

DUAL FAZLI SACLARIN MEKANİK ÖZELLİKLERİNİN DEFORMASYON HIZINA BAĞLI OLARAK BELİRLENMESİ

Gökhan TOKGÖZ

T.C. ULUDAĞ ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

DUAL FAZLI SACLARIN MEKANİK ÖZELLİKLERİNİN DEFORMASYON HIZINA BAĞLI OLARAK BELİRLENMESİ

Gökhan TOKGÖZ

Prof. Dr. Ali BAYRAM

YÜKSEK LİSANS TEZİ MAKİNE MÜHENDİSLİĞİ ANABİLİM DALI

BURSA - 2014

Her Hakkı Saklıdır

TEZ ONAYI

Gökhan TOKGÖZ tarafından hazırlanan " DUAL FAZLI SACLARIN MEKANİK ÖZELLİKLERİNİN DEFORMASYON HIZINA BAĞLI OLARAK BELİRLENMESİ " adlı tez çalışması aşağıdaki jüri tarafından oy birliği/oy çokluğu ile Uludağ Üniversitesi Fen Bi-limleri Enstitüsü Makine Mühendisliği Anabilim Dalı'nda YÜKSEK LİSANS TEZİ olarak kabul edilmiştir.

Danışman :

Başkan:

Üye:

Üye:

Üye:

Üye:

Yukarıdaki sonucu onaylarım

Prof. Dr. Ali Osman DEMİR Enstitü Müdürü ../../....

U.Ü. Fen Bilimleri Enstitüsü, tez yazım kurallarına uygun olarak hazırladığım bu tez çalışmasında;

- tez içindeki bütün bilgi ve belgeleri akademik kurallar çerçevesinde elde ettiğimi,

- görsel, işitsel ve yazılı tüm bilgi ve sonuçları bilimsel ahlak kurallarına uygun olarak sunduğumu,

- başkalarının eserlerinden yararlanılması durumunda ilgili eserlere bilimsel normlara uygun olarak atıfta bulunduğumu,

- atıfta bulunduğum eserlerin tümünü kaynak olarak gösterdiğimi,

- kullanılan verilerde herhangi bir tahrifat yapmadığımı,

- ve bu tezin herhangi bir bölümünü bu üniversite veya başka bir üniversitede başka bir tez çalışması olarak sunmadığımı

beyan ederim.

../../....

Gökhan TOKGÖZ

ÖZET

Yüksek Lisans Tezi

DUAL FAZLI SACLARIN MEKANİK ÖZELLİKLERİNİN DEFORMASYON HIZINA BAĞLI OLARAK BELİRLENMESİ

Gökhan TOKGÖZ

Uludağ Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Anabilim Dalı

Danışman: Prof. Dr. Ali BAYRAM

Tez çalışmasında otomotiv sektöründe kullanımına yoğun bir şekilde hız verilen yüksek mukavemetli ve yüksek şekillendirilebilirlik kabiliyetine sahip DP600 ve DP800 sac malzemelerin benzer koşullarda ve farklı hızlarda çekme testine tabi tutularak mekanik özelliklerinin mukayesesi yapılmıştır. Deneylerde DP600 ve DP800 için aynı sac kalınlığı kullanılmış, 5, 15, 25, 50, 100, 150 ve 250 mm/dak deformasyon hızlarındaki davranışları incelenmiştir. Sonuç olarak her DP600 ve DP800 için yapılan testlerde deformasyon hızlarındaki artışla beraber DP600 malzemesinin akma mukavemetindeki artış oranı DP800 malzemesinin akma mukavemetindeki artış oranı DP800 malzemesinin akma mukavemetindeki artış oranından fazla olduğu, ancak çekme mukavemeti artış oranlarının sabit kaldığı gözlenmiştir. Sac malzemeler için şekillendirilebilirliğin ölçütü olan pekleşme katsayısı ise deformasyon hızı arttıkça her iki malzeme içinde azalmaktadır.

Anahtar Kelimeler: DP600, DP800, Dual Fazlı Çelik, Çekme Testi, Deformasyon Hızı 2015, vii + 41 sayfa.

