
YAŞAR UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
MASTER THESIS

OPTIMIZATION OF CONVOLUTIONAL NEURAL

NETWORKS VIA GRAPHIC CARDS FOR

CENTRALIZED DATA

ERİNÇ CİBİL
THESIS ADVISOR: ASST. PROF. DR. İBRAHİM ZİNCİR

MASTER OF SCIENCE IN COMPUTER ENGINEERING

PRESENTATION DATE: 22.08.2019

BORNOVA / İZMİR
AUGUST 2019

ABSTRACT

OPTIMIZATION OF CONVOLUTIONAL NEURAL NETWORKS VIA

GPU FOR CENTERALIZED DATA

CİBİL, Erinç

Msc, Computer Engineering

Advisor: Asst. Prof. Dr. İbrahim ZİNCİR

August 2019

In this thesis, it is aimed to design a new approach optimized for systems that use

multiple graphics processing units (GPU) in order to find highly discriminative

attributes of digitized handwritten numbers obtained from MNIST dataset and their

results.

In this study, the convolutional neural network (CNN) method and digitized

handwriting classification method are discussed in three sections. In the first part, the

classification is obtained by implanting the naive convolutional neural network into

the graphic processing unit.

In the second stage, the process layers for graphic processing units are parallelized

and the data is adjusted for parallel processing layers and the classification is aimed

with optimized memory access pattern approach.

In the last stage, the method has been improved to work on more than one graphic

processing unit. The aim of this stage is to improve the education time of

convolutional neural network inversely proportional to the number of graphic

processing units used.

Keywords : Handwritten digit classification, convolutional neural network (CNN),

parallel processing, feature extraction, multiple gpu parallel processing, graphic

processing unit (GPU).

v

ÖZ

EVRİŞİMSEL SİNİR AĞLARIN GRAFİK KARTLARI İLE VERİ

MERKEZİ EN İYİLEMESİ

Cibil, Erinç

Yüksek Lisans, Bilgisayar Mühendisliği Tezli Yüksek Lisans Programı

Danışman: Dr. Öğr.Üyesi İbrahim ZİNCİR

Ağustos 2019

Bu tezde, MNIST veri setinde elde edilen dijitallestirilmiş el yazısı numaralar ve

sonuçlarının, ayrıştırıcılığı yüksek özniteliklerinin bulunması için çoklu grafik işlem

birimi (GİB) kullanan sistemler için optimize edilmiş yeni bir yaklaşım tasarımı

hedeflenmiştir.

Bu çalışmada evrişimsel sinir ağı (ESA) yöntemi ile dijitalleştirilmiş el yazısı

sınıflandırma yöntemi üç bölümde ele alınmıştır. İlk bölümde naif evrişimsel sinir

ağının grafik işlem birimine uygulanması ile sınıflandırma elde edilmiştir.

İkinci aşamada grafik işlem birimleri için işlem katmanları paralelleştirilerek ve

verinin paralel işlem katmanları için ayarlanıp eniyilenmiş bellek erişim şablonu

yaklaşımla sınıflandırma hedeflenmiştir.

Son aşamada ise yöntemin birden fazla grafik işlem birimi üzerinde çalışması için

yöntemde geliştirmeler yapılmıştır. Bu aşamada amaç, kullanılan grafik işlem birimi

sayısı ile ters orantılı olarak evrişimsel sinir ağının eğitim süresinde gelişim

sağlamaktır.

Anahtar Kelimeler: El yazısı numaraların sınıflandırılması, evrişimsel sinir ağı

(ESA) , paralel işlem, öznitelik çıkarımı, çoklu grafik işlem birimi ile paralel işlem,

grafik işlem birimi (GİB).

vii

ACKNOWLEDGEMENTS

First of all, I would like to thank my consultant Dr. İbrahim Zincir who always

supported me with his guidance in academic research, teaching on academic rules

and techniques. I would not have completed this thesis without the support of his

positive attitude when I was in despair. My supervisor's support for my orientation to

the area I want to research without limiting my study area is the biggest factor in

completing this study.

I would like to express my appreciation to my family for their limitless support

during this thesis.

I would like a express my deepest thanks to my girlfriend Çağla Sarvan. Without her

positive attitude and selfless behavior during the thesis period, this study would not

have been successful.

I would like to thank Merve and Ezel Keç for their good friendship and support.

Especially Merve's delicious coffees and positive attitude are important factors in

keeping my morale high in this thesis.

The study would’t be successful without the names are given above.

Thank you.

