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ABSTRACT 

DESIGNING DYNAMIC AND SYNCHRONIZED INTERMODAL 

TRASPORTATION PLANS FOR CONTAINERS 

ÖZCAN TATARİ, Sel 

PHD, in Industrial Engineering 

Advisor: Prof. Dr. Deniz TÜRSEL ELİİYİ 

 

December 2018 

In this thesis, we present a mixed integer linear programming model for the operational 

level cargo allocation and vessel scheduling problem, where flow-dependent port-stay 

lengths, transit times and transshipment schedule synchronizations are considered. The 

proposed model aims to assign shipments to routes to minimize total tardiness, and 

construct vessel partial schedules for establishing coordination with port authorities to 

meet the berthing time windows. In addition to mathematical model, novel valid 

inequalities are proposed, and a benders decomposition algorithm is implemented. 

Algorithm performances are tested on real-life problem instances. The results show 

that benders decomposition with valid inequalities yields the best performance on the 

test instances. The thesis is further extended with the consideration of instant terminal 

port performances, and an integrated solution framework is proposed for this dynamic 

problem. The thesis study aims to contribute to both the practitioners and to the state-

of-the-art literature.  

Key Words: Liner shipping, Cargo allocation, Vessel scheduling, Transshipment 

problem, Benders Decomposition, Port performance.
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ÖZ 

KONTEYNER TAŞIMACILIĞINDA DİNAMİK VE SENKRONİZE 

İNTERMODAL TAŞIMA PLANLARI TASARIMI 

ÖZCAN TATARİ, Sel 

Doktora Tezi, Endüstri Mühendisliği 

Danışman: Prof. Dr. Deniz TÜRSEL ELİİYİ 

Aralık 2018 

Bu tezde, operasyonel seviyede kargo yükü tahsisi ve gemi çizelgeleme problemi için 

karma bir tamsayılı doğrusal programlama modeli sunulmaktadır. Önerilen problemde 

elleçlenen konteyner miktarına bağlı liman kalış süreleri, transit süreler ve aktarma 

çizelge senkronizasyonları dikkate alınmaktadır. Matematiksel model toplam geç 

teslim edilen konteyner miktarını azaltmak için limanlara gönderileri bu doğrultuda 

tahsis ederken bir yandan da rıhtımda kalma zaman pencerelerini ayarlamak için liman 

yetkilileriyle koordinasyon kurmaya yönelik gemi çizelgelerini oluşturmayı 

hedeflemektedir. Matematiksel modele ek olarak probleme özgü geçerli eşitsizlikler 

önerilmiş olup Benders Ayrıştırma algoritması uygulanmıştır. Algoritma 

performansları gerçek test problemleri üzerinde incelenmiştir. Sonuçlar, geçerli 

eşitsizlikler ile zenginleştirilmiş Benders Ayrışması yönteminin en iyi performansı 

verdiğini göstermektedir. Buna ek olarak, gerçek hayat dinamiklerini yansıtmak 

amacıyla anlık liman performanslarının dikkate alındığı entegre bir çözüm yöntemi de 

önerilmiştir. Bu tez çalışması ile hem konteyner hat taşımacılığı firmalarına fayda 

sağlamak, hem de güncel literatüre katkıda bulunmak amaçlanmaktadır. 

Anahtar Kelimeler: Hat taşımacılığı, Kargo yükü tahsisi, Gemi çizelgeleme, 

Aktarma problemi, Benders Ayrıştırması, Liman performansı.
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CHAPTER 1 

INTRODUCTION 

With over 80% of world merchandise trade being carried by sea, maritime transport is 

the backbone of international trade and globalization. As it is clearly stated in the 

recent review of maritime transport by the United Nations Conference on Trade and 

Development (UNCTAD), global seaborne shipments have increased by 4% in 2017, 

the fastest growth in five years, and the 2018-2023 projection indicates that this 

percentage will be around 3.8 per year. Furthermore, total containerized trade volumes 

are estimated at 148 million twenty-foot equivalent units (TEUs) (UNCTAD, 2018).  

Among various seaborne transportation alternatives for containers, liner shipping is 

preferred mostly due to its cheaper freight rates, higher safety level and less 

environmental hazard (Gelareh and Pisinger, 2011). Liner shipping companies (LSCs) 

have fleets of different vessels deployed on services, where a predetermined number 

of homogeneous vessels are operating on each service at regular frequencies. Each 

service makes round trips and visits predetermined ports in a fixed sequence. In most 

cases, the shipment of a container through the liner shipping network may include the 

use of several services to reach from its origin to its destination port. As a result, many 

containers need to be transshipped. Due to the competitive business environment, the 

LSCs try to provide efficient and effective cargo routing solutions to their customers 

by improving their other management tools (e.g. service design and fleet deployment) 

(Wang et al. 2014). 

When the route of a freight is planned, various critical factors need to be considered 

simultaneously. The most common objective is to perform the transportation with 

minimum cost. On the other hand, when the sole objective is the on-time delivery of 

the shipments, which is especially crucial for highly competitive businesses, objective 

becomes minimizing the transit time, i.e., the time it takes to travel from the origin to 

the destination. For example, for perishable or time-sensitive products having 

economic/technical depreciation (fashion, computers, etc.), where shorter transit times 
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are strictly enforced, the second type of objective is more relevant (Guericke and 

Tierney, 2015; Notteboom, 2006; Vad Karsten et al., 2015). 

In general, the LSCs prepare their routing plans in terms of shipments. A shipment is 

defined as a bundle of consolidated containers, each having the same characteristics 

such as the origin-destination (O-D) pair and the desired transit time. The route of a 

shipment may include either a sub-path of a single service or a combination of multiple 

sub-paths of multiple services requiring transshipments. As manufacturers aim to 

minimize their inventory holding costs, they prefer to send their just-finished products 

to an LSC as shipments. These shipments are stored temporarily by the LSC until the 

destined vessel for the container arrives at the origin port (Wang et al., 2014). In 

addition to the storage times of the shipments at the origin port, the waiting times at 

the transshipment ports required for connections to other services on the route should 

also be considered for routes having multiple sub-paths.  

For products requiring short transit times, the LSC may prefer the route having the 

minimum transit time, and if this route includes transshipments, the synchronization 

of the connections, i.e., schedule coordination, plays a critical role on timely delivery. 

For instance, if the path of a shipment requires transshipment at port A from vessel i 

to vessel j, synchronization between the departure of vessel i from port A, and the 

arrival of vessel j to port A will yield minimum transshipment time. If synchronization 

is not achieved by the two vessels, the shipment should either be stored at port A until 

the next vessel of the same service as vessel j arrives, or the shipment should be 

rerouted. Both yield serious costs to the LSC. 

On the other extreme, for shipments having loose deadlines, the LSC may prefer to 

send through alternative routes in order to increase its services’ profit. These 

alternative routes usually include sub-paths of the underutilized vessels. Such 

shipments can be sent without any delay despite their waiting times at the origin and/or 

transshipment ports. In many cases, it is more profitable for the LSC to store or transfer 

such containers at the ports having low demurrage costs.  

As stated in Gelareh et al. (2010), as many alliances were established in order to avoid 

underutilized vessels operating on transatlantic and transpacific routes, LSCs within 

these alliances started to determine the best ship size to deploy for these routes. As a 

result, the market shares of the smaller LSCs started to diminish. Therefore, the small 
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LSCs should seek alternative ways to increase their market shares. Although vessel 

scheduling is a tactical level decision, the number of TEUs loaded/unloaded have a 

huge impact on the port stay durations and influences the arrival/departure times of the 

vessels on an operational basis. Therefore, it is vital for especially small LSCs to link 

their shipment assignment and vessel scheduling decisions in a systematic way to 

increase its long-term profitability and schedule reliability. 

In this study, we are motivated from our real-life case partner, the liner shipping agency 

in Izmir, Turkey, which mainly operates on the Mediterranean and the Black Sea. Our 

partner has relatively small market share and tries to improve its businesses. Firstly, 

we focus on a demand flow problem with transshipments on a given (fixed) liner 

shipping network, considering flow dependent port stay lengths and transit times, in 

addition to transshipments and arrival time constraints. With the proposed 

mathematical model, we aim to assign the shipments to the routes to decrease the total 

tardiness of the shipments, and to construct the partial schedules of the vessels to 

facilitate the LSC’s coordination with the port authorities for the berthing time 

windows. Secondly, we propose an integrated solution approach which iteratively 

solves the proposed mathematical model with instant port container terminal 

performance information.  

This thesis has the following differences from the existing literature: 

1. Different than most existing studies, our study allows late arrivals of 

shipments to the destination port. As opposed to the studies of Wang et al. 

(2014) and (2016b), where the time spent at each port is assumed to be 

fixed, our proposed formulation calculates the actual schedule of the 

vessels on each service by computing the port durations of each vessel. We 

believe that taking non-fixed port stay durations will better reflect the 

practical dynamics of the liner shipping industry. This is realistic since the 

time spent at each port is a function of the number of TEUs handled, hence 

cannot be fixed through the whole planning horizon. 

2. The real arrival and departure times can have minor deviations from the 

planned schedules due to the variable port durations and uncertainties at 

ports. Our formulation therefore provides more realistic estimations for 
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the arrival and departure times, which will help the information flow 

between the LSC and the port authorities prior to berthing.  

3. We enforce every candidate shipment within the planning horizon to be 

sent via a candidate route. We assume that the LSC do not reject sending 

any shipment. In many real-life cases, due to fierce market competition 

among small LSCs and the low vessel utilizations, small LSCs prefer to 

accept all shipment requests. Hence, our problem environment differs 

from the existing cases in the literature. 

4. This thesis study helps the decision maker to examine different solution 

alternatives for each shipment, which was not considered in the literature 

previously. Although the LSC may prefer to send the shipments via the 

route having the minimum transit time, storing some of the shipments at a 

transshipment port up to some days at no cost can decrease the total cost 

of the LSC in some cases. Such a strategy may also end up decreasing the 

total tardiness of the shipments planned. We allow such a flexibility in our 

solution approach. 

5. We believe that our iterative search scheme, which incorporates instant 

container port terminal performance will provide a novel contribution 

integrating both the maritime and inland legs of the global supply chain. 

With the above differences and contributions, this thesis aims to enrich to the shipment 

planning literature via the development of more realistic models and effective 

solutions. The remaining of the thesis document is organized as follows: Chapter 2 

reviews the related literature. Chapter 3 introduces the notation used, explains the 

mathematical formulation in detail and defines the problem. The solution framework, 

path generation, strengthening constraints as well as Benders decomposition algorithm 

are presented in Chapter 4. Chapter 5 reports the computational experiments. Chapter 

6 describes the integrated solution approach which iteratively solves the mathematical 

model addressed in Section 4.1 and then measures the instant port performances 

accordingly. Finally, conclusions and future research opportunities are discussed in 

Chapter 7.
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CHAPTER 2 

LITERATURE REVIEW 

The decision-making problems on liner shipping can be categorized into three levels. 

At the strategic level, a liner shipping company makes long-term decisions such as 

ship fleet size and mix, strategic alliances, and network design. At the tactical level, 

frequency determination of services, fleet deployment, speed optimization and 

schedule construction are considered. At the operational level, cargo allocation (i.e., 

cargo assignment), cargo booking, and rescheduling decisions are taken into 

consideration. The complexity of decision-making further increases since the problems 

examined in different decisions levels are also interrelated within each other (Agarwal 

and Ergun, 2008; Christiansen, 2004). 

It is necessary to state that the problems examined in different decisions levels are 

interrelated within each other. More specifically, a strategic level decision affects the 

operations in the tactical level, or vice versa (Agarwal and Ergun, 2008). The 

interrelations among different planning levels on liner shipping are depicted in Figure 

2.1. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Different planning levels for liner shipping (Agarwal and Ergun, 2008). 
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Cargo routing/allocation problem seeks for the decision of which cargo to accept or 

reject for shipping and which path(s) to use to ship the selected cargo (Agarwal and 

Ergun, 2008). Cargo routing problems can be categorized as a subproblem of the cargo 

assignment problem and studied more as a tactical level problem. They are usually 

formulated as LP models and the number of containers is relaxed as a non-negative 

continuous decision variable. They are similar to multi-commodity network flow 

(MCNF) problems; the formulation of routing in the MCNF problem can be either 

origin-destination-based (O-D-based) link-flow (Agarwal and Ergun, 2008; Brouer et 

al., 2011) or alternatively as path-based flow, where each variable indicates a path for 

a certain commodity (Brouer et al., 2011, Wang and Meng, 2011, 2012; Wang et al., 

2013; C.V. Karsten et al., 2015). In addition, Song and Dong (2012) explained how 

paths can be generated in the simple setting. Meng and Wang (2012) brought out 

proper methods for path generation. 

Transshipment and transit time considerations are rarely studied in the cargo routing 

and assignment problems.  To the best of our knowledge, the first study considering 

transshipment operations in liner shipping was by Agarwal and Ergun (2008). They 

proposed a MILP model to solve the integrated ship scheduling and cargo assignment 

problems simultaneously. Moreover, they presented a column generation-based 

heuristic and a two-phase Bender’s decomposition-based algorithm to solve these two 

problems separately. However, the proposed model did not consider the transshipment 

costs while designing the service routes. They proved that the decision version of 

simultaneous SS and cargo assignment problems is NP-complete by reducing this 

problem into the well-known 0-1 Knapsack problem, which is also NP-complete 

(Agarwal and Ergun, 2008). 

