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ABSTRACT 

BI-OBJECTIVE NO-WAIT PERMUTATION FLOWSHOP SCHEDULING 

PROBLEMS 

Yüksel, Damla 

MSc, Industrial Engineering 

Advisor: Levent KANDİLLER, PhD 

Co-Advisor: Mehmet Fatih TAŞGETİREN, PhD 

June 2019 

In the field of permutation flowshop scheduling problems, there is a vast 

literature covering mathematical models and heuristics approaches. However, less 

work has been reported in the field of no-wait permutation flowshop scheduling 

problems, a variant of permutation flow shop scheduling problem where the waiting 

time for the jobs between the machines is not allowed. This thesis proposes both 

mixed-integer linear programming and constraint programming model formulations 

for no-wait permutation flowshop scheduling problem under various objectives such 

as (i) makespan, (ii) total flow time and (iii) total tardiness.   

Moreover, energy-efficient scheduling has become very popular recently since 

energy consumption in high volume manufacturing is the leading essential difficulty 

in most industries. Both mixed-integer programming and constraint programming 

model formulations are developed in this thesis on the energy-efficient (bi-objective) 

no-wait permutation flowshop scheduling problems with the objective of minimizing 

(i) makespan, (ii) total flow time and (iii) total tardiness, separately. The bi-objective 

no-wait permutation flowshop scheduling problems treat the total energy consumption 

as a second objective in this study. Furthermore, due to the NP-hardness nature of the 

first objective of the problem, a novel multi-objective discrete artificial bee colony 

algorithm (MO-DABC), a traditional multi-objective genetic algorithm (MO-GA) and 

a variant of multi-objective genetic algorithm (MO-GALS) are proposed for the bi-

objective no-wait permutation flowshop scheduling problems. Consequently, a 

comprehensive comparative metaheuristic analysis is carried out. 
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Hence, this thesis contributes to the literature of no-wait permutation flowshop 

scheduling problem for not only single-objective problems but also the bi-objective 

problems which consider energy efficient scheduling by ensuring various new 

mathematical models and metaheuristics. 

Key Words: no-wait permutation flowshop scheduling problems, mixed-integer linear 

programming, constraint programming, bi-objective optimization, metaheuristics
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ÖZ 

İKİ AMAÇLI BEKLEMESİZ PERMUTASYON AKIŞ TİPİ ÇİZELGELEME 

PROBLEMLERİ 

Yüksel, Damla 

Yüksek Lisans, Endüstri Mühendisliği 

Danışman: Prof. Dr. Levent KANDİLLER 

Yardımcı Danışman: Prof. Dr. Mehmet Fatih TAŞGETİREN 

June 2019 

Permütasyon akış tipi çizelgeleme problemlerinin literatür incelenmesinde 

matematiksel modellerin ve sezgisel yaklaşımların yaygın olarak kullanılmakta olduğu 

görülmüştür. Ancak, makineler arasındaki işler için bekleme süresine izin verilmeyen 

bir permütasyon akış tipi çizelgeleme problemi çeşidi olan beklemesiz permütasyon 

akış tipi çizelgeleme problemleri alanında daha az çalışma yapılmıştır. Bu tez, 

beklemesiz permütasyon akış tipi çizelgeleme problemi için hem karma-tamsayılı 

doğrusal programlama hem de kısıt programlama model formülasyonunu, (i) iş üretim 

süresi, (ii) toplam akış süresi ve (iii) toplam gecikme gibi çeşitli amaçlar altında 

önermektedir.  

Ek olarak, enerji verimli çizelgeleme son zamanlarda oldukça popüler hale 

gelmiştir, çünkü yüksek hacimli imalattan kaynaklanan enerji tüketimi çoğu sektörde 

karşılaşılan en başta gelen problemdir. Bu nedenle, hem karma-tamsayılı programlama 

hem de kısıt programlama model formülasyonları, iki-amaçlı beklemesiz permütasyon 

akış tipi çizelgeleme problemleri üzerinde, yine (i) iş üretim süresini, (ii) toplam akış 

süresini ve (iii) toplam gecikmeyi ayrı ayrı en aza indirmek amacıyla çalışılmıştır. Bu 

tezde, iki-amaçlı beklemesiz permütasyon akış tipi çizelgeleme problemlerinin toplam 

enerji tüketimini ikinci bir amaç olarak kullandığı kabul edilmiştir. Ayrıca, ilk amaç 

fonksiyonunda bile NP-Hard sınıfında olan bu problem kapsamında, iki-amaçlı 

beklemesiz permütasyon akış tipi çizelgeleme problemleri için yeni bir çok-amaçlı 

ayrık yapay arı kolonisi algoritması (MO-DABC), bir geleneksel çok-amaçlı genetik 

algoritma (MO-GA) ve bir çok-amaçlı genetik algoritma çeşidi (MO-GALS) 

önerilmiştir. Sonuç olarak, iki amaçlı beklemesiz permütasyon akış tipi çizelgeleme 

problemleri için kapsamlı bir karşılaştırmalı metasezgisel analiz yapılmıştır.  
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Bu nedenle, bu tez, beklemesiz permütasyon akış tipi çizelgeleme problemi 

literatürüne sadece tek-hedefli problemler için değil aynı zamanda iki-hedefli enerji 

verimli çizelgeleme problemleri için çeşitli yeni matematiksel modeller ve 

metasezgisel yöntemler sağlayarak katkıda bulunmaktadır. 

Anahtar Kelimeler: beklemesiz permütasyon akış tipi çizelgeleme problemleri, 

karma-tamsayılı lineer programlama, kısıt programlama, iki-amaçlı optimizasyon, 

sezgisel yöntemler
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CHAPTER 1 

INTRODUCTION 

 The no-wait permutation flowshop scheduling problem (NWPFSP) is a variant 

of permutation flowshop scheduling problems (PFSP) that are most studied scheduling 

problems yielding significant practical applications in chemical, steel, plastic, food-

processing, pharmaceutical and electronic industries (Aldowaisan & Allahverdi, 2004; 

Sapkal & Laha, 2013). The no-wait flowshop scheduling problems differ from the 

traditional flowshop problems by the following extra restriction: any holding up is not 

allowed between two consecutively used machines for any job. In the manufacturing 

areas of the above mentioned industries, owing to the technological restrictions, there 

might not be any storage area between two machines, which proceed the same job 

successively. In other words, once a job starts processing on the first machine, it must 

be processed without disruption until the end of the processing on the last machine. 

Furthermore, it is necessary to mention that the no-wait flowshop scheduling problems 

are perceived as permutation flowshop problems where each job follows the same 

order on machines (Fink & Voß, 2003). Hence, NWPFSPs target to find a job sequence 

for all jobs on the machines where each job follows the same order on the machines 

and where there is no waiting time between consecutive machines for a job. 

 This thesis aims to investigate a new fundamental mathematical modelling for 

three important NWPFSPs: (i) no-wait flowshop scheduling problem with the 

objective of makespan minimization, (ii) no-wait flowshop scheduling problem with 

the objective of total flow time minimization, and (iii) no-wait flowshop scheduling 

problem with the objective of total tardiness minimization. To be consistent with the 

standard 3-tuple notation framework, these problems are denoted as (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫), 

(𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ) and (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜), respectively (Graham et al. 1979). According to 

this notation, 𝐹௠ represents a flowshop with m machines and 𝑛𝑤𝑡 indicates the no-

wait restriction of the jobs between successive machines. 𝐶௠௔௫, ∑ 𝐶௜ெ and ∑ 𝑇௜ denote 

that the objective is to minimize the makespan, the total flow time and the total 

tardiness, respectively. 
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 Moreover, this thesis contributes to the energy efficient scheduling literature in 

such a way that the total energy consumption is considered. Recently, the energy 

efficient scheduling and energy consumption consideration increase its popularity 

within the scope of scheduling environment due to the fact that the high-energy 

consumption is the biggest current concern during production (Fang et al., 2011). To 

reduce the high-energy consumption in the manufacturing environment, energy-

efficient machines are required to be used. On the other hand, this might not be 

applicable in most of the processes due to the substantial amount of financial 

investment. Therefore, energy-efficiency concept is employed at the operational 

planning level on machines by means of developing solution techniques for energy 

efficient no-wait permutation flowshop scheduling problems, in this thesis. Hence, this 

thesis aims to investigate a novel fundamental mathematical modelling for three 

important bi-objective NWPFSPs: (i) bi-objective no-wait flowshop scheduling 

problem to minimize the makespan and the total energy consumption, (ii) bi-objective 

no-wait flowshop scheduling problem to minimize the total flow time and the total 

energy consumption, and (iii) bi-objective no-wait flowshop scheduling problem to 

minimize the total tardiness and the total energy consumption. Again, to be consistent 

with the standard 3-tuple notation framework, these problems are denoted as 

(𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫, 𝑇𝐸𝐶) and (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ , 𝑇𝐸𝐶), (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜, 𝑇𝐸𝐶), respectively. 

Here, the term TEC denotes the total energy consumption. We propose two types of 

models formulating: mixed-integer linear programming (MILP) and constraint 

programming (CP).  In addition, since the problem is NP-Hard, a multi-objective 

discrete artificial bee colony (MO-DABC), and a multi-objective genetic algorithm 

(MO-GA), also a variant of this algorithm (MOGALS) are developed, as heuristic 

solution methods. The performance of these algorithms over MILP and CP are 

measured in terms of small sized instances, then the comparative performance of the 

heuristic algorithms is measured in terms of larger instances with respect to various 

performance metrics. 

The remainder of the thesis is organized as follows: In Chapter 2, the problem 

definition and an extensive literature review for single-objective NWPFSPs and 

energy efficient scheduling problems are presented. Then, the mathematical models 

and constraint programming models for single-objective NWPFSPs and bi-objective 

NWPFSPs are provided in Chapter 3 and Chapter 4, respectively. While three energy 
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efficient metaheuristics are proposed for bi-objective NWPFSPs in Chapter 5, the 

computational results are provided in Chapter 6. Finally, the concluding remarks are 

stated and future research directions are addressed in Chapter 7. 
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CHAPTER 2 

PROBLEM DEFINITION AND LITERATURE REVIEW 

In this chapter, initially, the problem definitions are stated for single-objective 

NWPFSPs and bi-objective (energy-efficient) NWPFSPs. Then, all sets, parameters 

and decision variables are presented for both mixed-integer linear programming model 

(MILP) and constraint programming model (CP) by reflecting the insight of the no-

wait restrictions. Next, a comprehensive literature review for both single-objective 

NWPFSPs and energy efficient scheduling problems are provided. At the end, the gaps 

found in the literature and the contribution of this thesis to the literature are discussed.  

2.1. Single-Objective No-Wait Permutation Flowshop Scheduling 

Problems 

The no-queue restriction makes the NWPFSP a special variant of PFSPs. Hence, 

the assumptions of the NWPFSPs can be summarized as follows. 

 Each job can only be processed in one machine at a time and each machine can 

only process one job at a time. 

 Each machine must process the jobs in an identical order, meaning that this 

problem is a variant of permutation flow shop scheduling problems. 

 The jobs cannot wait between the machines. Once they start being processed, 

they must complete their processes until the last machine without any 

interruption between machines. This is referred as the no-wait restriction. 

 Each job either follows a job or proceeds a job on all machines.  

According to these assumptions, the Gantt chart for an example of NWPFSP, 

where 4 jobs is required to be scheduled on 3 machines, can be seen in Figure 2.1. 

Machines                                                 
3   

  
Job 1   Job 3     Job 2 

  
Job 4         

2   Job 1 Job 3 Job 2     Job 4 
 

            
1 Job 1   Job 3     Job 2 Job 4                       
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Figure 2.1. Gantt Chart for an Example of NWPFSP 

 The no-wait permutation flowshop scheduling problem (NWPFSP) is increasing 

its popularity due to the high level of applicability in most industries. This type of 

scheduling problems can be applicable when there is no any buffer spaces between the 
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machines and/or when it is compulsory for the jobs to be processed without any 

interruption (Hall & Sriskandarajah, 1996). For example, in the food processing 

industry, the cooking operation must be started immediately after the canning 

operation for  the assurance of freshness. Next, in silverware or plastic molding 

manufacturing industries, a bunch of operations required to be proceeded one after 

another. In chemical and pharmaceutical industries, the same reason of consecutive 

operations exists. Another example is steel production. Molding, unmolding, 

preliminary rolling, etc. require continuous production processes. Ultimately, no-wait 

scheduling problem arises even on the service industries where waiting in process of 

customers might inevitably costs high.  

 Various objective functions can be studied for scheduling problems such as 

makespan, maximum flow time, total flow time, total weighted flow time, maximum 

tardiness, maximum lateness, maximum earliness, total lateness, total tardiness, total 

earliness, total weighted tardiness, total number of tardy jobs, etc. However, in this 

thesis, three objective functions; (i) makespan, (ii) total flow time and (iii) total 

tardiness are studied separately. In other words, (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫) , (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ) 

and (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜) problems are employed. Hence, the sets, indices, parameters and 

decision variables are provided below: 

Sets and Indices 
𝑁 Set of jobs 

𝑀 Set of machines 

𝑖, 𝑘 Indices for jobs (1 ≤ 𝑖, 𝑘 ≤ |𝑁|) 

𝑟 Index for machines (1 ≤ 𝑟 ≤ |𝑀|) 

 

Parameters 
𝑃௜௥ Processing time of job 𝑖 ∈ 𝑁 on machine 𝑟 ∈ 𝑀 

𝐷𝐷௜ Due date of job 𝑖 ∈ 𝑁 

𝑄 A very large number 

 

Decision Variables for MILP Model 
𝐶௜௥ Completion time of job 𝑖 on machine  𝑟 

𝐷௜௞ 1 if job 𝑖 is scheduled any time before job 𝑘, 0 otherwise (𝑖 < 𝑘) 

𝑇௜ Tardiness of job 𝑖 ∈ 𝑁 
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𝐶௠௔௫ Maximum completion time (makespan) 

 

Decision Variables for CP Model 
𝐽𝑜𝑏௜௥ Interval variable for the processing time (𝑃௜௥) of job 𝑖 on machine  𝑟 

𝑀𝑎𝑐௥ Sequence variable for machines over all  𝐽𝑜𝑏𝐼𝑛𝑡௜௥ 

 𝑁 and 𝑀 stands for set of jobs and set of machines, respectively. Also, 𝑖 and 𝑘 

are used for  jobs indices, and  𝑟 is used for machine index. In this problem framework, 

the processing times 𝑃௜௥ are preliminarily obtained so that the sequencing will depend 

on the processing times of jobs. Furthermore, due dates 𝐷𝐷௜ of jobs are required for 

the (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜) problem.  𝑄 is provided for only the MILP model and it will be 

used in the sequencing constraints.  𝐶௜௥ is the completion time of job 𝑖 on machine 𝑟. 

Namely, it equals to the starting time of job 𝑖 on the first machine plus its processing 

times on all machines, due to the no-wait restriction. 𝐷௜௞ will be used to distinguish 

the jobs sequence in such a way that it takes the value of 1 if job 𝑖 is scheduled any 

time before job 𝑘, or 0 otherwise (𝑖 < 𝑘). But this condition is checked for only the 

situations where 𝑖 < 𝑘 since the construction of MILP model.  For the (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜) 

problem, the tardiness 𝑇௜ is calculated as follows: 𝑇௜ = max{(𝐶௜ெ − 𝐷𝐷௜),0} means 

that the tardiness of each job 𝑖 equals to either the maximum of the difference between 

the completion time of the jobs on the last machine and its due date or 0. Namely, if 

the completion time of a job on the last machine goes beyond the due date of job, it 

becomes a tardy job.  𝐶௠௔௫ is the maximum completion time of all jobs, called as 

makespan. While considering the CP model, some additional decision variables are 

used due to the nature of CP.  The interval variable 𝐽𝑜𝑏𝐼𝑛𝑡௜௥ converts the processing 

time information provided in the problem into a variable which keeps the information 

as an interval of a time during which job 𝑖  is processed on machine  𝑟 . Then, the 

sequence variable 𝑀𝑎𝑐௥ is reserved for the sequence information of all the jobs. All 

the detailed information about the single-objective MILP and CP models is given in 

Chapter 3. 

2.2. Bi-Objective (Energy-Efficient) No-Wait Permutation Flowshop 

Scheduling Problem 

Energy consumption consideration for resource efficient manufacturing has 

been rapidly increasing recently. The main reason is that the energy consumption in 
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high volume is the leading essential difficulty in most industries (Fang et al., 2011). 

Therefore, reduction of energy and power consumption in manufacturing carries huge 

importance while maintaining the same service levels. Thus, the studies in the scope 

of energy-efficient scheduling literature are increasing rapidly. In this thesis, the 

energy consumption is studied in the no-wait permutation flow shop setting 

(NWPFSPs). The importance of the total energy consumption comes from the usage 

of high, normal and slow speed levels. If a machine processes in high speed level, it 

decreases the jobs’ process time and vice versa. Therefore, the existence of speed 

levels reveals that “lower speed levels uses up less energy but raises process times” 

and “higher speed levels uses up more energy but reduces process times”. Speed 

scaling strategy is a novel contribution of the Fang et al. (2011) that  allows the 

machines operate at different speed levels when the different jobs are processed. 

Therefore, the tradeoff between the processing time and the total energy consumption 

is an existing fact and this leads to two main conflicting objectives. Generally, these 

problems can be notated as (𝐹௠|𝑛𝑤𝑡|𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑇𝑖𝑚𝑒, 𝑇𝐸𝐶). However, in this study, 

three objective functions ((i) makespan, (ii) total flow time and (iii) total tardiness) are 

again studied for the bi-objective (energy-efficient) no-wait permutation flowshop 

scheduling problems, separately. In other words (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫, 𝑇𝐸𝐶) , 

(𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ , 𝑇𝐸𝐶) and (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜ , 𝑇𝐸𝐶) problems are focused. Hence, the 

used sets, indices, parameters and decision variables are provided below: 

Sets and Indices 
𝑁 Set of jobs 

𝑀 Set of machines 

𝐿 Set of speed levels 

𝑖 and 𝑘 Indices for jobs (1 ≤ 𝑖, 𝑘 ≤ |𝑁|) 

𝑟 Index for machines (1 ≤ 𝑟 ≤ |𝑀|) 

𝑙 Index for speed levels (1 ≤ 𝑙 ≤ |𝐿|) 

 
Parameters 
𝑃௜௥ Processing time of job 𝑖 ∈ 𝑁 on machine 𝑟 ∈ 𝑀 

𝐷𝐷௜  Due date of job 𝑖 ∈ 𝑁 

𝑄 A very large number 

𝑠௟ Speed factor of processing speed level 𝑙 ∈ 𝐿 

𝜆௟ Conversion factor for processing speed level 𝑙 ∈ 𝐿 
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𝜑௥ Conversion factor for idle time on machine 𝑟 ∈ 𝑀 

𝜏௥ Power of machine 𝑟 ∈ 𝑀 (kW) 

 
Decision Variables for MILP Model 
𝐶௜௥ Completion time of job 𝑖 on machines  𝑟 

𝐷௜௞ 1 if job 𝑖 is scheduled any time before job 𝑘, 0 otherwise (𝑖 < 𝑘) 

𝑇௜ Tardiness of job 𝑖 ∈ 𝑁 

𝐶௠௔௫ Maximum completion time (makespan) 

𝑦௜௥௟ 1 if job 𝑖 is processed at speed 𝑙 on machine 𝑟, 0 otherwise. 

𝜃௥ Idle time on machine r 

𝑇𝐸𝐶 Total energy consumption (kWh) 

 
Decision Variables for CP Model 
𝐽𝑜𝑏௜௥ Interval variable for the processing time (𝑃௜௥) of job 𝑖 on machine  𝑟 

𝑀𝑎𝑐௥ Sequence variable for machines over all  𝐽𝑜𝑏𝐼𝑛𝑡௜௥ 

𝐽𝑜𝑏𝑂𝑝𝑡௜௥௟ Optional interval variable for the processing time (𝑃௜௥) of job 𝑖 on 

machine 𝑟 which has the speed levels of 𝑙 

𝜃௥ Idle time on machine r 

𝐶௠௔௫ Maximum completion time (makespan) 

𝑇𝐸𝐶 Total energy consumption (kWh) 

 Additively to the single-objective NWPFSPs, some other settings are needed to 

be made. For example, 𝐿  stands for set of speed levels. Because the speed scaling 

strategy will be used in the bi-objective MILP and CP model formulations. Also, 𝑙 is 

used for denoting the speed levels. Then, 𝑠௟ is the equivalent of the factor effect of 

speed level 𝑙. 𝜆௟ and 𝜑௥ are the conversion factors for processing speed level  𝑙 and for 

idle time on machine 𝑟, respectively. 𝜏௥ stands for the power of machine 𝑟.  All these 

parameters are inspired from Mansouri et al. (2016). Other detailed information about 

the bi-objective MILP and CP model formulations is given in Chapter 4. 

2.3. Literature Review on No-Wait Permutation Flowshop Scheduling 

Problems 

This problem is a variant of the permutation flow shop scheduling problem 

(PFSP) where the jobs cannot wait between two consecutive machines. In other words, 

once a job starts it processing on the first machine, it must be processed on all 
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downstream machines until completion without any interruption. Because of the 

technological restrictions, NWPFSPs are applicable in various industries such as 

chemical, electronics, plastics, metal, etc. (Sapkal & Laha, 2013) where the processing 

of each job must be continuous from the start to the end without any interruption. This 

problem is NP-hard for three or more machines (Röck, 1984). Deman & Baker (1974) 

proved that the mean flow time for NWPFSPs where there is no intermediate queue 

between the machines, can be solved with a branch and bound algorithm for smaller 

size of instances such as up to 12 jobs, while Wismer (1972) presented a branch and 

bound algorithm for the makespan criterion. 

The total flow time criterion is studied by using a discrete harmony search 

algorithm by embedding a local search procedure (Gao et al. 2011). The mean flow 

time is minimized in a two-stage flexible no-wait flow shop problem (Shafaei et al. 

2011). Next, a hybrid harmony search algorithm is studied with the help of a speed up 

method to reduce the running time requirement (Gao et al. 2012). A discrete 

differential evolution algorithm with the variable neighborhood descent algorithm is 

applied in NWPFSP (Tasgetiren et al. 2007). Another study proposes an improved 

iterated greedy algorithm that uses a tabu-based reconstruction strategy for the local 

minima search by Ding et al. (2015). Next, four composite and two constructive 

heuristics are proposed to minimize the total flow time in Gao et al. (2013). A hybrid 

particle swarm optimization algorithm regarding memetic algorithm, where a local 

search is hybridized, is computed on this problem by Akhshabi et al. (2014). Also, as 

a very comprehensive study, an discrete particle swarm optimization algorithm is 

developed for both makespan and total flow time depending on various speed-up 

methods for both the insert and swap neighborhood structures (Pan et al. 2008). Also, 

there is a recent study of Chaudhry et al. (2018) that proposes a genetic algorithm to 

minimize total flow time. Besides, Ying et al. (2016) proposed a self-adaptive ruin-

and-recreate algorithm for the (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ) problem and this algorithm improves 

almost more than half of the benchmark instances.  

There are recent studies in literature regarding NWPFSPs. A very 

comprehensive literature review is presented in Lin & Ying (2016) and the makespan 

criterion is studied by converting the problem into an asymmetric travelling 

salesperson problem for the (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫) problem. Then, the problem is solved 

optimally by two metaheuristics. In this study, the optimal results of makespan 

minimization are reported. More importantly, the study of Samarghandi & Behroozi 
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(2017) proposed a mixed integer linear programming, two quadratic mixed integer 

programming and two constraint programming model formulations for the 

(𝐹௠|𝑛𝑤𝑡, 𝑑௜|𝐶௠௔௫)  problems where due date restrictions are considered for the 

makespan minimization.  

Moreover, a particle swarm optimization algorithm by Samarghandi (2015) is 

employed on the  (𝐹௠|𝑛𝑤𝑡, 𝑑௜|𝐶௠௔௫) problem which minimizes makespan with due 

date restrictions. Ying & Lin (2018) converted the (𝐹௠|𝑛𝑤𝑡, 𝑆𝑇௦௜|𝐶௠௔௫)  and 

(𝐹௠|𝑛𝑤𝑡, 𝑆𝑇௦ௗ|𝐶௠௔௫) problems into asymmetric travelling salesman problem and find 

the optimal solutions as they did in Lin & Ying (2016). Furthermore, although 

Aldowaisan & Allahverdi (2012) developed a simulated annealing and a genetic 

algorithm with the aid of dispatching rules for the (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜)  problem, they 

suggested the same algorithms for the (𝐹௠|𝑛𝑤𝑡, 𝑆𝑇௦௜| ∑ 𝑇௜) problem in  Aldowaisan & 

Allahverdi (2015), as well. 

In addition, from the multi-objective perspective, Tavakkoli-Moghaddam et al. 

(2008) studied the weighted mean completion time and the weighted mean tardiness 

simultaneously for the NWPFSP with the help of an immune algorithm and they 

indicated the performance of the proposed algorithm over a multi-objective genetic 

algorithm. Another bi-criteria study is the study of  Pan et al. (2009). They proposed a 

novel differential evolution algorithm to minimize the makespan and the maximum 

tardiness at the same time and show that the proposed algorithm performs superior 

than multi-objective genetic algorithm regarding the quality, efficiency, robustness 

and diversity level. 

Finally, as a review paper, Nagano & Miyata (2016) provided a very extensive 

literature search for constructive heuristics under several criterion objectives and 

classify the heuristics as simple and composite by mentioning also the improvement 

heuristics, as well. 

2.4. Literature Review on Energy Efficient Scheduling  

The companies are searching more energy efficient scheduling techniques 

since the high-energy consumption is the most current difficulty of industries (Fang et 

al., 2011). Thus, the studies within the scope of energy-efficient scheduling literature 

are kept increasing. The energy efficient scheduling approaches which consider 

improving energy efficiency are analyzed as a review study in Gahm et al. (2016). An 
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operational method was revealed to minimize the energy consumption of 

manufacturing equipment in Mouzon et al. (2007). A novel method was proposed 

which indicates that an adequate amount of energy can be saved, if the machines are 

turned-off during their idle times. Then, this method was used for the single machine 

scheduling problem by the total tardiness and the total energy consumption 

minimization in (Mouzon & Yıldırım, 2008) and for flexible flow shop problem by 

the makespan and the total energy consumption minimization in Dai et al. (2013). Also, 

the single machine total tardiness problem with sequence dependent setup times is 

recently studied on energy efficiency scheduling framework (Taşgetiren et al. 2018). 

In scope of PFSP, job-based speed scaling strategy is used for two-machine sequence-

dependent PFSP where both the makespan and the total energy consumption are 

minimized  (Mansouri et al. 2016). An energy-efficient formulation is recently made 

where the total flow time and the total energy consumption are studied simultaneously 

in Öztop et al. (2018). Furthermore, a backtracking algorithm is proposed for the 

energy efficient PFSP (Lu et al. 2017). On the other hand, studies regarding 

environmental effects and/or energy consumption consideration which are employed 

on NWPFSPs have not been rather exist.  

2.5. Discussion 

 To the best of our knowledge, there is only one article which proposes MILP and 

CP models for (𝐹௠|𝑛𝑤𝑡, 𝑑௜|𝐶௠௔௫)  problem that considers the due date restriction 

(Samarghandi and Behroozi, 2017) and few articles proposing MILP models for 

(𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫). However, there is no any study construct MILP or CP models for 

(𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ) and (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜) problems.  This thesis proposes MILP and CP 

model formulations for all (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫) , (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ)  and (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜) 

problems to fill this gap in the literature. In addition, a number of valid inequalities 

have been studied for (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫) problem as represented in Table 2.1. 

Table 2.1. The Contribution of the Thesis to the Literature of NWPFSPs 

 
(𝑭𝒎|𝒏𝒘𝒕|𝑪𝒎𝒂𝒙) (𝑭𝒎|𝒏𝒘𝒕| ෍ 𝑪𝒊𝑴) (𝑭𝒎|𝒏𝒘𝒕| ෍ 𝑻𝒊) 

MILP √ √ √ 
CP √ √ √ 

Valid Inequalities √   
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 Furthermore, there is no any study, to the best of our knowledge, on bi-objective 

(energy-efficient) NWPFSPs which aims to minimize the total energy consumption. 

Hence, a bi-objective MILP and CP model formulations have been proposed to fill that 

gap, where the jobs can be processed at different speed levels corresponding to 

different energy consumption levels. Moreover, due to the NP-Hardness of the 

problem, we develop three metaheuristics for bi-objective (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫, 𝑇𝐸𝐶) ,  

(𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ, 𝑇𝐸𝐶) and (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜ , 𝑇𝐸𝐶) problems as depicted in Table 2.2. 

Table 2.2. The Contribution of the Thesis to the Literature of Bi-Objective (Energy-
Efficient) NWPFSPs 

 
(𝑭𝒎|𝒏𝒘𝒕|𝑪𝒎𝒂𝒙, 𝑻𝑬𝑪) (𝑭𝒎|𝒏𝒘𝒕| ෍ 𝑪𝒊𝑴, 𝑻𝑬𝑪) (𝑭𝒎|𝒏𝒘𝒕| ෍ 𝑻𝒊, 𝑻𝑬𝑪) 

MILP √ √ √ 
CP √ √ √ 

Meta-
heuristics 

√ √ √ 

 One last contribution is that, the small size instance generation scheme is 

proposed for the (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜) problem, since there is no any small sized instances 

exist for this criterion objective. 
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CHAPTER 3 

SINGLE OBJECTIVE NO-WAIT PERMUTATION FLOWSHOP 

SCHEDULING PROBLEMS 

 In this chapter, no-wait permutation flowshop scheduling problem (NWPFSP) 

with the objective of minimizing the makespan, the total flow time and the total 

tardiness have studied in Sections 3.1, 3.2, 3.3 respectively. Namely, (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫), 

(𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ)  and  (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜)  problems are employed. Both Mixed Integer 

Linear Programming (MILP) and Constraint Programming (CP) models have 

developed for each objective, as presented in this chapter. In addition, the comparison 

of the models are represented at the end of each section. 

3.1. No-Wait Permutation Flowshop Scheduling Problem with 

Minimizing Makespan 

 NWPFSP with the objective of minimizing makespan (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫) aims to 

find such a sequence of jobs, which minimizes makespan, on machines by not allowing 

the jobs to wait between the machines. (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫)  problem with m machines 

when m is greater than or equal to 4 is NP-Hard, whereas in polynomial time the 

(𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫)   problem can be solved when m equals to 2 (Röck, 1984). The 

proposed MILP and CP models for (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫)  are presented below. 

3.1.1. Mixed Integer Linear Programming Model 

The mixed integer linear programming model for the single objective no-wait 

permutation flow shop problem for minimization of the makespan (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫) is 

given below: 

Model 1. The MILP Model for the (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫)  

Objective  

Minimize 𝐶௠௔௫   (1-01) 

Constraints 

𝐶௜ଵ ≥  𝑃ଵ௜                                             ∀𝑖 ∈ 𝑁   (1-02) 

𝐶௜௥ − 𝐶௜,௥ିଵ ≥  𝑃௜௥                              ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 ≥ 2   (1-03) 

𝐶௜௥ − 𝐶௞௥ + 𝑄𝐷௜௞ ≥  𝑃௜௥                    ∀𝑖 ∈ 𝑁 ∶ 𝑘 > 𝑖, ∀𝑟 ∈ 𝑀   (1-04) 

𝐶௜௥ − 𝐶௞௥ + 𝑄𝐷௜௞ ≤  𝑄 − 𝑃௞௥           ∀𝑖 ∈ 𝑁 ∶ 𝑘 > 𝑖, ∀𝑟 ∈ 𝑀   (1-05) 
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𝐶௠௔௫ ≥ 𝐶௜ெ                                          ∀𝑖 ∈ 𝑁   (1-06) 

𝐶௜௥ − 𝐶௜,௥ିଵ ≤ 𝑃௜௥                                ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 ≥ 2   (1-07) 

𝐶௜௥ ≥ 0                                                  ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀   (1-08) 

𝐷௜௞ ∈ {0,1}                                            ∀𝑖, 𝑘 ∈ 𝑁 ∶ 𝑘 > 𝑖   (1-09) 

 The objective function (1-01) minimizes the makespan. Constraint (1-02) allows 

that the completion time of the jobs is to be at least its processing time on the first 

machine. It is assured that the completion time of each job on machine 𝑟 can only be 

greater than or equal to the completion time of the job on machine 𝑟 − 1 plus to the 

processing time of the job on machine 𝑟 by constraint (1-03). Then, constraint sets (1-

04) and (1-05) provide that job k either follows the job i, or precedes the job i, in the 

sequence. Later, the makespan is set to the completion time of maximum of all the last 

job on the last machine by constraint (1-06).  Next, constraint (1-07) assures that the 

completion time of each job on machine 𝑟  can only be less than or equal to the 

completion time of the job on machine 𝑟 − 1  plus to the processing time of the job on 

machine r. Hence, this constraint provides that the no-wait constraint together with the 

constraint (1-03). In other words, the differences between the completion time of each 

job on machine 𝑟 and the completion time of the job on machine 𝑟 − 1 must be equal 

to the processing time of the job on machine 𝑟. Lastly, the sign restrictions are given 

in (1-08) and (1-09). Note that this model formulation is an extension of the 

permutation flow shop problem of Manne (1960) with the addition of no-wait 

restriction. This model provides a basis for the thesis in such a way that all the 

following mathematical model formulations will be conducted by modifying required 

changes over this model.  

3.1.2. Constraint Programming Model 

The constraint programming model for the single objective no-wait permutation 

flow shop problem for minimization of makespan (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫) is given below: 

Model 2. The CP Model for the (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫)  

Objective  

Minimize 𝑚𝑎𝑥௜∈ே(ENDOF(𝐽𝑜𝑏௜ெ)   (2-01) 

Constraints 

ENDATSTART൫𝐽𝑜𝑏௜௥ , 𝐽𝑜𝑏௜,௥ାଵ൯                                     ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 < 𝑀   (2-02) 

NOOVERLAP(𝑀𝑎𝑐௥)                        ∀𝑟 ∈ 𝑀   (2-03) 
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SAMESEQUENCE(𝑀𝑎𝑐ଵ, 𝑀𝑎𝑐௥) ∀𝑟 ∈ 𝑀 ∶ 1 < 𝑟   (2-04) 

 The objective function (2-01) minimizes the maximum of the end of the job 

intervals on the last machines, that is makespan. Constraint (2-02) is basically the no-

wait constraint which provides that the job interval of any given job i on the machine 

r will be end at the starting time of the job interval of the same job i on the machine 

𝑟 + 1 . Constraint (2-03) assures that there cannot be any overlap on the machines 

which means that each machine can only process one job at a time. Lastly, the same 

sequence for the jobs on each machine is preserved by constraint (2-04). 

This proposed constraint programming model is an original model which 

contributes to the literature of the no-wait flow shop scheduling problems. As it was 

mentioned in Section 2.1 previously, there are few constraint programming models for 

(𝐹௠|𝑛𝑤𝑡, 𝑑௜|𝐶௠௔௫) in the literature but they are looking to the problem from another 

point of view (Samarghandi & Behroozi, 2017). Hence, this model allows us to 

investigate various sides of the (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫) problem.  

3.1.3. Valid Inequalities for (𝑭𝒎|𝒏𝒘𝒕|𝑪𝒎𝒂𝒙) Problem 

 For the (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫) problem, four valid are proposed as represented 

below. 

Valid Inequalities  

𝐶௠௔௫ ≤ ෍ ෍ 𝑃௜,௥

|ெ|

௥ୀଵ

|ே|

௜ୀଵ

 

 
(V-01) 

𝐶௠௔௫ ≤ ෍ 𝐶௜ெ

|ே|

௜ୀଵ

 

 
(V-02) 

𝐶௠௔௫ ≥ ෍ 𝑃௜,ெ

|ே|

௜ୀଵ

 

 
(V-03) 

𝐶௠௔௫ ≥ ෍ 𝑃௜,ெ

|ே|

௜ୀଵ

+ ෍ ෍ 𝑦௜ ∗ 𝑃௜௥

|ெିଵ|

௥ୀଵ

|ே|

௜ୀଵ

 

෍ 𝑦௜ = 1 

|ே|

௜ୀଵ

∀௜ 

𝐶௜ଵ − 𝑃௜ଵ ≤ 𝑄(1 − 𝑦௜)  ∀௜ 

 
 
 
(V-04) 

(V-01) is an upper bound for the makespan that calculates the sum of processing 

time of all jobs on all machines. (V-02) is another upper bound for makespan that 
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restricts the makespan as the sum of all completion time of all jobs. (V-03) is a lower 

bound which the sum of jobs’ processing times on the last machine restricts the 

makespan. Lastly, the (V-04) is another lower bound that aims to find the first job in 

the sequence.  If the job i is in the first position, then 𝑦௜ becomes 1. Thus, this bound 

sums the processing time of the first job and the processing time of other jobs on the 

last machine.  

