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ABSTRACT 

EVALUATION OF THE RELATIONSHIP BETWEEN THE STABILITY 

OF FEATURE SELECTION TECHNIQUES AND CLASSIFICATION 

PERFORMANCE IN DATA MINING  

  

Büyükkeçeci, Mustafa 

PhD, Computer Engineering 

Advisor: Prof. Mehmet Cudi OKUR, PhD 

August 2019 

Each year the amount of data produced and stored increases exponentially. This 

significant increase in both datasets and dataset sizes adversely affects data analysis 

techniques and algorithms, results in the production of complex models, performance 

losses and increased computational costs. Various data preprocessing techniques, such 

as feature selection, have been developed to prevent and overcome these problems. 

Feature selection, which is a data size (dimension) reduction technique, is used to 

improve analysis quality, efficiency and generalization capacity of classifiers, to 

reduce computational costs and to create simple and understandable models that have 

high classification or clustering accuracy. Besides the classification or clustering 

performances of the feature subsets obtained by the feature selection algorithms, 

stability, i.e., robustness, of the feature selection algorithm should also be tested. 

Stability is the measure of the sensitivity of the feature selection algorithm against the 

changes (perturbations) made on the training set. Algorithm with low sensitivity, i.e., 

a stable algorithm, produces the same or very similar results (feature subsets or ranks) 

after each change done in the training set, whereas algorithm with high sensitivity, i.e., 

an unstable algorithm, produces different results after each change. Since the results 

produced by an unstable algorithm will be variant, it makes it difficult to select the 

result set (feature set) to be used in building classification models and to establish the 

relationship between inputs and outputs. This undermines trust in the feature selection 

algorithm. Therefore, algorithm stability is an important success criterion for feature 

selection algorithms. In this thesis, a total of seven filter (T-Test, Bhattacharyya, 

Wilcoxon, ROC, Entropy, ReliefF and Decision Tree Ensemble) and two sequential 

(Sequential Forward Feature Selection (SFS) and Sequential Backward Feature 
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Selection (SBS)), or wrapper, feature selection algorithms, twelve stability measures, 

three classifiers and seven real-world datasets were used to determine and interpret the 

relationship between feature selection algorithm stability and classification 

performance. 

Key Words: feature selection, supervised feature selection, selection algorithm 

stability, stability measures, classifiers, stability and classification performance 
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ÖZ 

VERİ MADENCİLİĞİNDE ÖZNİTELİK SEÇİM TEKNİKLERİNİN 

KARARLILIKLARI VE SINIFLANDIRMA PERFORMANSLARI 

ARASINDAKİ İLİŞKİNİN DEĞERLENDİRİLMESİ 

 

Büyükkeçeci, Mustafa 

Doktora Tezi, Bilgisayar Mühendisliği 

Danışman: Prof. Dr. Mehmet Cudi OKUR 

Ağustos 2019 

Her yıl üretilen ve depolanan veri miktarı üstel olarak artmaktadır. Hem veri kümeleri 

hem de veri kümesi boyutlarındaki yaşanan bu önemli artış, veri analizi tekniklerini 

ve algoritmalarını olumsuz yönde etkileyerek karmaşık modellerin üretilmesine, 

performans kayıplarına ve artan hesaplama maliyetlerine neden olmuştur. Bu 

problemlerin önlenmesi ve üstesinden gelinmesi için, Öznitelik seçimi gibi, çeşitli veri 

önişleme teknikleri geliştirilmiştir. Boyut küçültme (indirgeme) tekniği olan öznitelik 

seçimi, sınıflandırıcıların analiz kalitesini, verimliliğini ve genelleme kapasitesini 

geliştirmek, hesaplama maliyetlerini azaltmak ve yüksek sınıflandırma veya 

kümeleme doğruluğuna sahip basit ve anlaşılabilir modeller oluşturmak için kullanılır. 

Öznitelik seçim algoritmaları tarafından elde edilen öznitelik altkümelerinin 

sınıflandırma veya kümelenme performanslarının yanı sıra, öznitelik seçim 

algoritmasının kararlılığı veya sağlamlığı da test edilmelidir. Kararlılık, öznitelik 

seçim algoritmasının eğitim setinde yapılan değişikliklere karşı hassasiyetinin 

ölçüsüdür. Düşük hassasiyete sahip algoritma, yani kararlı bir algoritma, eğitim 

kümesinde yapılan her değişiklikten sonra aynı veya çok benzer sonuçlar (öznitelik 

altkümeleri veya sıraları) verirken, yüksek hassasiyete sahip algoritma, yani kararsız 

bir algoritma, her değişiklikten sonra farklı sonuçlar verir. Kararsız bir algoritma 

tarafından üretilen sonuçlar değişken olacağından, sınıflandırma modellerinin 

oluşturulmasında kullanılacak sonuçların (öznitelik kümesinin) seçilmesini ve girdi ve 

çıktılar arasındaki ilişkinin kurulmasını zorlaştırır. Öznitelik seçim algoritmasına olan 

güveni sarsar. Bu nedenle, algoritma kararlılığı öznitelik seçim algoritmaları için 

önemli bir başarı kriteridir. Bu tezde kararlılık ile sınıflandırma performansı arasındaki 

ilişkiyi belirlemek ve yorumlamak için toplam yedi filtreleyen (T-Testi, 
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Bhattacharyya, Wilcoxon, ROC, Entropi, ReliefF ve Karar Ağacı Topluluğu) ve iki 

ardışık seçim (Ardışık İleri Öznitelik Seçimi (SFS) ve Ardışık Geri Öznitelik Seçimi 

(SBS)), veya sarmalayan, öznitelik seçimi algoritması, on iki kararlılık ölçüsü, üç 

sınıflandırıcı ve yedi gerçek dünya veri kümesi kullanılmıştır. 

Anahtar Kelimeler: öznitelik seçimi, gözetimli öznitelik seçimi, seçim algoritması 

kararlılığı, kararlılık ölçüleri, sınıflandırıcılar, kararlılık ve sınıflandırma performansı 
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CHAPTER 1 

INTRODUCTION 

Increased computer usage has significantly increased both the data production rate and 

the amount of data stored on the computer. The datasets that contain qualitative and/or 

quantitative values obtained by various ways such as observation, experiment and 

measurement may contain valuable but hidden information that can be used for various 

purposes. This hidden information can be revealed by processing, i.e., analyzing, the 

datasets. This process, in which unprocessed, i.e., raw, data is made valuable, is called 

the “Knowledge Discovery in Databases” or shortly KDD. Steps involved in the KDD 

process are preparation, dataset acquisition, data preprocessing, transferring data to the 

data warehouse, data mining, presentation, and evaluation. However, datasets may 

contain several problems that may adversely affect this process. At this point, data 

preprocessing techniques are used to identify and fix these problems. One of these 

techniques is feature selection. 

The increasing number of samples, i.e., records, and features contained in the datasets 

also increased the need and interest in the choice of a size reduction technique. Today, 

datasets belonging to various disciplines such as medicine, biology, chemistry, 

economy, logistics, astronomy and actuary can contain thousands of features. However, 

these datasets might include noisy, redundant (duplicate or adds no extra information) 

and/or irrelevant (uncorrelated with the class tag or adds no useful information) 

features that do not contribute to the analysis process. Such features, which do not 

contribute to the model to be created, are detected and eliminated with the help of 

feature selection techniques. By discarding the irrelevant features, the time needed for 

analysis, processing power and the amount of memory is reduced, simple models with 

high generalization performances are aimed to be achieved.  

Feature selection is essentially an optimization problem. The purpose of this problem 

is to find the subsets of features 𝑆 =  {𝑆𝑖| 𝑖 = 1,2,3, … , 𝑚}  that maximize a target 

function, 𝑃 , 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑃) , from the feature set 𝐹 =  {𝐹𝑖| 𝑖 = 1,2,3, … , 𝑛} , that 

belongs to a dataset, 𝐷, by satisfying 𝑆 ⊆ 𝐹 and 𝑚 < 𝑛 conditions. For this reason, 

feature selection algorithms are expected to find the smallest possible feature subset 

that provides the highest possible accuracy rate by eliminating noisy, redundant and 
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irrelevant features. Another desirable property expected from the feature selection 

algorithms is that they have a stable structure. While the selection algorithms that have 

stable structures produce very similar or same results (feature subset(s)) after the 

changes, i.e., perturbations, made in the training sets, while the ones with unstable 

structures produce results that show the lowest similarity or completely different from 

each other. Varying results produced by unstable algorithms mislead the user in 

detecting the final result set and undermine the trust in the algorithm and analysis 

process. 

The stability of a selection algorithm is the measure of robustness and the sensibility 

of the algorithm against the changes in the training set. The algorithms which produce 

a low cardinality subset or have high stability, but poor classification or clustering 

performance, make it difficult to obtain successful results from the analysis process. 

Therefore, it is inaccurate to evaluate both the feature selection and the selection 

algorithm stability regardless of the classification or clustering performance. As can 

be seen, it is difficult to distinguish between these concepts and see them independently. 

Aim of the thesis: When the studies in the literature are examined, it is seen that the 

relation between the selection algorithm stability and the classification performance of 

the selected features, i.e., selection algorithm performance, is not studied sufficiently. 

The main purpose of this thesis is to inquire into whether such a relationship exists. 

For this purpose, filtering and wrapper algorithms are used. In this way, the 

relationship between stability and classification performance is tested among selection 

algorithms of different types instead of a single type of selection algorithm. According 

to the test results, which selection technique is more stable and successful in terms of 

classification, whether there is a relationship between classification and feature 

selection stability, if so, how it can be interpreted, how to compare different stability 

measures, and the effect of different classifiers on the stability of wrapper algorithms 

have been observed. 

The contributions of the thesis are as follows:  

1. An extensive literature review on feature selection, feature selection stability, and 

stability metrics, 

2. A fair comparison of different feature selection algorithms that belong to filter (T-

Test, Bhattacharyya, Wilcoxon Rank-Sum, ROC, Entropy and ReliefF), embedded 
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and ensemble (Decision Tree Ensemble) and wrapper (SFS and SBS) families by 

performing an extensive set of experiments on real-world datasets. 

3. A fair comparison of various stability metrics, 

4. An experimental framework to inquire into the relationship between the stability 

and the classification performance of the selected features, and 

5.  A data preprocessing step using descriptive statistics to summarize the datasets 

statistically and to find out the underlying data-driven factors that can cause feature 

selection instability and reduced performance metric values. 

Structure of the thesis: This thesis is divided into eight chapters. The first chapter 

introduces the feature selection process and a brief literature review of both feature 

selection and feature selection stability. In the second chapter, Knowledge Discovery 

in Databases and Data Mining, concepts are briefly explained to make it easier to 

express where and how the feature selection is used. Chapter three provides material 

on feature selection, feature selection according to the machine learning type and 

supervised feature selection techniques. Then, the chapter is completed by mentioning 

various problems encountered in the supervised feature selection. The fourth chapter, 

summarizes the data sources, data types, various classification and regression 

algorithms that are used to select features, methods used to assess the performance of 

the classifiers and various validation and sampling methods used in the literature. In 

the fifth chapter, selection algorithm stability, which is the basis of this thesis, stability 

measurement in the supervised feature selection, properties of stability measures, types 

and computational complexities of stability measures and the problems encountered in 

the measurement of stability are discussed in detail. In chapter six, filter and wrapper 

supervised feature selection algorithms used in the empirical study and the Bayesian 

Hyperparameter Optimization are briefly argued. In the seventh chapter, first, the 

properties of the datasets used during the empirical studies are debated. Then, the 

empirical study framework and how filter and sequential feature selection algorithms 

were used during experiments are explained in detail. In the last chapter, observed 

drawbacks of stability measures and the effect of hyperparameter optimization over 

stability measures are argued. Later, the main concern of the thesis, the relationship 

between feature selection stability and classification, is summarized and findings, the 
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contribution of the thesis and concluding remarks are presented. Finally, an outlook of 

future works and some comments are stated. 

1.1. Literature Review on Feature Selection and Feature Selection Stability 

Feature selection and extraction are two different data preprocessing techniques, which 

are often confused. As outlined in the research study of Khalid et al. (2016), and the 

“Chapter 6” of the book by Abe (2005), feature selection is used for data size reduction 

while feature extraction is used for data transformation. The feature selection takes 

place in three different ways according to the data used. These are: supervised feature 

selection for labeled, unsupervised feature selection for unlabeled and semi-supervised 

feature selection for both labeled and unlabeled data. In the study of Chin et al. (2015), 

the purpose of the feature selection, feature selection process and feature selection 

techniques are explained in general. Also, supervised, unsupervised and semi-

supervised feature selection algorithms used for gene selection and the references of 

the studies in which they were used were tabulated.  In addition to this study, research 

studies of Chandrashekar and Şahin (2014), and Li et al. (2016) and the book chapter 

of Wang et al. (2016) can be examined to obtain general information about the feature 

selection process. 

Studies on feature selection often concentrate on supervised techniques. Therefore, 

various sources, e.g., books, articles, theses, projects, source codes, etc., are related to 

supervised feature selection. One of these studies is the literature survey of Kumar and 

Munz (2014), which provides a comprehensive overview of the subject. In this study, 

the concept of relevant and irrelevant features, the steps of the feature selection process, 

the developments in the feature selection and the areas where the feature selection is 

used were transferred to the reader through real-world examples. Also, authors classify 

supervised feature selection techniques according to the type of search (sequential, 

exponential and random), selection type (filter or feature ranker, wrapper and 

embedded) and data mining tasks (classification and clustering) that used to create 

feature subsets and explained in general terms. A study on the same topic, Dash and 

Lui (1997), performed feature selection using a set of synthetic datasets and supervised 

feature selection techniques. The authors also grouped and examined the feature 

selection techniques by type (feature subset generation/creation) (complete, heuristic 
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and random) and by evaluation criteria (distance, information gain, correlation, 

consistency, and classifier error rate measures). 

In this thesis, supervised feature selection techniques were examined in five different 

classes such as filter, wrapper, hybrid, embedded and ensemble. Filtering techniques 

are the most preferred selection technique since they have low computing cost, 

scalable structure and are easy to implement. Lazar et al. (2012) represented one of the 

research studies conducted on filtering techniques. In general, the authors discussed 

how to solve the problem of feature selection and how to solve this problem by using 

filtering techniques in the bioinformatics field. In the study, the filter techniques were 

divided into two classes as performing space search using sorting and optimization 

algorithms. The authors also presented the methods and metrics of these classes to the 

reader using tables. However, in this study, algorithms have not been evaluated 

empirically. Instead, an extensive literature about the subject provided. As filtering 

techniques do not perform feature selection, they sort the features with the help of an 

evaluation criterion such as distance, statistical testing, information gain, e.g., Fast 

Correlation-Based Filtering (FCBF) (Yu and Liu, 2003), probabilistic selection (Liu 

and Setiono, 1996), Laplacian Score (He et al., 2005), Pearson Chi-Square (Biesiada 

and Duch, 2007), Bhattacharya Distance (Guorong et al., 1996), etc. For this reason, 

the selection process takes place according to a user-set, i.e., defined, threshold value, 

i.e., selection criterion. 

The wrapper algorithms perform the selection process by using a classifier. The study 

was done by Kohavi and John (1997) related to wrapper algorithms, primarily 

mentions feature subset selection problems, relevant and irrelevant feature concepts 

and finding optimal features. Afterward, the authors summarized the filter and wrapper 

algorithms and mentioned Hill Climbing and Best-First methods which can be used as 

a forward search strategy in the wrapper algorithms. The study also included a topic 

related to the overfitting problem, which is one of the biggest problems of wrapper 

algorithms. Finally, in the experimental study, using synthetic and real datasets, 

algorithms were compared with each other and the results were tabulated. Another 

problem with wrapper algorithms is that they are slow. The main reason for this 

problem is that the search results are evaluated by a classifier specified in each iteration. 

However, Wang et al. (2015), argued that they had accelerated the wrapper selection 

technique by embedding the K-NN classifier in it. To prove these theses, they also used 
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three wrapper algorithms (SFS, IWSS, and IWSSr) and compared the algorithms 

experimentally using microarray datasets before and after acceleration.  

Hybrid selection methods are obtained by combining two different selection methods. 

The studies were done by Hsu et al. (2011) and Sebbana and Nock (2001), hybrid 

selection methods are created by using filter and wrapper algorithms and tested. 

Among the studies in the field of supervised feature selection, embedded and hybrid 

methods have the least share. In the doctoral study of Saeys (2004), embedded 

selection methods Weighted Naive Bayes and Linear SVM (Support Vector Machine) 

algorithms are used to classify nucleic acid sequences. In the study of Peng et al. (2005) 

presented a two-stage feature selection algorithm by combining mRMR (Minimum 

Redundancy Maximum Relevance) with other wrappers to form a hybrid selection 

strategy and compare its performance with different selectors and using three different 

classifiers and four datasets. The biggest problem of the embedded methods is that the 

results obtained are dependent on the classifier and the computational costs increases 

as the data size become larger.  

In the supervised feature selection, most of the studies performed on filter and 

ensemble methods. It is possible to create ensemble methods in different ways, but 

they are generally created by combining the results obtained from different feature 

selection algorithms with a consortium function. Thus, it is aimed to avoid the problem 

of the appropriate selection algorithm selection and to obtain the subset of the 

components with high clustering or classification performance.  An ensemble model 

was built in the study of Seijo-Pardo et al. (2015). The authors used Chi-Square, 

Information Gain, mRMR and ReliefF filtering algorithms, and SVM-RFE and FS-P 

embedded algorithms on the datasets obtained from UCI machine learning repository. 

Since all the selection algorithms mentioned in the study were filtering algorithms, the 

results were first combined with an integration algorithm called SVM-Rank and then 

tested with the SVM classifier. Tuv et al. (2009) proposed a novel feature selection 

ensemble algorithm that is based on the Tree-Based Ensemble named ACE (Artificial 

Contrasts with Ensembles). The authors compared the performance of the algorithm 

with competitive algorithms such as RFE (Recursive Feature Elimination), Relief, 

CFS (Correlation-Based Feature Selection), CFS-gen (CFS with Genetic Search) and 

FCBS (Fast Correlation Based Filter).  
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For feature selection algorithms being stable is a desirable quality as much as the 

features they have chosen having a high classification performance. There are various 

measures in the literature used to measure selection algorithm stability. In the studies 

of Awanda et al. (2012), Khoshgoftaar et al. (2003), and Chelvan and Perumal (2017), 

a list of several stability measures were presented to the reader along with the studies 

that they were used. In the study conducted by Kuncheva (2007), in addition to the 

proposed stability measure (Kuncheva Index), the properties that any stability measure 

should have are also identified. In the doctoral study of Nogueria (2018), primarily the 

properties that the stability measures must have were listed in five items then fifteen 

measures in the literature have been tested to see how many of these properties that 

they provide. The author then argued that there are no measures that provide all the 

properties except the one she proposed. 

Studies have been done related to the algorithm and dataset-driven factors that cause 

instability, the solutions that can be used to solve the problem of instability and the 

determination of the relationship between stability and classification performance in 

the literature. In the doctoral study of Alelyani (2013), the reasons that cause the 

algorithm instability were investigated and argued that the problem was originated 

from data. The author found that the noisy datasets caused both poor learning 

performance and instability, and used a method called SLRMA (Supervised Noise 

Reduction via Low-Rank Matrix Approximation) to reduce noisy data. In the study, 

for the unlabeled data, a novel method named Local SVD (Local Singular Value 

Decomposition) was also mentioned. Han (2007), proposed a theoretical framework 

in his doctoral study to explain the relationship between stability and accuracy. 

Through this framework, the author claims that the relationship between the stability 

of selection algorithms and the accuracy of the selected features depends on the 

number of samples. Also, an empirical variance reduction framework that increases 

the algorithm stability used when the number of samples is low proposed and tested 

on synthetic and real datasets using the SVM-RFE (Recursive Feature Elimination for 

Support Vector Machines) and ReliefF algorithms. To measure the classification 

performance, SVM and K-NN (1-NN) classifiers, and to measure stability Kuncheva 

Index was used. 

Feature selection has a wide range of applications. One of these areas is the field of 

health practices as in the doctoral study carried out by Kamkar (2016). In the related 
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thesis study, on the electronic medical records, Tree LASSO (Least Absolute 

Shrinkage and Selection Operator), Predictive Grouping Elastic Net (pg-EN), 

Covariance LASSO (C-LASSO), L1-Norm SVM, Covariance SVM (C-SVM) and 

Graphical SVM (graph-SVM) methods were used. The author mentioned nearly all 

stability and classification measures and in the experimental stage used Jaccard Index 

and Spearman’s Rank Correlation Coefficient as stability measures and Positive or 

Negative Predictive Value, sensitivity, specificity, F1-Score and AUC for classification 

performance assessment. 

In the study of Haury et al. (2011), aiming to determine the relationship between 

algorithm stability and classification performance, the effect of feature selection 

techniques on accuracy, stability and interpretability of molecular signatures were 

tested using four different datasets on breast cancer, T-Test, Entropy, Bhattacharyya, 

Wilcoxon Rank-Sum, SVM-RFE, GFS, LASSO and Elastic Net feature selection 

techniques and Nearest Centroids (NC), K-NN, Linear SVM, Linear Discriminant 

Analysis (LDA) and Naïve Bayes classifiers. To measure the classification 

performance, 10-Fold Cross-Validation (10-Fold CV) and the area under the ROC 

Curve (AUC) were used. Stability measurement was determined by the similarity of 

the molecular signatures generated by the methods.  

Wang et al. (2011) used nine real-world software measurement dataset and seven filter-

based selection algorithms: Chi-Square, Information Gain, Gain Ratio, ReliefF, 

Weighted ReliefF (weights features by distance), Symmetrical Uncertainty and Signal-

to-Noise (S2N) and the Logistic Regression classifier for performance testing in their 

study. The classification performance was measured by the area under the ROC Curve 

(AUC) and one-way ANOVA test and the algorithm stability was tested with Kuncheva 

Index.  

Drotár and Smékal (2014) used five feature selection algorithms on four micro-series 

and two biomedical datasets of Parkinson’s disease. The stability of the feature 

selection algorithms, including Tree-Based Feature Selection Ensemble, LASSO, 

mRMR (minimum redundancy, maximum relevance) and Iterative Relief (iRelief) 

were measured by the Hamming Distance stability measure. The classification 

performance of the selected features was performed using the AdaBoost algorithm and 

Matthews Correlation Coefficient (MCC). In the study of Kalousis et al. (2007), 

filtering algorithms such as Chi-Square, Symmetrical Uncertainty, ReliefF and SVM-
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RFE were used on the datasets related to proteomics, genomics and text mining. The 

algorithm stability was determined by Pearson’s Correlation Coefficient, Spearman’s 

Rank Correlation Coefficient, and Tanimoto Distance. The authors also commented on 

the relationship between algorithm stability and classification performance under a 

separate title (“Stability and Classification Performance”). 

In the study of Yang et al. (2016), in which the feature selection algorithms and 

ensemble feature selection algorithms were compared, factors affecting the stability of 

selection algorithm and ensemble feature selection subjects were argued. In addition 

to these, various questions that are the foundation of the study, such as what is the 

ensemble feature selection, how to combine the obtained results, how the performance 

is measured were answered under the related titles. The authors also mentioned 

Spearman’s Rank Correlation Coefficient, Hamming and Jaccard Distance and 

Kuncheva Index stability measures that they used for stability measurement in detail. 

Lastly, the individual classification performances of the algorithms were compared 

with the performances they show when they form an ensemble method. In the study 

of Saeys et al. (2008), they argued that the ensemble feature selection methods have 

higher stability and classification performance, especially in high-dimensional datasets 

with a small sample and higher feature quantities. Symmetrical Uncertainty, Relief, 

SVM-RFE, and Random Forest feature selection algorithms were used individually 

first on real-world datasets of six different diseases then used by creating an ensemble 

method. Selection algorithm stability measurement was done using Pearson’s 

Correlation Coefficient, Spearman’s Rank Correlation Coefficient, and Jaccard Index, 

and classification performances were measured using SVM, Random Forest, and K-

NN classifiers.  

In the study of Dunne et al. (2002), instability experienced during feature subset 

selection was tried to be solved by wrapper algorithms using a sequential search such 

as Sequential Forward Selection, Sequential Backward Selection/Elimination, and 

Random Hill Climbing. In this study, the reasons for instability were also explained 

and a novel wrapper algorithm that uses parallel and genetic algorithms as search 

techniques have been proposed. The authors used K-NN as the classifier and Average 

Hamming Distance (AHD) and Average Normalized Hamming Distance (ANHD) for 

the stability measurement.  
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Succinctly, in supervised feature selection studies univariate and multivariate filtering 

techniques such as ReliefF, Information Gain, Symmetrical Uncertainty, and Chi-

Square are mostly used. As for induction or performance testing, SVM and K-NN 

classifiers are preferred more than other algorithms. Robustness of the selection 

algorithms is mostly measured using Jaccard and Kuncheva Index, Hamming and 

Canberra Distances and Pearson’s and Spearman’s Rank Correlation Coefficients.
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CHAPTER 2 

KNOWLEDGE DISCOVERY AND DATA MINING 

In order to understand the purpose and importance of feature selection, first, it is 

necessary to mention the terms “Knowledge Discovery in Databases” and “Data 

Mining”. The fact that computers become an indispensable part of our daily life has 

led to an increase in data production rate and thus the amount of data stored in 

databases. A growing pile of data has led to the concept of “Knowledge Discovery in 

Databases” or shortly KDD, which is transmuting the data into a valuable form through 

analysis. In other words, it is a set of operations made to add meaning to the raw data. 

In this thesis, the KDD process is divided into six phases and is illustrated in Figure 

2.1. 

1. Preparation: In this step, understanding the problem, collecting the necessary pre-

information, determining the purpose, selecting the algorithm and methods that will 

help to reach the goal, are realized. Thus, a process management plan is created to save 

resources, labor and time.  

2. Obtaining the dataset: The next step is to obtain the appropriate dataset to be used 

for analysis. Data are obtained from two different sources, primary and secondary. 

Primary data resources consist of data from which the researcher personally acquired 

through experiment, observation, and surveys. Secondary data sources are data that are 

collected and compiled by others in various media and formats. Detailed information 

on data sources and types is given in the 3rd chapter.     

3. Data preprocessing: Data preprocessing is a step towards improving the quality of 

the knowledge discovery process. In this step, out of date, missing, excessive, 

inconsistent and noisy data are extracted and cleared of flaws by various approaches. 

Also, data from different sources are combined for to be compatible with one another. 

Data conversion, data reduction and data discretization are also performed at this stage. 

The importance of this step can be explained by the axiom of garbage in, garbage out. 

The real-world data obtained from internal and external sources include the defects 

mentioned in this subtitle. The use of defective data in the analysis process results in 

misleading and inaccurate analysis results. For this reason, the more data is cleared 

from its defects, the higher quality and accurate the obtained results will be.  
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4. Transferring data to databases and data warehouses: In this step, the data that is 

cleared from its defects, combined and transformed is transferred to specialized 

databases in the relational structure called the data warehouse. The data to be used for 

analysis, reporting, query and similar purposes are stored here and updated periodically. 

5. Data mining: In this step, the selected data mining algorithm that has the property 

of prediction (such as classification, prediction, time series analysis) or description 

(such as clustering, summation, association rules) is applied to the appropriate dataset 

which obtained from the data warehouse and patterns (model, rule) are determined.  

6. Interpretation and evaluation: At the last stage, the results (patterns) are presented 

to the end-user by various presentation techniques and interpreted and evaluated 

according to the criteria such as validity, innovation and usefulness. Also, action plans 

(course of action) are determined in order to reach the objective.  

 

Figure 2.1. Stages of “Knowledge Discovery in Databases” (KDD) 

During the KDD process, raw data is processed to reveal hidden, previously unknown, 

useful, understandable and interpretable patterns and to turn into information. Data 

mining and its functions are located at the center of this process. Data mining is a data 

analysis method that is formed by using a combination of different disciplines such as 

statistics, machine learning, databases, mathematical modeling, artificial intelligence, 

information, and management systems. It has two functions, as depicted in Figure 2.2. 

The first function is the description. There may be relations in the high-volume 

databases that are difficult to detect and find. For this reason, the description (depiction) 

function of data mining is used to identify structures (patterns) hidden within the 

database. The second function of data mining is the prediction. This function predicts 

and models the future values using previously known (existing) values. Data mining 

is used for a variety of purposes, such as clustering, classification, prediction, the 

discovery of association rules, detection of anomalies or outliers, summarization and 

regression in many areas of high-volume data.  
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Figure 2.2. Data Mining Functionalities 

The increasing number of features along with the amount of data adversely affect the 

operation of the analysis methods and techniques used in this process. For example, it 

causes building models that are difficult to interpret, complex, inadequate and faulty 

generalization capability. More than that the need for computational power and time 

for analysis increases. Feature selection is a data preprocessing technique which is 

used to prevent these problems and to improve the performance of models created by 

classification and clustering algorithms. Therefore, it is an important part of the data 

analysis process. 
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CHAPTER 3 

FEATURE SELECTION 

There may be only one, or tens, hundreds even thousands of features, either 

quantitative or categorical format, in the datasets. However, an excessive number of 

features, i.e., high dimensions, results in problems such as prolonging the analysis 

process, high variance, noise, a tendency to overfitting, multicollinearity, complex and 

unintelligible analysis results. This situation is called the curse of dimensionality. An 

excessive number of features increases in storage and data transfer costs. To avoid 

these problems, features that are noisy, redundant and irrelevant must be filtered out 

from the dataset. This is called data dimension (size) reduction, feature selection, 

variable selection or variable subset selection.  

Feature selection is used to reduce the size of the datasets, to minimize the 

computational cost of data analysis, to obtain accurate, complete and understandable, 

i.e., simple and plain, analysis results, to increase scalability and to create generalized 

and easy-to-update models. Therefore, feature selection is used to improve the quality 

of classification and clustering functions of data mining. However, while all these 

objectives are achieved, it is aimed at the loss of information between the original 

dataset and the selected subset of the features is minimized or nonexistent. Because 

the loss of information affects the quality of data analysis negatively, it is necessary to 

transfer the information as much as possible.  

The feature selection is occasionally confused with the feature extraction process. 

Although both methods are data preprocessing methods that are used to reduce the size, 

they are completely different from one another. Feature selection is to find the subsets 

of features 𝑆 =  {𝑆𝑖| 𝑖 = 1,2,3, … , 𝑚}  that maximize a target function, 𝑃 , 

𝑎𝑟𝑔𝑚𝑎𝑥 (𝑃), from the feature set 𝐹 =  {𝐹𝑖| 𝑖 = 1,2,3, … , 𝑛}, that belongs to a dataset, 

𝐷 , by satisfying the following conditions 𝑆 ⊆ 𝐹 ∧ 𝑚 < 𝑛 . However, feature 

extraction is transforming, 𝑋 dimensional dataset, ℝ𝑥, to a smaller size, 𝑌, with the 

following conditions ℝ𝑥 → ℝ𝑦 ∧ ℝ𝑥 < ℝ𝑦 by using methods such as PCA (Principal 

Component Analysis), LDA (Linear Discriminant Analysis) or SVD (Singular Value 

Decomposition).  

Feature selection algorithms generally perform the selection process in four steps. The 

first step is to select, i.e., generate, a candidate feature subset from the original dataset. 
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This step is followed by the evaluation of the selected candidate subset according to 

the specified evaluation criteria such as distance, correlation, misclassification rate, 

etc. The third step is to apply the stopping criterion. The stopping criterion is used to 

prevent the algorithms from entering an infinite loop and to limit the processing (run) 

time. In the cases where the stopping criterion is not provided, the algorithm returns to 

the beginning and repeats the steps. The stopping criterion may be dependent, e.g., 

selection continues until there is an increase in classification accuracy, or independent, 

e.g., selection continues until the maximum number of iterations is reached, on the 

evaluation criterion. The final step of the selection process, which is not a part of the 

selection process, is testing. Its purpose is to evaluate the performance of the selected 

feature subset for supervised learning through a classifier and for unsupervised 

learning through a clustering algorithm with the testing dataset. The general structure 

of the supervised feature selection process is shown in Figure 3.1. 

