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ABSTRACT

OPTIMIZATION OF CONVOLUTIONAL NEURAL NETWORKS VIA

GPU FOR CENTERALIZED DATA

CİBİL, Erinç

Msc, Computer Engineering 

Advisor: Asst. Prof. Dr. İbrahim ZİNCİR

August 2019

In this thesis, it is aimed to design a new approach optimized for systems that use

multiple  graphics  processing  units  (GPU)  in  order  to  find  highly  discriminative

attributes of digitized handwritten numbers obtained from MNIST dataset and their

results.

In  this  study,  the  convolutional  neural  network  (CNN)  method  and  digitized

handwriting classification method are discussed in three sections. In the first part, the

classification is obtained by implanting the naive convolutional neural network into

the graphic processing unit.

In the second stage, the process layers for graphic processing units are parallelized

and the data is adjusted for parallel processing layers and the classification is aimed

with optimized memory access pattern approach.

In the last stage, the method has been improved to work on more than one graphic

processing  unit.  The  aim  of  this  stage  is  to  improve  the  education  time  of

convolutional  neural  network  inversely  proportional  to  the  number  of  graphic

processing units used.

Keywords : Handwritten digit classification, convolutional neural network (CNN),

parallel  processing,  feature  extraction,  multiple  gpu  parallel  processing,  graphic

processing unit (GPU).
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ÖZ

EVRİŞİMSEL SİNİR AĞLARIN GRAFİK KARTLARI İLE VERİ

MERKEZİ EN İYİLEMESİ

Cibil, Erinç

Yüksek Lisans, Bilgisayar Mühendisliği Tezli Yüksek Lisans Programı

Danışman:  Dr. Öğr.Üyesi İbrahim ZİNCİR

Ağustos 2019

Bu tezde,  MNIST veri  setinde elde edilen dijitallestirilmiş el  yazısı  numaralar ve

sonuçlarının, ayrıştırıcılığı yüksek özniteliklerinin bulunması için çoklu grafik işlem

birimi  (GİB)  kullanan  sistemler  için  optimize  edilmiş  yeni  bir  yaklaşım tasarımı

hedeflenmiştir.

Bu  çalışmada  evrişimsel  sinir  ağı  (ESA)  yöntemi  ile  dijitalleştirilmiş  el  yazısı

sınıflandırma yöntemi üç bölümde ele alınmıştır. İlk bölümde naif evrişimsel sinir

ağının grafik işlem birimine uygulanması ile sınıflandırma elde edilmiştir.

İkinci  aşamada  grafik  işlem birimleri  için  işlem katmanları  paralelleştirilerek  ve

verinin  paralel  işlem katmanları  için  ayarlanıp  eniyilenmiş  bellek  erişim şablonu

yaklaşımla  sınıflandırma hedeflenmiştir.

Son aşamada ise yöntemin birden fazla grafik işlem birimi üzerinde çalışması için

yöntemde geliştirmeler yapılmıştır. Bu aşamada amaç, kullanılan grafik işlem birimi

sayısı  ile  ters  orantılı  olarak  evrişimsel  sinir  ağının  eğitim  süresinde  gelişim

sağlamaktır.

Anahtar Kelimeler: El  yazısı  numaraların  sınıflandırılması,  evrişimsel  sinir  ağı

(ESA) , paralel işlem, öznitelik çıkarımı, çoklu grafik işlem birimi ile paralel işlem,

grafik işlem birimi (GİB).
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CHAPTER 1 
INTRODUCTION

Today,  with  the  growth  of  problems,  calculation  of  the  solution  needs  more

processing power. Problems are becoming more complex and the amount of data it

needs in terms of the accuracy of problem solutions is increasing. In this context, the

biggest  share  of  the  cake  was  taken  by  machine  learning.  Machine  learning  is

essentially a paradigm using mathematical and statistical methods to process data,

then make inferences from that data, and then make predictions on new data using

these  inferences.  For  example,  machine  learning,  such as  face  recognition,  spam

detection in mails or social media advertisements, is encountered in many areas in

current life. It may take years to obtain the required processing capability from a

single processor system, depending on the size of the data and the complexity of the

problem. The reason for  this  is  that  the processor  which executes  instructions  in

sequence cannot produce sufficient processing power.

With the advancement of technology, data processing techniques are accelerated at

the hardware level. This increase can be examined in two important titles. The first

reason for acceleration is the new hardware development techniques that emerged

with the development of technology. These techniques have reduced the size of the

processors. The shrinkage of the chip surfaces has also led to a shortening of the

connection surfaces inside, as well as a reduction in Thermal Design Power (TDP)

(Huck, 2011). In this way, the processors are able to operate in a stable manner by

going to higher frequencies. The other part was not only to increase the number of

cores  due  to  the  improvement  in  processor  architectures,  but  also  the  idea  of

simultaneously processing multiple processes in the same core. The first multi-core

processor was introduced by IBM in 1992 with IBM Power4 (Tendler et. al., 2002).

IBM Power 4 has been designed as a structure that can scale and work together up to

32 process cores. The multi-core design is shown in picture 1-a. In order to run more

than  one  job  together  in  the  same  kernel,  in  2002  Jon  Stokes  gave  a  detailed
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description of the workpieces on the subject by dividing and processing as many

processes as possible  within the processor.  Figure 1-b shows Stokes'  diagram for

hyper-threading.

Development speed in both hardware and software is increasing day by day and the

error rate is gradually decreasing. Thanks to these technological developments, more

innovative solutions were produced and more efficient results were obtained.

The fact that people are fascinated by the ability to make smart machines is not new.

The first seeds of machine learning were described by Rosenblatt in his article “The

Perceptron”  (1958).  In  general  he  described  the  basic  structure  of  an  intelligent

system. In Figure 2, the structure of a perceptron is shown in simple form. 

2

Figure 1.1 : a) Architectural design of the first multicore CPU architecture from IBM
(Tendler et. al., 2002) 

b) Illustration of Intels HyperThreading technology. (Strokes, 2002)

Figure 1.2 : Illustration of perceptron from
Neural Networks and Learning Machines.

(Haykin, 2009)



Artificial  neural  networks  became  popular  again  in  the  late  1980s  with  the

introduction  of  back  propagation  and  demonstration  of  good  results,  but  this

popularity didn’t last long. When support vector machines (SVM) and kernel tricks

(KT) appeared in the early 90s, artificial neural networks were drawn back into the

darkness.  SVMs gave better  results.  Increasing  the  number  of  layers  in  artificial

neural networks did not improve results and back propagation does not work well on

some models. The reasons for the failure in the 90s can be briefly attributed to the

following, data sets were too small, computers had very little processing power, false

initialization and false non-linear activation functions. 

Since 2009 artificial neural networks have been experiencing the 3rd spring. First, in

2009, Hinton and his students developed a new training method for the first speech

recognition problem. In that study, they used bot supervised and unsupervised layers

together (Mohamed, Dahl & Hinton , 2009).