3.1.4. Computational Results and Comparison of the MILP and CP Models 

 Initially, the proposed MILP and CP models are run on the first part of the 

instances of Vallada et al. (2015), which consist of 240 small instances including 24 

different combinations of 𝑛 = {10,20,30,40,50,60}  jobs with 𝑚 = {5,10,15,20} 

machines. (These instances are also called as VRF instances, in the literature.) There 

are 10 instances of each combination. The optimal value (Lin & Ying, 2016), objective 

function of MILP, gap of MILP, objective function of CP model and gap of CP models 

are reported in Appendix A. The tables are prepared regarding the number of machines 

therefore the set of instances of 10,20,30,40,50,60 jobs x 5 machines, 

10,20,30,40,50,60 jobs x 10 machines, 10,20,30,40,50,60 jobs x 15 machines and 

10,20,30,40,50,60 jobs x 20 machines are reported  in Tables A.1., A.2., A.3. and A.4., 

respectively. Then, to be able to analyze the performance of the MILP and CP models, 

the averages of each set are calculated.  

Next, the proposed valid inequalities are made use of and they are added to the 

MILP and CP models. The MILP model is named as MILP-Prime and the CP model 

is named as CP-Prime with the addition of all valid inequalities. The results are 

presented in Appendix A  ( Table A.5, Table A.6., Table A.7., Table A.8.). (V-01) that 

is an upper bound and (V-03) that is a lower bound are calculated separately and 

reported in the mentioned tables. According to these results, the valid inequalities 

improves the performance of MILP model so that MILP-Prime performs better than 

MILP. However, the performance of CP-Prime is very close to CP model. Moreover, 

although the MILP-Prime is superior than MILP, its performance cannot exceed the 

performance of CP model. Finally, also the valid inequality (V-03) can be extended by 

addition of minimum of sum of the processing times of each job until the last machine. 

The detailed results are provided in the following. The proposed MILP and CP 

come up with the optimal solutions for the instances with 10 jobs and 5,10,15,20 

machines. The average results for these set of instances are given in Figure 3.1.  
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Figure 3.1. Comparison of MILP and CP models for (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫) Problem on 

VRF Instances (Small Sized) 

As seen in the Figure 3.1., the MILP and CP find the optimal solution for 

(𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫) problem. However, in terms of the computational time, MILP model 

performs better than the CP model on these small instances of 10 jobs. Then, the 

averages for the 5, 10, 15 and 20 machines are plotted on Figures 3.2., 3.3., 3.4., and 

3.5., respectively based on the information obtained from the Tables A1.1., to A1.4.  

 

Figure 3.2. Comparison of MILP and CP Models for (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫) Problem on 

VRF Instances (5 Machines) 
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According to the Figure 3.2., the average gap of CP model stays between 17% 

and 18% even though the number of jobs is increasing. However, the average gap of 

the MILP model increases significantly when the number of jobs is increasing. The 

maximum MILP gap is 86% while the CP gap is significantly less. 

 

Figure 3.3. Comparison of MILP and CP Models for (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫) Problem on 

VRF Instances (10 Machines) 

According to the Figure 3.3., the average gap of CP model stays between 30% 

and 33% even though the number of jobs is increasing. However, the average gap of 

the MILP model increases significantly when the number of jobs is increasing. The 

maximum MILP gap is 83% while the CP gap is comparatively less. 
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Figure 3.4. Comparison of MILP and CP Models for (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫) Problem on 

VRF Instances (15 Machines) 

According to the Figure 3.4., the average gap of CP model stays between 35% 

and 41% even though the number of jobs is increasing. However, the average gap of 

the MILP model increases significantly when the number of jobs is increasing. The 

maximum MILP gap is 81% while the CP gap is comparatively less. 

 

Figure 3.5. Comparison of MILP and CP Models for (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫) Problem on 

VRF Instances (20 Machines) 
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According to the Figure 3.5., the average gap of CP model stays between 37% 

and 45% even though the number of jobs is increasing. However, the average gap of 

the MILP model increases significantly when the number of jobs is increasing. The 

maximum MILP gap is 79% while the CP gap is much less than the MILP gap. 

To sum up, all of the graphs state that the gap of the CP model is not being 

affected by the changes in the number of jobs. Its trend follows a similar way when 

the number of jobs is increasing. In addition, CP model performs much better than 

MILP model in terms of the magnitude of the objective function and the gap 

percentage found in 3600 seconds. 

From Appendix A (Tables A.1., A.2., A.3. and A.4.) and Appendix A (Tables 

A.5., A.6., A.7. and A.8.) MILP and MILP-Prime results can be seen, respectively. 

However, to see the effect of valid inequalities, a comparison table is presented in 

Table 3.1. According to Table 3.1., the benefits of valid inequalities can be interpreted, 

since the MILP-Prime model formulation finds almost the same objective function but 

with a lower percentage gap.  
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Table 3.1. Comparison of MILP and MILP-Prime in terms of Averages 

Instance MILP 
Time 

(Seconds) 
Gap 
% 

MILP-
Prime 

Time 
(Seconds) 

Gap 
% 

10_5_Average   793.60 0.427 0.00%    793.60 0.628 0.00% 

10_10_Average 1241.10 0.477 0.00% 1241.10 1.002 0.00% 

10_15_Average 1629.50 0.380 0.00% 1629.50 1.730 0.00% 

10_20_Average 1962.00 0.380 0.00% 1962.00 1.875 0.00% 

20_5_Average 1460.30 3600 41.77% 1466.70 3600 27.42% 

20_10_Average 2031.50 3600 36.20% 2027.80 3600 37.03% 

20_15_Average 2546.90 3600 33.66% 2536.10 3600 35.44% 

20_20_Average 3018.50 3600 29.25% 2998.40 3600 32.42% 

30_5_Average 2195.50 3600 67.77% 2225.50 3600 31.57% 

30_10_Average 2932.50 3600 62.39% 2946.60 3600 43.12% 

30_15_Average 3661.60 3600 59.91% 3670.90 3600 49.33% 

30_20_Average 4241.50 3600 56.95% 4282.40 3600 50.99% 

40_5_Average 3059.30 3600 78.24% 3069.00 3600 32.81% 

40_10_Average 4022.30 3600 74.67% 4040.20 3600 46.19% 

40_15_Average 4831.80 3600 71.63% 4844.70 3600 50.81% 

40_20_Average 5548.10 3600 68.55% 5681.40 3600 55.96% 

50_5_Average 3816.70 3600 82.60% 3869.20 3600 34.26% 

50_10_Average 4933.40 3600 79.48% 5062.10 3600 46.97% 

50_15_Average 6041.40 3600 77.63% 6167.10 3600 53.27% 

50_20_Average 6975.00 3600 75.20% 7178.90 3600 57.45% 

60_5_Average 4599.80 3600 86.45% 4667.90 3600 35.03% 

60_10_Average 6176.50 3600 83.12% 6198.40 3600 47.75% 

60_15_Average 7258.00 3600 81.29% 7375.40 3600 53.91% 

60_20_Average 8382.50 3600 79.16% 8481.70 3600 57.92% 

Lastly, the proposed MILP and CP models are run 3600 seconds on the 

instances of Taillard (1993) with 11 different combinations of 20x5, 20x10, 20x20, 

50x5, 50x10, 50x20, 100x5, 100x10, 100x20, 200x10 and 200x20 set of instances 

where the first number indicates the number of jobs and the second indicates the 

number of machines. There are 10 instances of each combination so that 110 instances 

are studied. All the objective function results are reported in Appendix A (Table A.9., 
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Table A.10., Table A.11, Table A.12.). According to these results, similar with results 

of VRF instances, CP model performs superior than MILP model. Namely, the gaps 

of CP are lower than the gaps of MILP, also the objective function values of CP are 

lower than the objective function of MILP. Another important point here is that while 

MILP model cannot find any feasible solution for 100x10, 100x20, 200x10 and 200x20 

instances, CP model can find a solution for those instances within 3600 seconds. 

3.2. No-Wait Permutation Flowshop Scheduling Problem with 

Minimizing Total Flow Time 

NWPFSP with the objective of minimizing the total flow time  (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ) 

aims to find the sequence of jobs which minimizes the total completion time of all jobs 

without permitting process queue for the jobs between the machines. The completion 

time of jobs can obviously be expressed as the sum of starting time of the job on the 

first machine and its total processing time on all machines. 

3.2.1. Mixed Integer Linear Programming Model 

The mixed integer linear programming model formulation for the single objective 

no-wait permutation flow shop problem for minimization of the total flow time 

(𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ) is given below: 

Model 3. The MILP Model for the (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ)  

Objective  

Minimize ∑ 𝐶௜ெ௜∈ே    (3-01) 

Constraints 

𝐶௜ଵ ≥  𝑃௜ଵ                                            ∀𝑖 ∈ 𝑁   (3-02) 

𝐶௜௥ − 𝐶௜,௥ିଵ ≥  𝑃௜௥                             ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 ≥ 2   (3-03) 

𝐶௜௥ − 𝐶௞௥ + 𝑄𝐷௜௞ ≥  𝑃௜௥                   ∀𝑖 ∈ 𝑁 ∶ 𝑘 > 𝑖, ∀𝑟 ∈ 𝑀   (3-04) 

𝐶௜௥ − 𝐶௞௥ + 𝑄𝐷௜௞ ≤  𝑄 − 𝑃௞௥           ∀𝑖 ∈ 𝑁 ∶ 𝑘 > 𝑖, ∀𝑟 ∈ 𝑀   (3-05) 

𝐶௜௥ − 𝐶௜,௥ିଵ ≤ 𝑃௜௥                               ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 ≥ 2   (3-06) 

𝐶௜௥ ≥ 0                                                 ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀   (3-07) 

𝐷௜௞ ∈ {0,1}                                           ∀𝑖, 𝑘 ∈ 𝑁 ∶ 𝑘 > 𝑖   (3-08) 

 The objective function (3-01) minimizes the total flow time. Constraint (3-02) 

provides that the completion time of the jobs is to be at least its processing time on the 

first machine. Constraint (3-03) assures that the completion time of each job on 
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machine r can only be greater than or equal to the completion time of the job on 

machine 𝑟 − 1 plus to the processing time of the job on machine r. Then, constraint 

(3-04) and (3-05) provide that job k either follows the job i, or precedes the job i, but 

not both in the sequence. Next, it is provided that the completion time of each job on 

machine r can only be less than or equal to the completion time of the job on machine 

𝑟 − 1  plus to the processing time of the job on machine r by constraint (3-06). Hence, 

this constraint satisfies the no-wait requirement together with the constraint (3-03). In 

other words, the differences between the completion time of each job on machine r 

and the completion time of the job on machine 𝑟 − 1 must be equal to the processing 

time of the job on machine r. Lastly, the sign restrictions and binary variables are given 

in (3-07) and (3-08). Note that this model is an extension of the permutation flow shop 

problem of Manne (1960) by adding the no-wait constraint and by considering the total 

flow time in the objective function, too. 

3.2.2. Constraint Programming Model 

The constraint programming model for the single objective no-wait permutation 

flow shop problem for minimization of total flow time (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ)  is given 

below: 

Model 4. The CP Model for the (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ)  

Objective  

Minimize ∑ ENDOF(𝐽𝑜𝑏௜ெ௜∈ே )   (4-01) 

Constraints 

ENDATSTART൫𝐽𝑜𝑏௜௥ , 𝐽𝑜𝑏௜,௥ାଵ൯                                     ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 < 𝑀   (4-02) 

NOOVERLAP(𝑀𝑎𝑐௥)                        ∀𝑟 ∈ 𝑀   (4-03) 

SAMESEQUENCE(𝑀𝑎𝑐ଵ, 𝑀𝑎𝑐௥) ∀𝑟 ∈ 𝑀 ∶ 1 < 𝑟   (4-04) 

 
The objective function (4-01) minimizes the sum of the end of the job intervals 

on the last machine, which is the total flow time. Constraint (4-02) is the no-wait 

constraint which provides that the job interval of any given job i on the machine r will 

be ended at the starting time of the job interval of the same job i on the machine 𝑟 + 1. 

Constraint (4-03) provides that there cannot be any overlap on the machines which 

means that each machine can only process one job at a time. Lastly, the same sequence 

for the jobs on each machine is preserved by the constraint (4-04). 

This proposed constraint programming model is an original model which adds 
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value to the literature of the no-wait flow shop scheduling problems which minimize 

the total flow time. 

3.2.3. Computational Results and Comparison of the MILP and CP Models 

 Initially, the proposed MILP and CP models are run on the first part of 

instances of Vallada et al. (2015) which consist of 240 small instances including 24 

different combinations of 𝑛 = {10,20,30,40,50,60}  jobs with 𝑚 = {5,10,15,20} 

machines. There are 10 instances of each combination. The objective function of 

MILP, gap of MILP, objective function of CP model and gap of CP models are 

reported in Appendix B. The tables are prepared regarding the number of machines; 

therefore, the set of instances of 10,20,30,40,50,60 jobs x 5 machines, 

10,20,30,40,50,60 jobs x 10 machines, 10,20,30,40,50,60 jobs x 15 machines and 

10,20,30,40,50,60 jobs x 20 machines are reported  in Tables B.1., to B.4., 

respectively. Then, to be able to analyze the performance of the MILP and CP models, 

the averages of each set are calculated. The proposed MILP and CP find the optimal 

solutions for the instances with 10 jobs and 5, 10, 15, 20 machines. The results for 

these instances are given in Figure 3.6.  

 

Figure 3.6. Comparison of MILP and CP models for (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ) Problem on 

VRF Instances (Small Sized) 

Figure 3.6. indicates that the MILP and CP models reach the optimal solution 

for (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ) problem in a small run time. On the other hand, if models are 

compared with each other, the MILP model is better than the CP model in terms of the 

computational time. 
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Then, the averages for the 5, 10, 15 and 20 machines are plotted on the Figures 

3.7. to 3.10., respectively based on the information obtained from the Tables B.1., to  

B.4. 

 

Figure 3.7. Comparison of MILP and CP Models for (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ) Problem on 

VRF Instances (5 Machines) 

According to the Figure 3.7., the average gap of the CP model stays between 

25% and 31% even though the number of jobs is increasing. However, the average gap 

of the MILP model increases significantly when the number of jobs is kept increasing.  
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Figure 3.8. Comparison of MILP and CP Models for (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ) Problem on 

VRF Instances (10 Machines) 

According to the Figure 3.8., the average gap of the CP model stays between 

29% and 42% even though the number of jobs is increasing. However, the average gap 

of the MILP model increases significantly when the number of jobs is increasing.  
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Figure 3.9. Comparison of MILP and CP Models for (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ) Problem on 

VRF Instances (15 Machines) 

According to the Figure 3.9., the average gap of the CP model stays between 

31% and 46% even though the number of jobs is increasing. On the other hand, the 

average gap of the MILP model rises sharply when the number of jobs is increasing.  
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Figure 3.10. Comparison of MILP and CP Models for (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ) Problem on 

VRF Instances (20 Machines) 

According to the Figure 3.10., the average gap of the CP model stays between 

31% and 47% even though the number of jobs is increasing. However, the average gap 

of the MILP model increases widely when the number of jobs is increasing.  

To sum up, if we consider all of the graphs the gap of the CP model is not being 

affected by the changes in the number of jobs. Its trend follows a similar way when 

the number of jobs is increasing. In addition, the CP model performs much better than 

MILP model in terms of the magnitude of the objective function and the gap 

percentage found within 3600 seconds. 

Secondly, the proposed MILP and CP models are executed 3600 seconds on 

the instances of Taillard (1993) with 11 different combinations of 20x5, 20x10, 20x20, 

50x5, 50x10, 50x20, 100x5, 100x10, 100x20, 200x10 and 200x20 set of instances 

where the first number indicates the number of jobs and the second indicates the 

number of machines. There are 10 instances of each combination so that 110 instances 

are studied. All the objective function results are reported in Appendix B (Table B.5., 
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Table B.6., Table B.7, Table B.8.). According to these results, like Vallada instances, 

the CP model outperforms the MILP model. Namely, the gaps of CP is lower than the 

gaps of MILP, also the objective function values of CP are lower than the objective 

function of MILP. Another important point here is that while MILP model cannot find 

any feasible solution for 100x10, 100x20, 200x10 and 200x20 instances, CP model can 

find a solution for those instances in 3600 seconds. 

3.3. No-Wait Permutation Flowshop Scheduling Problem with 

Minimizing Total Tardiness 

NWPFSP with the objective of minimizing total flow time  (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜) aims 

to find such a sequence of jobs, which minimizes the total amount of tardiness of all 

jobs without permitting process queue for the jobs between the machines. The 

tardiness of jobs 𝑇௜  can be expressed as 𝑇௜ = max{(𝐶௜ெ − 𝐷𝐷௜),0}. That is, a job can 

be tardy if its completion time exceed its due date.  

3.3.1. Mixed Integer Linear Programming Model 

The mixed integer linear programming model for the single objective no-wait 

permutation flow shop problem for the minimization of total tardiness (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜) 

is given below: 

Model 5. The MILP Model for the (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜)  

Objective  

Minimize ∑ 𝑇௜௜∈ே    (5-01) 

Constraints 

𝐶௜ଵ ≥  𝑃௜ଵ                                            ∀𝑖 ∈ 𝑁   (5-02) 

𝐶௜௥ − 𝐶௜,௥ିଵ ≥  𝑃௜௥                             ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 ≥ 2   (5-03) 

𝐶௜௥ − 𝐶௞௥ + 𝑄𝐷௜௞ ≥  𝑃௜௥                   ∀𝑖 ∈ 𝑁 ∶ 𝑘 > 𝑖, ∀𝑟 ∈ 𝑀   (5-04) 

𝐶௜௥ − 𝐶௞௥ + 𝑄𝐷௜௞ ≤  𝑄 − 𝑃௞௥           ∀𝑖 ∈ 𝑁 ∶ 𝑘 > 𝑖, ∀𝑟 ∈ 𝑀   (5-05) 

𝐶௜௥ − 𝐶௜,௥ିଵ ≤ 𝑃௜௥                               ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 ≥ 2   (5-06) 

𝑇௜ ≥ 𝐶௜ெ − 𝐷𝐷௜ ∀𝑖 ∈ 𝑁   (5-07) 

𝑇௜ ≥ 0 ∀𝑖 ∈ 𝑁   (5-08) 

𝐶௜௥ ≥ 0                                                 ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀   (5-09) 

𝐷௜௞ ∈ {0,1}                                           ∀𝑖, 𝑘 ∈ 𝑁 ∶ 𝑘 > 𝑖   (5-10) 

𝐷𝐷௜ ≥ 0 ∀𝑖 ∈ 𝑁   (5-11) 
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The objective function (5-01) minimizes the total tardiness. Constraint (5-02) 

provides that the completion time of the jobs is to be at least its processing time on the 

first machine. Constraint (5-03) assures that the completion time of each job on 

machine r can only be greater than or equal to the completion time of the job on 

machine 𝑟 − 1 plus to the processing time of the job on machine r. Then, constraint 

(5-04) and (5-05) provide that job k either follows the job i, or precedes the job i, in 

the sequence. Next, it is provided that the completion time of each job on machine r 

can only be less than or equal to the completion time of the job on machine 𝑟 − 1 plus 

to the processing time of the job on machine r by constraint (5-06). Hence, this 

constraint ensures the no-wait requirement together with the constraint (5-03). In other 

words, the differences between the completion time of each job on machine r and the 

completion time of the job on machine 𝑟 − 1must be equal to the processing time of 

the job on machine r. Constraint (7) and (8) together provide that (i) if a job is tardy, 

then the tardiness of the job at least the completion time of the job on the last machine 

minus its due; (ii) if a job is early, then its tardiness will be 0. Lastly, the sign 

restrictions and binary variables are given in (5-09), (5-010) and (5-11) . Note that this 

model is an extension of the permutation flow shop problem of Manne (1960) by 

adding the no-wait constraint together with tardiness criterion and by considering the 

total tardiness in the objective function. 

3.3.2. Constraint Programming Model 

The constraint programming model for the single objective no-wait permutation 

flow shop problem for minimization of total tardiness (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜) is given below: 

Model 6. The CP Model for the (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜)  

Objective  

Minimize ∑ 𝑇௜௜∈ே  where  (6-01) 

Constraints 

ENDATSTART൫𝐽𝑜𝑏௜௥ , 𝐽𝑜𝑏௜,௥ାଵ൯                                     ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 < 𝑀 (6-02) 

NOOVERLAP(𝑀𝑎𝑐௥)                        ∀𝑟 ∈ 𝑀 (6-03) 

SAMESEQUENCE(𝑀𝑎𝑐ଵ, 𝑀𝑎𝑐௥) ∀𝑟 ∈ 𝑀 ∶ 1 < 𝑟 (6-04) 

𝑇௜ = max((ENDOF (𝐽𝑜𝑏௜ெ) − 𝐷𝐷௜),0) ∀𝑖 ∈ 𝑁 (6-05) 

The objective function (6-01) minimizes the total tardiness. Constraint (6-02) is 

the no-wait constraint which provides that the job interval of any given job i on the 
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machine r will be end at the starting time of the job interval of the same job i on the 

machine 𝑟 + 1 . Constraint (6-03) provides that there cannot be any overlap on the 

machines which means that each machine can only process one job at a time. Then, 

the same sequence for the jobs on each machine is preserved by the constraint (6-04). 

Lastly, in constraint (6-05) tardiness is expressed as the maximum of end of job 

intervals on the last machine minus the due dates or 0. Note that a job cannot be tardy 

if it is finished before its due. 

This proposed constraint programming model is an original model which 

contributes value to the literature of the no-wait flow shop scheduling problems which 

minimizes the total tardiness. 

3.3.3. Computational Results and Comparison of the MILP and CP Models 

The instance generation for the tardiness objective is very critic. Although  

there are some instances for PFSPs with due dates (Vallada et al., 2008; Allahverdi & 

Aldowaisan, 2004; Ruiz & Stützle, 2008) some considers sequence dependent set up 

times while generating due dates or some creates different due dates to instances while 

generating the process times over again. However, since the instances of Taillard 

(1993) have been used up to this section, the same instances are considered in this 

section as well. Because the due date generation method of Minella et al. (2008), is 

employed on the Taillard (1993)’s instances and the resulting due dates are presented 

in the literature. Hence, 11 different combinations of 20x5, 20x10, 20x20, 50x5, 50x10, 

50x20, 100x5, 100x10, 100x20, 200x10 and 200x20 set of instances, where the first 

number indicates the number of jobs and the second indicates the number of machines, 

are studied on the (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜)  problem. These instances can be found in the 

http://soa.iti.es website. The due date generation method is the following:  

𝐷𝐷௜ = ෍ 𝑃௜௥

ெ

௥ୀଵ

∗ (1 + 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) ∗ 3) (D-01) 

 

Consecutively, the proposed MILP and CP models are executed 3600 seconds 

on the instances of Taillard (1993) where 110 instances are studied. All the  objective 

function results are reported in Appendix C (Table C.1., Table C.2., Table C.3., Table 

C.4.). According to these results, similar with (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫) and (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ) 

problems, the CP model performs superior than the MILP model. However, the 

observed trend in the (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫) and  (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ) problems could not been 
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encountered in the (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜) problem. Also, some other different results have 

seen. For example, as seen in Appendix C (Table C.1), MILP model solved the set of 

20x20 optimally whereas CP model can solve the same set of instances optimally 

except the 20x20_05 instance which results 95.57% gap, interestingly. Note that, in 

the  (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫) and  (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ) problems the set of 20x20 cannot be solved 

in 3600 seconds. In addition, as seen in Appendix C (Table C.1), MILP model solved 

the 20x10 instance set with a gap of 48.92%, however CP model has a 98.23% gap. 

So, CP has a higher gap than MILP on this set of instance. Any of these situations did 

not encountered in the (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫)  and the  (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ)  problems. The 

reason of these is that the nature of the due date generation method in those instances. 

The other thing is that, although MILP model cannot find any feasible solution for 

100x10, 100x20, 200x10 and 200x20 instances, the CP model can find a solution for 

those instances in 3600 seconds. However, this is encountered in the (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫) 

and the (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ) problems, too. 

To sum up, all the computational results of this chapter demonstrates that CP 

model is good at finding better solutions than MILP model by also having lower level 

of solution gap.  However, these solutions are still not enough to find optimal solutions 

for all instances. Hence, some lower bounds and upper bounds are required; 

constructive heuristics or metaheuristics can be candidates for upper bounds. 
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CHAPTER 4 

BI-OBJECTIVE NO-WAIT PERMUTATION FLOWSHOP 

SCHEDULING PROBLEMS 

 In this chapter, bi-objective no-wait flowshop scheduling problem (BI-OBJ 

NWPFSP) with the objective of minimizing the makespan, the total flow time and the 

total tardiness while considering the total energy consumption as the second objective 

have been studied in Sections 4.1, 4.2 and 4.3 respectively. Namely, 

(𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫, 𝑇𝐸𝐶), (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ, 𝑇𝐸𝐶) and  (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜ , 𝑇𝐸𝐶) problems are 

focused. Both mixed-integer linear programming (MILP) and constraint programming 

(CP) model formulations have been developed for each objective, as reported in this 

chapter. Moreover, the comparison of the models are represented at the end of each 

section. Resulting from the bi-objective nature of the problem, a non-dominated set of 

solutions called as Pareto-optimal set is obtained. Therefore, the dominance 

relationship features are used when solving the energy efficient NWPFSP (Deb, 2001). 

The dominance relation concept of Deb (2001) is used while obtaining the results for 

BI-OBJ NWPFSPs and it is as follows: 

 Dominance relation: A solution 𝑥௜ dominates another solution 𝑥௝  if the two 

following solutions are satisfied (denoted as  𝑥௜ ≺ 𝑥௝): 

 ∀𝑝 ∈ 1, … , 𝑃; 𝑓௣൫𝑥௜൯ ≤ 𝑓௣൫𝑥௝൯ 

 ∃𝑝 ∈ 1, … , 𝑃; 𝑓௣൫𝑥௜൯ < 𝑓௣൫𝑥௝൯ 

A solution 𝑥௜  weakly dominates another solution 𝑥௝  if the two following 

solutions are satisfied (denoted as  𝑥௜ ≼ 𝑥௝) if: 

 ∀𝑝 ∈ 1, … , 𝑃; 𝑓௣൫𝑥௜൯ ≤ 𝑓௣൫𝑥௝൯  

A solution 𝑥௜  is indifferent to another solution 𝑥௝  if the two following 

solutions are satisfied (denoted as  𝑥௜ ∼ 𝑥௝) if: 

 ∀𝑝 ∈ 1, … , 𝑃; 𝑓௣൫𝑥௜൯ ≰ 𝑓௣൫𝑥௝൯  ∧   𝑓௣൫𝑥௝൯ ≰ 𝑓௣൫𝑥௜൯ 

 Non-dominated set: Amongst a set of solutions X, the non-dominated set of 

solutions are the elements of the set 𝑋∗ non-dominated by any element of the 

set X. 

 Pareto-optimal set: The non-dominated set of the entire feasible search space 

S is called the Pareto-optimal solutions. 

Also, in this study, from the solution methods for multi-objective problems, the 
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augmented ε-constraint method is employed, as it generates only Pareto-optimal 

solutions. (Mavrotas, 2009).                           

4.1. Bi-Objective No-Wait Permutation Flowshop Scheduling Problem 

with Minimizing Makespan and Total Energy Consumption 

BI-OBJ NWPFSP with the objective of minimizing the makespan and the total 

energy consumption  (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫, TEC)  goals to obtain a sequence of jobs 

providing no-wait conditions within the production environment while both objectives 

simultaneously.  

4.1.1. Mixed Integer Linear Programming Model 

The mixed integer linear programming model for the bi-objective no-wait 

permutation flow shop problem for minimization of makespan and total energy 

consumption (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫, TEC) is given below: 

Model 7. The MILP Model for the (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫ , TEC)  

Objectives  

Minimize 𝐶௠௔௫, Minimize 𝑇𝐸𝐶 (7-01) 

Constraints 

𝐶௜ଵ ≥  ∑
௉೔భ∗௬೔భ೗

௦೗
௟∈௅                                             ∀𝑖 ∈ 𝑁 (7-02) 

𝐶௜௥ − 𝐶௜,௥ିଵ ≥  ∑
௉೔ೝ∗௬೔ೝ೗

௦೗
௟∈௅                              ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 ≥ 2 (7-03) 

𝐶௜௥ − 𝐶௞௥ + 𝑄 ∗ 𝐷௜௞ ≥  ∑
௉೔ೝ∗௬೔ೝ೗

௦೗
௟∈௅                    ∀𝑖 ∈ 𝑁 ∶ 𝑘 > 𝑖, ∀𝑟 ∈ 𝑀 (7-04) 

𝐶௜௥ − 𝐶௞௥ + 𝑄 ∗ 𝐷௜௞ ≤  𝑄 − ∑
௉ೖೝ∗௬ೖೝ೗

௦೗
௟∈௅           ∀𝑖 ∈ 𝑁 ∶ 𝑘 > 𝑖, ∀𝑟 ∈ 𝑀 (7-05) 

𝐶௠௔௫ ≥ 𝐶௜ெ                                          ∀𝑖 ∈ 𝑁 (7-06) 

𝐶௜௥ − 𝐶௜,௥ିଵ ≤ ∑
௉೔ೝ∗௬೔ೝ೗

௦೗
௟∈௅                                ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 ≥ 2 (7-07) 

∑ 𝑦௜௥௟ = 1௟∈௅   ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀 (7-08) 

𝑦௜௥௟ = 𝑦௜,௥ାଵ,௟ ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 < 𝑀, ∀𝑙 ∈ 𝐿 (7-09) 

𝜃௥ = 𝐶௠௔௫ − ∑ ∑
௉೔ೝ∗௬೔ೝ೗

௦೗
௟∈௅௜∈ே   ∀𝑟 ∈ 𝑀 (7-10) 

𝑇𝐸𝐶 = ∑ ∑ ∑
௉೔ೝ∗ఛೝ∗ఒ೗

଺଴௦೗
௟∈௅௥∈ெ௜∈ே 𝑦௜௥௟ + ∑

ఝೝ∗ఛೝ∗ఏೝ

଺଴௥∈ெ   
(7-11) 

𝑦௜௥௟ ∈ {0,1} ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀, ∀𝑙 ∈ 𝐿 (7-12) 

𝐶௜௥ ≥ 0                                                  ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀 (7-13) 
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𝐷௜௞ ∈ {0,1}                                            ∀𝑖, 𝑘 ∈ 𝑁 ∶ 𝑘 > 𝑖 (7-14) 

The objective function (7-01) minimizes makespan and total energy consumption. 

Constraint (7-02) ensures that the completion time of each job must be at least its 

processing time on machine 1. Constraint (7-03) provides that the completion time of 

each job on machine r is at least the sum of completion time of the job on machine 

𝑟 − 1 and the processing time of the job. Constraint (7-04) and (7-05) together assure 

that either job i follows job k or job k follows job i in the sequence, but not both at the 

same time. Constraint (7-06) calculates the maximum of completion times of all jobs 

on the last machine which is makespan. Next, constraint (7-07) assures that the 

completion time of each job on machine r can only be less than or equal to the 

completion time of the job on machine 𝑟 − 1 plus to the processing time of the job on 

machine r. Hence, this constraint provides that the no-wait constraint together with the 

constraint (7-03). In other words, the differences between the completion time of each 

job on machine r and the completion time of the job on machine 𝑟 − 1 must be equal 

to the processing time of the job on machine r. Constraints (7-08) and (7-09) guarantee 

that one speed level will be chosen for each job as proposed by Mansouri et al. (2016) 

and each job will have the same speed level on each machine. Then, constraint (7-10) 

calculates the idle time on all machines. Finally, the total energy consumption is 

calculated in kilowatt hour by constraint (7-11) as provided by Mansouri et al. (2016). 

The sign restriction and the binary variables are provided in constraints (7-12), (7-13) 

and (7-14). Note that this model is an extension of Manne (1960)’s PFSP model by 

adding the no-wait restriction and by considering total energy consumption in the 

objective function as the second objective; correspondingly,  with the addition of idle 

time, total energy consumption calculations as well as the speed level assumptions as 

constraints. 

4.1.2. Constraint Programming Model 

The constraint programming model for the bi-objective no-wait permutation flow 

shop problem for minimization of the makespan and the total energy consumption 

(𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫, 𝑇𝐸𝐶) is given below: 

Model 8. The CP Model for the (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫, TEC)  

Objectives  

Minimize 𝑚𝑎𝑥௜∈ே(ENDOF(𝐽𝑜𝑏௜ெ), Minimize TEC (8-01) 
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Constraints 

ENDATSTART൫𝐽𝑜𝑏௜௥ , 𝐽𝑜𝑏௜,௥ାଵ൯                                     ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 < 𝑀 (8-02) 

NOOVERLAP(𝑀𝑎𝑐௥)                        ∀𝑟 ∈ 𝑀 (8-03) 

SAMESEQUENCE(𝑀𝑎𝑐ଵ, 𝑀𝑎𝑐௥) ∀𝑟 ∈ 𝑀 ∶ 1 < 𝑟 (8-04) 

ALTERNATIVE(𝐽𝑜𝑏௜௥ , all (𝑙 in 𝐿) 𝐽𝑜𝑏𝑂𝑝𝑡௜௥௟)  ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀 (8-05) 

PRESENCEOF(𝐽𝑜𝑏𝑂𝑝𝑡௜௥௟)= 

PRESENCEOF(𝐽𝑜𝑏𝑂𝑝𝑡௜,௥ାଵ,௟) 

∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 

𝑟 < 𝑀, ∀𝑙 ∈ 𝐿 

(8-06) 

𝐶௠௔௫ = 𝑚𝑎𝑥௜∈ே(ENDOF(𝐽𝑜𝑏௜ெ)  (8-07) 

𝜃௥ = 𝐶௠௔௫ −

∑ ∑ PRESENCEOF(𝐽𝑜𝑏𝑂𝑝𝑡௜௥௟) ∗
௉೔ೝ

௦೗
௟∈௅௜∈ே   

∀𝑟 ∈ 𝑀 (8-08) 

𝑇𝐸𝐶 = ∑ ∑ ∑ PRESENCEOF൫𝐽𝑜𝑏𝑂𝑝𝑡𝑖𝑟𝑙൯ ∗
𝑃𝑖𝑟∗𝜏𝑟∗𝜆𝑙

60𝑠𝑙
𝑙∈𝐿𝑟∈𝑀𝑖∈𝑁 + ∑

𝜑𝑟∗𝜏𝑟∗𝜃𝑟

60𝑟∈𝑀   (8-09) 

 The objective function (8-01) minimizes makespan and total energy 

consumption. Makespan is the maximum of the end of the job intervals on the last 

machines. Constraint (8-02) is the no-wait constraint which provides that the job 

interval of any given job i on the machine r will be end at the starting time of the job 

interval of the same job i on the machine 𝑟 + 1. Constraint (8-03) assures that there 

cannot be any overlap on the machines which means that each machine can only 

process one job at a time. The same sequence for the jobs on each machine is preserved 

by constraint (8-04). Constraints (8-05) and (8-06) guarantee that one speed level will 

be chosen for each job and each job will have the same speed level on each machine. 

Then, constraint (8-08) calculates the idle time on all machines where the makespan is 

obtained by constraint (8-07). Lastly, the total energy consumption is calculated in 

kilowatt hour by constraint (8-08) as provided by Mansouri et al. (2016). 

This proposed bi-objective constraint programming model is a novel model which 

adds value to the literature of the energy-efficient no-wait flow shop scheduling 

problems which minimizes the makespan. 

4.1.3. Comparison of MILP and CP Models 

Initially, the (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫, TEC)  problem is solved by both MILP and CP 

models for small sized instances “5 jobs x 5 machines,5 jobs x 10 machines, 5 jobs x 

20 machines” which are truncated by cropping the first 5 jobs of all “20 jobs x 5 
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machines, 20 jobs x 10 machines, 20 jobs x 20 machines” instances of Taillard (1993).  

 To show the conflict between the total energy consumption and the makespan, 

an example of Pareto optimal set is represented by addressing the 5x5_01 instance in 

Figure 4.1.  

 

Figure 4.1. The Pareto Optimal Set of 5x5_01 for (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫, 𝑇𝐸𝐶) Problem 

As seen in Figure 4.1., two objectives cannot be minimized simultaneously 

because the total energy consumption increases while the makespan is decreasing and 

vice versa. 

