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ABSTRACT

AN EQUIVALENT DEFINITION OF LATTICE IMPLICATION
ALGEBRAS

Sertoglu, Berken
Msc, Mathematics
Supervisor: Prof. Dr. Mehmet Terziler

August 2019, 30 pages

In this thesis, we give an equivalent definition of a lattice implication algebra
(LIA) via a reduced number of axioms, and hereby we think we have

significantly simplified the widely-accepted definition of an LIA.

Key Words: Lattice, Boolean Algebras, Order — Reversing Involution, Lattice
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KAFES IMPLiIKASYON CEBIRLERININ DENK BIR TANIMI

Sertoglu Berken
Yiiksek Lisans, Mathematics

Danigman: Prof. Dr. Mehmet Terziler

Agustos 2019, 30 sayfa

Bu tezde, aksiyomlarin sayisin1 indirgeyerek bir kafes implikasyon cebirinin
denk bir tanimini veriyoruz ve bu sekilde bir LIA‘ nin her zaman kabul goren

tanimint Snemli Olgiide sadelestirdigimizi diisiiniiyoruz.

Anahtar Kelimeler: Kafesler, Boole Cebirleri, Sira — Tersleyen Involiisyon, Kafes

Implikasyon Cebirleri.
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1. INTRODUCTION

Reasoning on the classical two — valued logic is based on certainty. Natural
extensions of this logic deal with undercertainties, vagueness, and fuzziness;
this kind of logics are many — valued, i.e, non —classical, logics. Among
them, the lattice implication algebra is alogic system with truth value in a
lattice, lattice — valued logic, based on an implication algebra. That is why, a
lattice implication algebra is an alternative logic for knowledge
representation and reasoning; more precisely, it is a combination of an
algebraic lattice and an implication algebra for which the first
axiomatization is proposed in Xu Y. In this logic, the lattice is applied to
define uncertainties, and particularly in comparability whereas the
operation, =, of the implication algebra aims to demonstrate the way
human reasons. For further information, see Xu, Y. Ruan D., Qin K ., Liu J.

Different but equivalent definitions of an LIA can be formulated; see, for
instance, song Li— Xia. In this study, we give a new definition of an LIA

with only four axioms equivalent to generally accepted axiomatization as
in Jun Y.B.



BASIC CONCEPTES, LATTICE and BOOLEAN ALGEBRAS

This chapter includes concepts and structures that facilitate the readability
of the thesis. The proofs of very few stated results have been given.
“Givant - Halmos Introduction to Boolean algebras‘’ can be consulted as
the main source.

1.1 POSETS
Definition 1.1.1

Let S be a nonempty set and < be a binary relation on S. Afterwards S
is a partially order set or a poset, represented by (S, <) if properties
written below hold for any s, sy, s3 € S:

(r) < is reflexive: sy <s
(a) < is antisymmetric:s; < s and s; <'s; implies s; =s;.

(t) < is transitive: s) <s; and sy < s3 implies s; < s3.

Definition 1.1.2

Given a poset (S,<). If s;<s; or s, <s; for any s;,s; in S, then the
elements s; and s, are said to be comparable. A poset that satisfies this
condition is named a linearly ordered set or totally ordered set, and the
relation < a linear or total order,or chain.

Examples 1.1.3

(a) If < is defined as the division relation and Z" denotes the set of all
nonnegative integers, then (Z*, <) is a linearly ordered set. Note that
(Z ,<) is not even a poset since < is not antisymmetric: For a, b in
Z ,a<b means a|b and b<a means b|a.But it does not follow
that a =b; indeed, we have 2|-2 and -2 |2, but -2 is not equal to 2.

(b) For the set of N( G) normal subgroups of the group G. If < is
defined as the inclusion relation C, then (N(G), <) is not a poset.
For any
HeN(G), H<H since we have hH=Hh for all heH, so < is
reflexive. < is also antisymmetric because for any H;, H, in N(G), if
H; < H; then H cK and if H, < H; then H, € H;, hence H; = H,. That
< is not transitive is left as an exercise. Drawings of finite posets can
be made under the name of Hasse diagram.



Definition 1.1.4

An element x in a poset (S, <) covers an element s; €S if s; <x and
s;1 < sy < x does not hold for any s; in S, and this is written as s; —< x.
A Hasse diagram of a poset (S ,<) displays the elements in this way
when s; —<x, s; and x are joined by an upward line from s; to x.

Definition 1.1.5

Given a poset (S,<) and a subset A of S. Then u€S is an upper
bound for A if a<u for all a€ A. The element vE€S is a least upper
bound (lub) of A if v is an upper bound for A and v <w for any upper
bound w for A . Similarly, a lower bound and the greatest lower bound
(glb) are described as A.