ABSTRACT

MSc Thesis

INVESTIGATING MECHANICAL PROPERTIES OF DUAL PHASE STEELS DEPEND ON DEFORMATION SPEED

Gökhan TOKGÖZ

Uludağ University Graduate School of Natural and Applied Sciences Department of Mechanical Engineering

Supervisor: Prof. Dr. Ali BAYRAM

In this thesis, the mechanical properties of advanced high strength steels DP600 and DP800 were compared under similar conditions at different speeds in tensile test, which have high strength and high formability ability, and recently use in automotive industry. In these experiments, same thickness is used and examined the behavior under 5, 15, 25, 50, 100, 150 and 250 mm/sc deformation speed. As a result, when increase the deformation speed, the rate of increase in yield strength for DP600 is higher than the rate of increase in yield strength for DP600 and DP800 are similar. Strain-hardening coefficients of DP600 and DP800 are decreased when deformation speed is increased.

Key words: DP600, DP800, DP Steel, Dual Phase Steel, Tensile Test, Deformation Speed **2015, vii + 41 pages,**

TEŞEKKÜR

Bu tezin hazırlanması sırasında benden hiçbir yardımını esirgemeyen, bilgi ve tecrübesiyle beni sürekli destekleyen ve akademik çalışmalarım sırasında yol gösteren danışman hocam Sayın Prof. Dr. Ali BAYRAM'a ve bu günlere gelmemde emeği olan, maddi ve manevi desteklerini benden esirgemeyen annem ve babam Meral ve Mehmet TOKGÖZ'e ve desteğini sürekli hissettiğim kardeşim Mehmetcan TOKGÖZ'e sonsuz teşekkürlerimi sunarım.

İÇİNDEKİLER

Ċ	DZET	i
A	ABSTRACT	ii
Т	ſEŞEKKÜR	iii
İ	ÇİNDEKİLER	iv
S	SİMGE ve KISALTMALAR DİZİNİ	V
Ş	SEKİLLER DİZİNİ	vi
Ç	ÇİZELGELER DİZİNİ	vii
1	. GİRİŞ	1
2	2. KAYNAK ARAŞTIRMASI	4
2	2.1.Dual Fazlı Çeliklerin Genel Özellikleri	4
2	2.2. Dual Fazlı Çeliklerde Alaşım Elementlerinin Etkisi	8
2	2.3. Dual Fazlı Çeliklerde Deformasyon Sertleşmesi ve Deformasyon Sertleşmesi	
Ü	Ĵssü	13
2	2.4. Deformasyon Hızının Etkisi	14
2	2.5. Dual Fazlı Çeliklerde Gerilme – Birim Şekil Değiştirme Bağıntıları	15
3	3. DENEYSEL ÇALIŞMALAR	18
3	3.1. Deney Numunesi	18
3	3.2. Deneysel Altyapı	19
3	3.3. Çekme Testi Verilerinin Değerlendirilmesi	21
4	. BULGULAR	22
5	5. SONUÇ	37
K	XAYNAKLAR	38
Ċ	DZGEÇMİŞ	41

SİMGELER ve KISALTMALAR DİZİNİ

Simgeler	Açıklama		
m	Deformasyon hızı duyarlılığı üssü		
$d\sigma/d\varepsilon$	Deformasyon sertleşmesi hızı		
T_m	Mutlak ergime sıcaklığı		
ρ	Dislokasyon yoğunluğu		
n	Deformasyon sertleşmesi üssü		
K	Mukavemet katsayısı		
σ	Gerilme		
σ_a	Akma gerilmesi		
σ_{c}	Çekme gerilmesi		
Ε	Elastisite modulü		
ε	Birim şekil değiştirme		
ε_p	Plastik birim şekil değiştirme		
α	Ferrit fazı gösterimi		
γ	Ostenit fazı gösterimi		
V_m	Martenzit hacim oranı		
%U	Uzama yüzdesi		