The same pareto optimal set for the makespan and the total energy consumption 

minimization is obtained for each small sized instance by both MILP and CP model 

formulations by the augmented ε-constraint method (Mavrotas, 2009), thus the 

comparison depending on only the computation time of the model formulations can be 

found in Table 4.1. 
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Table 4.1. MILP and CP Time Comparison for (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫, 𝑇𝐸𝐶) Problem on 

Small Sized Instances (in seconds) 

Instance 
Set 

 
MILP 

 
CP 

Instance 
Set 

 
MILP 

 
CP 

Instance 
Set 

 
MILP 

 
CP 

5x5_01 8.48 113.43 5x10_01 4.51 125.41 5x20_01 7.76 352.53 

5x5_02 6.57 73.76 5x10_02 5.48 105.58 5x20_02 5.53 462.84 

5x5_03 3.36 51.03 5x10_03 6.14 138.57 5x20_03 4.59 518.88 

5x5_04 3.79 41.05 5x10_04 4.00 109.44 5x20_04 5.68 346.18 

5x5_05 3.37 44.97 5x10_05 5.54 196.21 5x20_05 8.32 648.80 

5x5_06 3.71 69.64 5x10_06 6.25 189.99 5x20_06 4.56 418.61 

5x5_07 6.18 85.56 5x10_07 4.21 184.76 5x20_07 7.34 549.38 

5x5_08 4.50 52.48 5x10_08 7.32 203.58 5x20_08 7.29 663.32 

5x5_09 2.45 8.70 5x10_09 5.23 131.13 5x20_09 5.06 555.46 

5x5_10 6.82 42.16 5x10_10 7.17 178.68 5x20_10 8.03 579.15 

Average 4.92 58.28 Average 5.59 156.34 Average 6.42 509.52 

 
Hence, the superiority of MILP on CP regarding solution time can be seen 

clearly from Table 4.1. However, since the performance of CPLEX even with 3600 

seconds time limit run on single-objective NWPFSPs is not satisfactory, only the 

proposed heuristics are studied on larger instances.

4.2. Bi-Objective No-Wait Permutation Flowshop Scheduling Problem 

with Minimizing Total Flow Time and Total Energy Consumption 

BI-OBJ NWPFSP with the objective of minimizing total flow time and total 

energy consumption (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ , TEC) targets to acquire a permutation of jobs 

providing no-wait conditions within the production environment while minimizing 

total flow time and total energy consumption at the same time. 

4.2.1. Mixed Integer Linear Programming Model 

The mixed integer linear programming model for the bi-objective no-wait 

permutation flow shop problem for minimization of total flow time and total energy 

consumption (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ , TEC) is given below: 
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Model 9. The MILP Model for the (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ , TEC)  

Objectives  

Minimize∑ 𝐶௜ெ௜∈ே , Minimize 𝑇𝐸𝐶 (9-01) 

Constraints 

𝐶௜ଵ ≥  ∑
௉೔భ∗௬೔భ೗

௦೗
௟∈௅                                             ∀𝑖 ∈ 𝑁 (9-02) 

𝐶௜௥ − 𝐶௜,௥ିଵ ≥  ∑
௉೔ೝ∗௬೔ೝ೗

௦೗
௟∈௅                              ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 ≥ 2 (9-03) 

𝐶௜௥ − 𝐶௞௥ + 𝑄 ∗ 𝐷௜௞ ≥  ∑
௉೔ೝ∗௬೔ೝ೗

௦೗
௟∈௅                    ∀𝑖 ∈ 𝑁 ∶ 𝑘 > 𝑖, ∀𝑟 ∈ 𝑀 (9-04) 

𝐶௜௥ − 𝐶௞௥ + 𝑄 ∗ 𝐷௜௞ ≤  𝑄 − ∑
௉ೖೝ∗௬ೖೝ೗

௦೗
௟∈௅           ∀𝑖 ∈ 𝑁 ∶ 𝑘 > 𝑖, ∀𝑟 ∈ 𝑀 (9-05) 

𝐶௠௔௫ ≥ 𝐶௜ெ                                          ∀𝑖 ∈ 𝑁 (9-06) 

𝐶௜௥ − 𝐶௜,௥ିଵ ≤ ∑
௉೔ೝ∗௬೔ೝ೗

௦೗
௟∈௅                                ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 ≥ 2 (9-07) 

∑ 𝑦௜௥௟ = 1௟∈௅   ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀 (9-08) 

𝑦௜௥௟ = 𝑦௜,௥ାଵ,௟ ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 < 𝑀, ∀𝑙 ∈ 𝐿 (9-09) 

𝜃௥ = 𝐶௠௔௫ − ∑ ∑
௉೔ೝ∗௬೔ೝ೗

௦೗
௟∈௅௜∈ே   ∀𝑟 ∈ 𝑀 (9-10) 

𝑇𝐸𝐶 = ∑ ∑ ∑
௉೔ೝ∗ఛೝ∗ఒ೗

଺଴௦೗
௟∈௅௥∈ெ௜∈ே 𝑦௜௥௟ + ∑

ఝೝ∗ఛೝ∗ఏೝ

଺଴௥∈ெ   
(9-11) 

𝑦௜௥௟ ∈ {0,1} ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀, ∀𝑙 ∈ 𝐿 (9-12) 

𝐶௜௥ ≥ 0                                                  ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀 (9-13) 

𝐷௜௞ ∈ {0,1}                                            ∀𝑖, 𝑘 ∈ 𝑁 ∶ 𝑘 > 𝑖 (9-14) 

The objective function (9-01) minimizes total flow time and total energy 

consumption. Constraint (9-02) ensures that the completion time of each job must be 

at least its processing time on machine 1. Constraint (9-03) provides that the 

completion time of each job on machine r is at least the sum of completion time of the 

job on machine 𝑟 − 1 and the processing time of the job. Constraints (9-04) and (9-

05) together assure that either job i follows job k or job k follows job i in the sequence, 

but not both at the same time. Constraint (9-06) calculates the maximum of completion 

times of all jobs on the last machine which is makespan. This constraint is required 

since makespan is essential for the idle time calculation. Next, constraint (9-07) assures 

that the completion time of each job on machine r can only be less than or equal to the 

completion time of the job on machine 𝑟 − 1 plus to the processing time of the job on 

machine r. Hence, this constraint provides that the no-wait constraint together with the 

constraint (9-03). In other words, the differences between the completion time of each 
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job on machine r and the completion time of the job on machine 𝑟 − 1 must be equal 

to the processing time of the job on machine r. Constraints (9-08) and (9-09) guarantee 

that one speed level will be chosen for each job and each job will have the same speed 

level on each machine. Then, constraint (9-10) calculates the idle time on all machines. 

Finally, the total energy consumption is calculated in kilowatt hour by constraint (9-

11) as provided by Mansouri et al. (2016). The sign restriction and the binary variables 

are provided in constraints (9-12), (9-13) and (9-14). Note that this model is an 

extension of Manne (1960)’s PFSP model by converting the objective function to total 

flow time, by adding the no-wait restriction and by considering the total energy 

consumption in the objective function as the second objective; correspondingly,  with 

the addition of idle time, total energy consumption calculation as well as the speed 

level assumptions in the model constraints. 

4.2.2. Constraint Programming Model 

The constraint programming model for the bi-objective no-wait permutation flow 

shop problem for minimization of total flow time and total energy consumption 

(𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ , TEC) is given below: 

Model 10. The CP Model for the (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ , TEC)  

Objectives  

Minimize ∑ ENDOF(𝐽𝑜𝑏௜ெ௜∈ே ), Minimize TEC (10-01) 

Constraints 

ENDATSTART൫𝐽𝑜𝑏௜௥ , 𝐽𝑜𝑏௜,௥ାଵ൯                                     ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 < 𝑀 (10-02) 

NOOVERLAP(𝑀𝑎𝑐௥)                        ∀𝑟 ∈ 𝑀 (10-03) 

SAMESEQUENCE(𝑀𝑎𝑐ଵ, 𝑀𝑎𝑐௥) ∀𝑟 ∈ 𝑀 ∶ 1 < 𝑟 (10-04) 

ALTERNATIVE(𝐽𝑜𝑏௜௥ , all (𝑙 in 𝐿) 𝐽𝑜𝑏𝑂𝑝𝑡௜௥௟)  ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀 (10-05) 

PRESENCEOF(𝐽𝑜𝑏𝑂𝑝𝑡௜௥௟)= 

PRESENCEOF(𝐽𝑜𝑏𝑂𝑝𝑡௜,௥ାଵ,௟) 

∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 

𝑟 < 𝑀, ∀𝑙 ∈ 𝐿 

(10-06) 

𝐶௠௔௫ = 𝑚𝑎𝑥௜∈ே(ENDOF(𝐽𝑜𝑏𝐼𝑛𝑡௜ெ)  (10-07) 

𝜃௥ = 𝐶௠௔௫ −

∑ ∑ PRESENCEOF(𝐽𝑜𝑏𝑂𝑝𝑡௜௥௟) ∗
௉೔ೝ

௦೗
௟∈௅௜∈ே   

∀𝑟 ∈ 𝑀 (10-08) 

𝑇𝐸𝐶 = ∑ ∑ ∑ PRESENCEOF൫𝐽𝑜𝑏𝑂𝑝𝑡𝑖𝑟𝑙൯ ∗
𝑃𝑖𝑟∗𝜏𝑟∗𝜆𝑙

60𝑠𝑙
𝑙∈𝐿𝑟∈𝑀𝑖∈𝑁 + ∑

𝜑𝑟∗𝜏𝑟∗𝜃𝑟

60𝑟∈𝑀   (10-09) 
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 The objective function (10-01) minimizes total flow time and total energy 

consumption. Total flow time is the sum of the end of the job intervals on the last 

machines. Constraint (10-02) is the no-wait constraint which provides that the job 

interval of any given job i on the machine r will be end at the starting time of the job 

interval of the same job i on the machine 𝑟 + 1. Constraint (10-03) assures that there 

cannot be any overlap on the machines which means that each machine can only 

process one job at a time. The same sequence for the jobs on each machine is preserved 

by constraint (10-04). Constraints (10-05) and (10-06) guarantee that one speed level 

will be chosen for each job and each job will have the same speed level on each 

machine. Then, constraint (10-08) calculates the idle time on all machines where the 

makespan is obtained by constraint (10-07). Lastly, the total energy consumption is 

calculated in kilowatt hour by constraint (10-08) as provided by (Mansouri et al., 2016). 

This proposed bi-objective constraint programming model is an original model 

which contributes to the literature of the energy-efficient no-wait flow shop scheduling 

problems which minimizes total flow time. 

4.2.3. Comparison of MILP and CP Models 

Initially, the (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ , TEC) problem is solved by both MILP and CP 

models for small sized instances “5 jobs x 5 machines,5 jobs x 10 machines, 5 jobs x 

20 machines” which are truncated by cropping the first 5 jobs of all “20 jobs x 5 

machines, 20 jobs x 10 machines, 20 jobs x 20 machines” instances of Taillard (1993).  

To show the conflict between the total energy consumption and the total flow 

time, an example of pareto frontier is represented by addressing the instance of 5x5_01 

in Figure 4.2. As seen in Figure 4.2., two objectives cannot be minimized 

simultaneously because the total energy consumption increases while the total flow 

time is decreasing and vice versa. 
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Figure 4.2. The Pareto Optimal Set of 5x5_01 for  (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ , 𝑇𝐸𝐶) Problem 

The same pareto optimal set for the total flow time and the total energy 

consumption is obtained for each small sized instance by both MILP and CP models, 

thus the comparison depending on only the computation time of the models can be 

found in Table 4.2. 

Table 4.2. MILP and CP Time Comparison for (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ , 𝑇𝐸𝐶) Problem on 

Small Sized Instances (in seconds) 

Instance 
Set 

 
MILP  

 
CP  

Instance 
Set 

 
MILP  

 
CP  

Instance 
Set 

 
MILP  

 
CP  

5x5_01 14.61 166.65 5x10_01 5.40 307.26 5x20_01 17.31 1688.73 

5x5_02 11.68 163.88 5x10_02 10.26 386.06 5x20_02 11.00 1495.02 

5x5_03 7.68 176.45 5x10_03 6.04 300.84 5x20_03 14.31 2156.56 

5x5_04 7.20 112.40 5x10_04 6.20 303.77 5x20_04 9.20 1238.21 

5x5_05 4.34 102.89 5x10_05 5.54 325.91 5x20_05 16.29 1707.89 

5x5_06 4.53 101.50 5x10_06 9.98 604.54 5x20_06 11.46 1436.78 

5x5_07 6.75 250.45 5x10_07 8.26 630.87 5x20_07 10.62 1774.45 

5x5_08 6.87 208.45 5x10_08 5.59 409.74 5x20_08 13.32 1997.10 

5x5_09 4.23 152.53 5x10_09 6.96 403.35 5x20_09 11.93 1620.52 

5x5_10 8.75 140.88 5x10_10 8.79 414.53 5x20_10 11.46 1385.07 

Average 7.66 157.61 Average 7.30 408.69 Average 12.69 1650.03 
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Therefore, the superiority of MILP on CP regarding solution time can be seen 

clearly from Table 4.2. However, since the performance of CPLEX even with 3600 

seconds time limit run on single-objective NWPFSPs is not satisfactory, only the 

proposed heuristics are studied on larger instances.

4.3. Bi-Objective No-Wait Permutation Flowshop Scheduling Problem 

with Minimizing Total Tardiness and Total Energy Consumption 

BI-OBJNWPFSP with the objective of minimizing total tardiness and total energy 

consumption  (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜) , TEC)  targets to provide a permutation of jobs by 

ensuring the no-wait requirement of the production environment while minimizing 

total tardiness and total energy consumption concurrently. 

4.3.1. Mixed Integer Linear Programming Model 

 The mixed integer linear programming model for the bi-objective no-wait 

permutation flow shop problem for minimization of total tardiness and total energy 

consumption  (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜ , TEC) is given below: 

Model 11. The MILP Model for the (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜) , TEC)  

Objectives  

Minimize∑ 𝑇௜௜∈ே , Minimize 𝑇𝐸𝐶 (11-01) 

Constraints 

𝐶௜ଵ ≥  ∑
௉೔భ∗௬೔భ೗

௦೗
௟∈௅                                             ∀𝑖 ∈ 𝑁 (11-02) 

𝐶௜௥ − 𝐶௜,௥ିଵ ≥  ∑
௉೔ೝ∗௬೔ೝ೗

௦೗
௟∈௅                              ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 ≥ 2 (11-03) 

𝐶௜௥ − 𝐶௞௥ + 𝑄 ∗ 𝐷௜௞ ≥  ∑
௉೔ೝ∗௬೔ೝ೗

௦೗
௟∈௅                    ∀𝑖 ∈ 𝑁 ∶ 𝑘 > 𝑖, ∀𝑟 ∈ 𝑀 (11-04) 

𝐶௜௥ − 𝐶௞௥ + 𝑄 ∗ 𝐷௜௞ ≤  𝑄 − ∑
௉ೖೝ∗௬ೖೝ೗

௦೗
௟∈௅           ∀𝑖 ∈ 𝑁 ∶ 𝑘 > 𝑖, ∀𝑟 ∈ 𝑀 (11-05) 

𝐶௠௔௫ ≥ 𝐶௜ெ                                          ∀𝑖 ∈ 𝑁 (11-06) 

𝐶௜௥ − 𝐶௜,௥ିଵ ≤ ∑
௉೔ೝ∗௬೔ೝ೗

௦೗
௟∈௅                                ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 ≥ 2 (11-07) 

𝑇௜ ≥ 𝐶௜ெ − 𝐷𝐷௜ ∀𝑖 ∈ 𝑁 (11-08) 

𝑇௜ ≥ 0 ∀𝑖 ∈ 𝑁 (11-09) 

∑ 𝑦௜௥௟ = 1௟∈௅   ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀 (11-10) 

𝑦௜௥௟ = 𝑦௜,௥ାଵ,௟ ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 < 𝑀, ∀𝑙 ∈ 𝐿 (11-11) 
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𝜃௥ = 𝐶௠௔௫ − ∑ ∑
௉೔ೝ∗௬೔ೝ೗

௦೗
௟∈௅௜∈ே   ∀𝑟 ∈ 𝑀 (11-12) 

𝑇𝐸𝐶 = ∑ ∑ ∑
௉೔ೝ∗ఛೝ∗ఒ೗

଺଴௦೗
௟∈௅௥∈ெ௜∈ே 𝑦௜௥௟ + ∑

ఝೝ∗ఛೝ∗ఏೝ

଺଴௥∈ெ   
(11-13) 

𝑦௜௥௟ ∈ {0,1} ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀, ∀𝑙 ∈ 𝐿 (11-14) 

𝐶௜௥ ≥ 0                                                  ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀 (11-15) 

𝐷௜௞ ∈ {0,1}                                            ∀𝑖, 𝑘 ∈ 𝑁 ∶ 𝑘 > 𝑖 (11-16) 

𝐷𝐷௜ ≥ 0 ∀𝑖 ∈ 𝑁 (11-17) 

The objective function (11-01) minimizes total tardiness and total energy 

consumption. Constraint (11-02) ensures that the completion time of each job must be 

at least its processing time on machine 1. Constraints (11-03) provides that the 

completion time of each job on machine r is at least the sum of completion time of the 

job on machine r-1 and the processing time of the job. Constraints (11-04) and (11-05) 

together assure that either job i follows job k or job k follows job i in the sequence, but 

not both at the same time. Constraint (11-06) calculates the maximum of completion 

times of all jobs on the last machine which is makespan. This constraint is required 

since makespan is essential for the idle time calculation. Next, constraint (11-07) 

assures that the completion time of each job on machine r can only be less than or 

equal to the completion time of the job on machine 𝑟 − 1 plus to the processing time 

of the job on machine r. Hence, this constraint provides that the no-wait constraint 

together with the constraint (11-03). In other words, the differences between the 

completion time of each job on machine r and the completion time of the job on 

machine 𝑟 − 1 must be equal to the processing time of the job on machine r.  

Constraints (11-08) and (11-09) together provide that (i) if a job is tardy, then the 

tardiness of the job at least the completion time of the job on the last machine minus 

its due; (ii) if a job is early, then its tardiness will be 0. Constraints (11-10) and (11-

11) guarantee that one speed level will be chosen for each job and each job will have 

the same speed level on each machine. Then, constraint (11-12) calculates the idle time 

on all machines. Finally, the total energy consumption is calculated in kilowatt hour 

by constraint (11-13) as provided by (Mansouri et al., 2016). The sign restriction and 

the binary variables are provided in constraints (11-14), (11-15), (11-16) and (11-17). 

Note that this model is an extension of Manne (1960)’s PFSP model by converting the 

objective function to total tardiness, by adding the no-wait restriction and by 

considering the total energy consumption in the objective function as the second 
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objective; correspondingly,  with the addition of total tardiness, idle time, total energy 

consumption calculation as well as the speed level assumptions in the model 

constraints. 

4.3.2. Constraint Programming Model 

 The constraint programming model for the bi-objective no-wait permutation 

flow shop problem for minimization of total tardiness and total energy consumption  

(𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜ , TEC) is given below: 

Model 12. The CP Model for the (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜ , TEC)  

Objectives  

Minimize ∑ 𝑇௜௜∈ே , Minimize TEC (10-01) 

Constraints 

ENDATSTART൫𝐽𝑜𝑏௜௥ , 𝐽𝑜𝑏௜,௥ାଵ൯                                     ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 𝑟 < 𝑀 (10-02) 

NOOVERLAP(𝑀𝑎𝑐௥)                        ∀𝑟 ∈ 𝑀 (10-03) 

SAMESEQUENCE(𝑀𝑎𝑐ଵ, 𝑀𝑎𝑐௥) ∀𝑟 ∈ 𝑀 ∶ 1 < 𝑟 (10-04) 

𝑇௜ = max((ENDOF (𝐽𝑜𝑏𝐼𝑛𝑡௜ெ) − 𝐷𝐷௜),0) ∀𝑖 ∈ 𝑁 (10-05) 

ALTERNATIVE(𝐽𝑜𝑏௜௥ , all (𝑙 in 𝐿) 𝐽𝑜𝑏𝑂𝑝𝑡௜௥௟)  ∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀 (10-06) 

PRESENCEOF(𝐽𝑜𝑏𝑂𝑝𝑡௜௥௟)= 

PRESENCEOF(𝐽𝑜𝑏𝑂𝑝𝑡௜,௥ାଵ,௟) 

∀𝑖 ∈ 𝑁, ∀𝑟 ∈ 𝑀: 

𝑟 < 𝑀, ∀𝑙 ∈ 𝐿 

(10-07) 

𝐶௠௔௫ = 𝑚𝑎𝑥௜∈ே(ENDOF(𝐽𝑜𝑏𝐼𝑛𝑡௜ெ)  (10-08) 

𝜃௥ = 𝐶௠௔௫ −

∑ ∑ PRESENCEOF(𝐽𝑜𝑏𝑂𝑝𝑡௜௥௟) ∗
௉೔ೝ

௦೗
௟∈௅௜∈ே   

∀𝑟 ∈ 𝑀 (10-09) 

𝑇𝐸𝐶 = ∑ ∑ ∑ PRESENCEOF൫𝐽𝑜𝑏𝑂𝑝𝑡𝑖𝑟𝑙൯ ∗
𝑃𝑖𝑟∗𝜏𝑟∗𝜆𝑙

60𝑠𝑙
𝑙∈𝐿𝑟∈𝑀𝑖∈𝑁 + ∑

𝜑𝑟∗𝜏𝑟∗𝜃𝑟

60𝑟∈𝑀   (10-10) 

 

 The objective function (12-01) minimizes both the total tardiness and the total 

energy consumption. A job becomes tardy, if the completion time of the job exceeds 

its due date. Constraint (12-02) is the no-wait constraint which provides that the job 

interval of any given job i on the machine r will be end at the starting time of the job 

interval of the same job i on the machine 𝑟 + 1. Constraint (12-03) assures that there 

cannot be any overlap on the machines which means that each machine can only 

process one job at a time. The same sequence for the jobs on each machine is preserved 

by constraint (12-04). In constraint (12-05), tardiness is expressed as the maximum of 
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end of job intervals on the last machine minus the due dates or 0. Because a job cannot 

be tardy, if it is finished before its due. Constraints (12-06) and (12-07) guarantee that 

one speed level will be chosen for each job and each job will have the same speed level 

on each machine. Then, constraint (12-09) calculates the idle time on all machines 

where the makespan is obtained by constraint (12-08). Lastly, the total energy 

consumption is calculated in kilowatt hour by constraint (12-10) as provided by 

Mansouri et al. (2016). 

This proposed bi-objective constraint programming model is a new model which 

adds value to the literature of the energy-efficient no-wait flow shop scheduling 

problems which minimizes total tardiness. 

4.2.3. Small Sized (Truncated) Instances for (𝑭𝒎|𝒏𝒘𝒕| ∑ 𝑻𝒊 , 𝐓𝐄𝐂) Problem 

Total tardiness problem is a very complex problems comparatively to other 

objectives. Also, there is a limited number of instances in the literature for PFSP which 

specifies the due dates for each job. Since the instances of Taillard (1993) are 

employed in this study, the due dates for these instances are taken from Minella et al. 

(2008). These instances have the due dates 𝐷𝐷௜  for each job 𝑖 ∈ 𝑁  which 𝐷𝐷௜  is 

calculated with the following formulation as given in Section 3.3.3. 

𝐷𝐷௜ = ෍ 𝑃௜௥

ெ

௥ୀଵ

∗ (1 + 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) ∗ 3) (D-01) 

In order to have a 5x5, 5x10, and 5x20 sets of instances, 20x5, 20x10 and 20x20 

instances are made use of. For the total tardiness objective, each job’s individual 

tardiness is very important. Indeed, the one which creates the total tardiness when 

adding up together all. Hence, while cropping instances from the jobs view, the aim is 

the conversation of individual tardiness. Firstly, the schedule for 20x5, 20x10 and 

20x20 instances are created as if they are sequenced by PFSP assumptions with the 

EDD rule. For example, the sequence of 20x5_01 instance is provided in Table 4.3.  
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Table 4.3. EDD Sequence of 20x5_01 Instance Based on PFSP 

 Sequence  
EDD 

Sequence 
Due Date of 

Jobs 
Cmax of Jobs in 

EDD 
Tardiness of 

Jobs 
  1   3 328   126     0 
  2 14 482   250     0 
  3 19 495   356     0 
  4   8   503     397     0 
  5 13   525     405     0 
  6 17   533     498     0 
  7   9   539     567    28 
  8 16   568     654    86 
  9   5   591     707  116 
10   6   592     769  177 
11 12   602     841  239 
12 20          607     869  262 
13 18   743     941  198 
14   1   767   1047  280 
15   2   770   1103  333 
16   7   771   1156  385 
17 10   805   1196  391 
18 15   823   1286  463 
19 11 1025   1410  385 
20         4 1239   1495  256 

  Sum 16073 3599 

According to Table 4.3., after having the permutation with EDD rule, the 

individual tardiness of each job is obtained. After this point, the followed idea is to 

find the jobs which creates 25% of the total tardiness, since 5 jobs will be truncated 

from the instance of having 20 jobs.  Herewith, the total tardiness will be truncated by 

one quarter. If we follow the same example, 16-5-6-12-20 jobs gives 

86+116+177+239+262=880 tardiness that is the 24.45% of 3599. Thus, these 5 jobs 

will be cropped (see Table 4.4.). 

Table 4.4. EDD Sequence of Cropped 20x5_01 Instance Based on PFSP 

Sequence  
EDD 

Sequence 
Due Date of 

Jobs 
Cmax of Jobs in 

EDD 
Tardiness of 

Jobs 
1 16 568 654   86 
2   5 591 707 116 
3   6 592 769 177 
4 12 602 841 239 
5 20 607 869 262 

   Sum 880 

At this point, the completion time of each job 𝐶௜ெ and their due dates 𝐷𝐷௜ are 

known. Then, only these 5 jobs are sequenced by PFSP assumptions with EDD rule 
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and the results are provided in Table 4.5. 

Table 4.5. EDD Sequence of 5x5_01 Instance Based on PFSP 

Sequence  
EDD 

Sequence 
Due Date of 

Jobs 
Cmax of Jobs in 

EDD 
Tardiness of 

Jobs 
1 16 568 265 0 
2 5 591 430 0 
3 6 592 503 0 
4 12 602 575 0 
5 20 607 603 0 

Now, the new completion time of each job 𝐶௜ெ
∗  is known, but the new due dates  

are required to be created. The main aim is to protect the individual tardiness 𝑇௜ values. 

Therefore, the following idea is implemented: 𝑇௜ = 𝐶௜ெ − 𝐷𝐷௜ = 𝐶௜ெ
∗ − 𝐷𝐷௜

∗ . 

According to this idea, new due dates can be calculated as: 𝐷𝐷௜
∗ = 𝐶௜ெ

∗ − 𝐶௜ெ + 𝐷𝐷௜. 

Therefore, the new due dates of the example can be obtained as in Table 4.6. 

Table 4.6. EDD Sequence of 5x5_01 Instance with New Due Dates 

Sequence  
EDD 

Sequence 
Due Date of 

Jobs 
Cmax of Jobs in 

EDD 
Tardiness of 

Jobs 
1 16 179 265 86 
2 5 314 430 116 
3 6 326 503 177 
4 12 336 575 239 
5 20 341 603 262 

   Sum 880 

Hence, the problem generation for small size instances are completed in such a 

way that individual tardiness values of jobs are preserved. All sets of 5x5, 5x10, and 

5x20 instances are reported in Appendix D (Table D.1.) 

4.2.4. Comparison of MILP and CP Models 

Initially, the (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜ , TEC)  problem is solved by both MILP and CP 

models for small sized instances “5 jobs x 5 machines,5 jobs x 10 machines, 5 jobs x 

20 machines” which are truncated from the instances of Taillard (1993) by the 

proposed method described in Section 4.2.3.  

To show the conflict between the total energy consumption and the total tardiness, 

an example of pareto frontier is represented by addressing the instance of 5x5_01 in 

Figure 4.3. As seen in Figure 4.3., two objectives cannot be minimized simultaneously 

because the total energy consumption increases while the total tardiness is decreasing 
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and vice versa. 

 

Figure 4.3. The Pareto Optimal Set of 5x5_01 for the (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜ , 𝑇𝐸𝐶) Problem 

The same pareto optimal set for makespan and total energy consumption is 

obtained for each instance by both MILP and CP models, thus the comparison 

depending on only the computation time of the models can be found in Table 4.7. 
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Table 4.7. MILP and CP Time Comparison for (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜ , 𝑇𝐸𝐶) Problem on 

Small Sized Instances (in seconds)  

Instance 
Set 

MILP  CP  Instance 
Set 

MILP  CP  Instance 
Set 

MILP CP 

5x5_01 6.09 101.29 5x10_01 3.43 112.53 5x20_01 9.93 1216.39 

5x5_02 10.09 136.50 5x10_02 3.23 111.50 5x20_02 6.29 1014.68 

5x5_03 5.40 137.85 5x10_03 4.61 163.86 5x20_03 6.82 811.27 

5x5_04 6.96 123.20 5x10_04 3.81 124.15 5x20_04 2.43 251.89 

5x5_05 5.37 85.21 5x10_05 5.53 197.38 5x20_05 19.25 1228.36 

5x5_06 9.34 119.84 5x10_06 8.64 373.16 5x20_06 6.64 700.38 

5x5_07 10.03 206.81 5x10_07 3.17 84.77 5x20_07 5.71 1057.69 

5x5_08 6.43 144.71 5x10_08 3.78 126.54 5x20_08 11.15 1100.63 

5x5_09 13.28 305.94 5x10_09 8.18 244.50 5x20_09 6.56 527.76 

5x5_10 9.51 138.65 5x10_10 14.04 317.97 5x20_10 5.07 368.58 

Average 8,25 150,00 Average 5,84 185,64 Average 7,99 827,76 

The superiority of MILP on CP regarding solution time can be seen clearly 

from Table 4.3. However, since the performance of CPLEX even with 3600 seconds 

time limit on single-objective NWPFSPs is not satisfactory, only the proposed 

heuristics those ones explained in the next chapter are studied on larger instances.
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CHAPTER 5 

METAHEURISTICS FOR BI-OBJECTIVE NO-WAIT 

PERMUTATION FLOWSHOP SCHEDULING PROBLEMS 

Regarding the metaheuristic formulation, a significant characteristic of the 

NWPFSP is employed as proposed by Tasgetiren et al., 2007, Pan et al., 2008, and 

Wismer, 1972. The difference between the completion time of two consecutive jobs, 

depends only on the processing times of both jobs, independent from the job’s 

positions in the sequence or the positions of the other jobs in the sequence. Hence, the 

distance between each combination of two consecutive jobs on the first machine 

𝑑[𝑖, 𝑗] can be calculated as represented in Figure 5.1. 

Machines 
                                                  
3   

  
Job 1   Job 3     Job 2 

  
Job 4         

2   Job 1 Job 3 Job 2     Job 4 
             

1 Job 1   Job 3     Job 2 Job 4                       

  

1 2 3 4 5 6 7 8 9 10
 

11
 

12
 

13
 

14
 

15
 

16
 

17
 

18
 

19
 

20
 

21
 

22
 

23
 

  Time 

  𝑑[1,3]  𝑑[3,2]   𝑑[2,4] ∑ 𝑃ସ௥
ଷ
௥ୀଵ        

Figure 5.1. Gantt Chart for an Example NWPFSP with Distances 

𝑑[𝑖, 𝑗] = {(𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑗𝑜𝑏 𝑗 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 1) − 

     (𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑗𝑜𝑏 𝑖  𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 1)}   if j is processed directly 

after job i. 

If this idea is converted to energy efficient scheduling with the speed scaling 

strategy, then the distance calculation follows the proposed way: 

Let a job permutation 𝜋 = {𝜋ଵ, 𝜋ଶ, … , 𝜋ே } represent the schedule of jobs to be 

processed in m machines and 𝑙గ = ൛𝑙గభ
, 𝑙గమ

, … , 𝑙గಿ
 ൟ indicate the speed level of job in 

the sequence of 𝜋. 

Let 𝑑൫[𝜋௞ିଵ, 𝜋௞]ൣ𝑙గೖషభ
, 𝑙గೖ

൧൯ be the distance between two consecutive jobs in 

the 𝑘 − 1௧௛  and 𝑘௧௛  positions, 𝜋௞ିଵ  and 𝜋௞ , whose speed levels are 𝑙గೖషభ
 and 𝑙గೖ

, 

respectively. Therefore, these distance values for each pair of job and for each speed 

level can be written in a  𝐷(ே)௫(ே)𝐿(ே)௫(ே) matrix. Thus, there exist 9 𝐷(ே)௫(ே)𝐿(ே)௫(ே) 

matrices, namely [𝜋௞ିଵ, 𝜋௞][1,1], 𝑑[𝜋௞ିଵ, 𝜋௞][1,2], … , 𝑑[𝜋௞ିଵ, 𝜋௞][3,3]. So, these 
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distances values basically indicate the minimum delay between the start of job 𝜋௞ିଵ 

and the start of job 𝜋௞ on the first machine if the job 𝜋௞ିଵ directly processed before 

job 𝜋௞ with speed levels 𝑙గೖషభ
 and 𝑙గೖ

, respectively, whenever the no-wait restrictions 

is conserved. The 𝑑൫[𝜋௞ିଵ, 𝜋௞]ൣ𝑙గೖషభ
, 𝑙గೖ

൧൯ formulation and the required formulations 

based on 𝑑൫[𝜋௞ିଵ, 𝜋௞]ൣ𝑙గೖషభ
, 𝑙గೖ

൧൯ are given below: 

Metaheuristic Formulations. Metaheuristic Formulations for Bi-Objective 

Permutation Flowshop Scheduling Problems (For makespan, total flow time and 

total tardiness) 

𝑑൫[𝜋௞ିଵ, 𝜋௞]ൣ𝑙గೖషభ
, 𝑙గೖ

൧൯

=
𝑝గೖషభ,ଵ

𝑠௟ഏೖషభ

+ max ൝0, max
ଶஸ௞ஸ௠

൝෍
𝑝గೖషభ,௛

𝑠௟ഏೖషభ

௞

௛ୀଶ

− ෍
𝑝గೖ,௛

𝑠௟ഏೖ

௞ିଵ

௛ୀଵ

ൡ ൡ 

∀𝑘 = 2, … , 𝑁, ∀𝑙 ∈ {1,2,3} 

(H-01) 

𝐶గభ,ெ
(𝜋ଵ) = ෍

𝑃గభ,௥

𝑠௟ഏభ

ெ

௥ୀଵ
  

(H-02) 

𝐶గೖ,ெ
(𝜋௞) = ෍ 𝑑([𝜋௞ିଵ, 𝜋௞][𝑙௞ିଵ, 𝑙௞])

௞

௞ୀଶ
+ ෍

𝑃గೖ,௥

𝑠௟ഏೖ

ெ

௥ୀଵ
          ∀𝑘

= 2, … , 𝑁 

(H-03) 

𝐶௠௔௫(𝜋) = ෍ 𝑑([𝜋௞ିଵ, 𝜋௞][𝑙௞ିଵ, 𝑙௞])
ே

௞ୀଶ
+ ෍

𝑃గಿ,௥

𝑠௟ഏೖ

ெ

௥ୀଵ
 

(H-04) 

𝑇𝑜𝑡𝑎𝑙𝐹𝑙𝑜𝑤𝑇𝑖𝑚𝑒(𝜋) = ෍ 𝐶గೖ,ெ(𝜋௞)
ே

௞ୀଵ
 

(H-05) 

𝑇𝑜𝑡𝑎𝑙𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠(𝜋) = ෍ max ((𝐶గೖ,ெ(𝜋௞)
ே

௞ୀଵ
− 𝐷𝐷గೖ

),0) 
(H-06) 

𝜃௥ = 𝐶௠௔௫(𝜋) − ෍
𝑃గೖ,௥

𝑠௟ഏೖ

ே

௞ୀଵ
               ∀𝑟 = 1, … , 𝑀 

(H-07) 

𝑇𝐸𝐶 = ෍ ෍
𝑃గೖ,௥ ∗ 𝜏௥ ∗ 𝜆௟ഏೖ

60𝑠௟ഏೖ

ெ

௥ୀଵ

ே

௞ୀଵ
+ ෍

𝜗௥ ∗ 𝜏௥ ∗ 𝜃௥

60

ெ

௥ୀଵ
 

(H-08) 

 

Equation (H-01) is the minimum delay between the start of job 𝜋௞ିଵ and the 

start of job 𝜋௞ on the first machine if the job 𝜋௞ directly processed after job 𝜋௞ିଵ with 

a speed level 𝑙గೖ
 and 𝑙గೖషభ

, respectively. Equation (H-02) calculates the completion 

time of the first job in the sequence, that is 𝜋ଵ. The completion time of the 𝑘௧௛ job in 

the sequence, is calculated in Equation (H-03) and it equals to the sum of its processing 
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time and the total delay until the 𝑘௧௛ job. Thus, makespan is calculated in Equation 

(H-04) as the sum of the processing time of the last jobs in the sequence and the total 

delay until the last job. Similarly, for the two other objective functions Equation (H-

05) and (H-06) are presented to express the total flow time and total tardiness, 

respectively. To be consistent with the MILP and CP models given in Chapter 4, idle 

time and total energy consumption values are calculated in the same way as proposed 

by Mansouri et al. (2016) in Equation (H-07) and (H-08).  

