

BORNOVA / İZMİR

AUGUST 2019

YAŞAR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MASTER THESIS

DESIGN AND IMPLEMENTATION OF A

CUSTOMIZED MICRO SERVER PLATFORM FOR

INDOOR MONITORING AND CONTROL

ZİRVE BARAN TOTUK

THESIS ADVISOR: ASSOC. PROF. DR. TUNCAY ERCAN

COMPUTER ENGINEERING

PRESENTATION DATE: 08/08/2019

ii

iii

iv

v

ABSTRACT

DESIGN AND IMPLEMENTATION OF A CUSTOMIZED MICRO

SERVER PLATFORM FOR INDOOR MONITORING AND CONTROL

Totuk, Zirve Baran

Msc., Computer Engineering

Advisor: Assoc. Prof. Dr. Tuncay Ercan

August 2019

The Industrial Internet of Things (IIoT) concept, emerging from the use of the Internet

of Things (IoT) applications in industry, provides end-users with important functions

such as productivity, flexibility, traceability, and security in their workplaces. Indoor

monitoring and control systems, which are the leading applications of the IIoT, play a

major role in providing these elements. Over the years, these systems have evolved

from wired alarm systems to data collection terminals, wireless sensor networks, and

then to intelligent gateways with cloud support. However, the number of points a

single end-user wants to control can reach up to tens of thousands, as well as high

service quality and commercial expectations. At this point, the existing cloud

computing solutions do not provide the required service quality, while the new edge

and fog computing solutions are far beyond the acceptable limits in terms of cost.

In order to meet all these expectations, a modular, single-board computer-based micro-

server platform with a compact software structure, offering optimum performance and

cost, is designed and developed in accordance with the fog computing concept.

When the results obtained from the test processes implemented under real scenarios

are examined, it is seen that the hardware used and the software infrastructure, which

are all open-source, are sufficient and usable for indoor monitoring and control

applications and they are more efficient in comparison to the systems that are currently

used.

Key Words: Internet of things, industrial internet of things, IoT, IIoT, fog computing,

micro server, indoor monitoring and control systems

vii

ÖZ

KAPALI ORTAMLARDA İZLEME VE DENETLEME IÇIN

ÖZELLEŞTIRILMIŞ MIKRO SUNUCU PLATFORMUNUN TASARIMI

VE UYGULANMASI

Totuk, Zirve Baran

Yüksek Lisans Tezi, Bilgisayar Mühendisliği

Danışman: Doç. Dr. Tuncay Ercan

Ağustos 2019

Nesnelerin interneti uygulamalarının (IoT) sanayide kullanılmasıyla ortaya çıkan

endüstriyel nesnelerin interneti (IIoT) konsepti son kullanıcılarına çalışma alanlarında

ihtiyaç duyduğu verimlilik, esneklik, takip edilebilirlik ve güvenlik gibi önemli

fonksiyonları sağlamaktadır. Endüstriyel nesnelerin interneti uygulamalarının başında

gelen kapalı ortam izleme ve kontrol sistemleri bu unsurların sağlanmasında büyük rol

oynamaktadır. Bu sistemler yıllar içerisinde kablolu alarm sistemlerinden, veri

toplama terminallerine, kablosuz sensör ağlarına ardından bulut bilişim destekli akıllı

ağ geçitlerine evrilmiştir. Ancak günümüzde tek bir son kullanıcının kontrol etmek

istediği nokta sayısı on binleri bulabildiği gibi, yüksek servis kalitesi ve ticari

beklentilerin karşılanması da zorunludur. Bu noktada günümüzde var olan bulut

bilişim çözümleri gerekli servis kalitesini sağlayamazken sunulan yeni kenar ve sis

bilişim çözümleri ise maliyet açısından kabul edilebilir sınırların çok üzerinde

kalmaktadır.

Tüm bu beklentileri karşılamak adına bu çalışmada sis bilişim konseptine uygun,

kompakt yazılım yapısına sahip, optimum performans ve maliyet sunabilen, çalışma

alanına göre özelleştirilebilir, modüler, tek kartlı bilgisayar tabanlı bir mikro sunucu

platformu tasarlanmış ve geliştirilmiştir.

Gerçek senaryolar altında uygulanan test süreçlerinden elde edilen sonuçlar

incelendiğinde geliştirilen donanımların ve tamamı açık kaynak kodlu olan yazılım

altyapısının kapalı ortam izleme ve kontrol uygulamaları için yeterli ve kullanılabilir

viii

olduğu, ayrıca maliyet olarak hali hazırda kullanılan sistemlere göre daha verimli

olduğu görülmüştür.

Anahtar Kelimeler: Nesnelerin internet, endüstriyel nesnelerin interneti, IoT, IIoT,

sis bilişim, mikro sunucu, kapalı ortam izleme ve kontrol sistemleri

ix

ACKNOWLEDGMENTS

First of all, I would like to thank my supervisor Tuncay Ercan for his guidance and

patience during this study.

I would like to express my enduring love to my parents, who are always supportive,

loving and caring to me in every possible way in my life.

I would like to thank Zeynep İnci Koçer for her supports and motivation during this

study.

I would like to thank Mustafa Seçmen, Ceyhan Türkmen, Çağla Sarvan and Mehmet

Barbaros Küçük for their supports and helps during this study.

Zirve Baran Totuk

İzmir, 2019

x

xi

TEXT OF OATH

I declare and honestly confirm that my study, titled “DESIGN AND

IMPLEMENTATION OF A CUSTOMIZED MICRO SERVER PLATFORM FOR

INDOOR MONITORING AND CONTROL” and presented as a Master’s Thesis, has

been written without applying to any assistance inconsistent with scientific ethics and

traditions. I declare, to the best of my knowledge and belief, that all content and ideas

drawn directly or indirectly from external sources are indicated in the text and listed

in the list of references.

Full Name

Signature

………………………………..

