151.8125  688.5000 
1682.8750  495.1667 2724.6583  619.8333 3129.9000  709.8333 
1670.4250  496.0000 2698.3000  620.3333 3022.6875  719.5833 
1650.7375  498.9167 2611.0833  635.0000 3007.9500  726.3333 
1638.2875  499.7500 2599.7583  659.5000 3003.5167  744.3333 
1615.1833  506.5000 2579.6500  661.0000 2979.1583  754.0000 
1583.0458  510.2500 2506.9583  663.0000 2912.2375  759.0833 
1567.4208  514.9167 2463.4000  664.7500 2871.8500  760.0000 
1565.9167  528.5000 2375.8500  678.7500 2769.2625  779.0000 
1533.8250  530.3333 2291.0250  701.2500 2746.4750  792.7500 
1501.4375  533.0833 2283.9125  728.5000 2642.8875  809.7500 
1499.4958  546.6667 2268.4750  754.7500 2642.6750  860.2500 
1496.4500  554.0833 2179.5500  766.0000 2639.7250  873.2500 
1464.3583  555.9167 2094.4750  788.0000 2534.0125  886.0000 
1431.9708  558.6667 2066.7000  822.7500 2519.3000  897.0000 
1431.9083  573.9167 1981.1250  843.7500 2412.0875  906.7500 
1421.9125  579.7500 3021.7500  562.5000 2408.8125  927.5000 
1400.2167  586.0000 2906.7500  565.0000 2385.9000  941.0000 
1368.0792  589.7500 2819.2000  579.0000 2278.3125  950.0000 
1350.5500  597.7500 2806.3750  594.1667 3486.1250  633.3333 
1340.3125  608.2500   3381.6500  645.0000 
1316.4625  615.7500   3355.8750  651.8333 
1284.3250  619.5000   3252.4000  665.5000 
1270.0750  630.7500   3151.8125  688.5000 
1268.1625  647.2500   3129.9000  709.8333 
1236.2375  649.7500   3022.6875  719.5833 
1204.1000  653.5000     
1198.7375  699.2500     
1196.3500  706.5000     
1192.1250  713.7500     
1160.2000  716.2500     
1128.0625  720.0000     
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APPENDIX 4 – Mathematical Model Results for Large Instances (20jobs) 

MATHEMATICAL MODEL 
20x5_01 20x10_01 20x20_01 

TEC CMAX TEC CMAX TEC CMAX 
6496.75 1080.83 12851.20 1361.67 26337.60 2039.50 
6348.89 1088.33 12641.00 1404.83 25885.70 2058.00 
6237.62 1098.50 12118.80 1480.42 25452.90 2078.33 
6106.00 1121.08 11848.20 1515.00 24879.40 2097.67 
5841.77 1138.42 11131.20 1552.08 23911.20 2155.33 
5731.18 1169.75 10851.40 1598.08 23564.50 2215.08 
5201.55 1242.42 10373.50 1685.42 23074.10 2224.50 
5094.15 1302.67 10038.00 1702.58 22566.70 2322.42 
4957.88 1324.33 9830.30 1747.50 22008.10 2368.08 
4836.10 1347.00 9582.00 1779.50 21110.90 2406.92 
4712.55 1368.50 9362.20 1803.50 20589.50 2460.58 
4553.63 1408.25 9112.80 1906.83 20139.30 2580.75 
4449.63 1444.67 8857.80 1914.00 19639.70 2651.00 
4311.61 1477.00 8587.20 1963.50 19192.70 2695.42 
4195.74 1516.00   18684.10 2733.00 
4069.05 1576.25   17684.30 2840.50 

    17219.70 2957.25 
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APPENDIX 5 – IGALL Results for Large Instances (20 jobs) 

IGALL ALGORITHM 
20x5_01 20x10_01 20x20_01 

TEC CMAX TEC CMAX TEC CMAX 
     
      

6492.792 1065 13140.46 1319.167 26429.04 1932.5 
6394.925 1091 12646.26 1407.5 26036.63 2038.667 
6343.254 1091.167 12489.65 1412.917 25784.18 2040.167 
6311.392 1093.917 12415.78 1415.667 25774.09 2045.833 
6278.65 1094 12223.9 1423.917 25617.43 2049.333 