Then  Hinton  and  his  doctoral  student  Alex  Krizhevsky,  trained  a  7  layer

convolutional neural network using the same method that proposed in 2009. Today,

this architecture is known as AlexNet (Krizhenvsky, Ilya and Hinton, 2012). In the

competition Krizhenvsky participated with AlexNet and he won the first place with a

16.4% error  rate.  The second method was the combination  of  the best  computer

vision algorithms discovered until 2012 and the error rate was 25.8%. 

The same competition gained popularity in the following years and deep learning

methods have reduced the error rate to less than 5% today. In the same data set, the

human error rate was around 5,1%.

In the following figure 1.3 shows the development of computer vision.
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Figure 1.3 : Improvement of computer vision with cnn from Standford University -
Convolutional Neural Network lecture materials (2017).



CHAPTER 2

HETEROGENEOUS PARALLEL COMPUTING

2.1 PARALLEL COMPUTING

As we described in the previous chapter, interests in parallel computation has been

increased. One of the main reasons for the exponential increase in the computational

time of the problems is that high quality algorithms related to the problem not be

developed yet.

Parallel  computing  can  be  described  as  a  type  of  computation  which  has  many

calculations can be carried out concurrently. Also main principle behind that is if the

larger problem can be divided into smaller problems, those small problems can be

solved simultaneously. Figure 2.1-a and 2.1-b shows the differences of sequential and

parallel  executions  respectively  and  also  in  figure  2.1-b  shows  that  the  problem

divided 3 subproblems which can be solved in parallel.

There  are  some  basic  concepts  and  terminologies  in  parallel  programming.  The

concepts and terminologies are important for understanding and analyzing parallel

computing.
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Figure 2.1: Illustration of a ) sequential and b) parallel execution from Professional
CUDA C Programming (See p.3 and p.4)



2.1.1 ANALYSIS OF PARALLEL ALGORITHMS

According to Schmid et  al.  (2017) basic measurements of parallel  algorithms are

speedup, efficiency and cost, scalability and computation to communication ratio. 

2.1.1.1 SPEEDUP

When a parallel algorithm is designed, new algorithm is expected to run faster then

the sequential  one.   In parallel  algorithms, speedup is  defined as the comparison

metric in the equation 1. In the equation speedup is denoted as S, computation time

on sequential  approach is denoted as  T(1) and computation on parallel  algorithm

approach is called as T(p).

S=
T (1 )

T ( p )

(Parallel programming concepts and practice p.2)

2.1.1.2 EFFICIENCY AND COST

Term  of  efficiency  shows  that  how  well  the  algorithm  fits  on  more  then  one

processor. When designing a parallel algorithm the goal is to catch 100% efficiency.

100% efficiency means that the algorithm is speeding up with the inverse ratio of

processor  number  p.  It’s  also  called  as  linear  speedup  (Some  exceptions  in  the

literature  are  increasing  speed  up  more  than  p,  those  are  called  as  super-linear

speedups.). In equation 2 efficiency called as E is a ratio of speedup S over number

of processors. 

E=
S
p
=T

(1 )

(T ( p ) × p )

(Parallel programming concepts and practice p.2)

2.1.1.3 SCALABILITY

Because of the algorithm can run on different type and number of processors the

calculation of efficiency may not be enough to analyze. In those cases the algorithm

tested on the various number of processors in the same system to understand how

behaves the algorithm in parallel work load. That called scalability analysis. There

6
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are two different type of scalability analysis, those are strong and weak scalability.

When the number of the processor is changed but the data size is fixed, that is called

strong scalability. On the other hand when  number of processing power changed and

also the data size varies that called weak scalability.

2.1.1.4 COMPUTATION TO COMMUNICATION RATIO

This  metric analyses  the algorithm for communication or computation overheads.

The metric is calculated by the time spent for calculation over the time spent for

communicating between processors. The higher ratios achieved when both speedup

and efficiency gains.

2.1.2 CLASSIFICATION OF PARALLEL ARCHITECTURES

In  general  there  are  a  lot  of  ways  to  classify  parallel  architectures  but  in  1972

Micheal  J.  Flynn  published  his  taxonomy  and  it  became  the  most  used  one.

According to Flynn’s Taxonomy parallel architectures are divided into 4 subgroups.

7

Figure 2.2 : Illustration of Flynn taxonomy from Parallel programming: concepts
and practice (See p.59)



* Single Instruction Single Data (SISD) states to classical von Neumann architecture.

In this architecture there is only one processor processing only one data. All of the

instructions are executes sequentially.

* Single Instruction Multiple Data (SIMD) represents an architecture that can process

multiple data with the same instruction.

* Multiple Instruction Single Data (MISD) refers to same data is processes more then

one instructions. This type of parallelism is not commonly used except in pipelined

architectures.

* Multiple Instruction Multiple Data (MIMD) parallelism is used when more than

one data is processed by more than one instructions. While this operation executes,

the whole processors and data streams work independently.

In figure 2.2 the above substances are respectively on the top left, bottom left, top

right and bottom right.

2.2 HETEROGENEOUS COMPUTING

Actually, everyone wants an application to run faster. Related to this, for more than

25  years  the  'Heterogeneous  System  Architecture  (HSA)  Foundation'  has  been

working. The real proposition of the heterogeneous computing architecture is;  not

only to make it possible to run the program on multiple processors, as in parallel

programming, but also that different types of processors can work together. (Gaster,

Howes,  Kaeli,  Mistry & Schaa,  2012).  In general,  the structure of heterogeneous

programming architectures is shown in Figure 2.3. 
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The  structure  basically  works  with  the  processor  that  performs  the  main  job

coordination and system tasks and the system memory reserved for that processor.

The purpose of the central  processing unit  is  to control the system as well  as to

assign tasks for the side processors. The side processors are responsible for fulfilling

the  task  particles  assigned  by  the  central  processing  unit.  The  communication

between the central processing unit and the peripheral processing units is carried out

by the bus. Today, heterogeneous programming is most commonly seen in 3 different

types. Figure 2.4 shows the three basic types of auxiliary processing units used in

different heterogeneous programming structures. The use scenarios are different from

each other, although they look identical to each other in appearance. The possible

usage  scenarios  are  mentioned  below  and  the  graphic  processing  unit  (GPU)  is

detailed in the thesis subject.

9

Figure 2.3 : Classical architecture of heterogeneous computing.

Figure 2.4 : a)  Many integrated core device. Figure. b) Field programmable gate
array. c) Graphic processing unit.



2.2.1 MANY INTEGRATED CORES (MIC)

MIC units are generally produced in the architecture of central processing units in

computer processors. It is a combination of multiple cores with the same processing

capacity as the CPU. Generally, these structures are used to solve problems requiring

high processing power and complex directives (Atanassov et. al., 2017). Since the

structures of the MICs and the central processing units are very close to each other,

the C or C ++ language is preferred for such hardware.