September 6, 2019

Zirve Baran TOTUK

xii

xiii

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ .. vii

ACKNOWLEDGMENTS .. ix

TEXT OF OATH .. xi

TABLE OF CONTENTS ... xiii

LIST OF FIGURES ... xv

LIST OF TABLES ... xvii

SYMBOLS AND ABBREVIATIONS ... xix

 CHAPTER 1 INTRODUCTION .. 1

1.1. MOTIVATION AND LITERATURE SEARCH .. 1

1.2. AIM OF THE THESIS ... 3

1.3. THESIS OVERVIEW AND OUTLINE OF THE THESIS ... 3

 CHAPTER 2 INDOOR MONITORING AND CONTROL SYSTEMS 9

2.1. TYPES OF COMPUTING OVERVIEW... 9

2.1.1. CLOUD COMPUTING ... 9

2.1.2. EDGE COMPUTING .. 11

2.1.3. FOG COMPUTING ... 11

2.2. HARDWARE OVERVIEW .. 13

2.2.1. ALARM SYSTEMS .. 13

2.2.2. DATA LOGGERS ... 14

2.2.3. SMART GATEWAYS .. 15

2.2.4. MICRO SERVERS .. 16

2.3. SOFTWARE OVERVIEW .. 17

2.3.1. SYSTEM SOFTWARE ... 17

2.3.2. MONITORING SOFTWARE ... 17

 CHAPTER 3 MICRO SERVER PLATFORM HARDWARE DESIGN 18

xiv

3.1. ARCHITECTURE .. 18

3.2. RASPBERRY PI ... 19

3.1. MOTHERBOARD .. 20

3.2. WATCHDOG MODULE ... 21

3.3. WIRED COMMUNICATION MODULE.. 22

3.4. WIRELESS COMMUNICATION MODULE ... 23

3.5. MAIN NETWORK INTERFACE MODULE .. 24

3.6. ETHERNET SWITCH MODULE ... 25

3.7. RELAY MODULE ... 25

3.8. INPUT/OUTPUT MODULE .. 25

3.9. STORAGE MODULE .. 26

 CHAPTER 4 MICRO SERVER PLATFORM SOFTWARE DESIGN 27

4.1. OPERATING SYSTEM AND DOCKER .. 27

4.2. INPUT/OUTPUT SERVICE .. 28

4.3. NETWORK ARCHITECTURE ... 30

4.4. DATABASE SERVICE AND SYSTEM METRICS AGENT SERVICE 31

4.5. NETWORK ATTACHED STORAGE SERVICE ... 32

4.6. DASHBOARD SERVICE .. 32

4.7. TEST PROCEDURES AND RESULTS .. 34

CHAPTER 5 CONCLUSIONS AND FUTURE RESEARCH .. 39

REFERENCES ... 41

appendıx 1 – dashboard Listener Python Script ... 43

appendıx 2 – Energy Analyzer Parser Python Script ... 47

appendıx 3 – Wireless Network Module Listener Python Script 49

xv

LIST OF FIGURES

Figure 2.1 Structure of Cloud Computing (from Gubbi, J.).. 10

Figure 2.2 Structure of Edge Computing (from Varghese, B) .. 11

Figure 2.3 Structure of Fog Computing (from Verma, 2018) ... 12

Figure 2.4 Structure of Generic Alarm System (from Networktechinc.com, 2019) 14

Figure 2.5 Reference Design of Data Logger Device ... 15

Figure 2.6 Structure of Smart Gateway (from Kang, 2017) ... 16

Figure 3.1 The Hardware Architecture of Micro Server Platform .. 18

Figure 3.2 Pinout of Raspberry Pi (from Raspberrypi.org, 2019) .. 20

Figure 3.3 Circuit Design of Motherboard .. 21

Figure 3.4 Motherboard .. 21

Figure 3.5 Hardware Structure of the Watchdog Module ... 22

Figure 3.6 Hardware Structure of the Wired Communication Module................................. 22

Figure 3.7 Circuit Design of the Wired Communication Module .. 23

Figure 3.8 Hardware Structure of Wireless Communication Module 23

Figure 3.9 Circuit Design of Wireless Communication Module .. 24

Figure 3.10 Hardware Structure of Main Network Module .. 24

Figure 3.11 Connection Diagram of Ethernet Switch Module ... 25

Figure 3.12 Circuit Design of Input/Output Module .. 26

Figure 4.1 Software Architecture of the Micro Server Platform .. 28

Figure 4.2 Output Flow ... 29

Figure 4.3 Input Flow ... 29

Figure 4.4 Network Architecture of Micro Server Platform ... 30

Figure 4.5 Remote Access and Network Features .. 31

Figure 4.6 InfluxDB Admin Panel of Micro Server Platform .. 32

Figure 4.7 System Metrics Dashboard .. 33

Figure 4.8 Input/Output Module and Relay Module Dashboard .. 33

xvi

Figure 4.9 Indoor Measurements Dashboard ... 34

Figure 4.10 Outdoor (Parking Area / LoRa) Measurements Dashboard 34

Figure 4.11 Prototype Front Side .. 35

Figure 4.12 Prototype Back Side ... 35

Figure 4.13 Scenario Details ... 36

xvii

LIST OF TABLES

Table 2.1 Advantages and Disadvantages of Cloud Computing ... 10

Table 2.2 Comparison of the Computing Types ... 13

Table 3.1 Specifications of Raspberry Pi (from Raspberrypi.org, 2019) 19

Table 4.1 Comparison of DietPi and Raspbian (from Dietpi.com, 2019) 27

Table 4.2 Summary of Test Results .. 37

Table 4.3 Comparison with Other Devices ... 37

Table 4.4 Comparison with Other Devices ... 38

xix

SYMBOLS AND ABBREVIATIONS

ABBREVIATIONS:

IIoT Industrial Internet of Things

IoT Internet of Things

ERP Enterprise Resource Planning

ATM Automated Teller Machine

QoS Quality of Service

ADC Analog to Digital Converter

VPN Virtual Private Network

IDC Insulation Displacement Connector

I2C Inter-Integrated Circuit

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver Transmitter

USB Universal Serial Bus

SSH Secure Shell

CSV Comma Separated Values

JSON JavaScript Object Notation

SNMP Simple Network Management Protocol

RTSP Real Time Streaming Protocol

xx

xxi

1

CHAPTER 1

INTRODUCTION

1.1. Motivation and Literature Search

The Industrial Internet of Things (IIoT) is a concept that is composed of a combination

of information technologies and operational technologies. At this point, the industrial

internet of things provides many benefits such as data collection, analysis, estimation,

visualization, autonomous control or integration into enterprise resource planning

(SAP etc.) systems to end-users (Mbohwa et. al., 2017). In addition, this concept,

which covers many industrial applications, includes environmental monitoring and

control applications.