Álvarez (2009) considered the joint routing and fleet deployment problem by 

considering the revenues and operating expenses of the liner shipping company 

including the costs charged due to the transshipments at hubs. Their MILP model seeks 

for an answer to a tactical level decision of which service is to be served by which 

vessel. The main assumption in this study was that the liner company already owns its 

fleet and no strategic level decisions like purchasing a new vessel are allowed. The 

proposed solution approach exploits a generic interior point algorithm to solve MCNF 

sub-problems. A case study including 120 ports and 20 vessels of each five different 
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vessel types was presented and the sensitivity of routing and vessel deployment 

policies to bunker prices was evaluated, as well. 

Brouer et al. (2013) extended the problem studied in Álvarez (2009) by incorporating 

transshipments on the butterfly routes into the objective function without introducing 

increased complexity and (bi-)weekly frequency in the route generation. They 

constructed a benchmark suite for LSND problems, e.g., LINER-LIB problem 

instances including real-world data, and provided a heuristic approach for their model. 

Gelareh et al. (2010) studied a hub and spoke network design problem for two liner 

shipping companies in a competitive environment. They considered the transit time 

restrictions as well, as the market share of a carrier was determined by both transit time 

and transportation cost. They proposed a novel MILP model for the LSND problem in 

a competitive environment. The authors claimed that the proposed model’s flexibility 

allows extensions to fixed time services. In order to solve the problem faster, they used 

a Lagrangian decomposition method together with a primal bound generation 

procedure as a result, they eliminated several variables and reduced the problem size. 

Reinhardt and Pisinger (2012) addressed an MILP model for the cargo routing problem 

considering transshipment operations, transshipment costs, a heterogeneous fleet mix 

and a mix of simple and butterfly routes, where multiple port calls of the same port on 

a single route was allowed. They developed a branch-and-cut algorithm to solve the 

problem by gradually adding the transshipment and connectivity constraints to the 

formulation in case of any violation. They highlighted that their study is the first 

attempt of an exact method applied to a cargo routing problem where transshipment is 

taken into account. They tested their algorithm on randomly generated test problems 

of size 5-15 ports with the forecast of 12 demands and concluded that their algorithm 

performs well on small test instances (up to 10 ports). 

Bell et al. (2011) applied the frequency-based transit assignment model to containers 

with the objective of minimizing sailing time, container dwell time at the origin port 

and any intermediate transshipment ports, for liner services with a given frequency. 

Their model assumed that ships arrived at ports randomly, and that the dwell time at 

the origin port was half the average headway. Hence, the problem handled was rather 

at a tactical level than an operational level. 
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Song and Dong (2013) considered the liner service route design problem with the 

extensions of butterfly routes and empty container repositioning. They assumed a 

maximum duration between ports and integrate the route design problem with route-

based speed optimization. Moreover, the transshipments of empty containers and their 

processing time at the ports on the long-haul services were considered in their study. 

However, the transshipments of laden containers were not allowed. A non-linear model 

followed by a three-stage solution method was proposed to solve the problem. At the 

first stage, they limited the route structure solution space by considering only specific 

types of route structure design issues. At the second stage, they proposed an efficient 

empty container repositioning algorithm. Lastly, at the third stage, the ship deployment 

with respect to the ship type, the number of ships and the sailing speed was optimized. 

Guericke and Suhl (2013) solved the LSND problem with the integration of cargo 

routing and speed optimization where the objective is to maximize the total profit of 

the network. The authors proposed an evolutionary algorithm where a multi-

commodity flow network with different layers and linearized bunker costs were 

exploited to calculate the overall network’s profit. They considered transit times in a 

post-processing step after the cargo allocation. Moreover, they assumed that the hubs 

ports are where transshipment can take place were known in advance. 

Mulder and Dekker (2014) solved the LSND problem through a genetic algorithm 

where fleet deployment, cargo routing, speed optimization, and empty container 

repositioning decisions were taken into account at the same time. The problem 

investigated in their study was to construct a service network and determine the routes 

used to transport cargo such that the profit is maximized given a certain demand matrix 

and cost/revenue data. In order to reduce the problem size, aggregation of ports as 

clusters was employed and initial route networks were obtained through an LP similar 

to MCNF problem. Transshipment operations were not considered in this study. 

Plum et al. (2014) considered the transit time for the design of a single cyclic rotation 

of a service with up to 25 ports. The problem focused on how to transport a set of 

selected commodities on a generated single round trip to keep capacity constraints at 

each leg and the time duration constraints of the commodities. The problem was 

defined as single liner shipping service design, and an arc-flow and a path-flow MILP 

formulation together with a branch-and-cut-and-price algorithm were proposed. The 

pricing sub-problem in the branch-and-cut-and-price algorithm reduced to an 
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elementary shortest path problem with resource constraints. Similar to the study of 

Reinhardt and Pisinger, the subtour elimination constraints were ignored initially and 

re-inserted if violation occurs (2012). The proposed algorithm performed well on 

problems with up to 25 ports. However, the model did not consider the time windows 

available for berthing. 

Wang and Meng (2014) presented a non-linear mixed integer model for the network 

design problem by taking the transit times into account and proposed a column 

generation-based heuristic for solving the problem instance for a Europe-Asia network 

with 12 ports. They solve the network design problem with predetermined port 

rotations under consideration of transit times without considering transshipments. It is 

assumed that, for each origin–destination (O–D) port pair, there is a potential container 

shipment demand, and to fulfill the demand (or a portion of the demand) the real transit 

time must not be longer than the market level transit time or deadline.  

Vad Karsten et al. (2015) formulated the cargo routing problem as a time-constrained 

MCNF problem by employing a maximum transit time for each commodity. They 

examined the trade-off between the reductions on bunker cost versus offering short 

transit times for commodities. Without considering the design of the network, only the 

cargo flow sub-problem is solved, which determines only how cargo should flow 

through the network. Moreover, constant transshipment times, transshipment costs and 

sea durations were assumed at each leg.  The two-phase solution methodology includes 

the generation of the routes in the first phase and the decision of how much cargo 

should be transported through these routes in the second phase. After proposing both 

arc-flow and path-flow formulations, the authors indicated that the path-flow 

formulation performs faster than the arc-flow formulation in the delayed column-

generation algorithm. 

Guericke and Tierney (2015) studied the cargo routing problem with service levels and 

leg-based speed optimization. They allowed multiple port calls of vessels on a single 

service. Similar to the study of Vad Karsten et al. (2015), transshipment times, 

transshipment costs, transit time restrictions were also employed in this study. On the 

other hand, a path-flow formulation was utilized within the proposed MILP 

formulation. In order to decrease the complexity of the problem, the total number of 

available paths for each O-D pair was assumed to be limited. As they assume the half 
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of the vessel is loaded and unloaded at each port visited, the studied problem is a 

tactical level problem. 

Wang and Meng (2012) presented a liner ship route schedule design model, where the 

problem focuses on determining the arrival time of a ship at each port call on a route 

and on the sailing speed on each leg by considering the uncertainties during sailing 

and port calls. A mixed-integer non-linear stochastic programming model was 

developed with the objective of minimizing the ship and the expected bunker cost 

while satisfying a required transit time service level. The proposed model is a tactical 

level, and the authors assumed that a container route is either a part of one particular 

ship route or a combination of several ship routes for delivering containers from the 

original port to the destination port. An exact cutting-plane based solution algorithm 

was proposed as a solution methodology.  

Wang et al. (2013) presented a mixed-integer non-linear non-convex optimization 

model to find the optimal ship schedule with transit-time-sensitive demand, which was 

assumed to be a decreasing continuous function of transit time.  The model decides the 

number of ships deployed, leg-based sailing speeds of the ships and the volume of 

containers for each O-D pair.  A branch-and-bound based holistic solution method was 

developed to solve the proposed model. 

Wang et al. (2014) considered the liner shipping route schedule design problem and 

decided the arrival and departure times at each port call of the route. They assumed 

that the ports are available within the defined time windows in a week and while 

constructing the schedule of the vessels, these time windows are taken into account. 

Furthermore, a port can be visited at most twice in a week on the ship route, and a ship 

can only be served by one berth. These assumptions implicitly define the set of possible 

arrival days in a week at the port of call considering all the berths. However, as the 

schedule of a single service was optimized, transshipments were not considered in this 

study. The problem was formulated as a mixed-integer nonlinear nonconvex 

optimization model and an efficient holistic solution approach was proposed to reach 

global optimality. 

Recently, Reinhardt et al. (2016) proposed a speed optimization problem on liner 

shipping by adjusting the berth times of vessels. Their study covers both transit time 

restrictions and transshipment times at ports. The proposed model should satisfy that 
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overall transit times for the cargo is retained. They defined the minimum required time 

for transshipment of a container as Connecting Time Windows (CTW), usually 

measured from the departure of a vessel, from where the container is unloaded, to the 

arrival of the other vessel, to where the container is loaded. Moreover, they claimed 

that hot berthing can occur when the berth locations of the two vessels, where a 

container is transshipped from one vessel to another, are close to each other. Their 

mathematical formulation focused on the bunker cost minimization via penalties to 

limit the number of changes on port visit times. They approximated the cubic bunker 

consumption function via secant lines and solve large networks optimally in promising 

computation times. 

A chance-constrained optimization model was developed by Wang et al. (2016a) which 

simultaneously attempts to determine the optimal fleet capacities, cargo allocation and 

vessel route schedules through schedule coordination. In addition to the weekly 

deterministic demand coming from the contracted customers, they considered the daily 

spot demand. A state-augmented shipping network is constructed, where each task on 

the container shipment activities is represented by a unique link. The authors 

emphasized the requirement of an efficient solution methodology for this problem 

which will be able to solve large networks in reasonable computation time. 

Wang et al. (2016b) addressed a practical liner container assignment model where the 

demand is transit-time-sensitive. They generated a novel space-time network which 

incorporates the OD transit time and presented two novel LP formulations deciding on 

which demand proportion is satisfied with the objective of profit maximization. The 

authors proved that the LP formulations are solvable in polynomial time of the size of 

the liner shipping network. However, their problem is at the tactical level. 

Ozcan and Eliiyi (2016) investigated the operational level cargo allocation and vessel 

scheduling problem which penalizes the positive/negative deviations from the vessels’ 

schedules due to the undetermined port times and sailing times. 

Recently, Öztürk et al. (2017) presented a mathematical formulation for transit 

shipment assignments to the trips outgoing from a transit container terminal. Different 

than most of the studies in the literature, they employed multiple objectives for the 

assignment of shipments. As their model is a variant of a well-known NP-hard problem, 

i.e., generalized assignment problem, they employed two problem-specific heuristic 
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approaches and tested their performances on real-life test instances. Their heuristics 

are currently being used by a transit agency in real-life. 

On the other hand, most research in liner shipping focuses on either the improvement 

of the maritime operations or the port operations. There is only a single study 

addressing the optimization of both operations at the same time (Tran et al., 2017), 

which designs an optimal shipping service considering related inland connections 

between hinterlands and ports. The mathematical formulation minimizes the total cost 

including ship costs, port costs inland/feeder transportation costs, inventory holding 

costs and CO2 costs. As a solution method, the authors implemented a brute-force 

algorithm as well as a greedy algorithm. Their solution framework starts by generating 

all feasible voyages and then it constructs the service route by selecting the ports 

yielding minimum cost. However, the study is not at the operational level, the focus is 

not on improving integrated port operations. 

In Table 2.1, we provide a literature overview in maritime shipping as a union of the 

studies concentrated on the VSP, and other maritime shipping problems with 

Transshipment, Transit Times and Schedule Coordination constraints in general. In the 

first column, the articles are sorted in chronological order. The second column refers 

to which maritime shipping problem(s) are studied, i.e. VSP, Network Design Problem 

(NDP), Cargo Routing Problem (CRP), Fleet Deployment Problem (FDP), or a 

combination. Columns 3, 4 and 5 indicate whether transshipment, transit times or 

schedule coordination is considered. We classify the articles as strategic, tactical and/or 

operational with respect to their decision-making level in the last column.  
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Table 2.1. Overview of literature in maritime shipping. 

Study Problem Transshipment 
Transit 

Time 

Schedule 

Coordination 

Decision -

making level 

Agarwal and 

Ergun (2008) 
NDP X X 

 
Tactical 

Álvarez (2009) NDP X   Tactical 

Gelareh et al. 

(2010) 
NDP X X 

 Strategic/ 

Tactical 

Bell et al. 

(2011) 
CRP X  

 
Tactical 

Reinhardt and 

Pisinger (2012) 

NDP + 

FDP 
X  

 
Tactical 

Wang and 

Meng (2012) 
VSP   

 
Tactical 

Brouer et al. 

(2013) 
NDP X  

 
Tactical 

Wang et al. 

(2013) 

CRP + 

VSP 
 X 

 
Tactical 

Song and Dong 

(2013) 
CRP 

X (Empty 

Containers 

only) 

 

 

Tactical 

Guericke and 

Suhl (2013) 
NDP X X 

 
Tactical 

Mulder and 

Dekker (2014) 

NDP + 

FDP + 

CRP 

 X 

 

Tactical 

Plum et al. 

(2014) 
NDP  X 

 
Tactical 

Wang and 

Meng (2014) 
NDP  X 

 
Tactical 

Wang et al. 