The lub of a set A is named as the supremum, denoted supA, and the
glb of A is also called infimum, denoted inf A.

Proposition 1.1.6

Given a poset (S, <) and a subset A of S. Then if it exists,

(a) Sup A is unique, and

(b) Inf A is unique.

Proof

We prove only part (a); part (b) is thrown in a similar way.

Suppose that A has two lubs, u; and u,. Then, each of them is an upper
bound for A. Since u; is an lub for A, we have u; < u;. Similarly, u; is an
lub for A, hence u; < uy. Then, by antisymmetry of <, we get u;=u,, and
therefore, sup A is unique. [

For S;={a,b} and S;={a,b,c}, the following are the Hasse Diagrams
of the posets (P (S,),E) and (P (S,), &), respectively,



fa,b,c}

- N

fa,b} {b,c}

Figure 1.1
1.2 Lattices

A lattice can be defined in two ways: algebraically and relationally.
Cleary, in a poset any two elements or a subset of the poset may not
possesses alub or glb. A lattice is a special poset.

Definition 1.2.1

A lattice is a poset (L,<)such that for any ¢,,%, in L, sup {€1,%>}
and inf { £;,#,} exist. Sup { £, ,¥> }is denoted ¢, V¥, and is read as ‘¢,
join€; “or ‘€ or £,°. Inf {£,,4,} is denoted £, A¥, and is read as
“f1 meet £, or ‘¥ and ¥, ‘. If each subset of (L,<) has a sup and
an inf, then the lattice is complete.

Definition 1.2.2

Given a lattice (£, <).

(i) A bottom element of L, denoted |, satisfies 1 < #; for all £, €L. A
bottom element is usually called a zero, denoted 0.

(ii) A top element of L, denoted T, satisfies £; < T for all £, € L. A top
element is usually called a wnmity, denoted 1.

(iii ) If an element ¢, € L satisfies ; V£, =1 and £, A £,'=0, then it is
called the complement of ¢,.



Proposition 1.2.3

Let LxM={(£;,m )| £tEL,bEM]} where L and M are lattices.
If we define the relation < on LxM by (4,,m,)<(¥£2,m,) if and

only if £, <% in L and m, <m; in M, then (LxM ,<)is a lattice.

Proof

That £Lx M is a poset can be easily established. Show that any two
elements of £Lx M have sup and an inf.

Since £ is a lattice, then ¢, V&, €L and £, AL, €L for any ¢,¥, in L.
Similarly for M:m, Vm, €M and m;Amy €M for any b, m, in M.
Then(t’l ,ml)V({’z,mz)=({’1 v, ,m Vmy )EL x M and
1. m)IAN(Ly,my)=(LiANE2, m Amy)€ELXM;in other words, sup
and inf exist.

Therefore, L x M is a lattice.

Theorem 1.2.4
Let (£, <) be a lattice. Then for any ), ¥>, ¥; in L,

(1) Livey=2L,ve and Ly ALy =F7 N8 (Commutativity)

(ii){ﬂV(€2V{)3)=(€1V€2)V'g3 and {’]/\({’2/\{)3)=(-€1/\£2)/\£3
( Associativity )

(iii)£,vE€=4¢ and £, A ¥, =4, (Idempotenty )

(iv)&yv(£iAd)=4, and i N(£1VLy)=1+¢; (Absorption )

Duality Principle 1.2.5

Any statement that is true for a lattice continues to be true if
(a) < and = are interchangeable throughout the statement, and

(b) V and A are interchangeable throughout the statement.

(c) If the lattice has a zero 0 and a unity 1,then 0 and 1 are
interchangeable throughout.

Note that the proof of Theorem 1.2.4 can be done by crossing between V
and A, by the Duality Principle.

Theorem 1.2.6



Let L be a nonempty set and let V and A have the properties of
Theorem 1.2.4. If we define < on £ by £, <¥, if and only if £,V £, =
Y, or £y ALy=4,, then (L,<) is a lattice. O
Definition 1.2.7
Let (L,V,A) be a lattice. If for all ¢, ¥, €5 € L,

UV (LA)=(LiVE)IAN(LIVE)

or
LIN(LaVE) =(iA) V(LI AE)

hold , then L is said to be a distributive lattice.

Proposition 1.2.8

A lattice £ is distributive if and only if the operations V and A are left—
cancelable, i.e. if and only if for all #,¢,,¢3€L, V£ =4 V¥ and
LN =8 NP implies £, = {5,

Proof

Let £ be a distributive lattice. It follows as:

b=l A(£ V) ( Absorption )
=l A3V E)) ( Hypothesis )
={H AL VL) (V is commutative )
=(HL A8 )V (2 ATE) ( Distribution )
=(&indr)V(crdy) ( Commutativity )
=(4H1AE3)V(43A1E) ( Hypothesis )
=(&A0)V(E:3nEy) ( Commutativity )
=0 A (€1 V) ( Distributions )
=03A(£41VHE3) ( Hypothesis )
={3A(€3V4E)) ( Absorption )
= {73.