Indoor monitoring and control applications are generally used for measure and control

environmental, security or operational parameters such as temperature, humidity,

energy consumption, motion detection and remote air conditioner control in areas such

as base station, ATM and data centers where the number of branches reaches up to tens

of thousands. The increase in the number of branches reveals one of the hidden

problems of these applications. The high number of monitoring and control points has

led to the solutions being low cost, simple alarm or contact systems until recently. In

recent years, when the Internet of Things trend has increased, these simple systems

have evolved into cloud-supported hardware and software. However, at this point, data

losses, delayed or non-performing control operations, access problems in areas with a

weak internet connection and high cloud service costs have occurred.

This poor performance of cloud computing in indoor monitoring and control

applications has been demonstrated in many applications under the title of industrial

internet of things and it has led to the emergence of new generation solutions such as

edge or fog computing. These architectures started to be presented as specialized, local

server systems operating near the application area.

The choice of high-performance edge or fog computing software and hardware in the

IIoT with a high number of peripheral units and complexity has led to the acceptance

2

of technological innovation and commercial success under the leadership of

companies such as Dell and Cisco (Pahl et al., 2016). However, the products that these

companies put on the market, features such as high processing power and their ability

to withstand the harsh working conditions (temperature, humidity) caused the supply,

installation and integration costs to rise. In addition, all of these high-cost features has

become unnecessary for indoor monitoring and control end-users.

Due to the high hardware costs, clouds created by single card computers which are

developing rapidly (Raspberry Pi, Beaglebone, etc.) have become the solution

proposition. These equipment are inexpensive, consume low energy and have

sufficient resources to support indoor monitoring and control applications (Perera et.

al., 2017). In addition, the latest advances in lightweight operating system

virtualization technologies such as Docker and Unikernels allow this hardware to use

and replicate on-demand services on the edge of the network, that is, support edge/fog

computing (Lertsinsrubtavee et al., 2017).

In recent studies, it is seen that edge and fog computing solutions developed with

lightweight single card computers can replace cloud solutions.

Pahl and friends (2016) have argued with a similar view that the existing cloud

computing systems are transformed into edge or fog information systems, but the costs

of products offered by familiar companies in this field are unacceptable. As a solution,

he proposed a single-card computer-based (Raspberry Pi), virtualized lightweight

monitoring system.

Lertsinsrubtavee et al. (2017) suggested that end-users need both qualities of service

(QoS) requirements and lower costs for edge computing solutions. In order to meet

these expectations, they proposed a platform called Picasso where it was made

lightweight by the virtualization of low-cost hardware. In addition, they aimed to

determine the effect of the number of users on hardware resources and obtained results

on the number of users and response times on the web server (called as Nginx).

Morabito et al. (2017) argued that edge and fog computing solutions will replace cloud

computing solutions, and that services should be modular and virtualized to provide

an expandable and flexible structure in edge computing solutions. Accordingly, they

tested their virtualized, lightweight gateway (called LegIoT) in a real sensor network

3

and demonstrated the suitability of the results in edge computing-based IoT

applications.

1.2. Aim of the Thesis

In this thesis, the design and development of a customized, modular and

price/performance-optimized platform capable of performing indoor monitoring and

control operations, operating in the fog layer are being discussed. Within the scope of

the thesis, a new generation system will be introduced as an alternative to conventional

data collection devices, smart gateways and servers related with indoor monitoring and

control applications and thus efficiency about data transmission quality, data security,

ease of integration and cost will be achieved.

1.3. Thesis Overview and Outline of the Thesis

Chapter 1 includes literature studies related to this thesis. The thesis was shaped

according to these researches. The chapter also conveyed the aim of creating this thesis.

In Chapter 2 gives brief information about indoor monitoring and control systems. It

describes types of computing, related hardware and software technologies and working

areas.

Chapter 3 includes hardware design and implementation of micro server platform. This

chapter includes the whole system architectures and details about hardware that are

used or developed. In addition, the results of tests that are implemented have been

given.

Chapter 4 includes software design and implementation of micro server platform. This

chapter includes whole system architectures, flow charts and details about software

that are used or developed. In addition, test scenarios that are realized on the whole

system and results have been given.

In Chapter 5, the contributions of the thesis have been discussed. According to the

results, future works and expectations have been describing.

9

CHAPTER 2

INDOOR MONITORING AND CONTROL SYSTEMS

Indoor monitoring and control systems, which are the sub-branches of the Industrial

Internet of Things (IIoT), are systems that provide efficiency, traceability,

manageability and security to end users with functions such as data collection, data

processing, data storage, autonomous decision making and forecasting. In this section,

the basic components of indoor monitoring and control systems are discussed under

an overview of computing, hardware and software.

2.1. Types of Computing Overview

2.1.1. Cloud Computing

Cloud computing can be defined as systems that provide users with a compute resource

at a remote point through an internet connection. User can store, process or monitor

their data in the cloud. Cloud computing typically uses transfer protocols for data

transfer, such as Hyper-Text Transfer Protocol (HTTP), Hyper-Text Transfer Protocol

Secure (HTTPS), Message Queuing Telemetry Transport (MQTT), or The Constrained

Application Protocol (CoAP).

For indoor monitoring and control applications, cloud computing can provide users

with the same functions as storage, processing and monitoring of data collected from

indoor areas. Structure of cloud computing is given in Figure 2.1.

10

Figure 2.1 Structure of Cloud Computing (from Gubbi, J.)

At the end of the 90s, cloud computing systems, which are the continuous supporters

of the Internet of Things (IoT) concept, started to lose their effectiveness due to the

increase in the number of devices connected to the internet, data sizes and user needs.

Data loss and delays in cloud computing based complex applications have led to edge

computing and fog computing approaches, especially for IoT and IIoT applications

(AI et. al., 2018). These approaches have revealed all the hidden disadvantages of

cloud computing. Details of cloud computing advantages and disadvantages are given

in Table 2.1.

Table 2.1 Advantages and Disadvantages of Cloud Computing

Advantages Disadvantages

Fast start-up Lack of control

Flexibility Security

Unlimited data store Latency

Easy back-up and recovery Requires internet connection

Low cost Data lose

 Technical Issues

 Software licensing and pricing

11

2.1.2. Edge Computing

The predictions that the number of devices connected to the Internet will continue to

increase rapidly in the next few years and that central architectures such as cloud

computing in Internet of Things (IoT) applications will be insufficient in many aspects

such as management, security and communication quality have been supported by

many companies such as Cisco and other authorities. In order to minimize these

problems, it has been suggested that computing operations should be carried out by

peripheral units connected to the internet or by computing elements located nearby.