2.2.2 FIELD PROGRAMMABLE GATE ARRAY (FPGA)

Simply  “Field  programmable  gate  array“  can  be  described  as  reconfigurable

embedded circuits. The logic blocks in these circuits and the ability to configure the

connections  of  these  blocks  have  made  it  very  easy  to  develop.  In  the  general

processing units that we use today, it accomplishes this task with a combination of

multiple instructions to do a job. However, in FPGAs, since the business logic is

defined directly to the hardware at the logic level, this process can be performed in

very low cycles instead of communicating with various parts of the processing unit.

FPGAs were generally used by design engineers. The hardware design was designed

on FPGA and applied from the tests and then the prepared design was turned into a

circuit board. With technological advances in the last decade, FPGA is now being

used not only by design engineers but also for the rapid solution of major problems

(Clive, M., 2004). Verilog or VHDL languages have been developed to make logical

design with FPGAs.

2.2.3 GRAPHIC PROCESSING UNIT

For more than 10 years mainstream computers in HPC users prefer GPUs as a co-

processor. The development of hardware technology over time has also made great

progress  in  GPU  technology.  Thanks  to  the  progressive  GPU  architectures,

processing capacities are further increased and high energy efficiency is achieved.

This development has increased the use of GPUs as a general purpose co-processor

to solve parallel tasks. Although it is designed for parallel processing of graphics, it

is in perfect harmony with SIMD structure due to its hardware architecture. HPCs

with GPUs share the same architecture as other HPC types. In figure 2.5 GPU based
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HPC architecture  shows us  that  the  system has  memory  and  processor.  In  GPU

systems GPUs also have their own memory and todays GPUs have more then 4000

cores. Most of the cores are just capable of multiplication and addition operations. In

addition to that, there are some special function units are exists. The GPU and CPUs

are connected via PCI-Express bus. 

In heterogeneous computing programs have 2 separate parts. The CPU system called

as host and GPUs are called as device. The host code runs on CPU and mostly it

assigns  tasks  to  the  co-processors  and  does  some organizations  between  parallel

tasks. On the other hand device code runs on GPU. The tasks that assigned to GPU

by CPU are computationally intensive and mostly those tasks exhibit huge amounts

of data parallelism. For those kind of tasks GPUs are used to accelerate executions.

Within  this  perspective  if  a  task  will  process  small  amounts  of  data  and  has

sophisticated control mechanisms, it is a good choice to process in CPU. Else if the

task  can  be  divided  into  small  and  simple  tasks  and  the  same  operations  are

performed repeatedly for many data, it is a good choice to do so on the GPUs. The

critical point is when working with GPUs data must be on device memory. Data is

transferred from host memory to device memory via PCI-Express. 

In  GPU architecture  there  are  thousands  of  small  cores.  Those  cores  are  called

streaming processors (SP). Streaming processors are not capable of doing complex

tasks. Therefore tasks are assigned to groups of SPs and those are called streaming

multi-processor (SM). In addition to global memory, each SM has its own L1 cash.

Those L1 cashes are on the same chip with processors and also each of the SP has its

11

Figure 2.5 : GPU based HPC architecture from Professional CUDA C Programming
(See p.9)



own registers. L1 cashes and registers are smaller than global memory. When data

comes to GPU, task related data is transferred and cashed into SM, then SPs are read

data from L1 to registers to do tasks. As a SP, reading data from L1 (aproximately 6-

8 cycle) is so much faster then reading from global memory (aproximately 700 - 800

cycle). Therefore L1 called as on-chip memory and global memory called as off-chip

memory. 

In streming multi-processors data are read by batches and each streaming processor

should work on consecutive part of the data. The data rate read and processed is

called memory occupancy. In figure 2.6 memory occupancy is illustrated. 

Most  common  platforms  for  GPU  based  HPCs  are  Open  Computing  Language

(OpenCL)(Guillon, A. J., 2015) and Compute Unified Device Architecture (CUDA).

In 2008 OpenCL was invented by Apple and Khronos Group as an open source. In

rest of the thesis CUDA platform is used due to the weakly support of OpenCLs on

modern high end GPUs.

2.3 COMPUTE UNIFIED DEVICE ARCHITECTURE (CUDA)

End of 2006 Nvidia introduced its general purpose parallel computing platform that

is  called  CUDA.  The  aim  of  the  platform  is  solving  complex  computationally

intensive problems on Nvidia gpus. It was first declared as a C and C++ extension,

so  that  the  software  environment  could  be  used  in  high-level  programming

languages. As a result of that, it overcomes low learning rate.

In CUDA C++ extension the code of the application has 2 parts.  Host codes are

standart C/C++ files and with respect to programming language those files have an

12

Figure 2.6 : Memory Access Pattern for GPU from Professional CUDA C
Programming (See p.189)



extention like “.h .c / .hpp .cpp”. On the other hand CUDA codes are stored in “.cu

and .cuh” files. Host codes can be compiled by strandart C or C++ compiler, but

device codes are compiled by Nvidia cuda compiler called nvcc. 

Typical CUDA programs have three steps. First step is copy data from host to device,

then process the data on the device. At the end of the process copy data back from

device to host. Instead of memcpy in C or C++, CUDA uses cudaMemcpy command

with  an  additional  4th parameter.  The last  parameter  of  the  function  declares  the

direction of the data. That direction can be one of the following types:

 cudaMemcpyHostToHost

 cudaMemcpyHostToDevice

 cudaMemcpyDeviceToHost

 cudaMemcpyDeviceToDevice

If the operation succesfully done, “cudaSuccess” message is returned.

In  CUDA file  device  function  is  called  as  kernel.  Instead  of  standart  functions,

kernels have an extra keyword right before the return type. Those keywords before

return type restrict kernel behavior.

 “__global__ “means kernel  callable  from the host or  devices with compute

capability 3 and executes on device.  Those kernels must have void return

type. This keyword is mostly used as an entry point of device part.

 “__host__” means kernel can only be called by host and executes on host.

 “__device__”  means  kernel  can  only  be  called  by  device  and  executes  on

device.  This  keyword  mostly  used  for  dynamic  parallelism  and  recursive

algorithms.

The other important point on CUDA execution model is when launching a kernel

there is a triple chevron notation.

“ kernelName<<<BlockNumber, ThreadNumberPerBlock>>>(args**) ”

All of the threads when launching a single kernel collectively are named as grid.

Grids contains lots of thread blocks. Each of those blocks are assigned to SMs. The
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block is a group of threads that can  execute together. To navigate between threads

there are three pre-initialized variables. These variables are threadIdx, blockIdx and

blockDim.  “threadIdx”  is  the  number  of  threads  in  the  block,  “blockIdx  is  the

number of blocks in the grid and  “blockDim” is the number of  thread spawned by

the  kernel  for  each  block.  Number  of  thread  per  block  is  limited  and  it  can  be

maximum 1024. Thread id is calculated by the formula given  below.