Erinç CİBİL
İzmir, 2019

ix

TABLE OF CONTENTS

1. INTRODUCTION...1

2.HETEROGENOUS PARALLEL PROGRAMMING...5

2.1 PARALLEL PROGRAMMING..5

2.1.1 ANALYSIS OF PARALLEL ALGORITHMS..6

2.1.1.1 SPEEDUP..6

2.1.1.2 EFFICIENCY AND COST..6

2.1.1.3 SCALABILITY...6

2.1.1.4 COMPUTATION TO COMMUNICATION RATIO...7

2.1.2 CLASSIFICATION OF PARALLEL ARCHITECTURES...7

2.2 HETEROGENEOUS COMPUTING..8

2.2.1 MANY INTEGRATED CORES (MIC)..10

2.2.2 FIELD PROGRAMMABLE GATE ARRAY (FPGA)..10

2.2.3 GRAPHIC PROCESSING UNIT...10

2.3 COMPUTE UNIFIED DEVICE ARCHITECTURE (CUDA)..12

3. CONVOLUTIONAL NEURAL NETWORKS ..19

3.1 CONVOLUTION LAYER..19

3.2 POOLING LAYER..22

3.3 FULLY CONNECTED LAYER..23

3.4 BACK PROPAGATION..24

4. DATA ORIENTED MULTI-GPU PROCESSING...27

4.1 NAIVE GPU IMPLEMENTATIONS..28

4.2 DATA ORIENTED GPU IMPLEMENTATION..32

4.3 DATA ORIENTED SCALABLE MULTI-GPU IMPLEMENTATION...........................39

5. CONCLUSIONS AND FUTURE RESEARCH..43

xiii

LIST OF FIGURES

FIGURE 1.1 : A) ARCHITECTURAL DESIGN OF THE FIRST MULTICORE CPU

ARCHITECTURE FROM IBM

B) ILLUSTRATION OF INTELS HYPERTHREADING TECHNOLOGY.2

FIGURE 1.2 : ILLUSTRATION OF PERCEPTRON FROM NEURAL NETWORKS AND

LEARNING MACHINES..2

FIGURE 1.3 : IMPROVEMENT OF COMPUTER VISION WITH CNN FROM

STANDFORD UNIVERSITY - CONVOLUTIONAL NEURAL NETWORK LECTURE

MATERIALS ...4

FIGURE 2.1: ILLUSTRATION OF A) SEQUENTIAL AND B) PARALLEL EXECUTION

FROM PROFESSIONAL CUDA C PROGRAMMING...5

FIGURE 2.2 : ILLUSTRATION OF FLYNN TAXONOMY FROM PARALLEL

PROGRAMMING: CONCEPTS AND PRACTICE...7

FIGURE 2.3 : CLASSICAL ARCHITECTURE OF HETEROGENEOUS COMPUTING.. . .9

FIGURE 2.4 : A) MANY INTEGRATED CORE DEVICE. FIGURE. B) FIELD

PROGRAMMABLE GATE ARRAY. C) GRAPHIC PROCESSING UNIT...........................9

FIGURE 2.5 : GPU BASED HPC ARCHITECTURE FROM PROFESSIONAL CUDA C

PROGRAMMING...11

FIGURE 2.6 : MEMORY ACCESS PATTERN FOR GPU FROM PROFESSIONAL CUDA

C PROGRAMMING...12

FIGURE 2.8 : THREAD ASSIGNMENT ON GPU WITH CUDA FROM PROFESSIONAL

CUDA C PROGRAMMING...17

FIGURE 3.1 : LAYERS OF CONVOLUTIONAL NEURAL NETWORK..........................19

FIGURE 3.2 : ILLUSTRATION OF THE CONVOLUTION OPERATION ON 2-D

MATRIX...20

FIGURE 3.3 : ILLUSTRATION OF THE CONVERGENCE DIFFERENCE BETWEEN

RELU AND SIGMOID FUNCTION IN ALEXNET. SOLID LINE REPRESENTS RELU

AND THE DASHED LINE REPRESENTS SIGMOID FUNCTION...................................21

FIGURE 3.4: LLUSTRATION OF MAX AND AVERAGE POOLING...............................22

FIGURE 3.5 : ILLUSTRATION OF BASIC FULLY CONNECTED NETWORK FROM

NEURAL NETWORKS AND LEARNING MACHINES..23

FIGURE 3.6 : DISTRIBUTION OF LOSS WITH RESPECT TO OPERATORS.................24

FIGURE 4. 1 : MEMORY ACCESS PATERN OF NAVIE IMPLEMENTATION................32

FIGURE 4. 2 : DATA ORIENTATION OF INPUT IMAGE...33

xv

FIGURE 4.3: EACH COLOR REPRESENTS INNER POSITION AND REPEATED

COLOR PATTERNS REPRESENTS OUTPUT POSITIONS..35

FIGURE 4.4 : ILLUSTRATION OF THE DATA LAYOUT BEFORE MAX POOLING.....36

FIGURE 4.5: ILLUSTRATION OF OVERALL TASK DISTRIBUTION, THREAD

CONCURRENCY AND DATA TRANSFER – COMPUTATION OVERLAP.....................38

FIGURE 4.6 : SPLITING INPUT IMAGE IS ILLUSTRATED..39

FIGURE 4.7: ILLUSTRATION OF OVERALL TASK DISTRIBUTION, THREAD

CONCURRENCY AND DATA TRANSFER – COMPUTATION OVERLAP FOR MULTI-

GPU...41

FIGURE 5.1: ELAPSED TIME WHILE COPYING DATA FROM HOST TO DEVICE

MEMORY...44

FIGURE 5.2: ELAPSED TIME FOR THE CONVOLUTION OPERATION.......................44

FIGURE 5.3 : ELAPSED TIME FOR ACTIVATION LAYER. ...45

FIGURE 5.4 : ELAPSED TIME FOR POOLING LAYER..45

FIGURE 5.5 : ELAPSED TIME FOR FULLY CONNECTED LAYER...............................46

FIGURE 5.6 : TOTAL DURATION OF FORWARD PASS OPERATION...........................46

FIGURE 5.7 : ACHIEVED SPEEDUPS...47

xvii

ABBREVIATIONS:

CNN Convolutional Neural Networ

GPU Graphic Process Unit

CPU Centeral Process Unit

PCI-E Peripheral Component Interconnect Express

SVM Support Vector Machines

KT Kernel Tricks

NVVP NVIDIA Visual Profiler

xix

CHAPTER 1
INTRODUCTION

Today, with the growth of problems, calculation of the solution needs more

processing power. Problems are becoming more complex and the amount of data it

needs in terms of the accuracy of problem solutions is increasing. In this context, the

biggest share of the cake was taken by machine learning. Machine learning is

essentially a paradigm using mathematical and statistical methods to process data,

then make inferences from that data, and then make predictions on new data using

these inferences. For example, machine learning, such as face recognition, spam

detection in mails or social media advertisements, is encountered in many areas in

current life. It may take years to obtain the required processing capability from a

single processor system, depending on the size of the data and the complexity of the

problem. The reason for this is that the processor which executes instructions in

sequence cannot produce sufficient processing power.

With the advancement of technology, data processing techniques are accelerated at

the hardware level. This increase can be examined in two important titles. The first

reason for acceleration is the new hardware development techniques that emerged

with the development of technology. These techniques have reduced the size of the

processors. The shrinkage of the chip surfaces has also led to a shortening of the

connection surfaces inside, as well as a reduction in Thermal Design Power (TDP)

(Huck, 2011). In this way, the processors are able to operate in a stable manner by

going to higher frequencies. The other part was not only to increase the number of

cores due to the improvement in processor architectures, but also the idea of

simultaneously processing multiple processes in the same core. The first multi-core

processor was introduced by IBM in 1992 with IBM Power4 (Tendler et. al., 2002).

IBM Power 4 has been designed as a structure that can scale and work together up to

32 process cores. The multi-core design is shown in picture 1-a. In order to run more

than one job together in the same kernel, in 2002 Jon Stokes gave a detailed

1

description of the workpieces on the subject by dividing and processing as many

processes as possible within the processor. Figure 1-b shows Stokes' diagram for

hyper-threading.

Development speed in both hardware and software is increasing day by day and the

error rate is gradually decreasing. Thanks to these technological developments, more

innovative solutions were produced and more efficient results were obtained.

The fact that people are fascinated by the ability to make smart machines is not new.

The first seeds of machine learning were described by Rosenblatt in his article “The

Perceptron” (1958). In general he described the basic structure of an intelligent

system. In Figure 2, the structure of a perceptron is shown in simple form.

2

Figure 1.1 : a) Architectural design of the first multicore CPU architecture from IBM
(Tendler et. al., 2002)

b) Illustration of Intels HyperThreading technology. (Strokes, 2002)

Figure 1.2 : Illustration of perceptron from
Neural Networks and Learning Machines.

(Haykin, 2009)

Artificial neural networks became popular again in the late 1980s with the

introduction of back propagation and demonstration of good results, but this

popularity didn’t last long. When support vector machines (SVM) and kernel tricks

(KT) appeared in the early 90s, artificial neural networks were drawn back into the

darkness. SVMs gave better results. Increasing the number of layers in artificial

neural networks did not improve results and back propagation does not work well on

some models. The reasons for the failure in the 90s can be briefly attributed to the

following, data sets were too small, computers had very little processing power, false

initialization and false non-linear activation functions.

Since 2009 artificial neural networks have been experiencing the 3rd spring. First, in

2009, Hinton and his students developed a new training method for the first speech

recognition problem. In that study, they used bot supervised and unsupervised layers

together (Mohamed, Dahl & Hinton , 2009).

Then Hinton and his doctoral student Alex Krizhevsky, trained a 7 layer

convolutional neural network using the same method that proposed in 2009. Today,

this architecture is known as AlexNet (Krizhenvsky, Ilya and Hinton, 2012). In the

competition Krizhenvsky participated with AlexNet and he won the first place with a

16.4% error rate. The second method was the combination of the best computer

vision algorithms discovered until 2012 and the error rate was 25.8%.

The same competition gained popularity in the following years and deep learning

methods have reduced the error rate to less than 5% today. In the same data set, the

human error rate was around 5,1%.

In the following figure 1.3 shows the development of computer vision.

3

4

Figure 1.3 : Improvement of computer vision with cnn from Standford University -
Convolutional Neural Network lecture materials (2017).

CHAPTER 2

HETEROGENEOUS PARALLEL COMPUTING

2.1 PARALLEL COMPUTING

As we described in the previous chapter, interests in parallel computation has been

increased. One of the main reasons for the exponential increase in the computational

time of the problems is that high quality algorithms related to the problem not be

developed yet.

Parallel computing can be described as a type of computation which has many

calculations can be carried out concurrently. Also main principle behind that is if the

larger problem can be divided into smaller problems, those small problems can be

solved simultaneously. Figure 2.1-a and 2.1-b shows the differences of sequential and

parallel executions respectively and also in figure 2.1-b shows that the problem

divided 3 subproblems which can be solved in parallel.

There are some basic concepts and terminologies in parallel programming. The

concepts and terminologies are important for understanding and analyzing parallel

computing.