6246.725 1096.5 12107.7 1431.75 24787.28 2055.667 
6191.217 1102.833 12077.68 1434.75 24542.23 2109 
6187.142 1104.917 11972.35 1440.583 24302.31 2122.5 
6177.117 1105.333 11944.81 1455.25 24127.83 2131.5 
6175.896 1108.75 11883.88 1458.417 23987.43 2142.167 
6162.492 1108.833 11878.25 1460.083 23910.11 2149.833 
6156.308 1112 11876.07 1461.917 23882.1 2150.5 
6143.558 1115.083 11863.4 1462.417 23787.98 2150.667 
6135.967 1116.75 11803.03 1463.083 23508.19 2157.833 
6118.117 1117.333 11791.7 1465.75 23505.98 2175.833 
6096.438 1118.417 11746.14 1466.583 23302.96 2179.333 
6082.825 1121.5 11601.23 1466.583 23134.98 2181.333 
6062.883 1126.833 11590.53 1482 23121.77 2198.5 
6037.325 1127.25 11507.24 1483.75 23064.54 2199.5 
6027.325 1128.583 11485.25 1485.25 23031.11 2199.75 
6026.517 1130.167 11457.32 1487.25 23008.74 2204.667 
5983.933 1130.333 11437.07 1488.083 22874.08 2215.083 
5972.738 1135.5 11378.19 1497.417 22861.7 2217.167 
5968.242 1137.833 11347.61 1497.75 22851.07 2221.833 
5943.613 1139.167 11336.48 1499.25 22756.35 2233.083 
5941.567 1140.25 11317.12 1503.417 22660.48 2237.667 
5906.888 1141.417 11306.69 1504.25 22598.07 2241.833 
5896.829 1142.167 11305.07 1508.25 22585.53 2245 
5895.188 1142.833 11299.99 1508.417 22568.86 2257.833 
5891.263 1143.667 11286.01 1509.917 22517.37 2260.333 
5860.575 1145.083 11268.18 1510.417 22367.79 2262.583 
5849.688 1149.25 11198.51 1510.583 22321.84 2263.167 
5826.892 1150.333 11175.72 1514.083 22313.17 2274.167 
5822.058 1153 11156.33 1515.083 22298.6 2275 
5790.188 1154.083 11152.17 1516.583 22286.47 2279.5 
5775.383 1160 11149.35 1520.25 22278.99 2280.75 
5773.15 1162.917 11144.61 1520.583 22095.48 2280.917 

5721.933 1163.167 11120.29 1523.083 21869.8 2283.083 
5721.017 1168.25 11083.76 1523.917 21859.41 2295.5 
5696.879 1171.667 11015.35 1526.583 21824.71 2303.667 



45 

5693.096 1173.417 11010.77 1527.25 21802.75 2307.75 
5675.167 1174.75 11007.36 1530.25 21609.95 2313.417 
5652.888 1175.75 11003.21 1531.25 21578.35 2319 
5637.588 1179.75 10983.04 1532.75 21538.73 2330.083 
5635.021 1183.083 10957 1537.667 21420.7 2336 
5626.438 1184.75 10947.05 1537.75 21105.8 2349.333 
5614.354 1186.167 10939.29 1538.25 21097.4 2366.667 
5587.088 1187.167 10865.96 1540.917 21037.87 2380.667 
5584.583 1195 10842.4 1549.083 20913.86 2381.833 
5574.629 1195.083 10818.69 1551.25 20897.11 2387.25 
5523.875 1198.917 10799.27 1553.75 20892.29 2400.167 
5523.225 1201.167 10797.16 1556.25 20689.18 2403.75 
5513.788 1204.25 10796.6 1558 20688.52 2405.083 
5512.667 1208.75 10780.78 1559.417 20684.08 2406 
5492.288 1209.75 10764.12 1559.917 20681.65 2418.167 
5487.042 1210.25 10753.52 1560.417 20675.71 2432.167 

5474 1211.25 10737.56 1562.083 20605.92 2434.417 
5456.538 1211.667 10736.58 1568.167 20526.58 2448.333 
5452.967 1213.917 10671.14 1569.25 20508.38 2450 
5439.308 1215.083 10662.81 1572.75 20451.14 2455.5 
5392.6 1219.167 10648.95 1572.917 20421.75 2466.5 

5378.504 1221.917 10648.76 1573.583 20419.98 2472.667 
5374.05 1226.25 10619.77 1577.083 20296.99 2483.167 

5366.621 1227.083 10604.31 1579.75 19976.42 2483.583 
5351.933 1227.417 10604.05 1583 19741.76 2483.75 
5335.85 1230.25 10597.68 1583.833 19631.7 2543.75 

5297.696 1231.917 10594.82 1585.667 19516.41 2555.25 
5255.625 1238.5 10513.01 1586.25 19492.88 2574.5 
5237.533 1244.083 10490.93 1593 19487.75 2577.25 
5221.45 1246.917 10437.03 1603.333 19409.96 2581.833 
5213.05 1248.667 10405.39 1607.25 19408.02 2593.167 

