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ABSTRACT

NOVEL SWARM INTELLIGENCE ALGORITHMS FOR STRUCTURE
LEARNING OF BAYESIAN NETWORKS AND A COMPARATIVE
EVALUATION

Kareem, Shahab Wahhab
Ph.D, Computer Engineering
Advisor: Prof.Dr.Mehmet Cudi Okur
January 2020

Bayesian networks are useful analytical models for designing the structure of
knowledge in machine learning which can represent probabilistic dependency
relationships among the variables. A Bayesian network depends on; 1.the parameters
of the network and 2.the structure. Parameters represent conditional probabilities while
the structure represents dependencies between the random variables. The structure of
a Bayesian network is a directed acyclic graph (DAG). Learning the structure of a
Bayesian network is NP-hard but still extensive work have been done to optimize
approximate solutions. In this thesis, we have conducted research for structure learning
to develop algorithms to find a solution to the problem. There are two approaches for
learning the structure of Bayesian networks. The first is a constraint-based approach,
and the second is a score and a search approach. One common type of method for
Bayesian network structure learning is the score-based search. Score-based methods
rely on a function to test how well the network model matches the data, and they search
for a structure that produces high scores on this function. There are two types of
scoring functions: Bayesian score and information-theoretic score. The Bayesian and
information-theoretic scores have been implemented in several structure learning
methods. In this thesis, we focused on the score based search for testing the structure
learning of Bayesian network using heuristic methods for searching and BDeu as a
score function. In this thesis we proposed five algorithms for the search part and used
BDeu as a score function. We also proposed a sixth method which is also a nature
inspired one. The first proposed algorithm used Pigeon Inspired Optimization as a
search method and the above mentioned score function. The proposed method has
shown a good result when compared with default methods like Simulated Annealing



and greedy search. This algorithm is a novel approach applied for structure learning of
Bayesian network. The second proposed algorithm used Bee optimization and
Simulated Annealing as a hybrid algorithm, which used Bee optimization as a local
search and Simulated Annealing as a global search. The third proposed algorithm also
used bee optimization and Simulated Annealing as a hybrid but used Bee optimization
as a global search and Simulated Annealing as a local search. The fourth proposed
algorithm used Bee optimization and Greedy search as a hybrid algorithm. It used Bee
optimization as local search and Greedy as global search. The fifth algorithms also
used bee optimization and Greedy as a hybrid algorithm, but it used Bee optimization
as a global search and Greedy as a local search Our last proposed algorithm used
Elephant Swarm Water Search Algorithm (ESWSA). The thesis presents the results of
extensive evaluations of these algorithms based on common benchmark data sets.
Applications of ESWSA in Structure learning of Bayesian Network and comparisons
with the Simulated Annealing and Greedy Search, show that this proposed method is

better than the default Simulated Annealing and Greedy search methods.

Keywords: Bayesian network, structure learning, Pigeon Inspired Optimization, Bee
Optimization, greedy, Simulated Annealing, elephant swarm search, water search,
global search, local search, search and score.
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BAYES AG YAPILARININ OGRENILMESI ICIN YENI SURU ZEKASI
ALGORITMALARI VE KARSILASTIRMALI BiR DEGERLENDIRME

KAREEM, SHAHAB WAHHAB
Doktora Tezi, Bilgisayar Mithendisligi
Danigman: Prof.Dr.Mehmet Cudi Okur

Ocak 2020

Bayes aglari, makina 6grenmesinde degiskenler arasindaki rassal iligkileri temsil eden
bilgi yapisinin tasariminda kullanilan yararli analitik modellerdir. Genel olarak Bayes
ag1 Agin Parametreleri ve Agin yapisina baglidir.Parametreler sartli olasiliklari,yap1
ise sans degiskenleri arasindaki bagimliliklar1 temsil eder. Bir Bayes aginin yapisi
yonlii ¢cevrimsel olmayan bir ¢izgedir.Bayes aginin yapisin1 6grenmek bir NP-zor
problem olmasina ragmen,yaklagik ¢oziimlerin eniyilenmesi i¢in ¢ok sayida genis
kapsamli ¢alismalar yapilmistir.Bu tezde yap1 6grenme problemine ¢6ziim bulmayi
amaclayan algoritmalar gelistirmek igin arastirmalar yiiriitiilmistiir.Bayes aglarin
yapisin 0grenmek i¢in iki yaklagim vardir.Birinci yaklasim kisitlamali digeri ise skor
ve arama temellidir.Skor temelli yaklagimlar genel yaklagimlardir.Bu yaklagimlar ag
modelinin verilere nasil uyum gosterdigni 6lgen bir fonksiyonu esas alirlar ve bu
foniksiyonun degerini daha iyilestirecek yapiy1 iiretmeye galsirlar.iki tiir skor
fonksiyonu vardir :Bayes¢i skor ve bilgi teorisi skoru. Her iki skor da yap1 6grenme
yontemlerinde uygulanmistir.Bu tezde Bayes agin yapisint 6grenmede skor temelli
arama igin sezgisel yotemler kullanilmis ve skor fonksiyonu olarak BDeu metrigi
kullanilmistir. Bu amagla,BDeu yu kullanan alti algoritma onerimistir.Onerilen ilk
algoritma guvercinlerin yon bulmasindan esinlenen eniyileme algoritmasidir ve BDeu
skorunu kullanmaktadir.Onerilen yontemin yaygin kullanilan yontemlerden daha iyi
sonuglar verdigi goriilmiistiir.Bu algoritma bu alanda ilk defa kullanilmaktadir.ikinci
oOnerilen algoritma ar1 eniyilemesi algoritmasina ve benzetilmis tavlama algoritmasina
dayanmakta ve ilkini global ikincisini de yerel arama igin kullanmaktadir.Ugiincii

onerilen yontem gene onceki ikisini esas almakta fakat bu defa ar1 eniyilemesi global,
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benzetilmis tavlama algoritmasi yerel arama ig¢in kullanilmistir. Dérdiincii 6nerilen
yontemde melez bir yontem olup ar1 eniyilemesi ve acgdzlii amay1 esas almakta ve ar1
eniyilemesini yerel ve acgozliiyii de global arama i¢in kullnmaktadir.Besinci yontem
de melezdir ve ar1 eniyilemesini global,acgdzlli yontemi yerel arama igin
kullanmaktadir.Son Onerimiz Fil surdlerinin su kaynagi arama algoritmasina
dayanmaktadir.Tezde genel kiyaslama veri setleri kullanilarak BDeu metrigi ve
karisiklik matrislerine dayanan degerlendirmeler tartigilmig, sonugta glvercin yon
bulma ve fil siiriileri su arama yontemlerine dayanan algoritmalarin digerlerindan daha

basarili oldugu gosterimistir.

Anahtar sozcukler: Bayes agi,yap1 6grenme,Giivercinden Esinlenen Algoritma,Ar1
Eniyilemesi,acgozlii,Benzetilmis Tavlama,,Fil siiri aramasi,su aramasi,global

arama,yerel arama, arama ve skor.
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CHAPTER 1
INTRODUCTION

1.1. Motivation

Machine Learning involves techniques for computers programming to learn. Machines
used to achieve a universal variety concerning responsibilities, including the
development of needed software for most computational tasks. Machine learning
approaches deal with several of the related study topics such as the domains of data
mining, artificial intelligence and statistics. Data mining explores models within some
data which is recognizable by people. Statistics concentrates on explaining the events
that are present in experimental or observational data sets [1] [2]. Majority of the
researches use data mining methods to train observed data and to extract intelligence
rules. With specific rules, it obtains a probabilistic graphics model, statistical models,
Bayesian statistics, and machine learning. Graphics models combine probability and
graph theory. It’s present a simplistic mechanism as dealing including difficulties that
arise while coupling engineering and mathematics to reduce ambiguity and complexity.
As such, they play a significant role in machine learning algorithms during steps design
and analysis. The theory of probability presents methods to analyze how the
components joined, guaranteeing that the system remains consistent. The combined
results expected to be compatible and present new techniques to propose new interface
models for observed data. Some graph-theoretic view of graphical models presents an
attractive interface jointly for users that ability to create reactive collections about
variables and a data structure that can be used in powerful public-objective
algorithms[2]. One of the most important types for probabilistic graphical models is
the Bayesian Network [3, 4]. They commonly used in the field of Knowledge from
Data Discovery (KDD). A Bayesian network is a directed acyclic graph whose nodes
(vertices) describe links and variables (or controlled arcs) show the statistical
relationship among variables and a probability distribution defined across those
variables. An essential difficulty of the modern study is Bayesian network learning
from observed data. The development of principles can be performed both by utilising
observed data or expertise. Several kinds of research have been conducted on this
subject, deriving on various approaches: Techniques to the development regarding

independence structure within data to rebuild for optimizing an actual function of the



graph, namely a score. Optimization techniques aim to the development of a
representation of the local structure based on a destination variable to rebuild the
network of the global structure. Most researches have restricted their work to static
cases for learning the structure of Bayesian networks. The majority of these algorithms

use a traditional approach which depended on scores.