5

Figure 2.1: Illustration of a) sequential and b) parallel execution from Professional
CUDA C Programming (See p.3 and p.4)

2.1.1 ANALYSIS OF PARALLEL ALGORITHMS

According to Schmid et al. (2017) basic measurements of parallel algorithms are

speedup, efficiency and cost, scalability and computation to communication ratio.

2.1.1.1 SPEEDUP

When a parallel algorithm is designed, new algorithm is expected to run faster then

the sequential one. In parallel algorithms, speedup is defined as the comparison

metric in the equation 1. In the equation speedup is denoted as S, computation time

on sequential approach is denoted as T(1) and computation on parallel algorithm

approach is called as T(p).

S=
T (1)

T (p)

(Parallel programming concepts and practice p.2)

2.1.1.2 EFFICIENCY AND COST

Term of efficiency shows that how well the algorithm fits on more then one

processor. When designing a parallel algorithm the goal is to catch 100% efficiency.

100% efficiency means that the algorithm is speeding up with the inverse ratio of

processor number p. It’s also called as linear speedup (Some exceptions in the

literature are increasing speed up more than p, those are called as super-linear

speedups.). In equation 2 efficiency called as E is a ratio of speedup S over number

of processors.

E=
S
p
=T

(1)

(T (p) × p)

(Parallel programming concepts and practice p.2)

2.1.1.3 SCALABILITY

Because of the algorithm can run on different type and number of processors the

calculation of efficiency may not be enough to analyze. In those cases the algorithm

tested on the various number of processors in the same system to understand how

behaves the algorithm in parallel work load. That called scalability analysis. There

6

(1)

(2)

are two different type of scalability analysis, those are strong and weak scalability.

When the number of the processor is changed but the data size is fixed, that is called

strong scalability. On the other hand when number of processing power changed and

also the data size varies that called weak scalability.

2.1.1.4 COMPUTATION TO COMMUNICATION RATIO

This metric analyses the algorithm for communication or computation overheads.

The metric is calculated by the time spent for calculation over the time spent for

communicating between processors. The higher ratios achieved when both speedup

and efficiency gains.

2.1.2 CLASSIFICATION OF PARALLEL ARCHITECTURES

In general there are a lot of ways to classify parallel architectures but in 1972

Micheal J. Flynn published his taxonomy and it became the most used one.

According to Flynn’s Taxonomy parallel architectures are divided into 4 subgroups.

7

Figure 2.2 : Illustration of Flynn taxonomy from Parallel programming: concepts
and practice (See p.59)

* Single Instruction Single Data (SISD) states to classical von Neumann architecture.

In this architecture there is only one processor processing only one data. All of the

instructions are executes sequentially.

* Single Instruction Multiple Data (SIMD) represents an architecture that can process

multiple data with the same instruction.

* Multiple Instruction Single Data (MISD) refers to same data is processes more then

one instructions. This type of parallelism is not commonly used except in pipelined

architectures.

* Multiple Instruction Multiple Data (MIMD) parallelism is used when more than

one data is processed by more than one instructions. While this operation executes,

the whole processors and data streams work independently.

In figure 2.2 the above substances are respectively on the top left, bottom left, top

right and bottom right.

2.2 HETEROGENEOUS COMPUTING

Actually, everyone wants an application to run faster. Related to this, for more than

25 years the 'Heterogeneous System Architecture (HSA) Foundation' has been

working. The real proposition of the heterogeneous computing architecture is; not

only to make it possible to run the program on multiple processors, as in parallel

programming, but also that different types of processors can work together. (Gaster,

Howes, Kaeli, Mistry & Schaa, 2012). In general, the structure of heterogeneous

programming architectures is shown in Figure 2.3.

8

The structure basically works with the processor that performs the main job

coordination and system tasks and the system memory reserved for that processor.

The purpose of the central processing unit is to control the system as well as to

assign tasks for the side processors. The side processors are responsible for fulfilling

the task particles assigned by the central processing unit. The communication

between the central processing unit and the peripheral processing units is carried out

by the bus. Today, heterogeneous programming is most commonly seen in 3 different

types. Figure 2.4 shows the three basic types of auxiliary processing units used in

different heterogeneous programming structures. The use scenarios are different from

each other, although they look identical to each other in appearance. The possible

usage scenarios are mentioned below and the graphic processing unit (GPU) is

detailed in the thesis subject.

9

Figure 2.3 : Classical architecture of heterogeneous computing.

Figure 2.4 : a) Many integrated core device. Figure. b) Field programmable gate
array. c) Graphic processing unit.

2.2.1 MANY INTEGRATED CORES (MIC)

MIC units are generally produced in the architecture of central processing units in

computer processors. It is a combination of multiple cores with the same processing

capacity as the CPU. Generally, these structures are used to solve problems requiring

high processing power and complex directives (Atanassov et. al., 2017). Since the

structures of the MICs and the central processing units are very close to each other,

the C or C ++ language is preferred for such hardware.

2.2.2 FIELD PROGRAMMABLE GATE ARRAY (FPGA)

Simply “Field programmable gate array“ can be described as reconfigurable

embedded circuits. The logic blocks in these circuits and the ability to configure the

connections of these blocks have made it very easy to develop. In the general

processing units that we use today, it accomplishes this task with a combination of

multiple instructions to do a job. However, in FPGAs, since the business logic is

defined directly to the hardware at the logic level, this process can be performed in

very low cycles instead of communicating with various parts of the processing unit.

FPGAs were generally used by design engineers. The hardware design was designed

on FPGA and applied from the tests and then the prepared design was turned into a

circuit board. With technological advances in the last decade, FPGA is now being

used not only by design engineers but also for the rapid solution of major problems

(Clive, M., 2004). Verilog or VHDL languages have been developed to make logical

design with FPGAs.

2.2.3 GRAPHIC PROCESSING UNIT

For more than 10 years mainstream computers in HPC users prefer GPUs as a co-

processor. The development of hardware technology over time has also made great

progress in GPU technology. Thanks to the progressive GPU architectures,

processing capacities are further increased and high energy efficiency is achieved.

This development has increased the use of GPUs as a general purpose co-processor

to solve parallel tasks. Although it is designed for parallel processing of graphics, it

is in perfect harmony with SIMD structure due to its hardware architecture. HPCs

with GPUs share the same architecture as other HPC types. In figure 2.5 GPU based

10

HPC architecture shows us that the system has memory and processor. In GPU

systems GPUs also have their own memory and todays GPUs have more then 4000

cores. Most of the cores are just capable of multiplication and addition operations. In

addition to that, there are some special function units are exists. The GPU and CPUs

are connected via PCI-Express bus.

In heterogeneous computing programs have 2 separate parts. The CPU system called

as host and GPUs are called as device. The host code runs on CPU and mostly it

assigns tasks to the co-processors and does some organizations between parallel

tasks. On the other hand device code runs on GPU. The tasks that assigned to GPU

by CPU are computationally intensive and mostly those tasks exhibit huge amounts

of data parallelism. For those kind of tasks GPUs are used to accelerate executions.

Within this perspective if a task will process small amounts of data and has

sophisticated control mechanisms, it is a good choice to process in CPU. Else if the

task can be divided into small and simple tasks and the same operations are

performed repeatedly for many data, it is a good choice to do so on the GPUs. The

critical point is when working with GPUs data must be on device memory. Data is

transferred from host memory to device memory via PCI-Express.

In GPU architecture there are thousands of small cores. Those cores are called

streaming processors (SP). Streaming processors are not capable of doing complex

tasks. Therefore tasks are assigned to groups of SPs and those are called streaming

multi-processor (SM). In addition to global memory, each SM has its own L1 cash.