 

Figure 3.1. General Framework of Supervised Feature Selection 

3.1. Feature Selection Techniques 

Feature selection can be supervised, i.e., labeled, unsupervised, i.e., unlabeled, or 

semi-supervised, i.e., semi-labeled, according to the class variable, as depicted in 

Figure 3.2.  
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Figure 3.2. Classification (Taxonomy) of Feature Selection Techniques 

• Supervised Feature Selection: Studies in the literature are mostly concentrated 

on this type of feature selection. Supervised feature selection is performed on 

labeled datasets. Labeled data is the name given to the data containing cause-and-

effect or input-output relations. In supervised feature selection, the selection 

algorithms consider the relationship between the features and the class label. For 

that, they use an evaluation criterion or a classifier. However, data labeling is a 

time-consuming process. Also, it is not possible to separate and label each 

condition encountered with certainty. Supervised feature selection can be 

performed on binary, multiclass or multi-label classification problems. In binary 

(two-class) classification problems, samples are assigned to one and only one class 

label. Performed tests for the detection of a particular disease, for example, 

diabetes, is the most typical example of a binary classification problem. The result 

of the test for the patient undergoing the test is either sick or healthy (not sick). In 

multiclass problems, the class label is more than two. However, as the binary 

classification problems, each sample can be assigned to one and only one class 

label. For example, classifying cars according to their color is a multiclass problem. 

Finally, in multi-label classification problems, each sample has more than one class 

label. A cinema movie having sci-fi, horror and adventure genres concurrently, is 

an example of a multi-label classification problem. There are many articles, books, 

compilations and electronic resources on supervised feature selection. The studies 

belonging to Jiliang et al. (2014), Guyon and Elisseeff (2003), and Huang (2015), 

can be examined for more detailed information on supervised feature selection.  

• Unsupervised Feature Selection: Unsupervised feature selection is performed on 

unlabeled datasets. Unlabeled data does not contain cause-and-effect or input-

output relations. Therefore, no class labels that guide the selection process exist 
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and the process becomes more difficult than the supervised selection. In order to 

overcome this problem, a strategy, such as creating labels using clustering 

algorithms and transforming the process into something similar to supervised 

learning is used. Unlabeled data are often encountered because detecting data 

labels and labeling all data is difficult, time-consuming and cumbersome. However, 

the number of studies on unsupervised feature selection is small, compared to the 

supervised feature selection.  Comprehensive research work, carried out by Salem 

et al. (2014), in which the unsupervised feature selection process is described in 

general, can be examined to obtain more detailed information on the subject. 

• Semi-supervised Feature Selection: Semi-supervised feature selection is 

performed using both labeled and unlabeled data. Internet shopping sites are one 

of the best examples of semi-supervised data sources. They contain labeled data 

such as product categories, and unlabeled data such as product reviews that are 

written in texts. Generally, the amount of unlabeled data used in semi-supervised 

feature selection is more than the labeled data. However, semi-supervised feature 

selection algorithms, for example, graph-based, e.g., Laplacian SVM, or low-

density separation, e.g., Transductive SVM (TSVM), do not take the majority into 

account. They are capable of processing both labeled and unlabeled samples in the 

same dataset. In recent years, studies on semi-supervised feature selection have 

increased, due to high costs of data labeling and the fact that unlabeled data can be 

easily obtained. One of the most recent studies is a detailed literature survey 

conducted by Sheikhpour et al. (2017).  

• Unified Feature Selection: Feature selection methods are usually algorithms that 

can operate on a single data type. However, selection algorithms that can work on 

both supervised and unsupervised datasets have been proposed. These algorithms 

are called unified feature selection algorithms. Unified feature selection algorithms 

should not be confused with semi-supervised feature selection algorithms, because 

the datasets that are used in the semi-supervised feature selection include both 

labeled and unlabeled data. Unified feature selection is related to the selection 

algorithm, not a data type. More information about the unified feature selection 

can be obtained from the study of Zhao and Liu (2007) and Han and Kim (2018), 

which outlines the general outline of the subject. 
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3.2. Supervised Feature Selection Techniques 

Although feature selection methods can be categorized in different ways by 

considering different criteria, within the scope of this thesis, they are classified and 

examined by regarding their structures and the way they express their results, i.e., 

outputs, respectively. Feature selection methods according to their structures, e.g., 

types of searching, evaluating and selecting the features, are divided into five different 

classes: filter, wrapper, embedded, hybrid and ensemble, as shown in Figure 3.3. 

Although the basis of hybrid and ensemble methods are the filter, wrapper, and 

embedded methods, they have been examined as a separate class in this study because 

of their structural differences.  

 
 

Figure 3.3. Classification of Supervised Feature Selection Methods 

3.2.1. Filtering Techniques 

Filtering methods, or rankers, fundamentally consist of an evaluation function and a 

selection criterion. Evaluation function that uses distance, information gain, error rate, 

and correlation metrics, ranks the entire feature set and sorted features are selected by 

a user-defined selection criterion, i.e., generally a threshold value. Filtering methods 

are resistant to overfitting problems, scalable, diverse, fast and easy to implement. Also, 

they do not require any classification algorithm, since they perform feature selection 

using mathematical and statistical evaluation functions. However, since filtering 

methods cannot exactly select features, they are usually used as a preparation stage for 

feature selection. Filtering methods are divided into two subclasses as univariate and 

multivariate. 

• Univariate Filtering Techniques: Univariate filtering techniques do not evaluate 

the relationship between features. In other words, the usefulness of each feature is 

evaluated independently, i.e., individually, one by one. This causes the features that 
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are useless alone but valuable in combination with another feature(s), i.e. feature 

dependencies, to be ignored. This is the major disadvantage of univariate filtering 

techniques. F-Score, Chi-Square Test and Information Gain are examples of 

univariate filtering techniques.  

• Multivariate Filtering Techniques: The independent evaluation of features is a 

problem that directly affects the performance of classification. In order to 

overcome this problem, multivariate filtering methods have been proposed. 

Multivariate filtering methods reveal the mutual relationship between features 

using statistical methods. Fast Correlation-Based Filtering (FCBF), Markov 

Blanket Filter (MBF) and ReliefF algorithms are examples of multivariate filtering 

methods. 

3.2.2. Wrapper Techniques 

Wrapper methods perform feature selection in three steps using a classification 

(induction) algorithm instead of mathematical or statistical functions. In the first step, 

the wrapper algorithm uses a search method (algorithm) to generate (select) a subset 

from all possible feature subset spaces. In the second step, the estimated accuracy or 

error rate of the generated subset is measured by a classification algorithm which is 

used as a black box, i.e., without considering the internal workings of the algorithm. 

In the last step, the stopping criterion, for example, the classification error rate, is 

controlled. If the stopping criterion is met, for example, if the classification error rate 

does not decrease any more, the algorithm stops, if not, it returns to the first step to 

select a new subset.  

The use of wrapper methods in problems with high dimensional datasets is 

computationally costly. There are two reasons for this. The first reason is that the 

number of feature subsets that can be created depends directly on the number of 

features. For example, from a dataset that contains 𝑛  features, 2𝑛  subsets (2𝑛 − 1 

proper subsets) of features can be generated. As can be seen here, an increase in the 

number of features, also increases the number of subsets not linearly but exponentially.  

To overcome this problem, that is included in NP-Hard class, exponential (Beam 

Search, Branch and Bound, etc.), sequential (Sequential Forward, Sequential 

Backward, Bidirectional, etc.) and random search (Simulated Annealing, Hill 

Climbing, Genetic Algorithm, etc.) strategies are being used. The second reason is that 
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each feature subset formed is being tested by the classifier. For these reasons, wrapper 

methods are not suitable to use on today’s large datasets. Another problem encountered 

in wrapper methods is that the selection process is entirely dependent on the 

classification algorithm. Changes in the classification algorithm affect the selected 

feature subsets. Thus, the results obtained are specific to the algorithm and far from 

being general. 

However, in contrast to filtering methods, wrapper methods not only recognize the 

relationship between the features but also the relationship between the features and the 

classifier as well. Therefore, they generally provide better (high classification 

performance) results than the filtering methods. Wrapper algorithms can work with 

different classifiers and search methods. Instead of a fixed classifier or search method, 

different classifiers and search methods that are appropriate to the studied datasets can 

be selected, tested and evaluated according to various criteria. Sequential Forward 

Feature Selection (SFS), Sequential Backwards Feature Selection/Elimination 

(SBS/SBE), Naïve Bayes and ID3 (Iterative Dichotomiser 3) can be given as examples 

for wrapper algorithms. 

3.2.3. Embedded Techniques 

In embedded methods, feature selection occurs while the classifier is being trained. 

This means learning and selection processes are not separated and works together as a 

single step. To summarize both sentences, feature selection is performed by the 

classifier’s guidance and results not only with a selected feature subset but also with a 

trained classifier. Therefore, embedded techniques have fewer calculation costs than 

wrapper methods. Like wrappers, they perform feature selection regarding the 

classification performance, e.g., estimated accuracy or error rate. However, since the 

subset performances are not tested by the classifier one by one, they work faster than 

the wrapper methods. They also are more resistant to overfitting problems. The major 

disadvantage of the embedded techniques is that they are dependent on the 

classification algorithm used, in the same way, that wrapper algorithms do. Thus, the 

obtained feature set is dependent on the used classification algorithm, and therefore 

the results of the different classifiers do not match.  

Embedded techniques are divided into two classes: forming a tree and pruning, and 

regularization. CART (Classification and Regression Trees for Machine Learning) 
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algorithm can be given as an example of the first class. The CART algorithm forms a 

binary decision tree and can prune the tree according to several criteria. The CART 

algorithm performs feature selection in two steps. In the first step, it uses all the 

features to form the tree by assigning one of them as root (the one with the highest 

Gini Index or gain) and others as child and leaf nodes (again using gain). In the last 

step, eliminates the redundant and irrelevant features from the tree by pruning it 

(pruning also can be done while forming the tree). Thus, the feature selection is 

realized during tree construction. For the second class, the LASSO (Least Absolute 

Shrinkage and Selection Operator) algorithm can be given as an example. The LASSO 

algorithm is essentially a regression analysis method. However, since it assigns a 

coefficient to each feature as a result of the analysis, it can also be used as a feature 

selection technique. At the end of the process, the features with zero as a coefficient 

are eliminated. The remaining features form the result set. Apart from these two 

algorithms, SVM-RFE (Recursive Feature Elimination for Support Vector Machines), 

Winnow, Elastic Nets (EN) and FS-P (Feature Selection Perceptron) algorithms can be 

given as examples of the embedded methods.  

3.2.4. Hybrid Techniques 

Hybrid methods are created by using filter and wrapper methods together. The main 

idea is to use the output of the filtering method as input to the wrapper method. In this 

approach, it is aimed to produce faster and more efficient results using both a statistical 

method and a classification algorithm in the selection process and to eliminate the 

individual disadvantages of filter and wrapper methods. In hybrid approaches, the 

selection process takes place in four steps. In the first step, the filter method evaluates 

and sorts the entire feature set. In the second step, a rough elimination (selection) takes 

place on the sorted feature set according to a predetermined threshold value (selection 

criterion) to form a feature subset. In the third step, the wrapper algorithm steps in and 

performs search and evaluation on the selected feature subset, respectively. In the last 

step, the stopping criterion is checked. If the criterion is provided, the algorithm stops, 

if not, it returns to the third step to select a new subset.  

Hybrid techniques can be formed by using different filter and wrapper algorithms. The 

combined use of filtering and wrapper methods increases the probability of obtaining 

subsets of features with higher classification performance than when used individually. 
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Also, unlike filtering, wrapper and embedded methods, hybrid methods do not depend 

on the performance of a single algorithm. The major disadvantage of hybrid methods 

is that the selection process carried out twice. Lastly, even though the number of 

elements of the feature subset to be given as input to the wrapper algorithm is reduced 

by the filtering method, (2𝑛 → 2𝑎, 𝑎 < 𝑛), in some cases, the required computational 

requirement may still be high. ReliefF-GA (ReliefF with Genetic Algorithm) and 

GRASP (Greedy Randomized Adaptive Search Procedure) algorithms can be given as 

examples of hybrid methods. 

3.2.5. Ensemble Techniques 

It is often difficult for the user to choose the appropriate technique and algorithm 

without having any technical knowledge (background) of both the dataset to be studied 

and the algorithm to be used. This problem is tried to be overcome with ensemble 

techniques. Ensemble methods are mainly an adapted version of ensemble learning 

that is used for classification problems, to the feature selection process. The main 

purpose of this technique is to combine techniques instead of selecting.  

Ensemble methods are based on the principle of performing the feature selection 

process more than once and combining the obtained results into a single feature subset. 

There are three different ensemble building approaches: data diversity, function 

diversity, and hybrid approach. In data diversity (variety of data), new datasets created 

by sampling the original dataset, are analyzed using a fixed single selection algorithm. 

In functional diversity (variety of functions), a single dataset (the original one) is 

analyzed by multiple selection algorithms without sampling. The hybrid approach is 

the combination of other techniques and the datasets are generated by sampling are 

analyzed by different selection algorithms. Different feature subsets obtained in each 

of the approaches are combined using a combination function, e.g., mean rank 

aggregation, and a final result set is obtained. These approaches can be performed 

using various algorithms of filtering, wrapper and embedded.  

Ensemble methods can work in high dimensional datasets and are resistant to 

overfitting. Moreover, they can provide good results with the aid of methods such as 

resampling, in cases where the dataset has a small sample size. The major disadvantage 

of ensemble approaches is that their working patterns and structures become rather 

complicated at times and consequently the comprehensibility of the results is 
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significantly reduced. Another aspect to be considered is the combination function 

because it has the power to directly affect the result set. Finally, although the ensemble 

methods often produce better feature subsets than a single algorithm, this is not always 

guaranteed. Ensemble approaches also have a limit, as is the case with each approach. 

As an example, to ensemble methods, the Random Forest which is generated by 

forming multiple Decision Trees, GEFS (Genetic Ensemble Feature Selection) and 

GBFS (Gradient Boosted Feature Selection) can be given. 

3.3. Problems Encountered in Supervised Feature Selection 

Some of the problems encountered in the feature selection are itemized in this section. 

Each of these articles can be considered as a subject of improvement.  

• Establishing the relationship between quantity and performance: Feature 

selection algorithms try to maximize the classification or clustering performance 

while minimizing the number of features. Therefore, feature selection is essentially 

an optimization problem. Yet, it is not easy to ensure both conditions at the same 

time and reducing the number of features does not always guarantee performance 

improvements.  

• Ensuring data quality: Used dataset, especially the training set, affects the 

performance of the feature selection algorithms directly. Therefore, the datasets 

should be cleared of various flaws before going into the feature selection. For 

example, small sample size, high dimension, wrong class labels, and unbalanced 

class distribution, missing and noisy samples can adversely affect the results of the 

selection process. There is also another problem that is associated with highly 

correlated features called multicollinearity. It is difficult to determine the effect of 

highly correlated features on the results and also such features may also produce 

misleading results. Hence, a good feature set should include elements that are 

closely correlated to the classifier, but as uncorrelated as possible to one another.  

• Adding an extra layer to the model building process: As mentioned earlier, 

feature selection is a data preprocessing technique used to reduce the size of the 

datasets. However, this process creates an extra layer during the modeling process. 

It extends the time required to create a model and increases complexity. This 

problem especially can be observed in filter selection algorithms easily. Since the 

filtering-type algorithms sort the features instead of selecting, the selection process 
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remains to be completed by the user or another selection algorithm. Only then 

learning and interpretation stages can take place.  

• Setting the algorithm and hyperparameters: Although it is not unique to the 

algorithms used in feature selection, it is time-consuming and difficult to determine 

the selection algorithm parameters and hyperparameters. Essentially, it is possible 

to interpret this process as a searching problem. To determine the optimal 

parameters, algorithms must be run several times and the result changes should be 

observed and interpreted. Also, since these values are problem-specific, they 

should be determined again as the problem changes.  

• Scalability: Both horizontal (number of samples) and vertical (number of features) 

growth in datasets increases the amount of processing power and time and memory 

needed to analyze by the selection algorithms. While the overall methods show 

high performance in small datasets, they tend to lose their performance as the size 

increases. Therefore, the ability to obtain and guarantee scalability is a serious 

problem encountered in feature selection. 

• Feature selection on unsupervised, multi-labeled and streaming data: Studies 

on feature selection often focus on supervised problems (datasets). Therefore, 

studies on unsupervised (Doquire and Verleysen, 2011; Li et al., 2014; Zang et al., 

2014), multi-labeled (Dy and Brodley, 2004; Qian and Zhai, 2013) and streaming 

(Zheng and Zhang, 2016; Wu et al., 2013; Wang et al., 2017) datasets are relatively 

few. However, nowadays, the analysis need of streaming data is more notable than 

in the past. Streaming data is the name given to the data which are generated 

continuously and in real-time, in large or infinite volumes, dynamically developing 

over time and generally obtained from sources such as computer networks, social 

networks, internet and location services. As can be understood from the definition, 

streaming data analysis is a rather up-to-date and promising subject. In addition to 

that, topics such as big data feature selection and online feature selection are also 

open to research and development. 
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CHAPTER 4 

SOURCES AND TYPES OF DATA, CLASSIFIERS AND CLASSIFIER 

EVALUATION 

In this chapter, firstly the data sources and data types (subtitle 4.1) are presented. Then 

the classification algorithms used to evaluate the performance of the feature subset(s), 

during the selection process, e.g., wrapper algorithms, and/or after the selection 

process (subtitle 4.2), are presented. These titles were followed by the accuracy 

measures (subtitle 4.3) and the validation methods (subtitle 4.4), used to evaluate the 

classifier (predictor) performance, respectively. Finally, some of the sampling 

techniques (subtitle 4.5) that can be used to change (for perturbation) the training 

datasets are mentioned. Figure 4.1 shows an overview of chapter 4 and places where 

the corresponding subtitles are being used in feature selection. 

 
 

Figure 4.1. An Overview of Chapter 4 

4.1. Sources and Types of Data  

Qualitative and quantitative datasets to be used in feature selection and classification 

problems can be obtained by the researcher personally through experiments, 

observations, and surveys, as well as from written and oral sources such as existing 

researches, reports, domain experts, newspapers, magazines, papers and articles. For 

this reason, data sources are examined in two groups as primary and secondary. 

Primary data sources are preferred because the data collection process is under the 

control of the researcher, real-time data can be collected and the data is direct and 
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reliable. However, secondary data sources are quite fast and economical to create. Also, 

hence they contain mostly out-of-date information, they are a summary of many 

sources on the subject. Both primary and secondary data sources are examined in two 

subgroups. These are observation and survey and internal and external. Internal data 

is generally high-security level data that organizations obtain from their operations. 

External data, however, is the data that organizations obtain from outside. The 

classification of data sources is shown in Figure 4.2. 

 
 

Figure 4.2. Classification of Data Sources 

In addition to the real data, synthetic, i.e., artificial, datasets that were firstly proposed 

by Donald B. Rubin (1993) are being used in the studies. The synthetic dataset is the 

name given to the datasets generated by various algorithms and data-generating 

software to mimic real-life data (datasets). Synthetic data does not mean fictional data. 

Synthetic data are generated with the help of statistical models, e.g., Linear or Non-

Linear Regression, obtained from the original dataset and carry the character of the 

original dataset from which they are produced. This model building process is called 

a synthesizer build. After the completion of synthesizer build synthetic data can be 

produced as much as desired. In addition to the synthetic datasets, semi-synthetic 

datasets which were first proposed by Roderick J. A. Little (1993) are also being used. 

Semi-synthetic datasets are created by synthesizer builds, just like synthetic datasets, 

but this time instead of the entire dataset, only the critical data is generated. The rest 

of the datasets stays untouched. Thus, real and synthetic data would be used together. 

Synthetic and semi-synthetic data can be generated from datasets derived from primary 

and secondary data sources. The classification of data types is shown in Figure 4.3. 
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Figure 4.3. Classification of Data Types 

The controlled experimental environment can be provided according to the necessities 

and conditions determined using synthetic and semi-synthetic datasets. For example, 

according to the experimental scenario to be applied, the amount of noisy data can be 

increased or reduced and the limits of the algorithm can be determined more clearly. 

Besides, they can also be used to eliminate data defects, such as skewed datasets. 

Synthetic and semi-synthetic datasets also serve as a verification technique. After 

performing classification or feature selection with synthetic datasets, performance 

evaluation is performed with the actual datasets. Lastly, especially the synthetic 

datasets give anonymity to the data and provide privacy and confidentiality because 

actual data may include personal, private or confidential information. Since synthetic 

data does not contain such information, they cannot be traced back. Thus, privacy and 

confidentiality are preserved. Despite all these advantages, synthetic datasets are more 

dependent on the model (synthesizer build) than the semi-synthetic ones. Thus, quality 

is determined by the model. Moreover, in some cases, it is difficult or impossible to 

create a model. 

In addition to the given taxonomy, data can be divided into two groups: static (offline) 

or dynamic (online, live or streaming data). Static data as can be understood from the 

name is the data that does not change over time. Records that belong to databases are 

the best example of static data. Once they are registered, they do not change. Dynamic 

datasets are constantly changing and developing over time. Data obtained from sensors 

or the internet is an example of live data. Nowadays, the use of dynamic datasets is 

increasing with the help of dynamic data production and consequently the need for 

analysis and new analysis methods. 

Types of Data

Real Data
Synthetic (Artificial) 

Data
Semi (Partially) 
Synthetic Data



29 

4.2. Classification Algorithms 

In this section, various classification algorithms used in the performance evaluation 

during and/or after the supervised feature selection process are briefly mentioned 

without specifying any order of importance. The purpose of classification, which is a 

form of supervised learning, is to assign the data (observations) to the classes (class 

labels) that have been defined previously. In other words, it is to predict the class in 

which the data may be included. The classification process is performed by using the 

results, data distributions and characteristics of the algorithm in the learning (model 

building) phase. For example, loan applications can be divided into three classes such 

as low, medium and high-risk groups. Any credit application will be categorized into 

one of these three classes, according to the applicant’s previous credit score(s) and/or 

other criteria. Classification is often used as a basic data mining function in many areas 

such as finance, banking, security (fraud detection), medicine (diagnosis), astrophysics 

and space sciences, text mining, image and voice recognition. 

If the target value of the data to be assigned is categorical (discrete), for example, the 

classification of individuals according to education level, then classification analysis 

is performed, if the target value is continuous, for example, the future value of a 

currency, regression analysis is performed. However, regression analysis methods, 

such as Linear and Logistic Regression, can also be used for classification problems. 

Therefore, classification and regression algorithms are used to evaluate the 

performance of the feature subset(s) obtained during, e.g., embedded algorithms, or 

after the selection process, e.g., wrapper algorithms. Within the scope of this thesis, 

various of the classifiers have been briefly explained. 

4.2.1. K-Nearest Neighbor (K-NN) 

K-NN (Altman, 1992) algorithm is widely used in solving classification and regression 

problems. The algorithm requires two hyperparameters: a user-specified 𝑘  value 

(number of neighboring points) and a distance metric. Although it is a rather costly 

method, the number of neighboring points is usually determined by trial and error. 

However, there are some generally accepted approaches for the determination of this 

value. One of them is, where 𝑛 is the number of samples (number of records), taking 

the 𝑘 as ⌊√𝑛⌋. For example, for a dataset that includes 90 samples, 𝑘 can be taken as 

9. Alternate to this method, the value of 𝑘 can also be determined with the help of 
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Bayesian Hyperparameter Optimization. However, no matter which method is 

preferred, the 𝑘 value should be cautiously determined as it plays a direct role in the 

classification process. As distance metrics, Euclid, Mahalanobis, Chebychev, 

Hamming, Cosine, Spearman can be used. The K-NN algorithm generally works in 

three steps:  

• Each sample, let’s call the number of samples by 𝑛, is marked to represent a point 

on the 𝑛-dimensional space (ℝ𝑛). 

• The distance between the point in which its class wished to be determined to the 

other points, is calculated by a user-defined distance metric.  

• After the distances are sorted from smallest to largest (increasing distance), the 

nearest (from the top of the ordered list) 𝑘  are selected and their classes are 

examined. The point with an unknown class is assigned to the class where the 

majority are. At this stage, in the binary classification problems when 𝑘 value is an 

even number, a draw may occur. For this reason, an odd 𝑘 value is chosen in binary 

classification problems.  

4.2.2. Support Vector Machine (SVM) 

Support Vector Machine (Cortes and Vapnik, 1995) is a supervised learning algorithm 

used in classification (fundamentally in binary classification) and regression problems. 

The general aim in this approach is to separate the existing classes with the help of a 

hyperplane that is equidistant to both classes. Examples of both classes closest to the 

hyperplane are called support vectors. Support vectors form two boundary lines 

parallel to each other, leaving the hyperplane in the middle. There are no samples of 

any class within these boundary lines and the name of this area is the margin. The 

algorithm tries to separate the classes by tampering both the boundary width (can be 

reduced and expanded) and the position (angle) of the border. However, it is not always 

possible to separate the samples with a line. For the sample sets that cannot be divided 

linearly, a nonlinear support vector machine which uses quadratic or cubic functions 

(curves) can be used. This time, the algorithm performs classification by tampering 

with the boundary width and position generated by these functions.  

The best advantages of Support Vector Machines are that they perform well even in 

low-sample datasets, and they are resistant to overfitting and noisy data. Support 
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Vector Machines are essentially binary classification algorithms. However, most of the 

problems tackled in daily life are multiclass problems. Therefore, in order to use the 

SVM algorithm in multiclass classification problems, “One vs. One” and “One vs. Rest 

(All)” strategies were proposed. In the “One vs. One” (OVO) strategy, classes are 

selected as binary groups. Classes that remain out of the group, are not considered. 

Therefore, for 𝑛 class, the SVM algorithm produces (𝑛2 ∗ 𝑛/2) models. In the “One 

vs. Rest” (OVR or OVA) strategy, each time a class gets selected (also called as a 

positive class) and all the remaining classes (also called as a negative class) are treated 

as one single class. Therefore, for 𝑛 class, the SVM algorithm produces 𝑛 models. The 

biggest disadvantage of the SVM algorithm is that both methods are extremely costly 

in cases where the number of classes is high. 

4.2.3. Naïve Bayes (NB) 

Bayes Classifiers (Pedro and Michael, 1997), which can be used in datasets with 

categorical (discrete) class labels, perform classification according to the probability 

based on Bayes’ Theorem. The Bayes’ Theorem is used to calculate the probability 

that samples are included in a particular class. Generally, when the algorithm 

encounters a sample with an unknown class, it calculates this value for all the classes 

and assigns the data to the highest possible class. According to Bayes’ theorem,  

A and  B are events, P(A|B), the likelihood of event A occurring given that B is true. 

P(B|A), the likelihood of event B occurring given that A is true and P(A) and P(B) are 

the probabilities of observing A and B independently of each other. 

Bayes Classifiers, which are exemplary of conditional probabilistic classifiers, are 

frequently used since they are fast, easy to apply and often have high classification 

performance. However, Bayes Classifiers have several disadvantages. Firstly, Bayes 

Classifiers do not consider the relationships between the features. Thus, they are called 

“naïve” Bayes Classifiers. However, features in real life, like the relationship between 

disease symptoms such as exhaustion, cough, and fever, are often related to each other. 

To consider the relationships between the features, Bayes Belief Networks (BBN) is 

being used. The second disadvantage is that the algorithm behaves as if all the features 

have the same importance (weight). Finally, the last disadvantage is that the Bayes 

 
𝑃(𝐴|𝐵) =

𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)  (1) 
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Classifiers do not work on datasets with a continuous class label. For this reason, Gauss 

Naïve Bayes (GNB) classifier is used for classification problems that contain 

continuous data. 

4.2.4. Error Correcting Output Codes (ECOC) 

ECOC (Dietterich and Bakiri, 1995) algorithm is an ensemble method that is created 

by combining binary classifiers, e.g., SVM, for solving multiclass classification 

problems. As mentioned before, multiclass problems have more than two class labels. 

Therefore, ECOC algorithm represents each class with a fixed length unique binary 

codes that are created randomly or using a specific method, e.g., 𝑐 number of classes 

are coded with 0s and 1s in the length of ℓ where ℓ ≥ 𝑙𝑜𝑔2𝑐, in order to transmute the 

problem into binary classification. After that, the ECOC matrix is created by 

combining these codes. Each row in the matrix refers to a different class. Therefore, 

for each column, a binary classifier is assigned and run separately. As referred, 

classifiers are responsible only for the column they assigned and cannot interfere with 

each other. An example of two different 4𝑥4 ECOC matrices created for four classes, 

𝐶 = {𝐶𝑖|𝑖 = 1, … ,4} is shown in Figure 4.4. Given the example, it can easily be seen 

that four classes can also be represented by 2 bits (00,01,11,10). However, expressing 

classes with more bits such as in the first matrix increases the error tolerance of the 

algorithm. 

 

[

𝑐1

𝑐2

𝑐3

𝑐4

] = [

1 1 1 1
0 1 0 0
0 0 1 0
1 0 0 1

]
 

[

𝑐1

𝑐2

𝑐3

𝑐4

] = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
 

 

Figure 4.4. An Example of Two Different ECOC Matrices (Output Codes) Created 

for a Four-Class Problem 

When a sample with an unknown class is encountered, each classifier generates code 

with the same length, ℓ, as the code generated for the classes, and the generated code 

is compared with the class tags using Hamming Distance. The sample is then assigned 

to the same or the nearest class. The major disadvantage of this method is that a 

classifiers’ mistake, makes the entire classification process inaccurate. It is possible to 

construct an ECOC classifier from classifiers such as SVM, Decision Tree, K-NN, 

Discriminant Analysis or Naïve Bayes. 
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4.2.5. Artificial Neural Network (ANN) 

Artificial Neural Network is the name of the system, which mimics the real biological 

nerve cells and is formed by artificial neural cells called nodes or neurons clustering 

in the form of layers. ANNs are used for many purposes such as image and signal 

processing, pattern recognition and analysis, classification, abnormality detection, 

optimization, and association. Artificial neurons, which form the ANNs and where the 

information is processed, consists of input (data), the weight value of the input, transfer 

function, activation function, and output parts. Inputs are processed through these 

layers respectively.  

Artificial neurons are interconnected and interacting with each other as biological 

nerve cells. Thus, each node that is working in parallel, transmits its input after 

processing to the other node or nodes to which it’s connected. For this reason, ANNs 

are being designed as layers. These layers are called input, hidden and output, 

respectively. Networks consisting of only input and output layers are called single-

layer, networks consisting of input, hidden and output layers are called multi-layered 

neural networks. 

1. Input Layer: The input layer is the layer that receives data from outside and 

transmits the input (data) it receives to the network. Since each neuron in the input 

layer receives an input, the number of neurons (nodes) are equal to the number of 

inputs.  

2. Hidden Layer: Hidden layer is the layer between the input and output layer. The 

hidden layer’s job is to processes the data that comes from the input layer and to 

transmit the processed data to the output layer. The number of hidden layers may 

vary depending on the architecture that is applied. Some ANNs do not have a 

hidden layer, while some may have more than one. Likewise, the total number of 

neurons in the hidden layer may vary, as it is not dependent on the number of 

neurons in the input and output layers.  

3. Output Layer: The output layer is the last layer and its task is to convert the data 

coming from the hidden layer into the desired output. All values, 𝑥𝑖, that enter into 

the hidden and output layers are multiplied by their weight, 𝑤𝑖, first and then added. 

At this stage, they form the (∑ (𝑥𝑖𝑤𝑖) + 𝑏𝑖 ) transfer function by adding the bias, 𝑏, 

value. The value obtained is controlled by the activation function, 𝑓(𝜑) , e.g., 
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sigmoid, hyperbolic tangent, etc. Essentially, the activation function is used to limit 

the transfer function. Thus, it is determined whether or not the neuron will be 

activated. 

There are two types of ANNs, feed-forward, and backpropagation (the backward 

propagation of errors). The backpropagation ANNs are used in both classification and 

feature selection. Classification in backpropagation ANNs is performed in two steps. 

In the first step, the ANNs are trained with the training datasets. Generally, the 

algorithm checks the target output with the output it produced each time, regulates the 

weights entering the nodes (usually the initial weights are determined as random 

values), 𝑤, therefore completes the learning process. This process is completed when 

the training error rate, i.e., the difference between the algorithm output and the target 

output, is reduced to an acceptable limit when it does not reduce any further or the 

output generated by the algorithm is identical to the target output. In the last step, the 

system is tested with data that has not been encountered before. When the performance 

(classification accuracy) reaches the desired level or does not increase any further the 

best features, i.e., those weigh more than others, are automatically selected. Therefore, 

ANNs are an example of embedded techniques. 

Artificial Neural Networks have properties such as self-learning and generalization 

ability, tolerance against inaccurate and incomplete data, parallel operation, and 

adaptability to unknown situations. However, ANNs also learn with examples as same 

as humans. Therefore, the quality of the training set directly affects the learning 

process. Occasionally it is difficult and costly to determine the appropriate network 

structure and parameters or adapt the problem to the network. In this case, the network 

structure may become complex. While generating behaviors that are hard to explain, 

complex networks also require more processing power, memory and time. Also, ANNs 

may perform poorly in small datasets.  