In this thesis, three multi-objective metaheuristic algorithms are proposed: a 

novel multi-objective discrete artificial bee colony algorithm (MO-DABC), a 

traditional multi-objective genetic algorithm (MO-GA) and a multi-objective genetic 

algorithm with a local search (MO-GALS). Firstly, solution representation and initial 

population are presented in Section 5.1.1, then the MO-DABC, MO-GA and MO-

GALS algorithms are provided in the following sections. Next, all these algorithms 

are studied to minimize three objectives and the results are represented for bi-objective  

(𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫, 𝑇𝐸𝐶), (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ , 𝑇𝐸𝐶)  and (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜ , 𝑇𝐸𝐶)  problems in 

Sections 5.2, 5.3 and 5.4, respectively.  

5.1. Solution Representation and Initial Population 

As it is mentioned in the problem definition, a job-based speed scaling strategy 

is used for the NWPFSP. Also, similar with the mathematical modelling, the same 

speed level strategy for all machines is assumed. Therefore, the multi-chromosome 

structure of  Öztop et al. (2018) and Taşgetiren et al. (2018) is used in all algorithms 

due to the existence of speed level of each job. This structure includes both the 

permutation for N jobs and a speed vector for three speed levels where 𝐿= {1(fast), 

2(normal), 3(slow)}. Hence, an individual 𝑥௜’s solution can be demonstrated as an 

example for 5-jobs and 3-speed levels as given in Table 5.1. As shown in Table 5.1, 

the individual 𝑥௜൫𝜋௞
௜ , 𝑙గೖ

௜ ൯ indicates a solution where the 3rd job is placed in the 1st 

position (𝜋ଵ
௜ = 3) and its speed level is fast (𝑙గభ

௜ = 1);  the 2nd job is placed in the 2nd 

position (𝜋ଶ
௜ = 2) and its speed level slow (𝑙గమ

௜ = 3) and so on. 

Table 5.1. Individual Solution Representation 

  𝜋ଵ 𝜋ଶ 𝜋ଷ 𝜋ସ 𝜋ହ 

𝑥௜൫𝜋௞
௜ , 𝑙గೖ

௜ ൯  𝜋 3 2 1 4 5 
𝑙  1 3 2 1 2 
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Hence, metaheuristic formulations, is mapped one to one as given below: 

Metaheuristic Formulations-Example. An Example for Metaheuristic 

Formulations for Bi-Objective Permutation Flowshop Scheduling Problems (For 

the makespan, the total flow time and the total tardiness) 

𝐶గభ,ெ
(3) = ෍

𝑃ଷ,௥

𝑠ଵ

ெ

௥ୀଵ
 

(H-09) 

𝐶గమ,ெ
(2) = 𝑑([3,2][1,3]) + ෍

𝑃ଶ,௥

𝑠ଷ

ெ

௥ୀଵ
 

(H-10) 

𝐶గయ,ெ
(1) = 𝑑([3,2][1,3]) + 𝑑([2,1][3,2]) + ෍

𝑃ଵ,௥

𝑠ଶ

ெ

௥ୀଵ
 

(H-11) 

𝐶గర,ெ(4) = 𝑑([3,2][1,3]) + 𝑑([2,1][3,2]) + 𝑑([1,4][2,1]) + ෍
𝑃ସ,௥

𝑠ଵ

ெ

௥ୀଵ
 

(H-12) 

𝐶గఱ,ெ
(5) = 𝑑([3,2][1,3]) + 𝑑([2,1][3,2]) + 𝑑([1,4][2,1])

+ 𝑑([4,5][1,2]) + ෍
𝑃ହ,௥

𝑠ଶ

ெ

௥ୀଵ
 

(H-13) 

𝐶௠௔௫(𝜋) = 𝐶గఱ,ெ
(5) (H-14) 

𝑇𝑜𝑡𝑎𝑙𝐹𝑙𝑜𝑤𝑇𝑖𝑚𝑒(𝜋) = ෍ 𝐶గೖ,ெ(𝜋௞)
ହ

௞ୀଵ

= 𝐶గభ,ெ
(3) + 𝐶గమ,ெ

(2) + 𝐶గయ,ெ
(1) + 𝐶గర,ெ(4) + 𝐶గఱ,ெ

(5) 

 

(H-15) 

𝑇𝑜𝑡𝑎𝑙𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠(𝜋)

= max (𝐶గభ,ெ
(3) − 𝐷𝐷గభ

),0) + max (𝐶గమ,ெ
(2) − 𝐷𝐷గమ

),0)

+ max (𝐶గయ,ெ
(1) − 𝐷𝐷గయ

),0) + max (𝐶గర,ெ(4) − 𝐷𝐷గర
),0)

+ max (𝐶గఱ,ெ
(5) − 𝐷𝐷గఱ

),0) 

(H-16) 

 

To generate the initial population with size NP=10, FRB5 heuristic of 

Farahmand Rad et al. (2009), that is an extension of NEH heuristic by Nawaz et al. 

(1983), is initially used to find an initial solution 𝜋଴, in all of the proposed algorithms 

(See Figure 5.2.).  
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𝑂 = 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔𝑂𝑟𝑑𝑒𝑟(∑ 𝑃௜௥
ெ
௥ୀଵ )  

𝑥଴(𝜋ଵ
଴) = 𝑂ଵ  

𝑓𝑜𝑟 𝑖 = 2 𝑡𝑜 𝑁 𝑑𝑜  

    𝑥଴(𝜋଴)  = 𝐼𝑛𝑠𝑒𝑟𝑡𝐽𝑜𝑏𝐼𝑛𝐵𝑒𝑠𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑥଴(𝜋଴), 𝑂௜)  

    𝑥଴(𝜋଴)  = 𝐴𝑝𝑝𝑙𝑦𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑥଴(𝜋଴) )        

𝑒𝑛𝑑 𝑓𝑜𝑟  

𝑟𝑒𝑡𝑢𝑟𝑛 𝜋଴ 𝑤𝑖𝑡ℎ 𝑛 𝑗𝑜𝑏𝑠   

Figure 5.2. FRB5 Constructive Heuristic 

FRB5 algorithm initially sort the jobs in a descending order (𝑂) of their total 

processing times on all machines and the first job in 𝑂 is chosen to establish a partial 

solution. Then, the remaining jobs in 𝑂  are sequentially inserted into the partial 

solution. Note that, an insertion local search is also applied to the partial solution at 

each iteration as a local search strategy and it is represented in Figure 5.3. 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗𝑜𝑏𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 

         ൫𝜋௝
∗൯ = 𝑅𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑗𝑜𝑏 𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑗 𝑓𝑟𝑜𝑚 𝑥௜   

          𝑥∗(𝜋∗) = 𝐼𝑛𝑠𝑒𝑟𝑡𝐼𝑛𝐵𝑒𝑠𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ቀ𝑥௜൫𝜋௝
∗൯ቁ 

         𝑖𝑓 ቀ𝑓(𝑥∗) ≻ 𝑓൫𝑥௜൯ቁ  𝑡ℎ𝑒𝑛 𝑑𝑜  

                  𝑥௜ = 𝑥∗ 

         𝑒𝑛𝑑 𝑖𝑓  

𝑒𝑛𝑑 𝑓𝑜𝑟   

𝑟𝑒𝑡𝑢𝑟𝑛  𝑥௜  

Figure 5.3. Insertion Local Search 

As an example, let’s consider that we have a current solution of 𝑥଴൫𝜋௝
௜൯ =

{3 − 2 − 1 − 4 − 5} which is sorted in a descending order of their total processing 

times and we select the first job as 𝑥଴(𝜋ଵ
଴) = {3}. Then, the second job is inserted into 

all possible positions as follow: 𝑥଴(𝜋଴) = {3 − 2} and 𝑥଴(𝜋଴) = {2 − 3}. The best 

solution is obtained, say, 𝑥଴(𝜋଴) = {3 − 2}. Then, the insertion local search is applied 

in such a way that each job inserted into all positions. For example, 𝑥଴(𝜋଴) = {3 − 2} 

and 𝑥଴(𝜋଴) = {2 − 3} are again obtained since there are 2 jobs until this step. Then, 

if the best solution is 𝑥଴(𝜋଴) = {2 − 3}, the 3rd job in the sequence is inserted into all 
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positions as follows:  𝑥଴(𝜋଴) = {1 − 2 − 3} , 𝑥଴(𝜋଴) = {2 − 1 − 3}  and 𝑥଴(𝜋଴) =

{2 − 3 − 1}. Then, let’s say the best solution is  𝑥଴(𝜋଴) = {1 − 2 − 3}. At this point, 

insertion local search shows its affect with the insertion of each job into each position 

and results 6 different permutation as follows: 𝑥଴(𝜋଴) = {2 − 3 − 1} , 𝑥଴(𝜋଴) =

{2 − 1 − 3} ,  𝑥଴(𝜋଴) = {3 − 2 − 1} ,  𝑥଴(𝜋଴) = {3 − 1 − 2} , 𝑥଴(𝜋଴) = {1 − 2 − 3} 

and 𝑥଴(𝜋଴) = {1 − 3 − 2} . Next, let’s say that the best solution is  𝑥଴(𝜋଴) =

{3 − 1 − 2}, then the 4th job in the sequence is inserted into all position as follows: 

𝑥଴(𝜋଴) = {4 − 3 − 1 − 2} , 𝑥଴(𝜋଴) = {3 − 4 − 1 − 2} , 𝑥଴(𝜋଴) = {3 − 1 − 4 − 2} 

and 𝑥଴(𝜋଴) = {3 − 1 − 2 − 4}  and the resulting best solution is, say, 𝑥଴(𝜋଴) =

{3 − 1 − 2 − 4}. Next, the above mentioned insertion local search is applied on this 

solution that is each job is inserted into all positions, then we obtain 24 different 

permutations. Hence, one best solution is obtained among them, say, 𝑥଴(𝜋଴) =

{2 − 4 − 3 − 1}. This procedure allows the individual to improve itself and have a 

chance to all jobs to be inserted into all positions. If we repeat all steps for the 5th job, 

then, we obtain, say, 𝑥଴(𝜋଴)  = (= {5 − 4 − 2 − 3 − 1} as the initial solution.  

Then, the population size is fixed to 𝑁𝑃 = 1 with the initial solution 𝑥଴(𝜋଴) 

and 25% of total CPU time is dedicated to MO-DABC, MO-GA and MO-GALS 

algorithms along with the determination of speed levels as 𝑙గబ = 2, to be able obtain a 

diversified initial population. Hence, three algorithms are run with normal speed level 

(𝑙గబ = 2) for all jobs so that an individual 𝜋௕௘௦௧ is obtained. After that, the population 

size is specified.  In order to analyze the effect of population size, NP is specified for 

different levels. In this thesis, 𝑁𝑃  is set as 𝑁𝑃 = 30  and 𝑁𝑃 = 10 , and the 

computational results for each population size are provided in Chapter 6. Then, by 

determining fast, normal and slow speed levels to each job in the 𝜋௕௘௦௧ , the first, 

second and third individuals are constructed in this new population, respectively. The 

rest of the population is constructed by determining the random speed level to each job 

in the 𝜋௕௘௦௧. It is important to mention that when the speed level of a job is altered in 

the permutation, this leads to a different solution. Then, the archive set 𝛺 which is 

empty in the beginning of the procedure is updated by the initial population’s non-

dominated solutions. In further stages, this archive set  𝛺 is filled by the new non-

dominated solutions while the any dominated member of this set is moved out of the 

set. 
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5.2. Multi-Objective Discrete Artificial Bee Colony Algorithm (MO-DABC) 

Recently, researchers’ interest on swarm intelligence, that is basically depends on 

the self-organized systems’ collective behavior, has rapidly increasing. A novel 

artificial bee colony (ABC) algorithm is revealed in Karaboğa & Baştürk (2008) by 

the inspiration taken from honey bee swarms’ particular bright behavior as a unique 

swarm intelligence example. This algorithm aims the optimization of multi-variable 

and multi-modal continuous functions in principle. The competitiveness of the ABC 

algorithm’s performance is illustrated by several comparisons, since the algorithm 

requires less number of control parameters than the other population-based algorithms 

(Karaboga & Basturk, 2008). A discrete variant of ABC algorithm has recently been 

implemented on lot-streaming flow shop problem to minimize weighted earliness and 

tardiness penalties in Pan et al. (2011). However, there is no any study which employs 

ABC algorithm for NWPFSP with makespan, total flow time and total tardiness 

objectives separately while considering the total energy consumption as the second 

objective. Hence, a novel multi-objective discrete artificial bee colony algorithm 

(DABC) for NWPFSP is proposed for the (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫, TEC), 

(𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ , TEC) and (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜ , TEC) problems. 

MO-DABC consists of three phases: employed bee phase; onlooker bee phase 

and scout bee phase. 

Employed Bee Phase: 

 Food sources are generated by the employed bees in the neighborhood of their 

current positions in the basic ABC algorithm. Therefore, a destruction and construction 

(DC) methodology is used in the employed bee phase of the algorithm as proposed for 

the iterated greedy algorithm (IGA) in Ruiz & Stützle (2006). The pseudocode of IGA 

is given in Figure 5.4. According to the DC, the destruction size determines the dS 

number of jobs to be removed with their speed levels from each individual 𝑥௜ in the 

population. In this study, the destruction size is taken as 2. The removed jobs and the 

remaining jobs are stored in 𝑥஽
௜  and 𝑥௉

௜ , respectively. Thus, an insertion local search 

with speed levels is now applicable on the partial solution 𝑥௉
௜  as given in Figure 5.5. 

That is, the first job is removed from the current partial solution, 𝑥௉
௜  and its speed level 

is randomly changed and then it is inserted into all positions in 𝑥௉
௜ . Then, this insertion 

procedure is repeated for all the jobs until the last job is inserted into all positions with 
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its randomly changed speed level. At the end, the one which is non-dominated will 

replace the partial solution. Later on, random speed levels are dedicated as 

𝑥஽
௜ ቀ𝜋௝

௜ , 𝑙గೕ

௜ ቁ = 𝑟𝑎𝑛𝑑()%3  to each job in 𝑥஽
௜ . Each job with their speed levels is 

inserted into partial solution 𝑥௉
௜  for construction one by one in the order that they are 

destructed. At this point, two partial solutions in the population are compared using 

the partial dominance rule. Then, a non-dominated solution from 𝑛  insertion is 

obtained. After that, the same local search strategy is applied to the individual obtain 

by the construction. If the new solution 𝑥∗ dominates the individual 𝑥௜  in the 

population, then 𝑥௜ is replaced by 𝑥∗. Eventually, the archive set 𝛺 is updated by the 

non-dominated solutions.  

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  

𝑥஽
௜ ቀ𝜋௝

௜, 𝑙గೕ
௜ ቁ = 𝑅𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑑𝑆 𝑜𝑓 𝑗𝑜𝑏𝑠 𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑗 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑠𝑝𝑒𝑒𝑑 𝑓𝑟𝑜𝑚 𝑥௜  

   //𝐷𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 

       𝑥௉
௜ ቀ𝜋௝

௜ , 𝑙గೕ

௜ ቁ = 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑎𝑓𝑡𝑒𝑟 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 

       𝑥௉
∎ ቀ𝜋௝

∎, 𝑙గೕ

∎ ቁ = 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ𝑡𝑜𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ൬𝑥௉
௜ ቀ𝜋௝

௜ , 𝑙గೕ

௜ ቁ൰ 

      𝑙గೕ

௜ = 𝑟𝑎𝑛𝑑()%3 //𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 𝑡ℎ𝑒 𝑠𝑝𝑒𝑒𝑑 𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 𝑥஽
௜ ቀ𝜋௝

௜, 𝑙గೕ
௜ ቁ 

      𝑥∎∎(𝜋∎∎, 𝑙∎∎) = 𝐼𝑛𝑠𝑒𝑟𝑡  𝑥𝐷
𝑖 ቀ𝜋𝑗

𝑖 , 𝑙𝜋𝑗

𝑖 ቁ  𝑖𝑛 𝑎𝑙𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 ൬𝑥௉
∎ ቀ𝜋௝

∎, 𝑙గೕ

∎ ቁ൰  

//𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛  

       𝑥∗(𝜋∗, 𝑙∗) = 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ𝑡𝑜𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛൫𝑥∎∎(𝜋∎∎, 𝑙∎∎)൯ 

       𝑖𝑓 ቀ𝑓(𝑥∗) ≻ 𝑓൫𝑥௜൯ቁ  𝑡ℎ𝑒𝑛 𝑑𝑜  

                 𝑥௜ = 𝑥∗ 

      𝑒𝑛𝑑 𝑖𝑓  

𝑒𝑛𝑑 𝑓𝑜𝑟   

𝑟𝑒𝑡𝑢𝑟𝑛  𝑥௜  

Figure 5.4. Iterated Greedy Algorithm 
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𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗𝑜𝑏𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 

         ቀ𝜋௝
∗, 𝑙గೕ

∗ ቁ = 𝑅𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑗𝑜𝑏 𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑗 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑠𝑝𝑒𝑒𝑑 𝑓𝑟𝑜𝑚 𝑥௜   

         𝑙గೕ

∗ = 𝑟𝑎𝑛𝑑()%3  

         𝑥∗(𝜋∗, 𝑙∗) = 𝐼𝑛𝑠𝑒𝑟𝑡𝐼𝑛𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑛𝑔𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ൬𝑥௜ ቀ𝜋௝
∗, 𝑙గೕ

∗ ቁ൰ 

         𝑖𝑓 ቀ𝑓(𝑥∗) ≻ 𝑓൫𝑥௜൯ቁ  𝑡ℎ𝑒𝑛 𝑑𝑜  

                  𝑥௜ = 𝑥∗ 
         𝑒𝑛𝑑 𝑖𝑓  
𝑒𝑛𝑑 𝑓𝑜𝑟   
𝑟𝑒𝑡𝑢𝑟𝑛  𝑥௜  

Figure 5.5. Insertion Local Search with Speed Levels 

As an example, let’s consider that we a current solution of 𝑥௜ ቀ𝜋௝
௜ , 𝑙గೕ

௜ ቁ =

ቄ
3 −
1 −

2 −
 3 − 

1 −
2 −

 4 −
1 −

 5
 1

ቅ  and the 𝑑𝑆 = 2 . After removing random 2 jobs, two partial 

solutions are obtained:  𝑥஽
௜ ൫𝜋௞

௜ , 𝑙గೖ
௜ ൯ = ቄ

1 −
2 −

5
1

ቅ and 𝑥௉
௜ ൫𝜋௞

௜ , 𝑙గೖ
௜ ൯ = ቄ

3 − 
1 −

2 − 
3 −

4
1

ቅ. Note 

that, firstly the job 1 is destructed and then job 5 is destructed. Next, an insertion local 

search is implemented on 𝑥௉
௜ ൫𝜋௞

௜ , 𝑙గೖ
௜ ൯ = ቄ

3 − 
1 −

2 − 
3 −

4
1

ቅ in such a way that each job is 

removed with its speed level and inserted into all possible positions. Thus, an                 

non-dominated partial solution for 𝑥௉
௜ ൫𝜋௞

௜ , 𝑙గೖ
௜ ൯ is obtained, say, 𝑥௉

∎ ቀ𝜋௝
∎, 𝑙గೕ

∎ ቁ =

ቄ
4 − 
2 −

3 − 
3 −

2
2

ቅ.  Then, the random speed levels are assigned to the destructed jobs, say, 

𝑥஽
௜ ൫𝜋௞

௜ , 𝑙గೖ
௜ ൯ = ቄ

1 − 
1 −

 
5
3

ቅ  so that the construction can be processed. Then, job 1 is 

inserted into all possible positions, thus the non-dominated partial solution is obtained. 

Next, job 5 is inserted into all possible positions and then the non-dominated solution 

is reached by construction, say, 𝑥∎∎(𝜋∎∎, 𝑙∎∎) = ቄ
5 −
3 −

3 −
 3 − 

1 −
1 −

 4 −
2 −

 2
 2

ቅ. Finally, the 

same insertion local search is applied on  𝑥∎∎(𝜋∎∎, 𝑙∎∎) and then a non-dominated 

solution 𝑥∗(𝜋∗, 𝑙∗) = ቄ
4 −
1 −

2 −
 3 − 

1 −
1 −

 5 −
3 −

 3
 1

ቅ is selected. Eventually, the archive set 𝛺 is 

updated with 𝑥∗(𝜋∗, 𝑙∗). 

Onlooker Bee Phase: 

The block insertion heuristic (BIH) that is proposed by Taşgetiren et al. (2016) 

is used in the onlooker bee phase of MO-DABC for each individual 𝑥௜ . BIH 

determines a block bS of jobs with their speed levels from each individual 𝑥௜. In this 

study, the block size is taken as 2. The removed jobs and the remaining jobs are stored 
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in 𝑥஻
௜  and 𝑥௉

௜ , respectively. Then, random speed levels are dedicated as 𝑥஻
௜  by 

𝑥஻
௜ ቀ𝜋௝

௜ , 𝑙గೕ

௜ ቁ = 𝑟𝑎𝑛𝑑()%3 to each job in 𝑥஻
௜ . The same insertion local search (see 

Figure 5.5.) that is used in the employed bee phase is implemented on the partial 

solution 𝑥௉
௜ . The block 𝑥௜,஻ is inserted into the partial solution 𝑥௉

௜  for all positions (n-

bS+1). The dominance rule is used when comparing two partial solutions. Next, a non-

dominated solution 𝑥∗ ቀ𝜋௝
∗, 𝑙గೕ

∗ ቁ  from 𝑛 − 𝑏𝑆 + 1  insertion is obtained. If the new 

solution 𝑥∗ dominates the individual 𝑥௜  in the population, then 𝑥௜  is replaced by 𝑥∗. 

Eventually, the archive set 𝛺  is updated by the non-dominated solutions. The 

pseudocode of BIH is given in Figure 5.6. 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖ᇱ𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  

      𝑥஻
௜ ቀ𝜋௝

௜ , 𝑙గೕ

௜ ቁ = 𝑅𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘 𝑜𝑓 𝑗𝑜𝑏𝑠 𝑤𝑖𝑡ℎ 𝑠𝑖𝑧𝑒 𝑏𝑆 𝑓𝑟𝑜𝑚 𝑥௜   

      𝑥௉
௜ ቀ𝜋௝

௜ , 𝑙గೕ

௜ ቁ = 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑎𝑓𝑡𝑒𝑟 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 

       𝑥௉
∎ ቀ𝜋௝

∎, 𝑙గೕ

∎ ቁ = 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ ൬𝑥௉
௜ ቀ𝜋௝

௜ , 𝑙గೕ

௜ ቁ൰ 

       𝑙గೕ

௜ = 𝑟𝑎𝑛𝑑()%3   //randomly change the speed levels of  𝑥஻
௜ ቀ𝜋௝

௜ , 𝑙గೕ

௜ ቁ 

      𝑥∗(𝜋∗, 𝑙∗) = 𝐼𝑛𝑠𝑒𝑟𝑡  𝑥஻
௜ ቀ𝜋௝

௜ , 𝑙గೕ

௜ ቁ 𝑖𝑛 𝑎𝑙𝑙 𝑛 − 𝑏𝑆 + 1 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 ൬𝑥௉
∎ ቀ𝜋௝

∎, 𝑙గೕ

∎ ቁ൰ 

      𝑖𝑓 ቀ𝑓(𝑥∗) ≻ 𝑓൫𝑥௜൯ቁ  𝑡ℎ𝑒𝑛 𝑑𝑜  

                 𝑥௜ = 𝑥∗ 

      𝑒𝑛𝑑 𝑖𝑓  

𝑒𝑛𝑑 𝑓𝑜𝑟   

𝑟𝑒𝑡𝑢𝑟𝑛  𝑥௜  

Figure 5.6. Block Insertion Move 

As an example, let consider that we a current solution of 𝑥௜ ቀ𝜋௝
௜ , 𝑙గೕ

௜ ቁ =

ቄ
3 −
1 −

2 −
 3 − 

1 −
2 −

 4 −
1 −

 5
 1

ቅ and the 𝑏𝑆 = 2. After removing a random block with size 2, two 

partial solutions are obtained:  𝑥஻
௜ ൫𝜋௞

௜ , 𝑙గೖ
௜ ൯ = ቄ

2 −
3 −

1
2

ቅ and 𝑥௉
௜ ൫𝜋௞

௜ , 𝑙గೖ
௜ ൯ = ቄ

3 − 
1 −

4 − 
1 −

5
1

ቅ. 

Then, the random speed levels are assigned to, say, 𝑥஻
௜ ൫𝜋௞

௜ , 𝑙గೖ
௜ ൯ = ቄ

2 − 
2 −

 
1
3

ቅ. Later on, 

an insertion local search is implemented on 𝑥௉
௜ ൫𝜋௞

௜ , 𝑙గೖ
௜ ൯ = ቄ

3 − 
1 −

4 − 
1 −

5
1

ቅ in such a way 

that each job is removed with its sped level and inserted into all possible positions. 
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Thus, an non-dominated partial solution for 𝑥௉
௜ ൫𝜋௞

௜ , 𝑙గೖ
௜ ൯ is obtained, say, 

𝑥௉
∎ ቀ𝜋௝

∎, 𝑙గೕ

∎ ቁ = ቄ
4 − 
1 −

5 − 
2 −

3
3

ቅ.  At the end, the block 𝑥஻
௜ ൫𝜋௞

௜ , 𝑙గೖ
௜ ൯ = ቄ

2 − 
2 −

 
1
3

ቅ is inserted 

into 𝑛 − 𝑏𝑆 + 1  positions as follows: 𝑥∎ ቀ𝜋௝
∎, 𝑙గೕ

∎ ቁ = ቄ
2 −
2 −

1 −
 3 − 

4 −
1 −

 5 −
2 −

 3
 3

ቅ , 

𝑥∎ ቀ𝜋௝
∎, 𝑙గೕ

∎ ቁ = ቄ
4 −
1 −

2 −
 2 − 

1 −
3 −

 5 −
2 −

 3
 3

ቅ , 𝑥∎ ቀ𝜋௝
∎, 𝑙గೕ

∎ ቁ = ቄ
4 −
1 −

5 −
 2 − 

2 −
2 −

 1 −
3 −

 3
 3

ቅ  and 

𝑥∎ ቀ𝜋௝
∎, 𝑙గೕ

∎ ቁ = ቄ
4 −
1 −

5 −
 2 − 

3 −
3 −

 2 −
2 −

 1
 3

ቅ. Eventually, the non-dominated one 𝑥∗൫𝜋௞
∗ , 𝑙గೖ

∗ ൯ 

is selected among them and the archive set 𝛺 is updated. 

Scout Bee Phase: 

A food source is generated randomly by a scout bee in the predetermined 

search space of basic ABC algorithm. However, the effectiveness of search is 

decreased by this generation, because more information is being derived by the best 

food source in the population. The reason is that the most promising region is the 

search region around the best food source. Thus, iterated local search (ILS) as 

presented in Lourenco et al. (2003) is applied for each individual 𝑥௜ in the scout bee 

phase. The pseudocode of ILS is given in Figure 5.7. The aim of the ILS is to escape 

from local minima. To do so, a perturbation is made on each individual 𝑥௜ , by 

removing pS number of jobs with their speed levels and inserting each job to another 

position in the individual at random. The removed jobs and the remaining jobs are 

stored in 𝑥ூ
௜  and 𝑥௉

௜ , respectively.  The perturbation size is used as 2. After 

perturbation, the same insertion local search (see Figure 5.5.) as in the previous phases 

are implemented to the solution generated. Similarly, the comparison of new solution 

𝑥∗  and the individual 𝑥௜  is made by the dominance rule and the achieve set 𝛺  is 

updated by the non-dominated solutions. 
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𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖ᇱ𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  

      𝑥ூ
௜ ቀ𝜋௝

௜, 𝑙గೕ
௜ ቁ = 𝑅𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑝𝑆 # 𝑜𝑓 𝑗𝑜𝑏𝑠 𝑎𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑗 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑠𝑝𝑒𝑒𝑑 𝑓𝑟𝑜𝑚 𝑥௜ 

      𝑥௉
௜ ቀ𝜋௝

௜ , 𝑙గೕ

௜ ቁ = 𝑃𝑎𝑟𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑎𝑓𝑡𝑒𝑟 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 

      𝑥∎ ቀ𝜋௝
∎, 𝑙గೕ

∎ ቁ = 𝐼𝑛𝑠𝑒𝑟𝑡  𝑥ூ
௜ ቀ𝜋௝

௜ , 𝑙గೕ

௜ ቁ 𝑖𝑛 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 ൬𝑥௉
௜ ቀ𝜋௝

௜ , 𝑙గೕ

௜ ቁ൰ 

      𝑥∗(𝜋∗, 𝑙∗) = 𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ ൬𝑥∎ ቀ𝜋௝
∎, 𝑙గೕ

∎ ቁ൰ 

      𝑖𝑓 ቀ𝑓(𝑥∗) ≻ 𝑓൫𝑥௜൯ቁ  𝑡ℎ𝑒𝑛 𝑑𝑜  

                 𝑥௜ = 𝑥∗ 

      𝑒𝑛𝑑 𝑖𝑓  

𝑒𝑛𝑑 𝑓𝑜𝑟   

𝑟𝑒𝑡𝑢𝑟𝑛  𝑥௜  

Figure 5.7. Iterated Local Search 

As an example, let consider that we a current solution of 𝑥௜൫𝜋௞
௜ , 𝑙గೖ

௜ ൯ =

ቄ
3 −
1 −

2 −
 3 − 

1 −
2 −

 4 −
1 −

 5
 1

ቅ and the 𝑝𝑆 = 2. After removing the random 2 jobs, two partial 

solutions are obtained:  𝑥ூ
௜ ቀ𝜋௝

௜ , 𝑙గೕ

௜ ቁ = ቄ
2 − 
3 −

4
1

ቅ and 𝑥௉
௜ ቀ𝜋௝

௜ , 𝑙గೕ

௜ ቁ = ቄ
3 − 
1 −

1 − 
2 −

5
1

ቅ. Then, 

each job in 𝑥ூ
௜ ቀ𝜋௝

௜ , 𝑙గೕ

௜ ቁ is inserted into randomly a position in 𝑥௉
௜ ቀ𝜋௝

௜ , 𝑙గೕ

௜ ቁ, say job 2 is 

inserted into the 1st position and job 4 is inserted into the 3rd position. Hence, 

𝑥∎ ቀ𝜋௝
∎, 𝑙గೕ

∎ ቁ = ቄ
2 −
3 −

3 −
 1 − 

1 −
2 −

 4 −
1 −

 5
 1

ቅ is obtained. Then, an insertion local search is 

implemented on 𝑥௜ ቀ𝜋௝
௜ , 𝑙గೕ

௜ ቁ in such a way that each job is removed with its sped level 

and inserted into all possible positions. Thus, an non-dominated solution for 

𝑥∗ ቀ𝜋௝
∗, 𝑙గೕ

∗ ቁ  is obtained, say, 𝑥∗ ቀ𝜋௝
∗, 𝑙గೕ

∗ ቁ = ቄ
5 −
2 −

1 −
 2 − 

4 −
1 −

 3 −
2 −

 2
 1

ቅ . At the end, the 

archive set 𝛺 is updated with the non-dominated solution. 

The performance of MO-DABC algorithm is highly remarkable to minimize the 

makespan. Nevertheless, the need for changing speed levels within the algorithm is 

essential. Hence, a uniform crossover operator is performed for only the speed levels 

where keeping the same permutation for each individual𝑥௜ . To perform this, an 

individual 𝑥௞ is selected from the population randomly, for each individual 𝑥௜. Then, 

based on the probability of crossover, a new solution is constructed in such a way that 

either using the speed level of 𝑥௜ or 𝑥௞. The construction method of the new solution 
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with a uniform crossover rate is as follows: 

𝑥∗(𝜋∗, 𝑙∗) = ൝
𝑙గೕ

௜ , 𝑖𝑓 𝑟గೕ

௜ ≤ 𝐶𝑅[𝑖] 

𝑙గೕ

௞ ,                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      𝑗 = 1, … , 𝑁, 

 (H-17) 

where 𝑟గೕ

௜  is generated as a random number that is distributed as 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1). Also, 

the probability of crossover that is 𝐶𝑅[𝑖] is derived as 𝑁𝑜𝑟𝑚𝑎𝑙(0.5,0.1).  If 𝑥௜  is 

dominated by 𝑥∗, then 𝑥௜ is replaced by 𝑥∗ in the population and the archive set 𝛺 is 

updated. The procedure is followed for all individuals.  

Then, a mutation strategy is applied for the speed levels of jobs of each 

individual 𝑥௜, after the crossover local search. The strategy is as follows: 

𝑥௜ ቀ𝜋௝
௜ , 𝑙గೕ

௜ ቁ = ൝
𝑙గೕ

௜ = 𝑟𝑎𝑛𝑑()%3, 𝑖𝑓 𝑟గೕ

௜ ≤ 𝑀𝑅[𝑖] 

𝑙గೕ

௜ ,                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    𝑗 = 1, … , 𝑁, 

(H-18) 

where 𝑟గೕ

௜  is generated as a random number that is distributed as 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1). Also, 

the probability of mutation that is 𝑀𝑅[𝑖] is derived as 𝑁𝑜𝑟𝑚𝑎𝑙(0.05,0.01).  

5.3. Multi-Objective Genetic Algorithm (MO-GA) 

Multi-objective genetic algorithm employs only crossover and mutation 

strategies. In this algorithm, a two-cut PTL crossover operator as proposed by Pan et 

al. (2008) is applied to each  individual through random selection of another individual 

from the population by considering the speed levels, as well. If the current individual 

𝑥௜ is dominated by the generated offspring 𝑥∗, then the offspring 𝑥∗ substitutes 𝑥௜ and 

the archive set 𝛺  is updated. After that, the mutation for the speed levels as it is 

explained in Equation (H-18) is applied. That is, an individual is selected randomly for 

each individual and two-cut PTL crossover operator is used. If the new offspring 

𝑥∗ domintas the individual 𝑥௜  it is substituted by the 𝑥௜  and the archive set 𝛺  is 

updated. At the end, the population is mutated by Equation (H-18). It is significant to 

express that in MO-GA, insertion local search (Figure 5.5.) and speed crossover 

(Equation (H-17)) are not implemented whereas these two strategies are implemented 

in MO-GALS. 
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5.4. Multi-Objective Genetic Algorithm with a Local Search (MO-GALS) 

 Multi-objective genetic algorithm with a local search (MO-GALS) is a variant 

of MO-GA where insertion local search as proposed in Figure 5.3. and crossover local 

search as provided in Equation (H-17) are additively used on the speed levels. Namely, 

an individual is selected randomly for each individual and two-cut PTL crossover 

operator is used. If the new offspring 𝑥∗domintas the individual 𝑥௜, it is substituted by 

the  𝑥௜  and the archive set 𝛺  is updated. At the end, the population is mutated by 

Equation (H-18). Particularly, an insertion local search (Figure 5.5.) and speed 

crossover (Equation H-17) are implemented in MO-GA. 



67 

CHAPTER 6 

COMPUTATIONAL RESULTS FOR BI-OBJECTIVE NO-WAIT 

PERMUTATION FLOWSHOP SCHEDULING PROBLEMS 

A comprehensive computational analysis is carried out on PFSP benchmark 

instances of Taillard (1993) to evaluate the performance of the algorithms. Initially, 

since solving NWPFSP is computationally hard, 30 small size instances with 10 

instances of each 5x5, 5x10 and 5x20 set are truncated from 20x5, 20x10 and 20x20 

instances. Here, the first number specifies the number of jobs and second number 

specifies the number of machines in this representation. For (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫, 𝑇𝐸𝐶) and 

(𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ , 𝑇𝐸𝐶) problems, the truncation does not affect the objective function 

analysis, thus only the first five jobs are cropped from 20x5, 20x10 and 20x20 instances 

and the 5x5, 5x10, and 5x20 sets are obtained. However, for (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜ , 𝑇𝐸𝐶) 

problem, the truncation is very important since each job’s tardiness will affect the total 

tardiness at the end. Therefore, while truncating the jobs, theirs due dates also needs 

to be truncated somehow. So, an analysis is provided for the truncation of small sized 

instances for (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜ , 𝑇𝐸𝐶)  problem and it is already presented in Section 

4.2.3.  

The speed levels are used as 𝐿= {1(fast), 2(normal), 3(slow)}. Then, the speed factor 

and conversion factor for processing speed levels are approved as 𝑠௟ = {1.2, 1.0, 0.8} 

and 𝜆௟ = {1.5, 1.0, 0.6}, respectively. Also, the conversion factor for idle time and the 

power of machines are 0.05 and 60kW, respectively. All these parameters for the 

energy efficient scheduling are taken from Mansouri et al. (2016). The mathematical 

model formulation is coded with the augmented ε-constraint method by using the 

epsilon value as 10ିଶ  (Mavrotas, 2009) and all instances are run in IBM ILOG 

CPLEX 12.6.3 on a Core i7, 2.60 GHz, 8 GB RAM computer in Windows operating 

system. 