“ int t_id = blockIdx.x * blockDim.x + threadIdx.x ”

Block number and thread number per block are calculated by given data and number

of SMs on device before launching the kernel. These two parameters directly effect

the  application  performance.  For  example  if  there  is  a  32  data  element  for

calculation, the elements can be grouped by 8 on each block and launch by four

blocks  in  parallel.  (Ex.  kernel_name<<<4,8>>>(pointer  of  the  elements)  ).  The

assigment is illustrated on figure 2.7. 

Kernel launch parameters may vary depending on the GPU. GPUs are categorized

according  to  SM  technologies  and  hardware  limits.  This  classification  is  called

compute capability. The abbreviated table 1 below shows the classification of the

hardware capacities .

Due to small memory sizes per SM, it is important to divide problems into small

pieces and process that pieces on different SM parallely. When the kernel launched

with  the  block  numbers  and threads  per  block  parameters,  kernel  is  assigned  to

separate  SM with  respect  to  block  numbers.  As  shown in  table  1  each  SM can

execute maximum 1024 consecutive thread if there are enough registers available.

More  than  1024 threads  should  be  divide  by different  blocks.  Equation  3  below

shows how to calculate thread number and blocks.
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Figure 2.7 : Data assignment for threads and blocks from Professional CUDA C
Programming (See p.37)



The basic formulation shown below in equation 4 calculates the number of blocks to

be launched while executing kernel.  Then the formula below uses the number of

blocks for divide and distribute threads evenly.

15

NumberofBlocks=⌈ Numberofcalculations
1024

⌉ ( 3 )

( 4 )
Numberofthreads=⌈ Numberofcalculations

NumberofBlocks
⌉
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Table 1: Cuda Compute Capability Classification from CUDA Programming Guide
10.1, 2019



While up to 1 thread can be execute on singe SM but only 32 different insttruction

can be executed at the same time. The execution of the 32 thread called as warp. The

thread assignment on the GPU shown in Figure 2.8. 
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Figure 2.8 : Thread assignment on GPU with CUDA from
Professional CUDA C Programming (See p.31)
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CHAPTER 3

CONVOLUTIONAL NEURAL NETWORKS

In the last decade, the increadible development of artificial intelligence is gradually

closing the gap between mechine and man. Thanks to the researchers and computer

enthusiasts, the applications based on Computer Vision are using everyday routines

when unlocking the phone with retina or tagging friends on photo in social media.

Convolutional  Neural  Networks  are  one  of  the  most  important  building  blocks

behind these achievements. 

Basically convolutional neural networks are a combination of the convolution layer,

pooling layer, activation layer and fully connected layer. Connection of the layers in

CNN  is  shown  in  figure  3.1.  In  this  chapter  layers  of  the  convolutional  neural

networks and connection between these layers are explained. The form of data will

change while  passing  data  from one layer  to  another  layer.  Convolutional  neural

networks can be used with every set of data which can be represented as single or

multi dimensional matrices.

3.1 CONVOLUTION LAYER

Real-life signals can be expressed as linear combinations of basic signals or cosine

and sine functions.  This representation of signals can be defined through Fourier

Theory. The concept of convolution is mainly based on Fourier Theory. In a linear

system, an output signal is obtained by applying a function to the input signal. This
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Figure 3.1 : Layers of convolutional Neural Network



output signal is expressed as the convolution of the function applied by the input

signal.  This  structure  is  represented  by  the  summation  symbol  in  discrete-time

systems, and by integral in continuous-time systems. Nowadays many applications

and systems, use this basic convolution concept. For instance, the digital High Pass

Filter or Low Pass Filter coefficients are shifted over the noisy audio signal along the

time axis to reduce the noise which is called as convolutional sum of filter function

and signal.

In figure 3.2 convolutional sum operation over input matrix 4 by 4 and filter matrix 2

by 2 is illustrated. Production of the convolutional sum is 3 by 3.

Figure 3.2 : Illustration of the convolution operation on 2-D matrix 

In  mathematical  language,  convolution  of  input  I with  the  filter  f  is  denoted  by

equation 5. Product of the convolution operation is denoted as G and the size of G

depends on input matrix row and column size and also the stride s. Stride is the key

point of number of elements shifted in input matrix for each element of the product

G. Size of the G matrix is calculated by  equation 6 given below.

G=[ m ,n ]=( I∗ f ) [ m, n ]=∑
j
∑

k

f [ j , k ] I [ m− j ,n− k ]

Goutput=⌊
(Ginput − f input )

s
+1 ⌋

Convolution process is important in terms of being the most basic process used for

filtering  and  obtaining  features  from  images  and  signals  in  digital  image/signal
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processing  techniques.  Features  obtained  from  signals  or  images  are  used  in

classification  algorithms.  In  the  literature  artificial  neural  networks  are  the  most

widely used classification algorithms which test the discriminative of features. CNN

has  emerged  as  an  architecture  that  enables  the  use  of  the  features  obtained  by

convolution in artificial neural networks directly.

Basic  multiplication  and  addition  operations  are  applied  in  layers.  The  features

obtained as a result of these operations show an exponential increase. To get rid of

the linearity, activation functions are placed between layers. Nonlinear results are

obtained between activation functions to reduce the slope of the gradient difference

in the subsequent layers.

Due to  gathered  information  from the  article  of  Krizhevsky et.  al.,  in  this  study

rectified linear unit functions used as an activation function. The convergence of the

error rate is dramatically increased against sigmoid function which is traditionally

used in neural networks.

The formulation of the ReLU is shown in equation 7. Simply ReLU takes x as an

input and compares with 0. If the number is bigger then zero, it returns the number x

else returns zero. 

y=max ( 0,x )
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Figure 3.3 : Illustration of the convergence difference between ReLU and
Sigmoid function in AlexNet. Solid line represents ReLU and the dashed line

represents Sigmoid function. ( Krizhevsky et. al. , 2012 )

( 7 )



3.2 POOLING LAYER

As long as in the convolution layer, pooling layer is also reduce the spatial size of the

gethered future from previous layer. There are 2 reasons for using the pooling layer.

The first reason is to reveal the dominant attribute within the field and the second

reason is to reduce the cost of computation. 

Only two types of pooling operations exist.

 Max pooling, returns the maximum value in the given area of the feature set. 

 Average pooling, returns the average value in the given area of the feature set.

The formulation of the max pooling given equation 8. That formulation can be used

both max and average pooling via changing operation type.

hi , j=operation {xi+k − 1, j+l −1, ∀ 1⩽k⩽m∧1≤ l ≤m }

Mostly  in  CNN architectures  max pooling is  used due to  it  performs as  a  noise

suppressant property. So can be said that mostly max pooling performs better than

average. In figure 3.4 both of the max and average pooling operations are illustrated.