ŞEKİLLER DİZİNİ

Sa	vfa
~ •••	J

Şekil 1.1. Ultra Hafif Araç Gövdesi - Yüksek Araç Teknolojisi'ne ait	
Yeni jenerasyon araç parçaları (Anderson 2008)	1
Şekil 3.1. Çekme test numunesi kesme kalıbı	18
Şekil 3.2. Çekme test numunesi	19
Şekil 3.3. Çekme test cihazından alınan ham data örneği	20
Şekil 4.1. DP600 Mühendislik gerilme – mühendislik birim deformasyon eğrisi	26
Şekil 4.2. DP600 Gerçek gerilme – gerçek birim deformasyon eğrisi	27
Şekil 4.3. DP600 Akma dayanımı – çekme hızı grafiği	27
Şekil 4.4. DP600 Çekme dayanımı – çekme hızı grafiği	28
Şekil 4.5. DP600 Uniform uzama – çekme hızı grafiği	
Şekil 4.6. DP600 Pekleşme katsayısı – çekme hızı grafiği	29
Şekil 4.7. DP600 Mukavemet katsayısı – çekme hızı grafiği	29
Şekil 4.8. DP800 Gerçek gerilme – gerçek birim deformasyon eğrisi	33
Şekil 4.9. DP800 Mühendislik gerilme – mühendislik birim deformasyon eğrisi	34
Şekil 4.10. DP800 Akma dayanımı – çekme hızı grafiği	34
Şekil 4.11. DP800 Çekme dayanımı – çekme hızı grafiği	35
Şekil 4.12. DP800 Uniform uzama – çekme hızı grafiği	35
Şekil 4.13. DP800 Pekleşme katsayısı – çekme hızı grafiği	36
Şekil 4.22. DP800 Mukavemet katsayısı – çekme hızı grafiği	36

ÇİZELGELER DİZİNİ

Çizelge 1.1. Otomotivde yaygın olarak kullanılan çeliklerin	
mukayesesi ve ağırlık kıyaslamaları	2
Çizelge 1.2. Otomotivde yaygın olarak kullanılan çeliklerin mekanik özellikleri	3
Çizelge 2.1. DP600 ve DP800 çeliklerinde bulunan alaşım elementleri	8
Çizelge 2.2. Alaşım elementlerinin malzeme üzerindeki etkisi	12
Çizelge 2.3. Mekanik özelliklerin incelenmesi için kullanılan ampirik ifadeler	15
Çizelge 3.1. Çekme test numunesi ebatları	19
Çizelge 4.1. DP600 Hatve yönüne göre 0 derece çekme testi verileri	23
Çizelge 4.2. DP600 Hatve yönüne göre 45 derece çekme testi verileri	24
Çizelge 4.3. DP600 Hatve yönüne göre 90 derece çekme testi verileri	25
Çizelge 4.4. DP600 Çekme testi verileri ortalaması	26
Çizelge 4.5. DP800 Hatve yönüne göre 0 derece çekme testi verileri	30
Çizelge 4.6. DP800 Hatve yönüne göre 45 derece çekme testi verileri	31
Çizelge 4.7. DP800 Hatve yönüne göre 90 derece çekme testi verileri	32
Çizelge 4.8. DP800 Çekme testi verileri ortalaması	33

Sayfa

1. GİRİŞ

Enerji kullanımı içinde bulunduğumuz son 10 yılda %100 artış göstermiştir. Önümüzdeki 10 yıllık enerji kullanım raporlarına göre de %50 artışla devam edecektir (Dünya Enerji Konseyi Enerji Raporu, 2012). Artan talep ve ihtiyaç göz önüne alındığında kullanılan enerji kaynaklarından özellikle petrol kullanımı yaklaşık 35 yıllık ihtiyacı karşılayabileceği tahmin edilmektedir (Nükleer Enerji Raporu, 2005). Enerji kullanımı ve çevre kirliliği teknolojinin ve gelişimin ana direklerinden biri olan otomotiv sektörünü yakından ilgilendirmektedir. Karbon salınımın ve yakıt tasarrufu üzerine geniş kapsamlı projeler hali hazırda yürütülmekte, ilerleyen dönemler için ise planlar yapılarak konuya eğilim günden güne yaygınlaşmaktadır.

Şekil1.1'de Ultra Hafif Araç Gövdesi - Yüksek Araç Teknolojisi'ne ait yeni jenerasyon araçlarda kullanılması amaçlanan imalat ürünü gövde parçalarının demonte edilmiş ve sınıflandırılmış şekli gösterilmektedir (Anderson 2008).

Şekil 1.1. Ultra Hafif Araç Gövdesi - Yüksek Araç Teknolojisi'ne ait Yeni jenerasyon araç parçaları (Anderson 2008)

Üretilen araçların hareketli ve hareketsiz gövde parçaları, şasileri ve aksamlarında ağırlık olarak yaklaşık %74-78'i çelik, %14-18'i polimer esaslı malzeme, %3-5'i döküm malzeme ve %3-5'i demir dışı malzeme ve alaşımlardan oluşmaktadır (Akay 2005).