After the analysis on small size instances, the larger instances are processed. 

However, due to the computational difficulty of CPLEX in larger instances, the 

proposed metaheuristic algorithms are studied on the larger instances which are the 

first 110 instances of Taillard (1993) for PFSP with 10 instances of each 20x5, 20x10, 

20x20, 50x5, 50x10, 50x20, 100x5, 100x10, 100x20, 200x10 and 200x20. The MO-

DABC, MO-GA and MO-GALS algorithms are coded in C++ programming language 
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on Microsoft Visual Studio 2013. All large instances are solved on a Core i5, 3.20 

GHz, 8 GB RAM computer. For each instance, 10 replications are carried out. In each 

replication, the algorithms are run for 25𝑛𝑚 milliseconds for small instances and 

50𝑛𝑚 milliseconds for larger instances, where n is the number of jobs and m is the 

number of machines. 

To test the performance of MO-DABC, MO-GA and MO-GALS algorithms with 

CPLEX in small sized instances, three performance measures are used:  

(i) ratio of the Pareto-optimal solutions found: 𝑅௣ಲ
= |𝐴 ∩ 𝑃|/|𝑃|,  

(ii) inverted generational distance: 𝐼𝐺𝐷஺ = ∑ 𝑑(𝑣, 𝐴)/|𝑃|,௩∈௉   where the 

minimum Euclidean distance between two solutions is denoted as 𝑑(𝑣, 𝐴)  

(Coello et al. 2002). 

*If the IGD value is low, it means that set 𝐴 is very close to set 𝑃. 

(iii) distribution spacing: 𝐷𝑆஺ = ቂ
ଵ

|஺|
∑ ൫𝑑௜ − 𝑑̅൯

ଶ
௜∈஺ ቃ

ଵ
ଶൗ

𝑑̅ൗ  (Tan et al. 2006).  

*If the distribution spacing value is low, it means that the solutions in 𝑀 

are evenly scattered. 

Note that the set A refers to the non-dominated solution set of the heuristic 

algorithms (MO-DABC, MO-GA or MO-GALS). However, to distinguish the 

algorithms, the sets X, Y, and Z are defined for the non-dominated solution set of the 

MO-DABC, MO-GA and MO-GALS algorithms, respectively. Also, P refers to pareto 

optimal set. 

To test the performance of algorithms with each other in larger instances, three 

performance measures are used:  

(i) cardinality of non-dominated solutions: |𝐻|  

(ii) coverage of two sets:  𝐶(𝑇, 𝐻)  =  |{ℎ ∈ 𝐻; ∃𝑡 ∈ 𝑇: 𝑡 ≽ ℎ}|/|𝐻| where 

𝐶(𝑇, 𝐻)  equals to 1, if some solutions of T weakly dominate all solutions 

of H (Zitzler et al. 1999). 

(iii) distribution spacing: 𝐷𝑆ு = ቂ
ଵ

|ு|
∑ ൫𝑑௜ − 𝑑̅൯

ଶ
௜∈ு ቃ

ଵ
ଶൗ

𝑑̅ൗ  (Tan et al. 2006). 

Note that T and H refer to the non-dominated solution set of the heuristic 

algorithms (MO-DABC, MO-GA or MO-GALS). 
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6.1. Computational Results for Bi-Objective No-Wait Permutation Flowshop 

Scheduling Problem with Minimizing Makespan and Total Energy 

Consumption 

The three multi-objective algorithms are studied on of small instances for 

(𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫, 𝑇𝐸𝐶) problem and the averages are represented in Table 6.1. The 

performance of algorithms on each instance is represented in Appendix D (Table D.1.) 

Note that, the small size instances for (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫, 𝑇𝐸𝐶)  are cropped only 

truncating the first 5 jobs of the set of 20x5, 20x10, 20x20 instances.   

Table 6.1. Comparison of MO-DABC(X), MO-GA(Y) and MO-GALS(Z) with 

CPLEX on Small Sized Instances for (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫, 𝑇𝐸𝐶) When Population Size is 

30. 

 MO-DABC MO-GA MO-GALS 

Instance 

Set 

 

𝑹𝒑𝑿
 

 

𝑰𝑮𝑫𝑿 

 

𝑫𝑺𝑿 

 

𝑹𝒑𝒀
 

 

𝑰𝑮𝑫𝒀 

 

𝑫𝑺𝒀 

 

𝑹𝒑𝒁
 

 

𝑰𝑮𝑫𝒁 

 

𝑫𝑺𝒁 

5x5 1.000 0.000 0.623 1.000 0.000 0.623 1.000 0.000 0.623 

5x10 1.000 0.000 0.817 1.000 0.000 0.817 1.000 0.000 0.817 

5x20 1.000 0.000 0.835 1.000 0.000 0.835 1.000 0.000 0.835 

Average 1.000 0.000 0.758 1.000 0.000 0.758 1.000 0.000 0.758 

 

It is seen that MO-DABC, MO-GA and MO-GALS algorithms detects 100% 

of the Pareto-optimal set that is created by MILP and CP models with the 

implementation of augmented ε-constraint method. Also, the inverted generational 

distance is 0. Moreover, the distribution spacing is low which indicates that the 

solutions in set of solutions found by MO-DABC, MO-GA and MO-GALS algorithms 

are uniformly distributed. 

Then, the proposed algorithms are run on the large instances and the averages 

for each set of instances are reported in Tables 6.2 and 6.3. 
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Table 6.2. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances 

in terms of Cardinality and Distribution Spacing for (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫, 𝑇𝐸𝐶) When 

Population Size is 30. 

Instance Set |𝑿| |𝒀| |𝒁| 𝑫𝑺𝑿 𝑫𝑺𝒀 𝑫𝑺𝒁 

20x5   76.80 45.60 74.00 0.799 0.959 0.782 

20x10   67.90 27.00 57.90 0.856 1.294 0.925 

20x20   53.70 13.70 46.10 0.972 1.663 0.907 

50x5 103.20 32.70 81.70 1.211 2.344 1.105 

50x10   76.00 15.50 47.30 1.336 2.414 1.097 

50x20   49.60   6.60 24.90 1.092 1.688 1.452 

100x5   87.10 39.30 62.20 3.824 3.461 3.316 

100x10   65.30 15.80 38.20 1.473 2.844 2.181 

100x20   45.90   6.30 15.40 1.177 1.436 2.634 

200x10   76.80 19.10 16.50 1.647 3.337 3.406 

200x20   49.50   6.60 13.00 1.185 1.410 2.672 

Average   68.30 20.70 43.40 1.420 2.080 1.860 

According to the Table 6.2., MO-DABC finds nearly 3.30 and 1.57 times as 

many non-dominated solutions than MO-GA and MO-GALS, respectively. 

Furthermore, lower distribution spacing values indicates uniformly distributed set of 

solutions so that MO-DABC performs better on terms of this metric.  
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Table 6.3. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances 

in terms of Coverage for (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫, 𝑇𝐸𝐶) When Population Size is 30. 

Instance Set 𝑪(𝑿, 𝒀) 𝑪(𝒀, 𝑿) 𝑪(𝑿, 𝒁) 𝑪(𝒁, 𝑿) 𝑪(𝒀, 𝒁) 𝑪(𝒁, 𝒀) 

20x5 0.887 0.089 0.437 0.544 0.078 0.909 

20x10 0.991 0.035 0.584 0.444 0.053 0.982 

20x20 1.000 0.025 0.573 0.420 0.040 1.000 

50x5 0.939 0.037 0.638 0.258 0.066 0.936 

50x10 0.841 0.063 0.609 0.223 0.099 0.819 

50x20 0.957 0.058 0.645 0.172 0.118 0.953 

100x5 0.620 0.079 0.619 0.202 0.206 0.535 

100x10 0.543 0.056 0.560 0.224 0.176 0.437 

100x20 0.755 0.013 0.712 0.170 0.055 0.685 

200x10 0.356 0.026 0.784 0.060 0.149 0.193 

200x20 0.603 0.007 0.763 0.099 0.071 0.531 

Average 0.770 0.040 0.630 0.260 0.100 0.730 

 
One important point is that MO-DABC perform prior with respect to the 

coverage metric because 77% of the solutions of MOGA are weakly dominated by 

some solutions of MO-DABC. Also, some solutions of MO-DABC dominates the  

63% of the solutions of MOGALS. As a result, MO-DABC performs much better than 

two other algorithms in terms of both quality and cardinality of non-dominated 

solutions sets. 

Besides, to analyze the effect of population size on the MO-DABC algorithm, 

population size is taken as 10 and all analyses are repeated, and the results are reported 

in Tables 6.4. and 6.5. All algorithms find the same pareto optimal set for small size 

instances with the situation when the population size is 30. Then, the further analysis 

become meaningful.  

 

 

 

 

 

 

 



72 

Table 6.4. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances 

in terms of Cardinality and Distribution Spacing for (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫, 𝑇𝐸𝐶) When 

Population Size is 10. 

Instance Set |𝑿| |𝒀| |𝒁| 𝑫𝑺𝑿 𝑫𝑺𝒀 𝑫𝑺𝒁 

20x5   85.10 42.00 80.70 0.787 0.987 0.845 

20x10   67.60 24.60 54.40 0.883 1.426 0.924 

20x20   54.50 12.30 43.00 0.901 1.643 1.094 

50x5 121.70 31.90 88.60 1.121 1.795 1.094 

50x10   81.90 14.10 52.70 1.320 2.219 1.206 

50x20   55.40   6.50 29.20 1.112 1.593 1.282 

100x5   87.00 33.50 96.10 3.935 3.133 3.504 

100x10   61.70 14.40 59.50 1.372 2.611 2.117 

100x20   42.00   4.90 25.80 1.220 1.012 3.148 

200x10   64.30 16.80 33.00 1.838 2.858 3.546 

200x20   42.80   8.30 18.70 1.755 1.775 2.905 

Average   69.50 19.00 52.90 1.477 1.914 1.970 

According to the Table 6.4., MO-DABC finds nearly 3.66 and 1.31 times as 

many non-dominated solutions than MOGA and MOGALS, respectively. 

Furthermore, lower distribution spacing values indicates uniformly distributed set of 

solutions therefore MO-DABC’s performance is much better in terms of these 

metrices.  
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Table 6.5. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances 

in terms of Coverage for (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫, 𝑇𝐸𝐶) When Population Size is 10. 

Instance Set 𝑪(𝑿, 𝒀) 𝑪(𝒀, 𝑿) 𝑪(𝑿, 𝒁) 𝑪(𝒁, 𝑿) 𝑪(𝒀, 𝒁) 𝑪(𝒁, 𝒀) 

20x5 0.974 0.041 0.488 0.525 0.037 0.967 

20x10 1.000 0.025 0.604 0.425 0.045 0.992 

20x20 1.000 0.025 0.602 0.338 0.043 1.000 

50x5 0.976 0.032 0.627 0.304 0.050 0.940 

50x10 0.951 0.036 0.666 0.174 0.091 0.908 

50x20 0.986 0.053 0.641 0.198 0.103 0.945 

100x5 0.657 0.063 0.464 0.224 0.165 0.744 

100x10 0.556 0.049 0.560 0.192 0.150 0.653 

100x20 0.807 0.073 0.403 0.233 0.139 0.835 

200x10 0.316 0.045 0.689 0.117 0.113 0.274 

200x20 0.531 0.069 0.654 0.116 0.193 0.529 

Average 0.800 0.050 0.580 0.260 0.100 0.800 

 
Significantly, when population size becomes 10, MO-DABC again performs 

better with respect to the coverage metric because some solutions of MO-DABC 

dominates 80% of the solutions of MO-GA. Also, 58% of the solutions of MOGALS 

are weakly dominated by some solutions of MO-DABC. Therefore, there is a small 

increase in coverage of MO-GA, but there is a decrease in coverage of MO-GALS. 

In conclusion, when the population size is taken as 10, the performance of MO-

DABC algorithm gets better over MO-GA, while the coverage behavior over MO-

GALS decreases slightly.  

6.2. Computational Results for Bi-Objective No-Wait Permutation Flowshop 

Scheduling Problem with Minimizing Total Flow Time and Total Energy 

Consumption 

The three multi-objective algorithms are studied on of small instances for 

(𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ , 𝑇𝐸𝐶) problem and the averages are represented in Table 6.6. Note 

that, the small size instances for (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ , 𝑇𝐸𝐶) are cropped only truncating 

the first 5 jobs of the set of 20x5, 20x10 and 20x20 instances.   
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Table 6.6.  Comparison of MO-DABC, MO-GA and MO-GALS with CPLEX on 

Small Sized Instances for (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ , 𝑇𝐸𝐶) When Population Size is 30. 

 DABC MOGA MOGALS 

Instance 

Set 

 

𝑹𝒑𝑿
 

 

𝑰𝑮𝑫𝑿 

 

𝑫𝑺𝑿 

 

𝑹𝒑𝒀
 

 

𝑰𝑮𝑫𝒀 

 

𝑫𝑺𝒀 

 

𝑹𝒑𝒁
 

 

𝑰𝑮𝑫𝒁 

 

𝑫𝑺𝒁 

5x5 1.000 0.000 0.810 1.000 0.000 0.810 1.000 0.000 0.810 

5x10 1.000 0.000 0.777 1.000 0.000 0.777 1.000 0.000 0.777 

5x20 0.997 0.196 0.741 1.000 0.000 0.741 1.000 0.000 0.741 

Average 0.999 0.065 0.776 1.000 0.000 0.776 1.000 0.000 0.776 

It is seen that the DABC algorithm detects on the average 99.9% of the Pareto-

optimal set. The average IGD value is 0.065 indicating that very close approximations 

to the Pareto-optimal set are found by MO-DABC. There is only one point in one 

instance that is 5x20_03 in which the algorithm did not found the one point from the 

Pareto-optimal. Also, the distribution spacing is low which indicates that the solutions 

in set of solutions found by MO-DABC are uniformly distributed. Hence, MO-DABC 

performs superior performance since it finds 99.9% of the solution in Pareto-optimal 

set. Both MOGA and MOGALS algorithms show the same results. 

Later, the proposed algorithms are run on the large instances and the averages 

for each set of instances are reported in Tables 6.7 and 6.8. 
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Table 6.7. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances 

in terms of Cardinality and Distribution Spacing for (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ , 𝑇𝐸𝐶) When 

Population Size is 30. 

Instance Set  |𝑿| |𝒀| |𝒁| 𝑫𝑺𝑿 𝑫𝑺𝒀 𝑫𝑺𝒁 

20x5 104.60 55.90 96.60 0.897 1.217 0.929 

20x10   97.80 39.20 90.40 0.826 0.887 0.922 

20x20   102.10 29.90 80.90 0.825 0.799 0.933 

50x5 123.50 44.10 100.10 1.285 1.173 1.590 

50x10 119.30 27.00 74.90 1.226 1.132 1.619 

50x20 101.30 15.70 45.50 1.245 1.276 1.737 

100x5   94.70 39.00 77.50 2.628 1.110 2.221 

100x10   85.40 20.10 51.90 1.702 1.206 2.409 

100x20   74.00 12.60 30.10 1.292 1.400 1.882 

200x10   96.60 20.50 29.90 1.569 1.385 1.989 

200x20   72.50 11.90 19.50 1.482 1.209 1.577 

Average   97.44 28.72 63.39 1.360 1.160 1.620 

According to Table 6.7., MO-DABC finds nearly 3.39 and 1.53 times as many 

non-dominated solutions than MO-GA and MO-GALS, respectively. Furthermore, all 

algorithms have low distribution spacing values which means that they find the 

uniformly distributed points.  
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Table 6.8. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances 

in terms of Coverage for (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ , 𝑇𝐸𝐶) When Population Size is 30. 

Instance Set 𝑪(𝑿, 𝒀) 𝑪(𝒀, 𝑿) 𝑪(𝑿, 𝒁) 𝑪(𝒁, 𝑿) 𝑪(𝒀, 𝒁) 𝑪(𝒁, 𝒀) 

20x5 0.978 0.033 0.430 0.537 0.028 0.970 

20x10 0.998 0.020 0.577 0.386 0.024 0.987 

20x20 0.996 0.016 0.663 0.340 0.024 0.992 

50x5 0.958 0.052 0.788 0.140 0.097 0.914 

50x10 0.993 0.030 0.912 0.059 0.122 0.931 

50x20 0.995 0.040 0.828 0.103 0.159 0.949 

100x5 0.753 0.043 0.735 0.113 0.221 0.667 

100x10 0.697 0.052 0.807 0.075 0.326 0.596 

100x20 0.760 0.068 0.794 0.118 0.222 0.812 

200x10 0.652 0.029   0.899 0.040 0.219 0.385 

200x20 0.619 0.039 0.865 0.076 0.124 0.383 

Average 0.850 0.040 0.750 0.180 0.140 0.780 

 
In addition, MO-DABC perform prior in terms of the coverage metric because 

85% of the solutions of MOGA are weakly dominated by some solutions of MO-

DABC. Also, some solutions of MO-DABC dominates the  75% of the solutions of 

MOGALS. As a result, MO-DABC performs much better than two other algorithms 

in terms of both quality and cardinality of non-dominated solutions sets. 

Additively, population size is taken as 10 to measure the effect of population 

size and all analyses are repeated, and the results are reported in Table 6.9. and 6.10. 

All algorithms find the same pareto optimal set for small sized instances with the 

situation when the population size is 30. Then, the further analysis become meaningful.  
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Table 6.9. Comparison of MO-DABC, MO-GA and MO-GALS on Larger Instances 

in terms of Cardinality and Distribution Spacing for (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ , 𝑇𝐸𝐶) When 

Population Size is 10. 

Instance Set |𝑿| |𝒀| |𝒁| 𝑫𝑺𝑿 𝑫𝑺𝒀 𝑫𝑺𝒁 

20x5 152.80 56.60   90.80 1.072 1.096 1.074 

20x10 137.50 47.90   82.00 0.968 0.947 0.858 

20x20 138.70 35.10   76.70 1.013 0.722 0.986 

50x5 220.60 55.20 113.40 1.465 1.198 1.464 

50x10 232.60 25.00   78.70 1.407 0.944 1.298 

50x20 201.50 12.60   48.80 1.274 0.894 1.551 

100x5 140.00 36.00 111.50 1.735 1.235 2.102 

100x10 98.90 20.10 75.60 1.503 1.450 2.165 

100x20 77.90 11.60 39.90 1.699 1.453 1.571 

200x10 77.50 20.40 54.20 1.843 1.385 3.120 

200x20 62.60 14.10 29.80 1.738 1.176 1.695 

Average 140.05 30.42 72.85 1.429 1.136 1.626 

 

Table 6.10. Comparison of MO-DABC, MO-GA and MO-GALS on Larger 

Instances in terms of Coverage for (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ , 𝑇𝐸𝐶) When Population Size is 

10. 

Instance Set 𝑪(𝑿, 𝒀) 𝑪(𝒀, 𝑿) 𝑪(𝑿, 𝒁) 𝑪(𝒁, 𝑿) 𝑪(𝒀, 𝒁) 𝑪(𝒁, 𝒀) 

20x5 1.000 0.000 0.872 0.072 0.011 0.975 

20x10 1.000 0.000 0.920 0.046 0.000 0.998 

20x20 1.000 0.000 0.892 0.076 0.003 0.991 

50x5 1.000 0.000 1.000 0.000 0.318 0.615 

50x10 1.000 0.000 1.000 0.000 0.089 0.916 

50x20 1.000 0.000 1.000 0.000 0.062 0.924 

100x5 0.979 0.023 0.844 0.037 0.119 0.913 

100x10 0.814 0.044 0.837 0.057 0.189 0.763 

100x20 0.966 0.048 0.842 0.088 0.158 0.963 

200x10 0.596 0.036 0.826 0.063 0.214 0.502 

200x20 0.730 0.063 0.847 0.084 0.192 0.620 

Average 0.917 0.019 0.898 0.048 0.123 0.835 
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According to Tables 6.9. and 6.10., MO-DABC finds nearly 4.60 and 1.92 times as 

many non-dominated solutions than MO-GA and MO-GALS, respectively. One 

important point is that MO-DABC is much better with respect to the coverage metric 

because 91.70% of the solutions of MO-GA are weakly dominated by some solutions 

of DABC. Also, 89.80% of the solutions of MO-GALS are weakly dominated by some 

solutions of MO-DABC. However, distribution spacing indicates that MO-GA is 

distributed more uniformly than the solutions of MO-DABC and MO-GALS. As a 

results, MO-DABC performs much better than two other algorithms in terms of both 

quality and cardinality of non-dominated solutions sets. 

To sum up, when the population size is taken as 10, the performance of MO-

DABC algorithm improves over MO-GA and MO-GALS algorithms. 

6.3. Computational Results for Bi-Objective No-Wait Permutation Flowshop 

Scheduling Problem with Minimizing Total Tardiness and Total Energy 

Consumption 

The three multi-objective algorithms are studied on of small instances for 

(𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜ , 𝑇𝐸𝐶) problem and the averages for each instance set are represented 

in Table 6.11. Note that, the small size instances for (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜ , 𝑇𝐸𝐶)   are 

obtained by the truncation method that is mentioned in Section 4.2.3.  Also, the 

truncated instances are provided in Appendix D (Table D.1.). 

Table 6.11. Comparison of MO-DABC, MO-GA and MO-GALS with CPLEX on 

Small Sized Instances for (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜ , 𝑇𝐸𝐶) When Population Size is 30. 

 DABC MOGA MOGALS 

Instance 

Set 

 

𝑹𝒑𝑿
 

 

𝑰𝑮𝑫𝑿 

 

𝑫𝑺𝑿 

 

𝑹𝒑𝒀
 

 

𝑰𝑮𝑫𝒀 

 

𝑫𝑺𝒀 

 

𝑹𝒑𝒁
 

 

𝑰𝑮𝑫𝒁 

 

𝑫𝑺𝒁 

5x5 1.000 0.000 0.791 1.000 0.000 0.791 1.000 0.000 0.791 

5x10 1.000 0.000 0.570 1.000 0.000 0.570 1.000 0.000 0.570 

5x20 1.000 0.000 0.565 1.000 0.000 0.565 1.000 0.000 0.565 

Average 1.000 0.000 0.642 1.000 0.000 0.642 1.000 0.000 0.642 

It is seen that MO-DABC, MO-GA and MO-GALS algorithms detects 100% 

of the Pareto-optimal set that is created by MILP and CP models with the 

implementation of augmented ε-constraint method. Also, there is no any inverted 
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generational distance which is 0. Also, the distribution spacing is low which indicates 

that the solutions in set of solutions found by MO-DABC, MO-GA and MO-GALS 

algorithms are uniformly distributed. 

Next, the all proposed algorithms are runned on the large instances and the 

averages for each set of instances are reported in Tables 6.12 and 6.13. 

Table 6.12.  Comparison of MO-DABC, MO-GA and MO-GALS on Larger 

Instances in terms of Cardinality and Distribution Spacing for (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜ , 𝑇𝐸𝐶) 

When Population Size is 30. 

Instance Set |𝑿| |𝒀| |𝒁| 𝑫𝑺𝑿 𝑫𝑺𝒀 𝑫𝑺𝒁 

20x5 109.50 53.30 103.30 1.121 1.176 1.254 

20x10   94.90 43.00   80.40 1.239 1.394 1.343 

20x20   73.90 27.20   59.90 1.194 1.399 1.267 

50x5 144.30 44.60 118.80 1.545 0.984 1.859 

50x10 130.50 24.80 122.90 1.573 1.124 1.905 

50x20 120.80 12.40 104.40 1.547 1.389 1.258 

100x5 114.60 40.10   91.10 2.814 1.082 2.595 

100x10 104.00 21.60   67.00 1.768 1.141 2.719 

100x20 94.10 12.10   66.80 1.763 1.670 1.934 

200x10 126.60 12.20   99.00 1.856 1.085 3.274 

200x20 116.30 12.80   90.40 1.766 1.223 2.288 

Average 111.80 27.60     91.30 1.653 1.242 1.973 

According to Table 6.12., MO-DABC finds nearly 4.05 and 1.22 times as many 

non-dominated solutions than MOGA and MOGALS, respectively. Furthermore, 

lower distribution spacing values indicates uniformly distributed set of solutions so 

that all algorithms perform good in terms of this metric.  
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Table 6.13. Comparison of MO-DABC, MO-GA and MO-GALS on Larger 

Instances in terms of Coverage for (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜ , 𝑇𝐸𝐶) When Population Size is 30. 

Instance Set 𝑪(𝑿, 𝒀) 𝑪(𝒀, 𝑿) 𝑪(𝑿, 𝒁) 𝑪(𝒁, 𝑿) 𝑪(𝒀, 𝒁) 𝑪(𝒁, 𝒀) 

20x5 0.949 0.038 0.392 0.566 0.035 0.949 

20x10 0.953 0.035 0.343 0.652 0.024 0.976 

20x20 0.988 0.008 0.432 0.573 0.000 1.000 

50x5 0.957 0.035 0.525 0.387 0.074 0.894 

50x10 0.962 0.029 0.505 0.345 0.065 0.919 

50x20 0.959 0.021 0.467 0.437 0.041 0.943 

100x5 0.700 0.007 0.888 0.038 0.114 0.665 

100x10 0.625 0.012 0.729 0.102 0.121 0.585 

100x20 0.786 0.024 0.773 0.103 0.122 0.551 

200x10 0.571 0.004 0.753 0.050 0.054 0.477 

200x20 0.608 0.034 0.658 0.255 0.088 0.347 

Average 0.820 0.020 0.590 0.320 0.070 0.760 

 

It is significant to mention that the performance of MO-DABC is  superior 

regarding the coverage metric since 82% of the solutions of MO-GA are weakly 

dominated by some solutions of MO-DABC. Also, some solutions of MO-DABC 

dominates the 59% of the solutions of MO-GALS. In brief, MO-DABC performs much 

better than two other algorithms in terms of both quality and cardinality of non-

dominated solutions sets. 

Besides, to the effect of population size on the MO-DABC algorithm, 

population size is taken as 10 and the analyses are repeated, and the results are reported 

in Tables 6.14. and 6.15.  All algorithms find the same pareto optimal set for small 

size instances with the situation when the population size is 30. Then, the further 

analysis become meaningful.  
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Table 6.14. Comparison of MO-DABC, MO-GA and MO-GALS on Larger 

Instances in terms of Cardinality and Distribution Spacing for (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜ , 𝑇𝐸𝐶) 

When Population Size is 10. 

Instance Set |𝑿| |𝒀| |𝒁| 𝑫𝑺𝑿 𝑫𝑺𝒀 𝑫𝑺𝒁 

20x5 126.80 54.80 109.50 1.130 0.871 1.361 

20x10   95.90 39.20   82.90 1.268 1.182 1.39 

20x20   70.40 23.30   70.00 1.236 1.598 1.500 

50x5 188.20 38.00 147.00 1.617 1.171 2.015 

50x10 190.90 23.50 158.70 1.333 1.156 1.532 

50x20 167.30 12.90 131.10 1.247 1.216 1.868 

100x5 122.70 37.00 139.90 2.215 1.367 2.428 

100x10 141.70 19.60 117.70 2.257 1.194 2.598 

100x20 116.20 12.70 105.70 1.532 1.357 1.619 

200x10 111.70 20.30   74.60 1.967   1.286 2.326 

200x20   88.20 14.50   67.00 2.231 1.195 2.429 

Average 129.10 26.90 109.50 1.639 1.236 1.915 

According to the Table 6.14., MO-DABC finds nearly 4.79 and 1.17 times as 

many non-dominated solutions than MO-GA and MO-GALS, respectively. 

Furthermore, lower distribution spacing values indicates uniformly distributed set of 

solutions so that all algorithms perform good in terms of this metric.  
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Table 6.15. Comparison of MO-DABC, MO-GA and MO-GALS on Larger 

Instances in terms of Coverage for (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜ , 𝑇𝐸𝐶) When Population Size is 10. 

Instance Set 𝑪(𝑿, 𝒀) 𝑪(𝒀, 𝑿) 𝑪(𝑿, 𝒁) 𝑪(𝒁, 𝑿) 𝑪(𝒀, 𝒁) 𝑪(𝒁, 𝒀) 

20x5 0.976 0.016 0.307 0.633 0.014 0.992 

20x10 0.997 0.001 0.480 0.482 0.003 0.995 

20x20 1.000 0.000 0.508 0.472 0.000 1.000 

50x5 0.976 0.031 0.490 0.384 0.063 0.914 

50x10 1.000 0.015 0.443 0.439 0.033 0.987 

50x20 1.000 0.008 0.564 0.389 0.026 0.992 

100x5 0.855 0.044 0.430 0.325 0.088 0.845 

100x10 0.703 0.028 0.511 0.285 0.062 0.753 

100x20 0.866 0.024 0.551 0.306 0.069 0.814 

200x10 0.543 0.008 0.792 0.086 0.104 0.464 

200x20 0.669 0.029 0.676 0.206 0.102 0.494 

Average 0.871 0.019 0.523 0.364 0.051 0.841 

Significantly, when population size becomes 10, MO-DABC again better with 

respect to the coverage metric because 87% of the solutions of MO-GA are weakly 

dominated by some solutions of MO-DABC. Also, 52% of the solutions of MO-GALS 

are weakly dominated by some solutions of MO-DABC. Therefore, there is a small 

increase in coverage of MO-GA, but there is a decrease in coverage of MO-GALS. 

To conclude, when the population size is taken as 10, the performance of MO-

DABC algorithm gets better over MO-GA, while the coverage behavior over MO-

GALS decreases slightly. Also, from the cardinality perspective, MO-DABC is better 

when the population size is 10. 

6.4. A Summary of Computational Results for Bi-Objective No-Wait 

Permutation Flowshop Scheduling Problems 

The findings of this thesis show that (when the population size is used as 10); 

 For the (𝑭𝒎|𝒏𝒘𝒕|𝑪𝒎𝒂𝒙) problem: 

The MO-DABC algorithm performs 3.66 times better than MOGA and 1.31 

times better than MOGALS algorithm in terms of cardinality. Furthermore, lower 

distribution spacing values indicates uniformly distributed set of solutions therefore 

MO-DABC’s performance is much better in terms of these metrices. More 
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significantly, MO-DABC performs better with respect to the coverage metric because 

some solutions of MO-DABC dominates 80% of the solutions of MO-GA. Also, 58% 

of the solutions of MOGALS are weakly dominated by some solutions of MO-DABC. 

 For the (𝑭𝒎|𝒏𝒘𝒕| ∑ 𝑪𝒊𝑴) problem: 

The MO-DABC algorithm performs 4.60 times better than MOGA and 1.92 

times better than MOGALS algorithm in terms of cardinality. More significantly, MO-

DABC performs better with respect to the coverage metric because some solutions of 

MO-DABC dominates 91.70% of the solutions of MO-GA. Also, 89.80% of the 

solutions of MOGALS are weakly dominated by some solutions of MO-DABC. 

However, distribution spacing indicates that MO-GA is distributed more uniformly 

than the solutions of MO-DABC and MO-GALS.  

 For the (𝑭𝒎|𝒏𝒘𝒕| ∑ 𝑻𝒊) problem: 

The MO-DABC algorithm performs 4.79 times better than MOGA and 1.17 

times better than MOGALS algorithm in terms of cardinality. More significantly, MO-

DABC performs better with respect to the coverage metric because some solutions of 

MO-DABC dominates 87% of the solutions of MO-GA. Also, 52% of the solutions of 

MOGALS are weakly dominated by some solutions of MO-DABC. However, 

distribution spacing indicates that MO-GA is distributed more uniformly than the 

solutions of MO-DABC and MO-GALS.  

To sum up, MO-DABC finds more non-dominated solutions than MO-GA and 

MO-GALS in all objective functions, based on the cardinality and quality of the 

solution set. Namely, it is a novel multi-objective metaheuristic algorithm proposed 

for energy-efficient bi-objective NWPFSPs and it shows its superiority on other 

heuristics clearly. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE RESEARCH 

In conclusion, the contribution of this thesis can be divided into three-fold:           

1) single-objective NWPFSPs, 2) energy-efficient bi-objective NWPFSPs, and 3) the 

energy-efficient multi objective metaheuristics. After giving a brief introduction to the 

NWPFSPs and energy efficient scheduling methods, an extensive literature review is 

represented. After that, the gaps in the literature of NWPFSPs has been discussed and 

the resulting work is presented.  

 Firstly, this thesis aims to investigate a new fundamental mathematical 

modelling for three important single-objective NWPFSPs: (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫) and 

(𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ)  and (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜ ). To start with, MILP model formulations are 

proposed for all single objective problems and then CP model formulations are 

constructed. All the existing instances are executed, and the results are analyzed. Next, 

some valid inequalities are studied for (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫)  problem. At the end of this 

chapter, it is revealed that CP model formulation is good alternative way for the 

NWPFSPs. Also, it is seen that some valid inequalities are quite effective on the MILP 

model formulation, however, the MILP model formulation cannot be superior than CP 

model formulation even if it is executed with the valid inequalities for (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫) 

problem 

 Secondly, the bi-objective NWPFSP has been studied with respect to three 

objectives: (𝐹௠|𝑛𝑤𝑡|𝐶௠௔௫, 𝑇𝐸𝐶) , (𝐹௠|𝑛𝑤𝑡| ∑ 𝐶௜ெ, 𝑇𝐸𝐶) and (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜, 𝑇𝐸𝐶) . 

The energy-efficiency concept is conducted at the operational planning level on 

machines means that speed scaling strategy is applied on the machines. Namely, 

machines can process at different speed levels such as slow, normal and fast. First, a 

MILP model is proposed where the Pareto optimal sets are obtained by augmented 

epsilon constraint method on Taillard’s truncated small instances. Then, CP models are 

constructed which constitutes the same environment with the MILP model. CP models 

are also solved by augmented epsilon constraint method. In between, since the 

truncation is significant in tardiness criterion, an original instance truncation method 

for (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜, 𝑇𝐸𝐶) problem is proposed, and then those truncated instances are 

used in the (𝐹௠|𝑛𝑤𝑡| ∑ 𝑇௜, 𝑇𝐸𝐶)  problem. Hence, this thesis aims to investigate a 
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novel fundamental mathematical modelling for three important bi-objective 

NWPFSPs. 

Finally, due to NP-hardness of the problems, three metaheuristics are proposed: 

MO-DABC, MO-GA, MO-GALS. The performance of the proposed metaheuristic 

algorithms is initially measured on the small sized instances to show the ability of 

heuristics to find non-dominated set of solutions. Three algorithms find 100% of the 

Pareto-optimal solutions which MILP and CP models found. Then, the larger instances 

are studied with only the MO-DABC, MO-GA, MO-GALS algorithms, since the 

problem is NP-Hard to run CPLEX on larger instances. The performance of the 

algorithms are measured in terms of both quality and cardinality. Hence, based on the 

comparative computational analyses, the proposed novel MO-DABC is a significantly 

a beneficial algorithm with respect to all objective function criterions.  

For future research, speed scaling strategy can be studied in terms of matrix 

representation with the adaptation of MILP and CP models and heuristics. In that way 

the different speed level usage for jobs can be applicable. An important future research 

direction is to develop lower bounds for the objective functions. This is very critical 

to improve the efficiency of the proposed algorithms. Also, some other bi-objective 

metaheuristics might be performed to increase the performance of the algorithms. 