The layers of CNN described before can be combined to get more detailed features

from raw image.  In  Zeiler  and Fergus  article,  the  effect  of  multiple  consecutive

convolution and pooling layers on the detail levels is described. Therefore, if deeper
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Figure 3.4: llustration of Max and Average pooling

( 8 )



details are desired, a deeper set of attributes can be extracted by replicating these first

two layers. 

3.3 FULLY CONNECTED LAYER

Fully connected layer is simply multi layer perceptron. Perceptrons have an input and

output.  In CNN fully  connected layer,  after  flatten the production of  the pooling

layer, it used as an input of the fully connected layer. The input of the fully connected

layer denoted as   x in Equation 9 from  Neural Networks and Learning Macines,

Haykin (See p.27). Perceptron calculates the output with the set of weights  w and

adds bias b. Bias is important for early levels of the training. The output of the layer

feeds  the  next  layer  as  an  input  until  output  layer  of  the  fully  connected  layers

reached.

y i=(∑j

wi × x j)+b

The  computationally  efficient  way  of  gathering  non  linear  combination  of  the

features  in  convolutional  neural  network  is  using  fully  connected  network  layer.

When the output is obtained, the results are used for the classification after using

logistic function. Logistic function is given equation 10.  

out h1=
1

1+e− neth 1

After  calculations  are  obtained,  the results  of  logistic  function  y can be used for

classification the input raw image and calculation of error.
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Figure 3.5 : Illustration of basic fully connected network
from Neural Networks and Learning Machines. (Haykin,

2009)

( 9 )

( 10 )



3.4 BACK PROPAGATION

After doing all of the calculations, the results of the forward pass are obtained. In

early levels of the training most of the time the results are incorrect. Reason of that,

the network should be feed by better weights and bias. To get better multiplicative

and additive parameters the network trained via back propagation algorithm. When

the output results obtained by fully connected network, error rates of each output

should be calculated (Equation 11). The total error rate of the network is sum of the

errors (Equation 12).

After that total error is obtained, the error rate should be distribute over previous

layers to calculate Δw and Δx by applying the chain rule (Equation 13).

By formula 13 negative gradient can be calculated and that gradient can be use for  to

train  the  network  with  respect  to  calculated  error  E.  When  back  propagating

distribution of the errors mathematical operations are important ( see figure 3.6 ).
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( 11 )

( 12 )

( 13 )

Ei=
1
2

× (targeti−output i )
2

Etotal=∑
i

j

(1
2 )× (target i−output i )

2

∂ E total

∂ w
=

∂ Etotal

∂ out o

×
∂out o

∂ neto

×
∂net o

∂ w

Figure 3.6 : Distribution of loss with respect to operators
from Stanford Lecture Notes 2017



The  mathematical  operators  changes  the  behavior  while  back  propagation.

Behaviors of the operations that used in figure 3.6 are explained below.

Add gate  :  While  back propagating  regardless  off  what  their  value  is  distributed

evenly. As shown in figure 3.6, partial derivative of the loss value 2.00 distributed

evenly.

Multiply gate: While back propagating multiplication gate distribution of the loss is

calculated for first operand by multiplication of the loss with the second operand. As

shown in the figure 3.6 distribution of the loss x is equal to y times loss and loss of y

is equal to x times loss.

Max  gate : Distribution over max gate is simply distribute the loss value just over

the maximum number
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CHAPTER 4

DATA ORIENTED MULTI-GPU PROCESSING

As known, convolutional neural  networks are highly parallelizable structures,  but

first  of  all,  all  parameters  of  CNN  should  be  defined  for  reproducibility  and

consistency in all experiments. In the table blow parameters of CNN are defined.

 Table 2 : CNN parameters.

Parameter Value

Image width and height 28, 28

Total data count 70000

Train data count 60000

Test data count 10000

Filter width and height 5, 5

Filter count 6

Filter initialization Random, seed = 0, floating point between 0-

1

Convolution stride 1

Pooling size 4,4

Activation Function Rectified linear units (relu)

Fully connected layer 1

Output number of fully connected later 10

Fully connected layer weight initialization Random, seed = 0, floating point between 0-

1

Number of weights in fully connected layer 216

Mini batch size 2048

Stream batch size 128

Learning type Backpropagation

Error function Mini-batch gradient descent

Weight update Average of the delta gradients
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4.1 NAIVE GPU IMPLEMENTATIONS

Due to the nature of convolution operation, all parts can be calculated differently

from each other. As mentioned in chapter 3, standard convolutional neural network

has four steps. Algorithm 1 shows thet psuedo code of the CNN. 

Since  the  optimization  algorithm of  CNN uses  mini  batch  gradient  descent,  the

network should be feed as much as the mini batch amount. This value is shown as m

in  algorithm 1.  The  native  implementation  refers  while  reach  to  the  termination

criteria, loop through the mini batch data. In mini batch data convolution operation

has to be calculate. Calculation of the convolution operation can be parallel inside

the mini batch. For every filter the convolution operation must be done repeatedly.

Number of filter is denoted by f in the algorithm below.

Step Task Layer

1 Define input[m][iR][iC]

2 Define o_conv[m][f][iR-fR+1][iC-fC+1]

3 Define o_activation[m][f][iR-fR+1][iC-fC+1]

4 Define o_pooling[m][f][(iR-fR+1)/pH][(iR-fR+1)/pW]

5 Define o_fullyC[m][o]

6 Define gradient_loss[o]

7 While not termination criteria satisfied

8      i ← 0

9      While i < m

10           j ← 0

C
on

volu
tion

 L
ayer

11           While j < f          

12                k ← 0

13                While k < iR – fR + 1 

14                     l ← 0

15                     While l ← iC – fC + 1

16                          convolve(input[i][k][l], filter[j], o_conv), l = l + 1

17                     End while, k = k + 1

18                End while, j = j +1

19           End while

20           j ← 0 A
ctivation

F
u

n
ction

21           While j < f

22                k ← 0
23                While k < iR – fR + 1 
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24                     l ← 0

25                     While l ← iC – fC + 1

26                          relu(o_conv[i][j][k][l], o_activation), l = l + 1

27                     End while, k = k + 1

28                End while, j = j + 1

29           End while

30           j ← 0

P
oolin

g L
ayer

31           While j < f

32                k ← 0

33                While k <  (iR-fR+1) / pH

34                     l ← 0

35                     While l < (iC-rC+1) / pW

36                          maxPool(o_activation[m][f][k][l],o_pooling), l = l + 1

37                     End while, k = k + 1

38                End while,  j = J + 1

39           End while

40           j ← 0

F
u

lly C
on

n
ected

 L
ayer

41           While j < o

42                k ← 0

43                While k < f

44                     l ← 0

45                     While l < (iR-fR+1) / pH

46                          x← 0

47                          While x < (iC-fC+1) / pW

48                               applyWeights (o_pooling[i][k][l][x], o_fC[m][o])

49                               x = x + 1

50                          End while

51                     End while

52                End while

53           End while

54      End while

55      calculateLoss(o_fullyC)

56      i ← 0

B
ack

P
rop

agation

57      While  i < m

58           calc_dC(calc_dA(calc_dP(calc_df(gradient_loss)))), i = i + 1

59      End while

60 End while
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Input parameters of convolve function  i represents the ith image in the input batch.