In the rest of this thesis, we consider the combination of strategies, namely,
global optimization and local search relating the static case. We remarked that the
structure learning Bayesian network is a well-researched field. To our knowledge, the
researcher about BN structure learning applies the benchmarks to evaluate the
procedures. The difficulty in the Bayesian network structure learning instance is the
search for discovering the excellent structure. But, this depends on the score and search
method, which is computationally NP-hard. Furthermore, causal models can offer
enough extra benefits for researchers. It can assist us in experiencing our situation and
identifying “laws” of the environment in the Sciences: Chemistry, Biology, Physics,
even Genetics. Growing developments under a related thread now can and make for
example, scientists to limit the options of the analysis for infections. In that space, the
building of patterns automatic or the semi-automatic can be valuable. In the
dissertation, we preferred to concentrate on covering structure learning of Bayesian
network depending on the score and search method. Different models can describe
possible domains—as an example, artificial neural networks, decision trees, Markov
networks, blend of essential roles, etc. The researcher in Bayesian Network describes
and learn directed causal connections, which is also our final purpose. We attempt to
explain the combinatorial difficulty of getting the most significant scoring from data
in the Bayesian network structure. This can be view as the challenge of structured
learning which is as an inference difficulty. The major combinatorial problem drives
from the global constraint that the structure of the graph has to be acyclic. The problem
of the structure learning may be called as a linear program covering the polytope
described by logical acyclic structures. To decrease the mentioned difficulties through
applying a restricted external approach to the polytope which stretch it through
exploring the validity constraints. In Case of finding the full solution, it has proven to
be the optimal solution of the Bayesian network. Alternative approaches are; Pigeon
Inspired Optimization, simulated annealing, the greedy method and Elephant Swarm

Water Search algorithms.



1.2. THESIS GOALS AND OVERVIEW

A Bayesian network (BN) involves common useful theoretical principles to describe
the possibility of learning from data in artificial intelligence. A graphical model used
by Bayesian Network for representing the conditional dependency connections
between arbitrary variables and those variables governed by the joint probability
distribution [3]. Assume a Bayesian Network and observations for many variables are
given, a probabilistic inference can then determine the fitness of the other unobserved
variables. Systems accept this standard to design solutions to practical difficulties
within various domains, such as biology, medical diagnosis, natural language

processing, control, and forecasting [4].

Learning the structure automatically from the data, attracted researchers and several
learning algorithms have become available [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. [15, 16,
17,18, 19, 20, 21, 22, 23, 24] [25, 26, 27, 28]. Those algorithms choose the score and
search, or the dependency analysis approaches. Dependency analysis applies a
statistical method for finding dependency and independence connections between
variables and whereby constructs a Bayesian Network [10]. Applying a search
technique in the score and search approaches to investigate Bayesian Network
structures aims to find the highest score value achieved [18]. Both methods have severe
disadvantages. Dependency analysis requires dealing with a massive number of cases
that are difficult also unpredictable; moreover, it is challenging to guarantee the quality
properties of learning. In contrast, Bayesian Network structure learning through the
score and search is an NP-hard problem because of the number of variable increments
[29]. Once the location of applicant networks grows high, exact search results may be
unsuitable for structural learning in Bayesian Network. While some heuristic
algorithms, like hill-climbing algorithms [30, 31], K2 [32], repeated local search [33,
34], can mark the difficulty of significant search areas, they grow confined within local

optima.

To explore those difficulties, many stochastic algorithms have proposed for the
Bayesian Network structure learning during the last years. [35]. We Can classify those

algorithms within two classes [33]:

1.Swarm intelligence algorithms, which are nature-inspired optimization

procedures that include bacterial foraging optimization (BFO) [5], artificial



Bee colony optimization (ABC) [7], ant colony optimization (ACO) [15, 36],
particle swarm optimization (PSO) [16], artificial fish swarm algorithm [37].
They utilize a meta-heuristic search technique in search space of the Bayesian
Network and use a scoring function for determining the best of the applied

networks.

2.The evolutionary algorithms which represent an inspiration of evolution
including common genetics and also genetic programming, genetic algorithm,
which involve evolutionary programming, and evolution strategy. Genetic
algorithm [38] and evolutionary programming [31] are standard techniques

which are useful approaches for Bayesian Network structure learning from data.

1.3. THESIS ORGANIZATION

This study concentrates on the structure learning of Bayesian network. First chapter
includes a literature review of structure learning of Bayesian networks based on score
and the search approach. The basic principles of Bayesian networks and structure
learning of Bayesian networks explained in Chapter 2. The Pigeon Inspired
optimization, Elephant Swarm Water Search Algorithm, Bees algorithm, Simulated
Annealing, Greedy Search and proposed algorithms for structure learning of Bayesian
networks explained in Chapter 3. Chapter 4 concentrates on the results obtained from
the implementations of various algorithms that we proposed. Conclusions and

recommendations for future studies presented in Chapter 5.



CHAPTER 2
BAYESIAN NETWORK

Knowledge description and thinking of these descriptions have caused the
development of several models. Bayesian networks, and Probabilistic graphical
models, have been established to be valuable instruments as a description of
ambiguous knowledge. Then, many researchers such as [39, 40, 41, 42] proposed a
Bayesian probabilistic reasoning formalism for knowledge extraction from incomplete

information.

Learning a Bayesian network is composed of two states: parameter learning and
structure learning. In this thesis, our focus is on structure learning of Bayesian
networks. There are three kinds of techniques in structure learning: techniques
depending on a description of conditional independence, techniques depending on

optimization like score also hybrid approaches.

To illustrate the advantages of structure learning algorithms, these learning algorithms
should tested using the achieved properties of the corresponding Bayesian networks.
Some algorithms use several evaluation metrics in search and identify the network
through an application of the score-based methods. Some others concentrate on the
application of a source form. In our thesis, we concentrated on specific evaluation

procedures utilising a score-based method.

This chapter reviews fundamental descriptions and representations of traditional

Bayesian networks, probability and conditional independence.

21STATISTICAL MODELLING

Usually, statistical modelling strategies utilised within several systems to describe
complicated multi-parametric structures. The probabilistic form shows an ontological
framework; also, it represents the relationships with the model’s fundamental entities.
Unlike deterministic models, where the links are explained by mathematical equations
(either science-based or derived), in statistical models the connections among variables
are probabilistic. In the subsequent sections, we present the principle of probability,
conditional and marginal probability distributions and their use in the graphical models

that underpin the Bayesian structure learning methods.



2.1.1 PROBABILITY

A traditional frequency-based explanation of probability is the following: Probability
of a disjoint event is the occurrence frequency of this event compared to the cumulative
amount of times the events can happen. Suppose, for instance, the analysis conducted
several times, and each time a result is one of three events A, B or C. If the number of
their occurrences are ny ,ng,n. the probability of event A is then presented by the
following Equation [43].

ng
(ng +np +n¢)

P(X) = Equation 2-1

Bayesian or most frequent likelihood test based on the three necessary assumptions of
probability analysis [44]. First, a probability cannot be larger than one and smaller than
zero (Equation 2-2). If that is one, the event will occur; zero means the event will never

happen.
0<PX)<l1 Equation 2-2

In a unit space S, comprising a measurable number of fundamental events there is a
total likelihood that one of the fundamental events will happen
PS)=1 Equation 2-3

Wherever events are disjoint, the cumulative probability of one or another of the events

happening can be obtained by the sum of their specific probabilities
P(XUY)=PX)+PY) Equation 2-4

If the events can both happen, the probability of both events happening can be obtained
by the Equation:

PXUY)=PX)+P(Y)-P(XNY) Equation 2-5
Where XNY denotes the intersection between X and Y, which is the event that both X
and Y happen [43].
2.1.2 CONDITIONAL PROBABILITY

Conditional probability interprets the occurrence probability of an event, given some
other event has already occurred. The probability of the event X, given that Y has
happened shown as P(X|Y) and described by:

P(X]Y)=P (XNY)/P(Y) Equation 2-6



This is known as the primary rule of conditional probability. Equation 2-6 can express

as
P(XNY)=P().PX|Y) Equation 2-7

The conditional probability definition can extend to cover more joint events as in

Equation 2-8.
PXNYNZ)=PX(YNZ)-P(YNZ) Equation 2-8
=PX|(YNZ)-P(Y|Z)-P(Z)

The Equation 2-8 is the chain rule and expressed for n joint events in Equation 2-9.

This rule is essential for factorizations in probability analysis of Bayesian Networks.
P(n?zl Xl) = ?:1 P(Xll n?:1 Xl) Equation 2-9
Bayesian probability declares that every probability is conditional upon specific

situations under which determinations performed or operations executed [45].

2.1.3 BAYESRULE

Considering, from the assumptions of probability ANB=BNA, also from the primary

rule, the connection between conditional probabilities can express as in Equation 2-10.

P(Y|X) - P(X)
P(X|Y) = P(Y) Equation 2-10

The formula, identified as Bayes rule, defined posthumously in a historical form in
1763. It provides a posterior probability, P(X|Y), given any extra information, Y, which
is identified as the prior probability, P(X).

2.14 INDEPENDENCE

Independence of two events implies that the occurrence of one event is not influenced
by the occurrence of another event. Thus the independence of the events X and Y are

expressed by Equation 2-11.

P(X|Y) = P(X) Equation 2-11

Using the fundamental conditional probability rule, Equation 2-12 follows.