Furthermore, different performance metrics might be used to measure the quality of 

the solutions. The last but not the least, different objective functions such as maximum 

earliness, maximum lateness, number of tardy jobs, etc. can be employed within the 

framework of energy efficient scheduling. 
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APPENDIX A – Computational Results for (𝑭𝒎|𝒏𝒘𝒕|𝑪𝒎𝒂𝒙) 

Table A.1. MILP and CP Comparison Table for 5 machines (VRF  

Instances) 

Instance Opt. MILP 
Time 

(Seconds) 
Gap % CP 

Time 
(Seconds) 

Gap % 

10_5_01 760 760 0.719 0.00% 760 10.628 0.00% 

10_5_02 759 759 0.531 0.00% 759 4.431 0.00% 

10_5_03 823 823 0.485 0.00% 823 8.949 0.00% 

10_5_04 776 776 0.297 0.00% 776 6.458 0.00% 

10_5_05 798 798 0.313 0.00% 798 4.176 0.00% 

10_5_06 849 849 0.281 0.00% 849 5.695 0.00% 

10_5_07 843 843 0.610 0.00% 843 14.168 0.00% 

10_5_08 768 768 0.406 0.00% 768 9.167 0.00% 

10_5_09 841 841 0.250 0.00% 841 2.803 0.00% 

10_5_10 719 719 0.375 0.00% 719 5.311 0.00% 

10_5_Average 793.60 793.60 0.427 0.00% 793.60 7.179 0.00% 

20_5_01 1414 1454 3600 43.19% 1414 3600 19.80% 

20_5_02 1481 1489 3600 45.06% 1481 3600 13.44% 

20_5_03 1588 1591 3600 45.82% 1588 3600 19.27% 

20_5_04 1355 1385 3600 38.63% 1355 3600 19.70% 

20_5_05 1520 1537 3600 43.40% 1520 3600 13.09% 

20_5_06 1333 1338 3600 42.38% 1333 3600 21.91% 

20_5_07 1388 1401 3600 37.19% 1388 3600 18.23% 

20_5_08 1340 1341 3600 39.90% 1346 3600 19.99% 

20_5_09 1499 1503 3600 38.12% 1505 3600 12.49% 

20_5_10 1546 1564 3600 43.99% 1560 3600 21.35% 

20_5_Average 1446.40 1460.30 3600 41.77% 1449.00 3600 17.93% 

30_5_01 2072 2250 3600 69.39% 2083 3600 13.54% 

30_5_02 1960 2073 3600 66.47% 1968 3600 21.34% 

30_5_03 2029 2169 3600 68.93% 2044 3600 20.94% 

30_5_04 2111 2307 3600 67.58% 2126 3600 16.32% 

30_5_05 1967 2126 3600 68.67% 1979 3600 13.64% 

30_5_06 2127 2275 3600 67.78% 2130 3600 13.43% 

30_5_07 2036 2183 3600 66.41% 2041 3600 15.24% 

30_5_08 2051 2141 3600 65.34% 2052 3600 17.79% 

30_5_09 2046 2234 3600 68.89% 2057 3600 16.48% 

30_5_10 1546 2197 3600 68.27% 2058 3600 20.46% 

30_5_Average 1994,50 2195.50 3600 67.77% 2053.80 3600 16.92% 
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Table A1.1.(Cont’d.)  MILP and CP Comparison Table for 5 machines 

(VRF  Instances) 

Instance Opt. MILP 
Time 

(Seconds) 
Gap % CP 

Time 
(Seconds) 

Gap % 

40_5_01 2842 3034 3600 75.54% 2866 3600 17.48% 

40_5_02 2875 3187 3600 79.48% 2910 3600 17.25% 

40_5_03 2592 2847 3600 78.44% 2607 3600 16.46% 

40_5_04 2637 2969 3600 78.71% 2661 3600 19.24% 

40_5_05 2738 3116 3600 79.14% 2761 3600 19.09% 

40_5_06 2598 2933 3600 77.22% 2617 3600 17.69% 

40_5_07 2649 3043 3600 79.20% 2672 3600 18.45% 

40_5_08 2829 3155 3600 77.97% 2865 3600 15.92% 

40_5_09 2753 3164 3600 79.11% 2770 3600 16.97% 

40_5_10 2797 3145 3600 77.62% 2817 3600 16.65% 

40_5_Average 2731.00 3059.30 3600 78.24% 2754.60 3600 17.52% 

50_5_01 3577 3991 3600 82.24% 3614 3600 16.02% 

50_5_02 3303 3738 3600 82.00% 3324 3600 14.17% 

50_5_03 3289 3867 3600 85.00% 3327 3600 17.43% 

50_5_04 3391 3774 3600 82.94% 3404 3600 17.33% 

50_5_05 3405 3853 3600 80.06% 3430 3600 16.44% 

50_5_06 3302 3946 3600 83.86% 3325 3600 14.56% 

50_5_07 3088 3630 3600 82.42% 3115 3600 16.53% 

50_5_08 3238 3796 3600 81.88% 3315 3600 19.03% 

50_5_09 3117 3793 3600 84.71% 3178 3600 17.62% 

50_5_10 3372 3779 3600 80.89% 3398 3600 16.60% 

50_5_Average 3308.20 3816.70 3600 82.60% 3343.00 3600 16.57% 

60_5_01 3906 4725 3600 85.95% 4004 3600 16.33% 

60_5_02 3779 4471 3600 85.83% 3830 3600 20.73% 

60_5_03 3858 4583 3600 87.56% 3904 3600 18.24% 

60_5_04 3899 4683 3600 84.97% 3982 3600 17.98% 

60_5_05 3941 4616 3600 84.29% 4014 3600 20.50% 

60_5_06 3758 4319 3600 85.14% 3822 3600 18.60% 

60_5_07 4001 4610 3600 85.55% 4048 3600 18.11% 

60_5_08 4138 4863 3600 84.60% 4210 3600 18.86% 

60_5_09 3784 4481 3600 85.11% 3825 3600 19.01% 

60_5_10 3980 4647 3600 95.52% 4007 3600 8.58% 

60_5_Average 3904.40 4599.80 3600 86.45% 3964.60 3600 17.69% 
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Table A.2. MILP and CP Comparison Table for 10 machines (VRF 

Instances) 

Instance Opt. MILP 
Time 

(Seconds) 
Gap % CP 

Time 
(Seconds) 

Gap % 

10_10_01 1253 1253 0.360 0.00% 1253 16.310 0.00% 
10_10_02 1278 1278 0.641 0.00% 1278 39.157 0.00% 
10_10_03 1171 1171 0.172 0.00% 1171   7.034 0.00% 
10_10_04 1181 1181 0.297 0.00% 1181 15.634 0.00% 
10_10_05 1294 1294 1.187 0.00% 1294 43.662 0.00% 
10_10_06 1198 1198 0.313 0.00% 1198 24.013 0.00% 
10_10_07 1256 1256 0.391 0.00% 1256 31.632 0.00% 
10_10_08 1220 1220 0.250 0.00% 1220 18.071 0.00% 
10_10_09 1243 1243 0.359 0.00% 1243 25.590 0.00% 
10_10_10 1317 1317 0.797 0.00% 1317 26.374 0.00% 

10_10_Average 1241.10 1241.10 0.477 0.00% 1241.10 24.748 0.00% 

20_10_01 2017 2036 3600 35.71% 2017 3600 31.98% 
20_10_02 1998 2022 3600 36.10% 1998 3600 28.13% 
20_10_03 2036 2036 3600 33.79% 2045 3600 28.02% 
20_10_04 1932 1965 3600 38.07% 1952 3600 32.94% 
20_10_05 2032 2051 3600 35.15% 2032 3600 29.08% 
20_10_06 2059 2133 3600 41.91% 2059 3600 30.45% 
20_10_07 2051 2069 3600 35.86% 2051 3600 30.47% 
20_10_08 2018 2023 3600 37.47% 2018 3600 28.59% 
20_10_09 1979 1996 3600 32.62% 1990 3600 30.05% 
20_10_10 1963 1984 3600 35.33% 1965 3600 27.84% 

20_10_Average 2008.50 2031.50 3600 36.20% 2012.70 3600 29,76% 

30_10_01 2653 2918 3600 63.91% 2689 3600 32.21% 
30_10_02 2861 2971 3600 60.85% 2897 3600 32.72% 
30_10_03 2796 3031 3600 64.09% 2801 3600 29.74% 
30_10_04 2762 2995 3600 60.43% 2801 3600 35.34% 
30_10_05 2773 3026 3600 64.67% 2786 3600 29.61% 
30_10_06 2808 3179 3600 63.16% 2822 3600 30.62% 
30_10_07 2683 2937 3600 63.36% 2708 3600 32.64% 
30_10_08 2532 2643 3600 62.32% 2569 3600 30.40% 
30_10_09 2693 2804 3600 59.52% 2705 3600 33.42% 
30_10_10 2647 2821 3600 61.60% 2670 3600 31.39% 

30_10_Average 2720.80 2932.50 3600 62.39% 2744.80 3600 31.81% 
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Table A.2.(Cont’d.) MILP and CP Comparison Table for 10 machines 

(VRF Instances) 

Instance Opt. MILP 
Time 

(Seconds) 
Gap % CP 

Time 
(Seconds) 

Gap % 

40_10_01 3550 4292 3600 75.33% 3563 3600 34.24% 
40_10_02 3416 3881 3600 70.94% 3416 3600 31.70% 
40_10_03 3408 3944 3600 76.17% 3494 3600 33.60% 
40_10_04 3622 4184 3600 74.09% 3704 3600 35.39% 
40_10_05 3488 4045 3600 75.87% 3549 3600 33.90% 
40_10_06 3565 4014 3600 74.56% 3599 3600 31.95% 
40_10_07 3496 4028 3600 76.48% 3519 3600 31.77% 
40_10_08 3427 4004 3600 75.75% 3467 3600 31.04% 
40_10_09 3501 3894 3600 73.47% 3567 3600 35.13% 
40_10_10 3447 3937 3600 74.02% 3451 3600 29.67% 

40_10_Average 3492.00 4022.30 3600 74.67% 3532.90 3600 32.84% 

50_10_01 4121 4723 3600 79.32% 4179 3600 32.40% 
50_10_02 4261 5067 3600 79.18% 4388 3600 33.20% 
50_10_03 4227 5014 3600 78.40% 4299 3600 31.71% 
50_10_04 4320 4873 3600 78.49% 4360 3600 33.12% 
50_10_05 4356 5093 3600 78.55% 4423 3600 27.65% 
50_10_06 4205 4912 3600 80.34% 4248 3600 27.00% 
50_10_07 4096 4715 3600 80.78% 4215 3600 33.45% 
50_10_08 4322 5015 3600 79.30% 4365 3600 31.59% 
50_10_09 4289 5103 3600 80.23% 4367 3600 32.06% 
50_10_10 4268 4819 3600 80.22% 4376 3600 32.52% 

50_10_Average 4246.50 4933.40 3600 79.48% 4322.00 3600 31.47% 

60_10_01 5067 5980 3600 83.34% 5175 3600 35.03% 
60_10_02 5185 6547 3600 82.89% 5271 3600 31.89% 
60_10_03 4953 6101 3600 82.54% 5095 3600 33.72% 
60_10_04 5006 6049 3600 83.20% 5054 3600 32.63% 
60_10_05 5140 6241 3600 82.10% 5260 3600 34.24% 
60_10_06 5146 6222 3600 84.58% 5226 3600 32.24% 
60_10_07 5130 6354 3600 82.67% 5218 3600 32.06% 
60_10_08 4976 6083 3600 83.45% 5065 3600 30.52% 
60_10_09 5001 6129 3600 84.29% 5129 3600 29.48% 
60_10_10 5040 6059 3600 82.14% 5111 3600 32.03% 

60_10_Average 5064.40 6176.50 3600 83.12% 5160.40 3600 32.38% 
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Table A.3. MILP and CP Comparison Table for 15 machines (VRF 

Instances) 

 

Instance Opt. MILP 
Time 

(Seconds) 
Gap % CP 

Time 
(Seconds) 

Gap % 

10_15_01 1516 1516 0.312 0.00% 1516 45.260 0.00% 
10_15_02 1596 1596 0.281 0.00% 1596 32.278 0.00% 
10_15_03 1611 1611 0.297 0.00% 1611 46.715 0.00% 
10_15_04 1649 1649 0.406 0.00% 1649 65.833 0.00% 
10_15_05 1602 1602 0.578 0.00% 1602 49.938 0.00% 
10_15_06 1529 1529 0.234 0.00% 1529 48.409 0.00% 
10_15_07 1702 1702 0.500 0.00% 1702 65.594 0.00% 
10_15_08 1720 1720 0.265 0.00% 1720 54.795 0.00% 
10_15_09 1683 1683 0.422 0.00% 1683 62.265 0.00% 
10_15_10 1687 1687 0.500 0.00% 1687 50.821 0.00% 

10_15_Average 1629.50 1629.50 0.380 0.00% 1629.50 52,19 0.00% 

20_15_01 2663 2703 3600 33.26% 2663 3600 36.99% 
20_15_02 2523 2553 3600 30.36% 2523 3600 35.71% 
20_15_03 2392 2392 3600 32.48% 2392 3600 34.91% 
20_15_04 2392 2417 3600 36.08% 2392 3600 33.90% 
20_15_05 2502 2509 3600 34.32% 2503 3600 31.48% 
20_15_06 2634 2634 3600 35.80% 2634 3600 36.18% 
20_15_07 2580 2642 3600 31.26% 2580 3600 33.29% 
20_15_08 2521 2545 3600 34.03% 2531 3600 37.97% 
20_15_09 2511 2513 3600 31.24% 2520 3600 31.31% 
20_15_10 2519 2561 3600 37.80% 2519 3600 33.78% 

20_15_Average 2523.70 2546.90 3600 33.66% 2525.70 3600 34.55% 

30_15_01 3347 3634 3600 62.33% 3374 3600 36.93% 
30_15_02 3243 3671 3600 58.91% 3243 3600 35.71% 
30_15_03 3301 3520 3600 58.52% 3302 3600 37.49% 
30_15_04 3406 3619 3600 60.49% 3441 3600 34.90% 
30_15_05 3463 3765 3600 60.13% 3502 3600 36.89% 
30_15_06 3478 3765 3600 60.13% 3502 3600 36.89% 
30_15_07 3416 3719 3600 58.78% 3543 3600 41.77% 
30_15_08 3444 3605 3600 59.81% 3461 3600 38.40% 
30_15_09 3314 3761 3600 61.85% 3470 3600 38.65% 
30_15_10 3390 3557 3600 58.20% 3360 3600 39.94% 

30_15_Average 3380.20 3661.60 3600 59.91% 3419.80 3600 37.76% 
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Table A.3.(Cont’d.) MILP and CP Comparison Table for 15 machines 

(VRF Instances) 

 

Instance Opt. MILP 
Time 

(Seconds) 
Gap % CP 

Time 
(Seconds) 

Gap % 

40_15_01 4370 5038 3600 72.77% 4388 3600 37.08% 
40_15_02 4214 4828 3600 71.06% 4311 3600 39.20% 
40_15_03 4251 5019 3600 73.58% 4271 3600 36.29% 
40_15_04 4249 4845 3600 73.13% 4358 3600 39.08% 
40_15_05 4353 4682 3600 70.61% 4458 3600 39.26% 
40_15_06 4120 4626 3600 69.93% 4132 3600 37.66% 
40_15_07 4299 4946 3600 71.96% 4374 3600 39.32% 
40_15_08 4279 4923 3600 70.81% 4346 3600 38.33% 
40_15_09 4116 4628 3600 70.46% 4139 3600 39.07% 
40_15_10 4301 4783 3600 71.94% 4341 3600 38.10% 

40_15_Average 4255.20 4831.80 3600 71.63% 4311.80 3600 38.34% 

50_15_01 4972 5768 3600 78.54% 5042 3600 39.79% 
50_15_02 5079 5822 3600 75.95% 5160 3600 38.41% 
50_15_03 5136 5993 3600 77.79% 5255 3600 40.67% 
50_15_04 5248 6176 3600 76.89% 5434 3600 38.35% 
50_15_05 5092 6097 3600 78.22% 5212 3600 39.87% 
50_15_06 5194 6078 3600 77.26% 5280 3600 39.87% 
50_15_07 5297 6069 3600 76.57% 5360 3600 38.45% 
50_15_08 5174 6188 3600 77.84% 5312 3600 38.99% 
50_15_09 5096 6205 3600 78.69% 5132 3600 41.11% 
50_15_10 5173 6018 3600 78.58% 5223 3600 38.75% 

50_15_Average 5146.10 6041.40 3600 77.63% 5241.00 3600 39.43% 

60_15_01 5972 7080 3600 81.69% 6192 3600 39.11% 
60_15_02 5965 7252 3600 81.54% 6061 3600 39.50% 
60_15_03 6070 7163 3600 80.09% 6260 3600 41.34% 
60_15_04 5974 7233 3600 80.15% 6081 3600 41.82% 
60_15_05 6004 7306 3600 82.53% 6096 3600 40.16% 
60_15_06 6149 7614 3600 81.89% 6321 3600 41.53% 
60_15_07 6059 7131 3600 81.24% 6226 3600 42.27% 
60_15_08 5974 7236 3600 81.41% 6053 3600 41.20% 
60_15_09 5760 6929 3600 81.28% 5939 3600 39.20% 
60_15_10 6092 7636 3600 81.05% 6206 3600 40.06% 

60_15_Average 6001.90 7258.00 3600 81.29% 6143.50 3600 40.62% 
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Table A.4. MILP and CP Comparison Table for 20 machines (VRF 

Instances) 

Instance Opt. MILP 
Time 

(Seconds) 
Gap % CP 

Time 
(Seconds) 

Gap % 

10_20_01 1913 1913 0.282 0.00% 1913 119.638 0.00% 
10_20_02 1973 1973 0.156 0.00% 1973   78.135 0.00% 
10_20_03 1989 1989 0.594 0.00% 1989 118.302 0.00% 
10_20_04 1971 1971 0.594 0.00% 1971   99.448 0.00% 
10_20_05 1979 1979 0.657 0.00% 1979 242.102 0.00% 
10_20_06 2152 2152 0.297 0.00% 2152   94.656 0.00% 
10_20_07 1893 1893 0.187 0.00% 1893   60.239 0.00% 
10_20_08 1933 1933 0.485 0.00% 1933 139.517 0.00% 
10_20_09 1941 1941 0.203 0.00% 1941   74.479 0.00% 
10_20_10 1876 1876 0.343 0.00% 1876   70.311 0.00% 

10_20_Average 1962.00 1962.00 0.380 0.00% 1962.00  109.683 0.00% 

20_20_01 3082 3085 3600 28.07% 3104 3600 39,66% 
20_20_02 2872 2896 3600 30.52% 2872 3600 35,52% 
20_20_03 2935 2997 3600 28.09% 2935 3600 36,08% 
20_20_04 2828 2900 3600 30.93% 2828 3600 37,02% 
20_20_05 3078 3145 3600 28.20% 3078 3600 39,90% 
20_20_06 3172 3202 3600 31.61% 3174 3600 39,79% 
20_20_07 2999 3029 3600 22.15% 2999 3600 37,75% 
20_20_08 2837 2853 3600 32.46% 2837 3600 32,92% 
20_20_09 3094 3166 3600 31.14% 3094 3600 34,91% 
20_20_10 2884 2912 3600 29.29% 2884 3600 36,17% 

20_20_Average 2978.10 3018.50 3600 29.25% 2980.50 3600 37.29% 

30_20_01 3894 4214 3600 56.12% 3950 3600 43.59% 
30_20_02 4017 4320 3600 57.22% 4112 3600 41.25% 
30_20_03 4022 4317 3600 59.44% 4061 3600 40.09% 
30_20_04 3786 4174 3600 55.74% 3823 3600 39.34% 
30_20_05 3781 4016 3600 56.05% 3785 3600 39.00% 
30_20_06 3971 4143 3600 58.39% 3991 3600 40.62% 
30_20_07 3999 4324 3600 56.68% 4083 3600 41.07% 
30_20_08 4016 4322 3600 57.33% 4079 3600 39.25% 
30_20_09 4019 4312 3600 56.98% 4049 3600 39.89% 
30_20_10 4113 4273 3600 55.51% 4145 3600 41.64% 

30_20_Average 3961.80 4241.50 3600 56.95% 4007.80 3600 40.57% 
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Table A.4.(Cont’d.) MILP and CP Comparison Table for 20 machines 

(VRF Instances) 

Instance Opt. MILP 
Time 

(Seconds) 
Gap % CP 

Time 
(Seconds) 

Gap % 

40_20_01 4935 5519 3600 69.14% 5029 3600 39.13% 
40_20_02 4854 5605 3600 68.22% 4932 3600 42.98% 
40_20_03 5103 5753 3600 69.42% 5198 3600 46.11% 
40_20_04 4837 5847 3600 70.40% 4905 3600 41.33% 
40_20_05 4712 5489 3600 68.76% 4837 3600 43.83% 
40_20_06 4936 5478 3600 68.18% 4969 3600 43.87% 
40_20_07 5092 5665 3600 67.84% 5107 3600 44.25% 
40_20_08 4999 5334 3600 66.65% 5067 3600 43.02% 
40_20_09 5041 5664 3600 67.80% 5154 3600 43.07% 
40_20_10 4726 5127 3600 69.09% 4732 3600 40.87% 

40_20_Average 4923.50 5548.10 3600 68.55% 4993.00 3600 42.85% 
50_20_01 5854 6869 3600 74.76% 6084 3600 46.01% 
50_20_02 5825 6633 3600 74.36% 5973 3600 43.85% 
50_20_03 5952 7024 3600 74.75% 6077 3600 43.11% 
50_20_04 5960 6954 3600 73.35% 6000 3600 44.57% 
50_20_05 5893 6957 3600 74.72% 5988 3600 44.66% 
50_20_06 6042 7067 3600 74.13% 6175 3600 44.87% 
50_20_07 5984 7146 3600 77.18% 6112 3600 44.70% 
50_20_08 5906 7000 3600 75.91% 6011 3600 43.19% 
50_20_09 5977 6859 3600 76.02% 6134 3600 43.95% 
50_20_10 5926 7241 3600 76.85% 6048 3600 43.70% 

50_20_Average 5931.90 6975.00 3600 75.20% 6060.20 3600 44.26% 
60_20_01 6925 8615 3600 79.34% 7090 3600 45.37% 
60_20_02 6928 8369 3600 79.01% 7011 3600 44.49% 
60_20_03 7151 8791 3600 80.29% 7409 3600 46.19% 
60_20_04 7077 8867 3600 80.62% 7222 3600 45.04% 
60_20_05 6699 8014 3600 78.77% 6848 3600 43.93% 
60_20_06 6781 8166 3600 78.32% 6973 3600 44.07% 
60_20_07 6909 8355 3600 78.90% 7061 3600 43.76% 
60_20_08 6871 8234 3600 78.36% 7071 3600 45.28% 
60_20_09 6833 8152 3600 78.69% 7035 3600 44.36% 
60_20_10 6724 8262 3600 79.33% 6962 3600 44.30% 

60_20_Average 6889.80 8382.50 3600 79.16% 7068.20 3600 44.68% 
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Table A.5. MILP-Prime and CP-Prime Comparison Table with Lower 

and Upper Bounds for 5 machines (VRF Instances) 

Instance LB 
MILP-
Prime 

Time 
(Seconds) 

Gap 
% 

CP-
Prime 

Time 
(Seconds) 

Gap 
% 

UB 

10_5_01 442 760 1,281 0.00% 760 10.493 0.00% 2052 

10_5_02 458 759 0,438 0.00% 759 4.502 0.00% 2158 

10_5_03 351 823 0,437 0.00% 823 7.742 0.00% 2296 

10_5_04 468 776 0,313 0.00% 776 6.524 0.00% 2243 

10_5_05 493 798 0,422 0.00% 798 3.933 0.00% 2371 

10_5_06 496 849 0,656 0.00% 849 6.396 0.00% 2466 

10_5_07 482 843 1,141 0.00% 843 14.193 0.00% 2380 

10_5_08 415 768 0,484 0.00% 768 10.551 0.00% 2132 

10_5_09 546 841 0,375 0.00% 841 2.419 0.00% 2678 

10_5_10 442 719 0,735 0.00% 719 8.889 0.00% 2015 

10_5_Average 459.30 793.60 0.628 0.00% 793.60 7.564 0.00% 2279.10 

20_5_01 1022 1417 3600 22,79% 1414 3600 19.80% 483 

20_5_02 1074 1527 3600 26,26% 1481 3600 13.44% 5262 

20_5_03 967 1611 3600 35,44% 1588 3600 19.27% 5298 

20_5_04 937 1373 3600 26,58% 1355 3600 19.70% 4713 

20_5_05 1094 1523 3600 22,78% 1524 3600 13.32% 5394 

20_5_06 926 1346 3600 27,34% 1336 3600 22.08% 4647 

20_5_07 987 1391 3600 23,79% 1393 3600 18.52% 4897 

20_5_08 887 1340 3600 29,70% 1343 3600 19.81% 4732 

20_5_09 1025 1536 3600 28,90% 1505 3600 12.49% 5109 

20_5_10 1038 1603 3600 30,63% 1546 3600 20.63% 5294 

20_5_Average 995.70 1466.70 3600 27.42% 1448,50 3600 17.91% 5019 

30_5_01 1281 2329 3600 40.31% 2082 3600 13.50% 7695 

30_5_02 1434 2117 3600 28.86% 1974 3600 21.58% 6913 

30_5_03 1515 2180 3600 28.21% 2058 3600 21.48% 7466 

30_5_04 1373 2305 3600 37.22% 2127 3600 16.36% 7631 

30_5_05 1408 2181 3600 32.18% 1984 3600 13.86% 7298 

30_5_06 1743 2307 3600 21.75% 2127 3600 13.31% 7434 

30_5_07 1249 2185 3600 41.05% 2041 3600 15.24% 7085 

30_5_08 1463 2169 3600 28.44% 2062 3600 18.19% 7737 

30_5_09 1592 2215 3600 24.96% 2046 3600 16.03% 7475 

30_5_10 1447 2267 3600 32.68% 2056 3600 20.38% 7325 

30_5_Average 1450.50 2225.50 3600 31.57% 2055.70 3600 16.99% 7405.90 
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Table A.5.(Cont’d.) MILP-Prime and CP-Prime Comparison Table with 

Lower and Upper Bounds for 5 machines (VRF Instances) 

Instance LB 
MILP-
Prime 

Time 
(Seconds) 

Gap % 
CP-

Prime 
Time 

(Seconds) 
Gap % UB 

40_5_01 1868 3139 3600 38.22% 2890 3600 18.17% 10510 

40_5_02 2111 3284 3600 33.55% 2903 3600 17.05% 10730 

40_5_03 2022 2925 3600 30.32% 2605 3600 16.39% 9855 

40_5_04 1966 3011 3600 33.94% 2658 3600 19.15% 9723 

40_5_05 1991 3067 3600 33.64% 2750 3600 18.76% 10342 

40_5_06 1862 2939 3600 35.62% 2635 3600 18.25% 9584 

40_5_07 1976 2933 3600 29.86% 2665 3600 18.24% 10076 

40_5_08 2114 3143 3600 30.86% 2867 3600 15.97% 10705 

40_5_09 2168 3051 3600 26.71% 2784 3600 17.39% 10330 

40_5_10 2050 3198 3600 35.39% 2810 3600 16.44% 10477 

40_5_Average 2012.80 3069.00 3600 32.81% 2756.70 3600 17.58% 10233.20 

50_5_01 2596 4128 3600 35.82% 3632 3600 16.44% 13656 

50_5_02 2547 3746 3600 30.80% 3334 3600 14.43% 12549 

50_5_03 2347 3868 3600 36.78% 3342 3600 17.80% 12343 

50_5_04 2652 3968 3600 31.42% 3424 3600 17.82% 13017 

50_5_05 2318 3974 3600 40.18% 3439 3600 16.66% 12751 

50_5_06 2363 3927 3600 38.17% 3343 3600 15.02% 12349 

50_5_07 2417 3692 3600 33.04% 3127 3600 16.85% 11847 

50_5_08 2526 3822 3600 32.75% 3287 3600 18.34% 12202 

50_5_09 2383 3599 3600 31.98% 3136 3600 16.52% 11801 

50_5_10 2648 3968 3600 31.65% 3423 3600 17.21% 12983 

50_5_Average 2479.70 3869.20 3600 34.26% 3348.70 3600 16.71% 12549.80 

60_5_01 3114 4835 3600 34.76% 3986 3600 15.96% 15417 

60_5_02 2863 4403 3600 34.11% 3871 3600 21.57% 14362 

60_5_03 2780 4516 3600 36.91% 3944 3600 19.07% 14970 

60_5_04 3114 4770 3600 33.48% 3970 3600 17.73% 15396 

60_5_05 2960 4780 3600 37.44% 3983 3600 19.88% 14900 

60_5_06 3005 4336 3600 29.61% 3848 3600 19.15% 14555 

60_5_07 3127 4664 3600 32.26% 4049 3600 18.13% 15508 

60_5_08 3311 4890 3600 30.92% 4215 3600 18.96% 15752 

60_5_09 2964 4626 3600 34.71% 3860 3600 19.74% 14679 

60_5_10 2572 4859 3600 46.07% 4009 3600    8.63% 15082 

60_5_Average 2981.00 4667.90 3600 35.03% 3973.50 3600 17.88% 15062.10 
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Table A.6. MILP-Prime and CP-Prime Comparison Table with Lower 

and Upper Bounds for 10 machines (VRF Instances) 

Instance LB 
MILP-
Prime 

Time 
(Seconds) 

Gap % 
CP-

Prime 
Time 

(Seconds) 
Gap % UB 

10_10_01 501 1253 0.578 0.00% 1253 18.045 0.00% 4776 

10_10_02 535 1278 0.875 0.00% 1278 38.839 0.00% 4710 

10_10_03 533 1171 0.485 0.00% 1171 5.848 0.00% 4791 

10_10_04 433 1181 0.594 0.00% 1181 13.020 0.00% 4529 

10_10_05 528 1294 2.781 0.00% 1294 36.939 0.00% 4899 

10_10_06 522 1198 0.906 0.00% 1198 21.141 0.00% 4624 

10_10_07 512 1256 0.843 0.00% 1256 35.876 0.00% 4733 

10_10_08 530 1220 0.531 0.00% 1220 16.817 0.00% 4851 

10_10_09 456 1243 0.469 0.00% 1243 20.644 0.00% 4675 

10_10_10 353 1317 1.953 0.00% 1317 30.815 0.00% 4677 

10_10_Average 490.30 1241.10 1.002 0.00% 1241.10 23.798 0.00% 4726.50 

20_10_01 1037 2017 3600 36.77% 2029 3600 32.38%   9299 

20_10_02 972 2017 3600 38.52% 1998 3600 28.13%   9811 

20_10_03 1072 2046 3600 36.55% 2045 3600 28.02% 10207 

20_10_04 926 1934 3600 36.29% 1932 3600 32.25%   9590 

20_10_05 911 2045 3600 34.71% 2032 3600 29.08% 10285 

20_10_06 1004 2127 3600 37.18% 2059 3600 30.35% 10193 

20_10_07 1025 2089 3600 38.39% 2051 3600 30.47% 10293 

20_10_08 848 2046 3600 41.30% 2018 3600 28.59%   9850 

20_10_09 1054 1982 3600 34.35% 1980 3600 29.70% 10037 

20_10_10 820 1975 3600 36.20% 1965 3600 27.84%    9856 

20_10_Average 966.90 2027.80 3600 37.03% 2010.90 3600 29.68% 9942.10 

30_10_01 1499 2879 3600 40.36% 2682 3600 32.03% 14132 

30_10_02 1568 3091 3600 41.96% 2867 3600 32.02% 15465 

30_10_03 1527 3009 3600 42.63% 2839 3600 30.68% 15153 

30_10_04 1512 3053 3600 42.77% 2762 3600 34.43% 14527 

30_10_05 1428 2998 3600 45.36% 2793 3600 29.79% 15314 

30_10_06 1548 3092 3600 40.84% 2828 3600 30.76% 15039 

30_10_07 1476 2899 3600 39.94% 2704 3600 32.54% 14651 

30_10_08 1430 2720 3600 39.96% 2572 3600 30.48% 13910 

30_10_09 1449 2899 3600 43.18% 2703 3600 33.37% 14196 

30_10_10 1136 2826 3600 54.17% 2661 3600 31.15% 14058 

30_10_Average 1457.30 2946.60 3600 43.12% 2741.10 3600 31.73% 14644.50 
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Table A.6.(Cont’d.) MILP-Prime and CP-Prime Comparison Table with 

Lower and Upper Bounds for 10 machines (VRF Instances) 

Instance LB 
MILP-
Prime 

Time 
(Seconds) 

Gap % 
CP-

Prime 
Time 

(Seconds) 
Gap % UB 

40_10_01 1929 4069 3600 47.84% 3609 3600 35.08% 19757 

40_10_02 1894 3945 3600 46.86% 3416 3600 31.70% 19179 

40_10_03 1893 3868 3600 44.62% 3440 3600 32.56% 19020 

40_10_04 1979 4162 3600 46.66% 3704 3600 35.39% 19820 

40_10_05 1724 3950 3600 51.29% 3510 3600 33.16% 19814 

40_10_06 1935 4039 3600 46.44% 3598 3600 31.93% 20110 

40_10_07 2044 4161 3600 44.89% 3506 3600 31.52% 20042 

40_10_08 2054 4034 3600 42.95% 3454 3600 30.78% 19329 

40_10_09 2016 4035 3600 43.91% 3591 3600 35.56% 19442 

40_10_10 2014 4139 3600 46.46% 3507 3600 30.80% 19656 

40_10_Average 1948.20 4040.20 3600 46.19% 3533.50 3600 32.85% 19616.90 

50_10_01 2460 5106 3600 46.96% 4195 3600 32.66% 24410 

50_10_02 2555 5012 3600 45.49% 4326 3600 32.25% 24205 

50_10_03 2537 4921 3600 44.54% 4366 3600 32.75% 24466 

50_10_04 2442 5189 3600 49.56% 4414 3600 33.94% 25278 

50_10_05 2333 5094 3600 49.17% 4420 3600 27.60% 26021 

50_10_06 2496 5170 3600 48.54% 4265 3600 27.29% 24782 

50_10_07 2194 4911 3600 50.49% 4118 3600 31.88% 23647 

50_10_08 2402 5124 3600 48.26% 4385 3600 31.90% 25678 

50_10_09 2580 5118 3600 44.31% 4402 3600 32.60% 24720 

50_10_10 2647 4976 3600 42.40% 4343 3600 32.01% 25042 

50_10_Average 2464.60 5062.10 3600 46.97% 4323.40 3600 31.49% 24824.90 

60_10_01 3040 6025 3600 47.10% 5104 3600 34.13% 29905 

60_10_02 3267 6622 3600 48.24% 5286 3600 32.08% 30594 

60_10_03 2998 6062 3600 48.13% 5023 3600 32.77% 29285 

60_10_04 2733 6079 3600 51.81% 5136 3600 33.70% 29346 

60_10_05 3100 6165 3600 46.06% 5277 3600 34.45% 30651 

60_10_06 3106 6317 3600 47.17% 5258 3600 32.66% 30831 

60_10_07 3211 6127 3600 44.03% 5207 3600 31.92% 31148 

60_10_08 2943 6218 3600 49.53% 5052 3600 30.34% 29460 

60_10_09 3304 6072 3600 42.09% 5107 3600 29.18% 29805 

60_10_10 2803 6297 3600 53.32% 5115 3600 32.08% 30036 

60_10_Average 3050.50 6198.40 3600 47.75% 5156.50 3600 32.33% 30106.10 

 
 
 
 



103 

Table A.7. MILP-Prime and CP-Prime Comparison Table with Lower 

and Upper Bounds for 15 machines (VRF Instances) 

Instance LB 
MILP-
Prime 

Time 
(Seconds) 

Gap % 
CP-

Prime 
Time 

(Seconds) 
Gap % UB 

10_15_01 383 1516 0.984 0.00% 1516 42.976 0.00% 6562 

10_15_02 492 1596 1.047 0.00% 1596 29.139 0.00% 7200 

10_15_03 449 1611 1.141 0.00% 1611 41.875 0.00% 7079 

10_15_04 455 1649 1.234 0.00% 1649 67.427 0.00% 7201 

10_15_05 515 1602 2.687 0.00% 1602 43.724 0.00% 7151 

10_15_06 450 1529 1.063 0.00% 1529 44.335 0.00% 7008 

10_15_07 538 1702 3.343 0.00% 1702 59.613 0.00% 7006 

10_15_08 541 1720 1.516 0.00% 1720 45.920 0.00% 7185 

10_15_09 393 1683 1.875 0.00% 1683 63.983 0.00% 7395 

10_15_10 432 1687 2437 0.00% 1687 56.364 0.00% 7684 

10_15_Average 464.80 1629.50 1.730 0.00% 1629.50 49.540 0.00% 7147.10 

20_15_01 1102 2663 3600 34.73% 2663 3600 36.99% 15332 

20_15_02 970 2558 3600 33.73% 2523 3600 35.71% 14990 

20_15_03 970 2405 3600 36.83% 2392 3600 34.91% 14418 

20_15_04 873 2394 3600 36.17% 2392 3600 33.90% 14399 

20_15_05 947 2523 3600 38.84% 2503 3600 31.48% 15289 

20_15_06 1083 2634 3600 37.16% 2634 3600 36.18% 15114 

20_15_07 888 2580 3600 32.59% 2603 3600 33.88% 14959 

20_15_08 1015 2526 3600 35.27% 2523 3600 37.77% 14679 

20_15_09 1100 2525 3600 29.38% 2513 3600 31.12% 14511 

20_15_10 831 2553 3600 39.67% 2519 3600 33.78% 14860 

20_15_Average 977.90 2536.10 3600 35.44% 2526.50 3600 34.57% 14855.10 

30_15_01 1541 3761 3600 47.32% 3360 3600 36.67% 22112 

30_15_02 1563 3662 3600 48.11% 3258 3600 36.00% 21353 

30_15_03 1337 3549 3600 50.71% 3324 3600 37.91% 21587 

30_15_04 1553 3736 3600 47.85% 3406 3600 34.23% 22827 

30_15_05 1524 3807 3600 51.32% 3520 3600 37.22% 22650 

30_15_06 1506 3796 3600 49.26% 3482 3600 40.75% 21928 

30_15_07 1272 3555 3600 52.43% 3447 3600 38.15% 21889 

30_15_08 1408 3672 3600 48.12% 3479 3600 38.80% 22705 

30_15_09 1430 3553 3600 50.04% 3329 3600 39.38% 21002 

30_15_10 1407 3618 3600 48.09% 3431 3600 38.33% 22381 

30_15_Average 1454.10 3670.90 3600 49.33% 3403.60 3600 37.74% 22043.40 
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Table A.7.(Cont’d.) MILP-Prime and CP-Prime Comparison Table with 