Filters are stored in arrays with size of f with column size fC and row size fR. The

convolve operation can be done in parallel with the execution of kernel parameters

MINIBATCH_SIZE blocks  and  CONVOLUTION_LAYER_OUTPUT_COLUMN_SIZE  *

CONVOLUTION_LAYER_OUTPUT_ROW_SIZE threads.

basicConvolve<<<MINIBATCH_SIZE, CONVOLUTION_LAYER_OUTPUT_COLUMN_SIZE * 
CONVOLUTION_LAYER_OUTPUT_ROW_SIZE>>>(d_miniBatchInputData, d_filters, 
d_miniBatchConvolutionOutput);

In kernel each thread calculates output matrix via given algorithm below.

__global__ void basicConvolve(float *input, float *filter, float *output){
int innerPosition = threadIdx.x;
int innerPositionRow = innerPosition / CONVOLUTION_LAYER_OUTPUT_ROW_SIZE;
int innerPositionCol = innerPosition % 
CONVOLUTION_LAYER_OUTPUT_COLUMN_SIZE;
int imageNumber = blockIdx.x;
int imageStartPosition = imageNumber * INPUT_ROW_SIZE * INPUT_COLUMN_SIZE;
int   generalPosition = imageNumber * blockDim.x + innerPosition;
float result = 0.0f;
for (int k = 0; k < CONVOLUTION_FILTER_COUNT; ++k) {

for (int i = 0; i < CONVOLUTION_FILTER_ROW_SIZE; ++i) {
for (int j = 0; j < CONVOLUTION_FILTER_COLUMN_SIZE; ++j) {

result += input[imageStartPosition
+ innerPositionRow * INPUT_ROW_SIZE
+ innerPositionCol * INPUT_COLUMN_SIZE
+ i * INPUT_COLUMN_SIZE + j]
* filter[k * 

CONVOLUTION_FILTER_COLUMN_SIZE * CONVOLUTION_FILTER_ROW_SIZE + i * 
CONVOLUTION_FILTER_COLUMN_SIZE + j];

}
output[(imageNumber * CONVOLUTION_FILTER_COUNT + k)

* CONVOLUTION_LAYER_OUTPUT_ROW_SIZE
*CONVOLUTION_LAYER_OUTPUT_COLUMN_SIZE
+ InnerPositionRow 
* CONVOLUTION_LAYER_OUTPUT_COLUMN_SIZE
+ innerPositionCol] = result;

}
}

}

In activation function basically loop through with every element of output vector of

convolution layer and apply max(0, o_conv) function. Because of the each Sm can

process  maximum  1024  thread,  thread  number  and  block  number  must  be  re

calculate. The number of elements in the o_conv array is 24*24*2048*6 = 7077888.

therefore kernel must be launch with parameters  2048 blocks of 576 threads.
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In pooling layer loop through for each image, every 4 by 4 area should be traversed

and  element  with  maximum value  should  be  extracted.  The  output  array  of  the

pooling layer should be 2048 by 6 by 6 by 6. 

Kernel is launch with given parameters below

maxPooling<<<MINIBATCH_SIZE, (CONVOLUTION_LAYER_OUTPUT_COLUMN_SIZE / 
POOLING_COLUMN_SIZE) * (CONVOLUTION_LAYER_OUTPUT_ROW_SIZE / 
POOLING_ROW_SIZE)>>>(d_miniBatchActivationOutput, d_miniBatchPoolingOutput);

Therefore  kernel  is  launch  with  2048  blocks  of  36  threads  and   kernel

implementation is given below.

__global__ void maxPooling(float *input, float *output){
int innerPosition = threadIdx.x;
int row = (innerPosition / 6);
int col = innerPosition - row * 6;

float temp = 0.0f;
float max = 0.0f;
for (int i = 0; i < POOLING_ROW_SIZE; ++i) {

for (int j = 0; j < POOLING_COLUMN_SIZE; ++j) {
temp = input[blockIdx.x * blockDim.x + row * 24 + col * 4 + i * 24 + j];
if (temp > max){

max = temp;
}

}
}
output[blockIdx.x * 216 + row * 6 + col] = max;

}

In the fully connected layer the kernel can be launched with parameters 2048 block

and 216 threads. Basically we can assign all the connection of an image to a SM.

Than every connection in fc can be done calculate parallel.

Fully connected kernel launched with give code below.

fullyConnected<<<MINIBATCH_SIZE, CONVOLUTION_FILTER_COUNT * 
CONVOLUTION_LAYER_OUTPUT_COLUMN_SIZE / POOLING_COLUMN_SIZE * 
CONVOLUTION_LAYER_OUTPUT_ROW_SIZE / 
POOLING_ROW_SIZE>>>(d_miniBatchPoolingOutput, d_fcFilters, d_fcOutput);

As mentioned equation 9 in chapter 3.3 fully connected kernel can be easyly 
implemented.
__global__ void fullyConnected(float *input, float *weight, float *output){

int point = blockIdx.x * blockDim.x + threadIdx.x;
for (int i = 0; i < CLASS_COUNT; ++i) {

output[blockIdx.x * CLASS_COUNT + i] = input [point] * weight[threadIdx.x * 
CLASS_COUNT + i];

} }
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4.2 DATA ORIENTED GPU IMPLEMENTATION

In proposed data oriented approach instead of reading batch of image data one by

one. Data should be combined column by column. One of the problem in the naive

approach is while reading the data. The memory access pattern in the naive approach

access the data  is  not accessing repeated data  for each repeated thread.  For each

thread 128b data stored on cash and 32 sequential data access by each thread in warp.

Memory access pattern of naive approach is illustrated in figure 4.1 below. In the

figure, every color in thread and data shows the assignment.

Figure 4. 1 : Memory access patern of navie implementation

When the thread access the data more then data number 128, thread should access the

off-chip memory. The cost of accessing off-chip memory is between 600 to 800 cycle

depending on status of the buffer.

In figure 4.2 shows the orientation of the data. When data is re constructed like in

figure 4.2 each part of the each filter can be executed in-line with sequential threads

in warp. Unlike CPUs, GPUs have very well optimized context switching mechanism

on warps. 
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Figure 4. 2 : Data orientation of input image

With this approach data is accessed with the %100 memory occupancy. Since every

sequential  thread  accessing  data  in  sequence  in  a  warp  the  unnecessary  global

memory accesses count becomes zero.