P(XNY)=PX)-P(Y) Equation 2-12
2.2GRAPH THEORY AND BAYESIAN NETWORKS

2.2.1. GRAPHS, NODES, AND ARCS

A graph G =(V, A) composed from a non-empty collection V of vertices or nodes also
a limited (however probably empty) collection A of edges, or links. Each edge X = (u,
v) describes essentially a couple of neighboring nodes. The nodes are joined by an arc
which represents a weight value. If in (u, v), order is important, they represent a
directed arc or edge. The arc is assumed to direct the link of u to v also generally
described by an arrowhead as (u— v). It is an additional assumption that the arc moves
or are outgoing from u and that it joins or is incoming for v. If (u, v) is unordered, u
and v declared to be connected by an undirected edge. Undirected edges represented

using a line (u — v).

A graph in which every edge is directed is called a directed graph which includes
ordered pairs of vertices. A graph in which every edge is undirected is named the
undirected graph. Mixed graph (partially directed) contains together undirected and

directed arcs.

Some instances from the mentioned types of graphs shown in Figure 2.1 within the

sequence. During the undirected graph, Figure 2.1:

An undirected graph (left) A directed graph (center) a partially directed graph (right)

Figure 2.1. Directed, undirected, and partially directed



The node collection is V = {X1, X2, X3, X4, X5} also the edge (link) set is E =
{(X1-X4), (X1-X2), (X1-X5), (X2-X4), (X3-X5), (X2-X3)}.

Undirected Arcs, so, i.e., X1-X2 and X2— X1 are similar and represent the same

edge.

In a directed graph, Figure 2.1:

The collection of node is V = {X1, X2, X3, X4, X5} also identified graph
through a set of arc A = {(X1— X2), (X1— X4), (X1 —X3), (X5—X4), (X3—
X5)}.

It directs Arcs, so, i.e., X1 — X2 and X2— X1 recognized as different arcs. For
instance, X1 — X2 € X1 and X2— X1 ¢ X1. Furthermore, it can not present
of'both arcs in the graph because for each couple of node one arc can be present

between the nodes.

o

The mixed graph (partially directed), Figure 2.1, designated through the
organization of a set of the edge E = {(X1-X2), (X1-X3), (X2—X3)} also an
arc set A = {(X2—X4), (X2—X5)}.

2.2.2. THE STRUCTURE OF A GRAPH

A structure of a graph refers to the configuration of the arcs that appear in a graph.
Assumed that the nodes v and u distinguished on each arc and also there is only one

arc between them.

The structure of a graph can expose impressive analytical characteristics. A common
example is representing and understanding routes. Routes(paths) are a series of edges
or arcs joining two nodes, described end-nodes or end-vertices. Routes are represented
by a series of vertices (V1, V2, ..., Vn) that define the series of arcs. The arcs joining
the vertices (V1, V2, ..., Vn) is an individual, which means a route moves over every
arc just once. Within directed graphs, this is further appropriated that every arc within
a route has the same direction, also the route guides from V1 (the end from the initial
arc within the route) to Vn (the peak of the latest arc within a route). In mixed also
undirected graphs (also within common while applying on a graph although of which
set it refers to), arcs in a route can guide in either way or be undirected. Routes in
which V1=Vn describe cycles and managed with a special interest in the theory of

Bayesian network. If the graph is acyclic, the directed graph structure described it as



an incomplete organization of the nodes, which means when the structure does not
include loop or cycle. This organization named a topological or acyclic organization
and influenced by the orientation of the arcs: if a node Xi heads Xj, means no arc of
Xj to Xi. Depending on this explanation, initial nodes are origin nodes, that should
include no incoming arcs; also the leaf nodes are the latest, the leaf node with no
outgoing arc, while the incoming at least one arc. If there has route beginning of Xi
toward Xj, Xi heads Xj in the index of the organized nodes. During this event, Xi is
named the parent of Xj also Xj is called the child of Xi. If the route formed by an
individual arc, by similarity vi is a parent of Xi and Xj is a child of Xi [45].

@& G

Figure. 2.2 Parents, neighbors, ancestors, children, and descendants, of a node within

—@
—@

a directed graph

Suppose, for example, within the DAG that shown in Figure 2.2. The X1 is a
neighbourhood a combination of children with parents; the neighbouring nodes are
within one of those pair sections. The nodes are just partly established; for example,
they can build no organization with root (head) nodes or leaf (tail) nodes. Since an
arrangement, in tradition, they describe the topological organization of a DAG ended
over a collection of the unstructured set of nodes, expressed among Xi = {Xil..., Xik},

defining a partition of X.

2.3PROBABILISTIC GRAPHICAL MODELS

The combination of graph and probability theory produced the probabilistic graphical
models(PGM). It presents the mechanism for dealing with a couple of crucial
difficulties: complexity plus uncertainty. The combined structure by Graphical models
which represent conditional dependence structures between random variables. They

play a major role in analysis and designing for machine learning algorithms.
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Probabilistic graphical models are diagrams, wherever vertices express arbitrary
variables; also links describe dependencies between pairs of variables. Certain forms
produce a compressed description of joint probability distributions of random
variables. PGMs has two essential types. First, the models of directed graphical,
namely Bayesian Networks and second, the models of undirected graphical that
identified as Markov Network or Random Fields (MRFs). Figure 2.3 presents those
models [46].

Directed Undirected
graph

graph

Graphical representation

(FLHIS) Independence A1C|B,D)
(CLS|F,H) BLDJA,C)
(MLH,CIF)
(MLCF)
P(S,F,H,C,M)=P(S)P(F|S) P(A.B,CD)==01(4, B)
P(HIS)P(C|F,H)P(MIF) Factorization ~ 2(B,C)®3(C,D)@4(4, D)
a b

Figure 2.3 Conditional independence: (a) DAG as an example. (b) Markov random field (MRF)

as an example [164].
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2.3.1 MARKOV NETWORKS

The undirected graphical or Markov network model is this collection of arbitrary
variables possessing the characteristic of Markov represented through undirected
graphs. The model has the joint probability distribution that can express through

factorization based on cliques from a graph (G) as:

P (X=x)= % [lcea ) @ (C) Equation  2-13
where denoted a normalization factor by Z, the collection of cliques of G by d(G), and

the maximal potential of the clique by function @(C) [46].

2.3.2 BAYESIAN NETWORKS

Def. 1. (Bayesian network (BN)): The Bayesian network M=<G, 6> is a DAG G=(V,
E) and a collection from parameters 6. The set of vertices or nodes V is conformable
to a collection of arbitrary variables {V1, V2, ..., Vn} also dependencies among these
variables represented through the collection of vertices E. A parameters 0 express the

probability distributions from any arbitrary variable given set of parents i:
0i=P (Xi | Pa (X1)). Equation 2-14
A BN is the compressed description of the joint probability distribution.
P (Xi,..., Xn)=[1iL, P (Xi|Pa(Xi)) Equation 2-15

It needs to validate the Markov condition (definition 2). Fig. 2.4 gives an example of

a BN representing the conditional relationships among four variables.

Def. 2. (Markov Condition): The BN of G = (V, E) indicated by M if every element

in V is independent of every group of non-descendant elements given its ancestors.
(XLNon Descendent (X) | Pa(X)) Equation 2-16

Def. 3. (Faithfulness): P is a probability distribution, and M is the Bayesian network
model is dedicated from one another if each of the independence connections correct

within P is the needed through the Markov theory upon M [46].

12



P(C=T) P(C=F)
0,5 0,5

| P(R=T) P(R=F)
0,8 0,2
0,2 0,8

C
T
F

P(S=T) P(S=F) \
0,9

c |
T
F

0,1
0,5 0,5
S R | Pw=T) P(W=F)
T =T 0,99 0,01
T F 0,9 01
F T 0,9 0,1
F F 0,0 1,0

Figure 2.4: The Model of Bayesian network; A DAG among parameters and nodes

describing the probability distribution.

2.3.3 SOME PRINCIPLES OF BAYESIAN NETWORKS
2.3.3.1 D-SEPARATION GISRSMAMMAR@

To understand the flow of probabilistic control in the graph, we have to recognize how
information moves from A into B to change the knowledge of C. Suppose three nodes
are A, B and C, and also there is a route A—C—B. If the control flows from A to B
via C so we can assume that the route A— C — B is active if it's not blocked [47]. It

has three modes:

Serial relationship: If C is not detected then the route from A to B shall be active it

shall be blocked. Within this situation we have, ALB |C and A1B.

Figure 2.5: Head-to-tail or Serial relation

[
»
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Converging link: If C is not detected or it should block each descendant of C we have,

A4B |C and ALB. This is also called V — structure.
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Figure 2.6: Head-to-head or Converging relation

Diverging link: If C not detected then the route on A to B will be open in the other
case it would be blocked. So we have A1B |C and A+B.

Figure 2.7: Tail-to-tail connection or Diverging

Def. 4. Directional separation (D-separation). Assume A, B are arbitrary variables also
C is a collection of arbitrary variables, A plus B is d-separated through C if and only if
C blocks each route of A to B [48].

2.3.3.2 MARKOV EQUIVALENT CLASS

G1& G2 are Two DAGs said to be Markov equivalent if both provide the equivalent
conditional independencies. This means that the DAGs which have equal d-separation
are Markov equivalent. It means d-separation are Markov equivalent if all DAGs share

the same one based on Verma and Pearl’s theorem:

Theorem 1. (Verma and Pearl: [49]) A Pair of DAGs (PDAG) are similar if and only

if both own the equivalent frame also v-structures (head-to-head joint).