(2014) 
VSP   

 Tactical/ 

Operational 

Vad Karsten et 

al. (2015) 
CRP X X 

 
Operational 

Guericke and 

Tierney (2015) 
CRP X X 

 
Tactical 

Reinhardt et al. 

(2016) 

SOP + 

VSP 
 X X Tactical 

Wang et al. 

(2016b) 
CRP X X  Tactical 

Wang et al. 

(2016a) 

FDP + 

VSP + 

CRP 

X X X 

Tactical 

(Demand 

Uncertainty) 

Öztürk et al. 

(2017) 
CRP X X  Operational 

This thesis 
VSP + 

CRP 
X X X Operational 

 

As derived from Table 2.1, the maritime shipping problems studied in the literature are 

usually at the tactical level rather than operational, and they usually consider either 
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transshipment operations and/or transit time restrictions. The schedule coordination 

restrictions are rarely mentioned in the literature, so far. 

In this study, we address the joint CRP and VSP at the operational level regarding 

transshipment operations, transit times and schedule coordination restrictions. Our 

thesis study differs from the existing papers in the literature as it focuses on joint vessel 

scheduling and cargo allocation as a demand flow problem. In this respect, our thesis 

problem concurrently determines the port stay lengths while maintaining schedule 

coordination with the port authorities taking into account the instant port performances. 
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CHAPTER 3 

THE SHIPMENT ASSIGNMENT AND VESSEL SCHEDULING 

PROBLEM 

In this chapter, the assumptions and the formulation of the Shipment Assignment and 

Vessel Scheduling Problem (SAVSP) is explained in detail, and an illustrative example 

is provided for a better understanding. First, the problem environment and the notation 

are described. 

We consider an LSC that operates mainly on the Mediterranean, West Africa and the 

Black sea, where all its services, denoted by the set S, provide a regular frequency, i.e. 

daily or weekly. The set V represents the vessels operating on services. We assume that 

a subset of homogeneous vessels, denoted by 𝑉𝑠 are operating on each service s, 𝑉𝑠 ⊆

𝑉. The set 𝑃 includes all feasible routes (path) and we define a subset 𝑃𝑏, 𝑃𝑏 ⊆ 𝑃, for 

each shipment b, where the route 𝑝 ∈ 𝑃𝑏 includes the ordered set of ports visited by 

vessel v. The first port on each route p represents the origin port of the corresponding 

shipment, whereas the last port indicates the destination port. In addition to the origin 

and destination ports, loading/unloading operations are performed at the transshipment 

ports. There is no capacity restriction on the arcs of each service. That is, no restriction 

exists on the amount of shipment transported through each leg. 

In most liner shipping networks, a port may be visited several times through the 

vessel’s round trip. In order to differentiate these unique vessel-port pairs, we replicate 

some ports depending on the total number of visits of the corresponding vessel during 

its round trip and generate a modified service network. For a better understanding, 

consider the illustrative example in Figure 3.1 (a). Assume that the shipment will be 

sent from the origin port Thessaloniki, Greece (GRSKG) to the transshipment port 

Marport, Turkey (TRMRP) using vessel 2, and then from TRMRP to the destination 

port Koper, Slovenia (SIKOP) using vessel 1. To represent the unique vessel-port 

subsets for route 𝑝, we replicate the ports in the visiting sequence and relabel them 

with unique numbers.  
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Figure 3.1. An illustrative example to represent the modified service network 

 

As depicted in Figure 3.1 (b), the double-circled ports with the corresponding vessels 

are included in the subset for route 𝑝. Afterwards, the unique vessel-port pairs on the 

network are defined. The origin port GRSKG, for example, is represented with 6 in 

Figure 3.1 (c) and the ordered subset of vessel-port pairs for route  𝑝 are constructed 

as {(2,6), (2,7), (2,8), (1,8), (1,9), (1,10)}  where, (2,6)  corresponds to vessel 2 and 

port 6 and (2,7) corresponds to vessel 2 and port 7 etc. (see Figure 3.1 (c)). 

3.1. An Illustrative Example 

For a better understanding of how the mathematical model behaves, we provide an 

example in this section. Consider a LSC having two services, namely service 1 and 

service 2. Figure 3.2 depicts this small network. Service 1 has the port rotation of 

Koper-Venice-Ravenna-Istanbul-Venice-Koper, and service 2 has Istanbul-Piraeus-

Thessaloniki-Piraeus-Istanbul. Assume that there is a fixed number of homogeneous 

vessels operating on each service and the services operate on a 3-day frequency. That 

is, the difference of the departure times of vessel 1 and 2 from Koper, and of vessel 3 

and 4 from Istanbul is 72 hours. In a 15-day planning horizon, at least two 

homogeneous vessels operate on each service. Sea durations between ports are 

deterministic and fixed as 48 hours. Port stays of vessels depend on the number of 

TEUs loaded/unloaded; the departure time can be determined by adding the current 

port stay to the port arrival time, whereas the arrival time to the next port can be found 

by adding the leg duration to the departure time.  
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ITVCE TRMRP GRPIR

SIKOP: Koper, Slovenia
ITVCE: Venice, Italy
ITRAN: Ravenna, Italy
TRMRP: Istanbul, Turkey
GRPIR:  Piraeus, Greece
GRSKG: Thessaloniki, Greece 

ITRAN GRSKGSIKOP TRMRP

 Vessel 1
 Vessel 2

 Vessel 3
 Vessel 4

Service 1: SIKOP-ITVCE-ITRAN-TRMRP-ITVCE-SIKOP

Service 2: TRMRP-GRPIR-GRSKG-GRPIR-TRMRP

List of upcoming two vessels 
operating on each service:
Service 1: Vessel 1 and 2

Service 2: Vessel 3 and 4

 

Figure 3.2. An illustrative example of two services, four vessels and two routes  

The liner shipping company should decide on which route the shipment will be sent to 

minimize the total tardiness of shipments. By selection of any route, the arrival and 

departure times of the vessel(s) operating on that route will also be determined. We 

elaborate on two alternative scenarios below to clarify the impact of port duration on 

tardiness. 

In the first scenario, assume that the shipment from Koper to Thessaloniki has a 

quantity of 100 TEUs and a desired delivery time of 360 hours. For the sake of 

simplicity, consider the case where no loading/unloading operation takes place at the 

intermediate ports. Namely, the port stay durations at any port except the origin, 

destination or transshipment ports, is zero. Also assume a constant loading/unloading 

time for this shipment, e.g. 4 hours. 

Figure 3.2 indicates two feasible routes, namely route 1 and 2, for this shipment. 

Assume that route 1 is selected. In order to provide on-time delivery, vessel 1 arrives 

to the origin port Koper at time zero. After 4 hours of loading it departs from that port, 

and after 48 hours of sailing the vessel arrives at port Venice at time 52. Following the 

same reasoning, the vessel arrives at port Ravenna and Istanbul at times 100 and 148, 

respectively. The unloading operation from vessel 1 starts immediately and finishes 

after 4 hours at time 152. Next, the loading of vessel 3 starts without delay and finishes 

at time 156. Vessel 3 departs from port Istanbul at time 156 and arrives at ports Piraeus 

and Thessaloniki at times 204 and 252, respectively. The total transit time is thus 
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calculated as 256. As the transit time is less than the desired delivery time, the shipment 

is delivered on-time. 

Due to the 3-days frequency enforcement of each service, the arrival and departure 

times of the unused vessels can be derived easily. For example, for vessel 2, the arrival 

time to port Koper will be 72, and the arrival time of vessel 4 to port Istanbul will be 

320 (see Table 3.1). 

Table 3.1. Arrival and departure times of vessels for route 1 (Scenario 1). 

  Arrival times 

Route #  Vessel 1 Vessel 2 Vessel 3 Vessel 4 

1 

SIKOP 0 72   

ITVCE 52 120   

ITRAN 100 168   

TRMRP 148 216 152 224 

GRPIR   204 272 

GRSKG   252 320 

  Departure times 

Route #  Vessel 1 Vessel 2 Vessel 3 Vessel 4 

1 

SIKOP 4 72   

ITVCE 52 120   

ITRAN 100 168   

TRMRP 152 216 156 224 

GRPIR   204 272 

GRSKG   256 320 

 

As an alternative route for this shipment, assume that route 2 is selected (see Figure 

3.2). In this case, the port stays of vessels 1 and 3 become zero, and the arrival and 

departure times of vessels 2 and 4 are summarized in Table 3.2. Due to the 3-days 

frequency, vessel 2 arrives at port Koper, and after 4 hours of loading time it departs 

from Koper at time 76. Since vessel 2 has no planned loading/unloading operation at 

ports Venice and Ravenna, the arrival and departure times are identical. Vessel 2 arrives 

at Istanbul at time 220 and finishes with the unloading operation at time 224, while 

vessel 4 arrives at the same time and departs at time 228 after 4 hours of loading. After 

2 days at sea, vessel 4 arrives at Piraeus at time 276, and departs without delay. As a 

last leg, vessel 4 arrives at the destination port Thessaloniki at time 324, and the total 

transit time of this shipment is calculated as 328.  
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Table 3.2. Arrival and departure times of vessels for route 2 (Scenario 1). 

  Arrival times 

Route #  Vessel 1 Vessel 2 Vessel 3 Vessel 4 

2 

SIKOP 0 72   

ITVCE 48 124   

ITRAN 96 172   

TRMRP 144 220 144 224 

GRPIR   192 276 

GRSKG   240 324 

  Departure times 

Route #  Vessel 1 Vessel 2 Vessel 3 Vessel 4 

2 

SIKOP 4 76   

ITVCE 48 124   

ITRAN 96 172   

TRMRP 144 224 144 228 

GRPIR   192 276 

GRSKG   240 328 

 

As in the solution of route 1, the shipment is not delayed when route 2 is selected. 

Hence, these two solutions are indistinguishable in terms of the tardiness objective. 

In the second scenario we consider two shipments, the same shipment in the previous 

example and another shipment between the same O-D pair with a quantity of 400 TEUs 

and a desired delivery time of 305 hours. We assume a constant loading/unloading time 

at each origin, destination and transshipment port for shipments 1 and 2, as 4 and 16 

hours respectively. When route 1 is used for both shipments, the transit time of the 

shipments will be 320 hours, since the total time spent at ports Koper, Istanbul and 

Thessaloniki is increased to 24 hours. It can be observed that the second shipment is 

delayed by 15 hours. The arrival and departure times of the vessels can be examined 

in Table 3.3. 

Now consider the following solution, the shipment with the 360-hour deadline is sent 

through route 2 and the shipment with the 305-hour deadline is sent through route 1. 

Table 3.4 summarizes the arrival and departure times for this solution, and it can be 

seen that, with this second solution, the delay for both shipments is decreased to zero. 

The first shipment arrives at Istanbul at time 220 and should wait 28 hours for the 

arrival of vessel 4. 
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Table 3.3. Arrival and departure times of vessels for route 1 (Scenario 2). 

  Arrival times 

Route #  Vessel 1 Vessel 2 Vessel 3 Vessel 4 

1 

SIKOP 0 72   

ITVCE 68 120   

ITRAN 116 168   

TRMRP 164 216 184 256 

GRPIR   252 304 

GRSKG   300 352 

  Departure times 

Route #  Vessel 1 Vessel 2 Vessel 3 Vessel 4 

1 

SIKOP 20 72   

ITVCE 68 120   

ITRAN 116 168   

TRMRP 184 216 204 256 

GRPIR   252 304 

GRSKG   320 352 

 

Table 3.4. Arrival and departure times of vessels for routes 1&2 (Scenario 2). 

  Arrival times 

Route #  Vessel 1 Vessel 2 Vessel 3 Vessel 4 

1&2 

SIKOP 0 72   

ITVCE 64 124   

ITRAN 112 172   

TRMRP 160 220 176 248 

GRPIR   240 300 

GRSKG   288 348 

  Departure times 

Route #  Vessel 1 Vessel 2 Vessel 3 Vessel 4 

1&2 

SIKOP 16 76   

ITVCE 64 124   

ITRAN 112 172   

TRMRP 176 224 192 252 

GRPIR   240 300 

GRSKG   304 352 

 

 

 

The illustrative example in this section indicates how port durations affect the delay of 

shipments, and how a solution without any delay can be achieved regardless of the 

waiting times at the origin and transshipment ports. In many real-world cases, it is 
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more profitable for the LSC to store containers at interim ports having low demurrage 

costs. Moreover, although vessel scheduling is a tactical level decision, the number of 

TEUs loaded/unloaded have a huge impact on the port durations and hence, it 

influences the arrival/departure times of the vessels on an operational basis. Therefore, 

it is significant for the LSC to take shipment assignment and vessel scheduling 

decisions in a systematic way so as to increase profitability and schedule reliability. 

3.2. The Mathematical Model 

The proposed formulation assigns the shipments to the routes to decrease total 

tardiness, while concurrently constructing the partial schedules of the vessels to 

facilitate the LSC’s coordination with the port authorities for the berthing time 

windows. The sets and parameters used in the formulation are defined below.  