Thus, if £ is distributive €,V £, =2V £3 and €| A€, =4 A €3 imply
{’2 ={’3.

Now, suppose that £ is left — cancelable.

Start from (£, V&, )A (L VP¥3) to arrive at €1V (€A €3).



(BVOIN(LVE)=(L V)ALV E) ( Hypothesis )
=4 Vv ( Idempotent )
=4 v(¥4:nPls) (Since £,=143)
=€|V(€2/\{73).D a

1.3 Boolean Algebras

Boolean algebras are one of the most commonly - used structures in
mathematics; they constitute primary examples given in the branches of
computer science, classical logic, topology etc.

Definition 1.3.1

A Boolean Algebra is a structure (B,A,V,',0,1) of type
<2,2,1,0,0> with the distinguished elements 0 and 1, called the
bottom and top, meeting the axioms below for all by, b, € B:

(i)A and VvV are commutative, associative and distributive over each other;
(i) by A(b; Vby)=b; and b; vV (b; A by ) ( Absorption );
(iii)byjA0=0and byv1i=1;

(iV)b]Vb]'=1 and b1/\b|'=0;

Examples 1.3.2

(a)Let P (S) denote the power set of the set S. Then if we interpret A
as set—intersection N,V as set—union U,’as complementation, and 0 as
® and 1 as S,then (P (S),Nn,U,°,®,S) is clearly a Boolean algebra,
called the power ser algebra of S.

(b)) Given a positive integer n, let D(n) denote the set of positive
divisors of n. Assume that n is a product of distinct primes. On D(n), we
can define the operations the greatest common divisor, gcd, and the least
common multiple, lcm. Now, taking A as gcd and Vv as lcm, distinguished
elements as 1 for gecd and n for Iem,i.e.,ged(1,x)=1 and lecm(x,n)
=n, and finally to each x € D(n). We can create a complement n / x,
therefore it is demonstrated that (D(n), ged,lem,’,1,n) is a Boolean
algebra.

Clearly, operations ged and Icm are commutative.

Associativity



It suffices to verify it for Vv, for instance, by Duality Principle.

biV(baVbs)=lem(b;,lcm(by,bs))
=lem (lem (by, by ), b3)

=(b;Vby)Vbs

Absorption

b]/\(b|Vb2)=ng(b],lcm(b],bz))=b1 and b;V(bjAby)=lem(b;,
gcd(bl,bz)):bl.

Complementation

biAb =ged(by,b )=ged(b;,n/b)=1 and b; Vb, =lem (b, b/ )=
lem (b;,n/b;)=n.

Distribution

We only verify that bj A(b,Vbs;)=(b;Aby)V (b;Abs). Now consider

by A(byVbs)=ged (b, lem(by,bs)). We will try to make a proof by
taking exponents on the prime factors of b;, by, and bs into account. Let
b; be the product of prime factors with exponents i, b, with j, and b;
with k; note that ij, ip, i3 can be 0 or 1.Then the exponent of a prime
factor in ged ( by, lem ( by, b3 )) is min (i, max (iz,i3))=max (min (i,
i2), min (i;,i3)), which equals the exponent of a prime factor in lem
(ged (bi,b2), ged (by,b3))=(biAby)V (b Abs). Likewise, (b V (byA
b3))=(b; Vb )A(b;Vbs) can be shown

We now give several results, well — known, related to the distinguished
elements and complementation.

Theorem 1.3.3



Let B=(B,A,V,',0,1) be a Boolean algebra, then

(i) the 0 and 1 elements are unique;

(ii ) the complement, b, of b; in B is unique;

(i) (biAb)Y=b/'Vby and (b;Vby) =bAby

(iv) ((b1) ) =b

(v)0=1and 1'=0.

Proof

(ii) (De Morgan’s Laws). We only prove

(byAby) =b) Vb, the other follows from Duality Principle.

We show that (bj Aby)A (b’ VDy)=0 and (biAb)A(b/VD)=1.
(biAb)YA(b/' VDY)

=[(biAby)Ab/']V[(biAby)ADby] (Distribution)
=[(biAb")Aby] A[biA(byADbyY] (Commutative and Associativity )
=(0Ab)V(bAD)

=(0V0)

=0

and

(biAb)V(by'VDby')

=[b;V (b’Vby)]A[byV(b'Vby)] (Distribution )
=[(byvb")VDbJA[(baVDby)VDby'] (Associative and Commutative )
=(1Vvb')A(1VD)

=1vl

=1.