As an instance in Figure 2.8, there are four separate DAGs by the equal number of
variables, and owning equal frames. According to Theorem 1, regular Markov
equivalent classes are DAGs (a), (b) and (¢). However, the v-structure A—C+«—B in (d),

and it is just a graph under its equivalence class [50].
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Figure 2.8: An example of Markov equivalent class, A, B, C, and

four DAGs. The (a), (b) and (c) DAGs have a similar independence structure while
(d) compares to a different set of independencies.

2.34 QUERYING A DISTRIBUTION

The P(V) is the Bayesian network standard description of a complete mutual
probability distribution. It can utilised while explaining probabilistic queries regarding
the subgroup from unperceived variables while it perceives other variables. A simple
query model holds the conditional probability query. In this query model, the query

requested for a mutual distribution including the goal is to estimate [47]:

v,
P(VIE =e) = % Equation 2-17

The equation 2-17 holds two parts,

— Variables (V) of the Query, V in the network is a subsection of arbitrary

variables.

— Evidence (E), a subgroup from arbitrary variables within a pattern also the

instantiation e

An extra query model is the maximum a posteriori probability (MAP). That calculates
various responses to each of the variables if its non-evidence. [51]. [f V and E are a

collection to query variables and evidence in sequence, then.:
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MAP(Vle) armmaxyxP(V,e) Equation 2-18

It allows calculating the posterior distribution of variables by probabilistic inference
[52], also confirmed NP-hard [40]. Several methods introduced within an article in
probabilistic inference. It separates these algorithms within exact inference procedures,
plus approximate inference procedures — the comprehensive review of inference

methods presented in Guo and Hsu [53].

2.3.4.1 EXACT INFERENCE

Pearl proposed a method for Bayesian Network tree-structure called the message
propagation inference in [39]. The mentioned technique is a specific inference that also
owns polynomial time complexity for all of the vertices. A different modern exact
inference holds a joining tree or clique tree [54]. That recognized a clustering
algorithm. The difficulty of the size from the biggest clique of the joining tree is
exponential. Variable exclusion [55] stands further the Bayesian network exact
inference algorithm. That reduces one by one of the variables through clearance out
them. The number of mathematical multiplications and numerical summations it

effects can adjust its complexity.

2.3.4.2 APPROXIMATE INFERENCE

Approximate inference algorithms are applied for complex structure more commonly
than the exact inference. It depends on approximate inference methods of the Monte
Carlo approaches. They produce the collection to pick random samples depending on
the conditional probability tables within a form, approximate probabilities from query
variables through repetitions from representation in the unit. Efficiency is base on the
proportion of samples to represent the network structure [53]. A complexity of
producing a unit also depends on network size.[56]. However, a problem among these

algorithms is associated with a variety of the computed answers.

The primary method which utilises Monte Carlo approaches is logic sampling
produced in [57]. Any of the other methods are holding probability weighting [58, 59],
self-consequence sampling [59], heuristic interest [59], adaptive consequence

sampling [41] etc.
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24 BAYESIAN NETWORK LEARNING

In BNs, model picking and evaluation identified as learning, a title which acquired
from machine learning and artificial intelligence. BN learning implemented as two

procedures:
1. Structure learning: learning structure of the DAG;

2. Parameter learning: A local distribution for structured learning of DAG

corresponding to the BN, using the data.

Learning can implement in two steps; as unsupervised learning, applying the
information presented through a data set, or as supervised learning. Joining both
procedures is the normal approach. Usually, the previous information accessible on the
network is not suitable for an authority to define a BN. Furthermore, identifying the
DAG structure is difficult, if it involves many variables. That is the case, for example,

in gene network interpretation.

The following workflow is Bayesian. Assume a data set D and a BN, B = (G, V). If we
show the parameters of the global distribution of V with ®, we can suppose using
externally available information that ® recognizes V in the parametric group of
populations for modelling D and write B = (G, ®). BN learning can then formalized

as

Pr(B|D)=Pr(G,® | D) = Pr(G|D). Pr(®|G,D) Equation 2-19

learning structure learning  parameter learning

The breakdown of Pr(G, ® | D) shows the steps described above and holds the logic of
the learning procedure. Structure learning can accomplish by searching the DAG, G

that maximizes:
Pr(G | D) < Pr(G) Pr(D | G) = Pr(G) f Pr(D|G,0) Pr(® | G)d® Equation 2-20

Disintegrate the posterior probability of the DAG by applying the Bayes theorem (i.e.,
Pr(G | D)) within the result of the previous distribution across the potential DAGs (i.e.,
Pr(G)) also the possibility of using the data (i.e., Pr(D | G)). Obviously, It is not
probable to calculate the latter externally, including determining the parameters ® of

G [60].
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The prior distribution Pr(G) produces an excellent plan to introduce any prior
information possible on the conditional independence associations among the
variables in V. For example; we want that some arcs should exist within or missing
from the DAG, to estimate to the penetrations achieved. It may also have needed that
some arcs, if present in the DAG, must locate specifically if this way is the exclusive
one that makes sense under the light of the logic defining the appearance of the

standing model.

The usual regular selection for Pr(G) is a non-informative prior to the space of the
DAGs, allowing the equivalent possibility to all DAG. It may refuse any DAGs for
prior information, as explained before. Furthermore, complex priors (known as
structural priors) are more probable, just unusually used in practice for a pair [60].
First, applying a normal probability distribution renders Pr(G) unnecessary in
maximizing Pr (G | D). It makes it suitable for both computational and algebraic
reasons. Second, the number regarding potential DAGs rises the number of nodes

exponentially.

Defining a prior distribution across such a huge number of DAGs is a challenging

responsibility for regular small problems.

Calculating Pr(D|G) is similarly uncertain from both an algebraic and computational
point of representation. Beginning of the breakdown within local distributions, we can

advance by factors of Pr(D|G) in the following way: [60]
Pr(D|G)=/ [T}, [Pr(X;|Ty;, Ox;) Pr(Ox;|Mx;)] dO
= TTI0_.[J Pr(X;|Txy, ©x) Pr(0x;|My;)dOx =TT} Ee,, [Pr(X;|Mx,]
Equation 2-21

Using this form, Pr(D|G) can be calculated in a sensible time also for massive datasets.
This is reasonable both to the multinomial distribution considered for discrete BNs
(via its conjugate Dirichlet posterior) and for the multivariate Gaussian distribution
considered for continuous BNs (via its conjugate Inverse Wishart distribution). For
discrete BNs, we can determine, Pr(D | G) in a Bayesian Dirichlet equivalent uniform
(BDeu) score from [61]. Because it is the unique fragment of the BDe group of scores

in normal usage, it is referred to as BDe.
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BDe allows a flat score both over the parameter field of each node and the period of

the DAGs:

a
Pr(G) « 1 and Pr(Ox; | [Ixi) = aij = 10l Equation 2-22

The exclusive parameter of BDe is the perfect representation size o compared among

the Dirichlet prior, which concludes how much power it allocates to the prior as the

size of an ideal description maintaining it. Following these hypotheses, BDe uses the

following form [60]:

I e L I'(aij) i T'(aij + nijk) ]
BDe(G’D):Hgll BDe(Xia HXi):Hi=1 j=1 {F((xij + nij) ?:1 T'(aijk) } Equatlon 2-23

where:
* p is the number of nodes in G;
« 11 is the number of classes concerning node Xi;
* qi is the number of arrangements from the categories of Xi's parents;

* nijk is the number for individuals who have the jth class for node Xi and the

kth arrangement for its parents.

It names the similar posterior probability to GBNs Bayesian Gaussian equivalent
uniform (BGeu) from [62], which again commonly referred to as BGe. Likewise, to
BDe, it implies a noninformative prior to both the parameter range of every node also
the range of the DAGs; and its only parameter is the ideal representation size a. Its

definition is complicated, and will not be described here.

As a result of the problems described above, two options on the Pr(D|G) have been
defined [60]. The first one is the use of the Bayesian Information Criterion (BIC) as
an estimate of Pr (D | G), as

BIC (G, D) — log BDe (G, D) as the sample size n — . Equation 2-24

BIC is analyzable and just based on the probability function,

|Ox;I 1 ] .
S logn Equation 2-25

BIC(G,D) =Xi~, [log Pr(X;[M,) —

Which, is relatively simple to calculate. The other option is to circumvent the

requirement to establish a standard of goodness-of-fit to the DAG also to apply
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conditional independence experiments for learning the DAG structure individual arc

in time [60].

Once become learned the DAG structure can drive to parameter learning, for which
we can determine the parameters for the set of nodes X. Considering that parameters
relating to various local distributions are independent, really require determining just
the parameters of individual local distributions in time. Following the Bayesian
procedure described in Equation (2-19), this would need to get the value of the ® which
maximizes Pr (®|G, D) by its elements Pr (Ox;|Xi, I1x;). Additional approaches to

parameter estimation exist, such as the highest likelihood regularized evaluation.

Local distributions in tradition require just a small number of nodes, i.e., Xi and its
parents IIx;. Their dimension regularly does not balance among the number of nodes
in the BN (and often considered being limited by a fixed number of nodes while
determining the computational complexity of algorithms), therefore circumventing the
nominal curse of dimensionality. That shows every local distribution owns the
relatively few numbers from parameters for the test individually and also that estimates

are specific in greater proportion within a size from Ox; plus a sample size.