Enerji tüketimi ve emisyon oranlarının düşürülmesinde göz önüne alınarak son yıllarda istenilen malzemelerin hafif olması, yüksek mukavemetli olması, kolay şekillendirilebilir olması, darbe dayanımının yüksek olması ve korozyon direncinin yüksek olmasıdır.

Konvansiyonel karbon çelikleri ile mukayese edildiğinde plastik şekil verilebilirlik özellikleri iyi olmayan yüksek mukavemetli ve düşük alaşımlı çeliklerin (HSLA) dezavantajı, bu alanda yeni malzemelerin gereklilikliğini ortaya koymuştur.

Konvansiyonel karbon çeliklere oranla ağırlık yüzdeleri Çizelge 1.1'de verilmiştir.

Ağırlık Azaltılmış Malzeme	Karşılaştırılan Malzeme	Yüzde Ağırlık İyileştirmesi	Parça Başına Maliyet İyileştirmesi
Magnezyum	Çelik, Döküm	60 - 75	1,5 - 2,5
Karbon Fiber Komposiz	Çelik	50- 60	2 - 10+
Alüminyum Kompozit	Çelik, Döküm	40 - 60	1,5 - 3+
Alüminyum	Çelik, Döküm	40 - 60	1,3 - 2
Titanyum	Çelik	40 - 55	1,5 10+
Glass Fiber Kompozit	Çelik	25 - 35	1 - 1,5
AHSS	Az Alaşımlı Çelik	15 - 25	1 - 1,5
HSS	Az Alaşımlı Çelik	10 - 15	1

Çizelge 1.1. Otomotivde yaygın olarak kullanılan çeliklerin mukayesesi ve ağırlık kıyaslamaları (Anderson 2008)

Ayrıca otomotivde araç gövdesinde yaygın olarak kullanılan çeliklerin mekanik özellikleri ve araç gövdesinde kullanıldığı bölgeler Çizelge 1.2'de gösterilmiştir. Gösterimde uygulama alanı olarak harflerle kodlanmıştır. Bu kodlamaya göre A yardımcı parçalar, B ana yapı, C kafes yapı, F yakıt tankı, S süspansiyon aksamları ve W cantlarda kullanılmaktadır.

Çelik Tipi	Akma Dayanımı (MPa)	Çekme Dayanımı (MPa)	Toplam Uzama	n	r	Uygulama Alanı
Mild 140/270	140	270	38-44	0,05-0,15	1,8	A,C,F
BH 210/340	210	340	34-39	0,23	1,8	в
BH 260/370	260	370	29-34	0,18	1,6	в
IF 260/410	260	410	34-38	0,13	1,7	С
DP 280/600	280	600	30-34	0,2	1	в
IF 300/420	300	420	29-36	0,21	1,6	в
DP 300/500	300	500	30-34	0,2	1	в
HSLA 350/450	350	450	23-27	0,16	1	A,B,S
DP 350/600	350	600	24-30	0,22	1,1	A,B,C,W,S
DP 400/700	400	700	19-25	0,14	1	A,B
TRIP 450/800	450	800	26-32	0,14	0,9	A,B
HSLA 490/600	490	600	21-26	0,24	1	w
DP 500/800	500	800	14-20	0,13	1	A,B,C,W
SF 570/640	570	640	20-24	0,14	1	s
CP 700/800	700	800	10-15	0,08	1	в
DP 700/1000	700	1000	12-17	0,13	0,9	в
Mart 950/1200	950	1200	5-7	0,09	0,9	A,B
MnB	1200	1600	1-5	n/a	n/a	S
Mart 1250/1520	1250	1520	1-6	0,07	0,9	А

Çizelge 1.2. Otomotivde yaygın olarak kullanılan çeliklerin mekanik özellikleri

2.KAYNAK ARAŞTIRMASI

2.1. Dual Fazlı Çeliklerin Genel Özellikleri

Dual fazlı çelik Grabe'in (1937) çalışmaları doğrultusunda %0,25C'lu bir çeliği kritik bölgeden ($A_1 - A_3$ sıcaklık aralığı) soğutması sonucu dual fazlı yapıyı keşfetmesi ve patent almasıyla bilinmektedir. Tamamlanmamış östenitleştirmenin yüksek alaşımlı östenit adalarının oluşumuna ve arkasından martenzit dönüşümüne yol açtığı Herres ve Lorig (1947) tarafından bulunmuştur. Ayrıca martenzitin mukavemeti ve hacim oranı arasında da bir ilişki bulmuşlardır (Kabakçı 2006).