Thus, in edge computing, large data generated by different IoT devices can be

processed at the edge of the network instead of transferring them to the central cloud

infrastructure due to bandwidth and energy consumption concerns. Edge computing

can provide faster response and higher quality services for more particularly critical

operations than cloud computing. It also has a more convenient architecture to

integrate with IoT to provide efficient and secure services to many end-users (AI et.

al., 2018). Structure of edge computing is given in Figure 2.2.

Figure 2.2 Structure of Edge Computing (from Varghese, B)

2.1.3. Fog Computing

Fog is an architecture that distributes computation, communication, control and

storage closer to the end-users along the cloud-to-things continuum (Chiang et.al.,

12

2016). Sometimes the term “fog” is used interchangeably with the term “edge”

although fog is broader than the typical notion of edge. The relevance of fog/edge is

rooted in both the inadequacy of the traditional cloud and the emergence of new

opportunities for the IoT, embedded artificial intelligence. In edge computing, data is

processed without being transferred anywhere on the device or sensor. In contrast to

edge computing, with fog computing, the data is processed in the IoT device within a

fog node or local area network, and the meaningful data obtained can be stored in that

device or converted into operations with low latency and bandwidth usage according

to specified rules (Cisco.com, 2019). Fog computing structure is given in Figure 3. In

addition, the three types of computing are compared in Table 2.2.

Figure 2.3 Structure of Fog Computing (from Verma, 2018)

13

Table 2.2 Comparison of the Computing Types

2.2. Hardware Overview

Indoor monitoring and control systems have developed in parallel with the

development of technology over the years. These systems, which have been

implemented with simple alarm systems, are now being implemented with customized

smart gateways or micro servers. The equipment that has been used or is still being

used up to now is examined under four sub-headings in this section.

2.2.1. Alarm Systems

Alarm systems are usually microcontroller-based equipment that performs parameters

such as measuring environmental parameters and providing security in closed areas. A

generic alarm system can detect emergencies, turn off and on existing devices, and

send relevant data to a dashboard if there is an internet connection. They are simple to

install and easy to use, and cost-effective compared to other alternatives. A generic

alarm system structure is given in Figure 2.4.

14

Figure 2.4 Structure of Generic Alarm System (from Networktechinc.com, 2019)

However, these systems are insufficient to meet the needs of users such as real-time

monitoring/control, data storage, data analysis, remote management and updating. In

addition, these devices are generally used in small areas such as base stations, data

centers. For some big facilities, the need to increase the number of sensors and

peripherals, record the measured values and display these results on a local network

has led to the development of Data Logger hardware.

2.2.2. Data Loggers

Data logger hardware can manage data storage, processing and simple monitoring

operations, especially in industrial areas. These devices are more heterogeneous in

terms of communication protocols compared to customized alarm systems for indoor

monitoring and control, but they have nearly the same hardware architecture.

Generally, data loggers have analog to digital converters (ADC), flash memory and

various wired or wireless communication modules. With this structure, the data logger

can read digital or analog sensor values and store it. In addition, these devices

communicates end devices such as a computer, smart phones via communication

modules. The reference design of data logger device is given in the Figure 2.5.

15

Figure 2.5 Reference Design of Data Logger Device

2.2.3. Smart Gateways

With the rapid rise of the Internet of Things trend, smart gateways have been developed

as hardware with the operating system, remote access and heterogeneous network

structures. (Ni et. al., 2013) These devices act as a bridge during the transmission of

data from sensor networks or peripherals to the Internet. Thus, the data is transmitted

to remote services. New generation gateways can perform data analysis or filter on

small data packets. This reduces bandwidth usage and the need for the cloud. The smart

gateway structure is given in Figure 2.6.

16

Figure 2.6 Structure of Smart Gateway (from Kang, 2017)

2.2.4. Micro Servers

In order to provide the necessary computing power in large IoT and IIoT applications

and to create a cloud independent system, micro servers can perform operations such

as data storage, processing or monitoring, as well as operations such as data analysis

for large data sets. In addition, these systems reduce the monthly or annual software

costs by enabling end-user software to run on-premise.

When evaluated within the scope of indoor monitoring and control applications, the

fact that this hardware is a general-purpose server with reduced computing power leads

to the use of too many software and hardware add-ons in related applications. This

significantly increases system costs.

This equipment, which can best meet the expectations of the users, will significantly

improve the efficiency of edge and fog computing if it is customized according to their

usage areas and presented as ready to use platforms.

17

2.3. Software Overview

2.3.1. System Software

The system software used for indoor monitoring and monitoring systems does not vary

much. If the system is based on microcontroller, usually embedded software developed

with C / C ++ software languages is used.

For computer-based systems such as smart gateways or micro servers, Linux-based

operating systems are often used as system software. In rare cases, Windows or

manufacturer-specific operating systems can also be used. In these systems, software

flexibility is provided in order to perform the necessary operations. The user may

develop applications in any software language or use licensed applications on the

system.

2.3.2. Monitoring Software

One of the most important parts of indoor monitoring and control systems is dashboard

software. This software allows the user to display data, errors or alarms. In addition,

remote control operations are also performed through these dashboards.

Nowadays, many providers provide monthly/annual paid dashboard service. This

software provides services over the cloud by integrating an appropriate

communication protocol into an existing system.

In a system created with the micro server or dedicated server, all elements such as

dashboard, database or webserver can be run on-premise without the need for the cloud.

At this point, the cloud will be needed for remote access to the system or to use services

such as a virtual private network (VPN).

18

CHAPTER 3

MICRO SERVER PLATFORM HARDWARE DESIGN

3.1. Architecture

In order to have a modular and extensible structure in hardware, an architecture where

all peripheral units will be connected to the motherboard by insulation displacement

connector (IDC) connections is preferred. First, a circuit board with Raspberry Pi

single-board computer connection, power input and IDC connectors has been designed

and manufactured. Then, hardware changes were made on the peripheral units to be

used and the data flow of the peripheral units was provided via USB and the power

distribution was provided from the external power supply. The hardware architecture

of micro server platform is given in Figure 3.1.