Those L1 cashes are on the same chip with processors and also each of the SP has its

11

Figure 2.5 : GPU based HPC architecture from Professional CUDA C Programming
(See p.9)

own registers. L1 cashes and registers are smaller than global memory. When data

comes to GPU, task related data is transferred and cashed into SM, then SPs are read

data from L1 to registers to do tasks. As a SP, reading data from L1 (aproximately 6-

8 cycle) is so much faster then reading from global memory (aproximately 700 - 800

cycle). Therefore L1 called as on-chip memory and global memory called as off-chip

memory.

In streming multi-processors data are read by batches and each streaming processor

should work on consecutive part of the data. The data rate read and processed is

called memory occupancy. In figure 2.6 memory occupancy is illustrated.

Most common platforms for GPU based HPCs are Open Computing Language

(OpenCL)(Guillon, A. J., 2015) and Compute Unified Device Architecture (CUDA).

In 2008 OpenCL was invented by Apple and Khronos Group as an open source. In

rest of the thesis CUDA platform is used due to the weakly support of OpenCLs on

modern high end GPUs.

2.3 COMPUTE UNIFIED DEVICE ARCHITECTURE (CUDA)

End of 2006 Nvidia introduced its general purpose parallel computing platform that

is called CUDA. The aim of the platform is solving complex computationally

intensive problems on Nvidia gpus. It was first declared as a C and C++ extension,

so that the software environment could be used in high-level programming

languages. As a result of that, it overcomes low learning rate.

In CUDA C++ extension the code of the application has 2 parts. Host codes are

standart C/C++ files and with respect to programming language those files have an

12

Figure 2.6 : Memory Access Pattern for GPU from Professional CUDA C
Programming (See p.189)

extention like “.h .c / .hpp .cpp”. On the other hand CUDA codes are stored in “.cu

and .cuh” files. Host codes can be compiled by strandart C or C++ compiler, but

device codes are compiled by Nvidia cuda compiler called nvcc.

Typical CUDA programs have three steps. First step is copy data from host to device,

then process the data on the device. At the end of the process copy data back from

device to host. Instead of memcpy in C or C++, CUDA uses cudaMemcpy command

with an additional 4th parameter. The last parameter of the function declares the

direction of the data. That direction can be one of the following types:

 cudaMemcpyHostToHost

 cudaMemcpyHostToDevice

 cudaMemcpyDeviceToHost

 cudaMemcpyDeviceToDevice

If the operation succesfully done, “cudaSuccess” message is returned.

In CUDA file device function is called as kernel. Instead of standart functions,

kernels have an extra keyword right before the return type. Those keywords before

return type restrict kernel behavior.

 “__global__ “means kernel callable from the host or devices with compute

capability 3 and executes on device. Those kernels must have void return

type. This keyword is mostly used as an entry point of device part.

 “__host__” means kernel can only be called by host and executes on host.

 “__device__” means kernel can only be called by device and executes on

device. This keyword mostly used for dynamic parallelism and recursive

algorithms.

The other important point on CUDA execution model is when launching a kernel

there is a triple chevron notation.

“ kernelName<<<BlockNumber, ThreadNumberPerBlock>>>(args**) ”

All of the threads when launching a single kernel collectively are named as grid.

Grids contains lots of thread blocks. Each of those blocks are assigned to SMs. The

13

block is a group of threads that can execute together. To navigate between threads

there are three pre-initialized variables. These variables are threadIdx, blockIdx and

blockDim. “threadIdx” is the number of threads in the block, “blockIdx is the

number of blocks in the grid and “blockDim” is the number of thread spawned by

the kernel for each block. Number of thread per block is limited and it can be

maximum 1024. Thread id is calculated by the formula given below.

“ int t_id = blockIdx.x * blockDim.x + threadIdx.x ”

Block number and thread number per block are calculated by given data and number

of SMs on device before launching the kernel. These two parameters directly effect

the application performance. For example if there is a 32 data element for

calculation, the elements can be grouped by 8 on each block and launch by four

blocks in parallel. (Ex. kernel_name<<<4,8>>>(pointer of the elements)). The

assigment is illustrated on figure 2.7.

Kernel launch parameters may vary depending on the GPU. GPUs are categorized

according to SM technologies and hardware limits. This classification is called

compute capability. The abbreviated table 1 below shows the classification of the

hardware capacities .

Due to small memory sizes per SM, it is important to divide problems into small

pieces and process that pieces on different SM parallely. When the kernel launched

with the block numbers and threads per block parameters, kernel is assigned to

separate SM with respect to block numbers. As shown in table 1 each SM can

execute maximum 1024 consecutive thread if there are enough registers available.

More than 1024 threads should be divide by different blocks. Equation 3 below

shows how to calculate thread number and blocks.

14

Figure 2.7 : Data assignment for threads and blocks from Professional CUDA C
Programming (See p.37)

The basic formulation shown below in equation 4 calculates the number of blocks to

be launched while executing kernel. Then the formula below uses the number of

blocks for divide and distribute threads evenly.

15

NumberofBlocks=⌈ Numberofcalculations
1024

⌉ (3)

(4)
Numberofthreads=⌈ Numberofcalculations

NumberofBlocks
⌉

16

Table 1: Cuda Compute Capability Classification from CUDA Programming Guide
10.1, 2019

While up to 1 thread can be execute on singe SM but only 32 different insttruction

can be executed at the same time. The execution of the 32 thread called as warp. The

thread assignment on the GPU shown in Figure 2.8.

17

Figure 2.8 : Thread assignment on GPU with CUDA from
Professional CUDA C Programming (See p.31)

18

CHAPTER 3

CONVOLUTIONAL NEURAL NETWORKS

In the last decade, the increadible development of artificial intelligence is gradually

closing the gap between mechine and man. Thanks to the researchers and computer

enthusiasts, the applications based on Computer Vision are using everyday routines

when unlocking the phone with retina or tagging friends on photo in social media.

Convolutional Neural Networks are one of the most important building blocks

behind these achievements.

Basically convolutional neural networks are a combination of the convolution layer,

pooling layer, activation layer and fully connected layer. Connection of the layers in

CNN is shown in figure 3.1. In this chapter layers of the convolutional neural

networks and connection between these layers are explained. The form of data will

change while passing data from one layer to another layer. Convolutional neural

networks can be used with every set of data which can be represented as single or

multi dimensional matrices.

3.1 CONVOLUTION LAYER

Real-life signals can be expressed as linear combinations of basic signals or cosine

and sine functions. This representation of signals can be defined through Fourier

Theory. The concept of convolution is mainly based on Fourier Theory. In a linear

system, an output signal is obtained by applying a function to the input signal. This

19

Figure 3.1 : Layers of convolutional Neural Network

output signal is expressed as the convolution of the function applied by the input

signal. This structure is represented by the summation symbol in discrete-time

systems, and by integral in continuous-time systems. Nowadays many applications

and systems, use this basic convolution concept. For instance, the digital High Pass

Filter or Low Pass Filter coefficients are shifted over the noisy audio signal along the

time axis to reduce the noise which is called as convolutional sum of filter function

and signal.

In figure 3.2 convolutional sum operation over input matrix 4 by 4 and filter matrix 2

by 2 is illustrated. Production of the convolutional sum is 3 by 3.

Figure 3.2 : Illustration of the convolution operation on 2-D matrix

In mathematical language, convolution of input I with the filter f is denoted by

equation 5. Product of the convolution operation is denoted as G and the size of G

depends on input matrix row and column size and also the stride s. Stride is the key

point of number of elements shifted in input matrix for each element of the product

G. Size of the G matrix is calculated by equation 6 given below.

G=[m ,n]=(I∗ f) [m, n]=∑
j
∑

k

f [j , k] I [m− j ,n− k]

Goutput=⌊
(Ginput − f input)

s
+1 ⌋

Convolution process is important in terms of being the most basic process used for

filtering and obtaining features from images and signals in digital image/signal

20

(5)

(6)

processing techniques. Features obtained from signals or images are used in

classification algorithms. In the literature artificial neural networks are the most

widely used classification algorithms which test the discriminative of features. CNN

has emerged as an architecture that enables the use of the features obtained by

convolution in artificial neural networks directly.