2.4.1 LEARNING THE STRUCTURE OF BAYESIAN NETWORKS

Suppose the following circumstances. Any means provide representations of states of
a candidate BN (N) across the universe U, and the required building the BN of a
problem. It is a common framework for Bayesian networks structural learning.
Meanwhile, the actual environment unable to sure that can test the states of the network,
but we will consider this case. Also, consider the sample is appropriate, and a set D

from states shows a distribution PN(U) which enable via N.

We think all connections within N are required; for example, if the connection is
released, then a network producing unable to express P(U). It can explain as arises: if
parents of X are pa(X) are, also Y represents each concerning them, next there are a

couple of cases x1 and x2 of Y and an arrangement z of the different parents so that
P (X[x1, Z) # P (X[x2, Z).

To get an M, near to N in Bayesian network, can be accomplished through operating

learning parameter during every potential structure also picking those types to which
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PM(U) near to (U). Aforementioned straightforward procedure challenged among
three difficulties, that are necessary for Bayesian networks learning. First, the area
from every Bayesian network structure is significant. In reality, the amount from
various structures, f(n), raises even larger to exponentially during the amount of nodes

n it can get (recent case estimations give in Table2.1):

n!

f(n) = i, (~)H ——2!"Df(n — 1) Equation 2-26

(n—-i)! n!

Second, while seeking within the network structures, we may finish up by some
uniformly excellent structures candidate. For over a whole graph in Bayesian network
able to describe each configuration covering its universe, we comprehend that it will
regularly own some candidates, although a BN over a comprehensive graph will barely

be the accurate solution. If so, it is a limited solution.

Table 2.1. The table presents the amount of various DAGs that can produce several

nodes. For example, there are 1.4*10*' different DAGs with 14 nodes.

NODES Number of DAG NODES Number of DAG
1 1 8 7.8%10!
2 3 9 1.2*%10"
3 35 10 4.2*%10'8
4 543 11 3.2*%10%
5 29281 12 5.2%102%
6 3.8%10° 13 1.9%10!
7 1.1*10° 14 1.4*10%4

Third, it has a difficulty from over-fitting: a picked model is so familiar to P} (U) least
aberrations of PN(U), over, the comprehensive graph can describe (U) correctly, still,
D may have inspected an incompetent system. It has two approaches applied for
Bayesian networks structure learning; score-based plus constraint-based. A score-
based approach provides a sequence of applicant Bayesian networks, compute a score

during all applicant, also declare an applicant of the most significant score. The
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constraint-based approaches organize a collection of conditional independence
observations, including the data plus apply the set to construct a network among d-

separation attributes comparing the conditional restricted independence properties.

To show a centre of structural learning, it should apply these following rule: A
Bayesian network M = (S, 0S) composed of the structured network, S, plus a collection
of parameters, 0S, where the conditional probabilities of the model defined by
parameters. The S is a structure composed of a DAG, G = (U, E), mutually among a

designation of the event period for every node per variable within a graph.

2.4.1.1 THE SCHEMA FOR LEARNING STRUCTURE

All DAG that contains the same node can be disjoint in the equivalence classes by
Markov equivalence; also all DAG that produced Markov Equivalence class has equal
distribution probability. Furthermore, the DAG pattern can build upon a graph called
DAG that expresses the entire Markov equivalence class. We will use GP as a
stochastic random variable whose potential values are DAG models, (gp). As far as
they involve the genuine corresponding frequency distribution, a DAG model case (gp)
is the case that (gp) is dedicated to the corresponding frequency distribution. In some
circumstances, we may recognize DAG related problems. For instance, if an issue is a
causal structure between the variables, then X1 — X2 expresses the case that X1
causes X2, while X2 — X1 describes the different events that X2 causes X 1. But unless
declared, only check DAG model issues, including the notation p|G confirms the
quantity function in the developed Bayesian network including the DAG (G). It seems
not to require that the DAG (Q) is an issue.

We have the following explanation concerning learning structure:

Definition 6 The following makes up a multinomial Bayesian network structure

learning schema:
1. n random variables X, Xo, ... X, with mutual joint probability distribution P;
2. an equivalent representation size N;

3. for each DAG model (gp) including the n variables, a multinomial expanded

Bayesian network (G, F(G), p|G) including equivalent sample size N, where G is any
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part of the equivalence group expressed by (gp), such that P is the probability

distribution in its secured Bayesian network.

Note that even though a Bayesian network containing the DAG X1 — X2 can include
a configuration in which X1 and X2 are independent, the case (gp)l is the case they
conditioned also, does not allow the case they are independent. As usual, we do not
immediately select a mutual probability distribution because the number of values in
the mutual distribution increases exponentially with the number of variables.
Preferably we select dependent distributions from the expanded Bayesian networks
such that the probability distributions in all the fixed Bayesian networks are equivalent.
For, a presented DAG model (gp), we first discover a DAG G in the equality group it

represents. Then in the expanded Bayesian network corresponding to G for all i, j, and

N

k we set: ajjk =77

where r1 is the number of potential values of Xi in G, and qi is the number of various

instantiations of the parents of Xi [61] presents other techniques for testing priors.

2.4.1.2 PROCEDURE FOR LEARNING STRUCTURE

This part displays how we can learn structure using a multinomial Bayesian network

structure learning schema. We begin with this explanation:

Definition 7 The following forms a multinomial Bayesian network structure learning

space:

1. a multinomial Bayesian network structure learning schema, including the variables

X1, X2,... Xn;

2. A stochastic variable GP whose scope comprises every DAG models including the

n variables, and for any value gp of GP a prior probability P(gp);

3.AsetD={X1, X@.  XM?1 of n-dimensional arbitrary vectors such that every X i(h)
has the equivalent space as Xi for any value gp of GP, D is a multinomial Bayesian
network sample of size M with parameter (G, F(©), where (G, F©) is the multinomial

expanded Bayesian network comparing to gp in the schema's specification.

A scoring model for a DAG (or DAG model) is a role that selects a meaning to each

DAG (or DAG model) depend on consideration based on the data. The formulation in
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Equation 2-23 is named as Bayesian scoring criterion score B and applied to score both

DAGs and DAG models.
scores (d, gp) = scorer(d, G) = P(d|G).

Note that in Equation 2-23, we used a DAG pattern to calculate the probability that D
= d. Therefore, this structure was part of the prior experience learning to evolve in our
definition space, also since we did not train on it. Consider, the conditional probability
individually explained that is, a basis on a selection of DAGs for (G, F(G), p|G).
Presented a multinomial Bayesian network structure learning data and space, model
collection decomposed of picking and determining the DAG models, including highest
probability conditional on the data. The goal of the model collection is to learn a DAG
pattern subject to its parameter values (a model) that can apply to decision making and
inference. We could enhance a Bayesian network, whose DAG is in the equality group
described by gpl, to prepare inference including X1 and X2. Note that we grow the
DAG model that is the one including the dependency because in the data the variables
are deterministically correlated. Learning from a Mixture of Observational and

Experimental Data.

The Bayesian scoring criterion (Equation2-23) regarding every case concerned and
whose value corresponds to the equal probability distribution can be used to learn and
test the structure just when all the data is observational. That is if no values are
available for every variable by conducting a randomized control experiment (RCE).
As usual, we can own both observational data also temporary data (data collected of
an RCE) for a presented collection of variables. For instance, in the medical area, it
involves a large deal of observational data in routinely handled electronic medical
records. For specific variables of high clinical importance, we sometimes own data
collected from an RCE. Cooper and Yoo enhanced an approach for using Equation 2-
23 to score DAGs by using a hybrid of observational, and experimental data [63]. The
scoring method presented i1s applied in several algorithms and investigations ( [64],
[65]). Cooper and Yoo present managing the situation in which the guidance is
stochastic [63]. Cooper represents learning from a composite of observational,

experimental, and case-control (biased sample) data [66].
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2.4.1.3 THE COMPLEXITY OF STRUCTURE LEARNING

If there are just a few variables, we can exhaustively calculate the probability of all
DAG models as produced. We then pick the values of (gp) that maximize P(d|gp) (Note
that there should be higher than one maximizing model.) If the number of variables is
not few, to get the maximizing DAG models by considering every DAG models is
computationally inconvenient. [67] has shown the quantity of DAGs including n nodes

provided by the following repetition:

f(n) =3, (D! (711) Zi(n_i)f(n — i) n>2 Equation 2-27
f(0)=1
f(1)=1.

They transmit it as an activity to show f(2) = 3, f(3) = 25, f(5) = 29, 000, and f(10) =
4.2 x 10'%. There are smaller DAG models than there are DAGs, but this number
further is forbiddingly high [68]. Chickering has proven that for certain classes of prior
distributions, the difficulty of getting the usual probable DAG patterns is NP-complete
[29]. One way to manipulate a problem like this is to improve heuristic search

algorithms.

2.4.1.4 CONSTRAINT-BASED METHODS

Constraint-based algorithms depended on the original work of Pearl on maps and its
importance to causal graphical patterns. His Inductive Causation (IC) algorithm [69]
presents a structure for learning the DAG structure of BNs applying conditional

independence tests.

The structure of the IC algorithm is given in Algorithm 2.1. The initial step recognizes
which two variables joined through an arc, despite its direction. These variables cannot
be independent, given some different variables, because they cannot be d-separated.
This action can further view as a backward collection method beginning with the full
pattern with a comprehensive graph and pruning depended on analytical tests for

conditional independence. The next step deals with including a description from the v-
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structures between two non-adjacent nodes A and B with a general neighbor C. By
description, v-structures hold just the major joint in which the two non-adjacent nodes
are not independent conditional on the third one. If there is a group of nodes that
contains C and d-separates A and B, the three nodes are an element for a v-structure
joined on C. The condition can be confirmed by conducting a conditional
independence analysis for A and B into each potential subgroup of their normal

neighbors that covers C.