4.2.6. Decision Tree (DT) 

Decision Tree classifiers are frequently used since they are reliable, simple, have low 

computational complexity and can work with high dimensional datasets with both 

continuous and discrete variables. Decision Trees consist of a root, inner (or test) and 

leaf (or terminal or decision) nodes and branches. Root and inner nodes represent 
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features, branches represent the values that features may possess and the leaf nodes 

refer to the classes or preferences (decision). 

Size (number of nodes) of the decision tree, plays an important role in the classification 

performance. For example, large trees work slowly and have an overfitting tendency, 

while small-sized, i.e., bushy, trees are not successful in the classification despite their 

fast work. Therefore, after the tree is completely formed, pruning is used to obtain the 

tree with the most suitable size. Pruning is a technique used to remove sections 

(reducing tree size) that do not contribute to the classification from the tree to increase 

the classification accuracy and speed of the classification process and reduce the 

complexity of the final classifier. The pruning process can be carried out both during 

and after the formation of the tree. Algorithms such as ID3, C4.5, CART 

(Classification and Regression Trees) and CHAID (Chi-square Automatic Interaction 

Detection) can be used to form decision trees. However, each algorithm can form the 

Decision Tree in different ways.  

Each part leading from root node to leaf node on the tree can be expressed with an “if-

then” phrase. These sentences are called classification rules. It is preferred to express 

the results with classification rules, especially since the large tree structures might be 

difficult to understand. Classification rules are usually written from top to bottom, 

namely from the root node to leaf node. In between if-then (antecedent part), the 

conditions (each node and their values, starting from the root node until it reaches the 

leaf node) are written. If it passes through more than one inner node, a “and” 

conjunction is added between the past nodes. Finally, after “then” (consequent part), 

the class label is written. For example, for an online shopping site “If the monthly visit 

of the customer is less than two, and the average monthly expenditure is less than 100 

TL then create a customer-specific promotional coupon.” classification rule, can be 

created using a decision tree.  

Decision Tree classifiers select features that are effective (or useful or relevant) to the 

classification automatically during the tree construction with the help of the splitting 

criterion, e.g., Information Gain or Gain Ratio. Here it must be noted that there are two 

main types of splitting criterion: univariate (splitting the instance space is performed 

according to the value of a feature) and multivariate (splitting the instance space is 

performed according to the values of several features). Information Gain, Gain Ratio, 

impurity, distance, etc. are examples of univariate splitting criterion.  
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In order to select relevant features, first, all the features are evaluated with a splitting 

criterion. Then the features are sorted according to the evaluation results and the best 

feature is assigned as the root node. According to the feature on the root node, the 

remaining (the ones that are not used) features, and the stopping criterion, the tree 

splits and expands. This is how feature selection is performed. More information about 

Decision Tree classifiers can be found in the survey by Rokach and Maimon (2005). 

4.2.7. Linear Discriminant Analysis (LDA) 

The Linear Discriminant Analysis proposed by Sir Ronald Aylmer Fisher (1936), is a 

parametric classification method that aims to determine the relationship between two 

or more continuous independent variables or variables and a categorical dependent 

variable (class variable or class label). Therefore, it is also used as a dimension 

reduction technique. LDA can be used for binary and multiclass problems. LDA 

performs classification by reflecting the samples onto a line. Thus, the size of the 𝑛-

dimensional dataset is reduced. However, because the size is reduced, the samples are 

often positioned very close to one another or on top of each other. In this case, the 

discrimination process becomes difficult and the rate of finding the class labels is 

reduced. In order to avoid this problem, the algorithm tries to find the point that 

provides a lower variance between the class elements, and a higher variance among 

the classes by changing the angle and direction of the projected line. After the location 

of the line is found, the class label of the unknown samples can be found. Discriminant 

analysis, which is one of the multivariate statistical techniques, is used for the detection 

of the most effective discriminative variables, apart from the classification function. 

LDA classifiers are fast, require low memory and CPU usage and easy to implement 

and interpret. 

4.3. Evaluation of Classification Performance 

The main purpose of feature selection is to find the smallest feature subsets that can 

produce accurate classification models. Therefore, the classification performance of 

the selected subsets should be measured. Various classification model assessment 

measures are being used for this task and they are visualized by using confusion matrix 

which is a specific table, and ROC Curve, which is a graphical plot. 
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4.3.1. Confusion Matrix 

Confusion matrix, which is an 𝑛 𝑥 𝑛 square matrix/table with the class size 𝑛, e.g., for 

binary classification problems it is 2𝑥2 matrix, is generated by tabulating the number 

of true and false estimates made by the classification algorithms. In the confusion 

matrix, rows represent actual classes and columns represent estimated classes (could 

be vice versa). The accuracy rate of a classifier is obtained by dividing the number of 

correct estimates by the total number of estimates and the error rate is equal to one 

minus the accuracy rate. The confusion matrix of a binary classifier is shown in Table 

4.1. 

Table 4.1. Confusion Matrix 

  Predicted Class  

  A B Total 

Actual Class 
A a (TP) b (FP) a + b 

B c (FN) d (TN) c + d 

Total Positive Estimates Negative Estimates  

 

True positive, true negative, false positive and false negative values can be visualized 

using the confusion matrix. For example, suppose that for a binary classification 

problem we are calling the instances that belong to class 𝐴 as positive and the instances 

that belong to class 𝐵 as negative. True positives (TP) are the total number of positive 

instances, i.e., that belongs to the class 𝐴, estimated correctly, i.e., correctly predicted 

or labeled, by the classifier. True negatives (TN) are the total number of negative 

instances, i.e., that belongs to the class 𝐵, estimated correctly, i.e., correctly predicted 

or labeled, by the classifier. False positives (FP) are the total number of negative 

instances, i.e., that belongs to the class 𝐵, estimated wrongly, i.e., incorrectly predicted 

or labeled, by the classifier. False negatives (FN) are the total number of positive 

instances, i.e., that belongs to the class 𝐴, estimated wrongly, i.e., incorrectly predicted 

or labeled, by the classifier. 

Once these values are calculated other classification performance criteria such as 

accuracy, error rate, sensitivity, specificity, Positive Prediction Value (PPV), Negative 

Prediction Value (NPV), F1-Score, etc. can be calculated (see Table 4.2) with the help 

of the confusion matrix. In cases where there are more than two classes (𝑛 > 2), after 

creating the confusion matrix for all classes, the “One vs. Rest” strategy can be used. 
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In this method, one class is selected and named as a positive class, each time, until 

there is no class left, and regarding all the remaining classes named as a negative class, 

and treated as a single class, performance values are calculated one by one. A list of 

metrics for classification model evaluation can be found in the review by Hossin and 

Sulaiman (2015). 

Table 4.2. List of Various Classification Model Evaluation Metrics 

Metric Formula 

Accuracy Rate (TP +  TN)/(TP +  TN +  FN +  FP) 

Error Rate 1 −  Accuracy Rate 

Sensitivity TP/(TP + FN) 

Specificity TN/(TN + FP) 

Positive Prediction Value (PPV) TP/(TP + FP) 

Negative Prediction Value (NPV) TN/(TN + FN) 

Prevalence (TP + FN)/(TP + TN + FN + FP) 

F1 Score 
2 ∗ PPV ∗ Sensitivity

PPV + Sensitivity
 

4.3.2. ROC (Receiver Operating Characteristics) Curve 

ROC Curve is another technique used to visualize and measure the accuracy of binary 

classifiers (can also be used in multi-classification problems) in two-dimensional ROC 

space. In order to draw the ROC space, true positive (TP, 1- specificity) and false 

positive (FP) values are needed. ROC Space has false positive values on the 𝑥-axis, 

and true positive values on the 𝑦 -axis where both values are in the range of [0,1] . 

Therefore, the ROC Curve is a continuous function defined between (0,0) and (1,1) 

coordinates. The upper left corner of the ROC space ((0,1) coordinate) is the most 

ideal point and it is called the perfect classification. After true positive and false 

positive values are calculated according to each cut point (decision thresholds) 

determined by the user and the curve is created by marking it on the space.  
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Figure 4.5. The ROC Space and the ROC Curve for a Classifier 

The success of the classifier is determined by the area under the curve (AUC). 

Therefore, the larger the area, the more successful the classifier is. If the area under 

the curve is 1, this means that the classifier correctly classifies all the samples without 

making any mistakes. If the area is 0.5 (area under the diagonal line), this means that 

the classifier randomly, i.e., by chance, performs the classifying process. In other 

words, this is the same as classifying samples with a coin flip. Lastly, if the area is 

smaller than 0.5, this means that the classifier is working poorly and making more false 

selections than the right ones. Table 4.3 shows an example of how to interpret the 

classification performance considering the area under the curve. The taxonomy in this 

table is just to give an idea to the reader and can be changed. 

Table 4.3. Interpretation of AUC Values 

AUC Classification Performance 

0.91— 1.00 Very Good 

0.81— 0.90 Good 

0.71— 0.80 Mediocre – Fair 

0.61— 0.70 Poor 

0.51— 0.60 Very Poor 

≤ 0.50 Valueless 

The TP and FP values can also be expressed by points placed in the ROC space instead 

of the ROC Curve. In that case, instead of the area, the distance of points to the upper 

left corner (0,1) is considered and Euclidean Distance, 

 d = √(1 − TPR)2 + (1 − FPR)2 (2) 
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is used as a distance measure (Figure 4.5). The closer the dots are to the corner, the 

better the performance of the classifier. And for multiclass problems, as in the 

confusion matrix, for each class a single ROC Curve is generated using the “One vs. 

Rest” strategy and the AUC value is calculated. For a multiclass ROC analysis, the 

study of Landgrebe and Duin (2007) can be examined. 

4.4. Validation and Cross-Validation Techniques 

Datasets are separated into training, testing, and verification or training and testing sets 

by using validation and cross-validation methods. The main purpose of using these 

techniques is to determine the classifier performance. However, they also can be used 

to set the classifier parameters. The difference between validation and cross-validation 

methods is that in validation the training and testing of the classifier is performed only 

once. In this section Holdout, Resubstitution and Random Subsampling Validation and 

Bootstrapping, K-Fold and Leave-One-Out Cross-Validation techniques are briefly 

mentioned. 

4.4.1. Holdout 

Holdout validation is one of the most widely used and simplest validation techniques, 

which can be performed in two different ways.  

• Training, validation and testing sets: In the first approach, the initial dataset is 

randomly separated into three disjoint, i.e., mutually exclusive, training, validation 

and testing sets. The training set consists of approximately half of the total data 

and its task is to train the classifier. The remaining data is separated into two, half 

of it as the testing and the other half as the validation set. The testing set, which 

consists of unused data, is used to measure the performance, i.e., accuracy, of the 

classifier and the validation set is used to set the algorithm parameters.  

• Training and testing sets: In the second approach, the validation set is added to 

the training set. In this case, the initial dataset is separated into two disjoint sets as 

approximately 70% of the dataset for the training and 30% of the dataset for the 

testing. 

The data in sets can vary in both applications. The main point to be considered here is 

that the training set is always bigger in ratio than the other sets. Otherwise, the training 

of the classifier would be incomplete and incorrect. Holdout validation has two 
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disadvantages. The first is where to split the dataset. Holdout validation works only 

once (that is why it is not a cross-validation technique), unlike other methods, therefore, 

a poorly made separation of dataset causes us to have misleading results. The second 

one is that the initial dataset may not be large enough to be separated into two or three 

parts. In the Holdout validation method, the overall accuracy is equal to the accuracy 

shown in the testing set: 

4.4.2. Resubstitution 

Resubstitution is a validation method where the entire initial dataset is used for training 

first, and then it is used for testing. However, this technique is not preferred since it 

leads to the problem of overfitting in most of the machine learning algorithms. Also, 

the error rate in this technique turns out to be quite low. The overall accuracy rate is 

equal to the accuracy that is shown in the testing set (see Formula 3). 

4.4.3. Random Subsampling 

Random subsampling is a variation of Holdout method, therefore, as in the Holdout, 

the initial dataset is separated into training and testing sets. This time, however, the 

training set consists of randomly selected, i.e., sampled from the initial dataset without 

replacement, data from the initial dataset and the data that is remaining from the 

selection, i.e. unselected data, create the testing set. After the partitions are created, the 

training is carried out first and then the testing takes place. This process is repeated 𝑛 

times. The overall accuracy in random subsampling validation method is calculated as 

the average of the accuracy rate in each iteration: 

4.4.4. Bootstrapping (0.632 Bootstrap) 

In Bootstrapping data reserved in the training and testing sets are sampled uniformly 

with replacement from the initial dataset. Therefore, in testing or training set, the same 

data can be chosen more than once. For example, in the test set, they may be three 

sample number 2. However, same data cannot be in both the training and the testing 

 Acc =  atest . (3) 
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set at the same time. Data that did not get selected in the training set are assigned to 

the test set. This process is repeated 𝑛  times. Bootstrapping technique is usually 

preferred when the dataset is not large. In Bootstrapping, the possibility of each data 

getting selected is 1/𝑛 and the possibility of not getting selected is (1 − 1/𝑛). Since 

the selection process is repeated 𝑛  times, this probability becomes (1 − 1/𝑛)𝑛  for 

each data and this is approximately equal to 𝑒−1 ≈ 0.368 or 38.6%. This value is the 

probability of any data within the dataset that will not be selected for training. 

Therefore, the training set will reserve approximately 63% of data from the initial 

dataset. That is why this method is also called as 0.632 Bootstrap. The overall accuracy 

of Bootstrapping is equal to the sum of accuracy in the testing and the training sets: 

4.4.5. K-Fold Cross-Validation (K-Fold CV) 

In this technique, the initial dataset is separated into 𝑘  equal-sized disjoint, i.e., 

mutually exclusive, subsets and the training and testing of the classifier are repeated 𝑘 

times. If the initial dataset cannot be separated evenly, one subset can contain more 

samples than the other. In each iteration, one subset is used for testing and the others 

are used for training purposes. Therefore, each data used in the testing set once, and in 

the training set (𝑘 –  1) times. The overall accuracy in this technique is calculated as 

the average of the accuracy rate in each iteration (see Formula 4, where 𝑘 = 𝑛). 

4.4.6. Leave-One-Out Cross-Validation (LOOCV or Rotation Estimation) 

In LOOCV, the initial dataset is separated into subsets, as in the K-Fold Cross-

Validation. This time, however, the number of subsets, 𝑘, is equal to the number of 

instances (data points or records), 𝑛, that forms the initial dataset. In each iteration, the 

selected classifier is trained (𝑛 –  1)  times, tested only once. LOOCV is the only 

method that uses, i.e., utilizes, as much as data for training, however, its computing 

costs are rather high, especially in large volume datasets. The accuracy in LOOCV is 

calculated as the average of the accuracy rate in each iteration (see Formula 4). 
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4.4.7. Stratified (or Proportional) Holdout and K-Fold CV 

In general, stratification, which is a sampling method, is used to ensure that each class 

is equally represented across training and testing sets. It is possible to use stratification 

in Holdout or K-Fold CV techniques. This method often used to reduce the variance 

and to provide diversity in cases where the number of instances per class is unbalanced, 

i.e., where the data has asymmetric distribution (skewed), can be applied in two 

different ways. The first way, the samples are taken equally from each sample group, 

i.e., class. The second way, the number of samples, i.e., sample sizes, in each group is 

taken into consideration in determining the size of each stratum. More samples are 

taken from the group that has more samples. In this study, a stratified 10-Fold CV was 

used during the empirical studies on sequential feature selection algorithms. 

4.5. Sampling 

Sampling is selecting a certain amount of data, i.e., sample, that represents the basic 

characteristics of the dataset, i.e., population, from which they were taken, for analysis 

and reporting. Sampling is a data reduction technique. Especially since it is costly to 

process high volume datasets, dealing with a part of it rather than the whole set, helps 

to reduce computing costs. Sampling is also used for determining feature selection 

stability. With sampling, different sample subsets from the same probabilistic 

distribution are generated and the responses of the feature selection algorithms to these 

samples are measured and evaluated by stability measures. In this thesis, the most 

commonly used techniques such as random, stratified and cluster sampling (Figure 4.6) 

are mentioned. 

• Random Sampling (or Simple Random Sampling, SRS): Random sampling is 

the simplest sampling technique where each data, i.e., an individual for the 

population, that forms the dataset, i.e., population, is selected independently and 

with equal probability, i.e., chance. For example, the probability of selecting data 

from a dataset that contains 𝑛 sample is 1/𝑛 in each selection. There are two types 

of random sampling: with replacement and without replacement.  

1. In simple random sampling with replacement (SRSWR), each data is selected 

randomly from the dataset, are re-added or replaced into the dataset. Therefore, 

any data that is selected may be selected more than once. The total number of 

datasets, with 𝑛 number of samples (data), that can be selected from a dataset 
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containing 𝑁  data is equal to 𝑁𝑛  and each dataset can be selected with the 

possibility of 1/𝑁𝑛. 

2. In simple random sampling without replacement (SRSWOR), each data is 

selected randomly from the dataset, are not re-added or replaced into the 

dataset. Therefore, any data that is selected cannot be selected again. The total 

number of datasets, with n number of samples (data), that can be selected from 

a dataset containing N data is equal to (
𝑁
𝑛

), and each dataset can be selected 

with the possibility of 1/(𝑁
𝑛

). 

• Stratified Sampling: In this technique, which is used to reduce variance, the 

sample set is firstly divided into two or more non-overlapping groups, called strata, 

which may contain equal or different numbers of samples. The formation of strata 

is done according to a particular feature (purpose, criterion or goal), such as age, 

educational status or income, and the examples that fit the property of strata, form 

the strata samples. Strata should be homogeneous in itself, but heterogeneous to 

one another. As mentioned, each sample belongs to one and only one stratum, i.e., 

mutually exclusive, and sampling is performed by random selection from each 

stratum. Therefore, in the strata, each sample has the same probability of being 

selected. Rare (numerically less than others) samples are less likely to be selected 

and represented in larger clusters. Stratified sampling helps to increase this 

possibility.  

• Cluster Sampling: In cluster sampling, data are divided into sets according to a 

specific feature (purpose, criterion or goal). Sets may contain equal or different 

numbers of data. However, each data belongs to only one set. Sets are selected by 

random selection and the data in the selected set constitute the dataset. In this 

technique instead of selecting individual data, a group of data is selected. 

 

Figure 4.6. Illustration of Random, Stratified and Cluster Sampling Techniques 



45 

Although cluster sampling and stratified sampling appears to be similar in structure, 

they are completely different. While in the cluster sampling clusters are being selected, 

in stratified sampling, samples are being selected from the strata. Apart from these 

mentioned methods, there are more sampling techniques. One of these is adaptive 

sampling. In this technique, sampling starts with a small sample subset and stops when 

the number of samples reaches a sufficient size. Sufficient size may vary depending 

on the intended use of the sample subset. For example, the classification performance 

for classification will start to vary with the increase in the number of samples and 

becomes stable at some point. In this case, the point at which it becomes stationary 

gives sufficient size. The most frequent used sampling method in data mining and 

stability determination is random sampling. Comprehensive information about the 

purposes of sampling in the data mining process can be obtained from the research 

studies done by Weiß (2008) and Khandar and Dani (2010). 
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CHAPTER 5 

STABILITY IN FEATURE SELECTION 

As mentioned earlier, feature selection algorithms attempt to select the smallest 

possible feature subset, i.e., a set or vector of features with the lowest possible 

cardinality, that maximizes classification or clustering performance within the original 

dataset. However, during this process, the stability of the selection algorithm is 

relatively being neglected. The stability of the selection algorithms is measured by its 

sensitivity to changes (perturbations) made in the training set. Changes can be done by 

obtaining different data subsets by a sampling method, adding/subtracting samples to 

the original dataset, reordering the samples or features, adding noisy and/or outlier 

samples. Any stable algorithm must be affected by the changes in the training dataset 

as low as possible or not at all. In this study, only the stability of the supervised feature 

selection techniques and stability measures are considered.  

A stable algorithm should not produce different results when it is run on datasets 

generated from the same probabilistic distribution. Therefore, to determine the stability 

the algorithm results are checked after each change is made in the training dataset. A 

stable algorithm, i.e., insensitive to changes, produces results (feature subsets or ranks) 

that are identical or very similar, while unstable one, i.e., sensitive to changes, 

produces results that are slightly similar or completely different. Stability is a serious 

problem that needs to be addressed, as it makes it difficult to validate and interpret the 

selected features. Therefore, it is necessary to evaluate the algorithms not only 

according to their classification or clustering accuracy but also to their stability. In 

order to increase stability, methods such as data preprocessing to reduce faulty data 

and class variance and ensemble feature selection methods are generally used.  

Stability largely depends on the dataset. Unbalanced class distributions, skewed data, 

outliers, noisy values, features that carry similar information or close correlation, i.e., 

multicollinearity or multi-dependency (if the relations between independent variables 

are not linear), insufficient number of samples and high dimensions are important 

factors that affect the algorithm stability. Besides, using a feature selection algorithm 

that is not suitable for the dataset and/or incorrectly setting parameters and/or 

hyperparameters of the feature selection algorithm also affects the stability. Therefore, 
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it is necessary to select the appropriate algorithm for the correct stability measurement 

and to use the same algorithmic parameters in each iteration, if any. Otherwise, the 

determination of stability will be performed incorrectly.  

5.1. Stability Measurement in Supervised Feature Selection 

Supervised feature selection algorithms represent (or express) their results in three 

different ways: by feature ranking (scoring), weighting and indexing (see Figure 5.1). 

Although it is possible to select a subset of features by scoring all the features first, 

then sorting them according to their scores and lastly selecting some of the features 

according to a certain threshold value (selection criterion), it is not possible to perform 

the opposite. Therefore, it is necessary to perform stability measurement according to 

the algorithm outputs. 

  

Figure 5.1. Classification of Feature Selection Methods in Terms of Result 

Representations 

Feature selection algorithms have three different categories of stability measurement 

according to the output (result) expressions. 

• Stability measurement using rank: Feature selection algorithms, which represent 

results in terms of feature ranks, e.g., Information Gain algorithm, create a vector 

of features with a descending relevancy move from left to right. The stability 

measurement is performed by calculating the distance or correlation between the 

feature rank vectors obtained after each change was done in the training set using 

Spearman’s 𝜌 (rho), Kendall’s 𝜏 (tau), Canberra Distance, etc.  

• Stability measurement using weight: Feature selection algorithms, which 

represent results in terms of feature weights, e.g., ReliefF algorithm, assign a 

weight to all features ranging from 0 to 1 (most useful features) or -1 and 1 

Feature Selection Algorithms 
Output Representations 

By Ranking
e.g. InfoGain Algorithm

By Weighting
e.g. ReliefF Algorithm

By Indexing
e.g. SBS Algorithm
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according to their relevancy. The stability measurement is performed by 

calculating the correlation between the feature weight sets obtained after each 

change done in the training set using only Pearson’s Correlation Coefficient. 

• Stability measurement using index: Feature selection algorithms, which 

represent results in terms of feature indexes, e.g., SBS algorithm, stability 

measurement is performed according to the locations, i.e., places, of features in the 

selected subset. Selected features can be expressed using either binary strings, 1 

means feature is selected and 0 means feature is not selected, as 𝑆 = [11001 … ], 

or a simple vector of feature indices, as 𝑆 = {1,2,5 … }. The stability measurement 

is performed by using set-based (index-based) stability measures such as Sørensen-

Dice Coefficient, Kuncheva and Jaccard Index, Tanimoto Distance, etc. 

Several stability measures and the related studies are listed in Table 5.1. A more 

detailed explanation of stability measures can be found in the literature in reviews by 

Awada et al. (2013) and Mohana and Perumal (2016). 

Table 5.1. List of Stability Measures Classified According the Representation of the 

Output of the Feature Selection Technique 

FSA 

Output 
Measure Reference 

Rank 

Kendall’s 𝜏 (tau) Shabbir et al. (2014) 

Spearman’s 𝜌 (rho) Kalousis et al. (2007) 

Canberra Distance 

Weighted Canberra Distance 
Jurman et al. (2008) 

Weight Pearson’s Correlation Coefficient (PCC) Kalousis et al. (2007) 

Set 

(Index) 

Sørensen-Dice Coefficient Yu et al. (2008) 

Jaccard Index 
Saeys et al. (2008) 

Tanimoto Index 

Kuncheva Index Kuncheva (2007) 

𝐶, 𝐶𝑉, 𝐶𝑊𝑟𝑒𝑙 
Somol and Novovivcova 

(2010) 

Average Normal Hamming Distance Dunne et al. (2002) 

Lustgarten’s Measure Lustgarten et al. (2002) 
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5.2. The Properties of Stability Measures  

In the literature, properties that stability measures should have, are listed under 

different titles (Nogueira and Brown, 2015; Nogueira and Brown 2016; Mohanaand 

and Perumal, 2016). Therefore, based on the publications reviewed, five properties are 

mentioned in here without considering any order of importance.  

1. To have limits (Upper and lower bounds): The results of stability measures 

should be ranged in closed bounded intervals. According to this property, stability 

result of an algorithm, e.g., 𝑥, should be greater than or equal to 𝑎 and less than or 

equal to 𝑏, i.e.,  𝑎 ≤ 𝑥 ≤ 𝑏, (𝑥 ∈ [𝑎, 𝑏]). For this reason, the results of stability 

measures in the literature are bounded on [0,1] or [−1,1].  

2. To be monotonic: The higher the similarity between results, the greater the 

stability value should be. For example, if the subsets 𝑠1 and 𝑠2 are selected from a 

dataset, i.e., (𝑠1, 𝑠2 ⊂ 𝐷), then the greater the 𝑛(𝑠1 ∩ 𝑠2), or |𝑠1 ∩ 𝑠2|, the greater 

the stability. For feature rankers (scorers) the monotonicity property is provided by 

considering the similarities in feature rankings or scores.  

3. To have a mechanism to correct the coincidental overlap (result by chance): 

Especially, in the case when the number of features in the original dataset is small, 

the chance of selecting similar feature subsets can be expected to be high. Similarly, 

the increase in the number of selected feature subsets and/or the number of selected 

features (feature subsets with high cardinality) also increase this probability. Thus, 

a constant value is required to correct the coincidental overlap, i.e., intersection by 

chance, issue.  

4. To be symmetrical: According to the symmetric property, if 𝑥 is equal to 𝑦, then 

𝑦  must be equal to 𝑥 . For this reason, the stability value should not change 

depending on the order of feature subsets. For example, for 𝑠1  and 𝑠2  feature 

subsets, stability value of (𝑠1, 𝑠2)  and (𝑠2, 𝑠1)  must be the same. Otherwise, the 

measure would not be symmetrical. The symmetrical property is not related to the 

order of elements in the feature subsets.  

5. To be independent of quantity: Results of the selection algorithms can be in 

various sizes, i.e., lengths. For this reason, the stability measure should be able to 

work on the result subsets with a different number of elements (cardinality). For 

example, a feature subset with 𝑥 number of elements should be compared with a 
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feature subset with y number of elements, even if 𝑥 and 𝑦 are not equal(𝑥 ≠ 𝑦). 

Some stability measures in the literature, for example, the Kuncheva Index, work 

only on result sets of equal cardinalities.  

5.3. Types of Stability Measures 

The stability value of feature selection algorithms is determined in 4 steps. In the first 

step, changes are made in the training data. In the second step, the algorithm is 

executed. The first and second steps are repeated in the determined amount and all the 

feature subsets selected during each iteration (repetition) are collected. In the third step, 

regarding the algorithm’s output representation these subsets are compared in pairs 

(except frequency-based stability measures because they do not use pairwise 

comparison) by using stability measures. In the last step, the average of the stability 

values is taken to determine the final stability value of the algorithm. The result of each 

comparison can be represented using upper triangular, (𝐴 in Figure 5.2), or symmetric 

matrix, (𝒮 in Figure 5.2). Both matrices are square matrices of size 𝑛𝑥𝑛, where 𝑛 is 

the number of iterations (or the total number of changes made in the dataset). Besides 

matrices, a vector (𝑅⃗⃗ in Figure 5.3) can also be used to represent comparison results. 

 

𝐴 = [

1 𝑟12 𝑟13 𝑟14

0 1 𝑟23 𝑟24

0 0 1 𝑟34

0 0 0 1

]     𝒮 =    [

1 𝑟12 𝑟13 𝑟14

𝑟21 1 𝑟23 𝑟24

𝑟31 𝑟32 1 𝑟34

𝑟41 𝑟42 𝑟43 1

]
 

 

Figure 5.2. Comparison Results Represented by Matrices 

 𝑅⃗⃗ = [𝑟12, 𝑟13, 𝑟14, 𝑟21, 𝑟23, 𝑟24, 𝑟31, 𝑟32, 𝑟34, 𝑟41, 𝑟42, 𝑟43]  

Figure 5.3. Comparison Results Represented by a Vector 

5.3.1. Set-Based (or Index-Based) Stability Measures 

Set-based (index-based) stability measures compare feature subsets results in pairs 

using basic set operations (intersection, union, set difference, etc.) in order to evaluate 

the algorithm’s stability value. For 𝑛  number of results, where 𝑛  is bigger than 1, 

(𝑛2 − 𝑛)/2  pairwise comparisons are needed and the final stability value of the 

algorithm is determined by taking the average of stability values. If the result is equal 

to 1 then the result sets are the same, while 0 or -1 means they are completely different. 
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The generalized formula of set-based stability measures is intersection over the union 

of two result sets, e.g., a and b, ((𝑎 ∩ 𝑏) /(𝑎 ∪ 𝑏)). If the result sets are expressed 

using binary strings instead of feature indices, stability value is evaluated with the help 

of logical operators, “and” logical operator is used for intersection and “or” is used for 

the union, without changing the stability measure formula. In the scope of this study, 

𝑋  and 𝑌  express result vectors, 𝑛  expresses the number of features in the original 

dataset and 𝑐  expresses cardinality of the selected feature subset, several set-based 

stability measures which have been examined or used are listed in Table 5.2. 

Table 5.2. List of Set-Based Stability Measures 

Measure Formula Bound Measures 

Jaccard Distance. (JD) 𝐽(𝑋, 𝑌) =
|𝑋 ∩ 𝑌|

|𝑋 ∪ 𝑌|
 

[0,1] 
Dissimilarity 

Jaccard Index (JI) 𝐽𝐼 = 1 − 𝐽(𝑋, 𝑌) Similarity 

Sørensen-Dice 

Coefficient (SDC) 
𝑆𝐷(𝑋, 𝑌) =

2|𝑋 ∩ 𝑌|

|𝑋| + |𝑌|
 [0,1] Similarity 

Sørensen-Dice Using 

Jaccard Coef. 
𝐽(𝑋, 𝑌) =

𝑆𝐷(𝑋, 𝑌)

2 − 𝑆𝐷(𝑋, 𝑌)
 [0,1] Similarity 

Jaccard Coef. Using 

Sørensen-Dice 
𝑆𝐷(𝑋, 𝑌) =

2𝐽(𝑋, 𝑌)

1 + 𝐽(𝑋, 𝑌)
 [0,1] Similarity 

Cosine Distance (CD) 

 
𝐶(𝑋, 𝑌) =

|𝑋 ∩ 𝑌|

√|𝑋|√|𝑌|
 

[0,1] 

Dissimilarity 

Cosine Index (CI) 

(Cosine Similarity) 
𝐶𝐼 = 1 − 𝐶(𝑋, 𝑌) Similarity 

Overlapping 

Coefficient (OC) 
𝑂(𝑋, 𝑌) =

|𝑋 ∩ 𝑌|

|𝑋|
,
|𝑋 ∩ 𝑌|

|𝑌|
 [0,1] Similarity 

Hamming Distance 

(HD) 𝐻(𝑋, 𝑌) =
#(𝑋 ≠ 𝑌)

𝑛
 

[0,1] 
Dissimilarity 

Hamming Index (HI) 𝐻𝐼 = 1 − 𝐻(𝑋, 𝑌) Similarity 

Intersection 𝐼(𝑋, 𝑌) = |𝑋 ∩ 𝑌| [0, ∞] Similarity 

Kuncheva Index (KI) 𝐾𝐼(𝑋, 𝑌) =
|𝑋 ∩ 𝑌|𝑛 − 𝑐2

𝑛𝑐 − 𝑐2
 [−1,1] Similarity 

Lustgarten’s Measure 

(LM) 

𝐿(𝑋, 𝑌)

=
|𝑋 ∩ 𝑌| −

|𝑋||𝑌|
𝑛

min (|𝑋|, |𝑌|) − max (0, |𝑋| + |𝑌| − 𝑛)
 

[−1,1] Similarity 

 

5.3.2. Weight-Based Stability Measures 

The results of feature selection algorithms that weights all the features, e.g., ReliefF, 

are expressed by vectors of feature weights. As the algorithm assigns weights to each 

feature, the result sets have fixed length and have the same number of the features in 
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the original dataset. For example, for a dataset with n number of features, weights are 

represented with a vector 𝑤⃗⃗⃗  as 𝑤⃗⃗⃗ = {𝑤⃗⃗⃗𝑖|𝑖 = 1, … , 𝑛} . The similarity between the 

weight vectors is only measured by Pearson’s Correlation Coefficient, which takes 

values between -1 and +1. The plus and minus signs indicate the direction of the 

relationship and the numerical values indicate the strength of the relationship. If the 

coefficient is less than zero, i.e., 𝑟 < 0, it means that the two variables are moving in 

the opposite direction, e.g., one is increasing while the other is decreasing. If the 

coefficient is greater than zero, i.e., r > 0, it means that the two variables are moving 

in the same direction, e.g., both increasing. If the coefficient is equal to zero, i.e., 𝑟 =

0, it means that the two variables are independent, i.e., not in a relationship with each 

other. The direction or the degree of the correlation coefficient, does not refer to the 

cause and effect relationship. The strength of the relationship can be classified as very 

weak, weak, medium, strong and very strong regarding the value of the correlation 

coefficient (class names and ranges can be changed). In Table 5.3, 𝑖 expresses the ith 

element of  𝑋𝑖 and 𝑌𝑖 result vectors, 𝑋̅ and 𝑌̅ express the average of the result vectors 

and n expresses the number of features in the original dataset, Pearson’s Correlation 

Coefficient (PCC) formula is given. 

