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ABSTRACT 

A PHYSICS-BASED DESIGN METHOD OF GRIDSHELL SYSTEMS: 

OPTIMIZATION OF FORM AND CONSTRUCTION COST 

AGIRBAS, Arda 

Msc in Architecture 

Advisor: Asst. Prof. Dr. Seckin Kutucu 

January 2019 

Structural shell systems have been used by numerous architects for many centuries to 

coop with different design problems due to their reliable structural behavior and 

effective material utilization nature. As a kind of traditional shell structures, gridshells 

have become an essential part of contemporary architecture since they can possess 

free-form shapes. Despite the numerous advantages, gridshells are not often utilized 

due to their complex structural nature. The increasing usage of the computer-aided 

design technologies in the architectural field allows the seamless translation of a design 

problem to a digital environment in order to overcome the architectural and structural 

problems simultaneously. This study focuses on creating an adaptive computational 

method that includes a physics-based form finding procedure, a workflow for 

structural performance evaluation and an optimization process. This thesis aims to 

develop a computational and iterative workflow that can be employed in the 

conceptual idea development phase of different gridshell design problems in order to 

generate a set of suitable alternative design solutions in accordance with the design-

related objectives and constraints. Besides the engineering requirements of a gridshell, 

the method gives significant importance to the design decisions and limitations in the 

architectural viewpoint. In order to reach a shape in equilibrium, the “Dynamic 

Relaxation” form-finding method has been utilized. Afterward, the “Finite Element 

Analysis” related to the nodal displacements have been performed. Lastly, a multi-

objective optimization process has been formulated that aims to minimize the 

construction cost while creating a discrete transformation of a smooth shell surface as 

close as possible to the parent shape. 
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ÖZ 

AĞ KABUK SİSTEMLERİ İÇİN FİZİK TABANLI TASARIM YÖNTEMİ: 

FORM VE İNŞAAT MALİYETİ OPTİMİZASYONU 

AĞIRBAŞ, Arda 

Yüksek Lisans Tezi, Mimarlık 

Danışman: Dr.Öğrt.Üyesi Seçkin KUTUCU 

Ocak 2019 

Yapısal kabuk sistemleri güvenilir yapısal davranışları ve etkili malzeme kullanım 

doğası nedeniyle farklı tasarım problemleri ile başa çıkabilmek adına mimarlar 

tarafından uzun yıllardır kullanılmaktadır. Geleneksel kabuk yapıların bir türevi olan 

ağ kabuklar, serbest biçimli şekillerde oluşturulabilmeleri sebebiyle çağdaş mimarinin 

önemli bir parçası haline gelmiştir. Çok sayıda avantajına rağmen ağ kabuklar, 

karmaşık yapıya sahip olmaları yüzünden tasarım ve uygulama zorlukları sebebiyle 

tercih edilmemektedirler. Bilgisayar destekli tasarım teknolojilerinin mimarlık 

alanındaki artan kullanımı, biçimsel ve hesaplamaya dayalı yapısal özelliklerin bir 

arada kurgulanabilmesini ve hesaplamalı tasarım yaklaşımı ile entegre çözümler 

geliştirilebilmesini olanaklı kılmıştır. Bu tezde, içerdiği fizik tabanlı form bulma 

prosedürü, yapısal performans değerlendirme sistemi ve optimizasyon süreci 

sayesinde adaptif bir hesaplamalı tasarım metodolojisi geliştirmeye odaklanmaktadır. 

Tezin amacı ağ kabuk tasarım problemlerinin kavramsal fikir geliştirme aşamalarına 

dahil edilebilecek bir hesaplamalı tasarım yöntemi geliştirmektir. Söz konusu yöntem, 

problemlere ilişkin amaçlara ve kısıtlamalara uygun olarak bir dizi alternatif tasarım 

çözümü oluşturacaktır. Tezde tarif edilen yöntem, ağ kabuk tasarımları ile ilişkili 

mühendislik gereksinimlerinin yanı sıra, mimari tasarım kararlarına ve sınırlamalara 

büyük önem vermektedir. Statik olarak dengeli bir şekil bulmak için “Dinamik 

Gevşeme” form bulma yöntemi kullanılmıştır. Daha sonra, “Sonlu Elemanlar Analiz” 

yöntemi kullanılarak ağ kabuk yapısındaki deformasyonlar hesaplanmıştır. Son olarak, 

ana kabuk şeklinin yüzeyine mümkün olduğunca yakın ayrık bir uyarlaması 

oluşturulurken, inşaat maliyetini en aza indirmeyi amaçlayan çok amaçlı bir 

optimizasyon süreci formüle edilmiştir. 
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CHAPTER 1 

INTRODUCTION 

1.1. The Scope of the Research 

The architectural design procedure is often described as a complicated process since it 

requires being able to answer people’s different needs at the same time. In addition, 

the design process involves making decisions on many parameters simultaneously, in 

order to develop a required output, while satisfying design constraints. The decisions 

in this process significantly affect the finalized solutions. 

Throughout history, the architects used shells to overcome various design problems 

due to their structural stability and efficient material usage. A shell structure can be 

defined as a system that not only provides a covering skin but also is capable of 

carrying itself and relative loads without needing any additional supports. In most of 

the cases, the high structural performance of the shell is the result of its geometrical 

properties which allows the redirection of the forces to a support structure. A similar 

principle can be seen in the examples in nature such as bird eggs, seashells, and soap 

bubbles. A well-design shell system can work effectively in relatively large spans; 

therefore, in the design problems which contains large areas without any vertical 

supports, a shell can be considered among the most effective choices. Also, a shell 

system can provide the required freedom to the designer in the formal exploration 

process of the structure since it can offer great flexibility regarding shape. Shells may 

offer an extended range of choices in terms of shape, from simple symmetrical vault 

or dome shape to more complex asymmetrical freeform shapes.  

Gridshells can be defined as a kind of updated traditional shell structures such as a 

vault or a dome. Instead of one continuous surface element that acts as both cover and 

support in shells, gridshells consist of discrete structural elements with space in-

between them. In other words, gridshells are shells where material has been removed 

in order to create a balanced pattern for the stress. This material relief affects the 

structural behavior of the gridshell and makes it a little different than a continuous 

shell. In gridshells, the loads are carried by discrete structural elements instead of a 

continuous surface. Therefore, the internal forces in a gridshell can follow a limited 

number of paths whereas a continuous shell contains an infinite number of possible 

load paths. Even though, both shell structures resist the loads through axial stress, the 
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cross-sections of slender gridshell elements contribute the resistance to the bending 

forces that may occur as a result of a non-optimized form. Besides these structural 

features, gridshells are considered very similar to continuous shells concerning overall 

structural behavior and the possibility of adopting a range of different geometries. 

Gridshells can be built in various forms both symmetrical and asymmetrical in order 

to cross large spans with well-adjusted material usage. Unlike a continuous shell, the 

in-between spaces can be utilized as openings on the structure’s surface. They can be 

made of numerous different materials such as steel, structural aluminum or wood. Also, 

the pattern that is utilized in the tessellation of the surface may be considered as a 

decision variable in order to contribute to the overall appearance of the structure. 

Despite the advantages, gridshells are not often utilized due to their complex design 

process and hard engineering structural calculation requirements. One of the most 

significant problems in the gridshell design is to decide geometrical features of the 

structure since the geometry of the structure should satisfy the structural requirements 

while fulfilling the functional, aesthetical and programmatic concerns. Therefore, the 

form finding process is a critical decision-making process which must include the 

synthesis of both architectural and engineering design decisions related to the problem. 

Nonetheless, the use of algorithms in the computer technologies and the increasing 

usage of the computer-aided drawing programs in the architectural field make the 

design problem’s translation to the digital environment possible in order to coop with 

both architectural and engineering aspects simultaneously. By using algorithmic 

modeling programs, the elements of a gridshell can be generated and controlled 

parametrically. Moreover, the initial formal exploration process can be richened with 

the integration of the form-finding methods. As a result of the rule-based 

computational process, the initial form will be statically stable. Also, the structural 

verification of the elements can be done throughout the design process. 

For this reason, the study focuses on developing a generic computational model which 

can be utilized in the gridshell design process by the designers. The model includes 

the generation of gridshell, its structural verification, and optimization of the form and 

construction cost. As a result of the optimization process, within the defined decision 

variables, design constraints, and design objectives a set of multiple solutions in a 

specific design problem can be generated. 
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In this thesis, an iterative, computational design method for gridshell design is 

developed. The method does not only include engineering features but also gives high 

importance to the design decisions from the architectural perspective. The designer 

defines the decision variables and design constraints, and they have a significant 

impact on the generated set of alternatives. 

1.2. Research Goal and Question 

The primary objective of this thesis is to develop a computational design method that 

is capable of generating gridshell structures with different geometrical and structural 

properties. Within the scope of the user-defined inputs and limitations, the results of 

the created workflow vary. Also, the developed method includes an optimization 

process between the geometry of the gridshell and initial construction cost subject to 

the user-defined design constraints such as the maximum desired height and the ratio 

of the useful floor area to the total floor area. Besides the architectural constraints, the 

method includes structural constraints related to the maximum allowable deflection. 

The user should define the inputs such as the geometrical boundary of the floor which 

is intended to be enclosed with the structure, the placement of support elements and 

their relationship with the overall structure.  

Concerning the primary goal, the research questions are also as follows: 

• What are the geometrical features and structural principles of shell systems? 

• What are the methods related to form-finding and structural analysis of a shell 

and can we determine a design method in the utilization of a gridshell? 

• Can we develop a computational workflow for a generic gridshell design process 

that includes the form-finding process as well as an optimization between 

geometrical features and construction cost? 
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1.3. Research Focus and Framework 

The thesis focuses on developing an iterative design method that can be included in 

the design phase of gridshell structures. The method concerns about the architectural 

decision and their effects on the shape as well as the required engineering equilibrium 

calculations related to a gridshell design. In addition, the method includes an 

optimization process for minimizing the construction cost while creating a discrete 

gridshell geometry as close as possible to the initial smooth shell surface. In this 

context, literature reviews on gridshells’ structural behavior, form-finding methods and 

structural performance verification are done. Thus, a framework is determined for the 

computational gridshell design method. 

The computational design approach of the study is essential in order to create a design 

environment that allows the examination of the outcome of architectural decisions 

related with a gridshell design problem as well as their effect on the structural 

performance, simultaneously. Moreover, including an optimization module to a 

computational design environment is relatively easy since the digital model which is 

created in this environment consists of multiple parameters that can be translated into 

decision variables and constraints.  

In order to control the architectural aspects of the gridshell, the architectural decisions 

related to the overall design are defined as discrete parameters, inputs, and constraints 

in the context of the computational design method. Due to the parametric nature of the 

design method, it can be adapted to different site conditions and limitations related to 

a gridshell design problem. Also, constraints that are related to the architectural aspects 

of the gridshell are included in the workflow.  The reason for that is to control physical 

properties of the structure as well as the ratio of the useful floor area to the total floor 

area in order to minimize the loss of area due to the unsuitable ceiling height related 

with the usage of the space.  

By introducing architectural and structural constraints, the optimization process results 

with a suitable set of alternative gridshell designs that satisfies the required criteria. 

The iterative character of the method takes its power from the optimization module 

which is included in the context of this study. The objectives of the optimization 

process are defined as the minimization of the construction cost and maximization of 

the shape approximation of the discrete gridshell geometry to the smooth shell surface 
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while satisfying the constraints related with architectural decisions and structural 

performance.  

The construction cost is calculated by considering the volume of the discrete gridshell 

elements and the number of the joint elements in accordance with their relative unit 

prices. The costs related to workmanship and maintenance is not included in the cost 

calculation. Even though glass panels with aluminum structural frames are included in 

the structural calculations as cover material for gridshell, they are not included in the 

price calculations. The reason for that decision is, the force on the gridshell due to the 

self-weight of this material is relatively large. Therefore, a structure that is capable of 

carrying this material can carry most of the different construction materials. However, 

the price of the glass paneling system is significantly higher than the price of the 

wooden structural elements of gridshell; therefore, the price calculations result with 

the domination of the price of glass paneling system dominated when it is included. 

The approximation of the smooth shell surface is defined within the context of the 

discrete transformation of the initial surface geometry. In cases that a gridshell consists 

of discrete linear elements and planar faces, it is not possible to create a smooth 

gridshell surface. However, by refining the surface division and tessellation, it is 

possible to control the generating lines in the discrete transformation process. In other 

words, the more the generating lines and discrete transformation are refined the better 

the discrete version will approximate the initial smooth surface geometry. Therefore, 

the maximization of the number of sub-surfaces as a result of the discrete 

transformation is considered as an objective in the optimization process in order to 

create the discrete version as close as possible to the initial surface. 

Regarding the optimization algorithm, the evolutionary algorithm named HypE is used 

in this study since it is a predefined algorithm within the digital tools which are 

included in the computational design method. Due to the usage of a single algorithm 

in the optimization process, the performance evaluation of the optimization algorithm 

is excluded from the scope of the thesis. 

A generic wood material, which is a predefined material within the context of the tools 

that are included in the workflow, is utilized for the gridshell elements in the scope of 

the study. Three different rectangular cross-sections for the linear wooden elements 

are employed. The form-finding approach which is included in the design method is 
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considered as material-oriented rather than a geometry-oriented procedure since the 

properties of the material are known, therefore, the Dynamic Relaxation Method is 

chosen in order to utilize in the physics-based form-finding process of the gridshell 

model. 

Structural performance evaluation of the gridshell alternatives is done by using “Finite 

Element Method (FEM),” therefore, the design method includes the assembly of the 

Finite Element Model of the gridshell. Concerning the loads, the gridshell structure’s 

self-weight, the weight of the cover material and wind loads are taken into account. In 

the FEM analysis module, the maximum displacement of the structure, as well as the 

nodal displacements of the relative elements, are calculated and evaluated. Material 

properties of the generic wood material which is included by the FEM module have 

been used to perform the analysis. 

1.4. Method of the Research 

The design of a gridshell is often considered as a complex process because the 

architectural decisions related with the geometry have a direct relationship with the 

structural performance since the elements of gridshell are load-bearing besides the 

aesthetical features. Also, the engineering calculations related to finding the shape for 

a gridshell which is structurally in equilibrium can be considered as complicated. 

According to the research, it can be stated that thanks to the recent development in the 

computational design programs, the gridshell design problems can be translated into a 

digital design environment in order to coop with architectural and structural aspects 

simultaneously. Within this regard “shells and their structural behaviors,” “form-

finding methods” and “computational workflow for gridshell generation and 

optimization” are the chapters of the method to follow. The method of the research has 

been expressed as in the followings; 

Shells, Special Features and Structural Behaviors: This chapter of the study aims to 

explore the difference between structural shell types and their structural behaviors. The 

historical examples of continuous shell systems and the development of the gridshell 

structural system are examined. The examination of their geometrical properties and 

the structural principles helps to define multiple criteria for gridshell design and 

structural evaluation. 
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Form Finding Methods and Structural Analysis: In this chapter, the form-finding 

methods, as well as the structural analysis procedures related to shell systems, are 

studied. The evolution of form-finding methods from the traditional physical form-

finding methods to computational form-finding methods is examined. Moreover, a 

comparison is made between the different types of computational form-finding 

methods. Furthermore, the application of Finite Element Method in the structural 

analysis field is examined. The information gained from this part of the study is utilized 

in the form-finding process and the structural performance verification part of the 

computational gridshell design method.  

Development of the Computational Workflow for Gridshell Generation and 

Optimization: This chapter aims to develop a computational workflow that includes 

generation of a gridshell as well as the optimization process considering related 

objectives and constraints. In order to create the workflow, Rhinoceros 3D a Computer 

Aided Drawing (CAD) software and its visual programming extension Grasshopper is 

used. In this digital design environment, an algorithmic design method is created that 

consists of consecutive steps. The adaptive nature of the workflow allows the creation 

of different gridshell design alternatives as a response to a given design problem. 

Following the initial definition of the user inputs, the physics-based form-finding 

procedure which is included in the workflow helps to create an initial shell geometry 

by utilizing real-world physics simulations. For the simulations, Kangaroo a physics 

engine plug-in for Grasshopper is used. Following the acquisition of shell geometry, 

a discrete version of this geometry is creating by dividing its surface considering the 

division count and tessellation type. To assemble a Finite Element Model, Karamba 

plug-in for Grasshopper is included in the workflow. With the help of this plug-in 

deformation analysis are made to evaluate the structural performance of the gridshell 

model. In order to create a set of gridshell design alternatives Octopus which is a Multi-

Objective Evolutionary Optimization plug-in for Grasshopper is used. The gridshell 

design problem is translated into a multi-objective optimization problem that includes 

the minimization of the construction cost and the maximization of the approximation 

of smooth shell surface related to the discrete transformation of the shell surface. Lastly, 

the method is applied to two different gridshell design problems, and the outputs of 

these two cases are evaluated. 
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Figure 1.1. Schematic illustration of the method of the research. 
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CHAPTER 2 

SHELLS, SPECIAL FEATURES, AND STRUCTURAL BEHAVIOURS 

Structures can be categorized by following different approaches in terms of their form, 

their functionality and the materials that included the structures, etc. (Engel & Bandel, 

1967). Considering the shape of the elements which are created throughout the history 

of structural design, the shapes can be roughly categorized as linear and surface 

elements (Dimcic, 2011). If one dimension of the element is significantly larger than 

the other two dimensions, the element can be categorized as a linear element such as 

columns and beams whereas, if the two dimensions of the element are relatively 

proportional and significantly bigger than the other dimension, the element can be 

named as surface elements such as walls, slabs, etc. 

The orientation of the elements in 3D space can be different ways, and it is one of the 

most critical factors that define the character of the element. In other words, a linear 

element could be utilized vertical or horizontal which named different in each 

approach as a column or a beam, respectively. The same rule applies to the surface 

elements; they also can be named as a slab for horizontal utilization and a wall for 

vertical utilization. Even though elements that have a certain slope are used generally 

for roof structures, therefore, name differently. However, they still have the same 

principle regarding the load distribution over one or two dimensions. Different 

combination of both systems can be seen throughout the history following the 

development of the technology and discovery of new materials. 
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Figure 2.1. Model demonstration of the efficiency of a thin plastic curved element 

(Chilton & Isler, 2000). 