Thus, b;"V by’ is the complement of b; A by and by duality, by’ A by’ is the
complement of b; V b,. Proofs of the remaining parts are easily done. O

Lemma 1.3.4



Let B be a Boolean algebra. Then the following are equivalent:
()6 =45

(ii)y£ineéy'=0;

(i) ver=1.

Proof

(1)— (i) If €3 < 4¥,, then as a Boolean algebra is above all a lattice, it
implies ¢;V £, =+¢,. Then

LiNEy = ’gl/\(flvfz)'

=HA(GI'AE) ( De Morgan )
= (GAL )AL ( Associativity )
=0A%

= 0.

(ii) = (iii) If £; A €y'=0, then

GVl =4V () (Th.1.3.3. (iv))
= (4int)) (De Morgan )
=0
=1

(iii) > (i) If €'V #,=1, then

Li=4n1 (B is a lattice with 1)
=L ALV L) ( Hypothesis )
=AYV (i) ( Distribution )
=0V (&Hinty)
= NE, (B is a lattice with 0)

, which is equivalent to £, < #,. Thus, we proved that (i) — (ii)— (iii)
= (i). 0

Theorem 1.3.5

10



Let B be a Boolean Algebra. Then the following conditions hold:
(i) &1 <4, if and only if €' < ¥ ;
(ii)£1 < ¥ if and only if ;A ¥, =0;

(iii)€; < ¥, if and only if €;'V £,=1.

Proof

(i) Assume ¥;<¥,. Then we have

Gind,'=0 (Lemma 1.3.4)
£H'AL1=0 ( Commutativitiy )
L'AN(L)Y=0 ( Involution )

£ <8 (Lemma 1.3.4)

Thus, t’l < fz had 16’2’ < {’1'.

Now assume that £,' < £;'. Then

'A(£)=0 (Lemma 1.3.4)
'NE =0 ( Involution )
Lindy=0 ( Commutativity )
1 <4¥; (Lemma 1.34)

Thus (i) is proved.

(i) If &1 <4, then £, A (£’ ) =0 by Lemma 1.3.4, which implies
?1 A€, =0 by involution. Now, assume that £; A £, =0. Then we have by
involution €1 A (") =0, which is £; <¥£,' by Lemma 1.3.4. Thus, (ii) is
proved.

(iii ) If €; < ¥,, then by Lemma 1.3.4 (iii),#)’ V¥, =1. Now assume that
€' V&, =1. Then again by Lemma 1.3.4, we have ¥ < ;. Therefore,
(iii) also is proved.

Definition 1.3.6

11



An element x of a Boolean algebra B is said to be an atom if there
does not exist b; € B such that 0 <b; <x. To put it in a different way, if x
is an atom, then x covers only the zero element of B.

The set of atoms of B is represented by At (B).B is atomless if B
contains no atoms, and atomic if there is an atom for each nonzero
element of B.

For any set S, the power set algebra P (S ) is an atomic Boolean
algebra; its atoms are the singletons. As we shall prove it below, every
finite Boolean algebra is atomic. However, it is in general not easy to
contract atomless Boolean algebras.

An example of this is the Boolean algebra F/~ of equivalence classes of
formulas of propositional logic when the set P of propositinal variables is
infinite. For this, one can consult Cori, R. and Lascar, D. We conclude this
chapter by giving Representation Theorem of Finite Boolean Algebras.

Theorem 1.3.7 [ Representation Theorem for Finite Boolean Algebra ]

Given a finite Boolean algebra B, each element b in B can be expressed
as

b = VxeAt(B), xsb X
where V denotes the supremum of x.

Furthermore, this expression is unique: if b=V,cxx for some subset X
of At(B),then X={x€At(B)|x<b}.

Proof

12



Suppose that V,cx x =y. Then, clearly y < b;.

Hence by=(b;Ay)V(bVy'). From this observation, we will show that
b=y, or bAy' =0. For this, then we have bj=yVvV 0=y, and it is
accomplished. If a; € At (B) satisfies a; <b; Ay’, then a; <b; and a; < x/,
XEAt(B) and x < b.

In particular, we have a; < a,’, so a; =a; Aa;’=0, a contradiction. This
shows that there does not exist an atom that is less than or equal to b; A

y'=0.

Now we show that the expression for b is unique. Assume that b =
Vyexx for some subset X of At(B). Then that X €& {x€At(B)|x <
b} is clear.Now if y€ {[x €EAt(B)| x<b}\X, then we get

Y=YAD=YyA(VyxexXx)=Vxex(¥AXx)=Vxex L =1

This is a contradiction, hence the uniqueness of the expression for b is
established.