Basic multiplication and addition operations are applied in layers. The features

obtained as a result of these operations show an exponential increase. To get rid of

the linearity, activation functions are placed between layers. Nonlinear results are

obtained between activation functions to reduce the slope of the gradient difference

in the subsequent layers.

Due to gathered information from the article of Krizhevsky et. al., in this study

rectified linear unit functions used as an activation function. The convergence of the

error rate is dramatically increased against sigmoid function which is traditionally

used in neural networks.

The formulation of the ReLU is shown in equation 7. Simply ReLU takes x as an

input and compares with 0. If the number is bigger then zero, it returns the number x

else returns zero.

y=max (0,x)

21

Figure 3.3 : Illustration of the convergence difference between ReLU and
Sigmoid function in AlexNet. Solid line represents ReLU and the dashed line

represents Sigmoid function. (Krizhevsky et. al. , 2012)

(7)

3.2 POOLING LAYER

As long as in the convolution layer, pooling layer is also reduce the spatial size of the

gethered future from previous layer. There are 2 reasons for using the pooling layer.

The first reason is to reveal the dominant attribute within the field and the second

reason is to reduce the cost of computation.

Only two types of pooling operations exist.

 Max pooling, returns the maximum value in the given area of the feature set.

 Average pooling, returns the average value in the given area of the feature set.

The formulation of the max pooling given equation 8. That formulation can be used

both max and average pooling via changing operation type.

hi , j=operation {xi+k − 1, j+l −1, ∀ 1⩽k⩽m∧1≤ l ≤m }

Mostly in CNN architectures max pooling is used due to it performs as a noise

suppressant property. So can be said that mostly max pooling performs better than

average. In figure 3.4 both of the max and average pooling operations are illustrated.

The layers of CNN described before can be combined to get more detailed features

from raw image. In Zeiler and Fergus article, the effect of multiple consecutive

convolution and pooling layers on the detail levels is described. Therefore, if deeper

22

Figure 3.4: llustration of Max and Average pooling

(8)

details are desired, a deeper set of attributes can be extracted by replicating these first

two layers.

3.3 FULLY CONNECTED LAYER

Fully connected layer is simply multi layer perceptron. Perceptrons have an input and

output. In CNN fully connected layer, after flatten the production of the pooling

layer, it used as an input of the fully connected layer. The input of the fully connected

layer denoted as x in Equation 9 from Neural Networks and Learning Macines,

Haykin (See p.27). Perceptron calculates the output with the set of weights w and

adds bias b. Bias is important for early levels of the training. The output of the layer

feeds the next layer as an input until output layer of the fully connected layers

reached.

y i=(∑j

wi × x j)+b

The computationally efficient way of gathering non linear combination of the

features in convolutional neural network is using fully connected network layer.

When the output is obtained, the results are used for the classification after using

logistic function. Logistic function is given equation 10.

out h1=
1

1+e− neth 1

After calculations are obtained, the results of logistic function y can be used for

classification the input raw image and calculation of error.

23

Figure 3.5 : Illustration of basic fully connected network
from Neural Networks and Learning Machines. (Haykin,

2009)

(9)

(10)

3.4 BACK PROPAGATION

After doing all of the calculations, the results of the forward pass are obtained. In

early levels of the training most of the time the results are incorrect. Reason of that,

the network should be feed by better weights and bias. To get better multiplicative

and additive parameters the network trained via back propagation algorithm. When

the output results obtained by fully connected network, error rates of each output

should be calculated (Equation 11). The total error rate of the network is sum of the

errors (Equation 12).

After that total error is obtained, the error rate should be distribute over previous

layers to calculate Δw and Δx by applying the chain rule (Equation 13).

By formula 13 negative gradient can be calculated and that gradient can be use for to

train the network with respect to calculated error E. When back propagating

distribution of the errors mathematical operations are important (see figure 3.6).

24

(11)

(12)

(13)

Ei=
1
2

× (targeti−output i)
2

Etotal=∑
i

j

(1
2)× (target i−output i)

2

∂ E total

∂ w
=

∂ Etotal

∂ out o

×
∂out o

∂ neto

×
∂net o

∂ w

Figure 3.6 : Distribution of loss with respect to operators
from Stanford Lecture Notes 2017

The mathematical operators changes the behavior while back propagation.

Behaviors of the operations that used in figure 3.6 are explained below.

Add gate : While back propagating regardless off what their value is distributed

evenly. As shown in figure 3.6, partial derivative of the loss value 2.00 distributed

evenly.

Multiply gate: While back propagating multiplication gate distribution of the loss is

calculated for first operand by multiplication of the loss with the second operand. As

shown in the figure 3.6 distribution of the loss x is equal to y times loss and loss of y

is equal to x times loss.

Max gate : Distribution over max gate is simply distribute the loss value just over

the maximum number

25

26

CHAPTER 4

DATA ORIENTED MULTI-GPU PROCESSING

As known, convolutional neural networks are highly parallelizable structures, but

first of all, all parameters of CNN should be defined for reproducibility and

consistency in all experiments. In the table blow parameters of CNN are defined.

 Table 2 : CNN parameters.

Parameter Value

Image width and height 28, 28

Total data count 70000

Train data count 60000

Test data count 10000

Filter width and height 5, 5

Filter count 6

Filter initialization Random, seed = 0, floating point between 0-

1

Convolution stride 1

Pooling size 4,4

Activation Function Rectified linear units (relu)

Fully connected layer 1

Output number of fully connected later 10

Fully connected layer weight initialization Random, seed = 0, floating point between 0-

1

Number of weights in fully connected layer 216

Mini batch size 2048

Stream batch size 128

Learning type Backpropagation

Error function Mini-batch gradient descent

Weight update Average of the delta gradients

27

4.1 NAIVE GPU IMPLEMENTATIONS

Due to the nature of convolution operation, all parts can be calculated differently

from each other. As mentioned in chapter 3, standard convolutional neural network

has four steps. Algorithm 1 shows thet psuedo code of the CNN.

Since the optimization algorithm of CNN uses mini batch gradient descent, the

network should be feed as much as the mini batch amount. This value is shown as m

in algorithm 1. The native implementation refers while reach to the termination

criteria, loop through the mini batch data. In mini batch data convolution operation

has to be calculate. Calculation of the convolution operation can be parallel inside

the mini batch. For every filter the convolution operation must be done repeatedly.

Number of filter is denoted by f in the algorithm below.

Step Task Layer

1 Define input[m][iR][iC]

2 Define o_conv[m][f][iR-fR+1][iC-fC+1]

3 Define o_activation[m][f][iR-fR+1][iC-fC+1]

4 Define o_pooling[m][f][(iR-fR+1)/pH][(iR-fR+1)/pW]

5 Define o_fullyC[m][o]

6 Define gradient_loss[o]

7 While not termination criteria satisfied

8 i ← 0

9 While i < m

10 j ← 0

C
on

volu
tion

 L
ayer

11 While j < f

12 k ← 0

13 While k < iR – fR + 1

14 l ← 0

15 While l ← iC – fC + 1

16 convolve(input[i][k][l], filter[j], o_conv), l = l + 1

17 End while, k = k + 1

18 End while, j = j +1

19 End while

20 j ← 0 A
ctivation

F
u

n
ction

21 While j < f

22 k ← 0
23 While k < iR – fR + 1

28

24 l ← 0

25 While l ← iC – fC + 1

26 relu(o_conv[i][j][k][l], o_activation), l = l + 1

27 End while, k = k + 1

28 End while, j = j + 1

29 End while

30 j ← 0

P
oolin

g L
ayer

31 While j < f

32 k ← 0

33 While k < (iR-fR+1) / pH

34 l ← 0

35 While l < (iC-rC+1) / pW

36 maxPool(o_activation[m][f][k][l],o_pooling), l = l + 1

37 End while, k = k + 1

38 End while, j = J + 1

39 End while

40 j ← 0

F
u

lly C
on

n
ected

 L
ayer

41 While j < o

42 k ← 0

43 While k < f

44 l ← 0

45 While l < (iR-fR+1) / pH

46 x← 0

47 While x < (iC-fC+1) / pW

48 applyWeights (o_pooling[i][k][l][x], o_fC[m][o])

49 x = x + 1

50 End while

51 End while

52 End while

53 End while

54 End while

55 calculateLoss(o_fullyC)

56 i ← 0

B
ack

P
rop

agation

57 While i < m

58 calc_dC(calc_dA(calc_dP(calc_df(gradient_loss)))), i = i + 1

59 End while

60 End while

29

Input parameters of convolve function i represents the ith image in the input batch.