However, the straight and flat elements can be considered as inefficient in comparison 

to the curved ones. Heinz Isler who is a Swiss engineer created a simple experiment 

model (shown in Fig. 2.1) to demonstrate the strength of a curved plastic element in 

which can resist more than 30 times greater load than an equivalent flat element 

(Chilton & Isler, 2000). Throughout history, the arched structures similar to the Isler’s 

model were made by using materials that are strong in terms of compression but 

relatively weak in tension. One of the early examples of the arched structures is the 

Persian monument Taq-i Kisra which was built in 540 A.D. The structure has 37 meters 

high at the peak point of the arch which is made out bricks, and quick drying cement 

spans 26 meters distance (Scarre, 2002). As a better solution than laying bricks, in the 

Ancient Rome, a cast material which can be considered as an early version of concrete 

consists of mortar, volcanic sand, water, and little stones is developed (Kleiner & 

Mamiya, 2005). The Roman Pantheon which is considered as the largest unreinforced 

concrete dome ever built spans 43.3 meters with a thickness that demonstrates only 

2.8% of its diameter. Cotterell and Kamminga (1992) have examined the dome of 

Pantheon alongside some of the other examples such as Hagia Sophia and Augustan 

Temple of Mercury and concluded that a hemispherical dome could establish stability 

if it is thicker than 2.1% of the dome’s radius (Cotterell & Kamminga, 1992). The 

pictures of Taq-i Kisra which was built in 540 A.D. and the Roman Pantheon which 

was built in 126 A.D. is shown in Fig. 2.2, respectively. 
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Figure 2.2. The Taq-i Kisra Monument and the Roman Pantheon. 

Curved structures, shells, are developed following the introduction of reinforced 

concrete systems in the 19th century which can be considered as a special kind of 

material that can work efficiently in both compression and tension. Since the 

reinforced concrete is a homogeneous material needed to be cast, it allows even 

distribution of force. Therefore, it makes the transformation of the flat slab plates into 

curved shell structures possible. Structural shells can be described as a system of 

uniform or composite structure that defines a supporting system as well as coverage. 

Due to the structural stability of its geometry and efficient usage of material, shell 

structures often preferred in architecture. Shells are unique structural elements because 

of their span to thickness ratio, usually smaller than 500 to 1 (Chilton & Isler, 2000). 

Shells can be examined in two groups regarding the material usage and the overall 

appearance mainly named as continuous shells and gridshells. The utilization of the 

structural members is different in these two systems, in continuous shells, as the name 

suggests, the continuous envelope also acts as the structural element the loads are 

diverted on one large surface. 

On the other hand, the gridshell system consists of discrete structural elements. 

Therefore, the paths of the loads are limited. Even though they have similar structural 

principles as they both carry the loads mainly through axial stress, the utilization of 

discrete elements makes gridshells more resistant to the buckling. In terms of geometry, 

both of them can possess double curvature which may result in symmetrical and 

asymmetrical forms. 
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2.1. Continuous Shell Structures 

Continuous shells are 3D surface-like solid structures which most of the cases possess 

a specific curvature. The geometry of a shell may have a single or double curvature; 

this situation creates a significant diversity in form finding. Besides the variety of the 

forms can be created, the surface curvature of the shell helps to divert gravitational 

force efficiently to shell’s supports via in-plane stresses. This situation allows the 

creation of lightweight structures which can cover vast distances without the 

requirement of any additional vertical structural elements. 

Continuous shell systems do not consist of vertical and horizontal discrete structural 

elements; instead, they carry the loads through their geometry. The stiffness which is 

required to resist the loads is a natural conclusion of their 3D forms. Continuous shells 

possess membrane action which creates uniformly distributed in-plane stress fields 

which consist of normal and shear stresses. In order to create a required resistant to the 

applied loads, the membrane forces such as tension, compression, and shear forces are 

employed by the shell structures. Because these membrane forces are the only forces 

when considering shell’s structural behavior, loads are not resisted by bending 

resistance. Therefore, since the thick surfaces and high moments of inertia are out of 

the concern, thin sections can be employed in shell structures. However, the shells that 

made of thin sections may suffer out-of-plane buckling regarding structural stability. 

2.2. Gridshells Structures 

Gridshell systems can be considered as derivations of continuous shell systems. The 

simple idea was including the linear systems by merging a tessellated surface with a 

continuous shell structure. The resulted structure is a space-frame structure of 

connected discrete structural elements. This structure type allows the utilization of 

materials such as steel or wood in order to coop with pressure and tension forces with 

the ingenious surface division and connection node design. Milos (2011) described 

gridshells as “It was a mix between a grid structure and a continuum shell, an 

evolution of truss structures into spatially curved grids.” One of the best examples 

which utilize the merging idea of a grid and a shell is the Torroja’s Fronton Recoletos 

which was built in Madrid in 1935 (Lozano-Galant & Payá-Zaforteza, 2011). The 

structure’ roof which consists of both triangular gridshell and concrete shell combined 

is shown in Fig. 2.3. 
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Figure 2.3. Interior and exterior view of the Fronton Recoletos (Lozano-Galant & 

Paya-Zaforteza, 2011). 

As a material choice, iron and steel often used in gridshell systems due to the 

possibilities of prefabrication. Johann Schwedler makes one of the first successful 

application of steel gridshell system. Schwedler Cupola which was developed by 

Schwedler was managed to work on span distances of 25-45 meters (Knippers, 2000). 

Its first utilization was a steel roof element for the gas holder of the Imperial 

Continental Gas Association in 1863. Following the work of Schwedler, Vladimir 

Shukhov, a Russian engineer was able to build a double-curved gridshell structure 

which the surface tessellated into quadrangular elements for the roof of exhibition 

pavilions at the All-Russia Industrial and Art Exhibition in 1897. The pictures of 

Schwedler Cupola and Exhibit Pavilion during construction are shown in Fig. 2.2, 

respectively.  

   

Figure 2.4. Schwedler Cupola (Berlin, 1863) and Exhibit Pavilion during 

construction (Vyksa, 1897). 

In terms of shape, a sphere can be considered as a geometric shape that is capable of 

closing a volume with a minimum surface. Buckminster Fuller, who is considered one 

of the pioneers in the field of architecture and engineering employed this idea and 

translated it to the grid shell structures. The spherical gridshell structure which consists 

of triangulated tessellation is capable of working in large spans made of lightweight 

structural elements. Fuller (1982) described his vision as; “Geodesic structures opened 

up the ability of humans to build unlimited-diameter clear-span spherical structures. 
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By 1958 I had built a clear-span geodesic hemispherical dome of 117-meters diameter. 

Since then they have gone to 213 meters in diameter, and they will keep on growing in 

clear-span size at an ever faster rate until we enclose whole cities”. Fuller’s work 

showed that the shape of a structure with the geometric disposition of the assembled 

elements, has a significant effect on structural design and ingenious prefabrication 

process can be adopted in order to create light-weighted and stable structures. Fuller’s 

most famous work The Biosphere in Montreal, Canada which was built in 1967 and 

manage to achieve a working span of 76 meters is shown in Fig. 2.3. 

 

Figure 2.5. The Biosphere by Buckminster Fuller, Montreal, Canada. 

The nature of gridshell structure allows to have symmetrical or asymmetrical forms as 

well as to have double curvature geometry similar to the continuous shell structures. 

Although the gridshells have similarities with shell systems in terms of formal variety, 

their structural behavior is different from continuous shells. Gridshells consist of 

discrete structural members which form the shell geometry. The non-continuous nature 

of the surface of gridshell systems and the high number of structural elements often 

results with structural complexity because of the high amount of time which needed to 

conclude the structural calculations. This is one of the main reasons that there are 

significantly fewer gridshell examples than continuous gridshells that have been built. 

However, because of the efficient material usage and the utilization possibility of in-

between spaces between the structural members in different ways, gridshell structures 

can contribute to the economic and formal aspects of many different design problems. 

Gridshell structures consist of discrete structural members as well as joint elements on 

connection points. Different purposed panels can be placed on the intermediate spaces 

between the structural elements. According to their utilization, the in-between spaces 

can be transformed into opaque, transparent or translucent surfaces. The grid layout of 
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the structural elements directly affects the panel shapes, structural behavior of the 

structure and aesthetical aspects of the structure. Concerning their structural 

complexity, gridshell structures make good cases for Finite Element Analysis in which 

the values and equations such as the displacement, stress and assembled elements 

stability can be calculated (Vejrum, 2013). 

2.3. The Curvature of the Shell Surface 

One of the most important geometrical features of the shell systems is they can possess 

double-curvature through their geometries. According to (Stevens, 1981) and others, 

there are two principal curvatures named as K1 and K2 that can be used in order to 

create the local shape of a surface. These represent the maximum and minimum local 

curvatures of the planar curvatures which are created by employing the intersections 

of the relative surface and normal planes. If none of the curvatures in a surface is equal 

to zero, the resulting surface is considered as it possesses a double-curvature. In Tab 

2.2, the six possible surface shape classes and the relationship with the two curvature 

categories are shown. 

Table 2.1. Classification of the surfaces by their shapes. 

 𝐾1 < 0 𝐾1 = 0 𝐾1 > 0 

𝐾2 < 0 Ellipsoid Cylinder Hyperboloid Surface 

𝐾2 = 0 Cylinder Plane Cylinder 

𝐾2 > 0 Hyperboloid Surface Cylinder Ellipsoid 

 

The Gaussian curvature is a result of these two principal curvatures 𝐾𝐺 = 𝐾1. 𝐾2 

(Hoefakker, 1900). When one of the main curvatures is equal to zero 𝐾𝐺 = 𝐾1  the 

resulting surface will be a cylindrical surface. When the two main curvatures are 

negative to each other (𝐾𝐺 < 0) the resulting surface will be a hyperboloid surface and 

the negative gaussian curvature is also called anticlastic. When the two main 

curvatures are both positive (𝐾𝐺 > 0) the resulting surface will be an ellipsoid and the 

positive gaussian curvature is also called synclastic.  
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In Fig 2.8, the three types of surfaces that have different gaussian curvatures cylindrical, 

hyperboloid and ellipsoid are shown respectively. 

 

Figure 2.6. Gaussian curvature examples. 

2.4. Structural Behavior 

Structural elements which have a significantly greater dimension than their other two 

dimensions (also can be named as linear structural elements such as cables, structural 

beams, and arches) or structural elements which have a significantly smaller 

dimensions than the other two (such as surfaces) have the same principle; they tend to 

be bent easily rather than be stretched. If an amount of tension is applied to a cable, 

the cable will stretch as the opposite way of the stretching (negative stretch since its 

length change in a negative way) of a column under an amount of compression. 

However, if the amount of applied load is increased, the column will buckle, and its 

length decrease through bending in contrast to axial strain. 

A cable is capable of carrying a uniformly distributed vertical load per unit length by 

using only axial compression. The normal vector of the load on the cable is balanced 

by the axial force multiplied by the curvature (1/radius of the curvature). Also, other 

loads will result with deflection of the cable. 

Since a continuous shell consists of a continuous material all along the structure, the 

loads are distributed as in-plane normal as well as the shear stress distributed equally 

on shell’s structural material. This structural aspect effects the elements’ behavior, they 

act as if they are locked in their places (Toussaint, 2007). The gridshell, on the other 

hand, is a system that consists of structural elements that are connected in joints. Due 

to the existence of the separate linear structural elements in the system, the elements 

transmit the forces in a relationship with the elements’ directionality and gain 

resistance to the out of plane bending. The bending stiffness of an element in a gridshell 

prevents any inconvenience in the membrane behavior. In order to transmit the shear 

forces between the elements and lock the system, diagonal stiffness is required. In 
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order to achieve diagonal stiffness, linking structural elements with rigid connections, 

creating an external layer over the members, employing cross cables or bracing could 

be the possible ways. 

 

Figure 2.7. Structural behaviors of shell and gridshell elements. 

In Fig. 2.3, some of the structural behaviors of the shell and gridshell elements are 

shown. A continuous structural shell element which is shown on the left is able to carry 

the applied loads through the equally distributed in-plane stress fields over its thickness. 

When there is no diagonal reinforcement on a gridshell element which can be seen in 

the middle of Fig. 2.3 the elements’ resistance to the applied loads through axial forces 

and out-of-plane bending resulted in higher deformation than a continuous shell 

element. Lastly, the representation on the right shows that when a diagonal 

reinforcement applied to a gridshell system, the shear forces can be transmitted 

between the edges of the structural elements. 

2.4.1. Flat Plates and Plane Stress 

The applied forces on a flat plate can be examined in two main categories; forces on 

its own plane (in-plane stress) and forces out of its plane as shown in Fig. 2.3. The 

concept of “plane stress” includes in-plane loading that presents itself in most of the 

situations such as the bending of an I-beam. Even though the loading of the beam is 

considered perpendicular to its relative axis, the significant part of the stress appears 

in the web and flanges are in fact in the plane of the steel plates. Out of plane loading 

of a plate cause the plate to be bent. 
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Figure 2.8. Plane stress and plate bending (Williams, 2014). 

In Fig. 2.3, the elements of membrane stress are shown which are normal stress in the 

x-direction and y-direction 𝜎𝑥  and 𝜎𝑦 , respectively. In addition, shear stress 

perpendicular to the X-Axis in the Y-Axis is shown as 𝜏𝑥𝑦 whereas the shear stress 

perpendicular to the Y-Axis in the X-axis is shown as 𝜏𝑦𝑥. In-plane membrane stress 

which can be correlated with the axial stress that appears in an arch in contrast to the 

bending stress. Membrane stress is often defined as the force effect on per unit length 

of an imaginary cut of a surface instead of force per unit are of the surface. According 

to the equilibrium of moments, one may state that 𝜏𝑥𝑦 = 𝜏𝑦𝑥. Therefore, by using 𝜎𝑥, 

𝜎𝑦  and 𝜏𝑥𝑦 = 𝜏𝑦𝑥  following equations of equilibrium, Eq. 2.1 and Eq. 2.2 can be 

derived in the X-Axis and Y-Axis, respectively. 

 
𝜕𝜎𝑥

𝜕𝑥
+

𝜕𝜎𝑦𝑥

𝜕𝑦
= 𝑞𝑥 (2.1) 

 𝜕𝜏𝑥𝑦

𝜕𝑥
+

𝜕𝜎𝑦

𝜕𝑦
= 𝑞𝑦 (2.2) 

The applied loads on per unit area of the relative plates are notated as 𝑞𝑥  and 𝑞𝑦 , 

respectively. Self-weight of the structure can be given as an example to these loads. 

The plane stress can be considered as statically indeterminate since there are three 

unknown stress whereas two equations of equilibrium. If 𝑞𝑥  and 𝑞𝑦  are both 

considered as zero, the relative stress can be translated into an airy stress function (𝜙) 

in order to satisfy the equilibrium equations as follows: 

 𝜎𝑥 =
𝜕2𝜙

𝜕𝑦2  (2.3) 
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𝜎𝑌 =

𝜕2𝜙

𝜕𝑥2  (2.4) 

  𝜏𝑥𝑦 = 𝜏𝑦𝑥 = −
𝜕2𝜙

𝜕𝑥𝜕𝑦 (2.5) 

In cases which include elastic plates, the stresses can be solved by employing the 

stress-strain relationships which includes Young’s modulus (𝐸) and Poisson’s ratio (𝑣) 

with compatibility equation. As a result of two components of displacement relative to 

the X-Axis and Y-Axis, strains will occur. After the elimination of strains by 

differentiating them twice and subtracting, a biharmonic equation can be found 

(Williams, 2014). The equation behaves well and not difficult to solve according to 

Timoshenko and Goodier (Timoshenko & Goodier, 1970). 

2.4.2. Bending Theory and Buckling 

In a case of deformation, a structural shell relies on bending stiffness to carry the 

relative loads alongside the membrane action. To have a bending stiffness contributes 

significantly to prevent buckling in the cases which include the compressive 

membrane stresses. Since the shells are very efficient regarding their structural 

performance, shell buckling is a crucial factor which should be considered carefully 

because it can cause a total collapse even if there are no visible deflections. The 

behavior of bending action can be considered as in a contrast relationship with the 

shell’s efficiency in terms of form, tessellation and the support. In other words, if a 

shell’s efficiency decreases, it starts to behave better in buckling since bending action 

requires more deflection than membrane action. 

Williams (2014) stated that; “Experiments show that a properly supported shell 

working primarily by membrane action can never support anything like the theoretical 

‘eigenvalue’ buckling load or ‘linear’ buckling load even when the utmost care is taken 

to eliminate initial imperfections.” Unfortunately, the creation of the analysis 

concerning the shell buckling by hand calculations is extremely hard, event eigenvalue 

analysis for a spherical shell is complicated. This situation requires the translation of 

these analyses into the computer environment, however, since this is a relatively new 

approach, the results should be treated with caution.  
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2.5. Conclusion and Design Goals 

In this chapter, the two structural shell types their features and the structural behaviors 

are presented. According to the current literature, structural shell systems can be 

categorized into two by considering their appearance and different material and 

structural member utilization. In continuous shell systems, the structure’s envelope 

also has the load-bearing characteristic. The loads are carried by one large surface that 

also creates the general appearance of the structure. Alternatively, gridshell systems 

consist of multiple discrete structural elements and connection nodes. The tessellation 

pattern on the gridshell geometry defines the way that the discrete structural members 

connected. In addition, the geometrical characteristics of a tessellation pattern affect 

the appearance of the structure as well as the structural performance. Both of the shell 

systems have the same principle in terms of diverting the applied loads, they carry 

them through axial stress. However, the utilization of discrete elements in gridshell, 

increase the structure’s resistance to out of plane bending. Furthermore, a shell’s 

ability to possess double curvature in its geometry leads to membrane action that 

effectively diverts the forces to shell’s supports via in-plane stresses.  

In light of the reviewed literature in this chapter, design goals for the computational 

gridshell design method are considered as: 

• The method should be able to deal with complex gridshell geometry and make it 

easier to control. 