 

Sets: 

 

𝐵: set of shipments  𝑏 = 1,2, … 

𝑃: set of routes for all shipments  𝑝 = 1,2, … 

𝑆: set of services  𝑠 = 1,2, … 

𝑁: set of ports  𝑛 = 1,2, … 

𝑉: set of vessels  𝑣 = 1,2, …3 

𝐿: set of route legs   𝑙 = 1,2, … 

𝑃𝑏: set of candidate routes for shipment 𝑏, 𝑃𝑏 ⊆ 𝑃 

𝑉𝑁𝑝: set of vessel-port pairs visited through route p 

𝑃(𝑣,𝑛): set of routes including the vessel-port pair (𝑣, 𝑛), 𝑃(𝑣,𝑛) ⊆ 𝑃  

𝐿𝑝: set of legs on route p, 𝐿𝑝 ⊆ 𝐿 

𝑇𝑆𝑝: set of transshipment ports on route p, 𝑇𝑆𝑝 ⊆ 𝑁 

𝐵𝑣: set of shipments transported by vessel v, 𝐵𝑣 ⊆ 𝐵 

𝐵𝑛: set of shipments loaded or unloaded at port n, 𝐵𝑛 ⊆ 𝐵    

𝑉𝑠: set of vessels operating on service s, 𝑉𝑠 ⊆ 𝑉 

 

 

Parameters: 

 

𝐻𝑝: deadline of shipment b transported via route p, 𝑏 ∈ 𝐵, 𝑝 ∈ 𝑃𝑏 

𝑌𝑝: latest possible arrival time of shipment b transported via route p, 𝑏 ∈ 𝐵, 𝑝 ∈ 𝑃𝑏 
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𝑇𝑝: maximum required time between legs of route b to make the planned transshipment 

for shipment b, 𝑏 ∈ 𝐵, 𝑝 ∈ 𝑃𝑏 

𝑆𝑝𝑙: sailing time for leg l of route p,  𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿𝑝 

𝐻𝑇𝑝
(𝑣,𝑛)

: handling time of the shipment transported by vessel v to port n on route p, 𝑝 ∈

𝑃, 𝑛 ∈ 𝑁𝑝 

𝐹𝑣1,𝑣2
:  minimum required time for vessels 𝑣1  and 𝑣2  to maintain the frequency of 

service s, 𝑣1, 𝑣2 ∈ 𝑉𝑠 

𝑑𝑒𝑠𝑡𝑝: destination port of route p, 𝑝 ∈ 𝑃 

𝜀: a positive number, close to zero 

𝑀: a very large positive number 

 

Below are the decision variables of our mathematical model. 

 

Decision Variables: 

 

𝑎(𝑣,𝑛): the arrival time of vessel v to port n, 𝑝 ∈ 𝑃(𝑣,𝑛), (𝑣, 𝑛) ∈ 𝑉𝑁𝑝 

𝑎𝑝
(𝑣,𝑛)

: the arrival time of vessel v to port n on route p, 𝑝 ∈ 𝑃(𝑣,𝑛), (𝑣, 𝑛) ∈ 𝑉𝑁𝑝 

𝑑𝑝
(𝑣,𝑛)

: the departure time of vessel v from port n on route p, 𝑝 ∈ 𝑃(𝑣,𝑛), (𝑣, 𝑛) ∈ 𝑉𝑁𝑝 

𝑎𝑝
(𝑣,[𝑖])

: the arrival time of vessel v to the ith port in the sequence of the service operating 

on route p, 𝑝 ∈ 𝑃(𝑣,[𝑖]), (𝑣, [𝑖]) ∈ 𝑉𝑁𝑝 

𝑑𝑝
(𝑣,[𝑖])

: the departure time of vessel v to the ith port in the sequence of the service 

operating on route p, 𝑝 ∈ 𝑃(𝑣,[𝑖]), (𝑣, [𝑖]) ∈ 𝑉𝑁𝑝 

𝑞𝑝: delay of route p, 𝑝 ∈ 𝑃𝑏 , 𝑏 ∈ 𝐵 

𝑥𝑝 = {
1, if route 𝑝 is selected 
0, otherwise

 , 𝑝 ∈ 𝑃𝑏 , 𝑏 ∈ 𝐵 

 

 

Based on the above definitions, the MILP model for the SAVSP is as follows: 

 

𝑚𝑖𝑛 ∑ ∑ 𝑞𝑝 + ∑ 𝜀𝑎(𝑣,𝑛)
(𝑣,𝑛)∈𝑉𝑁𝑝𝑝∈𝑃𝑏𝑏∈𝐵                   (1) 

subject to 

∑ 𝑥𝑝 ≥ 1𝑝∈𝑃𝑏
   𝑏 ∈ 𝐵                                 (2) 
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𝑑𝑝
(𝑣,[𝑛])

+ 𝑥𝑝𝑆𝑝𝑙 ≤ 𝑎𝑝
(𝑣,[𝑛+1])

 𝑝 ∈ 𝑃, (𝑣, [𝑛]), (𝑣, [𝑛 + 1]) ∈ 𝑉𝑁𝑝, 𝑙 ∈ 𝐿𝑝                (3) 

∑ ∑ (𝐻𝑇𝑝
(𝑣,𝑛)

𝑥𝑝) + 𝑎𝑝
(𝑣,𝑛)

≤ 𝑑𝑝
(𝑣,𝑛)

+ (1 − 𝑥𝑝)𝑝∈𝑃𝑏
𝑀𝑏∈𝐵      𝑝 ∈ 𝑃, (𝑣, 𝑛) ∈ 𝑉𝑁𝑝 (4) 

(𝑥𝑝)𝑀 ≥ 𝑎𝑝
(𝑣,𝑛)

   𝑝 ∈ 𝑃, (𝑣, 𝑛) ∈ 𝑉𝑁𝑝     (5) 

𝑌𝑝 − 𝐻𝑝𝑥𝑝 ≤ 𝑞𝑝   𝑝 ∈ 𝑃       (6) 

𝑎𝑝
(𝑣2,𝑚)

− 𝑎𝑝
(𝑣1,𝑚)

≤ 𝑇𝑝𝑥𝑝  𝑝 ∈ 𝑃, ((𝑣1, 𝑚), (𝑣2, 𝑚) ∈ 𝑉𝑁𝑝) ∋ 𝑚 ∈ 𝑇𝑆𝑝           (7) 

𝑎𝑝
(𝑣1,𝑚)

− 𝑑𝑝
(𝑣2,𝑚)

≤ 0   𝑝 ∈ 𝑃, ((𝑣1, 𝑚), (𝑣2, 𝑚) ∈ 𝑉𝑁𝑝) ∋ 𝑚 ∈ 𝑇𝑆𝑝           (8) 

𝑎𝑝
(𝑣,𝑛)

≤ 𝑎(𝑣,𝑛)   𝑝 ∈ 𝑃, (𝑣, 𝑛) ∈ 𝑉𝑁𝑝                (9) 

𝑎(𝑣2,[0]) − 𝑎(𝑣1,[0]) ≥ 𝐹𝑣1,𝑣2
  𝑣1, 𝑣2 ∈ 𝑉𝑠, 𝑠 ∈ 𝑆              (10) 

𝑎(𝑣,𝑛), 𝑎𝑝
(𝑣,𝑛)

, 𝑑𝑝
(𝑣,𝑛)

≥ 0  𝑝 ∈ 𝑃, (𝑣, 𝑛) ∈ 𝑉𝑁𝑝              (11) 

𝑥𝑝 ∈ {0,1}, 𝑞𝑝 ≥ 0, integer  𝑝 ∈ 𝑃                (12) 

 

The first term in the objective function (1) minimizes the total tardiness whereas the 

second term fine-tunes the optimal solution (vessel schedules) by forcing the arrival 

time of the vessel-port pair (𝑣, 𝑛) to be equal to the maximum arrival time of the routes 

of the vessel-port pair (𝑣, 𝑛). Constraint set (2) enforces that every shipment should be 

sent via a candidate route. Constraint set (3) controls the arrival and departure times of 

the vessels on every route.  Constraint set (4) calculates the departure time of each 

vessel from each visited port. Constraint set (5) forces the arrival time of a vessel to 

any non-visited port to zero.  

Constraint set (6) calculates the tardiness of each shipment. Since our model allows 

late arrivals of shipments, tardiness becomes positive once a shipment misses its 

deadline. The minimum connection time required for the synchronization of the 

transshipment is achieved through constraint set (7). If the arrival time of the loading 

vessel of the shipment is at least 𝑇𝑝  time units larger than the arrival time of its 

discharging vessel, the synchronization of this transshipment is achieved. Our 

formulation guarantees this minimum time allowance if the selected route includes a 

transshipment. Constraint set (8) ensures that, if a transshipment decision is given, the 

arrival time of the discharging vessel to the transshipment port should be strictly less 

than the departure time of the loading vessel. Constraint set (9) determines the arrival 

time of a vessel to each port equals to the maximum arrival time of the shipments on 
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that vessel. Constraint set (10) dictates the desired frequency for the operating vessels 

for each service. Finally, constraint sets (11)-(12) define the decision variables. 

3.2.1. Calculating Partial Vessel Schedules and Port Stays 

The largest arrival and departure times among the shipments on each route determine 

the arrival and departure times of the vessels operating on these routes. For a better 

understanding, consider the illustrative example in Figure 3.3 where the flow of vessels 

and shipments are represented on a timeline.  

 

 

Figure 3.3. An example of the port stay, arrival and departure time calculations 

 

We assume that there are two shipments, namely shipment 1 and 2, both have the origin 

as port 1, however their destination ports are different. Shipment 1 has to be unloaded 

at the next port call of vessel 1, i.e., at port 2, whereas shipment 2 will be dropped off 

at later port visits of vessel 1. Two shipments are planned to be sent through the routes 

1 and 2, respectively. 

Both routes use vessel 1 for transporting the two shipments. Both shipments are ready 

before the vessel arrives, hence our formulation yields, 𝑎1
(1,1)

= 𝑎2
(1,1)

= 0, leading the 

arrival time of the vessel 𝑎(1,1) to be set to zero. Since 𝐻𝑇𝑝
(𝑣,𝑛)

 indicates the total time 

spent on route 𝑝 at port 𝑛 visited by vessel 𝑣, the value of 𝐻𝑇𝑝
(𝑣,𝑛)

 has a positive value 

only for the ports the shipment is planned to be (un)loaded. Moreover, values of the 

decision variables 𝑑𝑝
(𝑣,𝑛)

 depend on the arrival time of the vessel and the total time 

spent at the corresponding port. As the loading/unloading operations at a port can be 

performed sequentially, the largest among the departure times of the routes, determines 
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the departure time of vessel 𝑣 from port 𝑛. The arrival time of vessel 𝑣 on route 𝑝 to 

its next port call is determined by adding its departure time from the current port call 

to the constant sailing time for each leg 𝑙 of route 𝑝, i.e., 𝑆𝑝𝑙. For routes having the 

same vessel and port call, the sailing times should be equal to each other. Hence, 𝑆11 = 

𝑆21 (see Figure 3.3).  

When vessel 1 arrives to port 2, the unloading operation of shipment 1 starts 

immediately. Since there is no unloading operation for shipment 2, 𝐻𝑇2
(1,2)

 is zero, 

which yields to the arrival and departure times of route 2 for the vessel-port pair (1, 2)  

are equal to each other, i.e., 𝑎2
(1,2)

= 𝑑2
(1,2)

. As only shipment 1 will be unloaded at port 

2, the corresponding port duration equals to 𝐻𝑇1
(1,2)

 and vessel 1 will depart from port 

2 after the unloading operation finishes i.e., at 𝑑1
(1,2)

. Accordingly, the partial vessel 

schedules are determined. 

3.2.2. Synchronization of Transshipments and Fixed Service Frequency 

Let 𝑇𝑝 be the maximum required time between legs of route p to make the planned 

transshipment. Our formulation enforces that a minimum between the arrival times of 

the vessels are required in order to provide a successful transshipment within planned 

time interval. As an example, if the arrival time of the second vessel, onto which the 

shipment will be loaded, is at least 𝑇𝑝 units larger than the arrival time of the first 

vessel, from which the shipment will be unloaded; then the synchronization of this 

transshipment becomes successful. Our formulation guarantees this minimum time 

requirement if the selected route includes a transshipment. 

We define parameter 𝐹𝑣1,𝑣2 as the desired frequency of the service s, where the vessels 

𝑣1 and 𝑣2 operating on this service, 𝑣1, 𝑣2 ∈ 𝑉𝑠. Consider the example illustrated in 

Figure 3.2. In this case, vessel 1 and 2 operate on service 1 and vessel 3 and 4 operate 

on service 2. Our formulation enforces that the vessel 2 should arrive to the first port 

call of service 1, 𝐹𝑣1,𝑣2
 times later than the arrival time of vessel 1 to the same port. 

Similarly, the difference between the arrival times of vessels 3 and 4 to the first port 

call of service 2 should be 𝐹3,4. 

In the next chapter, we propose the solution methodology developed in this thesis for 

solving the modeled shipment assignment and vessel scheduling problem. 
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CHAPTER 4 

SOLUTION METHODOLOGY 

An exact solution algorithm with two phases is proposed for solving the SAVSP. In 

the first phase, all feasible routes are generated for each candidate O-D pair with a 

shipment during the planning horizon. A depth-first-search is implemented for this 

purpose for searching the routes between any given O-D pair. The generated routes are 

used to construct the set of routes P as inputs of the SAVSP model that is proposed in 

Chapter 3.   

In the second phase, the model is solved and the best route for each shipment is 

determined. As the model includes a large number of variables, a group of tightening 

constraints are introduced to improve computational time performance. In addition, a 

Benders decomposition algorithm, which provides much faster and effective solutions, 

is developed for the problem. These are presented in the following sections. 