5.3.3. Rank-Based Stability Measures 

The results of feature selection algorithms that rank (scores) all the features according 

to a criterion, e.g., distance or relationship (correlation), are expressed by vectors of 

feature indexes. The similarity between these vectors can be determined with the help 

of Spearman’s and Kendall’s Rank Correlation Coefficient, Canberra Distance or 

Weighted Canberra Distance. The Spearman’s Rank Correlation Coefficient (SRCC) 

or Spearman 𝜌  (rho), expresses the uniform relationship between the rank of two 

discrete variables, i.e., feature rank vectors, and its strength with the correlation 

coefficient indicated by 𝜌 . Like all correlation coefficients, 𝜌  is in the range of 

[−1, +1] and the plus and minus signs refer to the direction of the relationship, and 

the numerical values refer to the strength of the relationship. If the coefficient is less 

than zero, i.e., 𝜌 < 0 , means that the two variables are moving in the opposite 

directions, being greater than zero, i.e., 𝜌 > 0, means both variables are moving in the 

same direction and if the coefficient is equal to zero, i.e., 𝜌 = 0 , means the two 

variables have an independent relationship. 
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The Kendall’s Rank Correlation Coefficient (KRCC) or Kendall’s τ (tau), in contrast 

to the Spearman’s Rank Correlation Coefficient analysis, consider concordant and 

discordant pairs. Each observation pair (feature pair) that belong to the 𝑋̅  and 𝑌̅ 

variables (two different feature ranking vectors),(𝑋𝑖, 𝑌𝑖) − (𝑋𝑗, 𝑌𝑗), if 𝑋𝑖 > 𝑋𝑗 and 𝑌𝑖 >

𝑌𝑗  or 𝑋𝑖 < 𝑋𝑗  and 𝑌𝑖 < 𝑌𝑗 conditions are met, they are concordant and if 𝑋𝑖 > 𝑋𝑗 and 

𝑌𝑖 < 𝑌𝑗 or 𝑋𝑖 < 𝑋𝑗 and 𝑌𝑖 > 𝑌𝑗 conditions are met, they are discordant. Concordant and 

discordant pairs are found for each feature pair to calculate Kendall’s Rank Correlation 

Coefficient. Spearman’s and Kendall’s Rank Correlation Coefficient formulas are 

given in Table 5.3, where 𝑖  is the ith element of  𝑋𝑖  and 𝑌𝑖  result vectors,  𝑛  is the 

number of features in the original dataset and 𝐶𝑃 , concordant and 𝐷𝑃 , discordant 

feature pairs.  

Table 5.3. Pearson’s Correlation Coefficient, Spearman’s Rho and Kendall’s Tau 

Measure Formula Bound 

Pearson’s Corr. Coef. 

(PCC) 

𝑟 =
∑ (𝑋𝑖 − 𝑋̅)𝑛

𝑖=1 (𝑌𝑖 − 𝑌̅)

√∑ (𝑋𝑖 − 𝑋̅)2 ∑ (𝑌𝑖 − 𝑌̅)2𝑛
𝑖=1

𝑛
𝑖=1

 
−1 ≤ 𝑟 ≤ 1 

Spearman’s Rho 

(SRCC) 
𝜌 = 1 −

6 ∑ (𝑋𝑖 − 𝑌𝑖)
2𝑛

𝑖=1

(𝑛3 − 𝑛)
 −1 ≤ 𝜌 ≤ 1 

Kendall’s Tau 

(KRCC) 
𝜏 =

# 𝑜𝑓 𝐶𝑃 − #𝑜𝑓 𝐷𝑃

𝑛2 − 1
2

 −1 ≤ 𝜏 ≤ 1 

 

The similarity between rank vectors can also be measured by the Canberra Distance. 

If the similarity between the two vectors is low, the Canberra Distance takes high 

values because it is inversely proportional to the rate of similarity. Therefore, the closer 

the value to zero, the greater the similarity. However, in some cases, considering only 

the top k numbers of features instead of the whole rank list may make it easier to 

interpret the analysis and the analysis result. In this case, Weighted Canberra Distance, 

which is the weighted version of the Canberra distance (Jurman et al., 2008) is used. 

Canberra and Weighted Canberra Distance formulas are given in Table 5.4., where 𝑖 is 

the ith element of  𝑋𝑖 and 𝑌𝑖 result vectors, n is the number of features in the original 

dataset and k is the number of features considered, i.e., top 𝑘 position of the ranked 

feature subset.  

Table 5.4. Formulas of Canberra and Weighted Canberra Distance 
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Measure Formula Bound 

Canberra Distance  

(CD) 
𝑑𝐶𝐷 = ∑

|𝑋𝑖 − 𝑌𝑖|

|𝑋𝑖 + 𝑌𝑖|

𝑛

𝑖=1

 0 ≤ 𝐶𝐷(𝑋, 𝑌) ≤ ∞ 

Weighted Canberra  

Distance 

(WCD) 

𝑑𝑊𝐶𝐷 = ∑
|min(𝑋𝑖 , 𝑘 + 1) − min(𝑌𝑖 , 𝑘 + 1)|

min(𝑋𝑖 , 𝑘 + 1) + min(𝑌𝑖 , 𝑘 + 1)

𝑛

𝑖=1

 0 ≤ 𝐶𝑊𝐷(𝑋, 𝑌) ≤ ∞ 

5.3.4. Frequency-Based Stability Measures 

Stability measures mentioned so far use pairwise comparison in principle. However, 

in addition to these measures, frequency-based measures were proposed and being 

used to assess feature selection stability. In this approach, unlike other stability 

measures, pairwise comparison is not used, instead, it uses the frequency of occurrence 

of a feature or a feature set for measurement. Therefore, computing costs of frequency-

based measures are generally low. Measures proposed by Goh and Wong (2016), 

Guzman-Martinez and Alaiz-Rodriguez (2011) and Lausser et al. (2013) in their 

studies are examples of this kind. Since it is aimed to use various examples of stability 

measures in this thesis, the frequency-based measure proposed by Nogueira (2018) in 

her doctoral thesis is also included. Nogueira’s stability measure formula is,  

where d is the number of features, 𝑠𝑓
2
  is the sample variance of the selection of the fth 

feature and  𝑘̅  is the arithmetic average of the selected feature quantities. Nogueira 

(2018) also shared MATLAB, R and Python implementation of her measure and 

prepared an online stability calculator which only requires a selected feature matrix in 

binary form. Finally, the relevant doctoral study also provides information on other 

frequency-based stability measures. 

5.4. Computational Complexities of Stability Measures 

Since most of the stability measures (index, rank or weight) perform (𝑙 ∗ (𝑙 − 1)/2) 

comparisons for 𝑙 number of results, their computational complexity is quite close to 

one another. Frequency-based measures, a binary matrix in which selected features are 

represented by 1 (if selected) and 0 (if not selected) is used and frequencies are 

calculated by traversing all columns and rows. For example, in an 𝑁𝑥𝑙 result matrix, 

 

(𝑧) = 1 −

1
𝑑

∑ 𝑠𝑓
2𝑑

𝑓=1

𝑘̅
𝑑

(1 −
𝑘̅
𝑑

)

  
 

(6) 
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where 𝑁  is the number of features and 𝑙  is the results (iterations), finding feature 

frequencies has a computational complexity of 𝑂(𝑁 ∗ 𝑙) . However, if 𝑙  value gets 

close to 𝑁, then the computational complexity increases to 𝑂(𝑁2). In Table 5.5, the 

computational complexities of the stability measures used in this study are presented, 

where 𝑁 is the total number of features in the dataset, 𝑛 is the total number of features 

(length or quantity) in the feature subset and 𝑙 is the number of results.  

Table 5.5. Computational Complexities of the Stability Measures 

Stability Measure Computational Complexity 

Average Normal Hamming Distance 

Jaccard Index 

Sorensen-Dice 

Kuncheva Index 

Tanimoto 

Overlapping Coefficient 

𝑂(
𝑛(𝑙2 − 𝑙)

2
) 

Canberra Distance 

Weighted Canberra Distance 

Pearson Correlation Coefficient 

Spearmans’s Rho 

Kendall’s Tau 

𝑂 (
𝑁(𝑙2 − 𝑙)

2
) 

Frequency Based Measures 𝑂(𝑁𝑙) 

5.5. Open Topics on Selection Algorithm Stability 

Some of the problems related to algorithm stability are considered in this section. Each 

of these topics can also be considered as a subject of improvement. 

• The relationship between stability and performance: It is quite difficult to prove 

“algorithms that have high stability values, selects feature subsets with higher 

accuracy rate (classification performance)”, “there is a relationship between 

stability value and classification accuracy” or “there is a relationship between an x 

stability measure and classification accuracy” arguments if you consider feature 

selection, feature selection stability and classification or clustering performance of 

the selected feature subsets concepts independently. The number of factors that 

effects feature selection, algorithmic stability, and classification are quite high and 

this subject is still open for study.  

• Determination and elimination of the cause of instability: Knowing the reasons 

for instability and what needs to be done to overcome these reasons are quite 

important in creating high-performance models. Several studies, e.g., Alelyani 
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(2003), Dittman et al. (2012) and Yang et al. (2013) largely consider the dataset as 

the cause of the algorithm instability. For example, datasets with inadequate 

(small) sample sizes are naturally instable. In these studies, the effects of dataset 

characteristics, such as feature dependencies, number of samples and features and 

class distributions, on different selection algorithms are succinctly presented to the 

readers by conducting experimental studies. In addition to data-driven factors, 

instability may be based on the algorithm. For example, the stability value of the 

wrapper algorithms is determined especially by the classification and search 

algorithm to be used. Thus, detection and elimination of the cause/causes and the 

development of more stable algorithms by nature are subjects that are still open to 

be worked on.  

• New stability measures: As mentioned earlier, feature selection algorithms 

represent their results in three different ways: by indexing selected features, by 

assigning weight (scores) to the features or by ranking the features. For this reason, 

stability measurement takes place in terms of index, weight or rank. At this point, 

set-based (index-based) stability measures have the majority with more than ten 

measures, while there is only one weight-based stability measure. Besides, no 

measure that can work on two or more result representations. This makes it difficult 

to compare stability measures with one another and assess the results. Lastly, as 

previously mentioned in section 5.2, measures have different properties, however, 

only one measure (Nogueria, 2018) that has all the properties mentioned has been 

proposed so far. 

• Stability measures for unsupervised and semi-supervised feature selection: 

Studies on selection algorithm stability often concentrate on supervised problems 

(datasets) in feature selection. Studies related to the stability of the selection 

algorithm in unlabeled, semi-labeled and streaming data has not been found in the 

literature search.  
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CHAPTER 6 

FEATURE SELECTION ALGORITHMS USED IN THE 

EMPRICAL STUDY 

This chapter provides brief information about the T-Test, Bhattacharyya Distance, 

Wilcoxon Sum-Rank Test, ROC Curve, Entropy, ReliefF and Decision Tree Ensemble 

of Learners (DTE) filtering and SFS, SBS and BDS wrapper algorithms and Bayesian 

Hyperparameter Optimization used in the experimental stage. 

6.1. Statistical Feature Selection 

Instead of selecting features, filtering techniques sort them with the help of an 

evaluation function. Various statistical techniques (tests) can be used as an evaluation 

function. Statistical techniques are divided into two groups as univariate and 

multivariate. In this thesis, feature selection performed using parametric (works with 

data that have a normal distribution) and nonparametric (distribution-free) statistical 

tests that belong to univariate class: Two-Sample T-Test, Bhattacharyya Distance, 

Wilcoxon Rank-Sum Test, ROC, and Entropy. A detailed description of the tests used 

can be found in the book by Theodoridis and Koutroumbas (2003). 

6.1.1. Two Sample T-Test 

Two-Sample T-Test is a parametric test,  

where 𝜇𝑗𝑖 and 𝜎𝑗𝑖 are the sample average and variance of ith feature of the jth (𝑗 = 1,2) 

class and 𝑛1 and 𝑛2 are the sample sizes. To perform feature selection using the Two-

Sample T-Test, firstly 𝑡-value of each feature is calculated according to the formula. 

Features with higher 𝑡-values are effective in the classification. In other words, they 

are the relevant features. Then, after ranking all features according to their 𝑡-value 

from largest to smallest, features are selected using a user-determined threshold value 

 𝑡 =
𝜇1𝑖 − 𝜇2𝑖

√
𝜎1𝑖

2

𝑛1
+

𝜎2𝑖
2

𝑛2

  

 (7) 



58 

(selection criterion).  Two-Sample T-Test can be applied to classes with normal 

distribution, homogeneous variance and includes no outlier samples. 

6.1.2. Bhattacharyya Distance  

Bhattacharyya Distance is a parametric test1,  

where 𝜇𝑗  and 𝜎𝑗  are the average and variance of the jth (𝑗 = 1,2) class. Bhattacharyya 

distance gives the divergence between two different classes (variance) in the metric 

distance, i.e., taking values in the range between 0 and infinite. Therefore, the larger 

the test value, the more different the two classes. Bhattacharyya distance can be applied 

to classes with normal distribution, homogeneous variance and includes no outlier 

samples.  

6.1.3. Wilcoxon Rank-Sum Test (or Mann-Whitney U Test) 

In contrast to other methods, Wilcoxon Rank-Sum Test is a non-parametric or 

distribution-free hypothesis test that is used to compare independent samples (data) 

drawn from populations (classes) with a non-normal distribution and cannot be 

transformed into a normal distribution with logarithmic transformation. In general, the 

Wilcoxon Rank-Sum Test is based on forming a ranked list by ranking values of each 

feature in the dataset in ascending order, beginning from 1 for the smallest value, 

according to their places. If 𝑘 number of observations are tied for the ith rank, then 

each one gets assigned a value using the formula (𝑖 +
𝑘−1

2
). Then the list is divided 

into two regarding the class labels, and ranks of the observations for each class are 

added. Results are named as 𝑊1 and 𝑊2, i.e., the summation of ranks for the first and 

the second classes, and 𝑝  value is determined by the 𝑊  values and number of 

observations, 𝑛1and 𝑛2, per class. There is a W distribution table prepared for datasets 

with 20 or fewer observations. By this means, 𝑝value can be determined directly with 

the help of the table. For observations above this number, 𝑝 value is determined using 

the normal distribution (Z-Statistics). The Wilcoxon Rank-Sum Test is resistant to 

outliers and noisy values as other rank-sum tests. However, this method can only be 

                                                 
1 Simplified version of Bhattacharrya Distance for two class (binary) problems. 

 
𝑑𝐵 =

1

4
𝑙𝑛 (

1

4
(

𝜎1
2

𝜎2
2 +

𝜎2
2

𝜎1
2 + 2)) +

1

4
(

(𝜇1 − 𝜇2)2

𝜎1
2 + 𝜎2

2 ) 
 

(8) 
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used for two-class problems. For problems with more than two classes, Kruskal-Wallis 

Rank-Sum Test or “One vs. All” strategies may be preferred. 

6.1.4. ROC (Receiver Operating Characteristic) Curve Test 

The ROC curve is mainly used to represent the classification performance rate 

graphically. 𝑌-axis of the graph is the true positive ratio (TPR) and the 𝑥-axis is the 

true negative ratio (TNR), the relationship between the sensitivity and the selectivity 

of the classifier is expressed. However, it is also possible to use the ROC Curve for 

feature selection. To do this, the probability distribution function of the features 

according to the classes (note that the probability density function is used for 

continuous random variables) needs to be considered. If the distribution of the two 

classes overlaps, the ROC Curve takes a form of a line (𝑦 = 1)  between the 

coordinates (0,1) and (1,1). As the distributions begin to separate from one another, 

they slowly begin to form a curve. At this point, the area between the curve and (𝑦 =

1) line or between the curve and the random classifier ((𝑥 = 𝑦) line) is examined. If 

the line is considered, the distributions are overlapping when the area is equal to 0 and 

the distributions are completely disjoint when the area is equal to 0.5. If the random 

classifier curve is to be considered, the opposite would be the case. Thus, the class 

separation capability of any feature is determined. 

6.1.5. Entropy (or Shannon Entropy) Test 

Entropy is essentially a measure of the uncertainty of a probabilistic distribution. It is 

a nonparametric test,  

where 𝑛 is the number of classes and 𝑝𝑖 is the ratio of the frequency of the ith class to 

the total number of samples (probability of the ith class). Entropy value is equal to 0 if 

all the samples belong to the same class, 1 if they are divided equally between classes, 

and in between 0 and 1 if they are randomly distributed. Thus, the closer this value is 

to 1, the better. However, entropy alone is not enough for feature selection. To 

determine which feature is more important in the classification, it is necessary to 

consider the information gain provided by all the features. Starting from the high gain 

 
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑖 log2(𝑝𝑖)

𝑛

𝑖=1
 

(9) 



60 

provider, ranked features are then selected based on the threshold value. The 

information gain of a feature, 𝑓, in a class, 𝑋, is, 

6.2. Relief and ReliefF Algorithms 

Relief is a supervised feature selection algorithm developed by Kira and Rendell (1992) 

to rank features by assigning feature weights. However, Relief can only work on two-

class (binary) datasets. Therefore, Kononenko (1997) proposed a multiclass version of 

the Relief and named as ReliefF. ReliefF can work on noisy, incomplete, discrete and 

continuous datasets and can detect conditional dependencies between features 

(independent variables). It can be used in both classification and regression (named 

RReliefF) problems. ReliefF assigns a weight ranging from -1 to 1 to all the features, 

like its ancestor, and feature selection is performed regarding these values. The features 

with a weight close or equal to 1 are effective (relevant features) in classifying. 

Whereas, the features with a weight close or equal to -1 are ineffective in classifying 

(noisy, redundant and/or irrelevant). Note that zero is the initial value of each feature. 

The Relief algorithm (Figure 6.1) starts by setting all the feature weights to zero (the 

first step in Figure 6.1). In the second step, it selects a random sample from the sample 

space (step 3 in Figure 6.1) and checks its class. In the third step, the algorithm finds 

two samples (instances) closest to the selected sample from the same class (named 

nearest hit, H) and the other class (named nearest miss, M) using the Euclidean distance 

(step 4 in Figure 6.1). Finally, the weight calculation is performed (step 6 in Figure 6.1) 

in two different ways for discrete, 

and continuous, 

 𝐺𝑎𝑖𝑛(𝑋, 𝑓) = 𝐼(𝑋, 𝑓) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑋) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑋, 𝑓). (10) 

 
𝑑𝑖𝑓𝑓𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒(𝑎, 𝐼1, 𝐼2) = {

0 𝑖𝑓 𝑣𝑎𝑙𝑢𝑒(𝑎, 𝐼1) = 𝑣𝑎𝑙𝑢𝑒(𝑎, 𝐼2)

1 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (11) 

 
𝑑𝑖𝑓𝑓𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠(𝑎, 𝐼1, 𝐼2) =

|𝑣𝑎𝑙𝑢𝑒(𝑎, 𝐼1) − 𝑣𝑎𝑙𝑢𝑒(𝑎, 𝐼2)|

𝑚𝑎𝑥(𝑎) − 𝑚𝑖𝑛(𝑎)  (12) 
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features. However, the purpose of both calculation methods is to determine the changes 

in the feature values. Normalization is also performed in this step to ensure the results 

to be in the range of [−1,1]. From the second step, the algorithm repeats the steps as 

many times as the user determines, for example, m times. When the algorithm 

terminates, the weight value of each feature would be determined. Features are ranked 

by these values if necessary and are selected based on a threshold value specified by 

the user. 

1 
𝒇𝒐𝒓 𝑛 = 1 𝒕𝒐 𝑁 (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)  

𝑆𝑒𝑡 𝑎𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤[𝑛] 𝑡𝑜 0.0 

2 𝒇𝒐𝒓 𝑖 = 1 𝒕𝒐 𝑚 (𝑈𝑠𝑒𝑟 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) 
3 𝑆𝑒𝑙𝑒𝑐𝑡 𝑎𝑛 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑹𝒊 

4 𝐹𝑖𝑛𝑑 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑯 𝑎𝑛𝑑 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑴 

5 𝒇𝒐𝒓 𝑎 = 1 𝒕𝒐 𝑁 (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)  

6 𝑤[𝑎] =  𝑤[𝑎] −
𝑑𝑖𝑓𝑓(𝑎, 𝑅𝑖, 𝐻)

𝑚
+

𝑑𝑖𝑓𝑓(𝑎, 𝑅𝑖 , 𝑀)

𝑚
 

7 𝒆𝒏𝒅  

Figure 6.1. Pseudocode of the Relief Algorithm  

(Robnik-Sikonja and Kononenko, 1997) 

Unlike its predecessor, the ReliefF (Figure 6.2) algorithm is capable of working on 

both multiclass and incomplete datasets. However, both algorithms work-alike (note 

that feature weight measurement is the same in both algorithms, see Formulae 11 and 

12). ReliefF algorithm finds 𝑘 number of closest neighbors using Manhattan distance, 

instead of finding the two closest neighbors. Thus, the algorithm is less affected by 

unnecessary and noisy data.  
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1 
𝒇𝒐𝒓 𝑛 = 1 𝒕𝒐 𝑁 (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠)  

𝑆𝑒𝑡 𝑎𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑤[𝑛] 𝑡𝑜 0.0 

2 𝒇𝒐𝒓 𝑖 = 1 𝒕𝒐 𝑚 (𝑈𝑠𝑒𝑟 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) 
3 𝑆𝑒𝑙𝑒𝑐𝑡 𝑎𝑛 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑹𝒊 

4 𝐹𝑖𝑛𝑑 𝒌 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑯𝒋 

5 𝒇𝒐𝒓 𝑒𝑎𝑐ℎ 𝑐𝑙𝑎𝑠𝑠 𝐶 ≠ 𝑐𝑙𝑎𝑠𝑠(𝑹𝒊) 

6 𝑓𝑟𝑜𝑚 𝑐𝑙𝑎𝑠𝑠 𝐶 𝑓𝑖𝑛𝑑 𝑘 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝑚𝚤𝑠𝑠𝑒𝑠 𝑴𝒋(𝑪) 

7 𝒇𝒐𝒓 𝑎 = 1 𝒕𝒐 𝑁 

8 

𝑤[𝑎] =  𝑤[𝑎] − ∑
𝑑𝑖𝑓𝑓(𝑎, 𝑅𝑖, 𝐻𝑗)

𝑚 𝑘

𝑘

𝑗=1

+ ∑
[

𝑃(𝐶)
1 − 𝑃(𝑐𝑙𝑎𝑠𝑠(𝑅𝑖))

∑ 𝑑𝑖𝑓𝑓(𝑎, 𝑅𝑖, 𝑀𝑗(𝐶))𝑘
𝑗=1 ]

𝑚 𝑘
𝐶≠𝑐𝑙𝑎𝑠𝑠(𝑅𝑖)

 

9 𝒆𝒏𝒅  

Figure 6.2. Pseudocode of the ReliefF Algorithm  

(Robnik-Sikonja and Kononenko, 1997) 

The user-specified 𝑘  value is directly involved in the determination of the feature 

weights and consequently with the selection. Therefore, it is important to find an 

optimal 𝑘 value. However, this is not easy. In the literature, there are two generally 

accepted approaches used for finding this value. The first approach is to take the square 

root of the number of samples that the current dataset has, for example, 𝑘 = √100 =

10,  for 100 samples. The second approach is to start the 𝑘 value from 10 and find an 

optimal value by trial and error. In the scope of this study, search methods were used 

to find the optimal 𝑘 value, and these methods are mentioned in the next chapter.  

Both Relief and ReliefF algorithms also require a user-specified number of iterations 

and a threshold value. The number of iterations, which is not a fixed value, is 

determined by the user according to the number of samples in the dataset. Since the 

algorithm will select as many samples as the number specifies, selecting the number 

of iterations more than the number of samples will not affect the result. It is also 

possible to consider the number of iterations as a percentage of sampling. For example, 

the number of iterations for 10% of 100 samples can be selected as 10.  

As mentioned before feature filtering algorithms, such as Relief and ReliefF, do not 

select features. Feature subsets are created based on a threshold value. Therefore, the 

threshold value is an important hyperparameter that directly affects the feature 

selection, as the 𝑘 value. This value, although there are a variety of approaches such 

as averaging or using Chebyshev Inequality, is generally determined intuitively and 
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can be re-determined according to the classification performance of the obtained 

feature subset. However, this way is rather time-consuming and prone to error for 

problems with high values. Therefore, another method that can be used for algorithms 

that produce results as weights, is to consider the amount of increase between feature 

weights. The point with an increase more than normal can be considered as a threshold 

value. However, this method is difficult to use in result sets with close weight values 

or multiple increment points. 

6.2.1. Methods Used to Determine the Ideal 𝑲 Value 

As mentioned in the previous chapter, the ReliefF algorithm requires a user-defined 𝑘 

value that can directly affect the result. Therefore, finding the ideal 𝑘 value is quite 

important in terms of algorithm performance. However, since the 𝑘 value depends on 

the dataset (it is not a fixed value) and it must be recalculated for each dataset to be 

studied. Various methods are being used to calculate the 𝑘  value. Some of these 

methods are, such as setting the 𝑘 value to the square root of the number of samples, 

generally accepted intuitive and practical approaches. Within the scope of this study, 

the optimal 𝑘 value was determined using brute force and genetic algorithm. 

1. Brute Force (or Exhaustive) Search: Brute force search is based on the principle 

of testing all the possible values of the 𝑘 hyperparameter one by one. Therefore, it 

is time-consuming, especially in cases where the number of records (observations) 

is high. However, brute force search is frequently preferred for parameter 

optimization in machine learning algorithms, e.g., setting 𝑘 values for K-Means 

and K-NN algorithms, since it can be easily adapted and applied to many problems. 

In addition to this, the brute force search can guarantee to find the global optimum 

solution, unlike random search. Brute force search can be performed in two ways.  

• Searching forward: With the help of a loop statement, starting from 1, 𝑘 value 

is incremented by one in each iteration until it reaches the total number of 

samples, 𝑛, (𝑘 = 1, 2, 3, … . , 𝑛).  Meanwhile, all feature weight values are 

observed. The 𝑘 value, in which all the weights become constant (stable), is 

taken as the optimum solution.  

• Searching backward: With the help of a loop statement, starting from the total 

number of samples, 𝑛, 𝑘 value is decremented by one in each iteration until it 
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reaches 1 , (𝑘 =  𝑛, 𝑛– 1, 𝑛– 2, … . 1) . As the same with forward search, all 

feature weight values are observed. But this time, 𝑘  value, in which all the 

weights start to change, is taken as the optimum solution. 

Both approaches have 𝑂(𝑛) complexity where n is the number of observations or 

the size of the search space. The search results can be expressed by using an 

𝑛 𝑥 𝑊⃗⃗⃗⃗  matrix, 𝑊⃗⃗⃗⃗ is the vector that contains the weight values of the features and 

𝑛 is the number of observations or feature weights versus 𝑘 value graph (see Figure 

6.3). Brute force search is quite costly, especially in cases where the number of 

samples is high. Therefore, instead of increasing or decreasing the 𝑘 value one by 

one, increasing or decreasing it by multiple of tens or higher values in each iteration 

can reduce the time and the processing power needed to find the solution. However, 

in this case, in order to determine the exact value, it is necessary to perform a brute 

force search again at the relevant range.  

 

Figure 6.3. Feature Weights vs. K-Values Graph 

2. Genetic Algorithm Search: Genetic algorithms, inspired by Darwin’s theory of 

evolution, are the techniques used to find complete and/or approximate solutions 

for optimization and search problems using biological processes such as 

reproduction, selection, mutation, and crossover. Genetic algorithms start working 

with a randomly generated result set called population, and in each iteration 

(generation) by improving the quality of the population try to find the best solution. 

In general, to find the best solution, each individual in the population is evaluated 

according to a pre-defined fitness function. Thus, good solutions (individuals) are 
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selected and crossover with other selected individuals to transfer their 

characteristics, i.e., genes, to the next generation. This process usually ends when 

the maximum number of generations specified by the user is met or when a 

satisfactory level of success is reached.  

In order to determine the ideal 𝑘 value, it is necessary to handle integer-valued 

constraints. Therefore, genetic algorithm parameters must be set to perform integer 

constraint optimization. As in the same with brute force search, after setting the 

lower bound of the 𝑘 value to 1 and the upper bound to the number of observations, 

𝑛, (algorithm will perform integer search between 1 and 𝑛) in each iteration fitness 

function, 𝑓𝑓 , is evaluated for each 𝑘  value to check the feature weights. This 

process ends when the maximum number of generations is reached. As a result, the 

ideal 𝑘 value and the corresponding weight vector, 𝑊⃗⃗⃗⃗, are obtained. More detailed 

information on integer and decimal constrained optimization problems can be 

found in the publication of Deep et al. (2009).  

Genetic algorithms operate in parallel by their nature and are easily adaptable to many 

problems. However, since genetic algorithms are population-based, they may be as 

time-consuming and costly as the brute force searches in some problems. In addition 

to this, the parameters required by the algorithm, for example, the mutation operator 

or the stopping criterion, may not be easy to detect since they are usually dependent 

on trial and error. Finally, unlike the brute force search, they may not always guarantee 

to find the best global solution in the search space. However, they may find the best 

local solution. In addition to these methods, Simulated Annealing, Hill Climbing, and 

Tabu Search can be used to determine the ideal 𝑘 value. 

6.3. Feature Selection Through Ensemble Learning 

It is possible to perform feature selection through ensemble learning. Ensemble 

learning is a classification method based on the principle of creating a strong classifier 

using more than one individually trained weak classifiers, i.e., collection of learners. 

The weak classifier is the name given to classifiers that have a slightly better 

performance than random, i.e. depending on luck, classifiers. Although each classifier 

is weak by itself, high classification performance and easy scalability for high volume 

datasets are achieved when they form an ensemble. In addition to these, the final result 

is not depended on the performance of a single classifier.  
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After creating the ensemble learning using strategies such as different learning 

algorithms, different parameters of the same algorithm, different training sets, etc., the 

results obtained are combined with techniques such as the majority and weighted 

voting for classification problems and the average and weighted average for the 

regression problems. The most widely used ensemble learning techniques are Bagging, 

Boosting, Stacking and Random Forest.  

• Bagging (Bootstrap Aggregation): The bagging method generally consists of 

three steps. In the first step, training sets are created by using simple random 

sampling with replacement (SRSWR) selection procedure. Generated datasets 

have the same size as the original datasets. In the second step, each training set is 

given as an input to a classifier and the training of the classifiers is carried out in 

parallel. In the last step, the classifier results are combined using majority voting 

and the final result is obtained. Since Bagging is a variance reducing technique, it 

is suitable for high variance with low bias datasets.  

• Boosting: Boosting method generally consists of four steps. In the first step, as the 

same with Bagging, training sets are created by using simple random sampling 

with replacement (SRSWR) selection procedure. In this step, an equal weight value 

is assigned to each sample. In Boosting, classifiers work in series instead of parallel. 

Therefore, the output of a model becomes the input of the next model. In the second 

step, training is performed by giving the first training set to the classifier. In the 

third step, faulty sample weights are updated according to the errors made in 

classifying. Weighted samples have a higher chance to be selected for the next time. 

Process returns to the beginning and repeats as much as the number of 

predetermined classifiers. In the last step, the classifier results are combined with 

a majority voting and the final result is obtained. Since Boosting is a bias reducing 

technique, it is suitable for high bias, low variance datasets.  