Filters are stored in arrays with size of f with column size fC and row size fR. The

convolve operation can be done in parallel with the execution of kernel parameters

MINIBATCH_SIZE blocks and CONVOLUTION_LAYER_OUTPUT_COLUMN_SIZE *

CONVOLUTION_LAYER_OUTPUT_ROW_SIZE threads.

basicConvolve<<<MINIBATCH_SIZE, CONVOLUTION_LAYER_OUTPUT_COLUMN_SIZE *
CONVOLUTION_LAYER_OUTPUT_ROW_SIZE>>>(d_miniBatchInputData, d_filters,
d_miniBatchConvolutionOutput);

In kernel each thread calculates output matrix via given algorithm below.

__global__ void basicConvolve(float *input, float *filter, float *output){
int innerPosition = threadIdx.x;
int innerPositionRow = innerPosition / CONVOLUTION_LAYER_OUTPUT_ROW_SIZE;
int innerPositionCol = innerPosition %
CONVOLUTION_LAYER_OUTPUT_COLUMN_SIZE;
int imageNumber = blockIdx.x;
int imageStartPosition = imageNumber * INPUT_ROW_SIZE * INPUT_COLUMN_SIZE;
int generalPosition = imageNumber * blockDim.x + innerPosition;
float result = 0.0f;
for (int k = 0; k < CONVOLUTION_FILTER_COUNT; ++k) {

for (int i = 0; i < CONVOLUTION_FILTER_ROW_SIZE; ++i) {
for (int j = 0; j < CONVOLUTION_FILTER_COLUMN_SIZE; ++j) {

result += input[imageStartPosition
+ innerPositionRow * INPUT_ROW_SIZE
+ innerPositionCol * INPUT_COLUMN_SIZE
+ i * INPUT_COLUMN_SIZE + j]
* filter[k *

CONVOLUTION_FILTER_COLUMN_SIZE * CONVOLUTION_FILTER_ROW_SIZE + i *
CONVOLUTION_FILTER_COLUMN_SIZE + j];

}
output[(imageNumber * CONVOLUTION_FILTER_COUNT + k)

* CONVOLUTION_LAYER_OUTPUT_ROW_SIZE
*CONVOLUTION_LAYER_OUTPUT_COLUMN_SIZE
+ InnerPositionRow
* CONVOLUTION_LAYER_OUTPUT_COLUMN_SIZE
+ innerPositionCol] = result;

}
}

}

In activation function basically loop through with every element of output vector of

convolution layer and apply max(0, o_conv) function. Because of the each Sm can

process maximum 1024 thread, thread number and block number must be re

calculate. The number of elements in the o_conv array is 24*24*2048*6 = 7077888.

therefore kernel must be launch with parameters 2048 blocks of 576 threads.

30

In pooling layer loop through for each image, every 4 by 4 area should be traversed

and element with maximum value should be extracted. The output array of the

pooling layer should be 2048 by 6 by 6 by 6.

Kernel is launch with given parameters below

maxPooling<<<MINIBATCH_SIZE, (CONVOLUTION_LAYER_OUTPUT_COLUMN_SIZE /
POOLING_COLUMN_SIZE) * (CONVOLUTION_LAYER_OUTPUT_ROW_SIZE /
POOLING_ROW_SIZE)>>>(d_miniBatchActivationOutput, d_miniBatchPoolingOutput);

Therefore kernel is launch with 2048 blocks of 36 threads and kernel

implementation is given below.

__global__ void maxPooling(float *input, float *output){
int innerPosition = threadIdx.x;
int row = (innerPosition / 6);
int col = innerPosition - row * 6;

float temp = 0.0f;
float max = 0.0f;
for (int i = 0; i < POOLING_ROW_SIZE; ++i) {

for (int j = 0; j < POOLING_COLUMN_SIZE; ++j) {
temp = input[blockIdx.x * blockDim.x + row * 24 + col * 4 + i * 24 + j];
if (temp > max){

max = temp;
}

}
}
output[blockIdx.x * 216 + row * 6 + col] = max;

}

In the fully connected layer the kernel can be launched with parameters 2048 block

and 216 threads. Basically we can assign all the connection of an image to a SM.

Than every connection in fc can be done calculate parallel.

Fully connected kernel launched with give code below.

fullyConnected<<<MINIBATCH_SIZE, CONVOLUTION_FILTER_COUNT *
CONVOLUTION_LAYER_OUTPUT_COLUMN_SIZE / POOLING_COLUMN_SIZE *
CONVOLUTION_LAYER_OUTPUT_ROW_SIZE /
POOLING_ROW_SIZE>>>(d_miniBatchPoolingOutput, d_fcFilters, d_fcOutput);

As mentioned equation 9 in chapter 3.3 fully connected kernel can be easyly
implemented.
__global__ void fullyConnected(float *input, float *weight, float *output){

int point = blockIdx.x * blockDim.x + threadIdx.x;
for (int i = 0; i < CLASS_COUNT; ++i) {

output[blockIdx.x * CLASS_COUNT + i] = input [point] * weight[threadIdx.x *
CLASS_COUNT + i];

} }

31

4.2 DATA ORIENTED GPU IMPLEMENTATION

In proposed data oriented approach instead of reading batch of image data one by

one. Data should be combined column by column. One of the problem in the naive

approach is while reading the data. The memory access pattern in the naive approach

access the data is not accessing repeated data for each repeated thread. For each

thread 128b data stored on cash and 32 sequential data access by each thread in warp.

Memory access pattern of naive approach is illustrated in figure 4.1 below. In the

figure, every color in thread and data shows the assignment.

Figure 4. 1 : Memory access patern of navie implementation

When the thread access the data more then data number 128, thread should access the

off-chip memory. The cost of accessing off-chip memory is between 600 to 800 cycle

depending on status of the buffer.

In figure 4.2 shows the orientation of the data. When data is re constructed like in

figure 4.2 each part of the each filter can be executed in-line with sequential threads

in warp. Unlike CPUs, GPUs have very well optimized context switching mechanism

on warps.

32

Figure 4. 2 : Data orientation of input image

With this approach data is accessed with the %100 memory occupancy. Since every

sequential thread accessing data in sequence in a warp the unnecessary global

memory accesses count becomes zero.

The other optimization approach is streaming data and the computation. CUDA

streams are simple FIFO structure like queue. The main difference is cuda default

stream is defined by blocking queue due to protect data against common data race

conditions. Instead of default stream, CUDA can support explicitly defined non-

blocking streatms. With the minimum sixteen non-blocking streams, the data transfer

and the computation can be overlapped. While half of the data transfers the other half

of the data can be process by the SMs.