By a completion to the other round, both the v-structures and the skeleton of the
network identifier, so the equality type the BN refers to recognized network. The last
round of the IC algorithm recognizes constrained arcs and direction them recursively
to get the CPDAG representing the equality type recognized by the previous rounds.
An essential problem of the IC algorithm is that they can use the first pair of rounds in
the method illustrated in Algorithm 2.1 on several real-world problems because of the

exponential number of potentially conditional independence connections.
This has driven into the enhancements to developed algorithms such as
* PC: the primary practical utilization of the IC algorithm [70];

* Grow-Shrink (GS): depended on the Grow-Shrink Markov blanket algorithm

[8], an easy forward collection Markov blanket disclosure approach;

* Incremental Association (IAMB): depending on the Incremental Association

Markov blanket algorithm [71], a pair-phase pick scheme;

26



* Fast Incremental Association (Fast-IAMB): a modification to [AMB which
applies the uncertain stepwise foremost preference to decrease the number of

conditional independence analyses [72];

Algorithm 2.1 Inductive Causation Algorithm

1.For each pair of nodes A and B in V search for set SAB C V such that A and B are
independent given SAB and A, B /€ SAB. If there is no such a set, place an undirected
arc between A and B.

2.For each pair of non-adjacent nodes A and B with a common neighbor C, check
whether C € SAB. If this is not true, set the direction of the arcs A—C and C—B to A—C
and C—B.

3.Set the direction of arcs which are still undirected by applying recursively the
following two rules:

(a) if A is adjacent to B and there is a strictly directed path from A to B then set
the direction of A—B to A—B;

(b) if A and B are not adjacent but A—C and C—B, then change the latter to C—B.

4.Return the resulting CPDAG.

* Interleaved Incremental Association (Inter-IAMB): extra modification of
IAMB, uses the foremost stepwise choice [71] to bypass false positives in the

Markov blanket exposure stately [71].

All those algorithms, and PC, learn the Markov blanket of every node. This
introductory round considerably analyzes the association to neighbors. It produces a
meaningful decrease in the number of conditional independence analyses, and
accordingly of the overall computational complexity of the learning algorithm.
Potential enhancements are possible by leveraging the equivalence of Markov blankets.
While it involves the property of the learned CPDAGs, in general, Inter-IAMB
provides some false positives than GS, IAMB or Fast-IAMB, while producing a
relative number of false negatives. The PC algorithm as enlarged in [73], [74] and [42]
are further aggressive. In case of high dimensional data sets, the guaranteed pick is
reasonably the Semi-Interleaved Hiton-PC from [75], which can balance thousands of

variables.
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Conditional independence analysis is applied to learn discrete BNs are functions of the
observed frequencies {nijk,i=1,...,R,j=1,...,C,k=1,..., L} for the random variables

X and Y also for every arrangement of the conditioning variables Z.

*The mutual information analysis, an information-theoretic range measure is described

as

nij niign
MI(X,Y|Z) = XF, Y5, Ykt 2 log L= Equation 2-28

n Ni+kM+jk

and comparable to the log-likelihood proportion analysis G? (they differ by a 2" factor,

wherever n is the representation size) [76]

» The standard Pearson’s X? analysis for contingency tables computes::

) _ ©R wC L (Mijr—mjr)?
X*XYN|Z) = Xy Xjmy Do — — Equation 2-29
ijk
__ NitpNyjk
where Myjx = A Y

A different possibility denotes the shrinkage estimator for the shared information

defined [76] and considered in BNs in [77].

2.4.1.5 SCORE-AND-SEARCH BASED METHODS

Score-based learning algorithms describe the utilization of heuristic optimization
procedures to the difficulty of learning the structure of a BN. Every applicant BN has
shown a network score following its success of fit, which the algorithm later tries to

maximize. Among these algorithms are:

* Greedy search algorithms such as hill-climbing among random restarts or tabu search
[78]. Specific algorithms examine a search area beginning of a network structure
(normally with no arc) including reversing, adding, and deleting single arc in time till

they can update a score (see Algorithm 2.2);

* Genetic algorithms, which mimic real development within a repeated pick from a
“most appropriate” types plus the mixing from their properties [79]. In this state, it
investigates the search space for the crossover (that joins a structure of pair networks)

plus mutation (which includes arbitrary modifications) stochastic executives;
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* Simulated annealing [78]. The algorithm implements a stochastic local search via
providing adjustments that improve the score of a network plus, concurrently,
according to modifications that decrease it, including a probability inversely related to

reduce the score.

Algorithm 2.2 Hill-Climbing Algorithm

1. Pick the structure of the network G covering V, normally (however not significantly) empty.
2. Calculate a score of G, expressed as ScoreG = Score(G).

3. Valued maxscore = ScoreG.

4. Iterate the next rounds as long as maxscore improvements:

(a) during each potential arc reversal, addition, or deletion not happening within the

cyclic network:
i. calculates the score of the adjusted network G*, ScoreG _ = Score(G*):
ii. if ScoreG _> ScoreG, set G = G* also ScoreG = ScoreG _
(b) update maxscore with the current state from ScoreG.

5. Return the DAG G.

A general survey of certain heuristics and complementary methods from artificial
intelligence presented in [80]. The exploration for the network that optimizes the BIC
score begins, by default, from the clear DAG. The process that improves the BIC score
the maximum is, at every step, the expanding of one arc that will show in the final

DAG (see Figure 2.9).

Neither (hc) nor (tabu) are capable of learning the true DAG. There are several causes
for such a performance. For example, it is possible to both algorithms, to held at a local
maximum because of an unsuitable selection at the beginning point of the exploration.
The algorithms depended on the scoring function effort for finding the graph that a
picked higher score, which normally established mostly standard from fitness among
a data plus a graph. All of them apply a scoring function within the organization and
an exploration method to estimate the honesty of all examined structures from the area
of solutions. They take various learning algorithms based on the exploration procedure
applied, and at the descriptions from a scoring function plus a search area. They depend

on the scoring functions in many policies, so as the minimum description length [81];
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[82]; [83], [78]; [84], information and entropy [85]; [86], or Bayesian approaches ( [87];
[88]; [89]; [90]. We will explain later the normal scoring functions in-depth detail.
They involve a search, frequently used ones are local search processes [91]; [88]; [87];
[61]) because of the exponentially great size of the there is an increasing concern in
different heuristic exploration techniques such as tabu search [92]; simulated
annealing [91]), branch and bound [93], [78]), Markov chain Monte Carlo [94],
evolutionary programming and genetic algorithms [95]; [96], ant colony optimization
[14]), variable neighborhood search [97], estimation of distribution algorithms [98]
and greedy randomized adaptive search procedures (GRASP) [14]. Utmost learning
algorithms apply various search techniques just an equivalent search area: a DAG area.
Potential options are an area regarding the organizations of a variables [99]; [100];
[14]; [97]; [20]), including a subsequent search within a DAG area cooperative among
the regulation; an area from primary graphs [69] (further called completed or patterns
PDAGs), which partly DAG or PDAGs that canonically describe identity groups
regarding DAGs [101]; [51]; [102]; [50]; [103]; also a specific area of RPDAGs
(limited PDAGs), which further describe sameness groups of DAGs [104]; [92]). Each
learning techniques explore a DAG area among the local search-depended procedure,
able to enhance effectiveness if a scoring function applied owns the characteristic of
decomposability. The scoring function (g) is decomposable if the mark selected into
any structure can represent the whole (within a logarithmic range) of local states which

are based just on every node including its parents: [46]
g(G: D) = Xxeu, 9(Xi, Pag (X;): D) Equation 2-30

g(Xi,Pac(Xi): D) = g(Xi, Pac(Xi): N, pa,(xiy

where N ;?i, Pag(xi) 18 the adequate statistics for each group of variables {Xi} U PaG(Xi)
within D, that is a number from situations in D conformable to all potential
arrangements of {Xi} U PaG(Xi). For instance, an exploration process that just
changes individual arc by any transit can estimate the growth achieved through this
exchange. It can reuse the largest from earlier computations also just a statistic to
variables they must change whose parent organizations need to recompute. While the
process, the deletion or insertion of an arc Xj — Xi in a DAG G can estimate by
measuring just individual fresh local score, g (Xi, Pa G(Xi)U{Xj}: D) or g (Xi, Pa
G(Xi) \{Xj}: D), sequentially; the reversal of an arc (Xj —Xi) challenges the valuation
to pair fresh local scores, g (Xi, Pa G(Xi)\{Xj}: D) and g (Xj, Pa G(Xj)U{Xi}: D)
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The different attribute that is especially impressive if the exploration of the learning
algorithm in a space of identity classes of DAGs are named the score equivalence: the
scoring function g is score equivalent if it selects the corresponding value to each

DAGs that is described through the equivalent fundamental graph.

In this way, the outcome regarding estimating the identity group shall be equal for
which they pick DAG of the type. Several methods to calculate the consistency of a
DAG regarding a data set. They can be classify into two levels: Information and

Bayesian criteria.