Figure 3.1 The Hardware Architecture of Micro Server Platform

19

3.2. Raspberry Pi

Raspberry Pi is a low-cost, credit-card-sized computer and supports many Linux-based

operating systems. There are 40 input/output pins for developers. Most of these pins

are used as digital input/output and some of them are reserved for wired

communication with Inter-Integrated Circuit (I2C), Serial Peripheral Interface (SPI),

and Universal Asynchronous Receiver Transmitter (UART) protocols

(Raspberrypi.org, 2019). Built-in Wi-Fi, Bluetooth and Ethernet networking

capabilities are also available on this single board computer.

In this study, this single board computer was used as the main control unit. The detailed

specifications of the card and the pinout scheme are shown in Table 3.1 and Figure 5.

Table 3.1 Specifications of Raspberry Pi (from Raspberrypi.org, 2019)

SoC Broadcom BCM2837 quad-core A53 1.4 GHz

Ram 1 GB LPDDR2 SDRAM

Networking Gigabit Ethernet, Wi-Fi, BT 4.2

Storage Micro SD

Input/Output 40 Pin

Ports HDMI, Audio, 4xUSB, Camera and Display Interface

20

Figure 3.2 Pinout of Raspberry Pi (from Raspberrypi.org, 2019)

3.1. Motherboard

The task of the designed and produced motherboard is to distribute power to the

modules on the platform and to transfer data between Raspberry Pi and the modules.

The electronic card shown in Figure 3.3 has 2x20 header suitable for Raspberry Pi pins,

8 IDC sockets for module connections and 4 screw terminals for power input and

output.

21

Figure 3.3 Circuit Design of Motherboard

Figure 3.4 Motherboard

3.2. Watchdog Module

The external hardware watchdog module performs an autonomous safe restart

operation by detecting the unexpected stop of the platform operation. This developed

external hardware is based on STM32F103 microcontroller. The watchdog, which has

serial communication with the Raspberry Pi on the platform, checks whether the

Raspberry Pi is operational every two seconds. If the data flow stops, it restarts the

system. This can be done as many times as the number of repetitions the user

determines. The hardware structure of the watchdog module is given in Figure 3.5.

22

Figure 3.5 Hardware Structure of the Watchdog Module

3.3. Wired Communication Module

The wired communication module allows the platform to support wired

communication protocols such as RS-232, RS-485, i2c, 1-wire and UART. All data

flow is carried out via USB with the converters in the module and isolated ports. The

hardware structure of the module is given in Figure 3.6 and the circuit design of the

module is given in 3.7.

Figure 3.6 Hardware Structure of the Wired Communication Module

23

Figure 3.7 Circuit Design of the Wired Communication Module

3.4. Wireless Communication Module

The wireless communication module was designed to support the platform's highly

preferred wireless communication protocols, such as LoRa, Xbee, or Z-Wave. The

STM32F103 microcontroller in the module has been installed with an external

hardware structure and the data collected by the selected communication protocols

have been transferred to Raspberry Pi via USB port and made meaningful with the

necessary software. The hardware structure of the wireless communication module is

given in Figure 3.8 also circuit design is given in Figure 3.9.

Figure 3.8 Hardware Structure of Wireless Communication Module

24

Figure 3.9 Circuit Design of Wireless Communication Module

3.5. Main Network Interface Module

The network interface module provides Ethernet, Wi-Fi and 3G / LTE interfaces

required for an internet connection to the platform. These three connection types are

made into a single module by selecting the corresponding USB converters. In addition,

it is completely isolated from other network hardware and services on the platform

(Ethernet switch, Wi-Fi hotspot etc.). The hardware structure of the main network

interface module is given in Figure 3.10.

Figure 3.10 Hardware Structure of Main Network Module

25

3.6. Ethernet Switch Module

The network switch module provides an Ethernet switch with 8 ports to the developed

platform. In this way, the platform can support communication protocols over Ethernet

(SNMP, Modbus TCP / IP, RTSP, etc.). In addition, the platform can be used as a

network unit that is isolated from the main network connections and can be controlled

by firewall rules. Connection diagram of the module is given in Figure 3.11.

Figure 3.11 Connection Diagram of Ethernet Switch Module

3.7. Relay Module

The relay module contains six relays capable of switching up to 10 Amps in the 5-220

Volts range. As with similar modules, a card design has been realized for this module.

Relay input and output ports were simplified on the produced electronic board and the

connections required for Raspberry Pi were provided with IDC type connectors. This

module allows remote device control operations to be performed in the working

environment.

3.8. Input/Output Module

The Input / Output module has an 8-channel digital input. It is used for detecting data

from sensors (flooding, fire, movement, magnetic contact etc.) which are used

especially for emergency and safety. The module is responsible for transmitting low

26

and high information from digital sensors to the motherboard. The electronic board

produced for this module has the necessary Raspberry Pi connections and 3.3-5-12

Volts outputs for various sensors. The circuit design of the module is given in Figure

3.12.

Figure 3.12 Circuit Design of Input/Output Module

3.9. Storage Module

The Raspberry Pi on the platform supports SD cards for the operating system and data

storage in normal use. However, considering that high data storage size may be

necessary for the developed platform, the SD card has been replaced with a 120-

gigabyte solid-state disk connected via USB with the necessary software changes. In

this way, the operating system can be selected to meet the needs of the end-user or the

disk size can be increased to terabytes.

27

CHAPTER 4

MICRO SERVER PLATFORM SOFTWARE DESIGN

4.1. Operating System and Docker

A Debian / Linux based operating system called DietPi was chosen as the platform

operating system. This operating system is an open-source distribution that has been

lightweighted to operating systems such as Debian or Raspbian. DietPi's high

performance is due to its small size, memory optimizations and removal of 3rd party

software from the operating system which is not required by developers (Dietpi.com,

2019). Further details about DietPi and Raspbian operating systems are given in Table

4.1 with comparisons.