The  other  optimization  approach  is  streaming  data  and  the  computation.  CUDA

streams are simple FIFO structure like queue. The main difference is cuda default

stream is defined by blocking queue due to protect data against common data race

conditions.  Instead  of  default  stream,  CUDA can support  explicitly  defined non-

blocking streatms. With the minimum sixteen non-blocking streams, the data transfer

and the computation can be overlapped. While half of the data transfers the other half

of the data can be process by the SMs.

When using this approach all of the input and output arrays of the network should be

recalculate. For example with the data for total 2048 image in 16 streams with 28

rows and 28 columns new input  array should be 28 rows and 128 * 28 = 3584

columns. The array size is increased to 28 * 1792 = 100352 times 16 elements. For

an  output  array  128*24*24 = 73728 times  16  elements.  While  maximum thread

number is 1024, the kernel should be launched with 72 blocks and 1024 thread for

each stream. While this stream processes data, the other stream can be copy next 64

image from host memory to device memory. Due to cudaMemcpy overhead less then

0.01 MB of transfers reduces the application performance. 

To launch convolution kernel loops are used for traversing filter position, changing

streams. Kernel launch approach is given below. With that approach basically every
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position of the filter elements and input elements are multiplied. Instead of creating

25  different  result  array,  adding  each  identical  matrices  gives  the  result  of  the

convolution operation. By that reason that can be placed inside the kernel for saving

GPU memory. In addition to that, for every stream an event is recorded and it helps

for scheduling. With that events, streams are paused until their data transfered.

for (int k = 0; k < NUMBER_OF_STREAMS; k++) {
for (int i = 0; i < CONVOLUTION_FILTER_ROW_SIZE; i++) {

for (int j = 0; j < CONVOLUTION_FILTER_COLUMN_SIZE; j++) {
if (!transfered[k]){

loadMiniStreamBatchToGPU(miniBatchCounter, k, 
streams[k], d_miniBatchInputData);

cudaEventRecord(events[0][k], streams[k]);
transfered[k]=true;

}
cudaStreamWaitEvent(streams[k], events[0][k],0);
convolve<<<72, 1024, CONVOLUTION_FILTER_COUNT*sizeof(float),

streams[k]>>>(d_miniBatchInputData + (k * streamLength) + (i * streamRowLengthForInput) + (j * 
MINIBATCH_SIZE), d_filters+(i * CONVOLUTION_FILTER_COLUMN_SIZE + j), 
d_miniBatchConvolutionOutput + (k * streamConvolutionOutputLength) + (i * 
streamRowLengthForConvolution) + (j * MINIBATCH_SIZE), streamConvolutionOutputLength);

}
}

}

As seen in the kernel launch parameter shared variable array used for data access.
Every thread should be accessed same position of a filter for all filters. Therefore
shared variable is defined with the size of 6 * sizeof(float). In convolution kernel
shared variable array is filled and then all threads are synchronized to make sure of
every thread gets the filter element. After that computation of each elements can be
calculated by the kernel given below.

__global__ void convolve(float *input, float *filterX, float *output, int 
streamConvolutionOutputLength){
int rowNumber = blockIdx.x / 3;
int position = rowNumber*INPUT_COLUMN_SIZE*INPUT_ROW_SIZE + threadIdx.x;
if (input[position] != 0.0f) {

extern __shared__ float fx[CONVOLUTION_FILTER_COUNT];
for (int i = 0; i < CONVOLUTION_FILTER_COUNT; ++i) {

fx[i] = filterX[i];
}
__syncthreads();
for (int i = 0; i < CONVOLUTION_FILTER_COUNT; ++i) {

atomicAdd(&output[position + i * streamConvolutionOutputLength] , 
output[position + i * streamConvolutionOutputLength] + input[position] * fx[i]);

}
}

}
After every layer operation gpu streams should be synchronize.

for (int i = 0; i < NUMBER_OF_STREAMS; ++i) {
cudaStreamSynchronize(streams[i]);

}
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This study is based on maximize memory occupancy, but max pooling operation not 
fits very well on that. Because of that while activation operation not only ReLU 
applied but also data layout redesigned for pooling operation. ReLU kernel launched 
with the code below.

RELU<<<activationBlockSize,activationThreadSize, 0, streams[i]>>> 
(d_miniBatchConvolutionOutput + (i * streamReluOutputLength), d_reluOutput, i, 
streamReluOutputLength, streamReluArrayLength);

If the output length of each stream is a multiplication of maximum thread per block, 
block size is calculated by output length over 1024 else output length over 1024 plus 
one. Also if output length is larger than 1024, thread number is  seted 1024 else 
thread number remains as output length.

In kernel each position of the input matrix is addressed to a position both inner area 
and outer area. That means inner area position gives the position of the elements 
which are assigned to new data layout and output area position gives the position of 
the elements which are compared together. In figure 4.3 inner and outer positions are 
illustrated.

I1E1 I2E1 I3E1 I1E2 I2E2 I3E2 I1E3 I2E3 I3E3 I1E4 I2E4 I3E4

I1E5 I2E5 I3E5 I1E6 I2E6 I3E6 I1E7 I2E7 I3E7 I1E8 I2E8 I3E8

I1E9 I2E9 I3E9 I1E10 I2E10 I3E10 I1E11 I2E11 I3E11 I1E12 I2E12 I3E12

Figure 4.3: Each color represents inner position and repeated color patterns
represents output positions.

With respect to given information above kernel code is implemented below.
__global__ void RELU(float *input, float *output, int streamNumber, int streamOfset, 

int innerArrayOfset){
int element = blockIdx.x * blockDim.x + threadIdx.x;
if(input[element] > 0.0f){

int threadOuterRow = element / maxPoolingOuterRowLength;
int temp = element - (threadOuterRow * maxPoolingOuterRowLength);
int threadInnerRow = temp / maxPoolingInnerRowLength;
temp = temp - (threadInnerRow * maxPoolingInnerRowLength);
int threadOuterCol = temp / maxPoolingOuterColumnLength;
temp = temp - (threadOuterCol * maxPoolingOuterColumnLength);
int threadInnerCol = temp / maxPoolingInnerColumnLength;
temp = temp - (threadInnerCol * maxPoolingInnerColumnLength);
int arrayNum = threadInnerRow * POOLING_COLUMN_SIZE + threadInnerCol;
int position = (threadOuterRow * maxPoolingOuterRowPosition + threadOuterCol) 

* MINIBATCH_SIZE + temp;
output[streamNumber * streamOfset + arrayNum * innerArrayOfset + position] = 

input[element];
}

}
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I1E1 I2E1 I3E1 I1E3 I2E3 I3E3 I1E2 I2E2 I3E2 I1E4 I2E4 I3E4

I1E5 I2E5 I3E5 I1E7 I2E7 I3E7 I1E6 I2E6 I3E6 I1E8 I2E8 I3E8

I1E9 I2E9 I3E9 I1E11 I2E11 I3E11 I1E10 I2E10 I3E10 I1E12 I2E12 I3E12

Figure 4.4 : Illustration of the data layout before max pooling.