• The method should contain different tessellation types related to the gridshell’s 

surface to create a variation in the generated alternative solutions. 

• Since the shell systems behave very well when possessing double curvature in 

their geometry, the method should be able to generate gridshell alternatives by 

employing this principle. 
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CHAPTER 3 FORM FINDING METHODS AND STRUCTURAL 

ANALYSIS 

Form-finding of a structure is one of the most critical decision-making processes since 

it is directly related to the decision of the overall shape. In the case of gridshell 

structures, the decision process is different from most of the architectural design 

processes because the structural elements are also the elements that create an overall 

appearance. Rather than designing a structural system after the overall architecture is 

decided, in a gridshell design process, the appearance and structure of the system 

should be decided simultaneously. Therefore, the architectural decision variables and 

the structural requirements of a gridshell must be considered as the same elements that 

can fulfill both. The primary purpose of the form-finding process is to find a geometry 

which can be efficiently carry required loads as well as satisfy the architectural 

considerations. The form-finding process is also essential because of the economic 

reasons since the amount of the material required to create the gridshell is the direct 

result of this process. 

3.1. Hooke’s Hanging Chain Law 

One of the primary aspects of shell design is to find a form which is capable of carrying 

the required loads in axial compression without bending outside the optimum margins. 

Robert Hooke who is an engineer and scientist published one of the first examples of 

structural form finding of an arch. In 1676, Hooke published his ideas which one of 

them is the most known Hooke’s Law of Elasticity. The idea behind this invention was 

very straightforward; if a chain is hanged horizontally within a shorter distance of its 

length, it will collapse and behave in pure tension with no bending. The equivalent 

negative of this chain’s form is equal to an arch that works on pure compression. A 

chain that made of homogenous material would have a constant weight per unit length, 

and because of this weight, the chain deforms under its self-weight creates a catenary. 

However, the form of an arch greatly depends on the amplitude of the applied loads. 

If the load distribution on the horizontal plane is uniform, the arch tends to take a form 

that is similar to a parabola. Also, the span to rise ratio is not a constant and can be 

changed in a range of 2 to 10 (Adriaenssens et al., 2014) as most of the shell structures 

have. Because of this situation, the formal exploration of even a simple arch that acts 
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on a pure compression because of its weight has many possibilities due to the load 

distribution and the rise of the arch.  

 

Figure 3.1. Poleni’s drawing of Hooke’s analogy between an arch and a hanging 

chain, and his analysis of the Dome of St. Peter’s in Rome (1748). 

Hooke’s Law can be considered for shell structures concerning different geometrical 

approaches rather than a single arch. Shell systems are significantly more complicated 

than a single arch because of the possibilities of multiple load directions which may 

introduce bending. In order to apply Hooke’s principles to a shell system, a 3D chain 

model which consists of intersecting catenaries in specific support points could be 

created. The model could also be converted as a discrete shell design that its surface 

elements are continuously shaped according to the connection nodes. By adjusting 

each chain's length that creates this network of chains which acts in tension, a variety 

of form derived from self-weight of the catenaries can be found. The inversion of this 

networks’ form represents a discrete compression only shell form. 

3.2. Physical Modeling 

The use of physical models in order to solve a specific design problem is an old and 

relatively effective method which designers still could rely on today (Addis, 2014). 

Throughout history, many designers have been using this procedure in many different 

design problems to create even the most complex forms with simple geometries such 

as circles, squares or triangles. Even though the decision on a specific form could be a 

conclusion of a unique design method that greatly depends on the architect’s 

preferences, creation process of an architectural form brings similar issues such as its 
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projection on the plan, the required height, the number of loads, structural effectivity 

and the appearance of the final shape. 

Until the discovery of the computational computer programs, the structural analysis of 

the shell structures was based on mathematical equations and models that structural 

engineers could create manually. This situation has affected the shell design methods 

throughout history since it is easy to calculate required dimensions when the simpler 

forms employed such as spheres, cones, ellipsoids and so on. Creation of small-scale 

physical models alongside the mathematical models of the structures helps to both the 

engineers and the architects to prove the structure’s viability. In addition, rather than 

building a full-sized prototype, building a small-scale model is cost effective and may 

give an idea to the structural behavior of the full-sized structure when it is constructed. 

However, for some structures, this is not the case. Therefore, the physical models can 

be considered in two categories in terms of structural behavior which are independent 

on the scale and dependent of scale. 

3.2.1. Scale-Independent Modeling 

There are cases that structural behavior can be scaled up linearly in order to give an 

idea about how the full-size structure will behave. Catenary models with chains and 

nets of funicular arches and vaults and models of the compression structures such as 

masonry arches and vaults can be considered as examples to these cases. Using small-

scale models to predict these structural behaviors are often reliable. 

In a hanging chain model, the applied forces can be considered as in pure tension with 

no bending movement. Simon Stevin who is a civil engineer developed forces’ 

mathematical representation using vectors (Stevin, 1586). In his works, he created 

different examples by attaching weights on a string in order to create 2D and 3D 

funicular shapes, in Fig 3.2 the funicular form diagrams of Stevin are shown. 

 

Figure 3.2. Stevin’s funicular form diagrams (1586). 
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Robert Hooke used his approach to the inverted catenary during the design phase of St 

Paul’s Cathedral in London alongside Christopher Wren. When designing the dome of 

the cathedral, they employed Hooke’s law of inversion in order to help the structural 

calculations and design. For designing the dome which has a 33m diameter, Wren used 

a simple chain model which can be seen on his cross-section sketches of the building 

in Fig 3.3. This is not only raised the Hooke’s and Wren’s confidence to the structure 

but also it is one of the early examples of employing a physical model for a 

compression structure in order to determine its final shape of the structure.  

 

Figure 3.3. Proposed section of St. Paul’s Cathedral. 

The work demonstrated a catenary arch on top of the masonry in order to achieve the 

structural stability for the dome. In this work, a uniform chain with weights is used to 

represent the structure consists of the same sized elements. The chain models that were 

used in the design were 2D since there is no evidence to support a 3D chain model was 

used in the process. 

The well-known Catalan architect Antoni Gaudi used the hanging chain models often 

during the design phase of his works. The models that he created were both 2D and 

3D hanging chain models made of strings and different kind of weight. Also, the idea 

of using 3D hanging chain models to represent a space most likely developed by Gaudi 

(Huerta, 2006). These models helped him to decide the final shape of the arches and 

the vaults that he included his several masonry building designs. One of the examples 

to his work is the Crypt of Colonia Guell (Tomlow, 2011), in which Gaudi use a rather 
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complex hanging chain model to create the final forms of the inclined columns and 

large vaults as well as testing the structural behavior in the design process. A 

photograph of the Gaudi’s 3D hanging chain model reproduction for the Crypt of 

Colonia Guell is shown in Fig. 3.4. 

 

Figure 3.4. Gaudi’s hanging chain model reproduction (Asmaljee, 2014). 

3.2.2. Scale-Dependent Modeling 

The scale-dependent models to represent the structural behavior can be considered as 

two groups which are: the models that are created to examine the shells’ elastic 

behavior under the loads can cause the out-of-plane bending and the models to 

demonstrate and examine the buckling failure because of the high in-plane stresses.  

Jørn Utzon proposed a building design for the Sydney Opera house that includes a roof 

made of thin concrete shells which have a rather unusual geometry to represent the 

sails of yachts. In the process of formal exploration for this shell roof, engineers Ove 

Arup & Partners experimented by employing a variety of different shapes in order to 

achieve structural stability by using of a 1:60 scale model of the building which can 

be seen in Fig 3.5.  
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Figure 3.5. 1:60 scale model of Sydney Opera House’s thin-shell roof. 

The models proved that the proposed roof design could not carry the acting loads due 

to insufficient stiffness and strength of the thin shell concrete elements. After a six-

year design process that many alternative forms are considered during this time to 

achieve structural stability, a decision was made to use a spherical surface which can 

simplify the construction process of the pre-cast concrete ribbed arch elements and 

ceramic-tile application on top of the concrete structure. 

During the design phase of the Bundesgartenschau Multihalle in Mannheim, the small-

scale models have also used in order to help the decision-making process. The 

challenge was to cover approximately 7.400 sqm irregular shaped area by using a post-

formed timber gridshell structural system. The proposed gridshell system consisted of 

timber structural members, and the total structure was 160 m long with the largest span 

of 70 m x 60 m. Since there is not an example of a structure with this size and 

complexity before, physical models were used in order to discover the ideal shape of 

the structure, alongside the manual and computer-aided structural analysis process 

(Happold & Liddell, 1975). During the design process, several different structural 

models were created to decide the overall shape, to evaluate the relative grid regarding 

stress distribution and the best way to construct the gridshell structure (Bächer & 

Burkhardt, 1978). At the beginning of the design phase, a 1:300 scale structural model 

was created by using wires to evaluate the basic shape of the structure that includes 

two main halls and a tunnel in between them. Following this process, a hanging chain 

model with 1:98.9 scale was built to help the decision-making process of shaping the 

boundary support elements. The network of wires that consists of 15mm long strings 
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was suspended from 80 support points to make final adjustments in order to create the 

ideal funicular form. In Fig 3.6, the 1:300 scale wire mesh model and the 1:98.9 scale 

3D hanging chain model were shown. 

  

Figure 3.6. 1:300 scale and 1:98.9 scale models of the Multihalle. 

3.3. Computational Form Finding 

Today, due to significant developments in computer technologies, employing 

computer-aided methods in order to determine a structure’s overall form is possible. 

The increased interest in using computational design tools in the architectural field, 

the formal exploration process can be richened (Fleischmann et al., 2012). Moreover, 

by using computational tools, the form finding process of a structure can be shortened 

dramatically in comparison to the creation of actual physical models alongside the 

development of relative calculations. In addition to that, the required calculations to 

find a structurally stable form which has been done manually by the engineers for 

decades can be translated into the computer environment to create digital 

computational models and simulations.  

Computational form finding process includes the variables that can be controlled via 

computer programs in order to achieve a form that can be considered as in statically 

equilibrium. The output geometry is a direct result of the required calculations. There 

are different form-finding methods available which can be translated into a 

computational design environment. All of these methods are different theoretical 

approaches which have different usability, required computation time and complexity. 

The required parameters for these methods are similar such as the boundary conditions, 

support or anchor definition, axial loads, forces and their interaction with the geometry. 

As (Cevizci & Kutucu, 2017) pointed out form-finding methods can be discussed in 

two separate groups which are geometry-oriented form-finding methods and material-
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oriented form-finding methods. The main difference between these two types of 

methods is in geometry-oriented form-finding methods such as Force Density Method; 

material properties are not considered. The structural equilibrium is solved by 

considering the geometrical features of the given problem. On the other hand, in 

material-oriented form-finding methods such as Dynamic Relaxation Method, the 

material properties translated into spring stiffness in order to solve dynamic 

equilibrium problems.  

3.3.1. Force Density Method 

The Force Density Method (FDM) is a well-known form finding method which often 

used in the engineering field, first introduced by Schek (Schek, 1974). FDM is 

developed in response to the computational modeling of the structures for the Munich 

Olympic complex (Lewis, 2003). Lewis (2003) defined the operation of the FDM as 

“… uses a linear system of equations to a model static equilibrium of a pre-tensioned 

cable net under prescribed force/length ratios.”  The method mainly used for finding 

the equilibrium shape of a structure that contains a network of cables with different 

elasticity properties against applied stress (Southern, 2011). In addition, the formal 

exploration process of a cable network can be defined as the determination of the 

architectural form (Gidak & Fresl, 2012). Therefore, a form that is the result of FDM 

is not only an aesthetic concept but also can satisfy the engineering aspects such as 

load transfer and structural performance requirements. 

FDM is developed to prevent the problems related to the computerization of inverse 

hanging chain approach. The form-finding process of the method consists of two parts. 

The first part includes the creation of the physical model of the geometry by using 

materials such as soap, elastic fabrics, and threads in a relationship with the geometry’s 

boundary conditions. For the second part, following the creation of the shape which is 

aesthetically determined, a numerical model is developed. 

Some of the properties of FDM which pointed out by Southern (2011) are; “… 

depending only on the force density of the edges and the topology of the network, and 

the system is sparse, symmetric and positive definite, quickly solved using the 

conjugate gradient method”. Besides, FDM does not require any material information. 

The non-materialized equilibrium shapes are independent of the existed material laws 

(Linkwitz, 2014). Therefore, the decisions about the material can be defined after the 
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determination of the equilibrium shape. According to Linkwitz (2014) the two 

important potentials of an unlimited possibility of material properties are; “First, 

resulting design can be materialized arbitrary, giving the initial lengths of the network 

in the un-deformed state without affecting the final shape. Second, one can multiply 

the loads to any realistic value and then calculate the internal force distribution, again 

without changing geometry”. 

 

Figure 3.7. Cable Net Examples by Fresl and Vrancic (2013). 

Even though FDM was introduced many years ago, the method still in use and one of 

the preferred methods in the cases that require form-finding and calculation of the 

equilibrium state of tensile structures (Cevizci & Kutucu, 2017). 

3.3.2. Dynamic Relaxation Method 

The Dynamic Relaxation Method (DRM) which is invented by Alistair Day is a tool 

for examining the behavior of geometrically variable systems. DRM is an iterative 

process that can be included in the structural form-finding process and to achieve a 

static solution (Hüttner et al., 2014). The method is a representation of structural 

elements as a particle-spring system. This system consists of a grid which is a 

representation of spring elements connected by nodes. The mass of these elements is 

also considered as a force on these nodes. When a specific force applied to these nodes, 

it causes a movement on the system until it finds the equilibrium. After the nodal 

movement of the system which is also called as damping is finished, the equilibrium 

state of the system is achieved. The dynamic relaxation method is derived from 

Newton’s second law of motion; it is a step by step solution for a small-time increment. 

In each time frames, the axial movement of the nodes due to the applied force is 

calculated, and nodes move accordingly for a specific period.  
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Figure 3.8. A catenary model, deformation caused by the applied loads to the nodes. 

According to Newton’s first law of motion, an object will accelerate when there is an 

unbalanced force acting upon it which will result in changing this object’s speed, 

direction or both. In addition to that, Newton’s second law of motion states that the 

acceleration depends on two variables which are the sum of the acting forces on an 

object and object’s mass. 

 𝐹𝑜𝑟𝑐𝑒 (𝐹) = 𝑀𝑎𝑠𝑠 (𝑚) × 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝑎) (3.1) 

For the forces and movement on the X- direction for a given time, the law can be 

translated as 

 𝐹𝑥(𝑡) = 𝑚 × 𝑎𝑥(𝑡) (3.2) 

The translation of the equation for Y- and Z- directions which are used in Dynamic 

Relaxation are on the same logic. Besides, Hooke’s law stated that the deformation of 

a spring is proportional to the force that is required to move a spring. The ratio between 

the applied force and caused deformation is a constant ratio and defined as the spring 

stiffness. 

In other words, the dynamic relaxation method includes the movement of intersection 

nodes of the system which is also defined as springs, throughout the small-time 

increments. In addition, all grid lines of the system are assigned values for their axial 

stiffness (EA) and bending stiffness (EI) where E is Young’s modulus, A is the area of 

their cross-section, and I is the second-moment area. The applied gravity loads on 

springs will cause motion on -Z direction and create a hanging tension form. If a 

negative gravity load is applied, as the Hooke’s law suggests, the spring movement 

will be upwards which results with a form that works on compression. 

Dynamic Relaxation Method is mainly used to find the form of cable and fabric 

structure. However, as Garcia mentioned DRM could be defined as “… a numerical 

method that can be utilized in the form-finding of all kind of structures that consists in 

considering that the mass of the system is discretized and lumped in the nodes; these 

nodes oscillate about the equilibrium position, and by introducing artificial inertia and 
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damping, the nodes come to rest in the static equilibrium position” (Garcia, 2011). 

Therefore, the method can be considered as a valid approach that can be included in 

the form finding process of a shell structure. 

3.3.3. Comparison of the Form Finding Methods 

Thanks to the technological developments in the last few decades, the design of the 

complex geometries and the relative calculation of their statical equilibrium shapes 

can be translated into the digital environment. Therefore, In the field of architecture,  

computational interactive form-finding methods can be included to the formal design 

process of the shell structures in order to evaluate the result of the design decisions 

concerning appearance and structural stability. One of the most critical decisions in the 

formal exploration process of a gridshell structure is to determine a suitable method 

for form generation process by considering the parameters and decision variables such 

as structural properties and materials. 

In this chapter, the two form-finding methods which are mentioned above are 

compared with each other in order to discuss two questions; 

• What are the main differences between these methods? 

• Are they suitable for all types of structural problems regarding structural 

approach and material properties? 

There are a limited number of researches that include the form-finding methods of the 

shell structures. Books and articles that are prepared by Veenendaal and Block are 

reviewed in order to make a comparison. 

In Fig. 3.9 the categorization of the form-finding methods are shown with respect to 

the related time-period by Veenendaal and Block (2012). As Fig. X. shows, in the 

works of Veenendaal and Block (2012), the force density method has been defined as 

a geometric stiffness method whereas Dynamic Relaxation Method has been defined 

as a dynamic equilibrium method. 
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Figure 3.9.The categorization of form-finding methods (Diederik Veenendaal & 

Philippe Block, 2012). 

Geometric stiffness methods are considered material-independent methods that 

include geometric stiffness (Block & Veenendaal, 2014). Furthermore, Block and 

Veenendaal (2014) state that “In several cases, starting with the Force Density Method, 

the ratio of force to length is a central unit in the mathematics”. On the other hand, 

dynamic stiffness methods are considered as a validation of the shape equilibrium in 

order to achieve a stable state related to the static equilibrium. Dynamic Relaxation 

Method is categorized under this group. 

 Veenendaal and Block (2014) employed both FDM and DRM as a part of their 

comparison study and applied them to the same data structure which is resulted in a 

shape of a simple shell. According to the method of their study, the minimum 

requirements of each form-finding methods are; 

• A discretization to represent the geometry of the shell. The relative discretization 

process can include the line elements or surface tessellation elements such as 

triangles and quadrilaterals. 