Table 4.1 Comparison of DietPi and Raspbian (from Dietpi.com, 2019)

General Stats Diet Pi Raspbian Lite

Total Image Size 589 MB 1424 MB

Minimum SD Card Size 4 GB 2 GB

Memory Usage (RAM) 23 MB 27 MB

Total Processes 11 18

Total Installed Packages 265 406

Bootup Time (Seconds) 14.2 Seconds 15.5 Seconds

Root Filesystem Usage 533 MB 931 MB

Core System Optimizations Diet Pi Raspbian Lite

Ramlog Ram-Dietpi-Ramlog Disk

Swapfile Swapiness 1 -

NTP Usage (System Time) Yes + Other Choices No

Auto HDD Spindown 10 Min -

System Response Time 25 Ms 100 Ms

Temp Mounted to Ram Ram Disk

Scheduler Noop Deadline

28

In addition, virtualization was realized with the Docker architecture for the database,

data agent and data display services that will work on the developed platform. In this

way, these services, which have the most important role of the whole system, can easily

be updated, cloned and managed, and this is one of the biggest factors in the platform

showing a micro server characteristics. All services and architectures designed for the

platform are given in Figure 4.1.

Figure 4.1 Software Architecture of the Micro Server Platform

4.2. Input/Output Service

NodeRed which is JavaScript-based, third-party, open-source development platform

was used to allow the user to see the status of the sensors connected to the input /

output module or to control the devices connected to the relay module (Nodered.org,

2019). In addition to ease of use, this development platform has recently started to be

used frequently in industrial automation applications. The integration of this simplified

platform allows end-users to create remote scenarios, decision-making mechanisms

and make quick updates. All NodeRed flows that perform input/output operations are

given in Figure 4.2 and Figure 4.3.

29

Figure 4.2 Output Flow

Figure 4.3 Input Flow

30

4.3. Network Architecture

There are Ethernet, Wi-Fi and 3G / LTE primary interfaces on the platform to provide

internet or local network connection. There is also a Wi-Fi access point and Ethernet

switch isolated from these interfaces. This access point enables devices such as Wi-Fi

supported sensors and cameras to be connected to the platform, while Ethernet switch

allows wired devices using Ethernet connections such as TCP/ IP, MODBUS or

SNMP to be connected to the platform. In addition, the platform can be used as a

network device in the area where it works, providing a local connection or internet

connection to different devices when necessary. These connections are also

configurable with firewall rules that will be defined on the platform. The summary of

the network architecture of the platform and the IP configurations are given in Figure

4.4.

Figure 4.4 Network Architecture of Micro Server Platform

In addition to the conventional port forwarding or local network connection options

for remote direct access to the platform (Secure Shell, VNC Remote desktop), an open

-source virtual private server called OpenVPN was installed on a remote machine and

the platform was defined as a virtual private network client. In this way, even if the

31

system does not work on the local network, all connections can be made securely over

a private network. The system's detailed network connection architecture and all

features offered for remote access are given in Figure 4.5.

Figure 4.5 Remote Access and Network Features

4.4. Database Service and System Metrics Agent Service

InfluxDB time-series database was integrated into the developed platform. This

database was optimized for DietPi and has fast query-answer capability

(Docs.influxdata.com, 2019). InfluxDB has been used to record all platform-related

actions, such as storing data from peripheral units, input / output operations, alarms

and system metrics. In addition, InfluxDB supports export to third-party software

(Time Series Admin, etc.) in file formats such as comma-separated values (CSV) or

JavaScript object notation (JSON), which are commonly used for data analysis. The

figure shows admin panel of the micro server platform.

The open-source data agent service called Telegraf is integrated into the platform for

storing and presenting critical system data such as uptime, processor usage or network

traffic to the end-user. In this way, the user will be able to monitor the system and

detect any possible anomalies quickly.

32

Figure 4.6 InfluxDB Admin Panel of Micro Server Platform

4.5. Network Attached Storage Service

An open-source network-attached storage server named Samba has been integrated to

enable the system to share files to a local or remote point without the need for a cloud

service. This integration supports both the system acting as a micro-server and running

on the fog layer because users will be able to quickly transfer end-to-end data by

accessing designated paths directly on the platform's storage without any cloud service,

remote access or dashboard connection.

4.6. Dashboard Service

An open-source dashboard software called Grafana was used to visualize all

monitoring and control operations on the system. This software is preferred because

of its features such as Influxdb and Telegraf compatibility, data analysis, alarm and

notification scenarios (Grafana Labs Blog., 2019). The dashboard screens of the

developed platform are also given in Figure 4.7- 4.10.

33

Figure 4.7 System Metrics Dashboard

Figure 4.8 Input/Output Module and Relay Module Dashboard

34

Figure 4.9 Indoor Measurements Dashboard

Figure 4.10 Outdoor (Parking Area / LoRa) Measurements Dashboard

4.7. Test Procedures and Results

After all the hardware and system software work packages were completed, 3D printed

cases were produced for all modules and the prototype system was combined in 2U-

rack case. The first prototype is given in Figure 4.11 and Figure 4.12.

35

Figure 4.11 Prototype Front Side

Figure 4.12 Prototype Back Side

After casing, a real indoor monitoring and control scenario was created to test the

developed system and the system was operated for three weeks. Various peripheral

units which related indoor monitoring and control were used during the test process.

These peripherals include sensors, detectors, IP cameras and relay outputs. The

measurement of temperature, humidity and pressure from the relevant sensors was

carried out every 10 seconds. On the other hand, the detector has been continuously

listened with Python listener services to obtain true / false information. In addition to

this, real time stream was performed without recording via IP camera, and relay

outputs and control operations (On / Off) were performed. All data and actions, except

video data, are stored in the database by InfluxDB clients added to related services.

36

With the integration of InfluxDB into Grafana, all data is displayed on the dashboard

with data-time graphs that can be filtered. In addition, user actions were taken from

the dashboard using the Nodered widgets in the Grafana Dashboard for control

operations and recorded in the database and the relevant operation was performed.

Details such as peripheral units used in the scenario, collected or modified data types

are given in Figure 4.13.

Figure 4.13 Scenario Details

In order to make sense of the data coming from the sensors and peripheral units, parser

and listener scripts were developed on the platform with Python software language and

these scripts were converted into system service. According to the data collected for

15 days, it was seen that the developed system worked without error under the scenario

that can be considered as almost complex. System performance is summarized in Table

4.2.

37

Table 4.2 Summary of Test Results

In addition, when the platform developed was compared with three different indoor

monitoring and control devices currently on sale, it was successful in almost all

comparison parameters. These results are summarized in Table 4.3 and Table 4.4.