5205.525 1251.417 10400.58 1612.333 19342.76 2594.75 
5204.013 1252.417 10389.68 1613 19199.85 2596.833 
5202.479 1252.583 10335.61 1614.5 18998.52 2610.75 
5153.654 1257.833 10309.84 1620.083 18933.49 2621.75 
5115.088 1267 10299 1620.75 18915.11 2624.417 
5096.517 1271.083 10295.83 1621.75 18726.55 2639.25 
5084.096 1271.5 10269.89 1627 18539.3 2667.25 
5079.021 1283 10261.68 1628 18524.58 2670.417 
5064.663 1291 10223.94 1630.667 18462.39 2677.75 
5054.146 1292 10221.5 1632.5 18456.85 2680.917 
5032.738 1293.5 10180.46 1637.25 18391.1 2701.75 
5015.371 1296.5 10164.25 1642 18372.7 2704.917 
5000.6 1297.25 10156.66 1644.25 18356.45 2707 

4968.629 1305.667 10153.84 1647 18348.76 2713.75 
4961.163 1311.667 10145.29 1649.75 18325.38 2714.25 
4935.763 1317.25 10076.7 1656 18266.54 2717.667 
4925.692 1318.583 10069.25 1660 18254.48 2719.25 
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4918.271 1322.417 10056.36 1661 18110.19 2723.5 
4882.192 1324.667 10041.35 1663.75 18061.9 2744.25 
4876.475 1326.25 10039.85 1665.25 17991.63 2745.417 
4869.529 1331 10030.68 1666.75 17907.79 2763.333 
4848.304 1336.417 10010.13 1667.75 17903.1 2765 
4838.629 1337.75 10001.69 1671.25 17815.5 2770 
4822.217 1338.25 9989.925 1672.5 17537.37 2774.417 
4818.654 1339.75 9943.075 1677.5 17537.3 2798.5 
4780.317 1340.75 9912.85 1679 17520.35 2804.917 
4778.754 1345 9893.05 1680.25 17511.7 2809.917 
4760.738 1350.5 9865.7 1687.5 17310.6 2810.417 
4753.546 1358.417 9864.925 1695.5 17305.2 2863.25 
4726.396 1359.833 9864.438 1699.25 17087.94 2866.75 
4724.588 1360.25 9845.225 1701.25 17083.88 2874.5 
4722.2 1367.5 9835.238 1701.75 17037.54 2898.25 

4717.871 1370.417 9750.213 1702.75 16836.44 2898.75 
4714.15 1371 9663.413 1718.25   

4698.279 1372.917 9621.4 1734.5   
4669.738 1375 9607.975 1741.25   
4663.479 1378.667 9598.125 1741.5   
4658.779 1383.833 9580.35 1743.75   
4643.917 1385.417 9562.913 1748.25   
4614.688 1389.167 9555.971 1751.083   
4578.342 1391.75 9548 1751.5   
4573.913 1402.25 9534.825 1753.5   
4559.629 1403.167 9532.588 1759   
4531.071 1407.5 9520.638 1759.25   
4528.488 1407.667 9463.138 1759.75   
4522.488 1410.75 9449.7 1767   
4490.017 1412.25 9437.088 1767.417   
4489.321 1420.583 9411.45 1769.25   
4484.813 1421.75 9360.1 1775.75   
4484.063 1424 9353.675 1780.75   
4457.183 1424.333 9329.342 1782.917   
4434.638 1430 9323.263 1784.5   
4425.517 1433.25 9315.1 1785.5   
4409.675 1436.417 9311.263 1786.75   
4400.525 1439.5 9304.546 1789.5   
4392.563 1441.25 9294.775 1790   
4387.179 1444.167 9282.525 1791.75   
4384.213 1447.75 9224.15 1795.75   
4365.046 1448.917 9189.463 1797.25   
4358.838 1452.917 9183.713 1801.5   
4354.842 1454 9170.425 1802.75   
4347.963 1455 9161.488 1803.25   
4327.813 1460.5 9152.888 1806   
4287.638 1466.75 9137.563 1810   
4287.325 1470.75 9061.163 1810.5   
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4266.375 1472 9044.5 1815.5   
4263.363 1476.75 9011.475 1824   

4263 1480.25 8990.538 1832   
4253.375 1483 8973.35 1837   
4237.375 1487.25 8955.725 1838.5   
4216.963 1487.5 8929.95 1840.5   
4203.038 1488.5 8925.4 1844   
4195.075 1490.25 8900.425 1845.5   
4192.238 1502 8899.988 1852.5   
4182.688 1510 8841.125 1855   
4161.225 1510.25 8820.2 1857.25   
4147.3 1511.25 8811.725 1860.25   