• A data tree consists of the information which describes the shape, connection of 

the relative discrete elements and relative forces to the shell. 

• Equations of equilibrium that describe the correlation between the internal and 

external forces. Since the result of the addition of the internal and external 

forces should be equal to zero, a resulting shape of the form-finding process 

can be considered as in the state of static equilibrium. 
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• A solver that defines the method of solving the equilibrium equations. In the 

cases which the system of equations is considered nonlinear, the related solver 

employs an incremental approach to solve the system. In order to evaluate the 

system’s convergence, the solver contains data which defines the stopping 

criteria. Solving methods may differ from each other regarding the time which 

requires to converge and the working stability. However, assuming that they 

are capable of converge eventually, the results should be the same for the same 

problem considering that the problem and the boundary conditions are alike. 

In their works, Veenendaal and Block (2014) defines the data about the properties 

which should be provided as; 

1. Coordinates that describe the location of the support elements in 3D space, 

2. Surface topology and the connection nodes of the networks, 

3. Related loads, 

4. A threshold for convergence in iterative approaches. 

Following the conducted experiments and applications by Veenendaal and Block 

(2014), the input for the Force Density Method was reduced to a bare minimum. This 

situation may be considered as an advantage since force densities are not eloquent 

concerning physics; therefore, it is not easy to control. Nevertheless, the situation is 

different for dynamic methods as the drawback of these methods is stated as “… 

Dynamic methods such as Dynamic Relaxation are the much larger number of 

parameters necessary for their control. However, in DRM the parameters such as 

stiffness, bending stiffness, initial coordinates, or lengths are either fictitious values, 

chosen for their effect on convergence or on the resulting shape, or they are related to 

the material and physical properties of the structure”. The quantities which should be 

defined by the user are shown for each method in Tab. 3.1. 
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Table 3.1. The needed values to be defined by the user for each method (Veenendaal 

and Block, 2014). 

Method User-defined quantities 

FDM Force densities 

DRM 

Axial stiffness 

Bending stiffness (for splines) 

Initial coordinates, or lengths 

Damping factor (for viscous damping) 

Time step 

 

It is stated that, following the achievement of an equilibrium state, material or physical 

properties can be changed without causing any disturbance to the shape of equilibrium. 

Veenendaal and Block (2014) mentioned this as; “… combined with the ability to 

manipulate the internal forces (through force density, elastic stiffness or spring 

stiffness, as well as loading), suggests that these methods are theoretically 

interchangeable”. 

Moreover, for the problems, in which a shape of equilibrium that works mainly on 

compression can be accepted as a solution, the utilization of geometric methods such 

as FDM can achieve a solution quickly. However, in cases that initial shape and 

deformation are eloquent and the relative material properties are known, the Dynamic 

Relaxation Method is more precise and more suitable. Besides, Cevizci and Kutucu 

(2017) stated that “The bare integration schemes in Dynamic Relaxation Method do 

not need matrix algebra, which may be an advantage concerning a simple 

implementation.” 
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3.4. Finite Element Method and Computational Structural Analysis 

Following the implementation of scientific decisions to the design phase of a structure, 

the design practice has been considerably developed regarding the methodology. In 

ancient times, the builders did not require any computation or theory related to the 

construction of a building. Although there are a variety of historical structures that 

were managed to exist on this day, master builders, architects and engineers have 

developed different methods to examine and understand the nature of the structures. 

Thanks to the experience which has gained throughout the centuries, the improved 

understanding of a building in terms of architecture and engineering create a possibility 

to build more complex structures. The methods which are discovered to analyze the 

structural properties and material properties of a building played a significant role in 

the development of building techniques. 

Kaveh (2014) defines structural design and analysis as; “… the determination of the 

response of a structure to external effects such as loading, temperature changes, and 

support settlements. Structural design is the selection of a suitable arrangement of 

members, and a selection of materials and member sections, to withstand the stress 

resultants (internal forces) by a specified set of loads and satisfy the stress and 

displacement constraints, and other requirements specified by the utilized code of 

practice”. He defined structural decision-making process as a cycle which requires an 

iterative application of structural analysis and design in order to find a suitable solution 

which satisfies the design objectives such as the weight of the structure or the 

construction cost. In Fig. 3.10, the cycle of structural analysis and design which is 

defined by Kaveh (2014) is shown. 

 

Figure 3.10.The Cycle of Structural Analysis and Design of a Structure (Kaveh, 

2014) 
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The structural equilibrium state is defined as the state in which the external loads 

applied to the structure as well as the internal loads are in equilibrium for each node 

that is subjected to the analysis. In order to achieve this state of equilibrium, the nodes 

must be deformed to fit each other within a specific range since the internal loads and 

deformation should satisfy the correlation of stress and deformation of the nodes. 

There are two complementary matrix methods of formulation which can be employed 

for any structural problem named as Displacement Method and Force Method 

(Przemieniecki, 1985). In both methods, the structural analysis is considered as a 

systematic combination of each structural elements into an assembled system that 

satisfies the objectives of equilibrium and compatibility.  

In the Displacement Method also known as the Stiffness Method, the displacements of 

the connection nodes which describes the structure’s deformed state are considered as 

unknowns. The calculations related to the nodal deformations contains the movement 

of the nodes. In order to include the internal forces to the calculations, the correlation 

between stress and strain is taken into account. In the end, by solving the linear 

equations which concern about finding the equilibrium state of each node, solutions 

for unknown displacements are achieved. 

On the other hand, in the Force Method also known as the Flexibility Method, as the 

name suggests, the forces are chosen as unknowns. The deformations of the discretized 

members, as the result of external and internal forces, are defined considering the 

stress-strain relations. In order to calculate the unknown forces, the linear equations 

are taken into account by considering the suitable conditions in which the deformed 

members can be fitted together. 

The finite element procedure has its origin in the work of Turner (1956). In Turner’s 

work, the difference from the previous concepts was the establishment of arbitrarily 

shaped elements as pieces of the original domain. The process considered a specific 

stress distribution for each element in terms of nodal force equilibriums. The 

fundamental concepts of the Finite Element Method, as it is known today, were 

established in the approaches in structural extension and classifications of the matrix 

method suggested by Argyris (1960) (Zienkiewicz, 2000). By mid-1960s, most of the 

fundamental ideas of permitted element forms for self-adjoint problems were included 

in the literature, and finite element procedure was fully established (Zienkiewicz & 

Cheung, 1967) and it was defined as “a method of analysis for highly redundant 
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structures which is particularly suited to the use of high-speed digital computing 

machines”. 

Finite Element Method (FEM) categorizes a set of techniques that share similar 

approaches in the field of engineering (Owen & Feng, 2012). Following the translation 

of this method to the computers, structural analysis in which include the computational 

power of the computers can be done. Pedron (2006) evaluates the performance of the 

FEM when translated to the digital environment as “… non-trivial calculations 

concerning dynamics, collapse mechanisms, materials, and geometrical non-linearity 

as well as ultimate loads could also be routinely performed”. 

FEM is able to coop with structural problems that concern the equilibrium equation 

which include the loads and the nodal displacements. Finite Element Method can be 

used to analyze the physical systems and also known as Finite Element Analysis. 

Following the development of FEM, Pedron (2006) states the impact of this method to 

the structural analysis field as “Until the mid-20th century, despite the use of simplified 

calculation methods like the force method, the displacement method, and the Hardy-

Cross method, it took a long time to analyze structures even of medium complexity, 

mainly due to the difficulty of solving linear equation systems. In the late 1950s, the 

advent of computers and the development of the Finite Element Method completely 

revolutionized structural analyses”. The computer programs which include FEM such 

as Karamba can be found easily (Preisinger & Heimrath, 2014). The programs can 

calculate the internal forces and stress on a specific digital computer model following 

the definition of external forces by the user. Until the satisfied criteria are achieved, 

the parameters of the model can be changed. 

Gridshell structures make good cases for Finite Element Analysis (FEA) due to their 

complex structural nature. FEA can be employed in order to calculate nodal 

displacements, stress and the stability of the structural elements. Gridshells often 

consist of constrained joints rather than pin-joints. This connection type choice on 

connection points allows the movement of the connection nodes that have six degrees 

of freedom when evaluated with FEA (Dimcic, 2011). The six degrees of freedom 

includes the axial forces and moments for X-, Y- and Z-Axis. The members of gridshell 

resist these forces through the area of their cross-section for axial forces and their 

moment of inertia for bending. 
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3.5. Conclusion and Design Goals 

In the conceptual idea development process of a gridshell, any decision related to the 

architectural aspect of the structure directly correlated with the structural performance. 

This is mainly because due to the nature of gridshell systems, the architectural 

elements are also the load-bearing elements of the structure. This situation makes the 

form-finding process a crucial phase of any gridshell design problem. In this chapter, 

the traditional and computational form-finding methods are reviewed. Besides, an 

evaluation method for the structural performance of generated gridshell alternatives is 

studied. 

According to the current literature, there are different methods that can be employed 

in the context of gridshell design problems in order to find an equilibrium shape. As 

one of the pioneers in this field, Robert Hooke developed a method to find the form of 

an arch that works on pure compression by utilizing a simple reverse catenary model. 

Following the development of Hooke’s law, the application of the method extended to 

the 3D shell problems by considering multiple catenaries as a network of forces. This 

approach forms the basis of different physical model-making techniques and 

computational form-finding methods. 

In light of the current literature, it can be stated that making physical models is a 

technique that has been used by numerous architects throughout history. The purpose 

of this is to visualize the output of the specific design problem beforehand. By adopting 

the principles of Hooke’s Hanging Chain Law, architects have been using small-sized 

scale-dependent and scale-independent physical models in gridshell design problems 

to evaluate their design’s structural performance. Thanks to the developments in 

computer technologies, the experience gained from various researches and 

experiments about form-finding principles can be translated into the digital 

environment. By using digital computational form-finding methods, the form-finding 

process of a structure can be shortened significantly. This is mainly because in the 

computational environment the architectural models can be created in relation to the 

required structural calculations. In the current literature, the computational form-

finding methods are categorized into two groups: Geometry-Oriented Methods and 

Material-Oriented Methods. The main difference between these methods is in 

geometry-oriented methods, the geometrical features related with a specific problem 

are taken into account whereas, in the material-oriented methods, the material 
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properties are also included to the context of the method. One of the most-used 

methods for each category is reviewed and compared to each other. In the reviewed 

literature it is stated that as a geometry-oriented method Force Density Method is 

capable of achieving a solution efficiently in the cases that the equilibrium shape 

considered as working on compression. However, when the relative material properties 

are known, the Dynamic Relaxation Method as a material-oriented method is a more 

suitable choice to include the form-finding process of a design problem.  

Alongside the development of computational form-finding procedures, the 

computational power of the computers can be used to evaluate the structural 

performance of an architectural design. In the reviewed literature, it is seen that the 

Finite Element Method can be employed to analyze the structural behaviors of the 

physical systems. The Finite Element Analysis process creates a specific stress 

distribution for each element to achieve nodal force equilibriums. The complex 

structural nature of gridshells allows the utilization of Finite Element Analysis to 

calculate the nodal displacements and stability of the structural elements. 

In the light of the reviewed literature in this chapter, design goals for the computational 

gridshell design method are considered as: 

• The method should be able to visualize the results of the architectural decisions 

as well as the structural performance. 

• The material-oriented form-finding procedure Dynamic Relaxation Method 

should be included in the form-finding process of the computational method 

since the material properties are known. 

• The method should contain the Finite Element Method to calculate the nodal 

displacement in order to evaluate the structural performance of the gridshell 

alternatives. 
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CHAPTER 4 DEVELOPMENT OF THE COMPUTATIONAL 

WORKFLOW FOR GRIDSHELL GENERATION AND 

OPTIMIZATION 

In the previous chapters, the main principles and features of shell and gridshell systems, 

as well as the different types of the form-finding procedures, are depicted. As 

mentioned before, the translation of a gridshell problem into the computer environment 

allows adopting computational methods in order to overcome the complex problems 

related to designing a gridshell. The form-finding process of a gridshell should include 

both architectural decisions and engineering calculations in order to fulfill the 

aesthetical, functional and structural requirements. Using an iterative computational 

method allows the user to examine the correlation between the architectural and 

engineering aspects simultaneously. 

In this chapter, the development of the intuitive gridshell generation method is 

described. The method includes a computational model that is defined in an 

algorithmic design environment and can be controlled parametrically. Moreover, the 

integrated form-finding procedure and structural evaluation are included in the method 

which responds to any change in parameters. 

4.1. Design Considerations and Modeling Environment of Generic 

Gridshell Model 

In contemporary architecture, the free-form structures are often used since they can 

offer more flexibility concerning shape variation in comparison to the traditional 

architectural approach. However, in most cases, free-form shapes are considered as 

complex geometric shapes. Therefore, the translation problem of these shapes to the 

architectural design process requires innovative and unique solutions. Following the 

developments in the aeronautical and shipbuilding industries, free-form shapes take 

place in the architectural field. As an example, in the construction phase of Frank 

Gehry’s Guggenheim Museum in Bilbao which is a famous example for free-form 

building, the manufacturing methods and experience gained from the ship, 

aeronautical and car industries are employed in order to construct the building which 

consists of free-form geometries. Moreover, the software which can demonstrate free-
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form surfaces, with mathematical precision, was developed to coop with the problems 

related to the ship and car design. 

Pierre Bezier and Paul de Casteljau who are the two employees of two firms in the car 

industry, Renault and Citroen respectively, can be considered as the pioneers of free-

form design principles using a polynomial representation of curves in the 1950s. Later, 

the problem was generalized from Bezier Splines to Non-Uniform Rational Basis 

Splines (NURBS) and developed into NURBS Surfaces (Piegl & Tiller, 1987). Since 

theoretically any shape can be demonstrated by using NURBS, it became a part of the 

Computer Aided Drawing (CAD) environment in the ’80s. Even today, NURBS are 

often used in all design fields in order to create geometrical representations of free 

forms.  

Rhinoceros 3D is a NURBS based 3D modeling tool, which is developed by Robert 

McNeel and Associates and first introduced in 1993. Even though the software is 

created for mainly industrial designers, the software’s capability of mathematical 

surface representation allows the use of software in different design fields. In order to 

represent the free-form gridshell geometries, Rhinoceros 3D is used in this study. 

Furthermore, alongside the Rhinoceros 3D, the study requires an environment in which 

the elements can be defined by using discrete parameters and allows the use of specific 

algorithms. For this reason, a visual programming extension of Rhinoceros 3D named 

Grasshopper 3D is also used in this study. Grasshopper 3D is a visual programming 

environment that works within the Rhinoceros 3D software, developed by David 

Rutten at Robert McNeel and Associates (Rutten, 2007). Grasshopper 3D environment 

allows to control and define design elements parametrically as well as the usage of 

algorithms.  

Considering the generative process of Grasshopper, one may state that it is a tool for 

creating a design method rather than creating just one model since it consists of 

sequential operations in which the output highly depends on the input definitions even 

in the case of using same consecutive operations. As an example, in Fig. 4.1, a simple 

line creation process in Rhinoceros 3D by using Grasshopper environment is shown.  
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Figure 4.1. Line creation by using Grasshopper 3D. 

Line definition requires two inputs, the coordinates of the points which the line pass 

through. To create points in the XY Plane, the required inputs are defined as (2,3) for 

Point 1 and (8,10) for Point 2 as shown in Fig. 4.1. Any change in the points 

coordinates which in this case the parameters of the line, result with the change in the 

line’s length, position or angle with X and Y axis. If multiple lines are created with the 

same principle to define a closed geometry, any change in coordinates of the points 

will affect the line; thus, the overall geometry will change. This aspect of Grasshopper 

allows the user interaction in each step of a sequential workflow. 

Thanks to the visual programming interface of the Grasshopper environment, no prior 

knowledge about text-based programming languages are required in order to create an 

algorithm. However, algorithms that are created in text-based languages such as C# 

and Python can also be defined as a component in the Grasshopper environment. 

Besides, since Grasshopper is free of charge software, there are a lot of plug-ins 

developed by Grasshopper community that enhance the software’s capabilities and 

create possibilities to use the software in different fields. One of the most used plug-

ins is Kangaroo which allows the creation of physics-based simulations in Grasshopper 

environment. Kangaroo is developed by Daniel Piker who works with the Specialist 

Modelling Group at Foster and Partners (Piker, 2013). Kangaroo can be described as 

a collection of algorithms related to the simulation of behaviors of the materials and 

objects in the real world, in other words, a Physics Engine (Hecker, 1996). In order to 

create an initial geometric form of the generic gridshell surface, the Dynamic 

Relaxation algorithm of Kangaroo is included in this study. 



47 

Following the development of generative design components in the architectural field, 

the next logical step can be considered as the evaluation of the design’s real-world 

application regarding structure. For this reason, an application that allows evaluating 

the design’s structural aspects is introduced by Preisinger and Heimrath (2014) named 

Karamba which is a Parametric Structural Design application that can be integrated 

seamlessly with the Grasshopper environment. As mentioned in the previous chapters, 

the decision-making process in a gridshell design should include both architectural 

decisions and engineering requirements. Since Karamba as a Parametric Finite 

Element Toolkit allows to evaluate the generic parametric gridshell model structurally, 

it is included in this study to extend the Grasshopper’s structural evaluation aspect. 

The generative design approach of Grasshopper which takes its power from 

parametrically defined design objects in its context can easily be turned into an 

iterative design tool to create a set of different outputs since a slight change in the 

defined parameters result with a completely different output. In order to automate these 

iterations based on changing design parameters to create a set of solutions which 

satisfied the required criteria, a loop can be included in the workflow. Octopus is a 

plug-in for Grasshopper developed to find a set of optimum solutions by employing 

evolutionary algorithms (Vierlinger & Schneider, 2014). Octopus is described as 

Multi-Objective Evolutionary Solver which applies evolutionary principles to the 

parametric design environment. It is developed based on the works of David Rutten 

(2013) on Galapagos generic solver. Even though Octopus includes the same 

algorithms which are named as SPEA-2 and HypE as the Galapagos plug-in, Octopus 

allows employing multiple fitness values in the optimization procedure whereas in 

Galapagos a single fitness value can be included in the optimization. In order to create 

a set of alternative gridshells which satisfies the multiple design objectives and 

constraints, Octopus is included in this study. 
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Figure 4.2. Flowchart of the Grasshopper workflow. 
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In the light of the examinations done on the previous sections, the Grasshopper 

workflow for generating a gridshell model should include the initial 2D geometry 

creation, the physics-based form finding the procedure, assembly of the structural 

model, the structural performance verification and the optimization related with the 

design objectives in order to create a set of alternatives. The complete flowchart of the 

workflow is presented in Fig. 4.2. 