• Stacking: Stacking method consists of three steps. The first step is the same as 

Bagging and Boosting. In the second step, the training of the classifiers is carried 

out in parallel by giving each training set as an input to a classifier, as in Bagging. 

In the last step, the selection process is performed. However, instead of voting, the 

selection process is performed by giving all the classifier results as an input to 

another classifier, also named as meta classifier, that was not used during the 

learning process.  
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• Random Forests (Random Decision Forests): The Random Forests method 

constructs various Decision Trees to perform feature selection in three steps. The 

first step is to obtain samples of the same size as the original dataset, by using 

simple random sampling with replacement (SRSWR) selection procedure. This 

step is followed by the creation of the trees. Generated training sets are distributed 

in a manner that each Decision Tree gets a different set. Each tree that forms the 

Random Forest works in parallel and independent from one another, i.e., trees 

cannot interfere with each other. Because the pruning is not performed, large trees 

may form. The main purpose of the pruning is to reduce the unnecessary 

complexity, to increase the estimation power and to avoid the overfitting problem. 

Random Forest algorithm, however, by randomly selecting both the training set 

(bootstrap aggregation) and the features that form the tree (random subspace) 

prevent the overfitting issue. Therefore, the pruning is not performed on the trees 

used. The last step is to combine the results. Combining is performed by taking 

majority voting for the classification and the regression is performed by taking the 

average of the results.  

Decision Trees allow the measurement of the relative importance of each feature on 

classification due to its structure. Therefore, they can be used together with the above-

mentioned methods as an ensemble feature selection method. Decision trees are not 

mentioned again since they have been mentioned in the section of classification 

algorithms. Within the scope of this thesis, an ensemble learning algorithm was created 

by using decision trees and used in feature selection as a filtering technique. 

6.4. Sequential Feature Selection 

Wrapper methods, as mentioned earlier, carry out the selection process in three steps. 

These are: forming a feature subset, determining the classification performance of the 

formed subset and evaluation, respectively. The biggest problem encountered in this 

process is forming the feature subsets, because the increase in the number of features, 

also increases the number of features that can be created exponentially and rarifies the 

feature selection process. In order to overcome this problem, exponential, sequential 

and randomized search methods are integrated into the wrapper algorithms. In this 

thesis, sequential search techniques are used. Sequential Forward Selection (SFS), 

Sequential Backwards Selection/Elimination (SBS or SBE) and Bidirectional Search 



68 

(BDS) algorithms perform sequential search and evaluate all elements within the 

feature set based on the classification performance, one at a time. They start searching 

in three different ways, either with an empty feature set, or a complete feature set or 

with both empty and complete sets at the same time. Therefore, they are divided into 

three different groups. 

1. Sequential Forward Selection Algorithm (SFS): The Sequential Forward 

Selection (see Figure 6.4) is a bottom-up search strategy, which starts searching 

with an empty feature set and adds the feature, which increases the classifier’s 

accuracy to the feature subset in each iteration. The search continues until there is 

no increase in classifier performance. Features added to the feature subset cannot 

be removed.  

1 
𝑖 = 0 

𝑆𝑡𝑎𝑟𝑡 𝑤𝑖𝑡ℎ 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑒𝑡 𝑌𝑖 = {∅} 

2 𝑑𝑜 

3 𝑆𝑒𝑙𝑒𝑐𝑡 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∉𝑌𝑖
 𝐽(𝑌𝑖 + 𝑥) 

4 𝑌𝑖+1 = 𝑌𝑖 + {𝑥} 

5 𝑖 = 𝑖 + 1 

6 𝑤ℎ𝑖𝑙𝑒(𝐽(𝑌𝑖 + 𝑥) >  𝐽(𝑌𝑖)) 

Figure 6.4. Pseudocode of the SFS Algorithm 

2. Sequential Backward Selection/Elimination Algorithm (SBS or SBE): The 

Sequential Backward Elimination (see Figure 6.5) is a top-down search strategy, 

which starts searching with the complete feature set and extracts the feature, which 

reduces the classifier's accuracy from the feature subset in each iteration. The 

search continues until there is no decrease in classifier performance. Features 

removed from the feature subset cannot be added back again. 

1 
𝑖 = 0 

𝑆𝑡𝑎𝑟𝑡 𝑤𝑖𝑡ℎ 𝑎𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑌0 = {1, … , 𝑁} 

2 𝑑𝑜 

3 𝑆𝑒𝑙𝑒𝑐𝑡 𝑡ℎ𝑒 𝑤𝑜𝑟𝑠𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈𝑌𝑖
 𝐽(𝑌𝑖 − 𝑥) 

4 𝑌𝑖+1 = 𝑌𝑖 − {𝑥} 

5 𝑖 = 𝑖 + 1 

6 𝑤ℎ𝑖𝑙𝑒(𝐽(𝑌𝑖 − 𝑥) >  𝐽(𝑌𝑖)) 

Figure 6.5. Pseudocode of the SBS Algorithm 
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3. Bidirectional Search Algorithm: In this method, SFS and SBS algorithms work 

in parallel. In the search space, both algorithms try to reach the same result set 

without changing algorithms search strategies. SFS algorithm is searching upside 

down while the SBS algorithm is searching from top to bottom. Algorithms are not 

allowed to interfere with each other. Therefore, the features selected by the SFS 

algorithm, cannot be removed from the feature subset by the SBS algorithm. 

Likewise, the features eliminated by the SBS algorithm cannot be added back to 

the feature subset by the SFS algorithm. The BDS algorithm is given in Figure 6.5. 

1 

𝑖 = 0 

𝑆𝑡𝑎𝑟𝑡 𝑤𝑖𝑡ℎ 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑒𝑡 𝐹𝑖 = {∅} 

𝑆𝑡𝑎𝑟𝑡 𝑤𝑖𝑡ℎ 𝑎𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝐵0 = {1, … , 𝑁} 

2 𝑑𝑜 

3 
𝑆𝑒𝑙𝑒𝑐𝑡 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒  

𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∉𝐹𝑖 ∧ 𝑥∈𝐵𝑖
 𝐽(𝐹𝑖 + 𝑥) 

4 𝐹𝑖+1 = 𝐹𝑖 + {𝑥} 

5 
𝑅𝑒𝑚𝑜𝑣𝑒 𝑡ℎ𝑒 𝑤𝑜𝑟𝑠𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒  

𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∉𝐹𝑖+1 ∧ 𝑥∈𝐵𝑖
 𝐽(𝐵𝑖 − 𝑥) 

6 𝐵𝑖+1 = 𝐵𝑖 − {𝑥} 

7   𝑖 = 𝑖 + 1 

8 𝑤ℎ𝑖𝑙𝑒(𝐹 ≠ 𝐵) 

Figure 6.6. Pseudocode of the BDS Algorithm 

SFS, SBS and BDS algorithms can be used for both classification and regression 

problems. In either case, they produce results in feature subsets. All sequential feature 

selection algorithms are greedy algorithms, which choose the closest alternative to the 

target and try to improve it in each step and reach the result. In other words, they try 

to find the global optimum solution by using the local optimum solutions. However, 

greedy approaches do not guarantee to find the global optimum, i.e., best, solution 

because of the risk of being stuck on the local optimum solutions in the search space. 

This problem also called the nesting effect, is likely to occur since there is no 

backtracking mechanism in sequential feature selection algorithms. Besides their 

drawbacks, greedy approaches are fast, have low computational needs and easy to 

implement. Lastly, it is important to note that instead of SFS and SBS algorithms, 

SFFS (Sequential Floating Forward Selection) and SFBS (Sequential Floating 

Backward Selection) algorithms that have backtracking capabilities can be used. 
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6.5. Hyperparameter Optimization 

The aim of the optimization is to minimize or maximize a target (objective) function, 

𝑓(𝑥), argmin
𝑥

𝑓(𝑥) or argmax
𝑥

𝑓(𝑥), by adjusting the variables on hand according to 

various constraints (conditions) if any, and ensuring the valuable resources such as 

labor, time, cost, equipment to be used with maximum efficiency. In supervised feature 

selection, optimization techniques are generally used to determine the selection 

algorithm parameters and hyperparameters. For example, the ReliefF algorithm 

requires an integer 𝑘 value that maximizes all feature weight values. Optimum 𝑘 value 

can also be found by navigating through the entire search space individually with the 

help of a brute force search. However, when the number of samples and features is 

high, this method has a high computational cost. Therefore, in order to reduce 

computational costs Bayesian (or Bayes) Hyperparameter Optimization that tries to 

minimize or maximize deterministic or stochastic scalar target function, can be used. 

Algorithm performance is increased by detecting the most appropriate parameters and 

hyperparameters for the problem. This process is called parameter or hyperparameter 

optimization. The parameter or model parameter is the properties or variables that the 

algorithm detects and uses, using the dataset during the training process. The 

determination of weights in Artificial Neural Networks by the algorithm can be given 

as an example of a model parameter. The hyperparameter or model hyperparameter is 

properties or variables that cannot be detected by the algorithm by using the dataset 

during the training process. Thus, these variables are given to the algorithm by the user, 

such as the 𝑘 value that is needed by the ReliefF algorithm. Hyperparameters, like 

parameters, can take continuous, discrete or binary values. In this thesis, classification 

algorithms used by wrapper algorithms were first run with default values and then with 

values determined with Bayesian Hyperparameter Optimization.  

The Bayesian Hyperparameter Optimization which essentially is a black box 

optimization method (used in situations where the structure of the target function is 

not clearly defined), is using the Gaussian process which is a probabilistic process to 

determine the values that maximize the performance of classification or regression 

algorithms. With the Gaussian process, firstly a probabilistic model, such as 

minimizing the error rate of the target function, is created. Then this model and a gain 

function, such as expected improvement or probability of improvement, are used to 
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find the best possible hyperparameters and tried on the actual (target) function. The 

probabilistic model is trained (updated) according to the obtained values. These steps 

are repeated considering the stopping criterion, e.g., no change in the error rate, a 

certain number of iterations or a time limit. Bayesian Optimization considers past 

results in contrast to the grid and random search. Therefore, it has better performance. 

The aim of all the problems encountered in real life is to produce the highest quality 

solutions with the shortest possible time and a minimum cost. But it is often difficult 

for all of these to happen at the same time. It is likely to result in a gain in one point 

and a loss on the other. For example, while the optimization of classification and 

regression algorithms provide performance improvement, the computational cost of 

this process can increase exponentially regarding the dataset studied. In addition to 

this problem, the algorithm optimization depends on the dataset. Even if the algorithm 

does not change, algorithm variables (hyperparameters) should be optimized again 

when the dataset is changed. Therefore, algorithm optimization adds an extra layer and 

costs to the analysis process. Finally, Bayesian Optimization is one of the techniques 

that can be used. Apart from this method, Grid Search, Random Search, Gradient-

Based and Evolutionary Hyperparameter Optimization techniques can also be used. 
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CHAPTER 7 

EMPRICAL STUDY 

In the scope of this study, the relationship between the stability and the classification, 

i.e. prediction, performance of feature selection algorithms, were evaluated and 

compared experimentally with T-Test, Bhattacharyya, Wilcoxon Rank-Sum, ROC 

Curve and Entropy Tests and ReliefF, Decision Tree Ensemble Learning filter 

algorithms and Sequential Forward Selection (SFS) and Sequential Backward 

Selection/Elimination (SBS) wrapper algorithms. The reason why the experiments 

were conducted using filter and wrapper algorithms is that the filter methods are faster 

and computationally less intensive than other methods, perform model-independent 

feature selection and resistant to overfitting and the wrapper algorithms can be used 

with different search techniques and/or classification algorithms. However, in order 

not to lose the focus on the main topic of the thesis, only the classification algorithms 

used by the wrapper algorithms have been changed by keeping the search technique 

(greedy search) constant.  

The theoretical framework of this study is prepared to explain whether there is a 

relationship between feature selection stability and classification performance of the 

selected features by using various datasets and feature selection algorithms. Since, it 

is not directly possible to assess any possible relationship between stability and 

classification performance, first feature selection algorithms in terms of stability and 

then selected features in terms of classification performance measures were compared. 

Feature selection stability was evaluated with various stability metrics to create 

grounds for a fair comparison. This also gives an idea to the readers on how to evaluate 

the stability of feature selection algorithms sensibly. Comparisons of the results were 

carried out first within the same selection approach method, and then with the other 

method. Experiments are conducted on seven real-world datasets, with different 

instances and feature sizes and the number of classes, gathered from the UCI and 

Kaggle Machine Learning Repository, according to the frequencies of being 

downloaded and preferred in the studies examined during the literature overview. The 

properties of datasets used are listed in Table 7.1 and sorted according to the number 

of classes in ascending order. 
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Table 7.1. List of Datasets Taken from the UCI and Kaggle Machine Learning 

Repository and Their Properties 

Dataset 

Name 

Feature 

Data Type 

Features 

and 

Instances 

Number 

of Classes 

Number of 

Class 

Instances 

Class 

Ratios 

Abalone 

Categorical 

Integer 

Real 

8—4177 3 

1528 

1307 

1342 

36.58% 

31.29% 

32.13% 

Australian 

Categorical 

Integer 

Real 

14—690 2 
307 

383 

44.49% 

55.51% 

Breast 

Cancer 
Real 9—683 2 

444 

239 

65.01% 

34.99% 

Sat Integer 36—6435 6 

1533 

703 

1358 

626 

707 

1508 

23.82% 

10.92% 

21.10% 

9.73% 

10.99% 

23.43% 

Seeds Real 7—210 3 

70 

70 

70 

33% 

33% 

33% 

Vehicle Integer 18—846 3 

411 

217 

218 

48.58% 

25.65% 

25.77% 

Wine 
Integer 

Real 
13—178 3 

59 

71 

48 

33.15% 

39.89% 

26.97% 

 

Before performing feature selection, the properties, i.e., characteristics, of the datasets 

are analyzed and summarized using descriptive statistics, i.e., summary statistics (see 

Appendix 2). To determine the shape of the class distributions: skewness and kurtosis, 

to measure central tendency: mode, median and average and to measure variation: 

range, variance and standard deviation measures are used. The results are tabulated 

and visualized using histograms and scatter plots. In addition to these, missing values, 

abrupt changes, and outliers were also checked in this step because they can 

significantly affect the feature selection process negatively. All codes are implemented 

in MATLAB (R2018a/b and R2019a) using Statistics and Machine Learning and 
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Bioinformatics Toolbox. The calculations are performed on Intel Core i7 CPU running 

at 2.8 GHz with 16GB of onboard 1600 MHz RAM and 64-bit macOS Mojave 

operating system. The general, framework of the empirical study is depicted in Figure 

7.1. 

 

Figure 7.1. General Framework of the Empirical Study 

7.1. Empirical Study on Filter Algorithms 

Filter algorithms used in empirical study rank and sort (order) features using different 

evaluation functions (strategies). For example, T-Test, Bhattacharyya and Wilcoxon 

Rank-Sum tests use statistical hypothesis tests, Entropy test uses mutual information, 

ReliefF algorithm uses the weighted version of K-Nearest Neighbor (K-NN) algorithm, 

Ensemble of Learners uses Decision Trees, and ROC Curve uses the area between the 

ROC Curve and the random classifier slope ( (𝑥 = 𝑦)  line). In order to perform 

statistically significant experiments, all the algorithms were run ten times using 

stratified random sampling. Stratified random sampling was used both to make 

changes in the training set and to represent and obtain samples (data) from each class, 

i.e., to reduce variances caused by the imbalanced class sample distributions. It should 

be noted that stratified sampling is almost identical to simple random sampling when 

the number of classes is high. The minimum stratified sample size was calculated and 

given in Table 7.2 for each dataset using the formula,  
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where 𝑧 is the Z-Score2, 𝑝 is the population proportion, 𝑒 is the margin of error and 𝑁 

is the population. This formula can be used for datasets with the normal distribution. 

However, it can be applied for the datasets besides the normal distribution by using 

Central Limit Theorem. Central Limit Theorem expresses that, as the number of 

samples taken from a non-normal distribution increases, the distribution of the sample 

means approaches to a normal distribution. Therefore, it is necessary to keep the 

sample quantity as much as possible on the left of right-skewed datasets. It should be 

noted that for unlimited populations only quotient part of same the formula is used. 

Table 7.2. Minimum Number of Samples Taken from Datasets in Each Run 

(Iteration) 

Dataset Minimum Number of Samples 

Abalone 380 

Australian 260 

Breast Cancer 260 

Sat 400 

Seeds 150 

Vehicle 280 

Wine 150 

 

After the features are ranked, the results were visualized using the bar graph that 

contains all the feature indices on the 𝑥-axis and the criterion value (statistical test 

results or feature weights) used for ranking on the 𝑦-axis. As mentioned before, feature 

filtering techniques require a threshold value to form feature subset(s) (or to select 

features). In order to determine this value, the average of scores (weights) assigned to 

each feature by the evaluation function over ten runs were taken and a heat map is 

created. In this way, the color changes observed on the heat map have helped to 

determine the threshold values, i.e., points. As the final step, the classification 

performance of the subset(s) was/were tested. Figure 7.2 depicts T-Test results after 

                                                 
2 Z-Score depends on the desired confidence interval, in this study it is 95%. 

 

𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒 (𝐹𝑖𝑛𝑖𝑡𝑒 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛) =  

𝑧2𝑝(1 − 𝑝)
𝑒2  

1 + (
𝑧2𝑝(1 − 𝑝)

𝑒2𝑁
) 

(13) 
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three runs in a 2D bar graph and a heat map created by averaging criterion values. As 

is seen, feature ranking performed using the data diversity ensemble strategy. Each 

algorithm was executed ten times with the same parameters on the same dataset and 

obtained feature weights were sorted according to their weights to create heat maps 

and perform feature subset creation. 

 

 

Figure 7.2. Screenshot of T-Test Results After Three Runs 

Stability of filter algorithms was evaluated using rank-based (Canberra Distance, 

Weighted Canberra Distance, Pearson Correlation Coefficient, Spearman’s and 

Kendall’s Rank Correlation Coefficients) measures and tabulated to simplify the 

comparison. To average correlation coefficients, they were transformed into stability 

values using Fisher’s Z Transform. Firstly, all the correlation coefficients were 

converted from 𝑟-value to 𝑧-value using the following formula,  

and then after taking the arithmetic average of the 𝑧 -values, obtained values again 

converted to 𝑟-values using the following formula, 

 
𝑧𝑖 = tanh−1(𝑟𝑖) =

1

2
ln (

1 + 𝑟𝑖

1 − 𝑟𝑖
) (14) 

 
𝑟 = tanh(𝑧̅) =

𝑒2𝑧̅ − 1

𝑒2𝑧̅ + 1 (15) 
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to determine the algorithm’s stability value. Therefore, two separate MATLAB 

functions were implemented to calculate the stability values of filtering techniques. 

The first function is used to calculate stability measures and the second function is 

used to average rank correlation coefficients. Table 7.3 is an example of the stability 

results table. Stability measures such as Canberra Distance and Weighted Canberra 

Distance don’t have an upper bound. Therefore, feature scaling techniques such as 

min-max normalization can be used to limit the results between 0 (selected feature sets 

are the same) and 1 (selected feature sets are completely different). Besides min-max 

normalization, standardization, mean normalization and unit length scaling can be 

used as a feature scaling technique. Average stability values of filtering techniques in 

terms of different measures over ten runs on the Vehicle dataset are tabulated in Table 

7.3 and given as an example (see Appendix 4 for all tables). It should be noted that the 

results of Canberra Distance and Weighted Canberra measures are not normalized. 

Table 7.3. An Example of Average Stability Results Table of All Filtering 

Techniques on Vehicle Dataset 

Ranking Algorithm CD 
WCD 

(Top 5 Features) 
PCC SRCC KRCC 

TTest 2.9904 1.2554 0.7809 0.7560 0.6042 

Entropy 2.7297 0.9318 0.8956 0.7797 0.6089 

Bhattacharyya 2.7878 1.1242 0.8548 0.8040 0.6209 

ROC 2.0179 0.4834 0.9214 0.8583 0.7108 

Wilcoxon 2.9199 0.8895 0.8863 0.7129 0.5539 

ReliefF 3.2138 1.5520 0.7927 0.7765 0.6022 

Decision Tree Ensemble 0.2555 0.0571 0.9991 1.0000 1.0000 

 

7.2. Empirical Study on Wrapper Algorithms 

As mentioned earlier, wrapper algorithms require a classifier for feature selection. In 

this thesis, in order to see the effect of different classifiers on the feature selection 

process, Linear Discriminant Analysis, K-Nearest Neighbor and Naïve Bayes 

classifiers (induction algorithms) were used as the evaluation function for the 

Sequential Forward Selection and Sequential Backward Selection. It should be noted 

that additional classifiers, e.g., ECOC classifier can also be used. As mentioned before, 

the ECOC classifier is an ensemble learning (meta) method of binary classifiers, i.e., 
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learners, such as Discriminant Analysis, K-Nearest Neighbor, Naïve Bayes, Decision 

Trees, SVM, Linear Classifier, etc., using “One vs. One” or “One vs. Rest (All)” 

strategy to solve multiclass problems. Table 7.4 represents a list of learners which can 

be used in ECOC and Ensemble Learning. 

Table 7.4. List of Learners for the ECOC and the Ensemble of Learners 

Classifier Learners 

ECOC 

Discriminant Analysis 

K Nearest Neighbor 

Linear Classifier 

Naive Bayes 

Support Vector Machines 

Classification Trees 

Ensemble of Learners 

Decision Tree 

Discriminant Analysis 

K Nearest Neighbor 

 

As in filter methods, each classifier used with the wrapper algorithms was run on the 

same dataset ten times to assure statistical significance. Therefore, during the 

experiments, each classifier was run two hundred times in total, first with the default 

parameters, then with the hyperparameters determined by the Bayes Hyperparameter 

Optimization (see Appendix 1) to observe the changes in stability values and 

classification performance. In this process, stratified 10-Fold Cross-Validation was 

used both to make changes in the training set and to represent and obtain samples (data) 

from each class, i.e., to reduce variances caused by the imbalanced class sample 

distributions across each fold. Here it must be noted that, as mentioned in chapter 6.4, 

both SFS and SBS algorithms use a greedy search strategy but with different starting 

conditions (search directions). Different search strategies can be applied to select 

features however, it won’t be objective to compare different search families. For this 

reason, only the greedy search strategy was used in the experiments conducted with 

wrappers.    

In order to increase ease-of-interpretation, results are visualized using graphs and 

tables. Numbers of elements selected in each run, error rates (Misclassification error 

or MCE), the change of accuracy and frequency of selected features were represented 

using 2D line and bar graphs. In Figure 7.3, the number of selected features obtained 
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after running the discriminant classifier three times on the same dataset are shown on 

the 𝑥-axis, the misclassification error rates are on the 𝑦-axis, and the accuracy of the 

selected feature subset is shown in the upper right corner. For example, for the first 

run, six features were selected and they have 63% classification accuracy. Also, 

changes in the accuracy during each run is represented using a 2D line graph (shown 

in the lower right-hand corner) where the x-axis is the number of runs and y-axis is the 

accuracy values. Lastly, the 2D bar graph in the lower left-hand corner depicts 

frequencies of selected features (each bar represents the frequency of occurrence of a 

feature). 

 

 

Figure 7.3. Screenshot of Discriminant Classifier Results After Three Runs 

Based on the selected features minimum, the average and maximum predictive 

accuracy of the SFS algorithm on the Breast Cancer dataset after ten runs are tabulated 

in Table 7.5 and given as an example (see Appendix 5 for all tables). The results in 

these tables were used to compare the accuracy rates of the classifiers with the default 

and optimized parameters. 
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Table 7.5. An Example of Predictive Accuracy Table of the SFS Algorithm Used 

with LDA, K-NN, and NB Classifiers on Breast Cancer Dataset 

Classifier 
Minimum  

Accuracy 

Average 

Accuracy 

Maximum 

Accuracy 

LDA 0.9619 0.9625 0.9634 

Opt. LDA 0.9634 0.9649 0.9663 

K-NN 0.9575 0.9619 0.9678 

Opt. K-NN 0.9722 0.9747 0.9780 

NB 0.9634 0.9649 0.9663 

Opt. NB 0.9707 0.9729 0.9751 

 

The stability of the wrapper algorithms was evaluated using set-based (Hamming 

Distance, Jaccard and Cosine Index, Sorensen–Dice and Overlapping Coefficient and 

Lustgarten’s measures) and frequency-based (Nogueira’s measure) measures. On the 

contrary to rank/weight-based stability calculation, all stability values were calculated 

using a single MATLAB function.  Average stability values of the SFS algorithm using 

LDA, K-NN and NB classifiers and their optimized versions in terms of different 

measures over ten runs are tabulated in Table 7.6 and given as an example (see 

Appendix 5 for all tables). As mentioned before, each stability measure used in the 

empirical study have different characteristics. Therefore, comparing stability values 

within a row is meaningless, but comparing stability values within each column allows 

a comparison of classifiers based on a specific stability measure. For example, the NB 

Classifier has the highest stability values for all measures whereas the K-NN classifier 

has the lowest stability values. 
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Table 7.6. An Example of Average Stability Results Table of the SFS Algorithm 

Used with LDA, K-NN, and NB Classifiers on Breast Cancer Dataset 

Classifier HD JI CI SDC OC LM NM 

LDA 0.7951 0.6893 0.8103 0.8047 
0.7944 

0.8374 
0.3856 0.5893 

Opt. LDA 0.8741 0.7267 0.8206 0.8190 
0.8389 

0.8056 
0.5244 0.7212 

K-NN 0.6568 0.4988 0.6430 0.6362 
0.6593 

0.6407 
0.2437 0.3122 

Opt. K-NN 0.7778 0.6799 0.8101 0.8005 
0.8552 

0.7848 
0.4004 0.5500 

NB 0.9407 0.8667 0.9285 0.9238 
0.9444 

0.9222 
0.6333 0.8739 

Opt. NB 0.9037 0.8167 0.8899 0.8881 
0.9000 

0.8833 
0.5167 0.8039 

7.3. Classification Performance Evaluation 

Classification performances of the features (before, see Appendix 3, and after feature 

selection) were evaluated by Linear Discriminant Analysis, K-Nearest Neighbor and 

Naïve Bayes classifiers in terms of error and accuracy rate, sensitivity, specificity, F1 

Score and AUC (area under the ROC Curve) performance measures. In the literature, 

various metrics for classification model evaluation are presented. They assess 

classification performance in different ways. The main aim of this study is not to 

analyze different evaluation metrics but to determine any possible relation with 

stability and classification performance. Therefore, the metrics used during the study 

are enough to reflect the main characteristics of the classifier. In cases where the same 

feature set is selected more than once, only one of the results is considered, since the 

performance metrics will generate the same results. 

The confusion matrices, which are given as an example in Figure 7.4, have also been 

used to visualize the true and false ratios of the selected feature subsets. In each matrix, 

the rows correspond to the true classes and the columns correspond to the predicted 

classes. Correct predictions are located in diagonal cells and incorrect predictions 

located in off-diagonal cells. Lastly, the precision and recall values are shown on the 

right-hand side and the positive predictive values and false discovery rates are shown 

on the bottom of each chart.  
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Figure 7.4. Screenshot of the Confusion Matrices 

The AUC value of each class was calculated after the ROC Curve (with the “One vs. 

All” strategy when the number of classes is more than two) plotted for each class. In 

Figure 7.5, the ROC Curves and the AUC values of two different feature subsets 

selected from the same dataset by the Discriminant Analysis classifier are shown. On 

each ROC Curve graph, selected features, true positive ratios (TPR - on the 𝑦-axis) 

and false positive ratios (FPR - on the 𝑥-axis) can be seen. The red squares in the 

graphs refer to the optimal operating point (OOP) of the ROC Curve for the respective 

class. The optimal operating point can be calculated in a variety of ways, but in this 

study, the calculation used by MATLAB has been abided. Therefore, the optimal 

operating point is defined as the coordinates of a point (FPR and TPR values) that the 

ROC Curve was cut by a line that is drawn with a specific slope starting from the upper 

left corner ((0,1) or the point where the FPR value is 0 and the TPR value is 1). The 

slope of the straight line can be calculated using the formula, 

where TP is equal to true positive, TN is equal to true negative, FP is equal to false 

positive and FN is equal to false negative rates (The MathWorks, Inc., 2019). 

 
𝑆 =

(𝑇𝑁 + 𝐹𝑃) [𝐶𝑜𝑠𝑡(𝑇𝑃 + 𝐹𝑁|𝑇𝑁 + 𝐹𝑃) − 𝐶𝑜𝑠𝑡(𝑇𝑁 + 𝐹𝑃|𝑇𝑁 + 𝐹𝑃)]

(𝑇𝑃 + 𝐹𝑁) [𝐶𝑜𝑠𝑡(𝑇𝑁 + 𝐹𝑃|𝑇𝑃 + 𝐹𝑁) − 𝐶𝑜𝑠𝑡(𝑇𝑃 + 𝐹𝑁|𝑇𝑃 + 𝐹𝑁)] 
(16) 
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Figure 7.5. ROC Curves and AUC Values Created for Two Different Feature 

Subsets 
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CHAPTER 8 

DISCUSSION OF EMPIRICAL STUDY RESULTS 

8.1. Discussion of Stability Measures 

Since each stability measure even of the same type, evaluates the selected feature 

subsets or the selection algorithm differently, considering a single measure may not be 

sufficient and objective enough to select the stable algorithm (method). Therefore, in 

the scope of this work, four rank, one weight, six set (index), and one frequency-based 

stability measures were used. About the rank and weight-based stability measures 

which were used for evaluating the stability of the feature filtering algorithms, i.e., 

feature rankers, these conclusions can be stated:  

• Rank and weight-based stability measures cannot be used in feature subsets of 

different sizes. Therefore, feature subsets to be compared should be equal-sized 

(should have equal cardinality). However, in each iteration (change in the training 

dataset), the number of elements (cardinality) in the feature subsets, may vary 

depending on the results and user-defined threshold value. For example, if the 

threshold value (results of statistical tests or feature weights) is set as greater than 

or equal to 0.15, four features can be selected in the first iteration and three in the 

second iteration from the Abalone dataset using the Bhattacharyya Distance. As 

can be seen, trying to form equal sized feature subsets may result in adding or 

removing undesired features to/from the selected feature subsets.  

• Canberra Distance is basically the weighted version of Spearman’s Footrule. When 

its formula is examined, it can be seen that stability value and the number of 

features is directly proportional. In other words, increasing the number of features 

increases the stability value as well. In order to overcome this problem, a weighted 

version of Canberra Distance is proposed.  Weighted Canberra Distance, only 

considers top 𝑘  values (positions) of the ranked features, i.e., top 𝑘  features. 

However, this value is intuitively determined by the user and has an impact on the 

stability value.  

• Although both Canberra and Weighted Canberra Distance measures have a lower 

bound, they do not have an upper bound. This means they obtain a value between 

zero and infinite. It is possible to scale (normalize) the value between zero and one 



85 

in order to satisfy the “to have limits” property but this time normalization result 

would be affected by outlier values if there is any.  

• It is observed that the correlation-based stability measures produce higher stability 

values than the distance measures (Canberra and Weighted Canberra Distance).  

• Although only Pearson’s Correlation Coefficient is parametric, which means it is 

depended on the distribution of data, it is observed that mostly all three correlation 

measures produce results close to each other. 

About the set (index) and frequency-based stability measures which are used for 

evaluating the stability of the wrapper algorithms these conclusions can be stated: 

• Since the wrapper feature selection algorithms produce feature subsets, stability 

values are calculated with set-based stability measures. The general formula of 

these measures is the ratio of intersection over the union of two result sets. 

Therefore, the problem is seen in Canberra Distance also appears in some of the 

set-based measures. The increase in the cardinality of the selected feature subset 

casually causes an increase in the rate of similarity and stability values as well. 

This causes intersection by chance issue. In order to overcome this problem, some 

set-based stability measures have a constant for correcting the stability result. One 

of these measures is the Kuncheva Index. However, Kuncheva Index can be used 

in feature subsets with equal cardinalities. Since it is difficult to achieve this 

condition in all cases, Lustgarten et al. (2009) proposed a measure in which feature 

subsets of different quantities could be compared. Therefore, the measure of 

Lustgarten was used instead of Kuncheva. 