4132.988 1511.75 8794.388 1860.75   
4132.263 1522.5 8782.875 1864.5   
4127.463 1528.5 8764.813 1867.75   
4076.625 1532 8736.275 1870   
4074.613 1540.75 8678.413 1874.5   
4061.238 1545 8657.488 1876.75   
4061.138 1558.25 8642.9 1882.75   
4053.638 1559.75 8620.163 1884   
4005.5 1567.75 8619.688 1892.5   

3998.988 1579.5 8538.688 1893.25   
3974.2 1593.75 8480.563 1903   

3942.063 1597.5 8441.113 1916.5   
  8395.113 1924.25   
  8393.325 1927.5   
  8377.4 1929.25   
  8371.763 1934.25   
  8355.163 1936.75   
  8339.35 1939.25   
  8334.175 1941.5   
  8306.763 1951.25   
  8247.75 1954.5   
  8228.538 1956.5   
  8228.088 1964   
  8197.2 1965.75   
  8185.5 1977   
  8182.85 1978   
  8090.563 1978.75   
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APPENDIX 6 – VBIH Results for Large Instances (20 Jobs) 

 
VBIH ALGORITHM 

20x5_01 20x10_01 20x20_01 
TEC CMAX TEC CMAX TEC CMAX 

     
6492.79 1065 13140.5 1319.17 26419 1922.5 
3942.06 1597.5 11929.4 1452.75 25483.6 2039.5 
5893.44 1136.92 11824.7 1474.25 25281.1 2048.83 
3974.2 1593.75 11703.7 1480.92 25237.3 2051.83 
3998.99 1579.5 11668.4 1484.25 25235.4 2089.17 
4005.5 1567.75 11581.3 1485.75 25074.5 2090.5 
4053.64 1559.75 11523.2 1489.92 25040.6 2093 
4061.24 1545 11516.6 1493.08 25026.3 2102.5 
4076.63 1532 11482.6 1497.08 25022.5 2104.33 
4132.36 1509.25 11468.3 1499.42 24665.1 2114.33 
4108.76 1528.25 11465.4 1508.75 24431.5 2115.5 
4437.18 1437 11387.8 1509.92 24414.5 2127 
4405.16 1441.25 11324.8 1516.75 24359.9 2128.67 
4131.73 1523.5 11281.7 1517.92 24175 2155 
4624.35 1386.33 11234 1521.83 23896.3 2167.5 
4125.99 1525.75 11217.9 1522.92 23725.8 2184.42 
4561.22 1396.33 11209.8 1526.67 23692.4 2197 
4164.69 1506.25 11187.1 1529.08 23343.1 2205.25 
4195.16 1504.25 11180.3 1531.08 23193.5 2210 
4213.66 1494.25 11161.7 1532.58 22975.8 2216.75 
4234.16 1492.25 11071.4 1533.75 22724.6 2228.75 
4202.03 1496 11055.7 1538.08 22693.6 2232.42 
4183.2 1505.75 11048.3 1541.42 22635.7 2258.5 
4559.6 1405.58 11026.4 1542.92 22559.7 2266 
4684.28 1374.08 10953 1543.17 22555.8 2269.75 
4250.71 1480.75 10904.2 1548.58 22546.1 2270 
4244.34 1486.75 10903.8 1551.92 22341.6 2271.33 
4266.78 1476.75 10899.1 1552.67 22283.2 2276.83 
4304.5 1472.25 10888.6 1555.25 22243 2286.5 
4229.23 1493.5 10851.1 1558.92 22030.1 2305 
4400.6 1450 10810.9 1560.92 21566.4 2307 
4264.74 1477 10783.4 1567.42 21421 2335.25 
4339.97 1461.58 10760.2 1568.33 21379.3 2366.5 
4387.1 1453 10758.7 1572.5 21354.4 2372.25 
4372.23 1456.5 10673.1 1573.08 21243.3 2373.75 
4818.23 1349 10650.7 1573.92 21242.3 2382.08 
4822.08 1338.75 10619.8 1577.08 21177.4 2384.92 
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4600.62 1392.67 10604.1 1583 20937.1 2387.08 