4.2. Initial Geometry Creation 

The flowchart of the initial 2D geometry definition is shown in Fig. 4.3. The user-

defined inputs are represented with parallelograms in the flowchart. 

 

Figure 4.3. Initial 2D geometry definition flowchart. 
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For the first step, the area boundaries should be determined. The boundaries also 

represent the gridshell structure’s dimensions on the XY Plane if the distance in the 

+Z direction is considered as the height of the structure. The definition of the boundary 

may include lines to represent the enclosed geometry or points that are eventually 

connected with lines in order to define the edges of the geometry. Since Grasshopper 

is defined as the primary tool to create the generative workflow, the shape of the initial 

2D boundary of the structure will significantly affect the output. This is mainly because 

of the adopted physics-based form finding procedure Dynamic Relaxation which will 

be discussed in detail in the following sections. The form-finding procedure starts with 

a flat surface and deforms the surface eventually by considering the applied loads and 

force objects. If the initial 2D geometry is symmetrical, the resulted shell surface will 

also be symmetrical. The same principle applies if the initial geometry is asymmetrical. 

For the sake of the explanation, two shell surfaces that are initially generated from a 

trapezoid and a rectangle are shown as an example in Fig. 4.4, respectively. 

 

Figure 4.4. Two shell surfaces generated from a trapezoid and a rectangle, 

respectively. 

Following the definition of 2D geometry that represents shell’s boundary on the 

horizontal plane, next step is to define a tessellation method for the surface division 

and a division count in order to extract points and lines from the surface. Since 

Rhinoceros 3D allows the creation of NURBS surfaces, every surface has a UV 

coordinate system. This is a translation of the world coordinate system to each surface; 

therefore, each NURBS surface can be manipulated separately using the related 

coordinate system. For the sake of the explanation, two identical simple cylindrical 

surfaces are created and divided into quadrilateral sub-surfaces by using two different 

U-V values as shown in Fig. 4.5. 
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Figure 4.5. Two identical cylindrical surfaces divided into quadrilateral sub-

surfaces. 

On Fig. 4.5, for the surface on the left division values defined as 10 for U-direction 

and 10 for V-direction whereas for the surface on the right the values are 15 for U-

direction and 20 for V-direction. Since the U and V values determine the number of 

sub-surfaces after the division, an increase in U and V values results with an increased 

sub-surface count. For example, the surface on the left is divided by 10 in each 

direction this results with 100 sub-surfaces (10 multiplied by 10) whereas, the surface 

on the right is divided by 15 and 20 in the U and V directions, respectively, this results 

with 300 sub-surfaces (15 multiplied by 20). Considering gridshells, the surface 

division definition directly related to the discrete element count and their length, since 

the lines will transform the beam elements eventually. In the Grasshopper workflow, 

the UV count of the surface division is defined as a decision variable which can be 

defined by the user or the optimization algorithm at the end. 

Considering the surface division, tessellation type is also needed to be defined. In the 

surface examples shown in Fig. 4.5, the surface tessellation type is defined as a 

quadrilateral division. Also, there are different tessellation algorithms for the surface 

division as shown in Fig. 4.6. Quadrilateral tessellation can be considered as a common 

approach in gridshell structures since the production phase related to the quadrilateral 

sub-surfaces is more straightforward than the other sub-surface types. This is mainly 

because each connection point connects only four discrete elements. However, the 

quadrilateral sub-surfaces, as well as the diamond sub-surfaces, may not be as stable 

as triangulated surfaces. This is due to the lack of diagonal bracing and may result in 

buckling.  
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Figure 4.6. Different surface tessellation types. 

Triangular tessellation, on the other hand, results with geometrically locked and rigid 

structures. Due to the geometric nature of a triangle, panels that are used to cover the 

structure are always planar. However, the joint connections in triangulated sub-

surfaces are not as simple as the other sub-surface types. For each connection point, 

there are six intersecting discrete elements; therefore, this results with complex 

connections. 

Hexagonal and Voronoi tessellation procedures are the two types of tessellation 

methods which can be employed. The hexagonal tessellation results with a structure 

similar to a honeycomb whereas, the Voronoi tessellation results with a more organic 

appearance. The advantage of these structure types is there are three discrete elements 

in each connection point. This results with a simpler joint connection, however, they 

behave very poorly regarding structural performance. 

The tessellation types which are included in this study are the quadrilateral tessellation 

and triangular tessellation due to their structural stability in comparison to the other 

tessellation types. In the Grasshopper workflow, there is a decision variable related to 

the selection of surface tessellation type. The selection of the tessellation method is 

both architectural and structural decision. Therefore, this input can be defined by the 

user or the optimization algorithm during the optimization process. If the tessellation 
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procedure is considered as an important decision by the user since it can directly affect 

the overall appearance of the gridshell, the input can be defined by the user; as a result, 

it will not be a decision variable for the optimization process. 

4.3. Physics-based Form Finding Procedure 

As mentioned before, in the gridshell design process there is a clear correlation 

between architectural and structural decisions since, a gridshell is not only an aesthetic 

element but also, it should satisfy the structural requirements. Because of this situation, 

considering only the aesthetic features in the design phase of a gridshell may result in 

structurally unstable output. Therefore, in this study, a physics-based form finding 

procedure is employed in order to find a shape that in static equilibrium. After the 

initial 2D geometry creation and division into sub-surfaces, a dynamic relaxation 

module is used to find a shape that can be considered as in static equilibrium. Kangaroo 

plug-in for Grasshopper is used in the workflow to create Dynamic Relaxation 

simulation. The flowchart of the physics-based form finding procedure is shown in Fig. 

4.7. 
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Figure 4.7. The flowchart of the physics-based form finding the procedure. 
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4.3.1. Creation of the Force Objects 

Following the creation of sub-surfaces, the vertices (corner points) and the edges of 

the surfaces are extracted in order to include them to the spring definition. Kangaroo 

plug-in contains a component that is able to create Hooke’s law springs. The 

component needs the following inputs: 

• Lines that connect two relative vertices to define springs’ in-between action, 

• Rest Lengths, the length that the relative spring try to reach, 

• Spring Stiffness. 

For the first input, the surface edges and relative vertices are defined. The input 

required to define the in-between action of the relative springs. The second required 

input, Rest Length represent the length that the relative spring tries to reach. In other 

words, if the rest length is equal to the length of the relative line, the spring starts out 

in a state of no stress. If the Rest Length is smaller than the relative line’s length, this 

corresponds to pre-tension. In this study, the Rest Lengths are defined for each spring 

separately by using the relative lines lengths. Therefore, there all springs start 

simulation in a non-stressed state. 

The third required input is Spring Stiffness. Piker (2013) the developer of the Kangaroo 

plug-in, pointed out the difference between Rest Length and Spring Stiffness as: “Rest 

Length is the length the spring tries to reach, while Stiffness is how strongly it tries to 

get there.” As Piker (2013) mentioned, the Spring Stiffness can be defined as Axial 

Stiffness as follows: 

 
𝑘 =

𝐴𝑥 × 𝐸

𝐿𝑠
 (4.1) 

where 𝑘  represents the spring stiffness, 𝐴𝑥  represents the cross-section area of the 

relative element, 𝐸 represents the Modulus of Elasticity of the relative material and 𝐿𝑠 

represents the initial length of the relative spring. 

As mentioned in the previous chapters, Dynamic Relaxation is a material-oriented 

form finding method; thus, it requires the value of Modulus of Elasticity of the 

materials included in the simulation. For this study, a generic wood material is selected 

and utilized in the creation of beams which has the 𝐸 value of 1050 kN/cm2. This wood 
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material is a predefined material in Karamba plug-in that is used in the structural model 

assembly and verification part of this study which is explained in Section 4.5.  

4.3.2. Definition of Edge Condition and Support Points 

Following the spring creation, simulation requires the support (anchor) points. These 

points can be considered as fixed points that will not be allowed to move in the 

simulation. In order to define the support points, there is an input in the Grasshopper 

workflow that needs to be defined by the user, by considering the architectural and 

functional needs, is related with the shell surface’s relationship with the geometry’s 

numbered edges, named as Edge Condition.  

In order to define Edge Condition separately to each edge of the initial surface, the 

edges are numbered in order to control each edge by using an assigned number to each 

edge in the workflow. Numbering procedure of geometry’s edges and their relationship 

with the Edge Condition component in Grasshopper is shown in Fig. 4.8. This is an 

integrated feature of Grasshopper which allows managing large data sets efficiently by 

using lists in which all the elements have specific index numbers. In the Grasshopper 

workflow, Edge Condition is an integer value for each edge of the geometry within the 

range of [0,2].  

 

Figure 4.8. Numbering procedure of geometry’s edges and Edge Condition 

Component defined in Grasshopper. 

Edge Condition component is used to define the relationship between the edges of the 

geometry and the shell surfaces that will be generated after the Dynamic Relaxation 

procedure. In other words, the component eventually defines the support points of the 

shell geometry. For each edge, a value should be defined. In Fig. 4.9, the defined Edge 

Condition values and their effect on shell geometry are shown. 
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Figure 4.9. Edge Condition values and their effect on shell geometry. 

In the example shell surface in Fig. 4.9, the resulting shape of three possible Edge 

Condition values can be seen. For the edges numbered as 1 and 3 the Edge Condition 

value defined as “0”, this result with the definition of support points on the start point 

and end point of the edge. There are no in-between points defined as support points. 

Therefore, the translation of the 2D geometry edge to the shell surfaces edge result 

with a continuous curve with a large span. According to architectural needs, this result 

may be wanted to create large permeable face to the shell structure without any 

division. However, because of the large span without any additional supports, the 

resulting shell may behave poorly concerning structure. The Edge Condition value “1” 

which is defined for the edge of the geometry which is numbered as 0 on the example, 

allows to make a selection between one continuous opening and creating additional 

support point. Edge Condition value 1 can be selected by the user in cases that the 

permeability from this side of the structure is not an important issue. Following this 

architectural decision, the definition of Edge Condition value as “1” creates a decision 

variable that included to the optimization process in the later stage which results with 

different shell and geometry relation related to this edge. This allows to a selection 

between a continuous vertical opening on the shell or multiple openings divided by 

additional supports on the edges. Lastly, when Edge Condition defined as “2”, the shell 

surface’s edge adopts the edge of the 2D geometrical boundary and creates continuous 

support points all along the edge. According to the architectural needs, the resulted 

face of the shell may be utilized for different purposes as well as to create a non-

permeable face to the shell structure. 
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4.3.3. Definition of Loads and Force Factor 

Following the creation of springs and the definition of support points, Dynamic 

Relaxation component requires a force in order to calculate the displacement for each 

spring element. For this reason, in the Grasshopper workflow, the forces are calculated 

and defined on each connection point as vectors. The force which is included in the 

physics-based form finding procedure is the structure’s own weight. The force for each 

node is calculated as follows: 

 
𝐹𝑛 =

(𝑑𝑤 × 𝐿𝑇 × 𝐴𝑥)

𝑁𝑗
 (4.2) 

where 𝑑𝑤 is the density of the generic wood material, 𝐿𝑇 is the total length of the lines 

(sub-surface edges), 𝐴𝑥  is the cross-section area of the beams that are going to be 

created, and 𝑁𝑗 is the total count of the connection points which is a direct result of the 

surface division mentioned in Chapter 4.2. 

Even though the beams are not created yet and Dynamic Relaxation procedure includes 

lines as the spring elements, the weight of the beams is calculated in order to achieve 

a realistic weight calculation. The selection of the beam dimensions is not a user-

defined decision variable. Instead, the optimization algorithm can do the selection in 

order to achieve the design objectives while satisfying the constraints mentioned in 

Chapter 4.6. The dimensions of the beams that are included in this study are shown in 

Tab. 4.1. 

Table 4.1. Classification of the wooden beams by their dimensions. 

Beam No Width Height 

1 5 cm 10 cm 

2 5 cm 15 cm 

3 10 cm 15 cm 
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After Dynamic Relaxation procedure concludes, the initial surface will collapse by its 

own weight and creates a shape similar to a weighted fabric hanged from support 

points. Similar to Hooke’s hanging chain principle, if the direction of gravity is 

reversed, the resulting shape will be a shell surface that has the minimum height in 

order to create a structural equilibrium. As a rule of thumb, any shell geometry that has 

a height above this threshold can be considered as suitable.  

In order to increase the output variation, a decision variable is defined in the 

Grasshopper workflow named Force Factor which is a numeric value. Force Factor 

(𝐹𝑥)  is a floating-point value which has a range of [1.0, 5.0] can be multiplied by the 

value of the force for each node (𝐹𝑛). As an example, if the 𝐹𝑥 is defined as 1.0, this 

means resulting shell surface will have the minimum required height which achieves 

structural stability whereas, if it is defined as 5.0 the load in the calculation is 

multiplied by 5 therefore, the height of the resulting surface will be higher. 

4.3.4. Dynamic Relaxation Procedure 

The integrated Dynamic Relaxation component in Kangaroo plug-in is included in the 

Grasshopper workflow. It requires the definition of springs, loads and support points 

in order to perform a simulation. As mentioned in Chapter 3.3.2, the force that required 

to move a spring is directly proportional to the displacement of the spring: 

 𝐹 = 𝑘 × ∆𝑥 (4.3) 

𝐹  represents the force, 𝑘  represents the spring stiffness and ∆𝑥  represents the total 

displacement of the spring. Since Dynamic Relaxation process is an iterative process 

that evaluates each spring is specific time intervals, it will continue until the Kinetic 

Energy of the system reaches zero. When Kinetic Energy of the system is zero, the 

system is considered as in equilibrium. An example of the Dynamic Relaxation process 

is shown in Fig. 4.10. 
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Figure 4.10. Dynamic Relaxation process of a flat rectangular surface. 

In Fig. 4.10, a flat rectangular surface is created as an example. The points colored as 

red are the corner points (vertices) of the surface which defined as the support points. 

In the example, spring stiffness is a generic value that is defined in the Kangaroo’s 

default settings and the applied load is the gravity load in reverse direction. Therefore, 

the surface appears as if it is inflated instead of collapsing due to its own weight. 

4.4. Evaluation of the User Defined Constraints 

Following the creation of the relaxed surface, there are some constraints in the 

Grasshopper workflow that needed to be defined related to the architectural aspects of 

the shell. These constraints defined as hard constraints which means if the constraints 

are not satisfied, the output is considered as not feasible, therefore, the output will not 

be included to the set of alternative shell surfaces at the end. A flowchart of the 

constraint evaluation process in Grasshopper workflow is shown in Fig. 4.11. 
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Figure 4.11. Flowchart of Constraint Evaluation in Grasshopper workflow. 

4.4.1. Maximum Height Constraint 

One of these constraints is related to the structure’s maximum height. The shell 

surface’s height is not an input that can be defined in the workflow since it is a result 

of the Dynamic Relaxation form-finding process which is explained in the previous 

section. DR procedure helps to determine the minimum height which is required to 

create a structurally stable shell surface. However, because of the limitations which 

are depicted in regulations the user may want to limit the maximum height of the 

structure by defining an upper limit as a design constraint. Therefore, a hard constraint 

named as Maximum Height Constraint (MHC) is introduced to the workflow. Since 

MHC is defined as a hard constraint in the Grasshopper workflow, if the output’s 

height is larger than the allowed height for the structure, the output will not be 

considered as suitable for the given design problem. 
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4.4.2. Useful Area Constraint 

The second user-defined design constraint is named as Useful Area Constraint (𝑅𝑈𝐴). 

It directly corresponds to the Useful Height (UH) numeric input which is an input 

parameter that needs to be defined by the user considering architectural aspects of the 

space. Since the utilization of the area bounded by a gridshell may differ from an area 

surrounded with vertical walls due to the slope of the shell surface. Having a slope 

results with spaces that may not be used in specific functions due to the height of the 

ceiling.  

 

 

 

Figure 4.12. Interpretation of Useful Height input and Useful Area constrain. 

For the sake of the explanation, a gridshell example is shown in Fig. 4.12. In the 

example, a specific UH value is defined and according to this value, the area separated 

into two regions. The gray region is considered as not suitable for specific functions 

because the ceiling height in this region is lower than the UH value. On the other hand, 
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the red region represents the floor which has an acceptable ceiling height for specific 

functions. Considering the architectural needs and program the UH could vary; 

therefore, it is included in the Grasshopper workflow as a User Defined input that 

directly affects the calculations related with 𝑅𝑈𝐴.  

The UAC is the ratio of useful floor area to the total floor area of the initial 2D 

geometry as percentages. As an example, if the resulted percentage is 50%, this means 

the half of the floor is not feasible considering the minimum height defined as UH 

input. In order to increase of the Useful Floor Area (UFA) by employing a specific UH 

limitation, the gridshell’s total height should be increased to create a steep slope in 

shell surface thus, more area on the floor that can be considered as useful. However, 

an increase in the gridshell’s height may result in higher construction costs as well as 

it can affect the decisions related to the form. Therefore, the introduction of the 𝑅𝑈𝐴 

creates a good case for an optimization procedure. 

4.5. Assembly of the Structural Model and Structural Performance 

Evaluation 

Following the creation of relaxed geometry and constraint evaluation, a structural 

model is ensembled in Grasshopper workflow, in order to evaluate the structural 

performance of the model. The flowchart of the structural model’s assembly process 

is shown in Fig. 4.13.  

Karamba plug-in is included in the Grasshopper workflow to create a structural model. 