• Regarding the results, it is observed that measures such as Hamming, Cosine, 

Jaccard, Tanimoto, Sørensen-Dice and Overlapping Coefficient are producing 

rather similar results. In fact, this is expected because the Jaccard, Tanimoto and 

Sørensen-Dice measures have very similar formulas and can be generalized using 

the Tversky Index (Amos,1997) given in the formula below,  

Setting 𝛼 = 𝛽 values to 1 will produce the Tanimoto Coefficient and Jaccard Index 

and 𝛼 = 𝛽 values to 0.5 will produce the Sorensen-Dice's Coefficient. However, 

 
𝑇𝐼(𝑋, 𝑌) =

|𝑋 ∩ 𝑌|

|𝑋 ∩ 𝑌| + 𝛼|𝑋 − 𝑌| + 𝛽|𝑌 − 𝑋| 
(17) 
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Lustgarten’s and Nogueira’s measures are not in a correlation either with other 

measures or among themselves. 

• As mentioned earlier, each stability measure even of the same type assesses the 

stability of the feature selection algorithm differently. In this study, only one 

frequency-based measure was used. Other frequency-based measures can be 

included in the empirical study process for a more objective evaluation. 

Lastly, the following can be said about the impact of optimization on stability measures:  

• Parameters of all the classifiers (including Decision Tree Ensemble) used in this 

study are optimized using Bayesian Hyperparameter Optimization. It is observed 

that the stability and the classification performance of the feature selection 

algorithms are positively affected.  

8.2. Discussion of Stability and Classification Performance 

Feature selection has three interdependent objectives. The first objective is not to lose 

much information during or after the selection process. At this point, finding and 

removing redundant and irrelevant features should not be considered as loss of 

information because these features have no significant impact on the classification 

process. The second objective is to select the smallest possible feature subset(s) or 

feature subset(s) with low cardinality as possible. This objective helps to reduce the 

computational cost of data analysis and create simple classification models. The final 

objective is the classification performance of the resulting subset of features must be, 

in the worst case, the same as using all features of the original dataset, but in the best 

case, better than using all features of the original dataset. Therefore, deterioration due 

to feature selection in the learning process should be considered. In addition to these 

objectives, the selection algorithm must also be stable. The reliability of a feature 

selection algorithm generating different results every time it works is questionable. At 

this point the question of whether there is a relationship between selection stability and 

classification performance arises. This question can be thought of as a closed-ended, 

i.e., binary, question and answered with “yes” or “no” responses, but the possibility of 

being in a relationship only in some cases should also be taken into consideration 

before reaching a final judgment. Therefore, three different answers can be given to 

this question. 
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• If the answer is “yes” then selection algorithm stability and classification 

performance of the selected feature subsets are dependent concepts and there is a 

relation between them. This means that both stability value and classification or 

regression performance of the selected feature subset(s) move in tandem: they both 

increase or decrease. 

• If the answer is “no” then selection algorithm stability and classification 

performance of the selected feature subsets are two independent concepts and there 

is no relation between them. This means stability value and classification or 

regression performance of the selected feature subset(s) move in opposite 

directions. When one of them increases the other decreases or vice versa.  

• Finally, if the answer is “not always” then in some cases selection algorithm 

stability and classification performance of the selected feature subsets are 

dependent concepts and there is a relationship between them. In this case, it should 

be determined which condition(s) justify the relationship between these concepts. 

In order to assess any possible relationship between stability and classification 

performance, first, feature selection methods that have low stability values were 

discarded using two-stage selection wherein each stage different selection criterion is 

used. A strict selection policy was used to select as stable algorithms as possible. Here, 

it should be noted that using different criteria may lead to different conclusions about 

the relationship between stability and classification performance. Later, results 

(selected feature subsets) of the feature selection algorithms that succeed in both 

selections were used to determine a possible relationship.  

In the first stage, two different selection criteria (threshold) were used. The first 

selection criterion is to take the average of the stability measures (column-wise mean) 

for each dataset and to ignore algorithms that have stability values less than the average. 

For Canberra and Weighted Canberra measures, because they are not normalized, 

algorithms that have stability values greater than the average were ignored. In this way, 

a total of 10 feature filters (rankers), which is approximately 20.5% of all filter 

methods used, and a total of 20 wrappers (12 SFS and 8 SBS), which is approximately 

24% of all wrappers used, were selected. 

The second selection criterion is to set a general threshold defined regarding the 

average stability values of both filter and wrapper algorithms over all datasets. The 
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average for correlation correlations measures is 0.90, 0.50 for Lustgarten’s and 

Nogueira’s, 1.45 for Canberra and Weighted Canberra (for these metrics, the closer the 

value is to zero, the more stable the algorithm is), and 0.80 for the remaining metrics. 

Note that all averages are rounded up to the nearest tenth. This time 25 feature filters 

and 8 wrappers satisfied the threshold. In the second stage, the algorithms selected in 

both cases were selected and the classification performances of their feature subsets 

were used to make comments on the relationship between the stability and the 

classification performance. In Table 8.1 the list of selected algorithms is represented. 

Table 8.1. List of Selected Filter and Wrapper Algorithms 

Dataset 

Filter (Ranker) 

Techniques Selection Criteria 

Wrapper 

Techniques Selection Criteria 

Dataset Based 

Average 

General  

Average 

Dataset Based 

Average 

General  

Average 

Abalone 
ROC 

DTE 

ROC 

DTE 

SFS – Opt. DA 

SFS – Opt. NB 

SBS – NB 

SFS – Opt. DA 

SFS – Opt. NB 

SBS – NB 

Australian DTE DTE 

SFS – DA 

SFS – Opt. DA 

SFS – Opt. NB 

SFS – DA 

SFS – Opt. DA 

Breast Cancer 
ReliefF 

DTE 

T-Test 

Bhattacharyya 

ROC 

ReliefF 

DTE 

SFS – Opt. KNN 

SFS – NB 

SBS – DA 

SBS – KNN 

SFS – Opt. KNN 

SFS – NB 

SBS – DA 

SBS – KNN 

Sat 
T-Test 

DTE 
DTE 

SFS – NB 

SBS – NB 

SBS – Opt. NB 

None 

Seeds DTE All 

SFS – Opt. DA 

SFS – Opt. NB 

SBS – DA 

None 

Vehicle 
ROC 

DTE 
DTE 

SBS – DA 

SBS – Opt. DA 
SBS – Opt. DA 

Wine DTE 

T-Test 

Bhattacharyya 

ROC 

ReliefF 

DTE 

SFS – DA 

SFS – Opt. KNN 
SFS – Opt. KNN 

In each table below (Table 8.2), the name of the dataset from which the feature 

selection is performed appears in the header. The classification algorithms and the 

performance metrics (classification model evaluation metrics) used to measure the 

classification performance of feature subsets are located just below the title. The values 

highlighted with bold prints indicate the performance before feature selection and the 
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values with regular prints indicate the performance after feature selection. The feature 

selection technique is written to the first column on the left-hand side, and the indices 

of the selected features whose performance is tested are shown after this column. 

As mentioned before, one of the problems with the filter (ranker) methods is to find an 

optimal cutoff point to form feature subsets. A method that can be used for determining 

this point is to consider the amount of increase between feature weights. The point 

with a decrease more than normal can be considered as a threshold value. However, 

this strategy is difficult to use if feature weights are close to each other and/or there is 

more than one decrement point. In this case, e.g., for the ReliefF algorithm on the 

Breast Cancer dataset, more than one feature subset was created and tested. Algorithms 

that select the same features were grouped in a single row and performances of the 

feature subsets selected from the same dataset were not shared when they yield similar 

results. 
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Table 8.2. Classification Performances of Selected Feature Subsets from (a) Abalone, (b) Australian, (c) Breast Cancer, (d) Sat, (e) Seeds, (f) 

Vehicle and (g) Wine Datasets 

Abalone 

FSA 
Selected 

Features 

LDA K-NN NB 

Acc. ER Sens. Spec. F1 AUC Acc. ER Sens. Spec. F1 AUC Acc. ER Sens. Spec. F1 AUC 

 

ALL 0.544 0.455 0.528 0.650 0.495 

0.665 

0.715 

0.872 

0.497 0.502 0.452 0.668 0.446 

0.560 

0.569 

0.738 

0.515 0.484 0.147 0.874 0.215 

0.632 

0.700 

0.868 

Filters 

Wrappers 
{𝟔} 0.542 0.457 0.588 0.621 0.524 

0.651 

0.705 

0.866 

0.432 0.567 0.426 0.626 0.411 

0.526 

0.539 

0.653 

0.536 0.463 0.695 0.565 0.567 

0.653 

0.705 

0.866 

Wrappers 

{𝟔, 𝟕} 0.536 0.463 0.557 0.614 0.514 

0.650 

0.705 
0.868 

0.454 0.545 0.422 0.645 0.415 

0.534 

0.551 

0.685 

0.534 0.465 0.352 0.764 0.400 

0.657 

0.704 

0.868 

{𝟓, 𝟔, 𝟖} 0.550 0.449 0.547 0.646 0.507 
0.665 
0.716 

0.875 

0.497 0.502 0.445 0.681 0.446 
0.563 
0.582 

0.722 

0.539 0.460 0.431 0.727 0.453 
0.664 
0.705 

0.878 

{𝟒, 𝟓, 𝟔, 𝟖} 0.553 0.446 0.548 0.647 0.508 
0.665 
0.717 

0.876 

0.493 0.506 0.442 0.675 0.441 
0.558 
0.575 

0.725 

0.526 0.473 0.252 0.826 0.325 
0.658 
0.703 

0.876 

{𝟓, 𝟔, 𝟕, 𝟖} 0.550 0.449 0.536 0.652 0.501 

0.665 

0.716 
0.875 

0.474 0.525 0.424 0.662 0.422 

0.543 

0.564 
0.711 

0.532 0.467 0.309 0.794 0.371 

0.658 

0.705 
0.876 

{𝟑, 𝟒, 𝟓, 𝟔, 𝟖} 0.548 0.451 0.540 0.644 0.501 

0.664 

0.718 
0.874 

0.482 0.517 0.430 0.664 0.428 

0.547 

0.569 
0.719 

0.540 0.459 0.372 0.757 0.415 

0.651 

0.707 
0.875 

{𝟑, 𝟓, 𝟔, 𝟕, 𝟖} 0.549 0.450 0.534 0.650 0.499 

0.664 

0.717 
0.874 

0.474 0.525 0.437 0.659 0.431 

0.548 

0.557 
0.710 

0.539 0.460 0.394 0.738 0.426 

0.648 

0.707 
0.874 

(a) 
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Australian 

FSA 
Selected 

Features 

LDA K-NN NB 

Acc. ER Sens. Spec. F1 AUC Acc. ER Sens. Spec. F1 AUC Acc. ER Sens. Spec. F1 AUC 

None ALL 0.857 0.142 0.918 0.809 0.852 
0.927 

0.927 
0.660 0.339 0.570 0.7336 0.599 

0.651 

0.651 
0.805 0.194 0.677 0.908 0.756 

0.896 

0.896 

Filters {𝟖} 0.855 0.144 0.925 0.798 0.850 
0.843 

0.843 
0.855 0.144 0.925 0.798 0.850 

0.862 

0.862 
0.855 0.144 0.925 0.798 0.850 

0.842 

0.842 

Wrappers {𝟖, 𝟏𝟒} 0.856 0.143 0.928 0.799 0.852 
0.874 

0.874 
0.739 0.260 0.771 0.712 0.724 

0.742 

0.742 
0.697 0.302 0.381 0.950 0.528 

0.869 

0.869 

(b) 

 

Breast Cancer 

FSA 
Selected 

Features 

LDA K-NN NB 

Acc. ER Sens. Spec. F1 AUC Acc. ER Sens. Spec. F1 AUC Acc. ER Sens. Spec. F1 AUC 

None ALL 0.960 0.039 0.981 0.920 0.969 
0.995 

0.995 
0.950 0.049 0.970 0.912 0.962 

0.941 

0.941 
0.963 0.036 0.954 0.979 0.971 

0.992 

0.987 

Filters 

{𝟐, 𝟑, 𝟔} 0.951 0.048 0.984 0.891 0.963 
0.991 

0.991 
0.941 0.058 0.957 0.912 0.955 

0.934 

0.934 
0.959 0.040 0.963 0.949 0.968 

0.991 

0.991 

{𝟑, 𝟔} 0.942 0.057 0.981 0.870 0.957 
0.988 
0.988 

0.934 0.065 0.954 0.895 0.949 
0.925 
0.925 

0.947 0.052 0.957 0.928 0.959 
0.987 

0.987 

Wrappers 

{𝟏, 𝟐, 𝟑, 𝟔, 𝟕, 𝟖, 𝟗} 0.961 0.038 0.984 0.920 0.971 
0.994 

0.994 
0.947 0.052 0.968 0.907 0.959 

0.938 

0.938 
0.966 0.033 0.959 0.979 0.973 

0.992 

0.988 

{𝟏, 𝟐, 𝟑, 𝟔, 𝟕, 𝟗} 0.960 0.039 0.984 0.916 0.970 
0.994 

0.994 
0.956 0.043 0.970 0.928 0.966 

0.949 

0.949 
0.960 0.039 0.959 0.962 0.969 

0.991 

0.988 

{𝟏, 𝟐, 𝟑, 𝟔, 𝟕, 𝟖} 0.960 0.039 0.984 0.916 0.970 
0.994 
0.994 

0.953 0.046 0.970 0.920 0.964 
0.945 
0.945 

0.966 0.033 0.959 0.979 0.973 
0.993 

0.990 

{𝟏, 𝟐, 𝟔, 𝟖} 0.961 0.038 0.984 0.920 0.971 
0.994 

0.994 
0.953 0.046 0.970 0.920 0.964 

0.945 

0.945 
0.963 0.036 0.957 0.974 0.971 

0.993 

0.990 

{𝟏, 𝟐, 𝟔, 𝟕} 0.960 0.039 0.984 0.916 0.970 
0.994 

0.994 
0.953 0.046 0.966 0.928 0.964 

0.947 

0.947 
0.957 0.042 0.959 0.953 0.967 

0.993 

0.993 

(c) 
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Sat 

FSA 
Selected 

Features 

LDA K-NN NB 

Acc. ER Sens. Spec. F1 AUC Acc. ER Sens. Spec. F1 AUC Acc. ER Sens. Spec. F1 AUC 

None ALL 0.839 0.160 0.967 0.993 0.972 

0.997 

0.997 

0.987 

0.912 

0.968 

0.968 

0.906 0.093 0.981 0.995 0.982 

0.988 

0.980 

0.938 

0.842 

0.948 

0.927 

0.795 0.204 0.803 0.971 0.847 

0.972 

0.995 

0.981 

0.904 

0.927 

0.953 

Filters {𝟏𝟒, 𝟏𝟕, 𝟏𝟖, 𝟐𝟎, 𝟐𝟏, 𝟐𝟐} 0.821 0.178 0.953 0.990 0.961 

0.995 
0.993 

0.984 

0.909 
0.962 

0.962 

0.847 0.152 0.968 0.988 0.966 

0.978 

0.972 
0.916 

0.710 

0.908 

0.878 

0.792 0.207 0.786 0.984 0.856 

0.977 

0.982 
0.983 

0.903 

0.933 

0.946 

(d) 

 

 
Seeds 

FSA 
Selected 

Features 

LDA K-NN NB 

Acc. ER Sens. Spec. F1 AUC Acc. ER Sens. Spec. F1 AUC Acc. ER Sens. Spec. F1 AUC 

None ALL 0.966 0.033 0.942 0.978 0.949 

0.993 

0.999 

0.995 

0.890 0.109 0.828 0.921 0.834 

0.875 

0.950 

0.928 

0.900 0.100 0.828 0.935 0.846 

0.967 

0.994 

0.989 

Filters {𝟏} 0.871 0.128 0.800 0.907 0.805 

0.928 

0.990 

0.974 

0.838 0.161 0.800 0.857 0.767 

0.828 

0.935 

0.871 

0.866 0.133 0.800 0.900 0.800 

0.937 

0.990 

0.973 

(e) 
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Vehicle 

FSA 
Selected 

Features 

LDA K-NN NB 

Acc. ER Sens. Spec. F1 AUC Acc. ER Sens. Spec. F1 AUC Acc. ER Sens. Spec. F1 AUC 

None ALL 0.771 0.228 0.805 0.758 0.781 

0.891 

0.863 

0.991 

0.684 0.315 0.686 0.754 0.705 

0.720 

0.638 

0.916 

0.587 0.412 0.600 0.680 0.619 

0.640 

0.712 

0.873 

Filters 

{𝟓, 𝟔, 𝟏𝟒, 𝟏𝟖} 0.631 0.368 0.902 0.427 0.719 
0.699 
0.674 

0.913 

0.665 0.334 0.705 0.680 0.690 

0.693 

0.611 

0.901 

0.427 0.572 0.221 0.756 0.299 

0.516 

0.661 

0.816 

{𝟓, 𝟔, 𝟖, 𝟏𝟐} 0.568 0.431 0.827 0.413 0.675 

0.720 

0.697 

0.735 

0.625 0.374 0.669 0.655 0.657 

0.662 

0.621 

0.829 

0.488 0.511 0.520 0.570 0.527 

0.575 

0.702 

0.850 

Wrappers 

{𝟏, 𝟑, 𝟒, 𝟓, 𝟖, 𝟏𝟎, 
𝟏𝟑, 𝟏𝟒, 𝟏𝟓, 𝟏𝟕, 𝟏𝟖} 

0.763 0.236 0.805 0.756 0.780 
0.887 
0.854 

0.989 

0.687 0.312 0.661 0.733 0.680 
0.697 
0.656 

0.938 

0.573 0.426 0.574 0.652 0.591 
0.657 
0.726 

0.862 

{𝟏, 𝟑, 𝟕, 𝟖, 𝟏𝟎, 
𝟏𝟐, 𝟏𝟑, 𝟏𝟒, 𝟏𝟓} 

0.724 0.275 0.759 0.742 0.747 
0.849 
0.832 

0.965 

0.666 0.333 0.654 0.779 0.693 
0.716 
0.650 

0.878 

0.580 0.419 0.661 0.606 0.637 
0.657 
0.686 

0.857 

{𝟏, 𝟑, 𝟒, 𝟓, 𝟕, 
𝟖, 𝟏𝟎, 𝟏𝟐, 𝟏𝟑, 𝟏𝟒} 

0.734 0.266 0.754 0.749 0.746 

0.865 

0.841 
0.981 

0.664 0.335 0.688 0.728 0.697 

0.708 

0.642 
0.866 

0.568 0.431 0.654 0.593 0.627 

0.644 

0.702 
0.865 

{𝟏, 𝟐, 𝟕, 𝟖, 𝟏𝟎, 𝟏𝟐, 
𝟏𝟑, 𝟏𝟒, 𝟏𝟓, 𝟏𝟕, 𝟏𝟖} 

0.728 0.271 0.785 0.719 0.754 

0.847 

0.844 

0.960 

0.644 0.355 0.652 0.726 0.671 

0.689 

0.645 

0.846 

0.576 0.423 0.642 0.604 0.623 

0.655 

0.692 

0.837 

{𝟏, 𝟕, 𝟖, 𝟏𝟎, 𝟏𝟐, 
𝟏𝟑, 𝟏𝟓, 𝟏𝟔, 𝟏𝟕, 𝟏𝟖} 

0.716 0.283 0.790 0.710 0.754 

0.852 

0.834 
0.953 

0.634 0.365 0.674 0.740 0.691 

0.707 

0.613 
0.828 

0.574 0.425 0.674 0.597 0.641 

0.669 

0.687 
0.816 

(f) 

 

 

 

 



94 

Wine 

FSA 
Selected 

Features 

LDA K-NN NB 

Acc. ER Sens. Spec. F1 AUC Acc. ER Sens. Spec. F1 AUC Acc. ER Sens. Spec. F1 AUC 

None ALL 0.988 0.011 1 0.991 0.991 

1 

0.999 

1 

0.735 0.264 0.881 0.932 0.873 

0.907 

0.768 

0.712 

0.977 0.022 0.966 1 0.982 

0.998 

0.996 

0.999 

Filters {𝟔, 𝟏𝟎} 0.837 0.162 0.796 0.941 0.831 

0.957 

0.940 

0.992 

0.910 0.089 0.949 0.957 0.933 

0.953 

0.915 

0.928 

0.865 0.134 0.813 0.949 0.849 

0.968 

0.952 

0.992 

Wrappers 

{𝟕, 𝟏𝟎, 𝟏𝟑} 0.949 0.050 0.949 0.966 0.941 

0.993 

0.989 
0.999 

0.747 0.252 0.881 0.899 0.845 

0.890 

0.798 
0.717 

0.943 0.056 0.915 0.974 0.931 

0.996 

0.992 
0.999 

{𝟏, 𝟕, 𝟏𝟎, 𝟏𝟏, 𝟏𝟑} 0.971 0.028 0.949 0.991 0.965 
0.998 
0.997 

0.999 

0.752 0.247 0.881 0.899 0.845 

0.890 

0.803 

0.727 

0.977 0.022 0.966 0.983 0.966 

0.998 

0.998 

1 

{𝟏, 𝟕, 𝟖, 𝟏𝟎, 𝟏𝟑} 0.966 0.033 0.949 0.991 0.965 

0.997 

0.995 

0.999 

0.752 0.247 0.881 0.899 0.845 

0.890 

0.803 

0.727 

0.955 0.044 0.966 0.983 0.966 

0.998 

0.993 

0.998 

(g) 
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8.2.1. Results of Filter Algorithms 

The following conclusions can be drawn from the result tables: 

1. In filtering techniques selecting a redundant subset of features is at the discretion 

of the user. Different cutoff points select different features and may lead to different, 

in some cases positive and some cases negative, classification performances even 

if the stability of the selection algorithm does not change. For example, it is 

possible to select two different subsets of features with two different classification 

performances using the ReliefF algorithm on the Breast Cancer dataset.   

2. Classification performances of the selected features vary according to the 

induction algorithm used. This is due to the way the classifier works. Therefore, 

the classification performances differ for the same feature set. For example, the 

LDA classifier has quite close but better performance than the Naïve Bayes 

Classifier on the Abalone dataset. A similar situation applies to feature selection 

algorithms. Selection algorithms can select different features from the same dataset. 

Therefore, instead of comparing the algorithms with each other, it will be fairer to 

compare the performance values obtained before and after the selection using the 

same algorithm. 

3. Selection algorithms select only a few features, for example, one or two, especially 

in cases where the number of features is small, and this may be considered as 

reasonable for these sets. However, as the number of features in the original dataset 

increases, the number of features that can be added to the selected features subset 

is expected to increase. Because it is not reasonable to represent all datasets with 

one or two attributes. In this study, this situation was observed for Vehicle and Sat 

datasets. Also, for these sets increase in the number of selected features usually 

increases classification accuracy. 

4. Classification performance is adversely affected, even in case of stable feature 

selection, from high variability of the features in the datasets. Table A.2.1 displays 

several attributes with high variabilities in datasets. Consider as an example, the 

Breast Cancer standard deviation (or variance) values. For this dataset, standard 

deviations are very high in comparison with the feature averages, which is the most 

likely cause of lower classification performance values after feature selection.  



96 

5. When the selected algorithms were examined, it was observed that the DTE 

algorithm was mostly chosen. Therefore, it can be said that DTE is the most stable 

algorithm according to the other algorithms used and the selection strategy applied. 

8.2.2. Results of Wrapper Algorithms 

The following conclusions can be drawn from the result tables: 

1. As observed in filtering techniques, in general, classification accuracies obtained 

after feature selection may be close to, equal to or greater than the accuracies 

obtained before feature selection. For example, using only features 6 and 7 causes 

an increase in the performance of the Naïve Bayes classifier on the Abalone dataset. 

However, the same feature subset has achieved a fairly close value for the K-NN 

classifier, although it does not cause an increase in performance. As expected, 

different classifiers lead to different results. Therefore, if the classifiers are 

compared to each other, it is always difficult to give solid evidence, i.e., strong 

evidence, of the relationship between property selection stability and property 

subset classification accuracy. 

2. A notable result is a dramatic increase in the sensitivity value of the selected feature 

subsets in Abalone and Australian datasets. For example, the sensitivity of the 

Naive Bayes classifier on the Abalone dataset increased from 0.147 to 0.695 after 

feature selection. This result indicates that the Naïve Bayes classifier is inversely 

affected by the data composition and feature selection has increased the ability to 

detect the correct positive rate. The increase in sensitivity value indicates that the 

ability to detect a positive result also increases after a stable feature selection. 

However, this tendency is not clearly present in the specificity values which 

reflects the ability to detect the ratio of correct negative cases. In fact, these results 

are consistent with the definitions of sensitivity and specificity because 

theoretically, sensitivity and specificity are inversely proportional, meaning that as 

sensitivity increases, specificity decreases and vice versa. 

3. In order to assess the relationship between stability and classification performance, 

algorithms with high stability were selected first. After applying the first selection 

criterion, it was observed that the number of selected SFS and SBS algorithms 

were very close. However, SBS algorithms failed to meet (or pass over) the second 

selection criterion. If the feature subsets selected by the SBS algorithm are 
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examined, it can be seen that the SBS algorithm generally generates feature subsets 

with high cardinality and shares fewer common features with the SFS algorithm’s 

results. This is the result of the algorithm’s unstable behavior. Therefore, it can be 

concluded that for this selection strategy SBS algorithms are more unstable than 

SFS algorithms.  

4. As can be seen in Table 8.1, the number of wrapper algorithms using default 

parameters is less than the number of optimized ones. This means that for this 

selection strategy optimized algorithms are more stable than the unoptimized ones. 

However, because none of the unoptimized wrapper algorithms were selected, it is 

not possible to compare the classification performances of the two algorithms. 

5. As expected, wrapper algorithms generally had higher classification performances 

than the filters in the datasets where both filtering and winding algorithms are 

selected. For example, in the abalone dataset, wrapper algorithms are more 

successful than the filter algorithm. 

8.3. CONCLUSIONS AND FUTURE WORK 

In this thesis, the relationship between the stability of feature selection and the 

classification, i.e., prediction performance, is compared by using filter and wrapper 

supervised feature selection methods. Benchmark datasets including Abalone, 

Australian, Breast Cancer, Seeds, Vehicle and Wine have been used for the empirical 

study. The study is based on feature selection methods with higher stability values. The 

observed results indicate that under the constraints of the empirical study, there is a 

general tendency of maintaining or increasing positive classifier metric values after 

stable feature selection. However, some contrary cases have also been detected and 

reported in the thesis. The effects of data composition and higher variabilities of 

individual features have been noted to be the cause of instability in feature selection 

and reduced accuracy values. In other words, feature selection stability profoundly 

depends on the quality of the training set. Sets including few, skewed, noisy and outlier 

samples and having high kurtosis cause degradation in both stability and performance. 

The results of filter and wrapper feature selection algorithms are also similar 

concerning stability and classification accuracy. Finally, it may be concluded that the 

stability of feature selection is an important positive factor for classification accuracy 

and it should be checked before implementing a classification algorithm.  
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For the empirical studies, labeled datasets with known statistical properties have been 

used. However, since the labeling is very costly and it is not always possible to classify 

data with clear lines, unlabeled datasets are encountered quite often. For these reasons, 

experiments can be carried out to determine the relationship between the stability and 

the clustering performance of unsupervised selection methods.  

Feature selection is a compute-intensive task, which means it requires lots of 

computation and therefore computational power, especially when dealing with high 

dimensional datasets. For this reason, it is not possible to perform empirical studies on 

most of today’s high dimensional datasets using an ordinary computer. Grid computing 

(or cloud computing), which is a processor architecture that combines various 

computer resources to reach a common objective or supercomputers can be used to 

perform feature selection on high dimensional datasets. Therefore, experiments 

performed in this thesis can be repeated using a grid computing (or cloud) environment.  

Selection algorithm stability is defined as the reaction, i.e., robustness, shown by the 

algorithm against the perturbations done in the training set. These changes can be made 

on the training set in various ways. Therefore, as a new study, experiments can be 

performed to determine the optimal amount of change (distortion) in the training 

dataset without affecting the stability of the selection algorithm and the effect of 

different validation, cross-validation and sampling techniques on stability.  

In this thesis, only one of the frequency-based stability measurements was used. A 

more extensive experiment can be performed, including the measures that are not used 

in this study, especially the frequency-based ones, by preserving the current test 

environment or by making various changes. Selection algorithm instability can be 

either data-driven, originate from data characteristics, or algorithm-driven, originate 

from an incorrectly selected algorithm or set parameter or hyperparameter. In this 

thesis, the classifiers used by the wrapper algorithm are optimized using the Bayes 

Hyperparameter Optimization method. However, there are different optimization 

techniques besides the Bayes method. Therefore, the stability of the wrapper 

algorithms or other selection algorithms that use a classifier to check the selected 

features classification accuracy can be observed by applying different optimization 

techniques.  
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Lastly, irrelevant (non-correlated with the class tag or has no effect on the classification) 

and redundant (containing information contained in one or more features or duplicated 

as content) features, as mentioned in the research study conducted by Yu and Liu 

(2004), are affecting both the performance and the stability of the algorithm directly. 

In addition to this, the trade-off between bias (underfitting) and variance (overfitting) 

also causes the same problem. Munson and Caruana (2009) argued in their study that 

variance reducing methods such as Bagging is a solution to this problem. Therefore, 

the effect of relevance vs. redundancy and bias vs. variance trade-off on feature 

selection stability and selected feature subsets classification performance can be 

determined experimentally. 
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APPENDIX 1 — 𝑲 AND HYPERPARAMETERS VALUES 

Hyperparameter optimization algorithm builds a model of the target (objective) 

function, e.g., for classification error rate or the accuracy, and assumes that the model 

contains some errors, i.e., noise. Then regarding the model algorithm calculates the 

best observed feasible and the best estimated feasible points (shown in first and second 

lines respectively for each dataset in tables A.1.1). The best observed feasible point is 

the point with the lowest returned value from objective function evaluations and the 

best estimated feasible point is the point with the lowest estimated mean value 

according to the latest model of the objective function. 

ReliefF algorithm requires the number of nearest neighbors, i.e., 𝑘 value, defined as a 

positive integer scalar by the user. The optimal 𝑘 value can be determined by using 

search techniques as mentioned in chapter five. In table A.1.2 the feature, i.e., predictor, 

weights ranged between -1 and 1 and optimal neighbor size of each feature in each 

dataset is given. 