4455.04 1427.92 10513 1586.25 20914.4 2411.75 
4387.79 1452.17 10405.4 1607.25 20873.1 2417.08 
4285.25 1474 10384.9 1614.5 20710.6 2432.33 
5478.86 1214.42 10371.3 1621 20674.7 2451.75 
5771.13 1156.92 10330.1 1624.33 20462.9 2467 
4646.18 1385.83 10319.1 1626.75 20462.3 2474.25 
5656.09 1185.5 10261.7 1628 20274.2 2479.92 
4770.09 1357 10254.5 1645 20245 2495.5 
5686.49 1182.42 10182.5 1649.25 20230.7 2502.25 
4509.4 1414.67 10133.4 1658 20198.4 2503.08 
4349.03 1459.25 10061.7 1663.75 19995.2 2508.5 
4962.5 1320.42 10046.3 1668.25 19963.6 2523.83 
5656.3 1184.42 10023 1674.83 19960 2530 
5169.4 1260.75 9988.2 1680 19959.1 2542.25 
5823.78 1150.17 9903.69 1688.5 19747 2547.5 
5768.52 1161.17 9873.3 1696.42 19742.3 2549.5 
4658.44 1377.67 9860.93 1703.25 19738.8 2565.67 
5257.76 1249.42 9783.73 1704.25 19723.7 2569.42 
4316.59 1466 9771.35 1716.25 19589.8 2573.92 
4806.25 1354.58 9701.6 1723.75 19401.3 2580.17 
5035.22 1287.33 9664.91 1731.75 19284.8 2593 
5086.05 1283.83 9657.09 1740.25 19265.8 2598.67 
4471.99 1425.67 9630.5 1743.25 19246.2 2613.75 
4706.86 1369.67 9568.45 1747.25 19239.6 2614 
5325.08 1244.42 9515.54 1753.25 19060.2 2617 
5130.1 1281.92 9417.25 1763 19000.7 2621.17 
4754.55 1364.08 9376.56 1773.5 18797.4 2626.92 
5460.35 1219.67 9323.51 1785 18711.7 2667.75 
5603.87 1193.58 9303.34 1788.75 18670 2684.25 
5428.87 1220.25 9290.29 1791 18639.6 2688.5 
4857.94 1337.75 9268.93 1795 18628.6 2692 
4524.53 1410.5 9262.53 1799 18245 2694.58 
4863.33 1334 9183.04 1802.25 18212.9 2722.08 
5267.55 1246.08 9175.45 1806.5 18010.7 2735.08 
4312.28 1469.75 9149.75 1810.75 17780.5 2773.42 
4684.98 1373.5 9118.68 1820 17764.9 2794.58 
4957.84 1323 9105.36 1822.25 17659.3 2815.5 
4365.24 1459 9089.75 1827.25 17527.6 2825.25 
4475.31 1423.33 9051.25 1829 17510.6 2849.75 
5675.56 1184.33 8996.68 1838.5 17502.6 2852.75 
4694.92 1371.5 8972.9 1839.25 17358.7 2853 
4760.25 1360.83 8932.19 1850.75 17305.5 2856.5 
5027.33 1309.17 8858.35 1853.75 17299.9 2875.25 
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5724.17 1171.92 8794.11 1861.25 17259.3 2879.25 
4914.65 1327.83 8750.96 1865.25 16821.4 2883.75 
5130.52 1272.58 8724.98 1886.25   
4553.17 1410.33 8628.28 1890.25   
5566.84 1201.58 8604.25 1901   
4704.84 1369.83 8556.34 1906.5   
5335.33 1229.92 8460.58 1920.25   
5623.5 1186.42 8451.15 1929.75   
4496.58 1415.42 8339.35 1944.5   
4451.81 1431.5 8304.15 1966.5   
5599.03 1197.83 8090.56 1978.75   
4791.66 1355.17     
5496.78 1207.58     
5609.96 1191.67     
5688.23 1181.75     
5579.85 1201.5     
5534.92 1204.08     
5773.47 1152.5     
5004.61 1312.17     
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APPENDIX 7 – Mathematical Model Results for Large Instances (50 Jobs) 