A- Bayesian Scoring Functions

Beginning with a prior probability distribution for a potential network, the common
approach is calculating a posterior probability conditioned on every accessible data D,
p(G|D). The greatest network holds an organization which maximizes a posterior
probability. That not needed for calculating p(G|D) also during related goals,
calculating p (G, D) holds adequate for an expression p(D) is equivalent to each of
potential networks. While that was comfortable to operate within a logarithmic range,
during tradition, scoring functions practice a value log (p (G, D)) preferably of p (G,
D)[87] introduced one from initial scoring functions in Bayesian, named K2. It can
represent multinomial distributions, parameter modularity, reduction of missing values,
parameter confidence, the regularity of the prior distribution provided in the network

structure:

(T‘i—l)!

gK2(G: D)=log(p(G))Zi=1 [Zj-’il [log (m) + X4ty log(Nu'k!)” Equation 2-31

where p(G) denotes the prior probability of the DAG G. later, the so-called BD
(Bayesian Dirichlet) score introduced by [61] as a popularization of K2:

£DB(G: D)-log(p(G)+Zles |11 o i 257) + B loa R |
Equation 2-32

where the rates n;jx are the hyper-parameters involving the Dirichlet prior distributions

from parameters provided by network structure, also 1;; = Z;i:l Dijk . ['()is the

function Gamma, I'(c) fooo e "u"'du. It should be noted that if ¢ is an integer, I"(c)

= (c-1)!. If values about every hyper-parameter occur nijk=1, reach the K2 score being

a particular instance of BD. Within working terms, the designation to a hyper-
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parameters nijk implies hard (but while apply non-informative tasks, like the ones used

via K2). In other words, we can edit the BD scores as:

I(ay) F(“ijk+"ijk))

Si()zzj et (log I (aij+ny) * ZREK” log T (i) Equation 2-33

where Ji= ]il'[i = {1 <j <r.:n; # 0} because njj = 0 shows that all phases cancel

each other. Equivalently, njjxk = 0 shows that the terms of the regional summation drop
out, so let Kij= Kil;-[ii = {1 <j < r=:ny; # 0}, be the contents of the classes of Xi
such that nj # 0. Let Kij= U Kil;[ Y be a vector among each content comparing to non-
zero numbers for Ji (Note that the representation needs regarding as a concatenation

of vectors, as we allow K. TT2 45 have repetitions). The counts niik (and consequently nj;
i P \ q y \

= Xk Nij) fully determined if we comprehend the parent collection ITi.

Rewrite the score:
si(IT0) = Xjey; (f(Kij: (ViVk) + g ((nijk)Vkr (aijk)Vk)) Equation 2-34
with f(Kij, (Vk)Vk) = logT'(a;;) — Lkek;; logl(a;;)

g ((Tll]k)Vk, (al]k)‘v’k) = —logF(aij + TLU) + Z logF(aijk + nijk)
kEKij
By studying the other hypothesis of likelihood identity [90]; [64], it is probable to
designate the hyper-parameters comparatively. While each effect means a scoring
function named BDe (and its representation is like on BD one under Equation 2-30), a

hyper-parameter can calculate within the due process:
Diji = 1 *p(Xik, Wij|Go) Equation 2-35

where p(.|G0) describes a probability distribution connected with a prior Bayesian
network GO and p is a parameter describing the similar representation size. A suitable
case of BDe that the prior network selects a legal option to any choice of {Xi} U
PaG(Xi). It names the resulting score BDeu, which was formally introduced by [88].

This score is just based on an individual parameter, the comparable representation size

+Zk=110g( F(L) )

h, and represented as:

gope(G: D) = log(p(G))+ Zit [2351 [“’g (r(m,-+i)

ai
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Equation 2-36

Concerning the expression log(p(G)) that occur within a previous expression, this is
simple in imagining the normal distribution (but when own knowledge on the highest

advantage from individual structures), so that fits a fixed and able to reject.

B- Scoring Functions based on Information Theory

Certain scoring functions express different alternatives to estimating a level from
fitness regarding the DAG on data set plus depending covering information plus
codification approaches. Coding tries to decrease as much as several components they
require to describe a message (based on its probability). The minimum description
length (MDL) principle chooses some coding which needs the tiniest range for
describing messages. The different standard formulation from an identical concept
proves that to describe the data set with an individual type of special kind; the valid
form is one that reduces an amount from description length from a model also a
description length from a data given the model. Difficult forms regularly need
comprehensive description lengths only decrease a description length of a data given
a form. On the other side, pure models need smaller description lengths, just the
description length from a data provided model increments. The minimum description
length postulate sets a suitable trade-off between precision and complexity. In the
definitions, the data set to express holds D, plus a picked group to representations are
Bayesian networks. The description length covers the length needed for describing a
network and a length specified for describing a data given a network ( [83], [78]; [84];
[82]; [81]). To describe the network, we need to collect its probability states, and this
needs a period comparable on several free parameters from a factorized mutual
probability distribution. This value is named network complexity also expressed as:

C(G) = Yi=,(r; — Dg; Equation 2-37

The general proportionality factor is % log(N) [105]. The description length of the

network is:

% C(G)log(N) Equation 2-38
Concerning a detail from a data showed this model, via utilising Huffman codes it is
fieldsets deny is denote the negative from a log-likelihood, a logarithm from the
probability function from a data concerning a network. The value mentioned above

means a least to the rigid network structure while determining the network parameters
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of a data set itself through utilising highest probability. They can display a log-
likelihood under the procedure as following [78]:

LLD(G) =X X7t Tty Nijklog(ljvi—j;‘ Equation 2-39

The scoring function (MDL) through improving marks to offer among the

maximization difficulty) is:

gMDL(G: D) =31, XL, X)L, Nijy log (’IVVJ]") - % C(G)log(N) Equation 2-40

The different process for estimating the status of a Bayesian network apply criteria
depended on information theory, including any from certain compared among a past
one. The fundamental approach stands to pick a network structure that strongly
matches the data, punished with several parameters that are important to define the
mutual distribution. It drives to a popularization from a scoring function within

Equation 2-46:

N;
N

9(G:D) =Xk, B9, TiL, Ny log( "

) — C(GOfN) Equation 2-41
where f (N) holds a positive penalization function. When f (N) = 1, it depends on a

score at the Akaike information criterion (AIC) [106]. If (f (N) = % log(N)), formerly
a score, named BIC, implies depended on a Schwarz information criterion [107], that
corresponds among the MDL score. If f(N) = 0, it holds the highest probability score,
although that does not make beneficial while the valid network applying the principle
regularly means a perfect network that incorporates whole a potential arc. It is
fascinating to remark that a different way of signifying the log-likelihood under

Equation 2-34 is:

LLD(G) =-NYi~; Hp (X;|Pas(X;)) Equation 2-42
where Hp (X;|Pag(X;)) denotes the dependent entropy of the variable Xi given its
parent set PaG(Xi), as the probability distribution Pp:

Hp (Xi|Pag (X)) = XiL1 pp W) (= Bioq po (xijlwi)log(pp (xik |wi;))) Equation 2-43
and Pp is the mutual probability distribution compared among the data set D, taken of
the data by the highest likelihood. The log-likelihood LLD(G) can additionally express
as [78]:

LLp(G) = -NHp(G) Equation 2-44
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where Hp(G) expresses the entropy of the mutual probability distribution compared

for the graph G if they measure the network parameters of D by highest likelihood:

Hp(6) = = Bet,.open (T P (31l Pag (X)) NIog (I, Py (xilpag (x:))))
Equation 2-45

The different understanding of the scoring functions depended on information is that
they try to decrease the conditional entropy of all variables presents its parents, and
then they explore the parent collection of all variable that provides as much
information as probable on this variable (or which most restricts the distribution). It is
essential to append a penalization term considering the smallest conditional entropy
captured by calculating a total value for the potential variables given the parent set.
Herskovits and Cooper [85] introduced an approach to bypass this over-fitting without
applying a penalization formula. They applied the best score, but the method of adding
arcs in the network use the averages of a statistical test which determined diversity in
entropy between the existing network and that achieved by adding a new arc was
statistically meaningful. Regarding the properties of the various scoring functions,
each is decomposable and include the exclusion of K2 and BD; they are further score-

equivalent [91].
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2.4.1.6 HYBRID METHOD

Local search algorithms are hybrid BN structure learning techniques offering with
local structure description and global representation optimization constrained for local
information various local structure descriptions have introduced. They are applied to
discover the applicant Parent-Children (PC) attitude of a destination node such as the
Markov Blanket (MB) i.e. children, parents, and spouses, of the destination [71, 108]
or the Max-Min Parent Children (MMPC) algorithm [48]. If the global structure
description is the final purpose, Parent-Child 's description is enough in succession to
produce a global undirected graph that can apply as a set of constraints in the global
pattern identification. For example, the original Max-Min Hill-Climbing algorithm
(MMHC) (algorithm 2.3) introduced by Tsamardinos [109] joins the local association
presented by a global greedy search (GS) and Max-Min Parent Children (MMPC)
algorithm where the neighborhood of an assigned graph produced by the following
executives: append edge assigned to edges in the local search description form (if the
edge refers to a collection of constraints also if the resulting is acyclic DAG) (see
algorithms 2.3), remove edge and exchange edge (if the resulting is acyclic DAG).
They divide the MMPC local structure description, defined in Algorithm 2.4, into a