Table 4.3 Comparison with Other Devices

38

Table 4.4 Comparison with Other Devices

39

CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

Indoor monitoring and control systems are a concept that will increase the importance

for end-users. Because these systems provide efficiency, security, manageability and

savings with the data sets collected from the closed areas to the users. However, it is

an important criterion to provide these benefits without interruption. At this point,

many factors such as dependence on an internet connection, decision mechanisms, use

of bandwidth, query-response times and remote updating become important.

Another important factor related to these systems is cost. Today, IT companies offer

solutions with software and hardware add-on packages that are priced in addition to

basic hardware prices instead of developing ready-to-use platform products due to

commercial concerns. In addition, data analysis services such as anomaly detection

and forecasting are sold with monthly or annual charges. All these costs are

frighteningly high for end users who want to provide multi-point management, such

as telecommunications companies or banks.

In this thesis, which chooses these two main problems as a goal, a micro server

platform that is customized for indoor monitoring and control, based on fog computing

and single board computer is designed and developed.

Thanks to fog computing, data storage, processing and monitoring operations on the

local network without the need for internet connection have been realized as

distributed. In addition, system performance and manageability have been increased

with the lightweight operating system and containerization. In order to reduce

hardware costs, the platform was developed based on single board computer and all

hardware was designed as modular. Modular hardware will allow the platform to be

edited according to the needs of the user and to reduce costs.

40

In order to reduce software costs, all the software needed for indoor monitoring and

control such as on-premise database, dashboard, system metric agent have been

developed or open source applications have been used.

After the completion of the whole system, a 15-day test was carried out with a real

indoor monitoring and control scenario. Approximately 2.8 million data from 11

peripherals, including various sensors, detectors, analyzers and cameras, were

recorded in the platform database with sender ID and time information. When this

dataset (nearly 172 megabytes) was checked, no data loss or abnormal delay was

detected.

In the test performed on the dashboard of the platform for remote control operations,

it was found that the relay module reacts with a delay of up to 35 milliseconds. This

delay includes the animation of opening and closing the button widget on the

dashboard and saving this operation to the database.

In addition, the application developed in the Python software language has performed

demo actions by checking the collected data at the specified interval (5 seconds). These

actions are to control the devices connected to the relay module or to an external smart

socket (Vera Smart Plug), and to give an alarm warning on the dashboard when

measurements exceeding the specified limit values are detected.

According to the test results of the micro server platform which is customized for the

indoor monitoring and control which is the output of the thesis, it is seen that it is

sufficient to operate in this field in hardware and software. Cost studies after the

completion of the tests showed that the amount spent on for the platform was

approximately $ 125. Considering the alternatives, it was concluded that the cost level

meets the expectations.

In this study, pre-made equipment such as USB hub, converters or relay card is used

to save time. In the future, if these equipments are manufactured in an integrated design,

both performance and cost-efficiency can be achieved. In addition, the hardware and

software of this developed platform can be considered as milestone, and the optimized

applications such as machine learning-based data analysis, forecasting or cooperative

data processing will be improved and the productivity of IIoT applications can be

increased significantly.

41

REFERENCES

Ai, Y., Peng, M. and Zhang, K. (2018). Edge computing technologies for the Internet

of Things: a primer. Digital Communications and Networks, 4(2), pp.77-86.

Chiang, M. and Zhang, T. (2016). Fog and IoT: An Overview of Research

Opportunities. IEEE Internet of Things Journal, 3(6), pp.854-864.

Cisco.com. (2019). [online] Available at:

https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-

overview.pdf [Accessed 22 Feb. 2019].

Dietpi.com. (2019). DietPi - Lightweight justice for your SBC. [online] Available at:

https://dietpi.com/ [Accessed 05 Jul. 2019].

Docs.influxdata.com. (2019). InfluxDB 1.7 documentation | InfluxData

Documentation. [online] Available at: https://docs.influxdata.com/influxdb/v1.7/

[Accessed 13 Jul. 2019].

Grafana Labs Blog. (2019). Grafana documentation. [online] Available at:

https://grafana.com/docs/ [Accessed 15 Jul.

Gubbi, J., Buyya, R., Marusic, S. and Palaniswami, M. (2013). Internet of Things (IoT):

A vision, architectural elements, and future directions. Future Generation Computer

Systems, 29(7), pp.1645-1660.

Kang, B., Kim, D. and Choo, H. (2017). Internet of Everything: A Large-Scale

Autonomic IoT Gateway. IEEE Transactions on Multi-Scale Computing Systems,

3(3), pp.206-214.

Lertsinsrubtavee, A., Ali, A., Molina-Jimenez, C., Sathiaseelan, A. and Crowcroft, J.

(2017). PiCasso: A lightweight edge computing platform. 2017 IEEE 6th

International Conference on Cloud Networking (CloudNet).

Mbohwa, C. and Kumar Sahu, A. (2018). Performance Assessment of Companies

Under IIoT Architectures: Application of Grey Relational Analysis

Technique. 2018 International Conference on Inventive Research in Computing

Applications (ICIRCA).

Networktechinc.com. (2019). Environment Monitoring System Server Room

Temperature IP Sensor Alert. [online] Available at:

http://www.networktechinc.com/environment-monitor-5d.html#tab-7 [Accessed

13 Feb. 2019].

Ni, Y., Miao, F., Liu, J. and Chai, J. (2013). Implementation of Wireless Gateway for

Smart Home. Communications and Network, 05(01), pp.16-20.

Nodered.org. (2019). Running on Raspberry Pi : Node-RED. [online] Available at:

https://nodered.org/docs/getting-started/raspberrypi [Accessed 11 Jul. 2019].

42

Pahl, C., Helmer, S., Miori, L., Sanin, J. and Lee, B. (2016). A Container-Based Edge

Cloud PaaS Architecture Based on Raspberry Pi Clusters. 2016 IEEE 4th

International Conference on Future Internet of Things and Cloud Workshops

(FiCloudW).

Perera, C., Qin, Y., Estrella, J., Reiff-Marganiec, S. and Vasilakos, A. (2017). Fog

Computing for Sustainable Smart Cities. ACM Computing Surveys, 50(3), pp.1-

43.

Raspberrypi.org. (2019). [online] Available at: https://www.raspberrypi.org/magpi-

issues/Beginners_Guide_v1.pdf [Accessed 02 Jun. 2019].

Varghese, B., Wang, N., Barbhuiya, S., Kilpatrick, P. and Nikolopoulos, D. (2016).

Challenges and Opportunities in Edge Computing. 2016 IEEE International

Conference on Smart Cloud (SmartCloud).