Table A.1.1. Hyperparameter Values of (a) LDA, NB, (b) K-NN and (c) DTE 

Classifiers 

Dataset 

Linear Discriminant Analysis (LDA) Naive Bayes (NB) 

Delta Gamma 
Discrimination 

Type 

Distribution 

Names 

Kernel 

Smoothing 

Window 

Width 

Kernel 

Abalone 
0.01018173 0.001258772 diagLinear kernel 0.002513588 normal3 

0.01018173 0.001258772 diagLinear kernel 0.002513588 normal 

Australian 
1.0278E-06 0.995505612 pseudoLinear kernel 0.497089546 epanechnikov 

0.00060281 0.995111918 linear kernel 0.497089546 epanechnikov 

Breast 

Cancer 

0 0 diagQuadratic kernel 0.169635846 normal 

0 0 diagQuadratic kernel 0.355934713 triangle 

Sat 
0 0 pseudoQuadratic kernel 0.025133996 normal 

0 0 quadratic kernel 0.025615217 normal 

Seeds 
4.5828E-06 0.116646232 diagLinear kernel 5.089383567 normal 

4.5828E-06 0.116646232 diagLinear kernel 5.090231692 epanechnikov 

Vehicle 
0 0 pseudoQuadratic kernel 0.027485513 normal 

0 0 pseudoQuadratic kernel 0.027485513 normal 

Wine 
2.4361E-05 0.019658287 linear normal - normal 

0 0 quadratic normal - normal 

(a) 

 

 

 

                                                 
3 Normal means Gaussian Distribution. 
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K-Nearest Neighbor (K-NN) 

Dataset 
Number of 

Neighbors 

Distance 

Metric 

Distance 

Weighting 

Function 

Minkowski 

Distance 

Exponent 

Standardize 

Predictors 

Abalone 
89 chebychev squaredinverse - false 

89 chebychev squaredinverse - false 

Australian 
12 hamming inverse - true 

12 hamming inverse - true 

Breast 

Cancer 

16 cosine equal - true 

16 cosine equal - true 

Sat 
1 euclidean squaredinverse - false 

1 euclidean squaredinverse - false 

Seeds 
2 seuclidean inverse - false 

20 mahalanobis inverse - false 

Vehicle 
8 mahalanobis inverse - false 

8 mahalanobis inverse - false 

Wine 
1 minkowski inverse 0.815434059 true 

1 minkowski inverse 0.815434059 true 

(b) 

 
Decision Tree Ensemble (Ensemble of Learners) 

Dataset Method 

Number 

of 

Learning 

Cycles 

Learning 

Rate 

for 

Shrinkage 

Minimum 

Leaf Size 

Maximum 

Number 

of Splits 

Split 

Criterion 

Number of 

Predictors 

to Select at 

Random 

for Each Split 

Abalone 
Bag 388 1 57 552 gdi 5 

Bag 388 1 57 552 gdi 5 

Australian 
AdaBoostM1 500 0.18135 227 473 deviance All 

AdaBoostM1 500 0.18135 227 473 deviance All 

Breast 

Cancer 

RUSBoost 310 0.90705 1 679 gdi All 

Bag 376 1 3 103 deviance 7 

Sat 
Bag 477 1 3 5230 gdi 32 

Bag 477 1 3 5230 gdi 32 

Seeds 
AdaBoostM2 102 0.01461 5 11 gdi All 

AdaBoostM2 128 0.13229 4 2 gdi All 

Vehicle 
Bag 163 1 5 23 deviance 18 

Bag 476 1 3 72 deviance 18 

Wine 
Bag 52 1 5 4 gdi 1 

Bag 84 1 25 163 gdi 1 

(c) 
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Table A.1.2. Weights and K Values of Each Feature in the Datasets  

 
Number of 

Features 

Abalone Australian Breast Cancer Sat Seeds Vehicle Wine 

Weights K Weights K Weights K Weights K Weights K Weights K Weights K 

1 0.1056 1439 -0.0006 382 0.2227 443 0.1427 1517 0.2885 69 0.0171 410 0.1447 69 

2 0.0592 1447 0.0074 382 0.3756 443 0.1391 1525 0.2814 69 0.0068 410 0.0740 70 

3 0.0639 1447 0.0135 382 0.3548 443 0.0977 1531 0.0847 69 0.0224 410 0.0157 70 

4 0.0135 1401 0.0081 382 0.2576 442 0.0915 1533 0.2199 69 0.0081 410 0.0475 70 

5 0.0639 1447 0.0495 382 0.1908 442 0.1489 1521 0.2574 69 0.0036 410 0.0286 70 

6 0.0415 1447 0.0181 382 0.4660 443 0.1450 1525 0.0629 69 0.0092 410 0.1213 70 

7 0.0509 1447 0.0197 381 0.2326 443 0.0929 1530 0.2171 69 0.0178 410 0.1862 70 

8 0.0592 1447 0.5135 382 0.2953 442 0.0895 1517 

 

0.0177 410 0.0590 70 

9 

 

0.2118 382 0.0672 443 0.1458 1524 0.0187 410 0.0489 70 

10 0.0216 380 

 

0.1474 1503 0.0044 410 0.1314 70 

11 -0.0002 382 0.0903 1526 0.0142 410 0.1046 70 

12 -0.0007 382 0.0868 1509 0.0176 410 0.1953 70 

13 0.0026 382 0.1521 1524 0.0084 410 0.1758 70 

14 0.0035 313 0.1488 1517 0.0139 410 

 

15 

 

0.0981 1525 0.0080 410 

16 0.0971 1518 0.0073 410 

17 0.1647 1522 0.0098 410 

18 0.1707 1519 0.0346 410 

19 0.1026 1527 

 

20 0.0984 1524 

21 0.1559 1526 

22 0.1625 1521 

23 0.0969 1525 

24 0.0937 1528 

25 0.1422 1526 

26 0.1433 1513 

27 0.0964 1520 

28 0.0902 1532 

29 0.1487 1524 

30 0.1545 1525 

31 0.0931 1525 

32 0.0901 1533 

33 0.1442 1533 

34 0.1511 1503 

35 0.0889 1530 

36 0.0862 1526 
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APPENDIX 2 — SUMMARY (DESCRIPTIVE) STATISTICS RESULTS  

• Mode is the most common and median is the middle number. 

• Skewness is a measure of the asymmetry of the distribution around its mean. Distribution 

with a long-right tail is right-skewed (or skewed to the right or positively skewed) and the 

mean of the distribution is located on the right of the peak. Distribution with a long-left tail 

is left-skewed (or skewed to the left or negatively skewed) and the mean of the distribution 

is located on the left of the peak. The normal distribution, that has symmetric tails, has a 

skewness of zero. 

• Kurtosis is a measure of the flatness of the distribution peak. Distributions with kurtosis 

less than 3 are called platykurtic. Platykurtic distributions produce fewer outliers than the 

normal distribution. The univariate normal distribution has a kurtosis of 3. Distributions 

with kurtosis greater than 3 are called leptokurtic. Leptokurtic distributions produce more 

outliers than the normal distribution. 

• Abrupt Changes is a list of features (columns) with data values that show a sudden 

(unexpected) change in their values more than the mean of the regarding the feature. 

• Outliers is a list of features with data values that have more than three standard deviations 

from the mean of the regarding the feature.  
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Table A.2.1. Summary Statistics of (a) Abalone, Australian, Breast Cancer, Seeds and 

Vehicle, (b) Sat and Wine Datasets 

 

 Ft. Min Mode Mean Median Max Variance 
Standard 

Deviation 
Skewness Kurtosis 

A
b

a
lo

n
e 

1 0.075 0.55 0.52399 0.545 0.815 0.014422 0.12009 -0.63964 3.0631 

2 0.055 0.45 0.40788 0.425 0.65 0.0098486 0.09924 -0.60898 2.9531 

3 0 0.15 0.13952 0.14 1.13 0.0017495 0.041827 3.1277 78.933 

4 0.002 0.2225 0.82874 0.7995 2.8255 0.24048 0.49039 0.53077 2.9749 

5 0.001 0.175 0.35937 0.336 1.488 0.049268 0.22196 0.71884 3.593 

6 0.0005 0.1715 0.18059 0.171 0.76 0.012015 0.10961 0.59164 3.0825 

7 0.0015 0.275 0.23883 0.234 1.005 0.019377 0.1392 0.6207 3.5299 

8 1 9 9.9337 9 29 10.395 3.2242 1.1137 5.3265 

A
u

st
ra

li
a

n
 

1 0 1 0.67826 1 1 0.21854 0.46748 -0.7632 1.5825 

2 13.75 31.57 31.568 28.625 80.25 140.5 11.853 1.1534 4.1748 

3 0 1.5 4.7587 2.75 28 24.782 4.9782 1.4856 5.2489 

4 1 2 1.7667 2 3 0.18495 0.43006 -1.1509 2.6555 

5 1 8 7.3725 8 14 13.566 3.6833 -0.06904 2.1484 

6 1 4 4.6928 4 9 3.9693 1.9923 0.46739 2.8145 

7 0 0 2.2234 1 28.5 11.199 3.3465 2.885 14.111 

8 0 1 0.52319 1 1 0.24982 0.49982 -0.092854 1.0086 

9 0 0 0.42754 0 1 0.2451 0.49508 0.29295 1.0858 

10 0 0 2.4 0 67 23.648 4.8629 5.1413 53.453 

11 0 0 0.45797 0 1 0.24859 0.49859 0.16871 1.0285 

12 1 2 1.929 2 3 0.089289 0.29881 -1.9405 9.6616 

13 0 0 184.01 160 2000 29639 172.16 2.7439 22.774 

14 1 1 1018.4 6 1e+05 2.714e+07 5210.1 13.112 216.11 

B
re

a
st

 C
a

n
ce

r 

1 0 0.6 3.9607 3.63 10 8.0139 2.8309 0.59328 2.4073 

2 0 0.5 2.6515 0.91 9.99 9.528 3.0867 1.2006 3.0463 

3 0 0.17 2.722 0.99 10 9.082 3.0136 1.1415 2.9946 

4 0 0.41 2.3204 0.85 9.98 8.3537 2.8903 1.4761 3.891 

5 0.02 1.25 2.7388 1.79 9.96 4.9872 2.2332 1.6499 5.0191 

6 0 0.29 3.0625 0.86 9.99 13.395 3.6599 0.98079 2.2089 

7 0.01 0.17 2.9417 2.2 9.97 5.9892 2.4473 1.0545 3.1384 

8 0 0.02 2.3707 0.8 10 9.3631 3.0599 1.3948 3.4507 

9 0 0.62 1.1147 0.6 9.92 3.1308 1.7694 3.363 14.546 

S
ee

d
s 

1 10.59 11.23 14.848 14.355 21.18 8.4664 2.9097 0.39703 1.9129 

2 12.41 13.47 14.559 14.32 17.25 1.7055 1.306 0.38381 1.891 

3 0.8081 0.8823 0.871 0.87345 0.9183 0.00055835 0.023629 -0.5341 2.8346 

4 4.899 5.236 5.6285 5.5235 6.675 0.19631 0.44306 0.52172 2.2045 

5 2.63 3.026 3.2586 3.237 4.033 0.14267 0.37771 0.13342 1.8998 

6 0.7651 2.129 3.7002 3.599 8.456 2.2607 1.5036 0.39879 2.9065 

7 4.519 5.001 5.4081 5.223 6.55 0.24155 0.49148 0.55788 2.1507 

V
eh

ic
le

 

1 73 89 93.678 93 119 67.807 8.2345 0.38059 2.4608 

2 33 43 44.862 44 59 38.067 6.1699 0.26233 2.0734 

3 40 66 82.089 80 112 248.74 15.772 0.10703 2.0202 

4 104 197 168.94 167 333 1120.4 33.472 0.39001 3.293 

5 47 64 61.694 61 138 62.225 7.8883 3.8148 32.653 

6 2 7 8.5674 8 55 21.171 4.6012 6.7664 61.024 

7 112 150 168.84 157 265 1105.2 33.245 0.6047 2.3807 

8 26 31 40.934 43 61 61.02 7.8116 0.04776 2.1339 

9 17 19 20.583 20 29 6.7192 2.5921 0.76932 2.6022 

10 118 144 148 146 188 210.7 14.516 0.2559 2.2274 

11 130 170 188.63 178.5 320 985.64 31.395 0.65066 3.1105 

12 184 327 439.91 364 1018 31220 176.69 0.83435 2.7783 

13 109 186 174.7 173 268 1059.3 32.546 0.27973 2.5056 

14 59 72 72.462 71.5 135 56.055 7.487 2.0689 14.299 

15 0 1 6.3771 6 22 24.19 4.9184 0.77242 3.0807 

16 0 11 12.599 11 41 79.767 8.9312 0.6881 2.8528 

17 176 188 188.93 188 206 37.994 6.1639 0.2481 2.4023 

18 181 198 195.63 197 211 55.336 7.4388 -0.22594 2.1843 

(a) 
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Ft. Min Mode Mean Median Max Variance 
Standard 

Deviation 
Skewness Kurtosis 

S
a

t 
1 39 67 69.4 68 104 185.12 13.606 0.022394 2.2825 

2 27 79 83.595 87 137 523.6 22.882 -0.67248 2.7791 

3 53 104 99.291 101 140 277.09 16.646 -0.12244 2.1137 

4 33 83 82.593 81 154 357.12 18.898 0.89439 4.2544 

5 39 67 69.15 68 104 183.91 13.561 0.036165 2.2885 

6 27 75 83.244 85 137 523.79 22.886 -0.6558 2.7327 

7 50 104 99.111 101 145 277.69 16.664 -0.1195 2.1026 

8 29 83 82.497 81 157 358.76 18.941 0.89968 4.2555 

9 40 67 68.912 67 104 181.46 13.471 0.044402 2.2993 

10 27 79 82.893 85 130 522.68 22.862 -0.64933 2.7133 

11 50 104 98.853 100 145 276.78 16.637 -0.10303 2.0965 

12 29 83 82.388 81 157 360.28 18.981 0.91849 4.2754 

13 39 67 69.29 68 104 185.03 13.603 0.034387 2.2898 

14 27 79 83.477 85 137 522.12 22.85 -0.66724 2.7846 

15 50 104 99.311 101 145 277.82 16.668 -0.12211 2.1072 

16 29 83 82.645 81 154 358.42 18.932 0.87953 4.2056 

17 40 67 69.046 68 104 183.27 13.538 0.038249 2.2969 

18 27 79 83.171 85 130 524.64 22.905 -0.65936 2.7399 

19 50 104 99.15 100 145 279.48 16.718 -0.11911 2.0894 

20 29 83 82.603 81 157 362.35 19.036 0.88535 4.1978 

21 39 67 68.839 67 104 181.15 13.459 0.052706 2.3158 

22 27 79 82.861 84 130 523.69 22.884 -0.64943 2.7205 

23 50 104 98.95 100 145 279.88 16.73 -0.10688 2.08 

24 29 83 82.469 81 157 363.69 19.071 0.90191 4.2211 

25 39 67 69.162 68 104 184.43 13.581 0.036583 2.3012 

26 27 75 83.373 85 131 519.96 22.803 -0.67457 2.8066 

27 50 104 99.215 100 140 275.98 16.613 -0.11728 2.1199 

28 29 83 82.661 81 154 360.67 18.991 0.88838 4.2097 

29 39 67 68.944 68 104 182.05 13.493 0.046731 2.3077 

30 27 79 83.146 85 130 521.99 22.847 -0.66002 2.7603 

31 50 104 99.112 100 145 279.03 16.704 -0.12093 2.0933 

32 29 83 82.618 81 157 362.66 19.044 0.88271 4.2045 

33 39 67 68.728 67 104 179.6 13.402 0.055951 2.3263 

34 27 75 82.859 84 130 520.61 22.817 -0.65343 2.74 

35 50 104 98.926 100 145 278.74 16.695 -0.10762 2.0818 

36 29 83 82.505 81 157 363.07 19.054 0.89699 4.2338 

W
in

e 

1 11.03 12.37 13.001 13.05 14.83 0.65906 0.81183 -0.051047 2.1377 

2 0.74 1.73 2.3363 1.865 5.8 1.248 1.1171 1.0309 3.2573 

3 1.36 2.28 2.3665 2.36 3.23 0.075265 0.27434 -0.17521 4.0786 

4 10.6 20 19.495 19.5 30 11.153 3.3396 0.21125 3.4408 

5 70 88 99.742 98 162 203.99 14.282 1.0889 5.0128 

6 0.98 2.2 2.2951 2.355 3.88 0.39169 0.62585 0.085907 2.1541 

7 0.34 2.65 2.0293 2.135 5.08 0.99772 0.99886 0.025129 2.1106 

8 0.13 0.26 0.3618 0.34 0.66 0.015489 0.12445 0.44635 2.347 

9 0.41 1.35 1.5909 1.555 3.58 0.32759 0.57236 0.51277 3.5057 

10 1.28 2.6 5.0581 4.69 13 5.3744 2.3183 0.86124 3.3374 

11 0.48 1.04 0.9574 0.965 1.71 0.052245 0.22857 0.020913 2.632 

12 1.27 2.87 2.6117 2.78 4 0.50409 0.70999 -0.30469 1.9103 

13 278 520 746.89 673.5 1680 99167 314.91 0.76134 2.725 

(b) 
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Table A.2.2. List of Features Indices in Each Dataset that has Missing and Outlier Values and 

Abrupt Changes 

 
Dataset Missing Values Outlier Values Abrupt Changes 

Abalone None All 1,4,5,8 

Australian None All Features Except 5 2,3,5,6,7,9,10,11,13,14 

Breast Cancer None All Features Except 1 All 

Sat None 4,8,12,16,20,24,28,32,36 All 

Seeds None 7 All Features Except 3 

Vehicle None 4,5,6,7,9,11,12,14,16,17 All 

Wine None 2,3,4,5,9,10,11,13 1,2,4,5,6,7,9,10,12,13 
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APPENDIX 3 — CLASSIFICATION PERFORMANCES 

Table A.3.1. Classification Performances of All Datasets before Feature Selection 

Dataset Classifier Accuracy Error Rate Sensitivity Specificity F1 Score Prevalence AUC Values 

Abalone 

LDA 0.5448 0.4551 0.5281 0.6508 0.4950 

0.3658 

0.6651 

0.7152 
0.8728 

K-NN 0.4974 0.5025 0.4528 0.6689 0.4468 

0.5609 

0.5692 

0.7382 

NB 0.5154 0.4845 0.1472 0.8742 0.2157 

0.8684 

0.7009 

0.8684 

Australian 

LDA 0.8579 0.1420 0.9185 0.8093 0.8519 

0.4449 

0.9278 

0.9278 

K-NN 0.6608 0.3391 0.5700 0.7336 0.5993 
0.6518 

0.6518 

NB 0.8057 0.1942 0.6775 0.9086 0.7563 
0.8966 

0.8966 

Breast  

Cancer 

LDA 0.9604 0.0395 0.9819 0.9205 0.9699 

0.6500 

0.9950 

0.9950 

K-NN 0.9502 0.0497 0.9707 0.9121 0.9620 
0.9414 
0.9414 

NB 0.9633 0.0366 0.9549 0.9790 0.9713 
0.9928 

0.9875 

Sat 

LDA 0.8390 0.1609 0.9673 0.9932 0.9727 

0.2382 

0.9976 

0.9973 

0.9873 
0.9120 

0.9688 

0.9684 

K-NN 0.9067 0.0932 0.9810 0.9951 0.9826 

0.9880 

0.9801 

0.9382 

0.8423 

0.9486 

0.9273 

NB 0.7954 0.2045 0.8036 0.9710 0.8476 

0.9721 

0.9954 

0.9819 
0.9042 

0.9278 

0.9531 

Seeds 

LDA 0.9666 0.0333 0.9428 0.9785 0.9496 

0.3333 

0.9934 

0.9998 
0.9957 

K-NN 0.8904 0.1095 0.8285 0.9214 0.8345 

0.8750 

0.9500 

0.9285 

NB 0.9000 0.1000 0.8285 0.9357 0.8467 

0.9679 

0.9945 

0.9895 

Vehicle 

LDA 0.7718 0.2281 0.8053 0.7586 0.7815 

0.4858 

0.8915 

0.8636 

0.9916 

K-NN 0.6843 0.3156 0.6861 0.7540 0.7050 

0.7200 

0.6388 

0.9161 

NB 0.5874 0.4125 0.6009 0.6804 0.6198 

0.6400 

0.7124 

0.8733 

Wine 

LDA 0.9887 0.0112 1 0.9915 0.9916 

0.3314 

1 

0.9997 

1 

K-NN 0.7359 0.2640 0.8813 0.9327 0.8739 

0.9070 

0.7680 

0.7120 

NB 0.9775 0.0224 0.9661 1 0.9827 
0.9982 
0.9965 

0.9998 
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APPENDIX 4 — RESULTS OF FILTER ALGORITHMS 

Table A.4.1. Stabilities of Filter Methods 

 
FS 

Method 
Dataset CD 

WCD 

(Top5) 
PCC SRCC KRCC Dataset CD 

WCD 

(Top5) 
PCC SRCC KRCC 

T-Test 

A
b

a
lo

n
e 

1.1989 1.0484 0.8524 1.0000 1.0000 

A
u

st
r
a

li
a

n
 

0.9992 0.3262 0.9756 0.9324 0.8201 

Entropy 1.3385 1.2535 0.8875 0.8083 0.6734 1.2758 0.6076 0.9727 0.9206 0.7898 

Bhat. 1.4231 1.3022 0.9151 0.7512 0.5996 1.1609 0.5119 0.9531 0.9320 0.8223 

ROC 1.0481 0.9460 0.9313 1.0000 1.0000 1.0083 0.4312 0.9566 0.9382 0.8258 

Wilcoxon 1.4696 1.2061 0.6884 0.5957 0.4470 1.4014 0.5681 0.9128 0.8842 0.7379 

ReliefF 1.7559 1.5995 0.7354 1.0000 1.0000 1.0179 0.3086 0.9959 0.9179 0.7987 

DTE 0 0 0.9999 1.0000 1.0000 0 0 1.0000 1.0000 1.0000 

T-Test 

B
r
ea

st
 C

a
n

c
er

 0.8648 0.7133 0.9762 0.9881 1.0000 

S
a

t 

4.3354 1.0249 0.9140 0.9141 0.7579 

Entropy 1.7618 1.5568 0.5919 0.7054 0.5540 6.1431 1.5676 0.8724 0.8430 0.6737 

Bhat. 1.2046 0.9017 0.9097 0.9195 1.0000 5.4321 1.4345 0.9032 0.8796 0.7201 

ROC 0.9081 0.8037 0.9803 0.9691 1.0000 8.3759 2.2023 0.6677 0.6549 0.4773 

Wilcoxon 0.9720 0.5771 0.9766 0.8168 0.6692 5.7365 2.6079 0.9270 0.8883 0.7123 

ReliefF 0.2074 0.1292 0.9832 0.9999 1.0000 5.7672 1.5969 0.9214 0.8617 0.6700 

DTE 0.0571 0.0571 0.9995 1.0000 1.0000 0.6403 0 0.9999 0.9939 0.9570 

T-Test 

S
e
e
d

s 

0.5267 0.5267 0.9942 0.9985 1.0000 

V
e
h

ic
le

 

2.9904 1.2554 0.7810 0.7560 0.6042 

Entropy 0.2349 0.2349 0.9970 1.0000 1.0000 2.7297 0.9318 0.8957 0.7798 0.6089 

Bhat. 0.7276 0.7276 0.9941 0.9991 1.0000 2.7878 1.1242 0.8548 0.8040 0.6210 

ROC 0.3486 0.3486 0.9929 1.0000 1.0000 2.0179 0.4834 0.9214 0.8583 0.7108 

Wilcoxon 0.0790 0.0790 0.9977 1.0000 1.0000 2.9199 0.8895 0.8863 0.7120 0.5539 

ReliefF 0.1037 0.1037 0.9969 1.0000 1.0000 3.2138 1.5520 0.7927 0.7766 0.6022 

DTE 0 0 1.0000 1.0000 1.0000 0.2555 0.0571 0.9991 1.0000 1.0000 

T-Test 

W
in

e 

0.4117 0.2141 0.9914 1.0000 1.0000       

Entropy 0.5164 0.2230 0.9893 1.0000 1.0000       

Bhat. 0.8762 0.5918 0.9931 0.9628 0.8727       

ROC 0.3056 0.2362 0.9857 1.0000 1.0000       

Wilcoxon 0.6014 0.3099 0.9915 0.9663 0.8996       

ReliefF 0.9336 0.7384 0.9795 0.9747 0.9102       

DTE 0.2654 0.1658 0.9990 1.0000 1.0000       

 

Table A.4.2. List of Selected Features from Datasets  

 
FS  

Method 

Ranked Features 

Abalone Australian Breast Cancer 

T-Test 4,6,7,2,5,1,3,8 8,9,10,5,7,6,3,14,4,2,12,13,11,1 6,3,2,7,1,8,4,5,9 

Entropy 6,4,5,3,7,2,1,8 14,10,8,7,9,5,3,6,12,4,2,13,1,11 2,9,8,6,3,4,5,7,1 

Bhattacharyya 6,4,7,5,2,3,1,8 14,8,10,7,9,5,12,3,4,2,6,13,11,1 6,2,3,8,4,7,5,1,9 

ROC 6,4,7,2,3,5,1,8 8,10,9,5,7,14,3,6,4,2,13,12,11,1 2,3,7,6,5,1,4,8,9 

Wilcoxon 8,6,4,5,7,3,1,2 8,13,1,10,11,9,12,7,5,4,2,3,14,6 9,3,2,7,6,5,8,4,1 

ReliefF 4,6,2,7,1,5,3,8 8,9,5,10,7,6,3,4,2,14,13,11,12,1 6,2,3,8,4,7,1,5,9 

DTE 6,8,4,7,1,5,3,2 8,5,14,13,7,2,9,3,11,1,4,6,10,12 3,6,7,2,1,5,8,4,9 

 Seeds Vehicle Wine 

T-Test 2,1,7,5,4,3,6 14,18,3,1,8,6,11,7,4,12,9,15,13,16,5,17,2,10 7,12,13,1,11,10,6,4,2,9,8,3,5 

Entropy 1,2,7,4,5,3,6 6,5,14,18,15,3,16,1,8,10,11,12,4,17,7,9,13,2 7,12,13,10,11,1,6,2,8,4,9,3,5 

Bhattacharyya 2,1,7,5,4,3,6 6,14,5,15,18,3,1,16,8,10,11,12,4,17,9,7,13,2 7,13,12,11,1,10,6,2,4,9,8,3,5 

ROC 2,1,7,4,5,3,6 6,14,18,3,11,1,8,12,4,7,9,13,5,16,15,17,2,10 10,13,7,1,12,11,6,4,9,2,5,8,3 

Wilcoxon 6,3,7,5,1,2,4 14,6,8,18,11,13,5,3,12,9,7,4,15,1,16,17,2,10 4,8,10,12,7,11,1,2,13,6,9,5,3 

ReliefF 1,2,5,7,4,3,6 18,3,9,8,1,7,12,14,11,15,4,17,6,13,2,16,10,5 7,12,13,1,10,6,11,2,8,9,4,5,3 

DTE 1,7,6,2,5,4,3 6,12,5,8,14,10,18,1,3,4,2,15,13,7,17,16,11,9 10,6,5,11,4,1,2,3,7,8,9,12,13 

 Sat 

T-Test 17,18,21,22,5,13,14,29,33,6,1,34,9,30,2,19,10,25,20,23,15,26,31,24,11,7,16,27,35,32,12,8,3,28,36,4 

Entropy 18,17,22,20,14,16,21,30,24,34,6,13,8,29,32,28,5,26,4,33,2,12,10,25,1,36,9,19,15,23,31,7,27,3,11,35 

Bhattacharyya 18,17,22,14,21,13,30,20,6,29,34,16,5,33,10,2,9,24,26,25,1,32,28,8,12,4,36,19,15,23,31,27,7,11,3,35 

ROC 18,14,17,6,2,20,21,22,16,13,30,5,24,29,8,33,34,1,26,9,10,12,32,28,19,25,15,4,36,23,7,11,31,27,3,35 

Wilcoxon 25,29,21,13,33,17,1,9,5,36,32,24,28,20,16,12,8,4,18,7,19,22,11,23,6,3,14,15,30,10,31,27,2,35,34,26 

ReliefF 18,17,22,30,21,14,34,33,6,13,29,5,2,10,1,9,26,25,19,23,20,15,16,24,7,31,35,27,11,3,36,32,28,8,4,12 

DTE 17,20,18,22,21,14,6,16,19,24,26,23,15,2,10,33,34,36,30,4,9,27,25,28,13,11,29,12,8,3,35,5,32,1,7,31 
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APPENDIX 5 — RESULTS OF WRAPPER ALGORITHMS 

Table A.5.1. Stabilities of SFS and SBS Algorithms on (a) Abalone, Australian, Breast 

Cancer, (b) Sat, Seeds, Vehicle and (c) Wine Datasets 

 
FS 

Method 
Dataset Classifier HD JI CI SDC OC LM NM 

SFS Abalone 

DA 0.8667 0.7667 0.8456 0.8413 0.7944 0.9056 0.4815 0.7306 

Opt. DA 0.9083 0.8256 0.9033 0.8984 0.9389 0.8778 0.5580 0.8138 

K-NN 0.6528 0.5806 0.7123 0.7051 0.7637 0.6756 0.2531 0.2836 

Opt. K-NN 0.9056 0.6444 0.7089 0.6963 0.6778 0.7667 0.6469 0.6296 

NB 0.7806 0.5315 0.6507 0.6415 0.6630 0.6593 0.3840 0.5093 

Opt. NB 0.9750 0.9000 0.9414 0.9333 0.9444 0.9556 0.8667 0.8946 

SBS 

 

Abalone 

 

DA 0.6389 0.5875 0.7380 0.7249 0.7582 0.7453 0.2648 0.2063 

Opt. DA 0.6750 0.6353 0.7744 0.7601 0.8381 0.7407 0.3401 0.2067 

K-NN 0.8028 0.7968 0.8859 0.8824 0.9144 0.8643 0.5889 0.1685 

Opt. K-NN 0.6444 0.5894 0.7286 0.7275 0.7356 0.7237 0.2099 0.2186 

NB 0.9500 0.9333 0.9600 0.9600 0.9600 0.9600 0.5056 0.8933 

Opt. NB 0.6611 0.4137 0.5994 0.5614 0.7185 0.5722 0.3840 0.2940 

SFS Australian 

DA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8667 1.0000 

Opt. DA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8667 1.0000 

K-NN 0.9365 0.6148 0.7549 0.7333 0.7333 0.8222 0.7867 0.6864 

Opt. K-NN 0.7873 0.4571 0.6463 0.5862 0.7788 0.6683 0.6768 0.3969 

NB 0.6984 0.4285 0.5838 0.5565 0.5889 0.6420 0.3435 0.3432 

Opt. NB 0.9143 0.7452 0.8398 0.8284 0.8889 0.8148 0.6896 0.7569 

SBS Australian 

DA 0.6873 0.5996 0.7463 0.7414 0.7200 0.7826 0.2748 0.3445 

Opt. DA 0.8238 0.8055 0.8915 0.8900 0.8609 0.9252 0.5137 0.4341 

K-NN 0.7000 0.4566 0.6114 0.5892 0.6778 0.5953 0.3288 0.3711 

Opt. K-NN 0.7270 0.6848 0.8141 0.8085 0.8585 0.7813 0.3529 0.3311 

NB 0.8254 0.7411 0.8537 0.8466 0.8862 0.8356 0.4486 0.6435 

Opt. NB 0.7317 0.6393 0.7735 0.7695 0.7794 0.7758 0.3084 0.4443 

SFS 

 

Breast 

Cancer 

DA 0.7951 0.6893 0.8103 0.8047 0.7944 0.8374 0.3856 0.5893 

Opt. DA 0.8741 0.7267 0.8206 0.8190 0.8389 0.8056 0.5244 0.7212 

K-NN 0.6568 0.4988 0.6430 0.6362 0.6593 0.6407 0.2437 0.3122 

Opt. K-NN 0.7778 0.6799 0.8101 0.8005 0.8552 0.7848 0.4004 0.5500 

NB 0.9407 0.8667 0.9285 0.9238 0.9444 0.9222 0.6333 0.8739 

Opt. NB 0.9037 0.8167 0.8899 0.8881 0.9000 0.8833 0.5167 0.8039 

SBS 
Breast 

Cancer 

DA 0.6765 0.6222 0.7503 0.7476 0.7228 0.7831 0.2656 0.2838 

Opt. DA 0.8642 0.8448 0.9114 0.9109 0.9079 0.9159 0.5096 0.6204 

K-NN 0.6864 0.6496 0.7694 0.7689 0.7661 0.7735 0.2537 0.2821 

Opt. K-NN 0.8815 0.8532 0.9205 0.9181 0.9356 0.9102 0.5833 0.6970 

NB 0.8123 0.7938 0.8794 0.8794 0.8794 0.8794 0.4185 0.4571 

Opt. NB 0.7407 0.6804 0.7988 0.7962 0.7794 0.8236 0.3252 0.4418 

(a) 
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FS 

Method 
Dataset Classifier HD JI CI SDC OC LM NM 

SFS Sat 

DA 0.6204 0.3081 0.4716 0.4613 0.4666 0.4988 0.1604 0.1745 

Opt. DA 0.7722 0.4953 0.6487 0.6452 0.7016 0.6027 0.3697 0.4761 

K-NN 0.5926 0.4453 0.6142 0.6072 0.5953 0.6474 0.1399 0.1815 

Opt. K-NN 0.6117 0.3840 0.5538 0.5449 0.5404 0.5856 0.1690 0.2082 

NB 0.9136 0.6454 0.7675 0.7643 0.7467 0.7945 0.6312 0.7114 

Opt. NB 0.7654 0.4168 0.5718 0.5660 0.5826 0.5731 0.3488 0.4080 

SBS Sat 

DA 0.7272 0.7153 0.8336 0.8317 0.8315 0.8397 0.2257 0.0667 

Opt. DA 0.7000 0.6560 0.7906 0.7887 0.8094 0.7759 0.2520 0.2613 

K-NN 0.8377 0.8339 0.9089 0.9086 0.9157 0.9029 0.3122 0.1597 

Opt. K-NN 0.8796 0.8778 0.9336 0.9332 0.9329 0.9349 0.4600 0.2772 

NB 0.7846 0.7627 0.8653 0.8631 0.8956 0.8394 0.3888 0.3337 

Opt. NB 0.7735 0.7494 0.8586 0.8547 0.8956 0.8297 0.4072 0.3132 

SFS Seeds 

DA 0.7492 0.6652 0.7901 0.7812 0.7711 0.8274 0.3694 0.4918 

Opt. DA 0.8921 0.8244 0.9025 0.8966 0.9141 0.9030 0.4852 0.7825 

K-NN 0.6984 0.5119 0.6353 0.6249 0.6815 0.6111 0.3352 0.3636 

Opt. K-NN 0.7429 0.6396 0.7510 0.7445 0.7852 0.7300 0.3546 0.4857 

NB 0.8190 0.7433 0.8347 0.8333 0.8389 0.8333 0.3556 0.6333 

Opt. NB 0.9143 0.8822 0.9295 0.9284 0.9378 0.9233 0.4481 0.8234 

SBS Seeds 

DA 0.8127 0.7433 0.8487 0.8433 0.8563 0.8522 0.4204 0.6047 

Opt. DA 0.6857 0.6169 0.7556 0.7447 0.7674 0.7663 0.3111 0.3368 

K-NN 0.6476 0.5312 0.6867 0.6740 0.6648 0.7352 0.3019 0.2859 

Opt. K-NN 0.6698 0.5930 0.7418 0.7268 0.7678 0.7475 0.3722 0.2929 

NB 0.8032 0.7144 0.8150 0.8124 0.8370 0.7981 0.3565 0.6034 

Opt. NB 0.8127 0.7607 0.8407 0.8375 0.8667 0.8211 0.3713 0.6141 

SFS Vehicle 

DA 0.7123 0.6409 0.7777 0.7706 0.8123 0.7575 0.3449 0.3678 

Opt. DA 0.7432 0.6797 0.8109 0.8028 0.7880 0.8504 0.4317 0.4121 

K-NN 0.6296 0.4189 0.5599 0.5581 0.5582 0.5652 0.1724 0.2409 

Opt. K-NN 0.6568 0.4878 0.6605 0.6381 0.7092 0.6609 0.3105 0.3136 

NB 0.7864 0.4092 0.5364 0.5148 0.4900 0.6342 0.4058 0.3708 

Opt. NB 0.8383 0.6077 0.7476 0.7434 0.7305 0.7734 0.4883 0.6263 

SBS Vehicle 

DA 0.8173 0.8006 0.8875 0.8872 0.8822 0.8933 0.4211 0.4037 

Opt. DA 0.8827 0.8696 0.9295 0.9291 0.9254 0.9342 0.5670 0.5887 

K-NN 0.7617 0.7081 0.8320 0.8231 0.7667 0.9158 0.4548 0.4494 

Opt. K-NN 0.7741 0.7563 0.8610 0.8566 0.8728 0.8581 0.4168 0.2788 

NB 0.7901 0.7486 0.8555 0.8517 0.8790 0.8397 0.4253 0.5104 

Opt. NB 0.7321 0.5631 0.7173 0.7077 0.6749 0.7796 0.3389 0.4588 

(b) 
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FS 

Method 
Dataset Classifier HD JI CI SDC OC LM NM 

SFS Wine 

DA 0.8957 0.8211 0.8948 0.8916 0.9175 0.8787 0.4753 0.7913 

Opt. DA 0.6923 0.5266 0.6515 0.6458 0.6485 0.6663 0.2762 0.3726 

K-NN 0.6872 0.3997 0.5407 0.5261 0.6030 0.5101 0.2917 0.2934 

Opt. K-NN 0.9419 0.8504 0.9154 0.9067 0.9867 0.8622 0.7273 0.8495 

NB 0.8479 0.6865 0.8160 0.8029 0.7893 0.8702 0.5563 0.6705 

Opt. NB 0.8462 0.6815 0.8053 0.7980 0.7693 0.8566 0.5152 0.6697 

SBS Wine 

DA 0.7863 0.7446 0.8540 0.8494 0.8650 0.8521 0.4812 0.4753 

Opt. DA 0.6547 0.5939 0.7307 0.7217 0.7577 0.7223 0.2690 0.2449 

K-NN 0.7265 0.5863 0.7328 0.7268 0.7254 0.7525 0.2984 0.4529 

Opt. K-NN 0.6222 0.5361 0.6855 0.6782 0.7225 0.6637 0.2120 0.2077 

NB 0.7897 0.7402 0.8498 0.8429 0.9162 0.7977 0.4150 0.5446 

Opt. NB 0.7624 0.7098 0.8336 0.8241 0.8905 0.7962 0.4291 0.4633 

(c) 
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Table A.5.2. Classification Accuracy of Sequential Forward and Backward Feature Selection 

Algorithms  

 

 

Abalone 

SFS 

Abalone 

SBS 

Australian 

SFS 

Australian 

SBS 

Min 

Acc. 