Lower and Upper Bounds for 15 machines (VRF Instances) 

Instance LB 
MILP-
Prime 

Time 
(Seconds) 

Gap % 
CP-

Prime 
Time 

(Seconds) 
Gap % UB 

40_15_01 2106 4899 3600 47.76% 4414 3600 37.54% 31290 

40_15_02 1983 4784 3600 49.08% 4317 3600 39.29% 29496 

40_15_03 1635 4972 3600 58.76% 4296 3600 36.66% 30471 

40_15_04 2071 4931 3600 48.52% 4299 3600 38.24% 29786 

40_15_05 2163 4987 3600 47.56% 4416 3600 38.68% 30503 

40_15_06 1996 4628 3600 48.59% 4130 3600 37.63% 29159 

40_15_07 1706 4895 3600 55.13% 4389 3600 39.53% 29793 

40_15_08 1849 4763 3600 51.60% 4330 3600 38.11% 30608 

40_15_09 1812 4641 3600 52.79% 4215 3600 40.17% 29059 

40_15_10 2094 4947 3600 48.35% 4396 3600 38.88% 29866 

40_15_Average 1941.50 4844.70 3600 50.81% 4320.20 3600 38.47% 30003.10 

50_15_01 2523 5922 3600 49.54% 5061 3600 40.01% 36632 

50_15_02 2367 6290 3600 55.93% 5184 3600 38.70% 36862 

50_15_03 2347 6221 3600 55.48% 5220 3600 40.27% 37090 

50_15_04 2624 6313 3600 51.29% 5310 3600 36.91% 39575 

50_15_05 2177 6020 3600 56.96% 5197 3600 39.70% 37372 

50_15_06 2404 6283 3600 54.75% 5284 3600 39.91% 37845 

50_15_07 2287 6160 3600 54.95% 5338 3600 38.20% 38921 

50_15_08 2607 6158 3600 51.62% 5251 3600 38.28% 38477 

50_15_09 2504 5930 3600 50.67% 5236 3600 42.28% 35680 

50_15_10 2628 6374 3600 51.50% 5202 3600 38.50% 37789 

50_15_Average 2446.80 6167.10 3600 53.27% 5228.30 3600 39.28% 37624.30 

60_15_01 3152 7240 3600 51.68% 6134 3600 38.54% 45669 

60_15_02 3066 7145 3600 51.84% 6108 3600 39.96% 44756 

60_15_03 2808 7430 3600 55.85% 6227 3600 41.03% 45850 

60_15_04 2837 7569 3600 57.99% 6131 3600 42.29% 43025 

60_15_05 3170 7294 3600 50.49% 6225 3600 41.40% 45293 

60_15_06 2955 7748 3600 55.31% 6345 3600 41.75% 46562 

60_15_07 2898 7373 3600 54.94% 6227 3600 42.28% 44575 

60_15_08 2905 7192 3600 54.25% 6150 3600 42.13% 43740 

60_15_09 3015 7128 3600 51.34% 5829 3600 38.05% 44032 

60_15_10 3045 7635 3600 55.40% 6183 3600 39.84% 45558 

60_15_Average 2985.10 7375.40 3600 53.91% 6155.90 3600 40.73% 44906.00 
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Table A.8. MILP-Prime and CP-Prime Comparison Table with Lower 

and Upper Bounds for 20 machines (VRF Instances) 

Instance LB 
MILP-
Prime 

Time 
(Seconds) 

Gap % 
CP-

Prime 
Time 

(Seconds) 
Gap % UB 

10_20_01 343 1913 1.812 0.00% 1913  97.145 0.00% 9382 

10_20_02 523 1973 1.109 0.00% 1973  55.923 0.00% 9746 

10_20_03 534 1989 2.109 0.00% 1989  114.932 0.00% 9475 

10_20_04 363 1971 3.578 0.00% 1971  78.640 0.00% 9469 

10_20_05 430 1979 1.938 0.00% 1979  189.822 0.00% 9411 

10_20_06 627 2152 2.203 0.00% 2152 78.785 0.00%   10279 

10_20_07 373 1893 1.094 0.00% 1893    43.360 0.00% 9790 

10_20_08 373 1933 2.078 0.00% 1933  131.791 0.00% 9390 

10_20_09 517 1941 1.641 0.00% 1941    62.719 0.00% 9943 

10_20_10 460 1876 1.188 0.00% 1876  60.680 0.00% 9568 

10_20_Average 454.30 1962.00 1.875 0.00% 1962.00  91.380 0.00% 9645.30 

20_20_01 985 3128 3600 32.73% 3082 3600 39.23% 19780 

20_20_02 1025 2894 3600 32.57% 2964 3600 37.31% 19573 

20_20_03 1091 2935 3600 32.16% 2935 3600 36.08% 19864 

20_20_04 1004 2863 3600 31.99% 2852 3600 37.55% 19380 

20_20_05 1036 3116 3600 28.46% 3078 3600 39.90% 19893 

20_20_06 957 3184 3600 37.84% 3174 3600 39.79% 19439 

20_20_07 1078 2999 3600 25.24% 2999 3600 37.75% 20114 

20_20_08 1057 2859 3600 36.47% 2849 3600 33.20% 19215 

20_20_09 1142 3121 3600 35.75% 3141 3600 35.88% 20983 

20_20_10 799 2885 3600 31.02% 2884 3600 36.17% 19302 

20_20_Average 1017.40 2998.40 3600 32.42% 2995.80 3600 37.29% 19754.30 

30_20_01 1424 4046 3600 50.00% 3969 3600 43.86% 28320 

30_20_02 1600 4258 3600 48.30% 4094 3600 40.99% 29242 

30_20_03 1363 4383 3600 53.52% 4071 3600 40.24% 30648 

30_20_04 1354 4130 3600 53.17% 3819 3600 39.28% 28902 

30_20_05 1482 4108 3600 50.85% 3782 3600 38.95% 28861 

30_20_06 1491 4261 3600 48.39% 3993 3600 40.65% 29591 

30_20_07 1368 4322 3600 53.03% 4068 3600 40.86% 28946 

30_20_08 1451 4455 3600 52.39% 4108 3600 39.68% 29963 

30_20_09 1548 4348 3600 49.12% 4039 3600 39.74% 30835 

30_20_10 1493 4513 3600 51.16% 4145 3600 41.64% 29908 

30_20_Average 1457.40 4282.40 3600 50.99% 4008.80 3600 40.59% 29521.60 
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Table A.8.(Cont’d). MILP-Prime and CP-Prime Comparison Table with 

Lower and Upper Bounds for 20 machines (VRF Instances) 

Instance LB 
MILP-
Prime 

Time 
(Seconds) 

Gap % 
CP-

Prime 
Time 

(Seconds) 
Gap % UB 

40_20_01 1991 5645 3600 56.91% 5004 3600 38.83% 39749 

40_20_02 1933 5547 3600 55.07% 4936 3600 43.03% 39611 

40_20_03 2033 5899 3600 54.70% 5156 3600 45.67% 39992 

40_20_04 1636 5760 3600 60.43% 4872 3600 40.93% 40243 

40_20_05 1933 5216 3600 54.67% 4807 3600 43.48% 38028 

40_20_06 1964 5789 3600 55.43% 5018 3600 44.42% 38446 

40_20_07 1859 5833 3600 58.32% 5113 3600 44.32% 39827 

40_20_08 1928 5729 3600 54.66% 5051 3600 42.84% 39740 

40_20_09 1996 5816 3600 53.76% 5108 3600 42.56% 40530 

40_20_10 1855 5580 3600 55.64% 4814 3600 41.88% 38544 

40_20_Average 1912.80 5681.40 3600 55.96% 4987.90 3600 42.80% 39471.00 

50_20_01 2406 7359 3600 59.30% 5914 3600 44.45% 49263 

50_20_02 2368 7229 3600 58.91% 5982 3600 43.93% 49291 

50_20_03 2532 7164 3600 55.59% 6036 3600 42.73% 50327 

50_20_04 2370 6950 3600 58.18% 6092 3600 45.40% 49819 

50_20_05 2449 6994 3600 57.54% 6115 3600 45.79% 47908 

50_20_06 2509 7465 3600 57.69% 6140 3600 44.56% 50932 

50_20_07 2256 7076 3600 60.33% 6043 3600 44.07% 49551 

50_20_08 2380 7090 3600 57.32% 5998 3600 43.06% 49620 

50_20_09 2575 7281 3600 54.99% 6180 3600 44.37% 50936 

50_20_10 2692 7181 3600 54.69% 6091 3600 44.10% 50468 

50_20_Average 2453.70 7178.90 3600 57.45% 6059.10 3600 44.25% 49811.50 

60_20_01 2926 8229 3600 57.13% 7220 3600 46.36% 59752 

60_20_02 3101 8319 3600 54.87% 7168 3600 45.70% 60474 

60_20_03 3236 8589 3600 55.65% 7376 3600 45.95% 61159 

60_20_04 2914 8744 3600 61.12% 7178 3600 44.71% 59734 

60_20_05 2998 8094 3600 55.97% 6932 3600 44.60% 59396 

60_20_06 2904 8692 3600 59.42% 6853 3600 43.09% 59555 

60_20_07 3024 8118 3600 55.42% 7040 3600 43.59% 60390 

60_20_08 2922 8762 3600 59.95% 7030 3600 44.96% 59314 

60_20_09 3090 8544 3600 56.89% 7036 3600 44.37% 59483 

60_20_10 2701 8726 3600 62.74% 6865 3600 43.51% 59365 

60_20_Average 2981.60 8481.70 3600 57.92% 7069.80 3600 44.68% 59862.20 
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Table A.9. MILP and CP Comparison Table for 20 jobs (Taillard 

Instances) 

Instance Opt. 
MILP 
Result 

Time 
(Seconds) 

Gap % 
CP 

Result 
Time 

(Seconds) 
Gap % 

20_5_01 1486 1497 3600 42.28% 1486 3600 14.00% 

20_5_02 1528 1559 3600 50.67% 1528 3600 11.13% 

20_5_03 1460 1485 3600 42.28% 1462 3600 25.99% 

20_5_04 1588 1619 3600 44.71% 1589 3600 18.19% 

20_5_05 1449 1465 3600 39.11% 1449 3600 16.01% 

20_5_06 1481 1541 3600 43.34% 1484 3600 19.20% 

20_5_07 1483 1513 3600 44.34% 1485 3600 16.43% 

20_5_08 1482 1494 3600 38.95% 1482 3600 18.62% 

20_5_09 1469 1498 3600 44.25% 1469 3600 16.68% 

20_5_10 1377 1412 3600 44.75% 1379 3600 19.94% 

20_5_Average 1480.30 1508.30 3600 43.47% 1481.30 3600 17.62% 

20_10_01 2044 2069 3600 38.23% 2055 3600 26.96% 

20_10_02 2166 2229 3600 41.18% 2178 3600 27.46% 

20_10_03 1940 1963 3600 38.15% 1951 3600 25.01% 

20_10_04 1811 1834 3600 38.05% 1835 3600 27.08% 

20_10_05 1933 1949 3600 33.81% 1933 3600 28.35% 

20_10_06 1892 1911 3600 39.03% 1901 3600 28.67% 

20_10_07 1963 2029 3600 35.48% 1963 3600 28.68% 

20_10_08 2057 2108 3600 41.46% 2065 3600 30.61% 

20_10_09 1973 2021 3600 37.80% 2017 3600 23.95% 

20_10_10 2051 2081 3600 37.53% 2051 3600 27.25% 

20_10_Average 1983.00 2019.40 3600 38.07% 1994.90 3600 27.40% 

20_20_01 2973 2984 3600 35.28% 2976 3600 32.46% 

20_20_02 2852 2874 3600 33.57% 2859 3600 36.24% 

20_20_03 3013 3068 3600 34.32% 3044 3600 36.10% 

20_20_04 3001 3013 3600 34.11% 3010 3600 35.78% 

20_20_05 3003 3003 3600 33.39% 3032 3600 32.92% 

20_20_06 2998 3016 3600 31.26% 2998 3600 34.39% 

20_20_07 3052 3082 3600 33.16% 3078 3600 35.80% 

20_20_08 2839 2856 3600 31.96% 2865 3600 32.43% 

20_20_09 3009 3049 3600 34.56% 3101 3600 37.92% 

20_20_10 2979 3015 3600 33.88% 2995 3600 34.76% 

20_20_Average 2971.90 2996.00 3600 33.55% 2995.80 3600 34.88% 
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Table A.10. MILP and CP Comparison Table for 50 jobs (Taillard 

Instances) 

Instance Opt. 
MILP 
Result 

Time 
(Seconds) 

Gap % 
CP 

Result 
Time 

(Seconds) 
Gap % 

50_5_01 3160 3758 3600 81.98% 3212 3600 15.07% 

50_5_02 3432 3861 3600 82.02% 3469 3600 18.25% 

50_5_03 3210 3719 3600 84.16% 3251 3600 19.59% 

50_5_04 3338 3938 3600 83.74% 3380 3600 18.11% 

50_5_05 3356 3762  3600 81.15% 3408 3600 15.87% 

50_5_06 3346 3961 3600 81.84% 3365 3600 15.84% 

50_5_07 3231 3749  3600 81.51% 3256 3600 16.49% 

50_5_08 3235 3832 3600 83.22% 3298 3600 18.28% 

50_5_09 3070  3722 3600 81.70% 3107 3600 17.83% 

50_5_10 3317 3841 3600 83.24% 3362 3600 17.19% 

50_5_Average 3269.50 3844.29 3600 82.89% 3310.80 3600 17.25% 

50_10_01 4274 4923 3600 79.97% 4353 3600 31.75% 

50_10_02 4177 4812 3600 79.77% 4245 3600 33.22% 

50_10_03 4099 5025 3600 81.73% 4182 3600 32.28% 

50_10_04 4399 5075 3600 77.10% 4450 3600 31.17% 

50_10_05 4322 4999 3600 80.82% 4374 3600 32.83% 

50_10_06 4289 5108 3600 82.57% 4321 3600 30.87% 

50_10_07 4420 5279 3600 79.80% 4454 3600 31.19% 

50_10_08 4318 5100 3600 78.70% 4369 3600 31.17% 

50_10_09 4155 4985 3600 79.65% 4232 3600 31.88% 

50_10_10 4283 5066 3600 79.49% 4308 3600 29.29% 

50_10_Average 4273.60 5037.20 3600 79.96% 4328.80 3600 31.57% 

50_20_01 6129 7192  3600  73.90% 6255 3600 42.59% 

50_20_02 5725  6825 3600 74.56% 5782 3600 38.86% 

50_20_03 5862 7065 3600 74.30% 6029 3600 43.14% 

50_20_04 5788  6751 3600 75.97%  5838 3600 40.85% 

50_20_05 5886 7129  3600 76.98%  6018 3600 43.69% 

50_20_06 5863 6843 3600 74.13% 6056 3600 41.55% 

50_20_07 5962 6827 3600 75.80% 6094 3600 42.65% 

50_20_08 5926 7306 3600 76.93% 6037 3600 42.97% 

50_20_09 5876 6839 3600 73.75% 5939 3600 41.25% 

50_20_10 5957 7024  3600 76.90%  6087 3600 41.88% 

50_20_Average 5897.40 6980.00 3600 75.32% 6013.50 3600 41.94% 
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Table A.11. MILP and CP Comparison Table for 100 jobs (Taillard 

Instances) 

Instance Opt. 
MILP 
Result 

Time 
(Seconds) 

Gap % 
CP 

Result 
Time 

(Seconds) 
Gap 

100_5_01 6361 8019 3600 92.61% 6582 3600 1655% 

100_5_02 6212 8110 3600 92.14% 6386 3600 17.82% 

100_5_03 6104 8003 3600 91.75% 6250 3600 17.25% 

100_5_04 5999 7791 3600 91.61% 6134 3600 18.50% 

100_5_05 6179 7945 3600 92.22% 6351 3600 17.38% 

100_5_06 6056 8037 3600 92.09% 6206 3600 17.29% 

100_5_07 6221 7769 3600 92.07% 6399 3600 18.30% 

100_5_08 6109 7912 3600 92.46% 6326 3600 19.65% 

100_5_09 6355 8370 3600 93.02% 6514 3600 16.41% 

100_5_10 6365 8293 3600 93.60% 6516 3600 18.49% 

100_5_Average 6196.10  8024.90  3600 92.47% 6366.40 3600 17.76% 

100_10_01 8055 no solution 3600 - 8316 3600 30.53% 

100_10_02 7853 no solution 3600 - 8129 3600 34.11% 

100_10_03 8016 no solution 3600 - 8251 3600 31.40% 

100_10_04 8328 no solution 3600 - 8570 3600 32.54% 

100_10_05 7936 no solution 3600 - 8267 3600 33.82% 

100_10_06 7773 no solution 3600 - 8074 3600 34.37% 

100_10_07 7846 no solution 3600 - 8170 3600 31.85% 

100_10_08 7880 no solution 3600 - 8160 3600 31.54% 

100_10_09 8131 no solution 3600 - 8422 3600 30.34% 

100_10_10 8092 no solution 3600 - 8306 3600 29.73% 

100_10_Average 7991.00  no solution 3600 - 8266.50 3600 32.02% 

100_20_01 10675 no solution 3600 - 11101 3600 46.53% 

100_20_02 10562 no solution 3600 - 11095 3600 44.82% 

100_20_03 10587 no solution 3600 - 10962 3600 43.79% 

100_20_04 10588 no solution 3600 - 10916 3600 43.54% 

100_20_05 10506 no solution 3600 - 11021 3600 44.10% 

100_20_06 10623 no solution 3600 - 11113 3600 44.18% 

100_20_07 10793 no solution 3600 - 11153 3600 45.42% 

100_20_08 10801 no solution 3600 - 11312 3600 45.28% 

100_20_09 10703 no solution 3600 - 11226 3600 45.98% 

100_20_10 10747 no solution 3600 - 11035 3600 42.17% 

100_20_Average 10658.50  no solution 3600 - 11093.40 3600,00 44.58% 
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Table A.12. MILP and CP Comparison Table for 200 jobs (Taillard 

Instances) 

Instance Opt. 
MILP 
Result 

Time 
(Seconds) 

Gap % 
CP 

Result 
Time 

(Seconds) 
Gap % 

200_10_01 15225 no solution 3600 - 16144 3600 32.72% 

200_10_02 14990 no solution 3600 - 15963 3600 34.50% 

200_10_03 15257 no solution 3600 - 16261 3600 32.85% 

200_10_04 15103 no solution 3600 - 16171 3600 32.93% 

200_10_05 15088 no solution 3600 - 16078 3600 34.73% 

200_10_06 14976 no solution 3600 - 15883 3600 34.99% 

200_10_07 15277 no solution 3600 - 16300 3600 33.42% 

200_10_08 15133 no solution 3600 - 16208 3600 33.89% 

200_10_09 14985 no solution 3600 - 15956 3600 34.64% 

200_10_10 15213 no solution 3600 - 16239 3600 34.32% 

200_10_Average 15124.70 no solution 3600 - 16120.30 3600 34.03% 

200_20_01 19531 no solution 3600 - 21051 3600 47.51% 

200_20_02 19942 no solution 3600 - 21565 3600 48.95% 

200_20_03 19759 no solution 3600 - 21255 3600 47.17% 

200_20_04 19759 no solution 3600 - 21227 3600 47.34% 

200_20_05 19697 no solution 3600 - 21278 3600 47.45% 

200_20_06 19826 no solution 3600 - 21589 3600 48.31% 

200_20_07 19946 no solution 3600 - 21824 3600 48.33% 

200_20_08 19872 no solution 3600 - 21488 3600 47.80% 

200_20_09 19784 no solution 3600 - 21358 3600 48.24% 

200_20_10 19768 no solution 3600 - 21351 3600 47.32% 

200_20_Average 19788.40 no solution 3600 - 21398.60 3600 47.84% 
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APPENDIX B – Computational Results for (𝑭𝒎|𝒏𝒘𝒕| ∑ 𝑪𝒊𝑴) 

Table B.1. MILP and CP Comparison Table for 5 machines (VRF 

Instances) 

Instance 
MILP 
Result 

Time 
(Seconds) 

Gap % CP Result 
Time 

(Seconds) 
Gap % 

10_5_01 4117 1.516 0.00% 4117   12.703 0.00% 
10_5_02 4045 0.688 0.00% 4045 5.232 0.00% 
10_5_03 4380 0.875 0.00% 4380   10.211 0.00% 
10_5_04 4199 0.641 0.00% 4199 6.189 0.00% 
10_5_05 4666 0.875 0.00% 4666 6.886 0.00% 
10_5_06 5524 2.484 0.00% 5524   23.437 0.00% 
10_5_07 4798 1.719 0.00% 4798   15.215 0.00% 
10_5_08 4080 1.000 0.00% 4080     8.290 0.00% 
10_5_09 5118 1.118 0.00% 5118     7.215 0.00% 
10_5_10 4136 1.703 0.00% 4136   13.828 0.00% 

10_5_Average 4506.30 1.262 0.00% 4506.30   10.921 0.00% 

20_5_01 15038 3600 45.64% 15020 3600 27.05% 
20_5_02 16310 3600 48.72% 16054 3600 24.41% 
20_5_03 17314 3600 48.54% 17314 3600 24.97% 
20_5_04 14078 3600 43.94% 14078 3600 23.63% 
20_5_05 17139 3600 48.63% 17098 3600 19.28% 
20_5_06 14576 3600 46.54% 14567 3600 31.43% 
20_5_07 14309 3600 42.28% 14294 3600 27.17% 
20_5_08 14249 3600 43.51% 14249 3600 23.65% 
20_5_09 16479 3600 48.77% 16197 3600 17.04% 
20_5_10 17063 3600 49.86% 17043 3600 27.95% 

20_5_Average 15655.50 3600 46.64% 15591.40 3600 24.66% 

30_5_01 34786 3600 69.07% 34095 3600 31.81% 
30_5_02 31540 3600 69.33% 28816 3600 30.42% 
30_5_03 30827 3600 66.33% 30479 3600 28.65% 
30_5_04 34950 3600 69.98% 32834 3600 23.64% 
30_5_05 32664 3600 66.18% 31415 3600 29.92% 
30_5_06 33738 3600 68.40% 33211 3600 32.76% 
30_5_07 31528 3600 68.21% 30651 3600 21.46% 
30_5_08 33068 3600 67.51% 32466 3600 28.17% 
30_5_09 34061 3600 68.86% 31822 3600 32.02% 
30_5_10 33146 3600 68.73% 32280 3600 35.78% 

30_5_Average 33030.80 3600 68.26% 31806.90 3600 29.46% 
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Table B.1.(Cont’d.) MILP and CP Comparison Table for 5 machines 

(VRF Instances) 

Instance 
MILP 
Result 

Time 
(Seconds) 

Gap % CP Result 
Time 

(Seconds) 
Gap % 

40_5_01 57083 3600 75.84% 54385 3600 23.88% 
40_5_02 62153 3600 73.68% 57918 3600 27.43% 
40_5_03 53951 3600 75.83% 51229 3600 27.77% 
40_5_04 58685 3600 77.75% 53447 3600 31.70% 
40_5_05 61597 3600 77.37% 55761 3600 30.76% 
40_5_06 58087 3600 77.70% 51668 3600 27.80% 
40_5_07 57573 3600 76.85% 52269 3600 27.82% 
40_5_08 65180 3600 78.05% 58177 3600 28.24% 
40_5_09 61246 3600 77.41% 55669 3600 29.72% 
40_5_10 58935 3600 76.01% 54916 3600 25.40% 

40_5_Average 59449.00 3600 76.65% 54543.90 3600 28.05% 

50_5_01 94488 3600 79.19% 87966 3600 26.16% 
50_5_02 92657 3600 82.22% 82880 3600 29.00% 
50_5_03 93318 3600 82.66% 84893 3600 36.12% 
50_5_04 96914 3600 77.66% 82391 3600 27.66% 
50_5_05 94661 3600 82.29% 84389 3600 30.32% 
50_5_06 96009 3600 83.07% 82772 3600 26.70% 
50_5_07 86259 3600 82.26% 76369 3600 30.90% 
50_5_08 84286 3600 80.89% 80534 3600 33.48% 
50_5_09 84316 3600 79.46% 77903 3600 33.10% 
50_5_10 91841 3600 81.36% 83864 3600 28.49% 

50_5_Average 91474.90 3600 81.11% 82396.10 3600 30.19% 

60_5_01 131383 3600 84.72% 116575 3600 2989% 
60_5_02 121169 3600 83.71% 112053 3600 37.19% 
60_5_03 126360 3600 81.52% 113745 3600 34.18% 
60_5_04 132960 3600 83.13% 116630 3600 35.00% 
60_5_05 133941 3600 85.52% 115036 3600 33.39% 
60_5_06 127392 3600 85.20% 110802 3600 36.01% 
60_5_07 144766 3600 86.17% 116420 3600 29.83% 
60_5_08 142678 3600 85.63% 122113 3600 28.73% 
60_5_09 126528 3600 85.10% 111726 3600 32.45% 
60_5_10 131600 3600 84.65% 116138 3600 17.99% 

60_5_Average 131877.70 3600 84.54% 115123.80 3600 31.47% 
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Table B.2. MILP and CP Comparison Table for 10 machines (VRF 

Instances) 

Instance 
MILP 
Result 

Time 
(Seconds) 

Gap % 
CP 

Result 
Time 

(Seconds) 
Gap % 

10_10_01 7994 1.109 0.00% 7994 25.365 0.00% 
10_10_02 7936 1.235 0.00% 7936 40.060 0.00% 
10_10_03 7719 0.703 0.00% 7719 22.434 0.00% 
10_10_04 7236 0.687 0.00% 7236 18.481 0.00% 
10_10_05 8394 1.609 0.00% 8394 51.397 0.00% 
10_10_06 7553 1.266 0.00% 7553 39.634 0.00% 
10_10_07 7441 0.625 0.00% 7441 21.928 0.00% 
10_10_08 7776 0.656 0.00% 7776 23.520 0.00% 
10_10_09 7840 0.750 0.00% 7840 32.240 0.00% 
10_10_10 8015 1.156 0.00% 8015 36.536 0.00% 

10_10_Average 7790.40 0.980 0.00% 7790.40 31.160 0.00% 
20_10_01 23788 3600 44.06% 23565 3600 27.11% 
20_10_02 23293 3600 40.20% 23091 3600 25.21% 
20_10_03 23897 3600 37.72% 23751 3600 29.20% 
20_10_04 23006 3600 41.29% 22529 3600 31.25% 
20_10_05 24367 3600 40.73% 24367 3600 26.86% 
20_10_06 25687 3600 44.36% 24928 3600 32.53% 
20_10_07 24132 3600 40.49% 24132 3600 30.03% 
20_10_08 23078 3600 39.80% 23015 3600 24.41% 
20_10_09 23662 3600 40.33% 23363 3600 31.39% 
20_10_10 23333 3600 40.02% 23337 3600 31.01% 

20_10_Average 23824.30 3600 40.90% 23607.80 3600 28.90% 
30_10_01 48415 3600 62.54% 44934 3600 34.03% 
30_10_02 50114 3600 61.06% 47390 3600 32.47% 
30_10_03 49065 3600 60.84% 47725 3600 32.93% 
30_10_04 48345 3600 62.11% 45973 3600 38.65% 
30_10_05 49899 3600 61.34% 48373 3600 36.04% 
30_10_06 49160 3600 59.88% 47229 3600 34.43% 
30_10_07 45753 3600 54.57% 45569 3600 34.51% 
30_10_08 44529 3600 60.63% 43038 3600 35.39% 
30_10_09 46231 3600 60.94% 44671 3600 37.12% 
30_10_10 44229 3600 59.21% 43173 3600 38.63% 

30_10_Average 47574.00 3600 60.31% 45807.50 3600 35.42% 
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Table B.2.(Cont’d.) MILP and CP Comparison Table for 10 machines 

(VRF Instances) 

Instance 
MILP 
Result 

Time 
(Seconds) 

Gap % 
CP 

Result 
Time 

(Seconds) 
Gap % 

40_10_01 78846 3600 69.48% 76417 3600 37.61% 
40_10_02 83339 3600 7144% 74534 3600 37.33% 
40_10_03 80989 3600 71.31% 74206 3600 37.49% 
40_10_04 86420 3600 71.51% 78784 3600 40.86% 
40_10_05 88325 3600 67.22% 76434 3600 39.59% 
40_10_06 84022 3600 70.96% 79540 3600 37.03% 
40_10_07 84013 3600 71.29% 77928 3600 38.02% 
40_10_08 79387 3600 67.15% 74595 3600 38.56% 
40_10_09 79686 3600 69.90% 74597 3600 40.47% 
40_10_10 81645 3600 70.49% 75962 3600 39.19% 

40_10_Average 82667.20 3600 70.08% 76299.70 3600 38.62% 
50_10_01 120036 3600 75.57% 112242 3600 41.48% 
50_10_02 127181 3600 76.69% 114210 3600 38.71% 
50_10_03 124736 3600 75.72% 113219 3600 39.39% 
50_10_04 127514 3600 76.21% 119059 3600 41.13% 
50_10_05 124697 3600 64.88% 118704 3600 34.92% 
50_10_06 122750 3600 68.58% 109833 3600 32.20% 
50_10_07 123951 3600 74.87% 110347 3600 41.10% 
50_10_08 130818 3600 76.37% 118392 3600 41.18% 
50_10_09 133077 3600 77.42% 117628 3600 43.26% 
50_10_10 131778 3600 69.65% 115446 3600 37.64% 

50_10_Average 126653.80 3600 73.60% 114908.00 3600 39.10% 
60_10_01 180093 3600 80.14% 159559 3600 44.66% 
60_10_02 188791 3600 80.37% 162564 3600 37.28% 
60_10_03 187931 3600 81.08% 156946 3600 41.77% 
60_10_04 185298 3600 80.92% 161533 3600 44.41% 
60_10_05 188368 3600 80.22% 165545 3600 44.27% 
60_10_06 189026 3600 80.57% 166416 3600 44.19% 
60_10_07 182751 3600 79.38% 163330 3600 39.86% 
60_10_08 174641 3600 79.76% 156487 3600 42.10% 
60_10_09 178934 3600 80.10% 159501 3600 38.84% 
60_10_10 182960 3600 80.23% 159669 3600 43.78% 

60_10_Average 183879.30 3600 80.28% 161155.00 3600 42.12% 
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Table B.3. MILP and CP Comparison Table for 15 machines (VRF 

Instances) 

Instance 
MILP 
Result 

Time 
(Seconds) 

Gap % 
CP 

Result 
Time 

(Seconds) 
Gap % 

10_15_01 10089 0.922 0.00% 10089 58.739 0.00% 
10_15_02 11178 1.219 0.00% 11178 75.550 0.00% 
10_15_03 11272 1.312 0.00% 11272   100.877 0.00% 
10_15_04 10799 1.031 0.00% 10799 60.795 0.00% 
10_15_05 11110 1.250 0.00% 11110 70.873 0.00% 
10_15_06 10431 0.859 0.00% 10431 58.791 0.00% 
10_15_07 10972 1.484 0.00% 10972 79.354 0.00% 
10_15_08 11125 1.219 0.00% 11125 60.905 0.00% 
10_15_09 11121 0.953 0.00% 11121 65.490 0.00% 
10_15_10 11613 1.422 0.00% 11613 98.221 0.00% 

10_15_Average 10971.00 1.167 0.00% 10971.00 72.960 0.00% 
20_15_01 32430 3600 37.16% 32430 3600 32.18% 
20_15_02 32469 3600 38.31% 32195 3600 30.51% 
20_15_03 31293 3600 38.92% 31301 3600 34.46% 
20_15_04 30802 3600 35.96% 30904 3600 35.20% 
20_15_05 30979 3600 35.23% 30619 3600 26.92% 
20_15_06 32184 3600 36.45% 31998 3600 32.51% 
20_15_07 31856 3600 36.54% 31527 3600 30.62% 
20_15_08 31085 3600 36.38% 30877 3600 34.20% 
20_15_09 29978 3600 32.08% 29978 3600 24.01% 
20_15_10 31951 3600 37.25% 31617 3600 32.82% 

20_15_Average 31502.70 3600 36.43% 31344.60 3600 31.34% 
30_15_01 65120 3600 59.04% 60543 3600 38.33% 
30_15_02 62996 3600 58.10% 56992 3600 35.77% 
30_15_03 61114 3600 57.16% 57640 3600 38.56% 
30_15_04 66561 3600 58.53% 60522 3600 35.71% 
30_15_05 61364 3600 55.73% 59937 3600 36.19% 
30_15_06 63221 3600 57.58% 61263 3600 40.84% 
30_15_07 64671 3600 58.45% 60288 3600 36.78% 
30_15_08 65066 3600 57.63% 62295 3600 40.95% 
30_15_09 60183 3600 57.14% 58185 3600 35.81% 
30_15_10 63033 3600 53.79% 60234 3600 38.71% 

30_15_Average 63332.90 3600 57.32% 59789.90 3600 37.77% 
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Table B.3.(Cont’d.) MILP and CP Comparison Table for 15 machines 

(VRF Instances) 

Instance 
MILP 
Result 

Time 
(Seconds) 

Gap % 
CP 

Result 
Time 

(Seconds) 
Gap % 

40_15_01 110688 3600 65.39%   103869 3600 41.78% 
40_15_02 101090 3600 65.36% 97620 3600 41.70% 
40_15_03 109249 3600 66.99% 99282 3600 40.81% 
40_15_04 104618 3600 66.58% 98218 3600 42.89% 
40_15_05 106457 3600 66.27%   100130 3600 42.71% 
40_15_06 98429 3600 65.18% 93959 3600 41.44% 
40_15_07 106620 3600 66.89% 99241 3600 42.06% 
40_15_08 103602 3600 64.97% 97891 3600 41.12% 
40_15_09 96189 3600 64.20% 92764 3600 40.29% 
40_15_10 105002 3600 66.53% 98336 3600 39.65% 

40_15_Average 104194.40 3600 65.84% 98131.00 3600 41.45% 
50_15_01 147187 3600 71.31% 136074 3600 44.14% 
50_15_02 163146 3600 73.63% 146125 3600 42.33% 
50_15_03 157116 3600 72.50% 145073 3600 45.15% 
50_15_04 167239 3600 72.44% 149217 3600 41.48% 
50_15_05 158126 3600 72.52% 140097 3600 43.46% 
50_15_06 153500 3600 71.30% 146440 3600 44.70% 
50_15_07 164343 3600 72.48% 149659 3600 42.66% 
50_15_08 162446 3600 72.33% 147661 3600 44.11% 
50_15_09 160378 3600 73.81% 143908 3600 45.94% 
50_15_10 154426 3600 71.96% 140941 3600 43.99% 

50_15_Average 158790.70 3600 72.43% 144519.50 3600 43.80% 
60_15_01 229822 3600 76.92% 200477 3600 43.13% 
60_15_02 221518 3600 76.72% 199486 3600 45.22% 
60_15_03 231894 3600 77.37% 200729 3600 46.21% 
60_15_04 216310 3600 75.50% 193267 3600 45.29% 
60_15_05 230155 3600 77.53% 198195 3600 46.60% 
60_15_06 235768 3600 77.28% 209383 3600 48.74% 
60_15_07 227100 3600 77.12% 200456 3600 46.51% 
60_15_08 216370 3600 74.67% 193986 3600 47.12% 
60_15_09 216465 3600 76.41% 197097 3600 46.89% 
60_15_10 227747 3600 76.79% 199175 3600 44.48% 

60_15_Average 225314.90 3600 76.63% 199225.10 3600 46.02% 
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Table B.4. MILP and CP Comparison Table for 20 machines (VRF 

Instances) 

Instance 
MILP 
Result 

Time 
(Seconds) 