 
MATHEMATICAL MODEL 

50x5_01 50x10_01 50x20_01 
TEC CMAX TEC CMAX TEC CMAX 

     
15189.7    2386.67 14827.8    2684.58 64490.3 4193.33 
14884.5    2522.92 14189.8    2800.83 61917.9 4219.83 
14582.4  2588.5 13235.3    2832.75 49702.8 5838.83 
14289.5    2632.25 12588    2904.75 59517.7 4644.17 
13990.3    2661.33 12264.4    3141 49453.4 5908.33 
13697.6    2693.92 11011.1    3363.08 56740.5 4987.52 
13377.3    2707.67 10353.1    3621.67 49453.4 5908.33 
12485.5   2795.58 10077.3    3790.83 51788.7 5775.33 
12169.6   2888.25 31707.5    2978.83 
11869.4   3109.75 29285.6    3059.75 
11590.2 3208.5 25828.8    3514.67 
11283.6   3223.25 24346.9    4012.75 
10686.9 3357 22361.7    4163.42 
9466.5  3609.5 21198.5    4392.25 

  19903.3    4620.5 
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APPENDIX 8 – IGALL Results for Large Instances (50 jobs) 

IGALL ALGORITHM 
50x5_01 50x10_01 50x20_01 

TEC CMAX TEC CMAX TEC CMAX 
     

15161.6 2274.17 31605.4 2552.5 65998.3 3272.5 
13640.3 2510.83 27334.3 2910.75 58736.9 3766.75 
13460.6 2520 27289.2 2925.83 58476.8 3782.83 
13451.5 2526.92 27188 2933.75 58385.1 3795.92 
13435.9 2527.42 27166.8 2935 58217.6 3816.75 
13434.9 2529.75 27158.1 2936.42 58109.5 3819.25 
13423.8 2533.08 27158 2940.5 58033.2 3823.75 
13388 2533.42 27112.6 2941 58002.6 3835.58 

13270.9 2537.17 27034 2946.67 57938.3 3840.58 
13251.2 2546.33 26915.8 2951.92 57871.3 3841 
13246.5 2558.83 26908.9 2956.83 57230.1 3841.5 
13097.1 2559.42 26876.7 2957.08 56803.2 3842.08 
13096.6 2585.08 26869 2958.92 56671.6 3862.92 
12994.5 2586 26812.7 2967.5 56440.1 3873.75 
12944.8 2588.42 26765 2979.5 56428.4 3874.42 
12944.3 2596.67 26755.2 2982.83 56389.8 3875.33 
12943 2600.33 26726.5 2986.83 56367.4 3883.42 

12841.3 2600.33 26725.5 3002.5 55671 3887.33 
12793.6 2614.25 26652.5 3022 53242.5 3927 
12759.9 2618.25 26537 3030.58 53220.8 4089 
12758.6 2620.17 26318.2 3037.92 52998.1 4097.08 
12752 2624.67 26302 3041.67 52968 4097.67 
12746 2624.83 26296.5 3043.25 52843.7 4105.33 

12731.9 2625.33 26292.8 3045 52721 4116.33 
12728.1 2633.67 26266.1 3051.92 52656.2 4122.5 
12687.1 2633.83 26180.4 3056.83 52361.5 4126 
12636.1 2636.5 26168.3 3057.67 52144.3 4151.17 
12627.9 2637.67 25376.5 3063 51898.4 4151.42 
12618.7 2641.33 25326.1 3161.83 51758.2 4170.75 
12615.4 2641.5 25212.4 3163.25 51660.9 4194.83 
12602.1 2643 25209 3164.58 51606.6 4195.17 
12584.9 2646.67 25199.1 3174.83 51586.7 4224.25 
12505.8 2657.42 25190.5 3176.08 51502.1 4232.42 
12499.8 2662.42 25189.6 3180.5 51462.7 4243 
12497.2 2663.25 25187.2 3180.92 51415.2 4251.17 
12486.8 2666.08 25147.2 3181.5 51357.2 4251.58 
12446.9 2672.08 25050.9 3183.08 51124 4256.42 
12365.8 2680.75 24894.7 3197.67 50986.8 4273.25 
12356.9 2685.08 24880.6 3207.67 50939.7 4278.42 
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12333.9 2692.92 24834.6 3209.75 50932.6 4284.67 
12305.4 2693.5 24833.8 3210.75 50873.9 4285.75 
12298.8 2702 24693.6 3214.5 50740.1 4298.33 
12271.5 2705.58 24677 3229.75 50659 4305.33 
12256.5 2718.5 24661.7 3232.25 50415.2 4311.83 
12231.2 2722.67 24501.2 3244.08 50405.8 4314.33 
12221.6 2724.58 24419.5 3248.25 50286.9 4314.83 
12171.7 2726.25 24338.2 3248.67 50231 4317.33 
12155.4 2729 24338 3251.33 50105.7 4320.67 
12106 2740.17 24306.2 3252.92 49965.9 4322.17 

12081.2 2745.33 24303.7 3254.17 49964.8 4324.17 
12057.5 2749.92 24294.1 3255 49905.7 4326.83 
12010 2755.17 24270.1 3260 49892 4334.25 

11990.3 2756.58 24263.7 3265.5 49708.4 4338.92 
11973 2757.75 24178.3 3271.17 49421.9 4350.08 