Avg. 

Acc. 

Max 

Acc. 

Min 

Acc. 

Avg. 

Acc. 

Max 

Acc. 

Min 

Acc. 

Avg. 

Acc. 

Max 

Acc. 

Min 

Acc. 

Avg. 

Acc. 

Max 

Acc. 

DA 0.5504 0.5530 0.5549 0.5454 0.5502 0.5547 0.8565 0.8565 0.8565 0.8609 0.8636 0.8681 

Opt. DA 0.5514 0.5529 0.5549 0.5446 0.5493 0.5545 0.8565 0.8565 0.8565 0.8754 0.8793 0.8826 

K-NN 0.4992 0.5039 0.5104 0.4994 0.5061 0.5123 0.8551 0.8570 0.8594 0.8087 0.8339 0.8580 

Opt. K-NN 0.5140 0.5169 0.5214 0.5449 0.5539 0.5616 0.8551 0.8630 0.8783 0.8739 0.8814 0.8884 

NB 0.5344 0.5396 0.5432 0.5356 0.5386 0.5430 0.8565 0.8671 0.8739 0.8710 0.8755 0.8783 

Opt. NB 0.5396 0.5409 0.5430 0.5310 0.5358 0.5430 0.8580 0.8614 0.8681 0.8652 0.8728 0.8783 

 
Breast Cancer 

SFS 

Breast Cancer 

SBS 

Sat 

SFS 

Sat 

SBS 

DA 0.9619 0.9625 0.9634 0.9619 0.9638 0.9649 0.8305 0.8379 0.8409 0.8416 0.8431 0.8443 

Opt. DA 0.9634 0.9649 0.9663 0.9678 0.9691 0.9707 0.8720 0.8748 0.8763 0.8645 0.8692 0.8744 

K-NN 0.9575 0.9619 0.9678 0.9634 0.9669 0.9707 0.8942 0.9073 0.9148 0.9105 0.9121 0.9134 

Opt. K-NN 0.9722 0.9747 0.9780 0.9766 0.9776 0.9795 0.8915 0.9037 0.9166 0.9105 0.9126 0.9153 

NB 0.9634 0.9649 0.9663 0.9678 0.9687 0.9693 0.8034 0.8065 0.8078 0.7998 0.8018 0.8034 

Opt. NB 0.9707 0.9729 0.9751 0.9722 0.9732 0.9751 0.8238 0.8300 0.8329 0.8219 0.8261 0.8308 

 
Seeds 

SFS 

Seeds 

SBS 

Vehicle 

SFS 

Vehicle 

SBS 

DA 0.9619 0.9681 0.9762 0.9667 0.9714 0.9762 0.7329 0.7629 0.7931 0.7825 0.7870 0.7931 

Opt. DA 0.9571 0.9629 0.9667 0.9571 0.961`4 0.9667 0.7955 0.8251 0.8428 0.8440 0.8462 0.8534 

K-NN 0.8952 0.9095 0.9238 0.9000 0.9271 0.9476 0.7187 0.7283 0.7447 0.7128 0.7338 0.7506 

Opt. K-NN 0.9619 0.9686 0.9714 0.9619 0.9686 0.9714 0.7506 0.7994 0.8357 0.8132 0.8264 0.8392 

NB 0.9381 0.9471 0.9524 0.9286 0.9438 0.9524 0.5816 0.5994 0.6170 0.6158 0.6296 0.6418 

Opt. NB 0.9333 0.9490 0.9571 0.9238 0.9476 0.9571 0.7104 0.7186 0.7281 0.6927 0.7154 0.7352 

 
Wine 

SFS 

Wine 

SBS 
      

DA 0.9775 0.9888 0.9944 0.9888 0.9938 1.0000       

Opt. 

DA 
0.9719 0.9927 1.0000 0.9944 0.9994 1.0000       

K-NN 0.7809 0.8882 0.9607 0.9326 0.9449 0.9607       

Opt. 

K-NN 
0.9607 0.9702 0.9831 0.9775 0.9865 0.9944       

NB 0.9719 0.9798 0.9944 0.9831 0.9888 0.9944       

Opt. 

NB 
0.9775 0.9809 0.9888 0.9831 0.9888 0.9944       
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Table A.5.3. List of Selected Feature Subsets from (a) Abalone, Australian and Breast 

Cancer, (b) Seeds and Vehicle, (c) Wine and (d) Sat Datasets 

 

 
Abalone Australian Breast Cancer 

SFS SBS SFS SBS SFS SBS 

DA 

4,5,6,8 

5,6,8 

4,6,7 

4,5,6,8 

1,2,5,6,8 
3,4,5,6,7,8 

1,2,3,5,6,7,8 

1,3,4,5,6,8 
1,2,4,5,7,8 

5,6,8 

8,14 

5,6,7,8,9,10,12,13,14 

3,4,5,7,8,9,10,11,12,13,14 

4,5,7,8,9,12,13,14 
1,2,5,6,7,8,9,12,13,14 

3,5,6,7,8,9,13,14 

5,8,9,10,13,14 
3,4,5,7,8,9,10,13,14 

4,5,8,9,10,11,12,14 

3,5,8,9,10,11,13,14 

1,2,4,6,9 
1,2,4,6,7,8 

1,2,4,6 

1,2,5,6 
1,2,6,8 

1,2,3,4,5,6,8 

1,4,5,6,7,8 
1,4,5,6,7,8,9 

1,2,6,8,9 

1,2,6,7,9 
1,5,6,7,8,9 

1,3,6,7,8 

Opt. 

DA 

5,6,8 

4,5,6,8 

5,6,7,8 

2,4,5,6,7,8 

5,6,8 

1,2,3,4,5,7,8 

5,6,7,8 

1,2,4,5,6,8 
4,5,6,8 

1,2,4,5,6,7,8 

8,14 

1,2,3,4,5,6,7,8,9,10,12,13,14 

2,3,4,5,6,7,8,9,10,13,14 

2,3,4,5,6,7,8,9,10,11,13,14 

1,3,4,5,6,7,8,9,10,12,13,14 

1,2,3,4,5,6,8,9,10,13,14 

1,2,3,4,5,6,7,8,9,10,13,14 
1,2,3,4,5,6,8,9,10,12,13 

3,4,5,6,8,9,10,12,13,14 

2,3,4,5,6,7,8,9,10,13 

1,2,6 

2,3,6 

1,2,6,8 

1,2,4,6,7,8,9 

1,2,3,4,6,7,8 
1,3,4,6,7,8,9 

1,2,3,4,6,8 

K-NN 

5,6,8 
1,4,5,6,8 

1,5,6,8 

1,3,4,5,6,7 
1,2,4,5,7 

1,2,4,5,6,8 

1,3,4,6,7 

1,3,4,5,6,7 

1,2,3,4,5,6,7,8 
1,3,4,5,6,7,8 

1,2,4,5,6,8 

1,2,4,5,6,7 
1,2,3,4,5,6,7 

4,8 

8,12 
8 

4,8 

4,5,7,8,9,11,12 

4,6,7,8,9,11 
4,5,7,8,9,11 

1,3,5,8,10 

1,4,6,8,12 
4,5,7,8,9,10,11 

5,8,9 

2,5,6,8 
1,2,6 

1,2,5,6 

1,2,3,5,6,7 
1,3,5,6 

1,3,5,6,7,9 

3,6,7,9 

1,3,5,6,8,9 

1,3,4,5,6,7,8 
2,5,6,7,8,9 

1,3,5,6,7,9 

1,2,4,5,6,8 
1,3,4,6,7,9 

Opt. 

K-NN 

3,8 

3 

2 

1,3,4,6,7 

1,2,4,5,7 

1,3,5,6,7 

1,2,4,5,6,8 

1,2,3,4,5,7 

1,4,5,6,7 
1,2,3,4,6 

4,8 
8 

4,8,9 

4,5,8,9,11,12,13 
4,6,7,8,9,13 

4,5,8,9,10,12,13 

3,4,5,6,7,8,9,12,13,14 
3,4,5,6,8,9,12,13 

1,4,5,6,8,9,11,12,13 

3,4,5,6,8,9,11,12,13 

4,5,6,8,9,10,11,12,13,14 

4,5,6,8,9,10,11,13 

1,4,5,6,7,8,9,10,11,12,13,14 
1,2,3,4,5,6,7,8,9,10,11,13,14 

3,4,5,6,8,10,11,12,13 

1,2,6,8 
1,2,6,7 

1,2,4,6,7 

1,2,3,6,7,8 
1,2,3,6,7,9 

1,2,3,6,7,8,9 

1,2,3,6,7,8 

1,2,3,6,7,8,9 

1,2,3,5,6,7,8,9 

1,2,3,6,8,9 

1,2,3,6,7,9 

NB 

5,6,8 

6,8 
4,5,8 

4,6,8 

4 

3,4,5,6,8 

3,5,6,7,8 

5,7,8,9,13 

5,6,8,9,13 

2,4,5,6,8,9,12 
1,2,3,4,5,6,8,9,12 

8,12 

3,4,5,6,8,9,12 
3,8,12 

2,4,5,6,8,9,13 
3,4,5,6,8,9,13 

1,2,3,4,5,6,8,9,11,12,13 

2,4,5,6,8,9 
2,3,4,5,6,8,9,13 

2,3,4,5,6,8,9,12,13 

2,3,4,5,6,8,9,11,12,13 
3,4,5,6,8,9,12 

2,4,5,6,8,9,11,13 

1,2,6 

1,2,6,8 

1,2,3,4,6,7,8 

1,2,3,6,7,8,9 
1,2,4,6,7,8,9 

1,3,4,5,6,7,8 

1,3,4,6,7,8,9 

Opt. 

NB 

6 

6,7 

6 
4,6,7 

5,6,7,8 

5,6,8 

4,5,6,7,8 

3,4,6 

3,5,6 
3,4,6,7,8 

3,4,5,6 

4,8,13 

3,8,13 

4,8 
1,4,5,8,9,13 

2,4,5,8,9,10,11,13 

2,4,5,8,9,10,13 
3,4,5,8,9,10,12,13 

4,5,8,9,10,11,12,13 

1,2,4,5,6,8,9,10,12,13 
2,3,4,5,6,8,9,10,11 

1,2,3,4,5,6,8,9,10 

2,3,5,6,8,9 

2,5,6,8 

1,2,6,8 

2,6,8 
2,3,6,8 

1,2,5,6,7,8 
2,3,5,6,7,8 

1,2,3,4,6,7,8 

1,2,6,7,8 
1,3,4,5,6,8 

2,3,5,6,8 

(a) 
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Seeds Vehicle 

SFS SBS SFS SBS 

DA 

2,4,5,6,7 

1,2,4,7 
1,4,6,7 

1,6,7 

1,2,4,6,7 
1,4,5,6,7 

2,4,5,6,7 

2,4,7 

2,4,6,7 
4,5,6,7 

2,3,4,6,7 

1,2,3,6,8,9,11,13,14,17 

1,2,3,4,5,6,8,11,13,14,17,18 

1,2,3,4,5,6,8,10,11,13,14,17,18 
1,3,8,10,11,14,17,18 

1,3,8,9,10,11,13,14,15,17,18 

1,2,3,4,5,6,8,11,13,14,15,16,17,18 
1,2,3,4,5,6,8,11,12,13,14,15,16,17,18 

1,2,5,6,10,13,14,15,17,18 

1,2,3,4,5,6,7,8,11,12,13,14,16,17,18 

1,2,3,4,5,6,8,11,13,14,15,16,17,18 

1,2,3,4,5,6,7,8,12,13,14,15,16,17,18 
1,2,3,4,5,6,7,9,11,12,13,14,15,17,18 

1,2,3,4,5,6,7,8,9,12,13,15,16,17,18 

1,2,3,4,5,6,7,8,9,13,14,15,17,18 
1,2,3,4,5,6,7,8,12,13,15,16,17,18 

1,2,3,4,5,6,8,12,13,14,15,16,17,18 

Opt. 

DA 

1,2,6,7 

2,6,7 
1,2,4,6,7 

1,6,7 

1,2,3,5,6,7 

3,4,5,6,7 

2,6,7 
4,5,6,7 

2,4,5,6,7 

2,4,6,7 

1,3,4,5,7,8,10,11,12,13,14,15,16,17,18 
1,3,4,5,8,10,13,14,15,17,18 

1,2,3,4,5,7,8,10,12,13,14,15,16,17,18 

1,3,7,8,10,12,13,14,15 
1,3,4,5,7,8,10,12,13,14 

1,7,8,10,12,13,15,16,17,18 

1,2,3,5,7,8,10,11,12,13,14,15,16,17,18 

1,2,7,8,10,12,13,14,15,17,18 

1,2,3,4,5,7,8,9,11,12,13,14,15,16,17,18 

1,2,3,4,5,7,8,12,13,14,15,16,17,18 
1,2,3,5,7,8,9,11,12,13,14,15,16,17,18 

1,2,3,5,7,8,10,11,12,13,14,15,16,17,18 

1,2,3,4,5,7,8,10,12,13,14,15,16,17,18 
1,2,3,4,5,7,8,11,12,13,15,16,17,18 

1,2,3,4,5,7,8,11,12,13,14,15,16,17,18 

K-NN 

1,6 

1,2,6,7 

1,5,7 
1,4,5,7 

1,4,7 

3,4,7 
2,5,6,7 

1,2,4,5,6,7 

4,5,7 
2,5,7 

2,4,7 

2,4,6,7 

1,2,3,7,8,9,10 

3,6,7,8,11,12,14,18 
1,3,5,6,11,12,17,18 

1,3,5,6,7,8,10,15 

1,2,3,5,7,10 
3,5,6,7,8,11,12,14,17 

1,2,3,6,7,8,9,10 

3,6,7,11,12,14,18 
6,7,8,11,14,17,18 

1,2,3,4,5,6,7,8,10,11,13,14,15,16,17,18 

1,2,3,4,5,7,8,10,11,13,14,15,16,17,18 

1,2,3,6,8,10,11,13,14,15,17,18 
1,2,5,6,7,10,11,13,14,15,17,18 

2,3,5,10,11,13,17,18 

1,2,3,5,6,10,11,13,15,17,18 
1,3,5,6,8,9,10,11,13,15,17,18 

1,2,5,6,10,11,13,15,17,18 

Opt. 

K-NN 

2,4,5,7 

2,5,7 

1,4,7 
1,3,4,7 

1,2,4,7 

1,2,3,4,7 

2,3,4,6,7 
2,3,6,7 

3,4,7 

2,3,4,7 
1,2,3,4,5,6,7 

1,2,3,4,6,7 

1,4,7 

1,2,3,4,7 

3,4,6,8 

1,3,5,6,8 
1,2,3,4,5,6,7,8,9,10,12,13,17,18 

1,2,3,4,5,6,7,8,10,12,13,17,18 

1,2,3,7,8,10,12,14,17,18 
1,3,6,7,8,13,14,17,18 

1,2,3,4,5,6,7,8,12,13,17,18 

2,3,4,5,6,8,11,13 

1,3,5,6,8,10,17,18 

1,3,6,8,14,17,18 

1,2,4,5,6,7,8,9,10,11,12,13,15,16,17,18 

1,2,3,4,5,6,7,8,9,10,12,14,16,17,18 
1,2,4,5,6,7,10,12,13,17,18 

1,2,3,4,5,6,7,8,9,11,12,13,15,17,18 

1,2,3,4,5,7,8,9,10,11,12,13,14,15,17,18 
1,2,4,5,7,8,10,12,13,16,17,18 

1,2,3,4,5,6,7,8,9,10,11,12,13,15,17,18 

NB 

2,3,6,7 

1,3,6,7 
1,6,7 

2,3,6,7 

2,6,7 

1,6,7 
1,3,6,7 

3,4,6,7 

13,14,18 

4,5,8,10,11,12,13,14,15,16,18 

8,10,13,14,18 
5,8,18 

1,14 

2,3,4,5,7,8,9,10,11,12,14,15,16,18 
3,4,5,6,8,10,11,12,14,15,16 

1,2,3,5,6,8,9,10,11,12,13,14,15,16 

3,5,6,7,8,10,11,12,14,15,16 
3,4,5,6,7,8,10,11,12,15,16,18 

1,3,4,5,6,7,8,9,10,11,14,15,16 

2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 

Opt. 

NB 

2,3,6,7 

2,3,4,6,7 
1,3,6,7 

2,3,6,7 
1,6,7 

2,3,4,6,7 

3,4,5,6,7 

5,6,7,15,16,17 

5,6,7,15,17 

1,5,6,7,15,18 
5,6,7,14,15,17 

1,5,6,7,14,15,18 

5,6,12,14,15,17 
1,5,6,7,14,15 

6,7,14,15 

3,5,6,9,12,14,15 

4,5,6,7,9,10,11,14,15,16,17 

1,2,3,4,5,6,9,11,15,16,17 
2,3,4,5,6,9,12,14,15,16,17 

5,6,12,14,15,17 

4,5,6,12,14,15,16 
4,5,6,12,14,15,16,17 

4,5,6,7,14,15,16 

(b) 
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Wine 

SFS SBS 

DA 

1,3,4,7,10,11,13 
1,3,4,7,10,13 

1,3,4,5,7 

1,2,3,4,7,10,13 
1,3,4,6,7,10,11,13 

1,2,3,4,7,8,10,11,12,13 
1,3,4,7,10,11,12,13 

1,2,3,4,7,8,9,10,11,13 

1,3,4,7,8,10,11,13 
1,2,3,4,8,10,11,12,13 

1,2,3,4,6,7,8,9,10,11,12,13 

2,3,4,7,8,9,10,12,13 
1,2,3,4,6,7,8,10,11,12,13 

Opt. 

DA 

1,5,7,11,13 

1,3,4,6,7,8,9,10 
2,5,6,7,10,13 

1,3,5,7,11,13 

1,7,10,11 
1,4,7,10 

1,3,4,7,8,9,10,11,12,13 

2,5,7,8,10,11,13 
1,3,4,7,11,12,13 

1,3,6,7,11,13 

1,2,3,4,7,8,9,10,12,13 
1,2,3,4,5,7,8,9,10,12,13 

K-NN 

2,10,12,13 

7,8,9,10 

7,10 
6,7,10 

1,3,6,7,9,10,12 

6,7,8,10,12 
1,2,6,7,9,10 

1,3,6,7,9,10 

1,2,4,9,10,11,12 
1,2,3,4,7,9,10 

1,3,6,7,9,10,12 

1,2,3,4,6,9,10,12 
1,3,6,9,10,12 

1,7,9,10 

1,3,4,7,9,11,12 

Opt. 

K-NN 

7,10,13 

1,7,10,11,13 
1,7,8,10,13 

1,4,5,6,7,10,12,13 
1,3,4,8,9,11,13 

1,3,4,9,10,11,12,13 

1,5,7,11,13 
1,5,7,10,12,13 

1,4,5,6,7,8,9,10,11,12,13 

1,2,4,7,8,9,10,12,13 

NB 

1,7,11 

1,4,5,7,9,10,11,13 

1,3,5,7,11,13 
1,2,7,11,13 

1,7,11,13 

1,4,7,11,13 
1,5,7,11 

 1,3,4,7,10,11,13 

1,3,4,10,11,12,13 

1,3,4,5,6,7,10,11,13 
1,3,4,7,9,10,11,13 

1,3,4,5,7,9,10,11,13 

1,3,4,5,6,8,9,10,11,13 
1,2,3,4,5,6,7,8,10,11,12,13 

Opt. 

NB 

1,7,11,13 
1,3,4,7,11,13 

1,3,4,7,10,11,13 

1,4,5,7,11 
1,4,7,11,13 

1,2,7,11,13 

1,5,7,11 

1,3,4,5,7,9,10,11,13 

1,5,7,10,11,13 
1,3,4,7,10,11,13 

1,5,7,9,10,11,13 

1,2,3,4,5,6,7,8,10,11,12,13 
1,3,5,7,8,9,10,11,13 

1,3,4,7,9,10,11,13 

1,2,3,4,5,7,8,9,10,11,12,13 
1,3,4,5,7,10,11,13 

(c) 

 

 

 



 

123 

 
Sat 

SFS SBS 

DA 

2,5,6,13,14,17,18,19,20,23,24,25,26,27,33,34 
9,10,14,17,18,23,24,31,33 

4,7,8,10,16,17,18,19,20,21,23,31,33 

5,9,10,17,18,19,22,23,24,30,31,32,33,36 
2,4,8,10,12,13,15,17,18,19,20,21,24,26,27,28,34 

4,17,18,19,20,21,24,25,27,28,32,33,34,35,36 

4,14,15,17,18,19,21,22,25,27,34 
2,11,17,18,19,27 

1,6,13,14,17,18,19,23,24,25,27,28,30,33 

4,12,16,17,18,19,21,22,25,26,27,28,29,35 

1,2,4,5,6,7,8,9,10,11,13,14,16,18,19,20,21,22,23,24,26,27,29,30,31,32,33,34,36 
2,3,4,6,7,8,10,12,13,14,16,17,18,19,21,22,23,26,27,28,29,30,32,33,34,35,36 

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,32,33,34,35,36 

1,2,3,4,5,6,8,9,10,12,13,14,15,17,18,19,21,22,24,25,27,28,29,30,32,33,34,35,36 
2,3,4,5,6,8,10,11,13,15,17,18,19,20,21,22,23,25,26,28,30,31,32,33,34,35,36 

1,2,3,4,5,6,7,8,10,12,13,14,15,17,18,19,20,21,22,24,25,27,28,30,31,32,33,34,35,36 

1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36 
3,4,5,6,7,8,10,11,12,13,15,16,17,18,19,20,21,22,23,24,25,27,28,30,31,32,33,34,35,36 

2,3,4,5,7,8,10,11,13,14,16,18,19,21,22,23,24,26,27,28,30,31,32,33,34,35 

4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,29,31,32,33,34 

Opt. 

DA 

3,11,15,17,18,20,21,23,26 

3,11,15,17,18,20,23,24,25,26 

3,9,13,14,15,17,18,20,23,31 
3,9,11,17,18,20,21,22,23,25,26 

3,11,15,17,18,20,23,24,25,26,31 

7,13,14,16,17,18,19,20,23,24,25,27 
3,11,13,14,16,17,18,19,20,23,24,27,28,31 

3,11,17,18,19,20,21,22,23,25,26 

3,4,11,13,15,17,18,20,21,23,24,25,26,35 
7,13,14,16,17,18,19,20,23,24,25,27,31 

3,4,6,8,9,13,14,17,18,19,21,22,23,24,25,26,27,28,29,31,33,34 

1,3,4,6,7,8,9,10,11,13,14,16,18,19,20,21,22,23,25,27,28,29,30,33,34,35,36 

1,2,4,5,7,8,11,12,13,14,15,16,18,19,20,21,22,23,25,26,27,28,29,30,31,33,34 
1,2,4,5,7,8,10,11,13,18,19,20,22,23,24,25,26,27,28,29,30,31,33,34 

1,2,3,4,7,8,9,10,11,13,14,17,18,19,20,21,22,24,25,26,27,28,29,31,33,34 

1,3,4,5,7,8,9,10,11,13,14,16,17,18,19,20,22,23,24,25,27,28,29,30,31,33,34 
3,4,5,6,8,9,10,11,13,14,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,33,34 

1,2,4,6,7,11,12,13,14,15,18,19,20,21,22,23,25,26,27,28,31,32,33 

1,2,4,5,8,9,10,11,13,14,15,17,18,19,20,22,23,25,27,28,29,30,31,33 
1,2,3,4,5,7,8,9,11,12,13,14,16,17,18,19,20,21,22,23,25,27,28,29,30,31,32,33,34,35,36 

K-NN 

1,3,4,5,6,9,10,11,12,13,14,16,17,18,20,21,22,24,26,27,29,32,34,35 

1,3,4,5,9,11,12,13,14,17,18,20,22,23,24,28,29,30,32,33 
4,5,11,13,14,16,17,19,21,22,24,25,28,32,34,36 

2,4,5,7,10,12,15,16,18,19,20,21,22,24,25,26,27,28,29,33,34,35,36 

1,2,10,12,14,16,17,18,20,21,22,24,25,29,30,33 
2,3,4,5,11,12,13,16,17,18,21,22,24,26,27,28,29,32,34 

1,2,9,10,11,12,13,14,16,18,20,21,22,24,25,26,27,28,29,32,33,34,36 

4,14,17,20,21,22,25,28,29,30,35,36 
1,2,3,5,8,9,11,12,13,14,16,18,20,22,24,25,26,27,28,29,33,34,36 

1,2,4,5,6,9,12,16,18,21,22,24,27,29,33,36 

1,2,4,5,6,7,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36 

1,2,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,32,33,34,35,36 
2,4,5,7,8,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36 

1,2,4,5,6,7,10,11,12,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,32,33,34,35,36 

1,2,3,4,5,8,9,10,11,12,14,16,17,18,19,20,21,22,23,24,25,27,28,29,30,32,33,34,35,36 
1,2,3,4,5,6,8,9,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35 

1,2,4,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,29,30,31,32,33,34,35,36 

1,2,3,4,5,6,8,9,10,11,12,14,15,16,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36 
1,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,31,32,33,34,35,36 

1,2,3,4,5,6,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35 

Opt. 

K-NN 

1,2,9,10,11,12,13,16,18,20,21,22,24,25,26,27,29,32,33,34,36 
2,9,13,14,16,22,24,27,28,29,30,36 

1,2,4,5,8,11,14,17,18,19,20,22,24,25,28,29,33,35,36 

7,9,10,12,13,14,16,17,18,22,24,25,27,29,36 
1,7,8,9,11,14,15,18,21,22,24,25,28,34,36 

2,3,5,10,11,14,16,17,18,20,22,24,25,26,27,29,32,33,34,36 

13,16,18,21,22,24,27,28,29,32 
1,3,13,16,18,21,22,24,26,29,32 

5,8,9,13,14,16,17,18,20,21,22,24,27,28,29,30,32,36 

3,4,5,10,12,13,16,18,21,22,24,26,32,34 

1,2,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,29,30,31,32,33,34,35,36 

1,2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,32,33,34,35 
1,2,3,4,5,6,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,27,29,30,32,33,34,35 

1,2,3,4,5,6,8,9,11,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35 

1,2,3,4,5,7,8,9,10,12,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,29,31,32,33,34,35,36 
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35 
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NB 

11,17,18,20,22,28,36 
10,17,18,20,24,26,28,36 

10,17,18,20,24,28 

12,17,18,20,22,28,36 
10,17,18,20,28 

2,4,6,8,11,12,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,31,32,33,34,35,36 

2,3,4,6,8,10,12,14,15,16,17,18,19,20,21,22,24,25,28,32,33,34,36 

2,3,4,6,10,11,12,13,14,15,16,17,18,19,20,21,22,24,27,28,29,32,33,34,35,36 
1,2,3,4,5,6,8,10,11,12,13,14,15,16,17,18,19,20,21,22,24,26,27,28,29,32,33,34,35,36 

1,2,3,4,5,6,7,8,9,10,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,30,32,33,34,35,36 

2,4,6,8,9,10,11,12,14,15,16,17,18,20,21,22,23,24,26,27,28,29,30,32,33,35,36 
2,3,4,5,6,8,9,10,11,12,13,14,15,16,17,18,20,21,22,23,24,26,27,28,30,32,33,34,35,36 

2,3,4,6,7,8,9,10,12,13,14,15,16,17,18,19,20,21,22,24,26,27,28,30,32,33,34,35,36 

1,2,4,5,6,7,8,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29,30,32,33,35,36 

Opt. 

NB 

4,10,12,18,29,32 
2,3,4,13,18,20,21,24,28,33,34 

2,4,10,12,13,16,18,24,29,32,34 

2,4,12,13,16,18,22,28,29,36 
2,3,4,13,16,18,20,21,24,28,33,34 

4,10,12,13,18,29,32,34 

2,4,10,16,18,21,24,25,28,34 
2,6,9,12,16,18,19,24,25,29,32,34 

2,4,13,16,18,21,24,34 

2,3,4,6,8,9,10,11,12,13,14,17,18,19,20,21,22,24,25,26,28,29,31,32,33,34,36 

2,4,6,9,10,11,12,14,16,17,18,20,22,24,25,26,28,29,32,33,34,36 

1,2,4,6,7,8,9,10,11,12,14,15,16,17,18,20,21,22,23,24,25,26,27,28,29,30,32,33,34,35,36 
2,3,4,6,9,10,11,12,14,16,17,18,20,22,24,25,26,28,29,30,33,34,36 

2,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,28,29,31,32,33,34,35,36 

2,3,4,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,28,29,30,31,32,33,34,35,36 
2,4,5,6,8,10,11,12,13,14,15,16,17,18,20,21,22,23,24,25,26,29,30,32,33,34,35,36 

1,2,3,4,6,8,10,12,14,15,16,17,18,19,20,21,22,23,24,25,26,28,29,30,32,33,34,36 

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,28,29,31,33,34,35,36 
1,2,4,6,7,9,10,11,12,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,32,33,34,36 

(d) 

 