2. LATTICE IMPLICATION ALGEBRAS

Lattice — valued logics are non — classical, many — valued logics in which

13



classical propositional value, truth value of a propositional variable, is given
in a lattice. In order to investigate such systems Y.Xu suggested the
concept of lattice implication algebras.

These algebras are the basis of the works carried out in the field of
artificial intelligence, AL. In this chapter, we reproduce the description of
the algebra and some of the results in order to facilitate the readability of
the thesis.

2.1 Preliminaries

Following Y. Xu, we define a lattice implication algebra as a structure
(L,A,V,>,",0,1) of type (2,2,2,1,0,0) such that

1. (L,A,Vv,>,",0,1) is a bounded lattice;

4

2. A unary operator ' is an order —reversing involution;
(£1')=4% and if | <¥, then £’ < ¢/,

3. A binary operation —» on L, (£;,f2)— £, ¢
(meant to represent, — ) satisfying the axioms below,
for all £, #¥,, €3 €L,

(L) & (£283)=42 (4 £3),

(L) &6 =1,

(L) &ba=6"2)

(L) titr=54,=1>4=4,

(Is) (&1 82) La=(£201) 4y,

(LD (Aive)z=(4z)A(L£213)

(L) (Oind)t3=(4143)V (£203)

In the lattice structure , we define a relation as < through

b bhotivih=4 (or & 1AL, =4).

The implication algebra is defined by:

14



0H1<8 & £16,=1.

As we show in chapter 3, these two relations are partial orders.
Concerning the relation <, we have the following result.

Proposition 2.1.1 ( Kondo — Dudek )

Let £ be a lattice implication algebra. Then for all #,, ¥>, £3 € L, we have

(L1 82)((at3) (£ d3)=1.

Proof ( See Kondo — Dudek ).

Using this result, we can give another proof that < is a partial order.

Proposition 2.1.2

Let £ be a lattice implication algebra. Then, the relation < is a partial
order on L.

Proof
< is reflexive by (L,). < is antisymmetric by ().

Now show that < is transitive: Let #; < ¥, and £, < ¥;. Then from
Proposition 2.1.1, we obtain

I1=(£162)((£263) (1 43))=1(1(Li1¢3))=41 85,
the last equality follows from proposition 2.1.3 below.

This implies that we have ¢ < ¥3, i.e, < is a partial order.

Proposition 2 .1.3 ( Qin , Liu , Xu )

In a lattice implication algebra L, the following hold.

15



()Y oL=1,14,=4,,41=1,

(2) £/'=40

(3) Laver=(4142) 1,

(4) (L182)V(£2t3)=1,

(5) ((£280) 'Y =t nba=((£142) 21 ),

(6) b1=f, o8, 805=¢,¥¢5 and £5¢,=454¢,,

(7)) 1<t 0,83<¥,¥¢; and €3¢, < ¥34,,

(8) 435,43 &£, <434

Let’s prove part (7) as an exercise. Suppose £; < ¥,, that is, £, £, =1.

From Proposition 2.1.1, there is 1 =¢; €, < (£2¥3) (£1¥43), which implies
£y l; <4 4.

For the second part, we also have

(£360) (L362)=1((£341)(£342))
=(H182) ((43482)(£342))
=(60) (4 42)(4:42))
=1,

implyings that #3€; < €3 f.

We shall also prove part (3 ); after this, it is easily concluded that we
have part (5).

From €, ((£,£2)£2)=(£142)(£142)=1 and (Is5),thereis ¢, < (¥, ;) ¥,
and £, < (£14€2) %2 Thus, (€, ¢,) ¥, is an upper bound for notonly £,
but also #,, which indicates that it is the least upper bound. Let £; be any
element of L such that #{ < ¥, and £, < ¥s.

Now from

((182) ) 0:=((41€2)42)(143)
=((4142)42) ((£243)43)
=((4142)02) ((£382) £2)
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=(434) (41 ¢2)
2#1{’3:1,

We get (£14€2) 4, <7¥;. It means (£,¥2) ¥, is the supremum of { ¥ €;}.
Hence, €, V{’2=sup { '31,'32} =(4,42)4,.0

Many other results on lattice implication algebras are abundant in the
books Y. Xu, D. Ruan, K. Qin, J. Liu and almost all of these results are
proved in great detail.

2.2 Order — Reversing Involution

We shall elaborate the concept of involution because some people seem
to have missed essentiality of the concept. Let (S ,<) be a poset.
Attached to the partial order <, there is its dual, <’, which is defined by

*
SIS 5 ©5<5.

Obviously, enough, <" is also a partial order on S.