4.1. Path Generation 

In the path generation phase, we use a depth-first-search algorithm for searching paths 

between the given O-D pair. The nodes in the search tree keep respectively the port 

and the service information where each level of the tree indicates a transshipment 

operation. At the root node, the information of the origin port is stored. The first level 

nodes include the port-service pairs that can be reached from the origin port directly, 

i.e., using only a single service. If the destination port is reached at one of the first level 

nodes, a direct path between the O-D pair is obtained and the corresponding node is 

fathomed. A direct path enforces no transshipment decision, indicating that the 

shipment should be send between the O-D pair through a single vessel. In order to find 

the other candidate paths requiring transshipment(s), we continue on searching from 

the unfathomed first level nodes and construct the second level nodes by including 

ports that can be reached from the corresponding first level node using a single service. 

The algorithm terminates when the destination port is reached. In order to provide the 
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search tree with a finite number of nodes, we assume that the search is limited among 

the eligible ports defined by the LSC, and the port visited through one of the previous 

nodes of the tree cannot be visited again, thereby eliminating cycles. We provide an 

illustrative example with Figure 4.1, which depicts a result of the search for possible 

paths from port 1 to port 4.  

3-22-1

1

4-33-3

3-3 4-4

4-32-1 4-1

4-4 4-3

 

Figure 4.1. An example of the tree representation for path calculation. 

 

In the figure, there is a single direct path from port 1 to port 4 via service 4, whereas 

paths between ports 1-4 including a single transshipment are: 

• from port 1 to port 2 using service 1, from port 2 to port 4 using service 3, 

• from port 1 to port 3 using service 2, from port 3 to port 4 using service 3, 

• from port 1 to port 3 using service 3, from port 3 to port 4 using service 3. 

Moreover, there are only two paths between 1-4, including two transshipments, which 

are: 

• from port 1 to port 2 using service 1, from port 2 to port 3 using service 3, from 

port 3 to port 4 using service 4. 

• from port 1 to port 3 using service 2, from port 3 to port 2 using service 1, from 

port 2 to port 4 using service 3. 

For the real liner shipping problem considered in this thesis, all possible paths can 

easily be generated for the given enriched service network structure. Note that the 

number of routes is exponential in input size. 

Second 

level nodes 

First level 

nodes 
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4.2. Introducing Bounds and Valid Inequalities for the SAVSP Model 

Instead of assigning an arbitrary large value to parameter M defined by constraint sets 

(4) and (5), we introduce two tight upper bounds. 𝑃𝑆(𝑣,𝑛)
𝑈𝐵  is defined as an upper bound 

on the port stay length of vessel 𝑣 at port 𝑛. The port stay length is maximized when 

the number of shipments (un)loaded at the same port from/to the same vessel is at its 

maximum. To calculate this upper bound for each vessel-port pair, the related port 

stays, i.e. 𝐻𝑇𝑝
(𝑣,𝑛)

, are added, assuming that all shipments in vessel v are handled at 

port n. This leads to an upper bound as:  

 

𝑃𝑆(𝑣,𝑛)
𝑈𝐵 = ∑ 𝐻𝑇𝑝

(𝑣,𝑛)
𝑝:{𝑝∈𝑃𝑏,𝑏∈𝐵𝑣} . 

 

Another upper bound is introduced on the arrival time of vessel 𝑣 to port 𝑛 on route 𝑝 

as 𝐴𝑝,(𝑣,𝑛)
𝑈𝐵 . There are two components affecting the value of 𝐴𝑝,(𝑣,𝑛)

𝑈𝐵 . The first is the 

sailing time of vessel 𝑣 until reaching port 𝑛, i.e., ∑ 𝑆𝑝𝑙
𝑙=𝑛−1
𝑙=1 , where consecutive 𝑛 −

1 legs need to be sailed until port 𝑛. The second component includes the upper bound 

on the total port stay length for 𝑛 − 1 port visits, as computed above. The second 

component is then expressed as ∑ 𝑃𝑆(𝑣,𝑘)
𝑈𝐵𝑛−1

𝑘=1 . Hence, the upper bound becomes:  

 

𝐴𝑝,(𝑣,𝑛)
𝑈𝐵 = ∑ 𝑆𝑝𝑙

𝑙=𝑛−1
𝑙=1 + ∑ 𝑃𝑆(𝑣,𝑘)

𝑈𝐵𝑛−1
𝑘=1 .  

 

Based on these bounds, we replace constraint sets (4) and (5) in the mathematical 

model with valid inequalities (4’) and (5’), as below: 

 

∑ ∑ (𝐻𝑇𝑝
(𝑣,𝑛)

𝑥𝑝) + 𝑎𝑝
(𝑣,𝑛)

≤ 𝑑𝑝
(𝑣,𝑛)

+ 𝑃𝑆(𝑣,𝑛)
𝑈𝐵 (1 − 𝑥𝑝)𝑝∈𝑃𝑏𝑏∈𝐵                   

                                                                                     𝑝 ∈ 𝑃, (𝑣, 𝑛) ∈ 𝑉𝑁𝑝        (4’) 

𝐴𝑝,(𝑣,𝑛)
𝑈𝐵 (𝑥𝑝) ≥ 𝑎𝑝

(𝑣,𝑛)
       𝑝 ∈ 𝑃, (𝑣, 𝑛) ∈ 𝑉𝑁𝑝        (5’) 

 

We also introduce 𝐶𝑝,(𝑣,𝑛)
𝐿𝐵  as a lower bound on the arrival time of vessel 𝑣 to port 𝑛 on 

the route 𝑝. This lower bound is composed of two parts: The first part includes the 

sailing time of vessel 𝑣 until reaching port 𝑛, i.e., ∑ 𝑆𝑝𝑙
𝑙=𝑛−1
𝑙=1 .  The second part is the 

lower bound on total port stay length for 𝑛 − 1 port visits. This latter part of 𝐶𝑝,(𝑣,𝑛)
𝐿𝐵  is 
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computed by finding the minimum port stay on port 𝑛  for every shipment as 

min
𝑝

{𝐻𝑇𝑝
(𝑣,𝑛)

}. Hence, vessel 𝑣 will spend at least (|𝐵𝑣|)min
            𝑝

{𝐻𝑇𝑝
(𝑣,𝑛)

} time units at 

port 𝑛, where |𝐵𝑣| represents the cardinality of set 𝐵𝑣. As a result, the lower bound 

𝐶𝑝,(𝑣,𝑛)
𝐿𝐵  is computed as:  

 

𝐶𝑝,(𝑣,𝑛)
𝐿𝐵 = ∑ 𝑆𝑝𝑙

𝑙=𝑛−1
𝑙=1 + |𝐵𝑣| ∑ 𝑚𝑖𝑛𝑛−1

𝑘=1  
                            𝑝

{𝐻𝑇𝑝
(𝑣,𝑘)

}. 

 

Hence, the following tightening constraint (13) can be introduced into the model: 

 

𝑎𝑝
(𝑣,𝑛)

≥ 𝑥𝑝𝐶𝑝,(𝑣,𝑛)
𝐿𝐵                      𝑝 ∈ 𝑃, (𝑣, 𝑛) ∈ 𝑉𝑁𝑝        (13) 

 

4.3. Benders Decomposition Algorithm 

As the number of paths and shipments are far above hundreds for the practical case, 

solving the MILP model in (1) – (12) becomes increasingly difficult due to the large 

number of decision variables and constraints in the problem. In pilot computational 

experiments, we have observed that the computation time grows exponentially with 

the number of constraints in the problem. However, we have observed that the MILP 

model in (1) – (12) can be decomposed in order to obtain a pair of problems (an LP 

subproblem and an IP master problem) that can be solved in a faster and more effective 

manner. In this section, we present a Benders decomposition algorithm for our model. 

Benders decomposition (BD) (Benders, 1962) is an algorithm for solving MILPs with 

linking constraints and is preferred when the master problem has all the integer 

variables and it is difficult to treat them in subproblems (Agarwal and Ergun, 2008). 

When the integer variables are fixed, the original problem is decomposed into several 

LP subproblems, which iteratively generate optimality and/or feasibility cut(s) to the 

master problem. BD is usually preferred to reduce the number of variables at the 

expense of an increase in the number of constraints.  

Cordeau, et al. applied BD to simultaneously solve the aircraft routing and crew 

scheduling problems (2001), while an alternative use of BD on power transmission 

network design problems is addressed by Binato et al. (2001). There are a few studies 
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where BD is applied to the problems in liner shipping. As discussed earlier, Agarwal 

and Ergun presented a BD-based algorithm to solve the ship scheduling and cargo 

assignment problems simultaneously (2008). Moreover, Gelareh and Pisinger 

addressed BD approach to solve the liner shipping network design and fleet 

deployment problem simultaneously (2010). The interested reader is referred to a 

recent by study Rahmaniani et al. (2017) for a comprehensive literature review on BD. 

For given nonnegative values of 𝑥̅𝑝 and 𝑞̅𝑝 (𝑝 ∈ 𝑃𝑏 , 𝑏 ∈ 𝐵) satisfying constraints (2) 

and (6), our model reduces to the following primal subproblem (PSP) including only 

the scheduling variables: 

𝑚𝑖𝑛 ∑ 𝑎(𝑣,𝑛)
(𝑣,𝑛)∈𝑉𝑁𝑝

                   (14) 

subject to 

𝑑𝑝
(𝑣,[𝑛])

+ 𝑥̅𝑝𝑆𝑝𝑙 ≤ 𝑎𝑝
(𝑣,[𝑛+1])

       𝑝 ∈ 𝑃, (𝑣, [𝑛]), (𝑣, [𝑛 + 1]) ∈ 𝑉𝑁𝑝, 𝑙 ∈ 𝐿𝑝            (15) 

∑ ∑ (𝐻𝑇𝑝
(𝑣,𝑛)

𝑥̅𝑝) + 𝑎𝑝
(𝑣,𝑛)

≤ 𝑑𝑝
(𝑣,𝑛)

+ (1 − 𝑥̅𝑝)𝑀𝑝∈𝑃𝑏𝑏∈𝐵   

       𝑝 ∈ 𝑃, (𝑣, 𝑛) ∈ 𝑉𝑁𝑝              (16) 

(𝑥̅𝑝)𝑀 ≥ 𝑎𝑝
(𝑣,𝑛)

    𝑝 ∈ 𝑃, (𝑣, 𝑛) ∈ 𝑉𝑁𝑝                   (17) 

𝑎𝑝
(𝑣2,𝑚)

− 𝑎𝑝
(𝑣1,𝑚)

≤ 𝑇𝑝𝑥̅𝑝  𝑝 ∈ 𝑃, ((𝑣1, 𝑚), (𝑣2, 𝑚) ∈ 𝑉𝑁𝑝) ∋ 𝑚 ∈ 𝑇𝑆𝑝        (18) 

𝑎𝑝
(𝑣1,𝑚)

− 𝑑𝑝
(𝑣2,𝑚)

≤ 0   𝑝 ∈ 𝑃, ((𝑣1, 𝑚), (𝑣2, 𝑚) ∈ 𝑉𝑁𝑝) ∋ 𝑚 ∈ 𝑇𝑆𝑝        (19) 

𝑎𝑝
(𝑣,𝑛)

≤ 𝑎(𝑣,𝑛)    𝑝 ∈ 𝑃, (𝑣, 𝑛) ∈ 𝑉𝑁𝑝              (20) 

𝑎(𝑣2,[0]) − 𝑎(𝑣1,[0]) ≥ 𝐹𝑣1,𝑣2
  𝑣1, 𝑣2 ∈ 𝑉𝑠, 𝑠 ∈ 𝑆              (21) 

𝑎(𝑣,𝑛), 𝑎𝑝
(𝑣,𝑛)

, 𝑑𝑝
(𝑣,𝑛)

≥ 0  𝑝 ∈ 𝑃, (𝑣, 𝑛) ∈ 𝑉𝑁𝑝              (22) 

 
 

Let 𝛼𝑝
(𝑣,𝑛)

,  𝛽𝑝
(𝑣,𝑛)

,  𝛾𝑝
(𝑣,𝑛)

, 𝜋𝑝
(𝑣,𝑛)

, 𝜙𝑝
(𝑣,𝑛)

,  𝛿𝑝
(𝑣,𝑛)

, 𝜃(𝑣,𝑛) ≥ 0   𝑝 ∈ 𝑃, (𝑣, 𝑛) ∈ 𝑉𝑁𝑝  be the 

dual variables associated with constraints (15) – (21), respectively. Then, the dual of 

(14) – (21) yields the following dual subproblem (DSP): 
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max ∑ ∑ ∑ ( 𝛼𝑝
(𝑣,𝑛)

𝑥̅𝑝𝑆𝑝𝑙 +  𝛽𝑝
(𝑣,𝑛)

((1 − 𝑥̅𝑝)𝑀 − (𝐻𝑇𝑝
(𝑣,𝑛)

𝑥̅𝑝)) +𝑙∈𝐿𝑝(𝑣,𝑛)∈𝑉𝑁𝑝𝑏∈𝐵

( 𝛾𝑝
(𝑣,𝑛)

𝑀𝑥̅𝑝) − (𝜋𝑝
(𝑣,𝑛)

𝑇𝑝𝑥̅𝑝)) + ∑ ∑ (𝐹𝑣1,𝑣2)𝜃(𝑣,0)
𝑣:𝑣1,𝑣2∈𝑉𝑠𝑠∈𝑆             (23)    

 

subject to 

 

 𝛼𝑝
(𝑣,[𝑛+1])

−   𝛽𝑝
(𝑣,𝑛)

−  𝛾𝑝
(𝑣,𝑛)

+ 𝜋𝑝
(𝑢1,𝑚)

− 𝜋𝑝
(𝑢2,𝑚)

− 𝜙𝑝
(𝑢1,𝑚)

−  𝛿𝑝
(𝑣,𝑛)

≤ 0  

𝑝 ∈ 𝑃, (𝑣, 𝑛) ∈ 𝑉𝑁𝑝 ((𝑢1, 𝑚), (𝑢2, 𝑚) ∈ 𝑉𝑁𝑝) ∋ 𝑚 ∈ 𝑇𝑆𝑝               (24) 

− 𝛼𝑝
(𝑣,[𝑛])

−   𝛽𝑝
(𝑣,𝑛)

+ 𝜙𝑝
(𝑢,𝑚)

≤ 0   

𝑝 ∈ 𝑃, (𝑣, 𝑛) ∈ 𝑉𝑁𝑝((𝑢, 𝑚) ∈ 𝑉𝑁𝑝) ∋ 𝑚 ∈ 𝑇𝑆𝑝                    (25) 

 𝛿𝑝
(𝑣,𝑛)

+ 𝜃(𝑢2,[0]) − 𝜃(𝑢1,[0]) ≤ 1   

𝑝 ∈ 𝑃, (𝑣, 𝑛) ∈ 𝑉𝑁𝑝, 𝑢1, 𝑢2 ∈ 𝑉𝑠, 𝑠 ∈ 𝑆                          (26) 

 

For given values of 𝑥̅𝑝 and 𝑞̅𝑝, there is always a feasible schedule independent of the 

assignment of the shipments, as the null vector 0 satisfies constraints (23) – (26). 