Algorithm 2.3 MMHC(D)
Require: Data (D)

Ensure: BN structure (DAG)
1:Ge <@, G«

2: S «0 % Local identification
3: forall X € X do

4:  CPCx=MMPC(X, D)

5: end for

6: forall X eXAnd Y € CPCx do
7: Gc « Ge UX)Y)

8: end for % Greedy search (GS) optimizing score function in DAG space
9: G « GS(Ge)

10: return the DAG G found
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Algorithm 2.4 MMPC(T, D)

Require: target variable (T); Data (D)

Ensure: neighborhood of T (CPC)

1: ListC =X \{T}

2: CPC = MMPC(T, D, ListC) % Symmetrical correction
3: for all X € CPC do

4: if T  MMPC(X, DX \{X}) then
5: CPC = CPC\ {X}

6: end if

7: end for

Algorithm 2.5 MMPC(T, D, ListC)
Require: target variable (T); Data (D); List of potential candidates (ListC)
Ensure: neighborhood of T (CPC)

1: CPC = @ % Phase I: Forward

2: repeat

3: < F assocF >= MaxMinHeuristic(T, CPC, ListC)
4: if assocF , 0 then

5: CPC = CPCU{F}

6: ListC = ListC \ {F}

7. end if

8: until CPC has not changed or assocF = 0 or ListC = @ % Phase II: Backward
9: for all X € CPC do

10: if 35 € CPC and assoc(X; T|S ) = 0 then

11: CPC\ {X}

12: end if

13: end for

couple of responsibilities, the neighborhood description itself (MMPC), achieved by a
proportional correction (X refers to the neighborhood of T if the reverse is likewise
true). The neighborhood association (MMPC), described in Algorithm 2.5, uses the
Max-Min Heuristic illustrated in Algorithm 2.6 in sequence repeatedly append
(forward phase) in the applicant Parent-Children collection (neighborhood) of a
destination variable T the variable the various directly subordinate on T probably to its
current neighborhood (line 1 in algorithm 2.6). This method can append any false

positives, which later removed in the backward stage.
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They estimate dependency with an organization determination function Assoc like X2,
mutual information or G2. The famous examples of this family are the Sparse
Candidate algorithm (SC) by Friedman and Nachman [110] and the Max-Min Hill-
Climbing (MMHC) algorithm by Tsamardinos, Brown, Constantin, and Aliferies

[109]. They base both of these algorithms on a few rounds named maximize and limit.

Algorithm 2.6 MaxMinHeuristic(T,CPC, ListC)

Require: target variable (T), current neighborhood (CPC), List of potential candidates
(ListC)

Ensure: the candidate the most directly dependent to T given CPC (F) and its association
measurement

(AssocF)

1: assocF = maxX€ListCMinS SCPCAssoc(X; T|S)

2: F = argmaxX €ListCMinS SCPCAssoc(X; T|S )

In the initial round, the applicant produced for the parents of any node Xi decreased
the entire node set V to a lesser set Ci € V of nodes whose operation proved to
associate to that of Xi. This results in a less also extra normal search space. The second
round explores the network that maximizes a presented score function, directed to the
constraints required by the Ci collections. In the Sparse Candidate algorithm, these
couple of rounds implemented until there is no replacement in the network or no
network upgrades the network score; the selection to the heuristics applied to perform
it transmits them to the implementation. On the opposite round, in the MMHC
algorithm, limit and maximize performed only once; they apply the Max-Min Parents
and Children (MMPC) to learn the applicant sets Ci and a hill-climbing greedy search

to get the optimal network.
25 EVALUATION OF STRUCTURAL ACCURACY

2.5.1. EVALUATION METRICS

In this part, we introduce techniques that estimate the status of the Bayesian network
achieved through the structure learning algorithms. There are two procedures for the

estimation of the structure from a learning algorithm:

— Presented a theoretical BN, BO = (G0, 60) and data D produced by the BN, the
measures estimate the status from the algorithm through associating the status of the

learned graph B = (G, 0) and that of the original network B0 including the utility to data.
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— The test estimates the quality of the algorithm by analyzing the structure GO of the
theoretical graph and the structure G of the learned graph. To this point, we mark it
would be useful to differentiate the equality classes provided by the learned and
primary BN. A BN received from the data identified through its sameness group. They
concern the best BN if we discover that the CPDAG of the produced network is similar
to the learned BN. So, all estimation metrics need to apply the sameness group to

associate with the BNs for vast estimation.

There are many models offered in the literature for the evaluation of structure learning

algorithms [111].

2.5.2. CONFUSION MATRIX

In the level of the pair potential during supervised learning, it dased on the four
characters for evaluation of the goal by using the classifier for the analysis collection.
Predictive analytics, a table of confusion, further identified as a confusion matrix, is a
table in its simplest form, having a couple of rows and a couple of columns that
provides the estimates of true positives, false positives, false negatives, and true
negatives. Every row in the confusion matrix describes a recognized class, every
column describes a forecasting class, and all cell includes the number of units in the
crossing of those couple of classes. The Confusion matrix structure is presented as

follows in Table 2.2.

Table 2.2: Confusion Matrix

Predicted Class
Yes No
Yes True Positive (TP) False Negative (FN)
Actual Class
No False Positive (FP) True Negative (TN)

The records in the confusion matrix hold integer numbers. The sum of the four records
TP + TN + FP + FN = n, corresponds to the total quantity of analysis. Classifications
that constitute the principal diagonal of the confusion matrix are the accurate

classifications 1i.e., true negatives and true positives. Additional fields mean
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classification errors. Several achievement metrics can obtain from the confusion

matrix.

2.5.2.1. ACCURACY AND ERROR RATE

Accuracy is the rate of rightly classified cases to all cases in the examination collection,
i.e. (TP + TN)/ (TP + TN + FP + FN). The error rate is defined as (1-Accuracy). This
metric analyzed by writers as having a weakness to distinguish between classes it
considers. Accuracy doesn’t display the accurate classifier’s appearance below the
skewed class population. In actuality, classifiers regularly challenge a higher number
of negative cases associated with positive cases. [112]; [113]; [114], [115]; [116])
Accuracy estimates the classifier’s achievement including one number to both of the
groups also to the individual setting of destination situations. Extra weakness about
the accuracy metric is the interchangeable achievement evaluation of a couple of
separate situations. The accuracy is the equivalent of both of the situations just, for
instance, classifying nearly all positives in the original one includes the faulty
classification of nearly every negative. At the opposite side, classifying nearly each

positive inside the other situation includes around just half of the false positives.

2.5.2.2. SENSITIVITY AND SPECIFICITY

Sensitivity and specificity are the mathematical models of achievement of binary
classification analyses. Sensitivity and specificity expressed as a percentage. In
clinical examinations, the sensitivity of medical analysis is the possibility of its
producing a ‘positive’ result if the case is positive and specificity is the possibility of
getting a negative outcome if the case is negative. A general optimal forecast effect
can produce 100% sensitive (i.e. forecast every case of a diseased population as sick)

and 100% specificity (i.e. not forecast any member of the healthy population as sick).

Visualize a scenario, where cases examined for an illness. The examination result may
be positive (sick) or negative (healthy), while the real health situation of a case may

be different. Four situations may occur:

* The sick case diagnosed sick termed as —“True positive”
* The healthy case classified as sick—‘False positive”

* The healthy case recognized as healthy—“True negative”
* The sick case classified as healthy—False negative”
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Of the above circumstances, in two cases, a fault has happened, if a healthy

case recognized as sick and the other case where a sick case classified as healthy.

System examination produce analytical conclusions about the distribution on the
source of trial data. They further recognize its Statistical Significance Examination. In
system testing, there is a “Null hypothesis” which compares to a supposed default
“State of reality” (e.g. that a person is available of infection). Comparing to the null
system is an “alternative hypothesis” which compares different situations. The purpose
is to define if the null hypothesis can reject in approval of the option. The outcome of
the analysis may be positive (it may mean infection) or it may be negative (i.e. it
appears to no-show infection). If the outcome of the examination seems negative
match including the original states of reality, a failure has happened. There are two
kinds of error categorized as “Type I and Type II errors” based on which system has
recognized as the reality. Type I error identified as “false positive”, or “a” error, the
error of denying the null system if it is true. A false positive shows that an examination
demands something to be positive if that is not the case. For instance, an examination
assuming that a woman is pregnant if she is not pregnant. Type II error classified as
“error of the second kind” or a “false negative” or “B” error, the error of allowing the

null system when the choice system is true. Table 2.3 represents the condition:

Table 2.3 Test Result in the Confusion matrix

Actual Condition
Present Absent
Test
Result Positi Condition Present + Positive Result = Condition absent + Positive result =
ositve True Positive False Positive (Type I error)
. Condition Present + Negative Result Condition absent + Negative result
Negative
= False negative (Type II error) = True negative

Sensitivity is defined as:

Number of true positives

Sensitivity = Equation 2-46

Number of true positives + Number of false negatives

An individual Sensitivity value seems not to show how good the examination

distinguishes the different types (i.e. about negative events). In the binary classification,
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this corresponds to the identical specificity examination or equivalently the sensitivity

for the different types.

Specificity is the proportion of true negatives to the number of true negatives plus false

positives.

Number of true negatives

Specificity = Equation 2-47

Number of true negatives + Number of false positives

Sensitivity and specificity are helpful in providing explanations of different treatments
in the medical domain being associated with conventi