As mentioned in Chapter 4.1, Karamba is a Finite Element program which includes all 

the required functionality of commercial structural analysis software. The main 

difference of Karamba from other available programs is it can be integrated into the 

Grasshopper environment. Thanks to the plug-in, the advantages of creating a 

parametric workflow can be carried all the way into the structural analysis. In other 

words, any change in the parameters of the geometry will change the structural model 

simultaneously. Therefore, thanks to the instant feedback related to the structural 

performance, during the conceptual design process of the gridshell the structural 

results of the architectural decisions can be seen. 

 



64 

 

Figure 4.13. Flowchart of Assembly of structural model and evaluation in 

Grasshopper workflow. 
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Karamba component in the workflow uses the lines and points which are extracted 

from relaxed geometry. This way, following the end of the Dynamic Relaxation 

procedure, the structural model has created automatically. The component related to 

the assembly of the structural model requires the following inputs: 

• Input nodes, which is translated to the intersection points of the beams, 

• Beam elements, 

• Cross-sections and material properties of the elements. 

• Support points, 

• Applied loads, 

Following the extraction of points and lines, they are used to create beam elements. 

Beam elements also require information about cross-sections and material properties. 

As mentioned in Chapter 4.3.3, Karamba includes the same beam cross-sections and 

materials as the Dynamic Relaxation process which is shown in Tab. 4.1. The selection 

of beam cross-section is a decision variable that affects both the Dynamic Relaxation 

procedure and assembly of the structural model.  

Regarding material selection, a generic wood material is utilized in the creation of 

beams. As mentioned before, the selected wood material is a pre-defined material in 

Karamba, the specific properties of the material are shown in Tab. 4.2. 

Table 4.2.Properties of the pre-defined wood material. 

Family Wood 

Name Wood 

Young’s Modulus 1050 kN/cm2 

In-plane shear modulus 360 kN/cm2 

Density 6 kN/cm3 

Yield Strength 1.3 kN/cm2 
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In order to ensemble the structural model, the support points and loads must be defined. 

Similar to connection nodes, the support points are also extracted from the relaxed 

geometry and defined to the ensemble module in Karamba. The support points 

considered as fixed, therefore, their movement is restricted in every direction. 

In terms of loads, the structure’s self-weight and relative wind loads are taken into 

account. Besides the wooden gridshell members, the glass panels that cover the 

structure are included. The weight of the glass panels with the aluminum profiles for 

attachment is estimated as 0.5 kN/m2. 

Considering the wind force (𝐹𝑤 ) acting upon the gridshell structure, the following 

formula is taken into account: 

 𝐹𝑤  =  𝑞𝑏 𝐴𝑠 (4.4) 

where 𝑞𝑏 is the dynamic pressure an 𝐴𝑠 is the related area of the gridshell. To calculate 

wind load acting on the system, the dynamic pressure (𝑞𝑏) and the basic wind velocity 

(𝑣𝑏) are found with respect to TS EN 1991-1-4:2007. The lifting and drag forces are 

not taken into account. 

 𝑣𝑏 = 𝐶𝑑𝑖𝑟 × 𝐶𝑠𝑒𝑎𝑠𝑜𝑛 × 𝑣𝑏,0 (4.5) 

 𝑞𝑏 =
1

2
𝜌 𝑣𝑏

2
 (4.6) 

where 𝑝 is the density of the air, 𝑣𝑏 is the basic wind velocity, 𝐶𝑑𝑖𝑟 is the directional 

factor, 𝐶𝑠𝑒𝑎𝑠𝑜𝑛  is the season factor, 𝑣𝑏,0  is the fundamental value of the basic wind 

velocity. According to TS EN 1991-1-4:2007, the recommended value for 𝐶𝑑𝑖𝑟  and 

𝐶𝑠𝑒𝑎𝑠𝑜𝑛  is 1, 𝑝  is 1.25 kg/m3. As Maden (2015) suggests, the fundamental wind 

velocity of 26 m/s can be taken into account for Izmir, Turkey. According to the Eq. 

4.5,  𝑣𝑏 can be calculated as 26 m/s and according to Eq. 4.6, 𝑞𝑏 is equal to 0.4225 

kN/m2. 
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Figure 4.14. Loads and support points of the Finite Element Model in Karamba. 

Following the assembly of the Finite Element Model, the model is analyzed 

considering deflections. The loads and support point definitions of an example 

gridshell model are shown in Fig. 4.14.  

 

Figure 4.15. Displacement Analysis in Karamba. 

There is a hard constraint related with the allowable deflections in the Grasshopper 

workflow, named as Maximum Displacement Constraint (MDC). According to the 

Turkish Standards, the maximum allowable deflection is limited to the span/200 (TS 

EN 1990:2002). The deflection of the members of example gridshell model is shown 

in Fig. 4.15. 
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4.6. Optimization of Construction Cost and Shape Approximation 

In order to create a set of gridshell model alternatives related to the defined design 

problem, an optimization module is included in the Grasshopper workflow. As 

mentioned in Chapter 4.1, Octopus, an integrated multi-objective evolutionary solver 

for Grasshopper is used in the workflow in order to create suitable solutions while 

satisfying the constraints. By including this module to the Grasshopper workflow, it is 

possible to select a suitable solution that satisfies the minimum requirements from a 

list of alternatives.  

The parametric Grasshopper workflow includes an optimization algorithm that can 

generate different solutions by altering the decision variables subject to the user-

defined inputs and constraints. In addition to the user-defined inputs, some decision 

variables are included in the workflow in order to richen the output variety. The 

decision variables in the workflow are shown in Tab. 4.3. 

Table 4.3. Decision Variables. 

Decision Variables Notation Type Range 

Surface Division Count in  

U - Direction 
𝑁𝑢−𝑑𝑖𝑣 Odd Numbers [11,45] 

Surface Division Count in  

V - Direction 
𝑁𝑣−𝑑𝑖𝑣 Odd Numbers [11,45] 

Edge Condition 𝐸𝑐𝑜𝑛 Boolean [0,1] 

Surface Triangulation 𝑆𝑡 Boolean [0,1] 

Force Factor 𝐹𝑥 Floating Point Numbers [1.00,5.00] 

Cross-Section Selection 𝐴𝑥−𝑠𝑒𝑙 Integer Numbers [0,2] 
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Surface Division decision variables, as mentioned in Chapter 4.2, define the 

tessellation of the initial surface. The Surface Division Count in U-Direction (𝑁𝑢−𝑑𝑖𝑣) 

defines the division count in U-direction whereas, The Surface Division Count in V-

Direction (𝑁𝑣−𝑑𝑖𝑣 ) defines the division count in V-direction of the surface. These 

variables control the amount of generated sub-surfaces, therefore, the discretization of 

the initial surface. Considering the resulted point count on the surface edges following 

the division, the type of these variables is defined as odd numbers in relation with the 

Edge Condition (𝐸𝑐𝑜𝑛) which is mentioned in Chapter 4.3.2, to allow the selection of 

2 points in the middle of each edge in order to define them as support points. Following 

the Edge Condition input which is defined by the user, 𝐸𝑐𝑜𝑛 the decision variable is 

utilized by the optimization algorithm to create additional supports on the edges if it is 

necessary, therefore, it is defined as a Boolean toggle.  

The Surface Triangulation ( 𝑆𝑡) decision variable defines the tessellation type of the 

surface as mentioned in Chapter 4.2. It is defined as a Boolean toggle which makes a 

selection between triangular tessellation and quadrilateral tessellation. As mentioned 

in Chapter 4.2, the quadrilateral tessellation is a material efficient tessellation type 

whereas, the triangular tessellation can be considered as the most structurally effective 

tessellation type due to its geometry. Considering the maximum allowable deflection 

limit, a selection possibility is created for the optimization algorithm, since the 

quadrilateral tessellation is the most cost-effective tessellation type, however, in some 

cases, it may not be able to achieve structural stability. 

Force Factor (𝐹𝑥) is a decision variable in the workflow, mentioned in Chapter 4.3.3, 

which is included to increase the output variation. It defines the amount of force 

included in the Dynamic Relaxation Procedure, therefore it affects the height of the 

relaxed surface. It is defined as a floating-point value which has a range of [1.00,5.00] 

related with the multiplication of the force. As mentioned on Chapter 4.3.3, 𝐹𝑥 value 

of 1.00 is equal to the initial calculated force whereas, the value of 5.00 can be 

translated as 5 times of the initial calculated force on the nodes. 

Cross-Section Selection (𝐴𝑥−𝑠𝑒𝑙 ) is a decision variable mentioned in Chapter 4.3.3 

which is defined in order to make a selection between three possible cross-sections for 

wooden elements. This decision variable can be utilized by the optimization module 

in order to achieve structural stabilization since the different cross-section areas affect 

the maximum deflection of the system in the expense of increasing construction cost. 
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4.6.1. Problem Formulation 

In the Grasshopper workflow, two objective functions are considered: minimization of 

the construction cost of gridshell (𝐶𝑔 ) and the better approximation of the smooth 

surface (𝐴𝑠ℎ𝑎𝑝𝑒 ). Moreover, user defined constraints Maximum Height Constraint 

( 𝐻𝑚𝑎𝑥 ) and Useful Area Constraint ( 𝑅𝑈𝐴 ) constraint as well as the Maximum 

Allowable Deflection Constraint (∆𝑚𝑎𝑥) are taken into account. As an example, the 

multi-objective optimization problem is formulated as follows: 

𝑀𝑖𝑛 (𝐶𝑔 ,
1

𝐴𝑠ℎ𝑎𝑝𝑒
) 

where 

 𝐶𝑔 = 𝐶𝑏 + 𝐶𝑗 (4.7) 

 𝐴𝑠ℎ𝑎𝑝𝑒 = 𝑁𝑢−𝑑𝑖𝑣 × 𝑁𝑣−𝑑𝑖𝑣  (4.8) 

Subject to: 

 6 𝑚 < 𝐻𝑚𝑎𝑥 (4.9) 

 %60 < 𝑅𝑈𝐴 (4.10) 

 𝑙𝑚𝑎𝑥

200
< ∆𝑚𝑎𝑥 

(4.11) 

As shown in Eq. 4.7, the total cost of the gridshell (𝐶𝑔) can be found as the addition of 

the total cost of the wooden beams (𝐶𝑏) and the total cost of the joints (𝐶𝑗). These costs 

depend on the cross-section area of the wooden beams (𝐴𝑥), the total length of the 

wooden beam elements in the system (𝐿𝑇) and the surface division count. 

 𝐶𝑏 = 𝐿𝑇 × 𝐴𝑥 × 𝐶𝑤 (4.12) 

 𝐶𝑗 = [(𝑁𝑢−𝑑𝑖𝑣 + 1) × (𝑁𝑣−𝑑𝑖𝑣 + 1)] × 𝐶𝑛 (4.13) 

The unit price of wood (𝐶𝑤)  is considered as 1500 TL per m3 and cost of the one joint 

element (𝐶𝑛) is considered 50 TL per element. Related to the calculation of discrete 

wooden structural elements (𝐶𝑏) as shown in Eq. 4.12, the total volume of the elements 

is calculated and multiplied by the unit m3 cost of the selected wood type. Considering 
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the total cost of the joints (𝐶𝑗) as shown in Eq. 4.13, the total joint count in the system 

is calculated in relation with the surface division and multiplied by the unit cost of the 

joint elements (𝐶𝑛). 

Even though the glass and aluminum cover for the structure is taken into account in 

the structural calculations, it is not included in the price calculations. The cost 

calculations are defined related with the skeleton of the gridshell since the cover 

material may have a significant effect which results with domination in the 

construction cost calculation since it is an expensive material. The glass cover with 

aluminum structure is one of the heaviest cover materials. Therefore, it is chosen to 

include the structural calculations since the structure which is capable of carrying this 

material can carry most of the different cover materials. 

Following the generation of a relaxed surface by using Dynamic Relaxation procedure 

as mentioned in Chapter 4.3.4, a smooth surface is obtained. In order to create a 

gridshell geometry, the smooth surface should be transformed to a discrete surface with 

planar faces. This includes the transformation of surface iso-curves to polylines since 

the elements of the gridshell are discrete. As Pottmann et al. (2007) mentioned, the 

more the polylines are refined and the discrete transformation the better the discrete 

version will approximate a smooth surface. An example of the discretization of a 

sphere is shown in Fig. 4.16. 

 

Figure 4.16. Discretization of a smooth sphere (Pottmann et al., 2007). 

As shown in Eq. 4.8, the objective function related to the approximation of the smooth 

surface (𝐴𝑠ℎ𝑎𝑝𝑒) is formulated in relation with the number of sub-surfaces that are 

generated. Since, the discretization of a surface is directly related with the surface 

division count as shown in Fig. 4.16, an increase in the generation of sub-surfaces 

results with a better approximation of the initial smooth surface. This can be 
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considered as an architectural result, since the construction of a smooth gridshell 

surface with linear structural materials is practically not possible, the transformation 

of the smooth surface to a discrete equivalent should be as close as possible. 

As shown in Eq. 4.9, 4.10 and 4.11 the constraints are defined to the optimization 

module. As mentioned in Chapter 4.4, the Maximum Height constraint (𝐻𝑚𝑎𝑥) and the 

Useful Area constraint (𝑅𝑈𝐴) are user defined constraints in relation to the architectural 

decisions. As mentioned in Chapter 4.5, the Maximum Displacement constraint (∆𝑚𝑎𝑥) 

is a constraint related with the maximum allowable deflection. As shown in Eq. 4.11, 

in respect to the Turkish Standard (TS EN 1990:2002), it must not exceed the limit of 

the largest span of the structure (𝑙𝑚𝑎𝑥) divided by 200. 

4.6.2. Optimization Procedure 

Considering the multi-objective optimization problem described in the previous 

chapter, Octopus, multi-objective evolutionary solver for Grasshopper, is included in 

the workflow. As mentioned in Chapter 4.1, Octopus includes Evolutionary 

Algorithms to coop with various optimization problems. The main difference between 

traditional algorithms and Evolutionary Algorithms is Evolutionary Algorithms can be 

considered as dynamic since they can evolve whereas, the traditional algorithms can 

be considered as static due to the lack of the evolutionary operators. The Hypervolume 

Estimation Algorithm for Multi-objective Optimization (HypE) is the default 

evolutionary algorithm defined within the Octopus plug-in which is used in the 

optimization process. The workflow diagram of the optimization procedure is shown 

in Fig. 4.17. 

 

Figure 4.17. Workflow diagram of the optimization procedure. 
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Following the translation of the gridshell design problem into a multi-objective 

evolutionary optimization problem, a set of design alternatives can be achieved. In 

order to create a ranking between the alternatives, the range-independent Pareto non-

dominated sorting method is included in the Octopus. As mentioned by Goldberg 

(1989), this range-independent method and variants of it are commonly used. As 

depicted by Bentley and Wakefield (1998), “The finesses of the different objectives are 

treated separately and never combined, with only the value for the same objective in 

different solutions being directly compared. Solutions are ranked into 'non-dominated' 

order, with the fittest being the solutions dominated the least by others. 

4.7. Evaluation of the Set of Alternatives 

In order to evaluate the outputs of the Grasshopper workflow, the workflow is applied 

to two different gridshell design problems. In the first case, a rectangle is defined as 

the input geometry whereas in the second case, an asymmetrical quadrilateral 

geometry is defined as the input geometry. The dimensions and areas of the input 

geometries for each case are shown in Fig. 4.18. 

 

Figure 4.18. The input geometries for case 1 and case 2, respectively. 

 

In order to define the support points, Edge Condition input mentioned in Chapter 4.3.2, 

is defined for each case. Following the numbering of the edges as shown in Fig. 19, 

the edge condition values are defined as “0” for edges numbered 0 and 2 whereas “1” 

for edges numbered 1 and 3. This means on edges that numbered as 1 and 3 additional 
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supports will be created if it is necessary whereas, on edges 0 and 2 the supports are 

placed on the corners only. User-defined inputs and constraints which are Useful 

Height (UH), Maximum Height Constraint (𝐻𝑚𝑎𝑥) and Useful Area Constraint (𝑅𝑈𝐴) 

are defined as follows: 

 𝐻𝑢𝑠𝑒𝑓𝑢𝑙 = 2.00 m (4.14) 

 𝐻𝑚𝑎𝑥 < 6.00 𝑚 (4.15) 

 𝑅𝑈𝐴 > 60% (4.16) 

 

Figure 4.19. Edge numbers of input geometries in case 1 and case 2, respectively. 

Following the definition of user-defined inputs and constraints, the iterative design 

process is started. The default settings in Octopus related to the evolutionary 

operations and population size is employed in the optimization process. These settings 

are shown in Tab. 4.4. The algorithm is stopped at the 200th generation in each case. 

Table 4.4. Octopus settings. 

Elitism Mutation Probability Mutation Rate Crossover Rate Population Size 

0.5 0.1 0.5 0.8 100 
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4.7.1. Evaluation of Case 1 

 

Figure 4.20. Pareto Chart of Non-Dominated Solutions at the 200th generation for 

case 1 with selected alternatives. 

The Pareto chart of non-dominated solutions at the 200th generation for 100 

population size for case 1 is given in Fig. 4.20. Following the end of the optimization 

process, the optimization module was able to discover 84 different design 

alternatives for the given problem. After the optimization process concluded for case 

1, it is observed that the optimization algorithm discovered cost values within a range 

between 14,309.73 TL and 82,516.35 TL. Concerning Shape Approximation 

(𝐴𝑠ℎ𝑎𝑝𝑒), the optimization algorithm is suggested results between 164 and 1424. The 

average values for total construction cost and shape approximation are 44,583.24 TL 

and 699, respectively. Eight different design alternatives selected from the non-

dominated solutions are presented in Fig. 4.21 and Fig. 4.22. The values of the 

decision variables and objective functions for selected alternatives for case 1 are 

presented in Tab. 4.5 and Tab. 4.6. The values of the parameters and the objective 

functions for all generated alternatives in case 1 are presented in Appendix 1. 
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Figure 4.21. Alternatives selected from the non-dominated solutions for case 1. 

Table 4.5. Values of decision variables and objective functions for selected 

alternatives for case 1. 