11970.6 2764.17 24064.2 3276.58 49405.8 4366.33 
11949.9 2765.92 24056.7 3280.08 49138.9 4369.42 
11948.9 2766.25 24035.4 3284.5 49002.5 4420.17 
11917.5 2770.08 23925.7 3294 48791.8 4426 
11894.7 2775.5 23783.3 3310.25 48774.3 4432.5 
11863.8 2780.25 23769.2 3332.33 48481.2 4437.42 
11857.1 2782.33 23688.6 3334.92 48373.9 4450.25 
11847.5 2783.42 23686.3 3346.5 48028.3 4490.33 
11847.3 2787.42 23511.9 3347.25 47802 4499.5 
11823.5 2790.42 23462.7 3355.83 47473.9 4505.33 
11811.6 2792 23460.1 3364.33 47421.4 4559.67 
11806.4 2801.67 23448.2 3369.5 47242.5 4571.17 
11805.5 2804.33 23364.4 3370.83 47198.9 4593.42 
11775.6 2804.83 23263.5 3387.92 47121.7 4623.33 
11771.7 2805.5 23222.3 3388.42 46923.7 4641.75 
11752.3 2810.08 23203.5 3398.67 46843 4647.33 
11734.8 2816.33 23138.8 3406.08 46837.1 4652.42 
11714.9 2816.42 23127.8 3410.08 46691.7 4658.42 
11704.8 2817.42 23019.6 3415.92 46648.7 4671.17 
11702.9 2818.92 22759.3 3428.08 46631.2 4677.08 
11680.1 2819.92 22736.2 3466.75 46504.5 4710.33 
11648.5 2821.17 22600 3473.25 45955.4 4806.67 
11640.4 2829.92 22543.2 3491.33 40597.6 4908.75 
11634.1 2833.17 22532.2 3500.08   
11631.7 2835.75 22526.8 3520.75   
11610.6 2837.33 22507.5 3525   
11587.1 2839.83 22442.3 3525.25   
11587.1 2842.83 22251.3 3526.25   
11572.3 2844.5 22179 3532.67   
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11531.9 2846 21796.6 3570.08   
11500.6 2849.75 21781.6 3574.75   
11492.7 2850.25 21745.9 3580   
11481.1 2852.42 21735.1 3634.25   
11470 2859 21321.6 3643.58   

11465.1 2859.42 19170.6 3828.75   
11429.6 2865.25     
11368.6 2871.08     
11360.2 2877.08     
11359.4 2883.58     
11312.9 2884     
11259.7 2889.92     
11203.5 2918.92     
11197.5 2927.58     
11180.7 2932.58     
11166.7 2934.83     
11160.2 2938.08     
11155 2938.33     

11124.7 2942.08     
11121.7 2951.08     
11094.9 2952.83     
11086.6 2955.58     
11045.8 2956.92     
11017.9 2970.67     
10999 2973.92     

10977.8 2974.33     
10923.1 2986.83     
10895.6 2987.58     
10843.1 3002.67     
10802.2 3022     
10774 3033.5     

10767.6 3035.67     
10743.5 3037.33     
10663.6 3044.42     
10576.1 3059.58     
10546.5 3079.5     
10542.5 3082.67     
10534.2 3084.42     
10456.9 3094.17     
10441.4 3138.33     
10421 3149.17     

10377.1 3177.75     
9155.75 3411.25     
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APPENDIX 9 – VBIH Results for Large Instances (50 jobs) 

IGALL ALGORITHM 
50x5_01 50x10_01 50x20_01 

TEC CMAX TEC CMAX TEC CMAX 
     

15160.5 2270 31602.9 2547.5 65995.8 3270 
9154.19 3405 28111.4 2937 58783.5 3801.75 
13278.6 2557.25 28065.4 2944.75 58505.5 3806.5 
10503 3253 28058.3 2947.5 58190.5 3833.17 

10596.6 3180.5 27949.5 2955.58 57993.2 3851.5 
10541.3 3224 27833.3 2959.83 57843.3 3866.17 
10594.7 3220 27831.8 2964 57763.3 3872.17 
10595.6 3181.58 27826 2966.33 57714.1 3875.17 
10617.5 3119.33 27822.4 2966.5 57572.7 3875.75 
10645.4 3030.92 27820.7 2966.75 57237.9 3889.92 
11161.9 2953.67 27807.9 2966.83 56863.9 3891 
10717.5 3024.75 27797.8 2967.83 56859 3899.5 
10773.8 3007.5 27794.1 2969.75 56366.8 3908.67 
10728.7 3017.58 27784.1 2974.42 53239.5 3924 
10916.7 2983.5 27688.8 2977.92 53228 4111.42 
10560.8 3223.42 27664.1 2978.5 53010.4 4116.25 
10856.6 2994.25 27059.7 2979.58 52888.2 4119 
10814.4 3002.75 26894.3 3009.75 52840.7 4128.25 
10572.3 3220.67 26848.8 3037.5 52822.1 4138.33 
11098 2967.92 26840.9 3043.25 52641.6 4147.42 