Definition 2.2.1

An order — reversing involution on (S, <) is any isomorphism
f:(S,<)-(S,<")

such that f(f(s;))=s;, for each s; €S.

Namely, f is an involutive bijection from S onto S such that

si<s;of(s)< () f(s2)<f(s).

Examples 2.2.2
(a) Consider the following lattices :

Li={0,a,1}, 0<a<l;
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L,={0,a,b,1}, 0<a<l1, 0<b<1;
I;={0,a,b,c,1}, 0<a<c<l1, 0<b<c<l.
Then one can prove the following statements:

(i) There is one and only one order — reversing involution on L; which is
simply 0> l,a—»a,1-0

(ii) There are two different order —reversing involutions on L,
O0—-1l,a~a,1l—>0,b-b 1-0,
O0—-1l,am~a1->0,b~b 1-0.

(iii ) There is no order — reversing involutior‘l, whatsoever, on L;
because the posets (L3 ,<) and (L;,< ) are simply not

isomorphic

All that can be seen on drawings.
0
| / \
b
/ \ ( ’
a b
| NN/
\ | | ;
(L2.8) §

(LS,S) (LSIS.)

LY
r

(L,%)

Figure 2.2

(b) The unit interval [ 0,1] of reals, as a poset, has one and only two
order —reversing isomorphism, namely, x = 1 — x.

Thus, not all lattices have order —reversing involutions. According to cases,
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they may have only one, many and not at all.

2.3 Examples of Lattice Implication Algebras

There are abundant examples of lattice implication algebras in the
literature; we will copy out some of them here.

(a) Let (L,A,V,’,0,1)be a Boolean lattice. If €; = €5, £| £, is
defined to be ¢;'V #5, then L becomes a lattice implication algebra.

(b) Luckasiewicz implication algebra on the unit interval [0, 1] of reals
is a lattice implication if the operations on [ 0,1 ] are defined as follows:

{’1V£’2=max{£1,{’z 1 {’1/\{’7_=min{{’1,{’2 },f|'=1—€1,
{’1—>€2=£’1{’2=min{1,1—£1+€2}

(c) Let L={0,m;,my,m3,mg,1} and 0<my<m;<1,0<m3<my<
1.

Define the operations on L as below:
GVl =(0 )t A =((4'6")),

0'=1, m'=m3, my=my, my'=my, my'’=my, 1’=0

- | 0 m m my my I

m; | mg m 1 m; m 1

m; | m m 1 1 m m

my | mp 1 1 m; 1 1
| 0 m myp my3 my 1

Then (L,A,Vv,’,0,1) is a lattice implication algebra. This example is
taken from Y. Xu, D. Ruan, K. Qiu, J. Liu.

However,
L={0,m,m, 1}, 0<mi<my<1}, 0'=1, m'=my, my’=my,
1'=0, 1 ve; =max {€,4:}, L1 A€=min { £ ,4,}

—>‘0 m; m21
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m; | m; m 1 1

] 0 m; mj 1

is not a lattice implication algebra because the axioms (L;)—(Ls)
are satisfied is (L,',—,0,1) but (L) fails to hold, because we have

(mVm)m=mym=1 aswellas (mmy)A(mymp)=my Al =m,,
hence

(L,A,v,’,0,1) is not a lattice implication algebra.

3. REDUCED AXIOMATIZATION OF LATTICE IMPLICATION
ALGEBRAS

Different but equivalent axiomatizations of lattice implication algebras can
be formulated although the number of formulations is very little. In the last
chapter of the thesis, we provide a new axiomatization of lattice
implication algebras with only four axioms, and hereby we are of the
opinion, we have applied significantly simplified and the commonly-
accepted axiomatization of a lattice implication algebra.
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3.1 Common Definition of Lattice Implication Algebras

From now on, we abbreviate a lattice implication algebra by LIA. The
usual definition of an LIA is as follows.

Definition 3.1.1 (Y. Xu)

An LIA,(L,A,Vv,",0,1) is a bounded lattice with order — reversing
involution ' ¢ together with a binary relation on L, (£;,%2)» € ¢,
(meant to represent — ) satisfying the following axioms:

(L) &i (2t3)=42 (41 13),

(L) &41=1,

(L) &ita=4"12/,

(L) Lilr=b41=1>4, =4,

(L) (Lrl2) a=(£241) 4,

(L) (&1ve)t=(Lit) A2 t3),

(L2) (L1 A €2) E3=(L143) V (£203).

Note that (L;) and (L;) are equivalent to (L;) and (L4 ), respectively,
as we shall prove below:

(L3) t3(Linb)=(L381)A(E43142),

(Ly) €3(L1VE)=(434)V(L:42).