No 𝑁𝑢−𝑑𝑖𝑣 𝑁𝑣−𝑑𝑖𝑣 
𝐸𝑐𝑜𝑛 

1-3 
𝑆𝑡 𝐹𝑥 𝐴𝑥−𝑠𝑒𝑙 𝐶𝑔 𝐴𝑠ℎ𝑎𝑝𝑒 

1 11 13 1-1 1 4.6 0 14,309 TL 164 

4 11 17 0-1 1 3.6 0 17,531 TL 212 

12 13 21 1-1 1 3.5 0 23,558 TL 304 

34 19 25 0-1 1 4.1 0 36,760 TL 516 
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Figure 4.22. Alternatives selected from the non-dominated solutions for case 1. 

Table 4.6. Values of decision variables and objective functions for selected 

alternatives for case 1. 

No 𝑁𝑢−𝑑𝑖𝑣 𝑁𝑣−𝑑𝑖𝑣 
𝐸𝑐𝑜𝑛 

1-3 
𝑆𝑡 𝐹𝑥 𝐴𝑥−𝑠𝑒𝑙 𝐶𝑔 𝐴𝑠ℎ𝑎𝑝𝑒 

47 21 31 1-1 0 2.8 1 46,432 TL 700 

62 37 25 1-1 0 3.9 0 58,864 TL 984 

78 35 33 1-1 0 3.3 0 71,280 TL 1220 

84 41 33 1-1 0 3.2 0 82,561 TL 1424 
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When the selected alternatives which are shown in Fig. 4.21 and Tab. 4.5 are examined 

for case 1; it can be seen that until some point the algorithm selected Surface 

Triangulation decision variable (𝑆𝑡) as 1 in order to adopt triangular tessellation type 

in lower surface division values. As mentioned in Chapter 4.2, triangular tessellation 

is one of the most effective tessellation types in terms of structural performance and 

stability, therefore, it is possible to create a gridshell model which satisfies the 

structural constraints with the usage of fewer materials by adopting triangular 

tessellation. Furthermore, by connecting the elements diagonally, diagonal stiffness is 

achieved and the shear forces can be transmitted from one edge of the gridshell element 

to the opposite one. However, in terms of Shape Approximation (𝐴𝑠ℎ𝑎𝑝𝑒) employing 

lower division values in discrete surface transformation process results with the rough 

equivalent of the initial surface rather than a smooth approximation. 

Since the transformation of the discrete surface by employing triangular tessellation 

results with a satisfying structural performance, the heights of the gridshell outputs 

are relatively lower than the quadrilateral equivalents. This results in employing 

larger Force Factor values (𝐹𝑥) by the algorithm in order to satisfy the Useful Area 

Constraint (UAC). In Tab. 4.5, it can be seen that the alternatives which created by 

triangular tessellation have larger 𝐹𝑥 values than the quadrilateral tessellated surfaces 

which are shown in Tab. 4.6. 

Regarding cross-section selection for discrete linear structural elements (𝐴𝑥−𝑠𝑒𝑙), the 

algorithm tends to choose smaller cross-sections since it has a great effect on the 

construction cost calculation. In most of the alternatives, the cross-section for the 

beams are selected as 10cm x 5cm since the largest span can be crossed by using 

smaller sections in this case. 

In terms of Edge Condition (𝐸𝑐𝑜𝑛) for edges numbered a 1 and 3, the algorithm chose 

to create addition supports on middle points in order to satisfy the Maximum 

Displacement constraint in most of the alternatives. In alternatives 2 and 4, the 

algorithm did not employ additional supports due to they already satisfy the 

constraint, this results with higher Useful Floor Area (𝑅𝑈𝐴) ratios. 
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4.7.2. Evaluation of Case 2 

 

Figure 4.23. Pareto Chart of Non-Dominated Solutions at the 200th generation for 

case 2 with selected alternatives. 

The Pareto chart of non-dominated solutions at the 200th generation for 100 

population size for case 2 is given in Fig. 4.23. Following the end of the optimization 

process, the optimization module was able to discover 77 different design 

alternatives for the given problem. After the optimization process concluded for case 

2, it is observed that the optimization algorithm discovered cost values within a range 

between 15,719.59 TL and 87,759.55 TL. In terms of Shape Approximation (𝐴𝑠ℎ𝑎𝑝𝑒), 

the optimization algorithm is suggested results between 188 and 1424. The average 

values for total construction cost and shape approximation are 49,891.35 TL and 760, 

respectively. Eight different design alternatives selected from the non-dominated 

solutions are presented in Fig. 4.24 and Fig. 4.25. The values of the decision 

variables and objective functions for selected alternatives for case 2 are presented in 

Tab. 4.7 and Tab. 4.8. The values of the parameters and the objective functions for all 

generated alternatives in case 2 are presented in Appendix 2. 
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Figure 4.24. Alternatives selected from the non-dominated solutions for case 2. 

Table 4.7. Values of decision variables and objective functions for selected 

alternatives for case 2. 

No 𝑁𝑢−𝑑𝑖𝑣 𝑁𝑣−𝑑𝑖𝑣 
𝐸𝑐𝑜𝑛 

1-3 
𝑆𝑡 𝐹𝑥 𝐴𝑥−𝑠𝑒𝑙 𝐶𝑔 𝐴𝑠ℎ𝑎𝑝𝑒 

1 11 15 1-1 1 3.2 0 15,719 TL 188 

3 11 19 1-1 1 3.8 0 19,046 TL 236 

7 11 25 1-1 1 3.1 0 24,095 TL 308 

19 17 27 1-1 0 2.7 1 34,718 TL 500 
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Figure 4.25. Alternatives selected from the non-dominated solutions for case 2. 

Table 4.8. Values of decision variables and objective functions for selected 

alternatives for case 2. 

No 𝑁𝑢−𝑑𝑖𝑣 𝑁𝑣−𝑑𝑖𝑣 
𝐸𝑐𝑜𝑛 

1-3 
𝑆𝑡 𝐹𝑥 𝐴𝑥−𝑠𝑒𝑙 𝐶𝑔 𝐴𝑠ℎ𝑎𝑝𝑒 

37 21 31 1-1 0 3.1 1 46,450 TL 700 

52 35 25 1-1 0 2.5 1 60,172 TL 932 

69 39 29 1-1 0 2.5 1 75,101 TL 1196 

77 41 33 1-1 0 2.9 1 87,759 TL 1424 
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For case 2, an asymmetrical quadrilateral geometry is utilized as the input shape. 

Similar to the case 1, the algorithm achieved smaller cost values by employing 

smaller values for the surface division with triangular tessellation in the expanse of 

the Shape Approximation (𝐴𝑠ℎ𝑎𝑝𝑒) values. In addition, discretization of the surface 

by triangular tessellation allows the utilization of small cross-sections on structural 

elements.  

In Tab. 4.7 and Tab. 4.8 as well as Appendix 3, it can be seen that the selection of the 

tessellation type has a direct relationship with the cross-section selection (𝐴𝑥−𝑠𝑒𝑙). In 

every gridshell alternative which are tessellated triangularly, the cross-sections are 

chosen as 10cm x 5cm whereas, in the quadrilateral tessellation examples the cross-

sections are selected as 15cm x 5cm. The main reason for this selection is the 

quadrilateral tessellation is not structurally efficient as triangular tessellation because 

of its geometrical nature, therefore, the utilization of smaller cross-sections in these 

examples cannot satisfy the Maximum Displacement Constraint. This results with 

larger cross-sections in most of the alternatives even though it has a strong impact on 

the construction cost. 

Similar to the case 1, the Force Factor (𝐹𝑥) values for discrete surfaces that have 

triangular tessellation are relatively higher than their quadrilateral equivalents. In 

terms of Edge Condition (𝐸𝑐𝑜𝑛), the algorithm created additional supports in every 

alternative due to the irregular initial geometry in order to achieve structural stability. 

This results with relatively low Useful Floor Area (𝑅𝑈𝐴) ratios in each alternative. 

Moreover, due to the irregular initial boundary of the geometry and larger span, in 

case 2 the price range and the average price is higher than the case 1.  
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CHAPTER 5 

CONCLUSIONS AND FUTURE RESEARCH 

5.1. Summary 

Shell structures have been used for ages to coop with a variety of different architectural 

design problems due to their structural stability and efficient material usage as a result 

of their geometrical features. They can be considered as an important part of the formal 

exploration process in Contemporary Architecture since they can be built in any shape 

from simple symmetrical geometry to more complex free-form asymmetrical shape. 

Gridshells can be considered as a kind of traditional shell systems. They are discrete 

versions of continuous shells that consist of discrete structural elements. The primary 

goal of this study was making research and examinations in order to develop a 

computational design method for gridshell design.  

Gridshell systems can be utilized to cross large spans without needing any additional 

supports since the elements of the gridshell are the load-bearing element of the 

structure besides creating an overall visual appearance. Therefore, throughout the 

study, it has been realized that designing a gridshell is often described as a hard task 

since it requires the ability to manage complex structural engineering calculations 

while making architectural decisions in the design process. Furthermore, in the light 

of the reviewed literature, one may state that the recent developments in computational 

design techniques create a new approach to the gridshell design by utilizing novel 

methods related with generating and analyzing even the most complex geometries. 

The questions achieve the conclusion of this study based on the information that has 

been gained throughout the literature review, and the obtained knowledge is expanded 

through the development of a computational gridshell design method. Consequently, 

research questions are concluded as follows: 
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5.2. Concluding the Research Questions 

5.2.1. Research Question 1 

 

What are the geometrical features and structural principles of shell systems? 

 

To understand the nature of the shell systems the categorization of the shells in the 

current literature regarding geometry, material usage, and structural principles have 

been surveyed. The shell systems have been studied in two titles; 

1. ‘Continuous Shell Structures’ and 

2. ‘Gridshell Structures.’ 

The similarities and differences of the two shell systems in terms of geometry and 

structure are depicted by examining the existing continuous shell and gridshell 

examples as well as the current literature. It is noticed that, even though the two 

structural systems are developed by following the same principle; carrying loads 

through their geometries, their structural behaviors are different from each other due 

to the utilization of their structural elements. The structural principles of shell systems 

are examined under two sub-titles; 

1. ‘Flat Plates and Plane Stress’ and 

2. ‘Bending Theory and Buckling.’ 

Utilization of a continuous material all along the shell structure empowers the shell’s 

ability to carry the loads through the distributed in-plane stress fields whereas, the 

discrete nature of a gridshell results with the resistance to the loads and out-of-plane 

bending through axial forces. Besides, the bending stiffness of the gridshell elements 

prevents any inconvenient membrane behavior.  

The shell structures are gained their strength by their geometry, and they are able to 

possess double-curved shape. Under the title ‘Surface Curvature’ the definition of 

double-curved geometry in the current literature, as well as the categorization of the 

geometrical shaped by considering the Gaussian curvatures that they possessed, are 

reviewed. 
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5.2.2. Research Question 2 

 

What are the methods related to form-finding and structural analysis of a shell and 

can we determine a design method in the utilization of a gridshell? 

 

In order to explore the form-finding and structural analysis methods related to 

designing a gridshell, traditional and computational methods are surveyed. The 

methods have been studied in four titles; 

1. ‘Hooke’s Hanging Chain Law,’ 

2. ‘Physical Modeling,’ 

3. ‘Computational Form Finding’ and 

4. ‘Finite Element Method and Computational Structural Analysis.’ 

Hooke’s Hanging Chain Law is one of the most essential fundamental approaches in 

physics-based form-finding process of a shell structure. The simplicity of the idea 

makes its application possible to numerous different methods. From traditional form-

finding methods to more developed computational form-finding methods, the 

principles of this law are utilized. One may state that one of the most used traditional 

form-finding methods can be considered as the Physical Modeling Method that is used 

by various designers throughout history. The Physical Modeling method has been 

studied in two titles; 

1. ‘Scale-Independent Models’ and 

2. ‘Scale-Dependent Models.’ 

Prior to the development of computers, the calculations related to the structural 

stability of a shell were done manually. Alongside the mathematical equations in the 

context of a specific shell design problem, the small-scale physical models of the 

relative structure were also created. Building small-scale physical models of a structure 

give an insight into the construction of the full-size structure. Therefore, the method is 

often included in the architectural decision-making process. The structural complexity 

of the design problem affects the physical modeling approach. Because of this situation, 

some design problems require the scaling of the applied forces to create a precise test 
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model. A physical modeling method is a viable approach that is still used by architects 

and engineers. 

The translation of architectural design problems to the digital environment alongside 

the development of computational design programs has created an opportunity to 

utilize interactive form-finding methods in the design process. In the literature review, 

it has been seen that the computational methods are examined under two categories; 

‘Geometry Oriented Methods’ and ‘Material Oriented Methods.’ One of the most used 

methods for each category are examined, and the approaches are compared to each 

other. The subjected methods are; 

1. ‘Force Density Method’ and 

2. ‘Dynamic Relaxation Method,’ respectively. 

In the literature, it is stated the outcome of the material-oriented form-finding methods 

can be considered more accurate. Since the material properties are known for the study, 

the Dynamic Relaxation Method is chosen as the form-finding method in the context 

of this thesis. 

Following the review of the existing structural analysis methods in the current 

literature, the ‘Finite Element Method’ is a viable method for calculating nodal 

displacements, stress, and stability of the structural elements. The discrete and 

complex nature of a gridshell makes a good case for ‘Finite Element Analysis.’ 

Considering these criteria alongside the availability of the FEA programs, the Finite 

Element Method is chosen for structural analysis part of this study. 
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5.2.3. Research Question 3 

 

Can we develop a computational workflow for a generic gridshell design process that 

includes the form-finding process as well as an optimization between geometrical 

features and construction cost? 

 

Following the literature review to understand the principles of gridshell structures, 

form-finding methods and structural analysis a computational method for gridshell 

design has been developed. The method consists of five consecutive steps as follows; 

1. ‘Initial Geometry Creation,’ 

2. ‘Physics-based Form Finding Procedure,’ 

3. ‘Evaluation of the User Defined Constraints,’ 

4. ‘Assembly of the Structural Model and Structural Performance Evaluation’ and 

5. ‘Optimization of Construction Cost and Shape Approximation.’ 

The ‘Initial Geometry Creation’ step creates the adaptive characteristic of the 

computational workflow. The step includes user decisions related to a gridshell design 

problem. Thanks to the generative approach of the workflow, the method can be 

applied to various gridshell design problems following the definition of the area 

boundaries and desired architectural criteria. In this step, an intermediate flat shape of 

the respective gridshell that is divided into sub-surfaces is created in relation to the 

user-defined inputs. 

The second step of the workflow which is named as ‘Physics-based Form Finding 

Procedure’ includes a real-world physics simulation to create a discrete gridshell 

geometry. In this step, the Dynamic Relaxation procedure is applied to the flat sub-

surfaces which are generated on the first step. In small time increments, the sub-

surfaces collapse under their self-weight in accordance with the initial surface until 

they form a shape that is statically in equilibrium. When the principles of Hooke’s 

Hanging Chain Law are considered, the reverse shape of the collapsed surface defines 

a shell shape that is statically in equilibrium. By including a physics simulation to the 

workflow, an equilibrium shape for a gridshell is acquired since the probability of 
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satisfying structural requirements with employing an arbitrary surface shape is 

relatively low. 

The third step of the workflow is the evaluation of the gridshell’s shape considering 

the user-defined criteria. Since the shape of the gridshell is the result of the Dynamic 

Relaxation procedure, constraints are required in order to evaluate the output if it 

satisfies the desired criteria. The iterative nature of the computational workflow 

requires this step to create gridshell alternatives that can be considered as suitable in 

the context of the given design problem. This step is directly related to the optimization 

part of the workflow. By including this step to the workflow, the iterative process does 

not proceed to the next step and restarts until the user-defined criteria are satisfied.  

In the fourth step of the workflow, a Finite Element Model is assembled in accordance 

with the generated gridshell shape. By using the Finite Element Analysis, the 

displacement analysis is performed. In relation to the Turkish Standards, a structural 

constraint is defined in order to limit the maximum allowable displacement. The 

constraint is included in the iterative workflow in order to consider the outputs which 

do not meet the serviceability criteria as unfeasible. 

In the fifth step of the workflow, the iterative character of the method is created by 

including an optimization process. Two objective functions are considered for the 

optimization which are; minimizing the construction cost of the gridshell while 

creating a discrete transformation of the smooth parent surface as close as possible. 

Since the generated gridshell alternatives consist of linear structural elements and 

planar faces, they cannot possess a smooth surface. The discretization of a smooth 

surface is necessary to define the form of a gridshell. In the discrete transformation 

process, the amount of sub-division of the parent surface plays a significant role 

concerning shape approximation. However, as the number of sub-surfaces increases, 

the construction cost also rises due to the increase in the numbers of the structural 

elements and connection nodes. Therefore, two conflicting objectives make a good 

case for a multi-objective evolutionary optimization process. 

The objective of the study was determined as creating a computational workflow with 

an iterative characteristic that can be adapted to different gridshell design problems. 

As a result of the workflow, a set of gridshell alternative can be achieved that requires 
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the user-defined criteria. In the end, it is possible to select suitable solutions for the 

given problem by considering the decisions related to construction cost and geometry.  

The computational workflow has been applied to two different cases. In these cases, 

one symmetrical rectangle geometry and one asymmetrical quadrilateral geometry 

have been defined. Besides the different boundary conditions, the user-defined 

constraints have been defined as the same for each case. The workflow has managed 

to achieve a set of gridshell design alternatives in each case. It has been observed that 

even though the algorithm is stopped at the 200th generation in each case, the resulting 

number of design alternatives were different. In light of this information, one may state 

that the number of generated design alternatives depends on the features of the given 

design problem. 

In each case, the workflow has defined triangular tessellation in terms of surface 

division type in order to cross the relative span by creating the minimum number of 

structural elements. Until a threshold, the alternatives have been created by using 

triangular tessellation to meet the minimum cost objective. This is mainly because, 

although the quadrilateral tessellation type results with a lesser number of elements, 

the lack of the diagonal elements result with larger deformation than the allowable 

limit.  