When using this approach all of the input and output arrays of the network should be

recalculate. For example with the data for total 2048 image in 16 streams with 28

rows and 28 columns new input array should be 28 rows and 128 * 28 = 3584

columns. The array size is increased to 28 * 1792 = 100352 times 16 elements. For

an output array 128*24*24 = 73728 times 16 elements. While maximum thread

number is 1024, the kernel should be launched with 72 blocks and 1024 thread for

each stream. While this stream processes data, the other stream can be copy next 64

image from host memory to device memory. Due to cudaMemcpy overhead less then

0.01 MB of transfers reduces the application performance.

To launch convolution kernel loops are used for traversing filter position, changing

streams. Kernel launch approach is given below. With that approach basically every

33

position of the filter elements and input elements are multiplied. Instead of creating

25 different result array, adding each identical matrices gives the result of the

convolution operation. By that reason that can be placed inside the kernel for saving

GPU memory. In addition to that, for every stream an event is recorded and it helps

for scheduling. With that events, streams are paused until their data transfered.

for (int k = 0; k < NUMBER_OF_STREAMS; k++) {
for (int i = 0; i < CONVOLUTION_FILTER_ROW_SIZE; i++) {

for (int j = 0; j < CONVOLUTION_FILTER_COLUMN_SIZE; j++) {
if (!transfered[k]){

loadMiniStreamBatchToGPU(miniBatchCounter, k,
streams[k], d_miniBatchInputData);

cudaEventRecord(events[0][k], streams[k]);
transfered[k]=true;

}
cudaStreamWaitEvent(streams[k], events[0][k],0);
convolve<<<72, 1024, CONVOLUTION_FILTER_COUNT*sizeof(float),

streams[k]>>>(d_miniBatchInputData + (k * streamLength) + (i * streamRowLengthForInput) + (j *
MINIBATCH_SIZE), d_filters+(i * CONVOLUTION_FILTER_COLUMN_SIZE + j),
d_miniBatchConvolutionOutput + (k * streamConvolutionOutputLength) + (i *
streamRowLengthForConvolution) + (j * MINIBATCH_SIZE), streamConvolutionOutputLength);

}
}

}

As seen in the kernel launch parameter shared variable array used for data access.
Every thread should be accessed same position of a filter for all filters. Therefore
shared variable is defined with the size of 6 * sizeof(float). In convolution kernel
shared variable array is filled and then all threads are synchronized to make sure of
every thread gets the filter element. After that computation of each elements can be
calculated by the kernel given below.

__global__ void convolve(float *input, float *filterX, float *output, int
streamConvolutionOutputLength){
int rowNumber = blockIdx.x / 3;
int position = rowNumber*INPUT_COLUMN_SIZE*INPUT_ROW_SIZE + threadIdx.x;
if (input[position] != 0.0f) {

extern __shared__ float fx[CONVOLUTION_FILTER_COUNT];
for (int i = 0; i < CONVOLUTION_FILTER_COUNT; ++i) {

fx[i] = filterX[i];
}
__syncthreads();
for (int i = 0; i < CONVOLUTION_FILTER_COUNT; ++i) {

atomicAdd(&output[position + i * streamConvolutionOutputLength] ,
output[position + i * streamConvolutionOutputLength] + input[position] * fx[i]);

}
}

}
After every layer operation gpu streams should be synchronize.

for (int i = 0; i < NUMBER_OF_STREAMS; ++i) {
cudaStreamSynchronize(streams[i]);

}
34

This study is based on maximize memory occupancy, but max pooling operation not
fits very well on that. Because of that while activation operation not only ReLU
applied but also data layout redesigned for pooling operation. ReLU kernel launched
with the code below.

RELU<<<activationBlockSize,activationThreadSize, 0, streams[i]>>>
(d_miniBatchConvolutionOutput + (i * streamReluOutputLength), d_reluOutput, i,
streamReluOutputLength, streamReluArrayLength);

If the output length of each stream is a multiplication of maximum thread per block,
block size is calculated by output length over 1024 else output length over 1024 plus
one. Also if output length is larger than 1024, thread number is seted 1024 else
thread number remains as output length.

In kernel each position of the input matrix is addressed to a position both inner area
and outer area. That means inner area position gives the position of the elements
which are assigned to new data layout and output area position gives the position of
the elements which are compared together. In figure 4.3 inner and outer positions are
illustrated.

I1E1 I2E1 I3E1 I1E2 I2E2 I3E2 I1E3 I2E3 I3E3 I1E4 I2E4 I3E4

I1E5 I2E5 I3E5 I1E6 I2E6 I3E6 I1E7 I2E7 I3E7 I1E8 I2E8 I3E8

I1E9 I2E9 I3E9 I1E10 I2E10 I3E10 I1E11 I2E11 I3E11 I1E12 I2E12 I3E12

Figure 4.3: Each color represents inner position and repeated color patterns
represents output positions.

With respect to given information above kernel code is implemented below.
__global__ void RELU(float *input, float *output, int streamNumber, int streamOfset,

int innerArrayOfset){
int element = blockIdx.x * blockDim.x + threadIdx.x;
if(input[element] > 0.0f){

int threadOuterRow = element / maxPoolingOuterRowLength;
int temp = element - (threadOuterRow * maxPoolingOuterRowLength);
int threadInnerRow = temp / maxPoolingInnerRowLength;
temp = temp - (threadInnerRow * maxPoolingInnerRowLength);
int threadOuterCol = temp / maxPoolingOuterColumnLength;
temp = temp - (threadOuterCol * maxPoolingOuterColumnLength);
int threadInnerCol = temp / maxPoolingInnerColumnLength;
temp = temp - (threadInnerCol * maxPoolingInnerColumnLength);
int arrayNum = threadInnerRow * POOLING_COLUMN_SIZE + threadInnerCol;
int position = (threadOuterRow * maxPoolingOuterRowPosition + threadOuterCol)

* MINIBATCH_SIZE + temp;
output[streamNumber * streamOfset + arrayNum * innerArrayOfset + position] =

input[element];
}

}
35

I1E1 I2E1 I3E1 I1E3 I2E3 I3E3 I1E2 I2E2 I3E2 I1E4 I2E4 I3E4

I1E5 I2E5 I3E5 I1E7 I2E7 I3E7 I1E6 I2E6 I3E6 I1E8 I2E8 I3E8

I1E9 I2E9 I3E9 I1E11 I2E11 I3E11 I1E10 I2E10 I3E10 I1E12 I2E12 I3E12

Figure 4.4 : Illustration of the data layout before max pooling.

With respect to figure 4.4, now it can be easily compared each row with next row
like reduction technique. After comparision the results gives the maximum elements
of each pooling area as a vector with new layout. Implementation of the max pooling
is given below and the kernel launch parameters are calculated with the same way in
ReLU launch parameters.

__global__ void maxPooling (float *input, float *output, int streamNumber, int streamSize,
int poolArraySize){
int element = blockIdx.x * blockDim.x + threadIdx.x;
const int total = POOLING_COLUMN_SIZE * POOLING_ROW_SIZE;
float compOperands[total];
for (int i = 0; i < total; i++){

compOperands[i] = input[i * poolArraySize + element];
}
int div = total;
for (int i = 1; i <= 4; i++){

div = div / 2;
for(int j = 0; j < div; j++){

compOperands[j] = compOperands[2*j] > compOperands[2*j+1] ?
compOperands[2*j] : compOperands[2*j+1];

}
}
output[streamNumber * streamSize + element] = compOperands[0];

}

After pooling operation, fully connected layer remains. Due to nature of the fully
connected layer it directly fits for maximum memory occupancy. But the filters does
not fits well. For that reason shared memory is allocated with the size of
CLASS_COUNT times sizeof (float) in GPU. Then calculation done with respect to
given code below.

__global__ void fullyConnected(float *input, float *fcfilter, float *output, int streamNumber,
int streamSize){

int element = blockIdx.x * blockDim.x + threadIdx.x;
if(input[element] > 0.0f) {

extern __shared__ float fxFc[CLASS_COUNT];
for (int i = 0; i < CLASS_COUNT; ++i) {

fxFc[i] = fcfilter[blockIdx.x * CLASS_COUNT + i];
}

36

__syncthreads();
for (int i = 0; i < CLASS_COUNT; ++i) {

output[streamNumber*streamSize + i * blockDim.x +
threadIdx.x] = input[element] * fxFc [i];

}
}

}

With that approach thread concurrency and data transfer – calculation overlap is
achieved. To visualize that results NVIDIA Visual Profiler (NVVP) tool is used.
Illustration of the task distribution and concurrency shown in figure 4.5.