10868.1 2987.5 26617 3044.83 52632 4160.17 
11085.5 2979 26596.5 3045.5 52501.5 4165.33 
11077.4 2982.75 26285.2 3052 52365.4 4168.58 
13178.8 2578 25373.5 3057 52272 4170.25 
11223.8 2940.67 25368.3 3151 52267 4177.08 
11524.7 2872.92 25365.2 3155.67 52007.7 4181.25 
10858.8 2992.5 25318.8 3156.33 51996.3 4192.67 
11346.4 2904.75 25299.3 3165.92 51758.8 4193.67 
11992.4 2778.08 25241.6 3170.5 51681.4 4205.58 
11452.8 2884.17 25048.4 3173.5 51656.2 4216.33 
11342.6 2913.5 25005.5 3204.33 51587.1 4216.42 
11585.3 2861.25 24960.6 3204.75 51539.4 4216.58 
12335.4 2718.17 24945.6 3211.08 51424.6 4216.75 
11238.5 2934.25 24907 3214.83 51204.5 4228.92 
11576.8 2870.17 24897.9 3217.75 51120.4 4257.83 
11901.5 2796.42 24862.1 3218.17 50934.6 4259.08 
10756 3014 24843.9 3230.42 50833.7 4261.33 
11268 2925.75 24823.5 3235.33 50611.1 4276.83 

11412.3 2899.92 24800.2 3236.25 50362.3 4286.08 
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11320.1 2922.42 24745.6 3238.25 50352.9 4290.67 
11407.9 2900.75 24707.4 3238.33 50345.5 4297.75 
11230.3 2935.75 24640.8 3239 50308.3 4298.75 
11490.1 2878.33 24559.7 3242.25 50102 4306.75 
11398 2903.25 24549.1 3245.33 50042.4 4308.08 

12033.1 2775 24547.4 3247.5 49863 4347.17 
11253 2932.92 24439.9 3248.75 49815.2 4383.67 
12960 2616.17 24429.5 3255.92 49780 4394.08 

11695.1 2836.42 24422.7 3256.5 49179.2 4397.67 
11480.4 2882.67 24310.5 3257.83 49156.9 4438.33 
12759 2667.08 24299.5 3263.83 49053.7 4443.5 

11801.8 2814.33 24291.3 3265.08 49017.7 4448.5 
12252.9 2723.5 24288.9 3266.67 48818.4 4452.58 
11323.8 2920.42 24233.7 3269.58 48563.1 4475.58 
12542.4 2681.33 24170.4 3272 48485.1 4485.75 
11629 2855.33 24155 3277 48365.7 4493.67 

11480.9 2878.67 24153.2 3280 48165.8 4502.75 
12111.3 2756.58 24149.6 3280.08 47967.7 4526.5 
12154.2 2724 24066 3288.5 47676.6 4537.75 
12440.1 2700.58 24055.7 3298.25 47400.8 4562.17 
11277.1 2925.42 23986.7 3303.83 47288.9 4634 
11775.4 2825.08 23918.6 3306.42 47266.8 4660.75 
11734.7 2828.67 23853 3316.92 46984.2 4670.5 
12121.8 2748.92 23816 3333.75 40593.8 4905 
11262.4 2927.08 23792.7 3337.08   
12475.6 2695.92 23752.5 3345.25   
11443.6 2893.83 23673.1 3345.58   
12899.7 2640.5 23645.1 3348.33   
11733.8 2832.25 23556.2 3353.67   
12341 2712.92 23553.2 3368.75   

11578.4 2866.17 23547.5 3371.42   
12389 2702.75 23519.4 3374.17   

12482.4 2694.92 23441.6 3378.5   
11760.5 2825.67 23418.9 3382.08   
12639.8 2680.75 23370.5 3394.67   
11883.7 2802.92 23334.2 3408.42   
12358.9 2707 23260.7 3416.75   
11781.2 2820.17 23082 3418.92   
12140 2745.25 23021 3433   

12769.8 2662.75 23015.2 3445.5   
12381.1 2705.25 22993.5 3450.92   
12120.4 2752.58 22881.1 3459.92   
11786.4 2817.17 22839.3 3486.42   
11863.2 2809.17 22637.6 3490.92   
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11426.3 2899.75 22627 3509.08   
12653.5 2674 22615.6 3516.33   
13114.1 2587.17 22545.4 3554.5   
12891.4 2642.5 22520 3565.75   
11793 2816.5 22509 3566.25   

11740.6 2828.08 22502 3566.33   
12849.9 2643.17 22132.7 3567.92   
11436.8 2895.92 22025.6 3571.67   
12399.1 2700.75 21856.7 3588.08   
13104.3 2589.25 21854.8 3653.75   
11727.4 2835.92 21784.7 3678.25   
11429.4 2897.92 21710.7 3700   
11626.8 2858.17 19166.9 3821.25   
11878.2 2805.08     
12091.8 2762.08     
12896.9 2642     
12254.4 2721     

 