3.2 Two Order Relations on LIA
For any LIA, a binary relation is introduced, defined as follows:

£’1S€2H€1£’2=1.

Proposition 3.2.1
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The relation < is a partial order.

Proof

That < is reflexive follows from axioms ( I ). Assume that we have
{)1 S-gz and fzS’gl. Then {)132 =1 and {)2‘31 = 1, hence €| ‘ez =€2-€1 = ],
which implies £, =¥, by axiom (I4); thus < is antisymmetric.

As to transitivity, let €1 < ¥, and €, <¥;3;then £1f,=1 and £, f3=1. Now,
V= l3=4 (L1 £2) 3= (£2£2) {3=4,¥3,50 €| < ¥3, and this completes
the proof.

The other binary relation is the partial order of the lattice itself, which
we denote <, defined by

bi<tol,=f Ve
That < is a partial order follows from lattice axioms. It turns out that
these two partial orders coincide. Before we prove this very important
property, we need to demonstrate some simple results.

Proposition 3.2.2

Let L be a lattice with an order — reversing involution ¢’ ‘. Then, we
have

LUNLY=(£,VE)Y and (L' ALY =0V 4,

Proof

Since L is a lattice, £;" A ¥’ is the greatest lower bound, m of #;" and
£)';

that is,

€3Sm<—>{)1'£{73, 32'3{’3.
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The involution reverses orders, therefore

m<teo <8, 0; <.

This last statement amounts to say that m’ is the least upper bound of ¢,
and ¥, i.e ., m' =¥, V¥, or equivalently, m = (€, V¥£5 ). Thus, the
following formulas are obtained:

NG =4 Ve

(2/'N8 )Y =4,V 4P,

Likewise, there are the duals as well:

Vvl =(4H V)

(4/'VE'Y=2, N4,

Proposition 3.2.3
In an LIA, (L)) & (L3); a similar proof obtains (L;) < (Ls).

Starting with (L)), (£1 V€2 ) €3=(£1€3)A(£2¥3), for each £, £, ¥3,

we get
(VL) =84 )N (4 L) (by (L))
L3 (LN )Y=(E5' )N (L5 L) ( by Proposition 3.2.2)

for each £/, £,’, £53', which yields €3 (€1 A€2)=(L381)AN(E382).

This shows that we leave ( L;) = (L3).

Proposition 3.2.3

In an LIA, (L;)e (L3) and (L)« (L3) and (Ly;) & (Ls).

Proof

We only prove (L;)e (L;); a similar proof obtains (L, ) e ( L3).
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Starting with (L), (£, V&) €3=(£,€3)A(£24¥3), for each ¥, £2, £3, we
get

(L VL) =40 )N (4 4) (by (I3))

(LN )= €N (E5' ) ( by Proposition 3.2.2)
For each ¢/, ¢,', ¢5', which yields

L (8in)=(0) A (E12).

This shows that we have (L;) & (L3).

Property In a LIA, the two partial orders < and < coincide.

Proof

We show 1<l o i<, Recall #1<brofif=1and {1t b=
£’1V{’2.

On one side, we have

L.
UKo b=V 8o £y L=, (£1V ) (£181)V (£ £2) > £, £, =
1V(£4t)-ti1t=1 <,

On the other side, we have

LSt o fif=15 (OVE) H=(L8)A(Ler)=]
and

L (VL) =(L6)VEart)=1->(fVEH) =1

and

L(LVvh)=1-4h=)VhHh ot <

That completes the proof.

3.3 An Equivalent Definition of an LIA

In this section, we offer an equivalent definition of on LIA which (we
have found) is simpler and more natural. All results in this section are our
results.

Definition 3.3.1
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A ‘trellis implicational®, [ briefly , aTI ], is a bounded lattice (L, A,V ,
0,<) with an order — reversing involution ‘' ‘, x = x’, and a multiplication
(41, 4%2)— ¥, £2 which satisfies the following axioms:

(A) t’l S‘fz(—)f]fzzl

(B) titr=6"12/

(C) €1 (£2863)=42(4113)

(D) (L182) &2=(£24) 40

We shall prove that it is equivalent to that given in Y. Xu. To see this,
we have to show that (L), (I4), (L;),and (L;) hold in any TL
Observe that (I, ) and (1;) are satisfied via ( A ). To prove that (L;) and

(L ) also hold, we need an intermediate result, some of its parts were
already stated in proposition 2.1.3.

Lemma 3.3.2

In any TI, the following always hold:
(1)o04,=1,41=1.

(2) 141=4,, £,0=4¢/

(3) ((Lit2) ) =414,

(4) t1 6> (V) (2t 43),

[ie, £1€2=1>(VE)((£243)(4i€3))=1]
(5) (Oiv )b < (Lit3)A(£2t3).