37

Figure 4.5: Illustration of overall task distribution, thread concurrency and data
transfer – computation overlap.

38

4.3 DATA ORIENTED SCALABLE MULTI-GPU IMPLEMENTATION

While scaling the data oriented approach in multiple GPUs, data reconstructed like in

single GPU approach with the small difference. Due to the convolution operation

data can not be split in the middle. When split 28 by 28 data first the output layer of

the convolution layer must be calculated. When 28 by 28 image convolved with 5 by

5 filter the output is 24 by 24. When dividing data 2 piece due to memory access

pattern optimization, it should be split via rows. Equation 14 calculates the exact

position to the last row number for input image.

And the other part of the input first row number calculated by equation 15

After that division complete, rows between first row of the image part 2 and last row

of the image part 1 copied both side due to convolution operation. Split operation of

the input image is illustrated in figure 4.6.

Figure 4.6 : Spliting input image is illustrated

After pooling layer in multi GPU approach each GPU holds half of the extracted

futures of the entire network. Before the calculation of error rates, both GPUs should

be synchronized. While synchronization of the data instead of classical method

writing data to host memory after that copy data to other GPU, with the direct access
39

(14)

(15)

LastRowNumber=
inputRowSize − filterRowSize+1

2
+filterRowSize− 1

FirstRowNumber=LeastRowNumber − filterRowSize+1

property of the GPUs, data can be transferred via PCI-Express with using more PCI-

Express lanes. With direct GPU access 12 GBps transfer speed is reached. When the

recursive calculations of the back propagation process ends, simply summation of the

all delta matrices with each other results the correct value of the delta weights of the

entire network.

Last important point of multi GPU process is the distribution of the tasks to GPUs

with breadth first approach. With breadth first task assignment GPUs can hide kernel

launch overheads between computation time.

Illustration of the task distribution, concurrency and data tranfer – computation
overlap for multi-GPU shown in figure 4.7.

40

Figure 4.7: Illustration of overall task distribution, thread concurrency and data
transfer – computation overlap for multi-gpu.

41

42

CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

As conclusion the convolutional neural network algorithm is optimized for memory

access pattern , device memory hierarchy, thread occupancy and concurrency

obtained. With that improvement in total 4.29 times speedup gained. Table 3 shows

the speedup for each layer of the convolutional neural network and memory copies.

Operation Naive Optimized Multi-GPU Optimized

Memory copies 1 ms. 0.06 ms. 0.018 ms.

Convolution 131.3 ms. 30.47 ms. 15.96 ms.

RELU 1.78 ms. 0.33 ms. 0.17 ms.

Max Pooling 0.36 ms. 0.55 ms. 0.3 ms.

Fully Connected Network 2.65 ms. 0.58 ms. 0.3 ms.

Total 137.09 ms. 31.99 ms. 16.748 ms.

Speed Up X 1 X 4.29 X 8.19

The configuration of the computer used for testing are Intel i7 4700MQ, 8GB ram

and 2 x Nvidia GT 750M 2GB. But in tests only one GPU is used.

For the multi gpu efficiency is calculated with the formula given chapter 2.

Only 4% loss is occurred while computing 2 GPU and achieved efficiency is 96%.

With respect to approaches described in chapter for, following results are gained.

Results of the both naive, optimized and multi-gpu optimized methods are detaily

given figures below

43

Efficiency=
T (multi−GPU)

Number of GPU×T (single−GPU)

=
8.19

(2×4.29)
=0.96

Figure 5.1: Elapsed time while copying data from host to device memory.

Figure 5.2: Elapsed time for the convolution operation.

44

Figure 5.3 : Elapsed time for activation layer.

Figure 5.4 : Elapsed time for pooling layer.

45

Figure 5.5 : Elapsed time for fully connected layer.

Figure 5.6 : Total duration of forward pass operation.

46

Figure 5.7 : Achieved speedups.

In this study there are a lot of rooms for improvement. For each GPU and GPU

streams can be assign to different thread to reduce the kernel and asynchronous copy

launch overhead. Result of that approach approximately 10% speedup expected.

For the future works this approach will be implemented on tiling problem. Within

this approach not only the data but also parameters of the CNN will be distributed

over multiple GPUs. This leads dividing the deeper neural networks to smaller parts

then next small parts of the networks can be processed discretely.

Our first goal is generalizing the technique that studied in this thesis. After that

generalization, this technique will be combined with evolutionary learning. With that

knowledge next study will be related to real time ECG arrhythmia detection.

47

48

REFERENCES

Huck, S. (2011). Measuring processor power tdp vs. acp. White Paper, Revision, 1.

Tendler, J. M., Dodson, J. S., Fields, J. S., Le, H., & Sinharoy, B. (2002). POWER4
system microarchitecture. IBM Journal of Research and Development, 46(1), 5-
25.

Stokes, J. (2005). Introduction to multithreading, superthreading and hyperthreading,
Oct. 2002.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6), 386.

Gaster, B., Howes, L., Kaeli, D. R., Mistry, P., & Schaa, D. (2012). Heterogeneous
computing with openCL: revised openCL 1. Newnes.

Atanassov, E., Barth, M., Byckling, M., Codreanu, V., Ilieva, N., Karasek, T., ... &
Stachon, M. (2017). Best Practive Guide Intel Xeon Phi v2. 0.

Maxfield, C. (2004). The design warrior's guide to FPGAs: devices, tools and flows.
Elsevier.

Schmidt, B., Gonzalez-Dominguez, J., Hundt, C., & Schlarb, M. (2017). Parallel
programming: concepts and practice. Morgan Kaufmann.

Flynn, M. J. (1972). Some computer organizations and their effectiveness. IEEE
transactions on computers, 100(9), 948-960.

Guillon, A. J. (2015). An Introduction to OpenCL C++. Khronos Group.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., &
Jackel, L. D. (1989). Backpropagation applied to handwritten zip code
recognition. Neural computation, 1(4), 541-551.

Nvidia, C. U. D. A. (2019). Programming guide.

Cheng, J., Grossman, M., & McKercher, T. (2014). Professional Cuda C
Programming. John Wiley & Sons.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Advances in neural information
processing systems (pp. 1097-1105).

Haykin, S. S. (2009). Neural networks and learning machines/Simon Haykin. New
York: Prentice Hall,.

49

Mohamed, A. R., Dahl, G., & Hinton, G. (2009, December). Deep belief networks
for phone recognition. In Nips workshop on deep learning for speech
recognition and related applications (Vol. 1, No. 9, p. 39).

Li, F., Johnson, J. & Yeung, S (2017). Standford University – Convolutional Neural
Network lecture materials.

50

	2.1 Parallel Computing
	2.1.1 Analysis Of Parallel Algorithms
	2.1.1.1 Speedup
	2.1.1.2 Efficiency and Cost
	2.1.1.3 Scalability
	2.1.1.4 Computation to communication ratio
	2.1.2 Classification of Parallel Architectures
	2.2 Heterogeneous Computing
	2.2.1 Many Integrated Cores (MIC)
	2.2.2 Field Programmable Gate Array (FPGA)
	2.2.3 Graphic Processing Unit
	2.3 Compute Unified Device Architecture (CUDA)

	3.1 Convolutıon layer
	3.2 POOLING layer
	3.3 Fully Connected Layer
	3.4 Back Propagation
	4.1 Naive gpu implementations
	4.2 data oriented gpu implementation
	4.3 data oriented scalable multi-gpu implementation