Therefore, the PSP always yields bounded and feasible solutions. So, does the DSP, 

and therefore only optimality cuts will be added to the Benders master problem (BMP). 

The BMP is formulated as follows: 

min ∑ ∑ 𝑞𝑝𝑝∈𝑃𝑏𝑏∈𝐵                            (27) 

subject to 

∑ 𝑥𝑝 ≥ 1𝑝∈𝑃𝑏
    𝑏 ∈ 𝐵               (28) 

𝑌𝑝 − 𝐻𝑝𝑥𝑝 ≤ 𝑞𝑝    𝑝 ∈ 𝑃               (29) 

𝑥𝑝 ∈ {0,1}, 𝑞𝑝 ≥ 0, integer   𝑝 ∈ 𝑃                (30) 

 

The general scheme of the BD algorithm is depicted in Figure 4.2. After partitioning 

the original model as BMP and DSP, the algorithm solves the two problems repeatedly. 

It first starts by solving the BMP to optimality, after which the lower bound of the 

original problem is updated with the objective function value of the master problem. 

Next, the DSP is solved by taking 𝑥̅𝑝 and 𝑞̅𝑝 values from the optimal solution of the 

BMP as input. At each iteration, a new constraint (Benders cut) extracted by the DSP 
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is added to the BMP. Since there will always be a feasible subproblem, the sum of both 

the objective function value of the master problem and the objective function value of  

the subproblem provides an upper bound for the original problem. The algorithm 

terminates when the upper and lower bound of the original problem converge. The 

computational time performance gains of the BD algorithm are discussed in Section 5.  

 

 

 

 

 

 

Figure 4.2. Benders Decomposition. 
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 Given 𝑥̅𝑝 and 𝑞̅𝑝 
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CHAPTER 5 

COMPUTATIONAL STUDY 

 

Various problem instances from a real shipping network are used to assess the 

performances of the solution methodology. We explain the characteristics of our test 

problems in Section 5.1. Section 5.2 reports the performance of the model in Section 

3.1 obtained for different   values, where we report the runtimes as well as percent 

improvements. We conduct further analyses with the same model to understand how 

the number of routes act under different cases and affects the solution quality. Thus, 

Section 5.3 discusses the performances of the case where we restrict the number of 

feasible routes for each problem and incorporate only the shortest n routes into the 

formulation. Additionally, the two variants of the Benders Decomposition algorithm 

via including and excluding the bounds and valid inequalities presented in the previous 

chapter are implemented, and their performances are compared in Section 5.4. 

5.1. Characteristics of the Test Problems 

Four different-sized networks of real data are used, provided by a shipping agency in 

Izmir, Turkey. The network sizes vary between 15 ports with 2 services and 39 ports 

with 8 services. The services have various frequencies, daily or weekly. The complete 

network of the LSC is illustrated on Figure 5.1.
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Figure 5.1. The complete network of the liner shipping agency (Arkasline, 2018) 
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The characteristics of the shipping network for each problem instance is summarized 

in Table 5.1. The main features of the test problems are defined as follows: The number 

of unique ports is the union of the ports within the considered subset of service, 

whereas the total number of ports includes the duplicated ports, as well. The maximum 

number of ports visited on a single service is an indicator on how the length of the 

voyages on each single service can vary. Although the number of ports intersecting by 

any services reflects the number of the transshipment alternatives within the 

considered services from one aspect, the Average number of ports on services together 

with the total number of unique ports and the Number of unique ports creates another 

point of view on the complexity of the paths generated. 

Table 5.1. Characteristics of the test problems. 

Problem 

Number 

of 

unique 

ports 

Total 

number 

of 

ports 

Number 

of 

services 

Maximum 

number of 

ports visited 

on a single 

service 

Number of 

ports 

intersecting 

by any 

services 

Average 

number 

of ports 

on 

services 

1 15 29 2 10 2 8 

2 18 35 3 9 1 8 

3 29 80 5 12 1 10 

4 39 118 8 14 1 11 

 

 
For the sake of simplicity, we assume similar-sized shipments. The generated data 

reflect up to 80% of the real O-D pairs of the mentioned shipping agency. Hourly 

average container handlings of each port are obtained and used to represent distinct 

port performances. In addition, we take individual transit times of all shipments as the 

current transit times, as suggested by the agency. Based on obtained data, the 

maximum transshipment time is taken as a full 24-hour working day. Due to privacy 

reasons, we provide only the sizes of our problem instances, and summarize their 

characteristics in Table 5.2. 
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Table 5.2. Characteristics of the scenarios tested. 

Problem Scenario 

Limit on 

the number 

of routes 

Number of 

Transshipments 

Number of 

different O-

D pairs 

% covered 

of the 

considered 

real network 

1 1 - 1 10 20 

1 2 - 1 20 60 

1 3 - 1 50 100 

2 1 20 2 10 30 

2 2 20 2 20 65 

2 3 20 2 50 100 

3 1 20 2 10 20 

3 2 20 2 20 35 

3 3 20 2 50 100 

4 1 20 2 10 20 

4 2 20 2 20 60 

4 3 20 2 50 100 

 

 

For each test problem, we assessed our solution algorithms under three different 

scenarios. For Problem 1, there is no limitation on the number of routes. There are only 

two services operating on the network for this instance, hence at most one 

transshipment can take place. We consider different number of O-D pairs as 10, 20 

and 50, which respectively mimic 20, 60 and 100% of the real shipping network for 

this problem. For the remaining problems, where the complexity of the network 

increases immensely, we limit the number of routes for each O-D pair to 20, which 

covers most dense and efficient routes on the network. On the other hand, the 

maximum number of transshipments is set to 2, as suggested by the agency.  

All problems are solved using CPLEX 12.6 and the programming code is compiled by 

Java on a computer having a i7-5500 CPU @2.40Ghz processor and a 16.0 GB RAM. 

The characteristics of the test instances are listed in Table 5.3. The test instances 

include the information of the Problem type, Scenario tested, The Total Number of 

different O-D pairs, and The Number of shipments for each O-D pair, respectively.  
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Table 5.3. Characteristics of the test instances. 

Test instance Problem Scenario 
# of different  

O-D pairs 

# of shipments 

for each O-D 

pair 

1_1_10_1 1 1 10 1 

1_1_10_2 1 1 10 2 

2_1_10_1 2 1 10 1 

2_1_10_2 2 1 10 2 

3_1_10_1 3 1 10 1 

3_1_10_2 3 1 10 2 

4_1_10_1 4 1 10 1 

4_1_10_2 4 1 10 2 

1_2_20_1 1 2 20 1 

1_2_20_2 1 2 20 2 

2_2_20_1 2 2 20 1 

2_2_20_2 2 2 20 2 

3_2_20_1 3 2 20 1 

3_2_20_2 3 2 20 2 

4_2_20_1 4 2 20 1 

4_2_20_2 4 2 20 2 

1_3_50_1 1 3 50 1 

1_3_50_2 1 3 50 2 

2_3_50_1 2 3 50 1 

2_3_50_2 2 3 50 2 

3_3_50_1 3 3 50 1 

3_3_50_2 3 3 50 2 

4_3_50_1 4 3 50 1 

4_3_50_2 4 3 50 2 

 

5.2. Sensitivity Analysis for the 𝜺 Value 

With the anticipation that the 𝜀 value has a huge impact on the computational time 

performance, the SAVSP model was experimented with two different 𝜀  values, 

namely 𝜀  =10-4 and 𝜀  =10-8. We report the runtimes of both cases, as well as the 

optimality gaps of two cases in Table 5.4.  
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Table 5.4. Performances of the problems tested with respect to different 𝜀 values. 

Test 

instance 

Number 

of feasible 

routes 

runtime (s) 

with epsilon: 

10-4 

gap (%) with 

epsilon: 10-4 

runtime (s) 

with epsilon: 

10-8  

gap (%) with 

epsilon: 10-8 

1_1_10_1 60 2.89 0 1.7 0 

1_1_10_2 120 81.72 0 4.47 0 

2_1_10_1 174 24.39 0 1.84 0 

2_1_10_2 348 4631.23 0 513.02 0 

3_1_10_1 180 1003.97 0 385.09 0 

3_1_10_2 360 3549.66 0 858.04 0 

4_1_10_1 200 119.27 0 0.21 0 

4_1_10_2 400 141506 0 102.15 0 

1_2_20_1 102 32.44 0 5.12 0 

1_2_20_2 204 2974.69 0 15.19 0 

2_2_20_1 400 8554.34 0 901.16 0 

2_2_20_2 800 26677.3 0 10126.8 0 

3_2_20_1 400 12111.8 0 1323.32 0 

3_2_20_2 800 136875 14.05* 10835.1 0 

4_2_20_1 388 48160.8 0 366.63 0 

4_2_20_2 776 181166 38.02* 11354.2 0 

1_3_50_1 264 6551.89 0 628.15 0 

1_3_50_2 528 172800 12.87* 103253 0 

2_3_50_1 982 191264 27.22* 130135 0 

2_3_50_2 1964 178335 45.33* 244175 0 

3_3_50_1 748 197658 0 7010.54 0 

3_3_50_2 1496 126888 32.91* 347017 0 

4_3_50_1 986 72129.8 39.35* 422.05 0 

4_3_50_2 1972 214574 57.20* 372590.4 0 

 

*: out of memory 
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It is apparent from the table that the model with 𝜀 =10-8 outperforms the one with 𝜀 

=10-4 in terms of runtime performance for every test problem. In addition, optimality 

is achieved for every test problem with 𝜀 =10-8. Due to these reasons, 𝜀 =10-8 is used 

for further computational analyses.  

Note that, independent from the epsilon value, the runtime increases as the problem 

size grows due increase in the number of ports and routes, as expected. Except for the 

five large test problems, where both the number of different O-D pairs is set to 50 and 

the number of routes is high, the optimal solutions are achieved within practical time 

limits for the problem, namely under 3 hours. 

5.3. Sensitivity Analysis on the Number of Routes 

Once the optimal solutions are analyzed, it was observed that the shortest route 

alternatives yielded the best solutions for most O-D pairs. To verify this observation, 

further analyses were conducted to understand how the number of routes act under 

different cases and affect the solution quality. This kind of analysis also provides 

practical good solutions for large test problems that fail in terms of runtime 

performance.  

For this purpose, the number of feasible routes is restricted for each problem and only 

the shortest n routes are incorporated into the formulation, where n varies depending 

on the problem size. The performances of case 1, where the number of routes is 

unrestricted, and case 2, where the n shortest routes are chosen, are compared. Table 

5.5 summarizes the runtime performances and the solution qualities of each test 

instance. The third and fifth columns report the runtimes for case 1 and 2, respectively 

and the percent improvements on the runtime are computed and shown in the last 

column. We also report the optimality gaps once case 2 is selected, in the last column 

of Table 5.5. 
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Table 5.5. Runtime performances and the solution qualities of the test instances. 