Verma, P. and Sood, S. (2018). Fog Assisted-IoT Enabled Patient Health Monitoring

in Smart Homes. IEEE Internet of Things Journal, 5(3), pp.1789-1796.

43

APPENDIX 1 – Dashboard Listener Python Script

from influxdb import InfluxDBClient

import time

import pandas as pd

import os

import serial

import time

import sys

import threading

def call_smart_plug_off():

 os.system("python /root/services/smartPlug.py 0")

def call_smart_plug_on():

 os.system("python /root/services/smartPlug.py 1")

def call_siren_1s():

 os.system("python /root/services/siren1s.py")

client = InfluxDBClient(host='192.168.10.1', port=8086)

door_armed = False

door_temp_state = False

temp_state = 0

while True:

##SMART PLUG OPERATION

 client.switch_database('indoor_params')

 result = client.query('SELECT last("value") FROM

"SmartPlug"')

 plug_state =

list(result.get_points(measurement='SmartPlug'))

 last_plug_state = int((plug_state[0]["last"]))

 time.sleep(0.2)

 if temp_state != last_plug_state:

 if last_plug_state == 0:

 t =

threading.Thread(target=call_smart_plug_off).start()

 temp_state = 0

44

 elif last_plug_state == 1:

 t =

threading.Thread(target=call_smart_plug_on).start()

 temp_state = 1

##FLOOD ALARM

 client.switch_database('io_module')

 result = client.query('SELECT last("value") FROM "ch1"')

 flood = list(result.get_points(measurement='ch1'))

 last_flood = int((flood[0]["last"]))

 time.sleep(0.2)

##FLAME ALARM

 client.switch_database('io_module')

 result = client.query('SELECT last("value") FROM "ch2"')

 flame = list(result.get_points(measurement='ch2'))

 last_flame = int((flame[0]["last"]))

 time.sleep(0.2)

##MOTION ALARM

 client.switch_database('io_module')

 result = client.query('SELECT last("value") FROM "ch3"')

 motion = list(result.get_points(measurement='ch3'))

 last_motion = int((motion[0]["last"]))

 time.sleep(0.2)

##DOOR ALARM

 client.switch_database('indoor_params')

 result = client.query('SELECT last("value") FROM

"doorarmed"')

 armed = list(result.get_points(measurement='doorarmed'))

 last_armed = ((armed[0]["last"]))

 time.sleep(0.2)

 client.switch_database('lora_params')

 result = client.query('SELECT last("value") FROM

45

"doorsensor"')

 door = list(result.get_points(measurement='doorsensor'))

 last_door_state = ((door[0]["last"]))

 time.sleep(0.2)

 if (door_temp_state != last_door_state)and(last_armed !=

False):

 if last_door_state == 1:

 door_temp_state = 1

 elif last_door_state == 0:

 t =

threading.Thread(target=call_siren_1s).start()

 door_temp_state = 0

##INDOOR TEMPERATURE ALARM

 client.switch_database('indoor_params')

 result = client.query('SELECT last("temp") FROM

"Multisensor"')

 indoor_temp =

list(result.get_points(measurement='Multisensor'))

 last_indoor_temp = float((indoor_temp[0]["last"]))

 time.sleep(0.2)

##ENERGY METER VOLTAGE ALARM

 client.switch_database('indoor_params')

 result = client.query('SELECT last("voltL1") FROM

"EnergyMeter"')

 voltage = list(result.get_points(measurement='EnergyMeter'))

 last_voltage = (float((voltage[0]["last"]))/10)

 time.sleep(0.2)

46

47

APPENDIX 2 – Energy Analyzer Parser Python Script

import time

import minimalmodbus

from influxdb import InfluxDBClient

import serial.tools.list_ports

client = InfluxDBClient('192.168.10.1', 8086, 'root', 'root',

'indoor_params')

comlist = serial.tools.list_ports.comports()

comport = " "

def modbus_request(device_addr):

 instrument = minimalmodbus.Instrument(comport,

device_addr) # port name, slave address (in decimal)

 instrument.serial.baudrate = 9600

 instrument.serial.timeout = 3

 instrument.mode = minimalmodbus.MODE_RTU

 #instrument.debug = True

 parameters = {'voltL1':0}

 parameters['voltL1'] = instrument.read_long(0) #

Registernumber, number of decimals

 return parameters

if __name__ == "__main__":

 i = 0

 for element in comlist:

 comport = (str(comlist[i])[0:12])

 try:

 (modbus_request(1))

 except:

 i+=1

 while True:

 parameters=modbus_request(1)

 json_body = [

 {

 "measurement": "EnergyMeter",

48

 "tags": {

 "valueOf": "parameters",

 },

 "fields": {

 "voltL1": parameters["voltL1"]

 }

 }

]

 client.write_points(json_body)

 time.sleep(10)

49

APPENDIX 3 – Wireless Network Module Listener Python Script

import serial

import RPi.GPIO as GPIO

import time

import sys

from influxdb import InfluxDBClient

if __name__ == '__main__':

 ser = serial.Serial('/dev/ttyACM0',115200)

 json_body = [{"measurement": " ","tags": {"paremeter": "

",},"fields": {"value": " "}}]

 client = InfluxDBClient('192.168.10.1', 8086, 'root',

'root', 'lora_params')

 while True:

 data= (ser.readline())

 print(data)

 pre = data[0:3]

 if (pre == "Tem"):

 try:

 data = float(data[3:8])

 json_body = [{"measurement":

"multisensor","tags": {"paremeter": "temperature",},"fields":

{"value": data}}]

 client.write_points(json_body)

 except:

 pass

 elif pre == "Hum":

 try:

 data = float(data[3:8])

 json_body = [{"measurement":

"multisensor","tags": {"paremeter": "humidity",},"fields": {"value":

data}}]

 client.write_points(json_body)

50

 except:

 pass

 elif pre == "Air":

 try:

 data = float(data [3:len(data)])

 json_body = [{"measurement":

"multisensor","tags": {"paremeter": "airquality",},"fields":

{"value": data}}]

 client.write_points(json_body)

 except:

 pass

 elif pre == "Dor":

 try:

 data = int(data [3:len(data)])

 json_body = [{"measurement":

"doorsensor","tags": {"paremeter": "doorstate",},"fields": {"value":

data}}]

 client.write_points(json_body)

 except:

 pass