It has been observed that with the increase in the number of sub-surfaces the 

optimization algorithm has preferred the quadrilateral tessellation type over the 

triangulation since the quadrilateral tessellated gridshell alternatives result with lower 

construction cost than their equivalent triangulated alternatives. Also, the increase in 

the number of sub-surfaces has resulted in a closer approximation of the parent shell 

surface in the expanse of the construction cost. 

5.3. Research Contribution 

Architectural design can be described as the creative progression towards the 

achievement of specific design objectives in the context of a particular design problem. 

Every architectural design problem requires a conceptual idea development process in 

order to coop with the specific characteristics of the given problem. In the conceptual 

design process, the design parameters and constraints are defined in order to satisfy 

the design objectives. By controlling these parameters within the limits of the 

constraints, different responses to an architectural design problem can be made. These 
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sketch responses are an essential part of the idea development process since they 

allowed architects to visualize and evaluate the results of their decisions. 

The conceptual design phase of an architectural problem can be richened with the 

inclusion of digital sketches. By considering this approach, a computational workflow 

related to the conceptual design phase of gridshells is developed in this thesis. For this 

study, by extending the sketches to the digital environment, the gridshell design is not 

only considered regarding form and geometry, but also instant feedbacks related with 

the structural performance is included to the workflow.  

The proposed method of this study can be considered as an innovative decision-making 

process for designers and architects. The form-finding process in this method is based 

on real-world physics simulations which result in shapes that are structurally in 

equilibrium. Besides the Dynamic Relaxation process which is included in the form-

finding phase of the study, the structural performance evaluations of the generated 

forms are done by using Finite Element Methods. Besides, by creating the consecutive 

steps in the workflow that can be controlled parametrically, it is possible to create 

alternative gridshell designs by changing relevant parameters. This aspect of the 

workflow is translated to an optimization process in order to create a set of alternative 

gridshell designs for a given design problem. 

The computational and iterative workflow is developed by using digital tools for 

physics simulations, structural analysis, and optimization, Kangaroo, Karamba, and 

Octopus, respectively. By introducing these tools to the design method, the users can 

adapt an intuitive approach in order to see the relationship between the formal 

exploration process and the structural performance. Furthermore, a response to the 

defined design problem can be chosen from the set of alternative gridshell designs as 

the result of the optimization process that satisfies the related design constraints. 

Therefore, one may state that, by including this method to the conceptual design phase, 

the users can generate multiple gridshell design alternatives without needing any 

advanced knowledge of structural analysis and optimization. 

The adaptive nature of the proposed method draws its power from the consecutive 

computational steps which are included in the workflow. By defining design-specific 

input parameters and constraints, the method can be utilized in various gridshell design 

problems with different characteristics. In addition, by including constraints related to 
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the architectural decision, it is possible to develop a design by considering the 

architectural aspects of the structure such as the architectural program and function. 

As a result of the optimization procedure, a set of gridshell design alternatives can be 

acquired for a given design problem. The user can evaluate these alternatives in terms 

of construction cost and gridshell’s overall geometry. Theoretically, any solution that 

is acquired by using this method can be utilized as the response of the design problems. 

This is because the alternatives which are included in the resulted set satisfy the 

constraints of the problem. However, a decision should be made considering the 

overall cost and form. Since the approximation of the discrete gridshell geometry to 

its parent smooth surface affect the construction cost, the decision should be made in 

accordance with the project’s budget. 

5.4. Recommendations and Further Research 

The thesis focuses on developing a computational design method for generic gridshell 

design problems. The method includes a physics-based form-finding procedure, a 

finite element structural analysis workflow, and an optimization module. By 

considering the design related objectives and constraints, the method can be 

customized and applied to different gridshell design problems. 

In the context of this thesis, an application and design method has been developed in 

order to create a gridshell that consists of unstrained, linear wooden structural elements. 

The utilized generic wood material is chosen due to its availability within the digital 

tools which are used in this study. Different types of wood materials can be studied, 

and because of the difference in their material properties, the structural analysis may 

result different accordingly. In addition, the utilization of unstrained elements creates 

a possibility to use different types of materials such as steel and structural aluminum. 

Furthermore, circular cross-sections can be utilized with the introduction of these 

materials. This situation makes the prediction of the bending behavior of the structure 

more accurate and diminishes the effect of human error in the construction process. 

A gridshell’s structural performance highly depends on the characteristics of its 

structural elements as well as the overall tessellation. Any change in the elements’ 

geometries such as their dimensions and shapes of their cross-sections effects the 

overall structural performance. Each part of the gridshell can be analyzed and 
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redesigned through an optimization process in order to achieve a satisfying structural 

performance. 

Due to their complex erection schemes and complicated force calculations, the strained 

gridshell systems are excluded from the scope of this study. The elastic nature of the 

wood material allows the utilization of pre-tensioned linear wooden elements that may 

result in more resistant gridshell structures. Thus, they can cross larger spans with 

lower material consumption. However, this type of study should include an innovative 

method related to the erection process of the flat-gridshell surface and calculations 

should be done accordingly.  

In this study, a generic cover material is defined as glass panels with structural 

aluminum frames for the gridshell alternatives. The calculations related to structural 

stability are done accordingly. In these calculations, the self-weight of the gridshell 

structure and downward wind forces are defined as the applied loads. For further 

researches, the uplift wind forces and earthquake loads can also be integrated into the 

context of the study. Besides, different cover materials can be studied in order to richen 

the architectural decision-making process. 

The gridshell design problem is formulated as a multi-objective evolutionary 

optimization problem, and HypE algorithm is employed in the optimization process. 

The performance of the algorithm is not evaluated since only one optimization 

algorithm is used throughout the study. The algorithm is chosen considering its 

availability within the Octopus plug-in. A further study can be done by using multiple 

evolutionary algorithms in order to compare their performance. 
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APPENDIX 1 – Values of Objective Functions and Parameters for Case 1 

No 𝑵𝒖−𝒅𝒊𝒗 𝑵𝒗−𝒅𝒊𝒗 
𝑬𝒄𝒐𝒏  

1-3 
𝑺𝒕 𝑭𝒙 𝑨𝒙−𝒔𝒆𝒍 𝑪𝒈 𝑨𝒔𝒉𝒂𝒑𝒆 

1 11 13 1–1 1 4.6 0 14309.73 164 

2 11 15 0–1 1 4.9 0 15915.80 188 

3 13 13 1–1 1 4.6 0 16336.74 192 

4 11 17 0–1 1 3.7 0 17531.83 212 

5 13 15 1–1 1 4.5 0 18127.63 220 

6 11 19 0–1 1 3.6 0 19156.34 236 

7 13 17 1–1 1 3.7 0 19929.06 248 

8 15 15 1–1 1 4.9 0 20354.01 252 

9 11 21 1–1 1 3.3 0 20788.01 260 

10 13 19 1–1 1 3.3 0 21739.76 276 

11 15 17 1–1 1 3.5 0 22342.37 284 

12 13 21 1–1 1 3.5 0 23558.53 304 

13 11 25 0–1 1 3.6 0 24068.48 308 

14 15 19 1–1 1 4.6 0 24340.39 316 

15 17 17 1–1 1 3.5 0 24768.45 320 

16 13 23 0–1 1 3.5 0 25384.26 332 

17 15 21 0–1 1 4.8 0 26347.01 348 

18 17 19 1–1 1 3.6 0 26955.01 356 

19 13 25 1–1 1 3.9 0 27215.98 360 

20 15 23 1–1 1 4.4 0 28361.22 380 

21 13 27 1–1 1 4.8 0 29052.88 388 

22 17 21 0–1 1 4.8 0 29150.42 392 

23 19 19 1–1 1 3.2 0 29580.96 396 

24 15 25 1–1 1 4.8 0 30382.11 412 

25 13 29 1–1 1 4.5 0 30894.24 416 

26 17 23 0–1 1 4.7 0 31353.82 428 

27 19 21 1–1 1 4.9 0 31966.18 436 

28 15 27 1–1 1 4.8 0 32408.86 444 

29 17 25 0–1 1 4.7 0 33564.35 464 

30 19 23 1–1 1 4.6 0 34359.55 476 
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No 𝑵𝒖−𝒅𝒊𝒗 𝑵𝒗−𝒅𝒊𝒗 
𝑬𝒄𝒐𝒏  

1-3 
𝑺𝒕 𝑭𝒙 𝑨𝒙−𝒔𝒆𝒍 𝑪𝒈 𝑨𝒔𝒉𝒂𝒑𝒆 

31 21 21 1–1 1 4.6 0 34792.10 480 

32 17 27 1–1 1 4.7 0 35781.24 500 

33 15 31 1–1 1 4 0 36477.14 508 

34 19 25 0–1 1 4.1 0 36760.33 516 

35 21 23 1–1 1 4.2 0 37376.27 524 

36 21 25 1–1 0 2.9 1 38750.57 568 

37 17 31 1–1 0 3.2 1 38995.69 572 

38 19 29 1–1 0 2.9 1 40353.47 596 

39 17 33 1–1 0 4.6 1 41156.48 608 

40 21 27 1–1 0 4.6 1 41311.31 612 

41 23 25 1–1 0 4.2 1 41869.20 620 

42 19 31 1–1 0 3.9 1 42714.22 636 

43 21 29 1–1 0 4.7 1 43872.01 656 

44 23 27 1–1 0 3.9 1 44629.85 668 

45 25 25 1–1 0 2.9 1 44987.73 672 

46 19 33 1–1 0 3.9 1 45074.93 676 

47 21 31 1–1 0 2.8 1 46432.68 700 

48 23 29 1–1 0 4.6 1 47390.47 716 

49 25 27 1–1 0 3.9 1 47948.31 724 

50 23 33 1–1 0 4.8 0 48807.76 812 

51 25 31 1–1 0 4.8 0 49712.94 828 

52 27 29 1–1 0 4.6 0 50218.13 836 

53 35 23 1–1 0 3.9 0 52079.27 860 

54 25 33 1–1 0 3.1 0 52553.28 880 

55 27 31 1–1 0 3 0 53258.45 892 

56 29 29 1–1 0 4.6 0 53563.64 896 

57 37 23 1–1 0 3.3 0 54824.71 908 

58 41 21 1–1 0 3.3 0 55875.32 920 

59 35 25 1–1 0 3.9 0 55919.51 932 

60 27 33 1–1 0 3.3 0 56298.76 948 

61 29 31 1–1 0 4.2 0 56803.93 956 

62 37 25 1–1 0 3.9 0 58864.92 984 
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No 𝑵𝒖−𝒅𝒊𝒗 𝑵𝒗−𝒅𝒊𝒗 
𝑬𝒄𝒐𝒏  

1-3 
𝑺𝒕 𝑭𝒙 𝑨𝒙−𝒔𝒆𝒍 𝑪𝒈 𝑨𝒔𝒉𝒂𝒑𝒆 

63 35 27 1–1 0 3.9 0 59759.73 1004 

64 29 33 1–1 0 4.8 0 60044.21 1016 

65 31 31 1–1 0 3.6 0 60349.37 1020 

66 39 25 1–1 0 4.2 0 61810.31 1036 

67 37 27 1–1 0 3.9 0 62905.13 1060 

68 35 29 1–1 0 3 0 63599.96 1076 

69 31 33 1–1 0 3.1 0 63789.63 1084 

70 41 25 1–1 0 4.6 0 64755.67 1088 

71 39 27 1–1 0 4.3 0 66050.50 1116 

72 37 29 1–1 0 3.6 0 66945.33 1136 

73 35 31 1–1 0 4.2 0 67440.17 1148 

74 33 33 1–1 0 3.1 0 67535.02 1152 

75 41 27 1–1 0 4.3 0 69195.85 1172 

76 39 29 1–1 0 3 0 70290.69 1196 

77 37 31 1–1 0 3.6 0 70985.53 1212 

78 35 33 1–1 0 3.3 0 71280.38 1220 

79 41 29 1–1 0 4.2 0 73636.02 1256 

80 39 31 1–1 0 4.2 0 74530.87 1276 

81 37 33 1–1 0 3.3 0 75025.72 1288 

82 41 31 1–1 0 4.2 0 78076.18 1340 

83 39 33 0–1 0 2.9 0 78771.05 1356 

84 41 33 1–1 0 3.2 0 82516.35 1424 
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APPENDIX 2 – Values of Objective Functions and Parameters for Case 2 

No 𝑵𝒖−𝒅𝒊𝒗 𝑵𝒗−𝒅𝒊𝒗 
𝑬𝒄𝒐𝒏  

1-3 
𝑺𝒕 𝑭𝒙 𝑨𝒙−𝒔𝒆𝒍 𝑪𝒈 𝑨𝒔𝒉𝒂𝒑𝒆 

1 11 15 1–1 1 3.2 0 15719.59 188 

2 11 17 1–1 1 3.2 0 17377.86 212 

3 11 19 1–1 1 3.8 0 19046.36 236 

4 13 17 1–1 1 3.1 0 19680.79 248 

5 13 19 1–1 1 3.9 0 21533.04 276 

6 11 23 1–1 1 3.1 0 22406.77 284 

7 11 25 1–1 1 3.1 0 24095.87 308 

8 13 23 1–1 1 3.1 0 25265.57 332 

9 15 21 1–1 1 3.8 0 26087.97 348 

10 13 25 1–1 1 3.9 0 27142.77 360 

11 15 23 1–1 1 3.1 0 28144.98 380 

12 17 21 1–1 1 2.5 0 28798.93 392 

13 11 33 1–1 0 2.6 1 29684.36 404 

14 13 29 1–1 0 2.5 1 29968.34 416 

15 17 23 1–1 1 3.1 0 31042.80 428 

16 15 27 1–1 0 2.5 1 31446.44 444 

17 17 25 1–1 0 2.5 1 32524.65 464 

18 19 23 1–1 0 2.2 1 33202.95 476 

19 17 27 1–1 0 2.7 1 34718.61 500 

20 15 31 1–1 0 3.1 1 35434.34 508 

21 19 25 1–1 0 2.7 1 35596.86 516 

22 21 23 1–1 0 2.2 1 36075.21 524 

23 17 29 1–1 0 2.5 1 36912.48 536 

24 15 33 1–1 0 2.4 1 37428.16 540 

25 19 27 1–1 0 2.5 1 37990.70 556 

26 21 25 1–1 0 2.4 1 38669.00 568 

27 23 23 1–1 0 2 1 38947.37 572 

28 19 29 1–1 0 3 1 40384.47 596 

29 21 27 1–1 0 2.9 1 41262.73 612 

30 23 25 1–1 0 2.5 1 41741.05 620 
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No 𝑵𝒖−𝒅𝒊𝒗 𝑵𝒗−𝒅𝒊𝒗 
𝑬𝒄𝒐𝒏  

1-3 
𝑺𝒕 𝑭𝒙 𝑨𝒙−𝒔𝒆𝒍 𝑪𝒈 𝑨𝒔𝒉𝒂𝒑𝒆 

31 19 31 1–1 0 2.5 1 42778.18 636 

32 21 29 1–1 0 3.9 1 43856.41 656 

33 23 27 1–1 0 2.8 1 44534.69 668 

34 25 25 1–1 0 2.5 1 44813.04 672 

35 19 33 1–1 0 2.7 1 45171.83 676 

36 21 31 1–1 0 3.9 1 46450.03 700 

37 23 29 1–1 0 2.9 1 47328.29 716 

38 25 27 1–1 0 2.5 1 47806.60 724 

39 21 33 1–1 0 3.9 1 49043.61 744 

40 23 31 1–1 0 2.1 1 50121.84 764 

41 25 29 1–1 0 2.6 1 50800.12 776 

42 27 27 1–1 0 2.6 1 51078.44 780 

43 35 21 1–1 0 2.4 1 52185.46 788 

44 23 33 1–1 0 2.4 1 52915.35 812 

45 25 31 1–1 0 2.1 1 53793.60 828 

46 27 29 1–1 0 3.9 1 54271.90 836 

47 35 23 1–1 0 2.1 1 56178.76 860 

48 25 33 0–1 0 2.4 1 56787.06 880 

49 27 31 1–1 0 2.1 1 57465.33 892 

50 29 29 1–1 0 2.7 1 57743.64 896 

51 37 23 1–1 0 2.2 1 59050.46 908 

52 35 23 1–1 0 2.5 1 60172.05 932 

53 27 33 1–1 0 2.9 1 60658.73 948 

54 29 31 1–1 0 2.9 1 61137.01 956 

55 37 25 1–1 0 2.5 1 63243.71 984 

56 35 27 1–1 0 2.5 1 64165.33 1004 

57 29 33 1–1 0 2.9 1 64530.36 1016 

58 31 31 1–1 0 2.5 1 64808.66 1020 

59 39 25 1–1 0 3.9 1 66315.32 1036 

60 37 27 1–1 0 2.6 1 67436.95 1060 

61 35 29 1–1 0 2.7 1 68158.60 1076 

62 31 33 0–1 0 2.9 1 68401.97 1084 
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No 𝑵𝒖−𝒅𝒊𝒗 𝑵𝒗−𝒅𝒊𝒗 
𝑬𝒄𝒐𝒏  

1-3 
𝑺𝒕 𝑭𝒙 𝑨𝒙−𝒔𝒆𝒍 𝑪𝒈 𝑨𝒔𝒉𝒂𝒑𝒆 

63 41 25 1–1 0 2.9 1 69386.89 1088 

64 39 27 1–1 0 2.6 1 70708.52 1116 

65 37 29 1–1 0 3.9 1 71630.18 1136 

66 35 31 1–1 0 2.5 1 72151.84 1148 

67 33 33 1–1 0 2.4 1 72273.54 1152 

68 41 27 1–1 0 2.7 1 73980.07 1172 

69 39 29 1–1 0 2.5 1 75101.72 1196 

70 37 31 0–1 0 2.6 1 75823.39 1212 

71 35 33 1–1 0 2.5 1 76145.08 1220 

72 41 29 1–1 0 2.9 1 78573.24 1256 

73 39 31 1–1 0 2 1 79494.91 1276 

74 37 33 1–1 0 2.7 1 80016.60 1288 

75 41 31 1–1 0 2.5 1 83166.40 1340 

76 39 33 1–1 0 2.5 1 83888.09 1356 

77 41 33 1–1 0 2.9 1 87759.55 1424 

 