Test 

instance 

# of 

feasible 

routes  

runtime (s) 

with 

epsilon: 10-8 

(case 1) 

# of 

feasible 

routes  

runtime 

(s) 

 (case 2) 

improvement 

on the 

runtime (%) 

optimality 

gap (%)   

(case 1) (case 2) 

1_1_10_1 60 1.7 20 1.63 4.12 78.12 

1_1_10_1 60 1.7 50 0.89 47.65 0 

1_1_10_2 120 4.47 50 0.33 92.62 65.08 

1_1_10_2 120 4.47 100 1.17 73.83 33.7 

2_1_10_1 174 1.84 20 0.32 82.61 72.1 

2_1_10_1 174 1.84 50 1.25 32.07 72.1 

2_1_10_2 348 513.02 100 56.97 88.9 36.83 

2_1_10_2 348 513.02 250 196.17 61.76 35.8 

3_1_10_1 180 385.09 20 30.38 92.11 44.74 

3_1_10_1 180 385.09 50 138.16 64.12 0 

3_1_10_2 360 858.04 100 142.34 83.41 56.5 

3_1_10_2 360 858.04 250 385.24 55.1 29.11 

4_1_10_1 200 0.21 50 0.04 80.95 33.05 

4_1_10_1 200 0.21 100 0.17 19.05 30.18 

4_1_10_2 400 102.15 100 10.2 90.01 58.1 

4_1_10_2 400 102.15 250 56.03 45.15 22.34 

1_2_20_1 102 5.12 20 0.1 100 98 

1_2_20_1 102 5.12 50 1.28 75 3.11 

1_2_20_2 204 15.19 20 0.15 99.01 76.53 

1_2_20_2 204 15.19 50 2.18 85.65 1.81 

2_2_20_1 400 901.16 50 17.98 98 56.54 

2_2_20_1 400 901.16 100 38.05 95.78 29.3 

2_2_20_2 800 10126.81 100 496.52 95.1 28.01 

2_2_20_2 800 10126.81 250 4459.1 55.97 19.35 

3_2_20_1 400 1323.32 50 101.7 92.31 38.26 

3_2_20_1 400 1323.32 100 376.25 71.57 23.35 

3_2_20_2 800 10835.08 100 784.46 92.76 31.45 

3_2_20_2 800 10835.08 250 4512.7 58.35 17.7 

4_2_20_1 388 366.63 100 108.33 70.45 18.34 

4_2_20_1 388 366.63 250 294.05 19.8 11.66 

4_2_20_2 776 11354.16 100 94.22 99.17 34.1 

4_2_20_2 776 11354.16 250 5433.08 52.15 19.29 
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Table 5.5 (cont.) Runtime performances and the solution qualities of the test 

instances. 

Test 

instance 

# of 

feasible 

routes  

(case 1) 

runtime (s) 

with 

epsilon: 10-

8 

(case 1) 

# of 

feasible 

routes  

(case 2) 

runtime 

(s) 

 (case 2) 

improvement 

on the 

runtime (%) 

optimality 

gap (%)   

1_3_50_1 264 628.15 20 0.25 99.96 91.42 

1_3_50_1 264 628.15 100 2.38 99.62 67.72 

1_3_50_1 264 628.15 170 122.07 80.57 43.07 

1_3_50_2 528 103253.2 20 1.33 100 58.11 

1_3_50_2 528 103253.2 100 219.57 99.79 41.09 

1_3_50_2 528 103253.2 170 937.2 99.09 17.78 

2_3_50_1 982 130135.1 50 270.66 99.79 66.18 

2_3_50_1 982 130135.1 100 1651.7 98.73 48.14 

2_3_50_1 982 130135.1 170 6377.53 95.1 21.37 

2_3_50_2 1964 244174.6 100 568.81 99.75 36.49 

2_3_50_2 1964 244174.6 250 5910.85 97.37 31.09 

2_3_50_2 1964 244174.6 500 10343.6 95.4 15.71 

3_3_50_1 748 7010.54 50 148.3 97.88 41.84 

3_3_50_1 748 7010.54 100 677.51 90.34 25.72 

3_3_50_1 748 7010.54 250 2915.3 58.42 22.34 

3_3_50_2 1496 347016.7 100 1988.18 99.43 32.52 

3_3_50_2 1496 347016.7 250 9572.93 97.24 25.14 

3_3_50_2 1496 347016.7 500 15120.2 95.64 14.03 

4_3_50_1 986 422.05 100 81.74 80.63 12.23 

4_3_50_1 986 422.05 250 160.52 61.97 9.24 

4_3_50_2 1972 372590.4 100 4419.15 98.81 53.86 

4_3_50_2 1972 372590.4 250 9440.26 97.47 49.1 

4_3_50_2 1972 372590.4 500 24941.7 93.31 23.65 

 

 

We observe that the % optimality gap increases as the number of feasible routes 

decreases. Also, as depicted in Table 5.5, the number of different O-D pairs and the 

number of feasible routes have a significant impact on the solution quality. For small 

networks such as problem 1, for cases where the number of different O-D pairs is 

below 50, the % optimality gap dramatically increases once the number of feasible 

routes is restricted.  

Note that, for the small network-low number of different O-D pairs combination, the 
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solution time performances for the unlimited case are already reasonable from the 

operational decision-making point of view. This indicates that there is no need to limit 

the number of feasible routes and tighten the solution space. However, for the case 

where the number of different O-D pairs is 50, selecting the shortest n routes yields 

sufficiently good solutions with respect to the optimality gap. The largest contribution 

of the route restriction can be observed on the largest instance of problem 1, where a 

reasonable solution with a 17% optimality gap is obtained in 15 minutes (see Table 

5.5).  

For the moderate networks, i.e., problems 2 and 3, the gain from limiting the number 

of routes is considerable for the largest instances. The improvement on the runtime is 

around 95% for problem 2 with an optimality gap of 20%. Note that, no solution can 

be obtained for these test problem instances when the routes are unlimited. As 

expected, restricting the number of feasible routes performs better for the cases of large 

networks, i.e., problem 4. Although some large optimality gaps are observed, obtaining 

a feasible solution within reasonable/practical runtimes seems to be worth the 

restriction in the number of routes. However, the proposed solution algorithm still has 

high optimality gaps for cases having the highest number of feasible routes for each 

test problem.  

5.4. Effects of Valid Inequalities and Benders Decomposition 

We first observe the performance of the MILP defined in Chapter 3 in (1) – (12). 

Afterwards, the valid inequalities explained in Section 4.2 are implemented and the 

computational performance of the strengthened MILP is reported. As both MILP 

variants yield low performances within the operational time limits, the BD algorithm 

(discussed in Section 4.3) is also implemented.  

All problems are solved using CPLEX 12.8.0, and the programming code is compiled 

by Java on a computer having a i7-5500 CPU @2.40Ghz processor and a 16.0 GB 

RAM. Details and examples of implementing BD in CPLEX can be found in Rudin 

(2016). Table 5.6 summarizes the computational time performances of all algorithms. 

All test instances are solved to optimality by all algorithms. The first column in Table 

5.6 enumerates the tested instances. The second column shows the total number of 

feasible routes, i.e. the cardinality of set 𝑃. Column 3 presents the exact solution 

computation times (in seconds) for the SAVSP model in (1) – (12) (MILPN). Columns 
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4 to 6 lists computation times for the model with the valid inequalities (MILPVI), the 

BD algorithm without valid inequalities (BDN), and the BD algorithm with the valid 

inequalities (BDVI), respectively.  

 

Table 5.6. Performances with Valid Inequalities and Benders Decomposition. 

Test 

Instance 

# of 

routes 
MILPN MILPVI BDN BDVI 

1_1_10_1 60 1.7 1.12 1.15 0.95 

1_1_10_2 120 4.47 1.09 1.08 0.82 

2_1_10_1 174 1.84 1.06 1.11 0.91 

2_1_10_2 348 513.02 329.07 94.8 63.25 

3_1_10_1 180 385.09 196.63 74.6 32.2 

3_1_10_2 360 858.04 451.16 240.33 81.97 

4_1_10_1 200 0.21 0.17 0.09 0.08 

4_1_10_2 400 102.15 72.03 17.67 9.54 

1_2_20_1 102 5.12 1.13 1.14 0.88 

1_2_20_2 204 15.19 5.37 2.04 1.15 

2_2_20_1 400 901.16 380.46 237.07 83.2 

2_2_20_2 800 10126.81 8843.72 7910.63 5360.6 

3_2_20_1 400 1323.32 395.68 257.77 87.26 

3_2_20_2 800 10835.08 8499.59 7735.06 5026.4 

4_2_20_1 388 366.63 203.24 81.07 44.99 

4_2_20_2 776 11354.16 8778.09 6991.72 5870.2 

1_3_50_1 264 628.15 475.03 129.32 94.98 

1_3_50_2 528 103253.2 100125.8 9942.22 8614.4 

2_3_50_1 982 130135.1 100744.1 9975.06 9065.8 

2_3_50_2 1964 244174.6 225093.33 24349.1 21976 

3_3_50_1 748 7010.54 5411.52 5980.15 2186.1 

3_3_50_2 1496 347016.7 29554.43 29171.6 26315 

4_3_50_1 986 422.05 269.41 82.08 52.19 

4_3_50_2 1972 372590.4 34407.8 33308.8 30542 
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Figure 5.2 visualizes the relative computational time deviations from the best, for all 

algorithms over the 24 test instances. 

 

 

Figure 5.2. Relative performances of algorithms over the test instances. 

 

As expected, the computation time increases as the problem size increases, in parallel 

with the increase in the number of routes. Although each solution approach has a 

different characteristic, they act similarly on a quarter of the test instances. For 

example, for the test instances 1, 2, 3, 7, 9 and 10, where the number of feasible routes 

is below 204, the computational time performance of the algorithms is comparable. On 

the other hand, MILPN has the worst performance over all instances, implying that both 

the valid inequalities in (4’) (5’) and (13), and the decomposition approach have a huge 

impact on the computational time performance. 

The sole impact of the valid inequalities can be observed when MILPVI and MILPN are 

compared. MILPVI always outperforms MILPN, meaning that the valid inequalities 

strengthen the formulation and tighten the polyhedron defined by the constraints (2) – 

(12). The major effect of the proposed valid inequalities can be observed in the largest 

test instances, namely instances 22 and 24, where the percent improvements on the 

runtime are 91% and 90%, respectively.  

For the test instances 18 - 20, in which the number of different O-D pairs is set to 50, 

the impact of BD can be best observed. When MILPN and BDN are compared, the 

percent improvements on the runtime for instances 18 – 20 are respectively as 90%, 

92% and 90%. Similarly, the dominancy of BDN over MILPVI for the same test 

instances is quantified with percent improvements on the runtime. 90%, 90% and 89% 
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decrease in runtime are achieved for the same test instances when BDN is employed 

instead of MILPVI. Note that BDN always outperforms MILPVI in terms of 

computational time performance.  

A clear dominance of the BDVI over the remaining three algorithms prevails. BDVI 

achieves optimality on 15 test instances in less than 100 seconds, and its performance 

on the average is around 4800 seconds. The reason of BDVI‘s high performance is 

mainly due to elimination of the unboundedness in the dual subproblems through the 

introduction of the valid inequalities, thereby eliminating the need to add feasibility 

cuts to the master problem.  

We report the average performances in Table 5.7. Note that the decrease in solution 

time with the valid inequalities and BD can be observed even for the case of 10 

different O-D pairs. The improvement is particularly pronounced for the 50 O-D pair 

instances. On the average, all instances are solved optimally around 14 hours once 

MILPN is employed. The average computational time decreases to nearly 6 hours with 

the MILPVI. Once BDN is used, the average solution time reduces to less than 2 hours. 

The best performance with an average of 1.5 hours is obtained with the BDVI. 

 

Table 5.7. Average computation time performances of each algorithm. 

# of O-D pairs MILPN MILPVI BDN BDVI 

10 233.32 131.54 53.85 23.72 

20 4365.93 3388.41 2902.06 2059.33 

50 150653.83 62010.18 14117.28 12355.79 

Average (s) 51751.03 21843.38 5691.07 4812.94 

 

Table 5.8 reports pairwise comparisons of each solution approach in terms of average 

solution times. The second and the last column in Table 5.8 indicate the sole 

performance of the proposed valid inequalities in (4’) (5’) and (13), whereas the 

average performance of the BD can be observed from columns 3 and 6. By comparison 

of columns (2) and (3), we can conclude that BDN always outperforms MILPVI. This 

implies that BD has relatively higher impact on computational time performance than 

the valid inequalities. Except the comparison of BDN and BDVI, the computational time 

gain is most pronounced for the largest number of O-D pairs, as expected. 

 



48 

Table 5.8. Average pairwise computation time comparisons of the algorithms tested. 

# of O-D pairs 

MILPN 

vs 

MILPVI 

MILPN 

vs  

BDN 

MILPN 

vs  

BDVI 

MILPVI 

vs  

BDN 

MILPVI  

vs  

BDVI 

BDN  

vs 

BDVI 

10 43.62% 76.92% 89.84% 59.06% 81.97% 55.96% 

20 22.39% 33.53% 52.83% 14.35% 39.22% 29.04% 

50 58.84% 90.63% 91.80% 77.23% 80.07% 12.48% 

 

 

We believe that our results indicate fruitful directions for managerial use. Our 

formulation will provide the flexibility to LSC to adjust the routes and select the best 

alternatives in a broader spectrum. The optimal solutions indicate that the shortest 

route is not the best route for many cases, hence it is relevant and necessary to consider 

all feasible route alternatives. 
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CHAPTER 6 

SHIPMENT ASSIGNMENT AND VESSEL SCHEDULING PROBLEM 

WITH INSTANT PORT CONTAINER TERMINAL PERFORMANCES 

In Chapter 6, we discuss a new solution approach to the SAVSP, where the 

instantaneous container port terminals are also taken into account. Section 6.1 includes 

the integrated solution framework of this idea, where the computational study of this 

framework is reported in Section 6.2. 

6.1. The Integrated Solution Framework 

In the SAVSP that was discussed in Chapter 4, it was assumed that the operation time 

at the ports are static, i.e., not changing over time. However, this assumption is 

unrealistic as port performances can significantly vary depending on the workload. 