With respect to figure 4.4, now it can be easily compared each row with next row
like reduction technique. After comparision the results gives the maximum elements
of each pooling area as a vector with new layout. Implementation of the max pooling
is given below and the kernel launch parameters are calculated with the same way in
ReLU launch parameters.

__global__ void maxPooling (float *input, float *output, int streamNumber, int streamSize, 
int poolArraySize){
int element = blockIdx.x * blockDim.x + threadIdx.x;
const int total = POOLING_COLUMN_SIZE * POOLING_ROW_SIZE;
float compOperands[total];
for (int i = 0; i < total; i++){

compOperands[i] = input[i * poolArraySize + element];
}
int div = total;
for (int i = 1; i <= 4; i++){

div = div / 2;
for(int j = 0; j < div; j++ ){

compOperands[j] = compOperands[2*j] > compOperands[2*j+1] ? 
compOperands[2*j] : compOperands[2*j+1];

}
}
output[streamNumber * streamSize + element] = compOperands[0];

}

After pooling operation, fully connected layer remains. Due to nature of the fully
connected layer it directly fits for maximum memory occupancy. But the filters does
not  fits  well.  For  that  reason  shared  memory  is  allocated  with  the  size  of
CLASS_COUNT times sizeof (float) in GPU. Then calculation done with respect to
given code below.

__global__ void fullyConnected(float *input, float *fcfilter, float *output, int streamNumber, 
int streamSize){

int element = blockIdx.x * blockDim.x + threadIdx.x;
if(input[element] > 0.0f) {

extern __shared__ float fxFc[CLASS_COUNT];
for (int i = 0; i < CLASS_COUNT; ++i) {

fxFc[i] = fcfilter[blockIdx.x * CLASS_COUNT + i];
}
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__syncthreads();
for (int i = 0; i < CLASS_COUNT; ++i) {

output[streamNumber*streamSize + i * blockDim.x + 
threadIdx.x] = input[element] * fxFc [i];

}
}

}

With that  approach thread  concurrency and data  transfer  –  calculation  overlap  is
achieved.  To visualize  that  results  NVIDIA Visual  Profiler  (NVVP) tool  is  used.
Illustration of the task distribution and concurrency shown in figure 4.5.

37



Figure 4.5: Illustration of overall task distribution, thread concurrency and data
transfer – computation overlap.
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4.3 DATA ORIENTED SCALABLE MULTI-GPU IMPLEMENTATION

While scaling the data oriented approach in multiple GPUs, data reconstructed like in

single GPU approach with the small difference. Due to the convolution operation

data can not be split in the middle. When split 28 by 28 data first the output layer of

the convolution layer must be calculated. When 28 by 28 image convolved with 5 by

5 filter the output is 24 by 24. When dividing data 2 piece due to memory access

pattern optimization, it  should be split via rows. Equation 14 calculates the exact

position to the last row number for input image.

And the other part of the input first row number calculated by equation 15

After that division complete, rows between first row of the image part 2 and last row

of the image part 1 copied both side due to convolution operation. Split operation of

the input image is illustrated in figure 4.6.

Figure 4.6 : Spliting input image is illustrated

After pooling layer in multi GPU approach each GPU holds half of the extracted

futures of the entire network. Before the calculation of error rates, both GPUs should

be  synchronized.  While  synchronization  of  the  data  instead  of  classical  method

writing data to host memory after that copy data to other GPU, with the direct access
39

( 14 )

( 15 )

LastRowNumber=
inputRowSize − filterRowSize+1

2
+filterRowSize− 1

FirstRowNumber=LeastRowNumber − filterRowSize+1



property of the GPUs, data can be transferred via PCI-Express with using more PCI-

Express lanes. With direct GPU access 12 GBps transfer speed is reached. When the

recursive calculations of the back propagation process ends, simply summation of the

all delta matrices with each other results the correct value of the delta weights of the

entire network.

Last important point of multi GPU process is the distribution of the tasks to GPUs

with breadth first approach. With breadth first task assignment GPUs can hide kernel

launch overheads between computation time.

Illustration  of  the  task  distribution,  concurrency  and  data  tranfer  –  computation
overlap for multi-GPU shown in figure 4.7.
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Figure 4.7: Illustration of overall task distribution, thread concurrency and data
transfer – computation overlap for multi-gpu.
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CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

As conclusion the convolutional neural network algorithm is optimized for memory

access  pattern  ,  device  memory  hierarchy,  thread  occupancy  and  concurrency

obtained. With that improvement in total 4.29 times speedup gained. Table 3 shows

the speedup for each layer of the convolutional neural network and memory copies.

Operation Naive Optimized Multi-GPU Optimized

Memory copies 1 ms. 0.06 ms. 0.018 ms.

Convolution 131.3 ms. 30.47 ms. 15.96 ms.

RELU 1.78 ms. 0.33 ms. 0.17 ms.

Max Pooling 0.36 ms. 0.55 ms. 0.3 ms.

Fully Connected Network 2.65 ms. 0.58 ms. 0.3 ms.

Total 137.09 ms. 31.99 ms. 16.748 ms.

Speed Up X 1 X 4.29 X 8.19

The configuration of the computer used for testing are Intel i7 4700MQ, 8GB ram

and 2 x Nvidia GT 750M 2GB. But in tests only one GPU is used.

For the multi gpu efficiency is calculated with the formula given chapter 2.

Only 4% loss is occurred while computing 2 GPU and achieved efficiency is 96%.

With respect to approaches described in chapter for, following results are gained.

Results of the both naive, optimized and multi-gpu optimized methods are detaily

given figures below
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Efficiency=
T (multi−GPU )

Number of GPU×T (single−GPU )

=
8.19

(2×4.29)
=0.96



Figure 5.1: Elapsed time while copying data from host to device memory.

Figure 5.2: Elapsed time for the convolution operation.
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Figure 5.3 : Elapsed time for activation layer. 

Figure 5.4 :  Elapsed time for pooling layer.
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Figure 5.5 : Elapsed time for fully connected layer.

Figure 5.6 : Total duration of forward pass operation.
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Figure 5.7 : Achieved speedups.

In this study there are a lot  of rooms for improvement.  For each GPU and GPU

streams can be assign to different thread to reduce the kernel and asynchronous copy

launch overhead. Result of that approach approximately 10% speedup expected.

For the future works this approach will be implemented on tiling problem. Within

this approach not only the data but also parameters of the CNN will be distributed

over multiple GPUs. This leads dividing the deeper neural networks to smaller parts

then next small parts of the networks can be processed discretely. 

Our first  goal  is  generalizing  the  technique  that  studied  in  this  thesis.  After  that

generalization, this technique will be combined with evolutionary learning.  With that

knowledge next study will be related to real time ECG arrhythmia detection.
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