(6) (L1Vve)=((£i12)4).

Proof
(1) Follows from 0 <¥#; <1, for each x.

(2) Start with £, (18,)=1(££)=11=1,
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which proves that 1 =11=(#;1)=(14}) 4,
which proves that we £,0=+¢," follows from (B) (by involution),
since {’] 0=0 €1’= 1 {’1’=£’1’.

(3) Start with

(L1 €2) 02) 2 =(L2(£142)) (41 £2) (by(D))
=((&1 (£262) (41 £2) (by (C))
=(411) (41 42)
=1(4142)
=4 4,.

(4)We have

(£283) (L1 €3) =41 ((£243) £3) (by (C))
=6 ((£42)12) (by(D))
=(£3462) (£143) (by (C))

If 31{)2:1, then ({)2{’3)(#1'g3)=(33€2)(£1fz)=(€3€2)1=1.

(5) We have #1<¥, V¥, and £, < ¥ V¥, so (f] Vf2)€35£’1€3
and (£1 V) 358,03, and £, <€,V ¥,,by(4),therefore (£1 V) E3<
(L1 83)A(£243).

(6) Proof consists of two part.

Partl

Firstly, £1 vV €, < (£, ¢2) €» is proven.

Indeed, —fl(({’|1‘,’2)—€2)=({’1{’2)(€1-€2)=1 and

fz(({’]{’z){’z)=({’| €2)(€2{’2)=1, by(C), therefore,{’lg({’lt’z)fz
and £, < (£, ¢2) P, so that £, V€, < (£ ¢€2) 4,
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Part I1

We then prove that (€, )€> < ¥,V ¥;. Indeed, if | <a and ¥, < a, then
fia=1 and fra=1, by (A). Then,

((hf2))a=((£if2)H2(1a)=((£1£2)£2)((£2a)a)
=((4i€2)62) ((at2) )
=((at2)t2)
=(aty) (((L1£2)42)42)
=(aty) (41 t2),

using (3) above. Using (4 ) above, we have ((£1¥;)¥>)a=1,since xa=
1. Therefore, (€142 )¥> <a, so that (£, £,)f, <€ VP,

We shall now prove that (L;) and (L;) hold in every TI Here is a

proof that (L;) holds; one can produce a similar proof to show that
(Ly) also holds.

Proof

We use Lemma 332 (5),(6) and the dual (6')
LAL=((£12)2)).

We have ((£1€3)A(£223) ((£1V£2)¢3)

=(((A ) (L20)) (41 €)Y ((H1V4E) ) (by(6'))

= ((L2(818) ) (L143)) ((L1VE)Es)

=((L2(£1VE))(4d3) ) ((41V4E)4s) (by (6))
= ((ivea)6) (L4 VE)(4d3)) (by“"*)
= (62(H V) (V) ) (4i43)) (by (C))
= (O VE))((O8)(LVEHL)((Aid3) ) (by ')
= (B2(H V) ((AVe)((4i43)4s) (by (C))
= (L2(6OVE))((LVE) (V) (by(6)
= (6 Vvh)((L(6VE))(HViEs)) (by (C)).
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We have (£, (£ 1VE3))(LiVvE)=((LiVve))la=(Li VL)V Ly by
(D) and (6), so (£, VL) ((L2(L1iVvE4))(L1VE)=(L4VE)(LVE
VE£3)=1, since (£1VE€)<(FV~E VL) Summing up, we have (£;¥;3)
A(Lr3)< (VL) VL3 We also have (£, V)4 S(£’1£’3)/\(€2{’3),
by (5). This shows that (L;) holds.

Proposition 3.3.3

The lattice of a TI is always distributive.

Proof

We obtain these equations from Lemma 3.3.2 (6)

LV =(014)0h=(1) 4.

We would like to show £, V(€3 AL3)=(£;VEH)IA(LV E3).

Starting with £,V (€3 AL3)=(E2 A L) VL =((€2A¥3)41) ¢, (by
Lemma 3.3.2(6))

=((62t1) Vv t) (by(L2))
=(Hl)OA((E:40)4) (by(L1))
=((LiL2) )N (41 43)€3) (by(D))

=6 Ve V(L4 VL)

CONCLUSION

Reducing the number of axioms, usually adopted for LIA, we have
significantly simplified the definition of an LIA. At this stage, we could
ask several questions.

Question 1
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Can our definition be simplified further?

Question 2

Can each lattice with involution receive a TI structure?

Question 3
Are there lattices which can receive two different TI structures?

Answering the first of these questions can have very important
consequences.

As to Question 2, this is possible for each Boolean lattice. Just set

Xy =x'Vy. Then axioms (A)- (D) are easily verified.
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