Gap % 
CP 

Result 
Time 

(Seconds) 
Gap % 

10_20_01 13418 0.953 0.00% 13418 112.112 0.00% 
10_20_02 14098 0.953 0.00% 14098 150.869 0.00% 
10_20_03 13523 0.922 0.00% 13523 130.233 0.00% 
10_20_04 14150 1.687 0.00% 14150 193.526 0.00% 
10_20_05 13766 1.437 0.00% 13766 177.039 0.00% 
10_20_06 15574 1.062 0.00% 15574 193.254 0.00% 
10_20_07 14474 1.875 0.00% 14474 205.521 0.00% 
10_20_08 14046 2.031 0.00% 14046 197.313 0.00% 
10_20_09 14417 1.391 0.00% 14417 173.098 0.00% 
10_20_10 13728 1.297 0.00% 13728 152.416 0.00% 

10_20_Average 14119.40 1.361 0.00% 14119.40 168.538 0.00% 
20_20_01 38550 3600 33.60% 38789 3600 33.59% 
20_20_02 36529 3600 31.63% 36529 3600 30.28% 
20_20_03 37628 3600 31.79% 38009 3600 29.88% 
20_20_04 38924 3600 35.66% 37348 3600 32.45% 
20_20_05 39422 3600 32.76% 39279 3600 32.97% 
20_20_06 39631 3600 35.70% 39641 3600 33.46% 
20_20_07 37854 3600 30.46% 37702 3600 29.18% 
20_20_08 36759 3600 32.40% 36646 3600 27.59% 
20_20_09 41404 3600 35.71% 40347 3600 31.33% 
20_20_10 38098 3600 34.17% 37207 3600 27.08% 

20_20_Average 38479.90 3600 33.39% 38149.70 3600 30.78% 
30_20_01 71779 3600 52.84% 68325 3600 38.22% 
30_20_02 73917 3600 53.37% 71282 3600 35.36% 
30_20_03 78216 3600 53.54% 74964 3600 39.67% 
30_20_04 73022 3600 53.40% 68823 3600 33.25% 
30_20_05 72818 3600 52.61% 69348 3600 35.38% 
30_20_06 74333 3600 52.82% 72178 3600 38.22% 
30_20_07 76332 3600 55.03% 72027 3600 38.37% 
30_20_08 76960 3600 54.08% 73393 3600 37.41% 
30_20_09 78937 3600 54.10% 75099 3600 38.86% 
30_20_10 75328 3600 52.80% 73585 3600 36.22% 

30_20_Average 75164,20 3600 53.46% 71902.40 3600 37.10% 
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Table B.4.(Cont’d.) MILP and CP Comparison Table for 20 machines 

(VRF Instances) 

Instance 
MILP 
Result 

Time 
(Seconds) 

Gap % 
CP 

Result 
Time 

(Seconds) 
Gap % 

40_20_01 119352 3600 61.65% 111832 3600 34.89% 
40_20_02 118070 3600 61.34% 112999 3600 40.51% 
40_20_03 126812 3600 63.44% 117738 3600 43.36% 
40_20_04 122914 3600 62.48% 114795 3600 41.65% 
40_20_05 114661 3600 61.78% 108700 3600 42.31% 
40_20_06 118647 3600 62.63% 113060 3600 42.25% 
40_20_07 129603 3600 64.16% 118708 3600 41.74% 
40_20_08 125133 3600 63.43% 115644 3600 41.47% 
40_20_09 124553 3600 61.62% 120029 3600 42.82% 
40_20_10 122453 3600 63.64% 112120 3600 41.35% 

40_20_Average 122219.80 3600 62.62% 114562.50 3600 41.24% 
50_20_01 181084 3600 68.98% 168138 3600 45.68% 
50_20_02 186786 3600 69.81% 168182 3600 45.94% 
50_20_03 189326 3600 66.46% 172722 3600 46.01% 
50_20_04 192111 3600 69.96% 168541 3600 45.09% 
50_20_05 177003 3600 68.80% 164533 3600 46.39% 
50_20_06 187298 3600 69.08% 170986 3600 44.83% 
50_20_07 185242 3600 69.15% 173809 3600 47.81% 
50_20_08 188369 3600 70.09% 164240 3600 43.96% 
50_20_09 187632 3600 68.93% 174257 3600 45.59% 
50_20_10 182296 3600 68.27% 167737 3600 44.33% 

50_20_Average 185714.70 3600 68.95% 169314.50 3600 45.56% 
60_20_01 262874 3600 73.98% 234288 3600 48.25% 
60_20_02 252294 3600 72.65% 231177 3600 46.85% 
60_20_03 262336 3600 73.41% 240352 3600 47.67% 
60_20_04 264779 3600 74.14% 238675 3600 47.13% 
60_20_05 245218 3600 72.39% 225762 3600 46.63% 
60_20_06 259639 3600 74.08% 229040 3600 47.40% 
60_20_07 256533 3600 73.28% 239125 3600 47.02% 
60_20_08 261945 3600 74.23% 232828 3600 48.01% 
60_20_09 258469 3600 73.84% 229811 3600 47.59% 
60_20_10 257208 3600 73.59% 228803 3600 46.78% 

60_20_Average 258129.50 3600 73.56% 232986.10 3600 47.33% 
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Table B.5. MILP and CP Comparison Table for 20 jobs (Taillard 

Instances) 

Instance 
MILP 
Result 

Time 
(Seconds) 

Gap % CP Result 
Time 

(Seconds) 
Gap % 

20_5_01 15698 3600 46.27% 15674 3600 19.19% 
20_5_02 17503 3600 52.01% 17270 3600 23.72% 
20_5_03 16035 3600 49.26% 15821 3600 30.86% 
20_5_04 17976 3600 48.52% 17970 3600 26.24% 
20_5_05 15331 3600 46.61% 15317 3600 17.41% 
20_5_06 15501 3600 45.39% 15501 3600 27.21% 
20_5_07 15712 3600 48.41% 15706 3600 28.96% 
20_5_08 15959 3600 47.92% 16023 3600 23.32% 
20_5_09 16634 3600 48.61% 16385 3600 27.53% 
20_5_10 15347 3600 49.60% 15371 3600 29.03% 

20_5_Average 16169.60 3600 48.26% 16103.80 3600 25.35% 
20_10_01 25397 3600 42.92% 25205 3600 32.07% 
20_10_02 26663 3600 42.29% 26371 3600 29.58% 
20_10_03 22910 3600 39.10% 22910 3600 27.49% 
20_10_04 22762 3600 44.49% 22243 3600 33.05% 
20_10_05 23482 3600 41.51% 23269 3600 35.76% 
20_10_06 22199 3600 41.38% 22011 3600 31.17% 
20_10_07 22210 3600 40.20% 21939 3600 30.02% 
20_10_08 24427 3600 42.35% 24205 3600 32.49% 
20_10_09 23967 3600 40.78% 23501 3600 28.56% 
20_10_10 24721 3600 38.94% 24715 3600 27.80% 

20_10_Average 23873.80 3600 41.40% 23636.90 3600 30.80% 
20_20_01 39142 3600 34.17% 38728 3600 25.89% 
20_20_02 37643 3600 34.42% 37571 3600 34.17% 
20_20_03 38574 3600 33.38% 38382 3600 29.40% 
20_20_04 39341 3600 35.60% 38802 3600 31.18% 
20_20_05 39167 3600 33.22% 39012 3600 25.93% 
20_20_06 39182 3600 35.10% 38618 3600 32.51% 
20_20_07 39855 3600 36.17% 39663 3600 31.57% 
20_20_08 37027 3600 32.82% 37000 3600 28.27% 
20_20_09 39267 3600 33.91% 39228 3600 32.93% 
20_20_10 37977 3600 35.00% 37931 3600 30.12% 

20_20_Average 38717.50 3600 34.38% 38493.50 3600 30.20% 
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Table B.6. MILP and CP Comparison Table for 50 jobs (Taillard 

Instances) 

Instance 
MILP 
Result 

Time 
(Seconds) 

Gap % 
CP 

Result 
Time 

(Seconds) 
Gap % 

50_5_01 87996 3600 81.93% 76530 3600 28.99% 
50_5_02 95874 3600 82.11% 85619 3600 32.47% 
50_5_03 87715 3600 81.77% 78440 3600 33.53% 
50_5_04 93070 3600 82.02% 83296 3600 32.23% 
50_5_05 99298 3600 83.16% 84746 3600 31.55% 
50_5_06 93416 3600 81.91% 81127 3600 29.05% 
50_5_07 91346 3600 82.25% 79299 3600 27.19% 
50_5_08 90865 3600 82.07% 79772 3600 31.47% 
50_5_09 81988 3600 79.46% 76122 3600 32.34% 
50_5_10 93507 3600 81.93% 85986 3600 32.80% 

50_5_Average 91507.50 3600 81.86% 81093.70 3600 31.16% 
50_10_01 129431 3600 76.72% 115198 3600 43.19% 
50_10_02 125020 3600 76.66% 113511 3600 42.33% 
50_10_03 125711 3600 76.80% 107260 3600 41.09% 
50_10_04 125382 3600 71.36% 116509 3600 41.78% 
50_10_05 132574 3600 76.72% 117023 3600 43.34% 
50_10_06 125256 3600 75.99% 114474 3600 37.71% 
50_10_07 124452 3600 75.31% 119119 3600 37.18% 
50_10_08 127132 3600 73.00% 116537 3600 40.64% 
50_10_09 124187 3600 76.07% 111266 3600 40.09% 
50_10_10 122804 3600 74.69% 114622 3600 36.05% 

50_10_Average 126194.90 3600 75.33% 114551.90 3600 40.34% 
50_20_01 186314 3600 68.14% 174557 3600 44.95% 
50_20_02 182986 3600 69.36% 162979 3600 42.50% 
50_20_03 178097 3600 68.77% 164065 3600 46.60% 
50_20_04 186633 3600 69.41% 165958 3600 43.26% 
50_20_05 184516 3600 69.37% 169117 3600 47.42% 
50_20_06 179826 3600 68.15% 163859 3600 43.43% 
50_20_07 182040 3600 68.85% 168343 3600 44.82% 
50_20_08 189041 3600 70.26% 171248 3600 46.23% 
50_20_09 179280 3600 65.16% 169472 3600 42.84% 
50_20_10 182768 3600 68.58% 173979 3600 44.42% 

50_20_Average 183150.10 3600 68.61% 168357.70 3600 44.65% 
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Table B.7. MILP and CP Comparison Table for 100 jobs (Taillard 

Instances) 

Instance 
MILP 
Result 

Time 
(Seconds) 

Gap % 
CP 

Result 
Time 

(Seconds) 
Gap 

100_5_01 385065 3600 91.57% 313165 3600 32.19% 
100_5_02 352042 3600 87.89% 304434 3600 34.38% 
100_5_03 383576 3600 91.96% 300643 3600 35.07% 
100_5_04 314768 3600 86.06% 283011 3600 33.96% 
100_5_05 356990 3600 90.32% 302073 3600 33.60% 
100_5_06 353622 3600 88.66% 294999 3600 37.32% 
100_5_07 387178 3600 91.95% 306007 3600 36.56% 
100_5_08 377355 3600 91.94% 295676 3600 39.08% 
100_5_09 389823 3600 91.69% 312497 3600 35.91% 
100_5_10 390391 3600 91.71% 310077 3600 35.59% 

100_5_Average 369081.00 3600 90.38% 302258.20 3600 35.37% 
100_10_01 no solution 3600 - 426032 3600 43.89% 
100_10_02 no solution 3600 - 408264 3600 49.07% 
100_10_03 no solution 3600 - 419751 3600 45.31% 
100_10_04 no solution 3600 - 431381 3600 46.01% 
100_10_05 no solution 3600 - 409270 3600 46.63% 
100_10_06 no solution 3600 - 400684 3600 48.47% 
100_10_07 no solution 3600 - 401456 3600 43.54% 
100_10_08 no solution 3600 - 413451 3600 43.95% 
100_10_09 no solution 3600 - 431039 3600 42.24% 
100_10_10 no solution 3600 - 428113 3600 45.98% 

100_10_Average no solution 3600 - 416944.10 3600 45.51% 

100_20_01 no solution 3600 - 593720 3600 53.57% 
100_20_02 no solution 3600 - 590592 3600 53.44% 
100_20_03 no solution 3600 - 586146 3600 50.36% 
100_20_04 no solution 3600 - 597415 3600 51.59% 
100_20_05 no solution 3600 - 580374 3600 49.66% 
100_20_06 no solution 3600 - 591962 3600 53.67% 
100_20_07 no solution 3600 - 611832 3600 55.49% 
100_20_08 no solution 3600 - 601038 3600 51.43% 
100_20_09 no solution 3600 - 589340 3600 53.36% 
100_20_10 no solution 3600 - 596446 3600 48.15% 

100_20_Average no solution 3600 - 593886.50 3600 52.07% 
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Table B.8. MILP and CP Comparison Table for 200 jobs (Taillard 

Instances) 

Instance 
MILP 
Result 

Time 
(Seconds) 

Gap 
% 

CP Result 
Time 

(Seconds) 
Gap % 

200_10_01 no solution 3600 - 1614812 3600 47.95% 
200_10_02 no solution 3600 - 1667646 3600 53.13% 
200_10_03 no solution 3600 - 1653710 3600 48.77% 
200_10_04 no solution 3600 - 1591963 3600 50.35% 
200_10_05 no solution 3600 - 1634213 3600 51.31% 
200_10_06 no solution 3600 - 1577967 3600 51.55% 
200_10_07 no solution 3600 - 1633800 3600 51.83% 
200_10_08 no solution 3600 - 1631609 3600 50.42% 
200_10_09 no solution 3600 - 1601298 3600 51.53% 
200_10_10 no solution 3600 - 1616365 3600 50.41% 

200_10_Average no solution 3600 - 1622338.30 3600 50.73% 
200_20_01 no solution 3600 - 2197865 3600 5913% 
200_20_02 no solution 3600 - 2237183 3600 59.58% 
200_20_03 no solution 3600 - 2205949 3600 58.32% 
200_20_04 no solution 3600 - 2270101 3600 60.24% 
200_20_05 no solution 3600 - 2260614 3600 60.15% 
200_20_06 no solution 3600 - 2243069 3600 59.96% 
200_20_07 no solution 3600 - 2225255 3600 58.08% 
200_20_08 no solution 3600 - 2237216 3600 59.33% 
200_20_09 no solution 3600 - 2187614 3600 58.79% 
200_20_10 no solution 3600 - 2211536 3600 58.88% 

200_20_Average no solution 3600 - 2227640.20 3600 59.25% 
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APPENDIX C – Computational Results for (𝑭𝒎|𝒏𝒘𝒕| ∑ 𝑻𝒊) 

Table C.1. MILP and CP Comparison Table for 20 jobs (Taillard 

Instances) 

Instance 
MILP 
Result 

Time 
(Seconds) 

Gap 
% 

CP 
Result 

Time 
(Seconds) 

Gap % 

20_5_01 4005 3600 90.98% 3874 3600 88.36% 

20_5_02 4167 3600 76.69% 4167 3600 93.52% 

20_5_03 5830 3600 79.18% 5648 3600 93.66% 

20_5_04 4660 3600 76.25% 4408 3600 94.94% 

20_5_05 3292 3600 70.04% 3292 3600 92.77% 

20_5_06 5523 3600 78.55% 5395 3600 92.96% 

20_5_07 3469 3600 82.69% 3365 3600 94.00% 

20_5_08 5237 3600 78.44% 5224 3600 81.34% 

20_5_09 4056 3600 85.92% 3974 3600 92.63% 

20_5_10 4886 3600 86.19% 4795 3600 91.89% 

20_5_Average 4512.50 3600 80.49% 4414.20 3600 91.61% 

20_10_01 757 3600 94.84% 716 3600 100.00% 

20_10_02 2269 3600 47,59% 2258 3600  99.16% 

20_10_03 1551 3600 62.66% 1518 3600 100.00% 

20_10_04 1338 1795   0.00% 1338 3600  98.73% 

20_10_05 1359 3600 81.89% 1270 3600 100.00% 

20_10_06 2760 3600 39.38% 2940 3600  90.99% 

20_10_07 1752 3600 87.83% 1752 3600 100.00% 

20_10_08 124 2892   0.00% 124 3600 100.00% 

20_10_09 2996 3600 43.89% 2891 3600  97.82% 

20_10_10 3145 3600 31.09% 3145 3600  95.64% 

20_10_Average 1805.10 3348.70 48.92% 1795.20 3600   98.23% 

20_20_01      0 3.484 0.00%      0    8.700 0.00% 

20_20_02   216 2.078 0.00%   216   90.659 0.00% 

20_20_03      0 2.969 0.00%      0     7.531 0.00% 

20_20_04      0      10.515 0.00%      0   35.382 0.00% 

20_20_05 3934    400.719 0.00% 4022   3600.000  95.57% 

20_20_06 2541      28.578 0.00% 2541 887.407 0.00% 

20_20_07   364      57.047 0.00%   364  572.882 0.00% 

20_20_08   844 2.328 0.00%   844 158.326 0.00% 

20_20_09   258    259.579 0.00%   258     574.038 0.00% 

20_20_10      0        1.110 0.00%      0     0.614 0.00% 

20_20_Average 815.70 76.840 0.00% 824.50  593.55 9.56% 
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Table C.2. MILP and CP Comparison Table for 50 jobs (Taillard 

Instances) 

Instance 
MILP 
Result 

Time 
(Seconds) 

Gap % 
CP 

Result 
Time 

(Seconds) 
Gap % 

50_5_01 58311 3600 9894% 49587 3600 47.78% 
50_5_02 64752 3600 99.36% 51522 3600 53.43% 
50_5_03 55886 3600 98.96% 49998 3600 58.80% 
50_5_04 60802 3600 98.59% 55199 3600 52.37% 
50_5_05 63260 3600 99.22% 55109 3600 51.15% 
50_5_06 55011 3600 99.18% 48688 3600 51.01% 
50_5_07 56771 3600 99.36% 50723 3600 44.97% 
50_5_08 56477 3600 99.20% 48953 3600 53.05% 
50_5_09 57092 3600 99.66% 47075 3600 56.07% 
50_5_10 61747 3600 98.64% 55906 3600 50.52% 

50_5_Average 59010.90 3600 99.11% 51276.00 3600 51.92% 
50_10_01 62282 3600 9945% 54132 3600 98.30% 
50_10_02 63309 3600 99.26% 55523 3600 91.50% 
50_10_03 62432 3600 99.28% 52531 3600 89.71% 
50_10_04 63571 3600 99.57% 50409 3600 97.80% 
50_10_05 66647 3600 98.79% 57375 3600 95.63% 
50_10_06 64629 3600 99.72% 53513 3600 84.29% 
50_10_07 71458 3600 99.10% 58342 3600 78.22% 
50_10_08 66788 3600 99.60% 58678 3600 84.16% 
50_10_09 73544 3600 98.64% 60616 3600 81.36% 
50_10_10 65992 3600 99.02% 54591 3600 83.61% 

50_10_Average 66065.20 3600 99.24% 55571.00 3600 88.46% 
50_20_01 67509 3600 9914% 57719 3600 99.44% 
50_20_02 57540 3600 99.13% 51268 3600 99.73% 
50_20_03 72294 3600 99.40% 58871 3600 99.60% 
50_20_04 71022 3600 9833% 53738 3600 99.36% 
50_20_05 77549 3600 98.71% 59081 3600 99.69% 
50_20_06 67632 3600 99.64% 49353 3600 99.86% 
50_20_07 70883 3600 99.26% 59037 3600 99.63% 
50_20_08 71641 3600 99.69% 53200 3600 99.89% 
50_20_09 65027 3600 99.16% 54899 3600 99.85% 
50_20_10 77607 3600 99.24% 69084 3600 99.10% 

50_20_Average 69870.40 3600 99.17% 56625.00 3600 99.62% 
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Table C.3. MILP and CP Comparison Table for 100 jobs (Taillard 

Instances) 

Instance 
MILP 
Result 

Time 
(Seconds) 

Gap % 
CP 

Result 
Time 

(Seconds) 
Gap 

100_5_01 298416 3600 99.82% 244835 3600 40.97% 
100_5_02 302432 3600 99.08% 244738 3600 44.66% 
100_5_03 300131 3600 99.66% 240511 3600 43.67% 
100_5_04 276616 3600 99.58% 231855 3600 43.68% 
100_5_05 302965 3600 99.72% 237423 3600 42.98% 
100_5_06 310924 3600 99.85% 231990 3600 47.44% 
100_5_07 296315 3600 99.72% 249601 3600 46.80% 
100_5_08 306647 3600 99.73% 239252 3600 49.56% 
100_5_09 304255 3600 99.80% 245070 3600 46.02% 
100_5_10 309836 3600 99.73% 243843 3600 43.54% 

100_5_Average 300853.70 3600 99.67% 240911.80 3600 44.93% 
100_10_01 no solution 3600 - 298584 3600 64.93% 
100_10_02 no solution 3600 - 285989 3600 69.76% 
100_10_03 no solution 3600 - 292524 3600 63.22% 
100_10_04 no solution 3600 - 308846 3600 67.05% 
100_10_05 no solution 3600 - 290366 3600 67.88% 
100_10_06 no solution 3600 - 283485 3600 70.34% 
100_10_07 no solution 3600 - 289199 3600 64.75% 
100_10_08 no solution 3600 - 301357 3600 65.07% 
100_10_09 no solution 3600 - 296423 3600 58.96% 
100_10_10 no solution 3600 - 296844 3600 67.89% 

100_10_Average no solution 3600 - 294361.70 3600 65.99% 

100_20_01 no solution 3600 - 356508 3600 95.07% 
100_20_02 no solution 3600 - 346425 3600 98.51% 
100_20_03 no solution 3600 - 355974 3600 87.04% 
100_20_04 no solution 3600 - 367858 3600 87.35% 
100_20_05 no solution 3600 - 362186 3600 83.02% 
100_20_06 no solution 3600 - 348878 3600 95.01% 
100_20_07 no solution 3600 - 354352 3600 95.94% 
100_20_08 no solution 3600 - 369639 3600 92.69% 
100_20_09 no solution 3600 - 359996 3600 89.98% 
100_20_10 no solution 3600 - 356731 3600 83.40% 

100_20_Average no solution 3600 - 357854.70 3600 90.80% 
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Table C.4. MILP and CP Comparison Table for 200 jobs (Taillard 

Instances) 

Instance 
MILP 
Result 

Time 
(Seconds) 

Gap % CP Result 
Time 

(Seconds) 
Gap % 

200_10_01 no solution 3600 - 1381304 3600 57.80% 
200_10_02 no solution 3600 - 1360948 3600 61.10% 
200_10_03 no solution 3600 - 1401695 3600 57.62% 
200_10_04 no solution 3600 - 1370115 3600 60.33% 
200_10_05 no solution 3600 - 1368269 3600 59.93% 
200_10_06 no solution 3600 - 1406425 3600 63.65% 
200_10_07 no solution 3600 - 1430629 3600 62.35% 
200_10_08 no solution 3600 - 1398493 3600 60.67% 
200_10_09 no solution 3600 - 1386090 3600 61.78% 
200_10_10 no solution 3600 - 1374473 3600 59.93% 

200_10_Average no solution 3600 - 1387844.10 3600 60.52% 

200_20_01 no solution 3600 - 1767739 3600 75.70% 
200_20_02 no solution 3600 - 1806047 3600 76.63% 
200_20_03 no solution 3600 - 1721282 3600 76.34% 
200_20_04 no solution 3600 - 1783066 3600 77.73% 
200_20_05 no solution 3600 - 1705869 3600 77.32% 
200_20_06 no solution 3600 - 1825765 3600 77.76% 
200_20_07 no solution 3600 - 1837149 3600 76.13% 
200_20_08 no solution 3600 - 1762582 3600 76.84% 
200_20_09 no solution 3600 - 1815825 3600 76.82% 
200_20_10 no solution 3600 - 1777477 3600 76.95% 

200_20_Average no solution 3600 - 1780280.10 3600 76.82% 
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APPENDIX D –Small Sized Instances for (𝑭𝒎|𝒏𝒘𝒕| ∑ 𝑻𝒊, 𝑻𝑬𝑪) 

Table D.1. Truncated Instances with a sets of 5x5, 5x10, and 5x20 

jobs = 5; 
machines = 5; 
 
//Taillard_5_5_1 
PTime = [[77,56,89,78,53] [36,70,45,91,35] [91,61,1,9,72] [77,14,47,40,87] 
[94,77,40,31,28]]; 
DueDate = [314,326,336,179,341]; 
 
//Taillard_5_5_2 
PTime = [[88,10,49,83,35] [23,54,36,92,77] [43,92,87,48,78] 
[43,91,11,13,80] [50,37,5,98,72]]; 
DueDate = [302,289,223,329,391]; 
 
//Taillard_5_5_3 
PTime = [[79,58,46,10,33] [25,79,44,43,32] [38,17,1,75,7] [22,8,76,70,30] 
[27,26,59,84,75]]; 
DueDate = [88,55,75,113,0]; 
 
//Taillard_5_5_4 
PTime = [[53,93,90,65,64] [39,62,54,73,90] [79,77,67,21,63]  
[29,14,98,51,67] [48,25,20,44,18]]; 
DueDate = [153,305,212,264,297]; 
 
//Taillard_5_5_5          
PTime = [[86,92,93,47,48] [46,2,95,57,62] [78,85,74,62,10] [72,14,4,90,99] 
[34,48,97,37,62]];          
DueDate = [347,296,353,114,400]; 
 
//Taillard_5_5_6   
PTime = [[11,27,89,58,20] [18,33,75,59,69] [42,57,60,85,45] 
[41,23,37,51,85] [75,99,65,97,8]];        
DueDate = [74,208,44,78,105]; 
 
//Taillard_5_5_7 
PTime = [[9,1,81,90,54] [27,77,98,3,39] [42,52,12,99,33] [11,28,84,73,86] 
[50,65,11,87,37]]; 
DueDate = [113,291,336,232,278]; 
 
//Taillard_5_5_8  
PTime = [[34,5,86,28,8] [20,48,35,39,91] [47,43,93,21,55] [74,87,40,59,59] 
[62,84,6,18,89]]; 
DueDate = [35,113,102,89,5]; 
 
//Taillard_5_5_9 
PTime = [[37,59,65,70,94] [36,16,94,3,98] [64,15,57,30,97] [98,69,8,1,61] 
[89,9,13,46,37]]; 
DueDate = [217,272,228,248,279]; 
 
//Taillard_5_5_10 
PTime = [[27,79,22,93,38] [41,51,34,97,93] [20,40,77,91,40] 
[39,32,47,32,49] [91,16,39,26,90]]; 
DueDate = [188,175,155,36,165]; 
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Table D.1.(Cont’d.) Truncated Instances with a sets of 5x5, 5x10, and 

5x20 

jobs = 5; 
machines = 10; 
 
//Taillard_5_10_1 
PTime = [[21,3,52,88,66,11,8,18,15,84] [21,34,7,76,70,57,27,95,56,95] 
[83,87,98,47,84,77,2,18,70,91] [94,43,36,78,58,86,13,5,64,91] 
[6,79,85,90,5,56,11,4,14,3]];    
DueDate = [747,890,663,981,353]; 
 
//Taillard_5_10_2 
PTime = [[80,59,59,31,30,53,93,90,65,64] [13,83,70,64,88,19,79,92,97,38] 
[77,85,10,9,22,62,77,13,25,46] [43,71,66,1,39,72,48,38,96,69] 
[14,59,70,73,11,57,98,15,56,81]]; 
DueDate = [618,899,945,781,705]; 
 
//Taillard_5_10_3 
PTime = [[15,59,15,46,60,47,41,38,34,22] [18,7,26,17,87,32,9,26,33,34] 
[37,40,53,89,59,80,42,37,85,30] [93,54,13,55,15,31,63,38,61,90] 
[64,83,17,3,94,38,10,62,70,17]]; 
DueDate = [483,289,718,608,449]; 
 
//Taillard_5_10_4 
PTime = [[94,3,39,1,63,86,44,19,55,67] [6,43,28,83,50,19,85,12,68,66] 
[31,52,77,38,4,40,50,29,88,13] [31,87,21,89,61,22,13,2,36,27] 
[32,21,26,29,51,57,74,22,46,50]]; 
DueDate = [506,656,548,703,408]; 
 
//Taillard_5_10_5 
PTime=[[13,34,52,84,66,2,40,20,7,54] [17,12,32,87,90,93,29,61,6,31] 
[26,16,87,99,15,92,57,93,39,37] [39,73,13,14,5,77,65,31,58,59] 
[5,93,2,18,90,73,21,81,89,32]]; 
DueDate = [799,554,745,434,891]; 
 
//Taillard_5_10_6 
PTime = [[77,46,79,22,20,96,75,1,37,14] [77,85,18,72,67,44,56,1,90,14] 
[11,67,2,2,40,56,77,47,60,64] [36,39,46,58,36,46,14,23,65,30] 
[92,25,12,46,60,83,3,21,12,33]]; 
DueDate = [488,587,484,393,520]; 
 
//Taillard_5_10_7 
PTime = [[64,43,9,38,2,79,16,85,89,69] [95,46,20,21,20,12,25,28,77,43] 
[65,66,7,15,81,56,8,51,55,81] [31,45,82,58,27,9,82,9,30,98] 
[84,49,49,36,52,6,5,94,89,92]]; 
DueDate = [779,830,699,471,618]; 
 
//Taillard_5_10_8  
PTime = [[9,91,96,73,37,28,32,27,4,83] [71,13,80,53,9,21,34,97,68,14] 
[12,27,17,10,89,49,47,57,28,67] [85,88,54,97,93,60,73,1,6,31] 
[33,5,83,84,95,52,17,18,67,69]]; 
DueDate = [627,666,403,736,541]; 
 
//Taillard_5_10_9Cropped 
PTime = [[37,4,43,28,17,18,99,97,21,29] [37,92,18,94,47,47,34,10,98,20] 
[24,26,66,10,84,74,28,51,74,29] [74,80,60,91,16,65,50,98,70,98] 
[36,24,26,38,48,91,58,33,95,68]]; 
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Table D.1.(Cont’d.) Truncated Instances with a sets of 5x5, 5x10, and 

5x20 

DueDate = [700,441,513,759,545]; 
 
//Taillard_5_10_10 
PTime = [[26,92,20,61,91,58,70,20,86,36] [90,34,86,84,90,91,50,19,88,67] 
[63,80,97,56,82,81,64,74,26,84] [37,71,12,38,84,31,99,87,33,80] 
[30,75,32,47,5,74,11,52,61,60]]; 
DueDate = [560,630,721,730,648]; 
 
jobs = 5; 
machines = 20; 
 
//Taillard_5_20_1 
PTime = [[81,73,48,99,8,41,51,82,25,25,55,58,16,16,48,69,94,62,7,55] 
[48,38,70,21,15,33,92,98,73,95,79,55,59,94,88,1,65,38,10,8] 
[43,65,87,80,93,36,89,61,26,3,85,22,2,67,41,66,7,50,4,74] 
[1,93,85,4,39,80,46,28,73,2,64,83,17,3,94,38,10,62,70,17] 
[87,1,72,19,88,74,88,22,18,41,35,44,41,71,71,72,38,97,49,19]]; 
DueDate = [1013,1599,1343,1269,1188]; 
 
//Taillard_5_20_2 
PTime = [[45,83,86,3,15,8,73,6,55,8,22,44,17,1,77,23,42,79,30,22] 
[51,62,19,3,11,77,58,64,74,30,72,54,29,75,78,64,95,40,86,8] 
[31,52,77,38,4,40,50,29,88,13,46,3,17,48,21,20,26,25,6,25] 
[36,1,81,66,7,82,55,77,67,29,12,23,25,60,15,92,26,78,10,83] 
[5,72,77,42,94,52,98,13,47,86,1,70,46,67,61,94,86,64,29,87]];   
DueDate = [739,1151,1176,1508,1433]; 
 
//Taillard_5_20_3 
PTime = [[52,2,2,2,99,1,87,28,91,29,16,91,3,28,62,87,3,11,74,30] 
[79,85,44,16,37,58,88,88,11,2,42,38,58,78,25,38,94,7,26,92]   
[44,19,85,81,22,58,25,3,36,77,94,66,44,91,73,23,4,85,11,3] 
[85,12,32,85,67,64,90,41,57,15,72,86,24,6,16,97,82,87,72,41]   
[13,42,90,94,36,11,9,51,43,87,97,59,39,35,62,71,92,82,24,38]]; 
DueDate = [1441,1411,1250,1241,1075]; 
 
//Taillard_5_20_4 
PTime = [[25,53,50,32,95,64,16,66,55,62,1,24,6,27,60,51,88,63,97,70] 
[55,86,49,56,94,85,38,85,49,90,54,87,33,87,40,5,40,50,7,49] 
[70,77,19,8,58,92,91,79,81,65,86,10,33,87,38,32,40,68,18,27] 
[3,17,5,95,26,36,72,34,32,19,39,73,13,14,5,77,65,31,58,59] 
[82,91,98,91,5,72,64,29,52,6,18,68,9,17,28,47,24,5,50,34]]; 
DueDate = [1008,1167,1300,773,1357]; 
 
//Taillard_5_20_5 
PTime = [[40,94,46,90,69,69,3,18,98,12,25,20,34,43,2,47,6,56,69,85] 
[86,28,89,63,61,7,79,27,98,97,50,72,23,13,60,44,17,13,41,14] 
[29,7,51,26,99,90,96,46,99,54,16,10,97,71,70,52,4,74,20,76] 
[36,46,18,48,76,31,24,58,55,95,82,42,25,22,35,3,10,27,70,58] 
[61,46,75,20,61,22,5,80,22,86,43,19,98,72,14,70,94,46,61,25]]; 
DueDate = [1063,1166,1098,1061,1020]; 
 
//Taillard_5_20_6 
PTime = [[66,21,45,56,49,39,13,34,22,53,40,17,72,50,99,50,26,99,61,1] 
[20,63,48,24,87,13,69,25,22,8,25,7,69,7,62,59,46,79,37,91]  
[1,16,71,71,45,49,83,18,14,92,10,19,18,37,10,7,82,50,43,20]  
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Table D.1.(Cont’d.) Truncated Instances with a sets of 5x5, 5x10, and 

5x20 

[99,34,82,53,45,20,70,80,8,11,76,74,77,29,37,90,34,70,12,5] 
[97,75,35,22,9,1,59,15,13,98,70,70,50,4,96,56,23,94,31,4]]; 
DueDate = [1188,1132,756,1109,934]; 
 
//Taillard_5_20_7 
PTime = [[92,2,2,73,38,28,77,6,51,15,1,23,99,21,26,21,51,91,4,88] 
[39,20,36,65,34,25,44,29,20,91,95,57,39,1,81,40,63,99,97,45] 
[93,64,12,19,22,41,55,11,4,1,39,3,30,57,68,28,45,54,98,96] 
[37,92,15,12,58,34,49,36,90,4,90,66,2,4,14,93,51,10,61,45] 
[77,29,95,39,67,52,72,10,50,31,53,80,75,94,69,82,39,96,95,27]]; 
DueDate = [1598,1151,1505,863,1343]; 
 
//Taillard_5_20_8 
PTime = [[21,8,61,62,67,28,30,70,92,31,26,65,13,6,24,49,73,68,31,25] 
[83,14,55,23,86,68,70,76,34,12,45,58,60,28,55,97,92,30,32,62] 
[42,64,47,35,75,29,29,4,85,48,24,33,72,20,60,15,53,12,14,30] 
[92,66,28,62,57,53,46,58,69,26,86,10,64,37,83,8,41,13,53,36] 
[45,68,33,43,34,53,25,53,86,55,56,80,83,58,3,63,33,58,4,41]]; 
DueDate = [1242,1267,791,1217,1066]; 
 
//Taillard_5_20_9 
PTime = [[96,36,65,13,34,75,38,32,10,70,74,98,30,12,93,73,45,69,98,96] 
[72,37,50,17,3,88,29,3,43,50,12,17,18,14,92,61,43,90,41,38] 
[80,68,75,89,55,28,93,33,28,43,88,25,94,27,35,38,7,5,63,73] 
[99,74,28,14,95,65,99,36,39,28,91,36,41,51,97,46,15,25,56,99] 
[80,39,74,40,65,65,39,18,91,48,40,73,27,98,37,65,80,38,85,1]]; 
DueDate = [1157,1195,1268,1559,1405]; 
 
//Taillard_5_20_10 
PTime = [[56,41,82,67,33,35,43,8,4,78,44,71,87,5,21,24,39,35,85,52] 
[21,10,14,16,71,25,68,15,45,58,93,27,66,59,4,88,38,97,7,21] 
[11,21,16,43,68,42,17,29,3,92,60,20,43,3,17,45,83,94,50,80] 
[9,97,9,3,94,44,89,13,14,5,61,43,31,13,12,52,28,51,13,92] 
[27,88,29,26,24,91,27,42,80,75,12,28,8,14,90,32,84,98,83,70]]; 
DueDate = [1314,1170,837,929,1131]; 