Therefore, the static approach may yield over/or underestimated shipment assignments 

during the planning horizon. To incorporate this issue, we present in this section a 

solution framework that iteratively evaluates shipment assignments with instant port 

container terminal information, gathered by solving the Integrated Port Container 

Terminal Problem (IPCTP) proposed in Kizilay et al. (2018). Figure 6.1 illustrates the 

proposed solution framework. 

The integrated solution framework starts by taking the information of the shipments 

such as the transit times, origin and destination ports. Subsequently, the feasible routes 

are generated as stated in Section 4.1. At the outset of the algorithm, the ports are 

assumed to have identical performances, i.e., the parameter 𝐻𝑇𝑝
(𝑣,𝑛)

,  the handling time 

of the shipment in SAVSP is the same for every port 𝑛 and it changes only with respect 

to shipment size. 
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Figure 6.1. Integrated solution framework. 

 

Next, the SAVSP is solved to optimality with this initial information. The optimal 

number of containers handled at each port is derived from the optimal solution of the 

SAVSP. Afterwards, the port container terminal performances are re-calculated by 

solving several IPCTPs simultaneously for each port. Each IPCTP takes the number 

of containers handled at each port as an input parameter and the optimal solution of 

each IPCTP reports the updated port performance for the corresponding port. Note 

that, IPCTP addresses the integrated problem of quay crane assignment, quay crane 

scheduling, yard location assignment, and vehicle dispatching operations at port 

container terminals proposing both mixed integer programming and constraint 

programming formulations to tackle this integrated problem (Kizilay et al., 2018). 

With the optimal solution of the IPCTP, the parameters of the SAVSP is updated and 

the model is re-solved with the new parameters.  

The two problems are repeatedly solved until one of the terminating conditions is met. 

Explicitly, the algorithm stops once the difference of two consecutive optimal 

objective function values of the SAVSP is under 10%, or when 10 instances of 

SAVSPs are solved within the loop. The results are shown in Table 6.1.

*Transit times 

*Origin and 

destination ports 

*Feasible routes 

Step 1: 

Solve 

SAVSP 

Report 

predicted port 

performances 

Report the 

number of 

containers 

handled at 

each port 

Step 2: 

Solve 

IPCTPs 

for each 

port 
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Table 6.1. Detailed computation times of the integrated solution framework. 

Test 

instance 

# of 

feasible 

routes 

Total 

Computation 

Time (min) 

Number of 

iterations 

Average Computation 

Time per iteration 

(min) 

1_1_10_1 60 0.94 10 0.09 

1_1_10_2 120 18.95 10 1.90 

2_1_10_1 174 17.85 10 1.78 

2_1_10_2 348 408.58 2 204.29 

3_1_10_1 180 26.42 10 2.64 

3_1_10_2 360 187.00 5 37.40 

4_1_10_1 200 136.98 10 13.70 

4_1_10_2 400 1555.45 4 388.86 

1_2_20_1 102 9.36 10 0.94 

1_2_20_2 204 1063.69 3 354.56 

2_2_20_1 400 564.00 2 282.00 

2_2_20_2 800 745.35 2 372.67 

3_2_20_1 400 1442.00 4 360.50 

3_2_20_2 800 704.59 2 352.30 

4_2_20_1 388 804.94 2 402.47 

4_2_20_2 776 1138.19 3 379.40 

1_3_50_1 264 261.23 7 37.32 

1_3_50_2 528 1935.36 3 645.12 

2_3_50_1 982 720.58 2 360.29 

2_3_50_2 1964 720.55 3 240.18 

3_3_50_1 748 1035.79 3 345.26 

3_3_50_2 1496 1353.99 3 451.33 

4_3_50_1 986 1383.59 5 276.72 

4_3_50_2 1972 1842.41 3 614.14 

 

All test instances are solved to optimality using the integrated solution framework. The 

solutions of the IPCTP were previously reported in Kizilay et al. (2018) and used 

directly for the purposes of our computational experiment. Hence, on column 3 of 

Table 6.1, we report the total computation times for the SAVSP only. Column 4 

indicates the total number of repeatedly solved SAVSPs within the solution 

framework. The average computation time per iteration are presented on the last 

column.  
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For small instances (1_1_10_1, 1_1_10_2, 2_1_10_1, 3_1_10_1, 4_1_10_1 and 

1_2_20_1), the solution algorithm terminates under 27 minutes, performing the 

maximum number of iterations for each problem instance. Note that small instances 

are much more sensitive to port performance when compared to large instances. At the 

other extreme, for the 13 large test instances, although the average computation time 

per iteration is relatively large, the solution converges within 3 iterations.  

We can conclude that, this fast convergence trait of our solution framework renders 

our solution framework as promising even for large instances. This solution effort is 

well-worth spending for the LSC in real life, as it helps the LSC to improve its 

operations with the consideration of more realistic port performance metrics. 

We also illustrate how each problem class converge in Figures 6.2.(a)-(d), and how the 

computational time varies in Figures 6.3.(a)-(d). Note that, due to the skewness 

towards large values the logarithmic scale is used for the y-axis, as depicted in Figures 

6.2.(a)-(d). 

Figure 6.2.(a) reveals that, for Problem type 1, only half of the test instances, namely, 

1_1_10_1, 1_1_10_2 and _1_2_20_1, converge at the end of 10 iterations. However, 

these test instances oscillate sharply till the 7th iteration, and start to converge 

afterwards. For these test instances, the changes in consecutive objective function 

values after the 7th iteration is slightly higher than 10%. Hence, we can conclude that 

terminating the algorithm even after the 7th iteration will yield high-quality solutions 

in shorter times. The same is true for test instance 4_1_10_1, as illustrated in Figure 

6.2.(d).  

Figures 6.3.(a)-(d) show the cumulative computation times for problem types 1, 2, 3, 

and 4, respectively. Note that, the cumulative computation time functions are concave 

for almost all of the test instances, as expected. The computational time at earlier 

iterations is usually larger, as the initial parameter set includes identical port 

performances, which yields numerous alternative solutions. Then, as the gap among 

alternative solutions increases through the differences of the port performances at each 

iteration, the computation times gradually decrease in the subsequent iterations.  
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, 

Figure 6.2 (a) Convergence graph for the problem type 1. 

 

Figure 6.2 (b) Convergence graph for the problem type 2. 
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Figure 6.2 (c) Convergence graph for the problem type 3. 

 

Figure 6.2 (d) Convergence graph for the problem type 4. 
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Figure 6.3 (a) Cumulative computation times for the problem type 1. 

 

Figure 6.3 (b) Cumulative computation times for the problem type 2. 
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Figure 6.3 (c) Cumulative computation times for the problem type 3. 

 

Figure 6.3 (d) Cumulative computation times for the problem type 4. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE RESEARCH 

 

In this thesis, the shipment assignment and vessel scheduling problem motivated by a 

liner shipping agency in Izmir, Turkey is considered. The problem is formulated as a 

novel mixed integer linear programming model and solved by a two-stage algorithm. 

The algorithm generates all feasible routes for each shipment in the first stage, while 

in the second stage the proposed model is solved optimally by taking the routes 

generated as input. Valid inequalities are proposed to restrict the feasible region and 

increase the computational time performance. We also implemented a Benders 

decomposition approach for the problem.  

The performances of all algorithms are tested on 24 problem instances, which are 

generated in line with the real practice based on past data of the liner shipping agency. 

The computational results indicate that the Benders decomposition algorithm 

including the proposed valid inequalities yields the best computational time 

performance, solving 21 of the test instances to optimality within 2.5 hours. The 

algorithm also achieves optimality in less than 100 seconds on 15 of the test instances, 

promising fast optimal solutions for real instances of the problem.  

The thesis has two major practical contributions. Our MILP model allows the agency 

to determine which shipment will be sent through which route. Concurrently, our 

formulation determines the arrival and departure times of the vessels while 

maintaining a desired service frequency. We believe that our approach can handle the 

stochasticity of the port stays and sailing times by adjusting the arrival and departure 

times of the vessels and may provide an insight to the practitioners to redesign their 

routes for every O-D pair, as the solution suggests alternative routes for every 

shipment.  
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In addition to the shipment assignment and vessel scheduling problem, we present an 

integrated solution approach which considers the instant port performances and 

concurrently seeks for the best assignment of the shipments to the routes. Our solution 

algorithm iteratively solves two separate problems, the shipment assignment and 

vessel scheduling problem provided in Section 4.1 and the integrated port container 

terminal problem by Kizilay et al. (2018). The optimal solution of the first problem 

determines the updated workloads at each port, leading in the re-optimization of the 

integrated port operations according to the new workloads. The proposed solution 

framework is tested for the 24 instances, and the results indicate that small test 

problems converge around 10 iterations whereas the large cases converge quickly, i.e., 

within 2 or 3 iterations. As a first step, we suggest embedding all optimal solutions of 

SAVSP found so far to the LSC’s database for further use. We believe that the LSC 

can use this approach in practice and this will prevent the LSC solving the same  

problems repeatedly. 

An interesting extension of our current work is to enhance the proposed formulation 

by including speed optimization as well as bunker consumption decisions. Liner 

shipping companies are dealing with high fuel prices as well as concerns related with 

the greenhouse gas emissions and carbon footprint. The sailing speed of a vessel has a 

remarkable effect on the bunker consumption and the bunker cost accounts for a large 

proportion of the total operation cost of the vessel (Ronen, 1993). The bunker cost is 

estimated to be more than 60% of the total operating cost of a liner shipping company 

(Golias et al., 2009). Hence, slow steaming is preferred as it yields a reduction in the 

bunker consumption, i.e., paying less on bunker cost. On the other extreme, slow 

steaming may lead an increase in the delivery times, resulting in unattractive service 

times for the customers (Rheinhardt et al., 2016). As a future study, we plan to 

investigate the problem of reducing the bunker consumption as well as maintaining the 

service quality, with the consideration of vessel capacities and utilizations.  

In our current work, stated in Section 4.1, we assume constant sea durations at each 

leg. However, this assumption is not realistic as the sailing times are highly sensitive 

to whether conditions, for example, and this may yield miscalculations in vessel 

schedules and transit times. We plan to incorporate leg-by-leg speed optimization 

decisions into our current SAVSP, explained in Section 4.1. To do so, we will first 

start working on how the cost function will be estimated. Afterwards, we plan to 
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express the objective function in equation (1) in Section 4.1, in terms of cost. Also, 

total operating costs of port terminals, including handling and transshipment costs, will 

also be included into the objective function. We believe that this approach will provide 

realistic calculations for the liner shipping company with the consideration of 

uncertainty in vessel schedules and port stay durations. 

A natural extension of the integrated solution approach is to examine the performance 

of the algorithm as well as the solution qualities by changing the terminating 

conditions. We plan to further monitor the cumulative computation time performances 

for convergence, by restricting the difference of the two consecutive optimal solution 

values of the shipment assignment and vessel scheduling problem is less than 5% and 

15%. 

An alternative approach to the integrated solution framework can be to reformulate the 

problem through stochastic programming; where “act of god”, i.e., uncertainties such 

as whether conditions, congestions at ports or port strikes, which slash the container 

traffic; can be treated explicitly. To incorporate such uncertainties, we plan to address 

a the two-stage (planning and recourse) stochastic programming shipment assignment 

and vessel scheduling model. In the first stage, the model is solved according to the 

realized port performances. The solution is then revised in the later stage. For example, 

in the second stage, the liner shipping company may reassign the shipments at 

intermediate ports in the route, when a delay is observed in the first stage. At the 

recourse level, the model will consider the shipment assignments made in the first 

stage, its realizations and the instant port performances at the adjustment point. The 

adjustment points will be the candidate transshipment ports that are going to be visited 

by the vessels through their upcoming port visits.  

Another future research topic can be developing sophisticated heuristic algorithms to 

provide high quality solutions faster than the discrete optimization techniques applied 

in this thesis study. The iterative solution scheme discussed in Chapter 6 resulted in 

high computation times for large test problems. Note that, as discussed in Chapter 5, 

the sole SAVSP yields low computation time performance in some test instances. The 

IPCTP even cannot find the optimal solution for several instances (Kizilay et al., 

2018). Due to the high problem complexity of both SAVSP and IPCTP, a realistic 

approach for practical use is to utilize heuristic approaches, providing near-optimal 

solutions in short computation time. Hence, as a first step, we plan to employ an 
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assortment of local search heuristics, iterated greedy, variable neighborhood search, 

and/or adaptive large neighborhood search, for both problems. If these heuristics do 

not provide efficient solutions, we aim to employ population-based heuristic 

algorithms such as genetic algorithm or differential evolution and further enrich them 

by embedding the local search heuristics. 

We believe that the contribution of this thesis study is twofold. Our first contribution 

to the practitioners becomes apparent when the liner shipping company’s main 

objective is to maximize customer satisfaction by providing on-time delivery and to 

maintain schedule reliability. The liner shipping company can treat each shipment 

independently by selecting the best route, to do so, the liner shipping company further 

investigate all possible alternative routes, including the unforeseen ones, for each 

shipment. This thesis study also fills a significant gap in the maritime shipping 

literature. To the best of our knowledge, current studies do not consider the operational 

shipment assignment and the vessel scheduling problem. In addition, there is no 

existing study focusing both the integrated maritime and landside operations 

concurrently. Therefore, there is vast opportunity for extending the developed 

mathematical model and the solution methodology with the consideration of other 

maritime planning problems, such as berthing and stowage planning. 
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