Az alaşımlı veya alaşımsız az karbonlu çeliklerin Fe-C denge diyagramında Ferrit + Ostenit Bölgesinde $(A_1 - A_3$ sıcaklık aralığında) bir süre tutulup, ferrit ile beraber bulunan ostenitin uygun hızda soğutulması ile martenzite dönüşümüyle üretilir.Genellikle düşük karbonlu üretilen bu çeliklerin yapılarında ferrit ve martenzitin yanısıra, perlit, beynit ve kalıntı ostenit te bulunabilir.

Dual fazlı çeliklerin dayanımları büyük oranda martenzit fazına, süneklik ise ferrit fazının karakterine bağlıdır (Hayami 1975). Bu çeliklerin üretildikleri çeliklere nazaran mekanik özelliklerinin değişmesinin sebebi, temel olarak martenzit fazının verimliliğine ve bu fazın çevresindeki yoğun hareketli dislokasyonlar gösterilmektedir (Rashid 1976).

Dual fazlı çelikler bileşim bakımından sade karbonlu çeliklere benzer. Dual fazlı mikroyapı uygulanan ısıl işlemlerle elde edilir. Dual fazlı çelikler sünek bir ferrit, (α) yapı içinde odacıklar biçiminde dağılmış % 10-20 dolayında martenzit (m) fazı içeren çeliklerdir. Dual fazlı çelikler üstün özelliklerini; martenzitin yüksek mukavemete, ferritin iyi bir sünekliğe sahip olmasından almaktadır.

Çift fazlı çelikler esas olarak, az alaşımlı veya alaşımsız, az karbonlu çeliklerin Fe-C denge diyagramındaki $A_1 - A_3$ sıcaklık aralığında (ferrit + ostenit bölgesinde) bir süre tutulup, bu

sıcaklıkta ferrit ile birlikte bulunan ostenitin uygun hızdaki soğutma ile martenzite dönüştürülmesiyle üretilirler (Speich 1981, Piplani 1981, Çimenoğlu 1984).

Çeliklerde dual faz mikroyapısı, $A_1 - A_3$ kritik sıcaklıklar arasında ısıtılmayı müteakip, çeliğin sertleşme kabiliyetine bağlı olarak, uygun bir hızda soğutulmasıyla elde edilir.

Kritik sıcaklıklar arasında teşekkül eden ostenitin, perlit veya beynite dönüşmeden, martenzit yapısının ortaya çıkmasına imkan verecek şekilde soğutma hızı seçilir. Martenzit dönüşümü olurken de ostenitin bir kısmı kalıntı ostenit olarak dönüşmeden kalır (Rigsbee ve Vanderarend 1977). Elde edilen mikroyapıda ostenit, martenzit ve ferrit bulunur. Ostenit ve martenzit ikinci faz olarak kabul edilip martenzit fazı olarak adlandırılmaktadır. Böylece dual fazlı çelik mikroyapısının ferrit ve martenzitten ibaret olduğu kabul edilmektedir.

Genellikle düşük karbonlu olarak üretilen bu çeliklerde ferrit ve amrtenzitin yanısıra mikroyapıda perlit, beynit, sementit ve kalıntı ostenitte bulunabilir. Dual fazlı çelikler; ferrit + ostenit bölgesinde bir müddet bekletilmeyi içerek üç farklı ısıl işlem metodu ile üretilebilir (Kim ve Tohomas 1981).

Her üç ısıl işlemle elde edilmiş dual fazlı çeliklerinin mekanik özellikleri birbirinden farklıdır (Kim ve Tohomos 1981). Örneğin aynı miktarda martenzit hacim oranı için ara su verilmiş yapının üniform ve toplam %uzama değerleri, kademeli su verilmiş yapının üniform ve toplam % uzama değerlerinden daha büyüktür (Thomas ve Koo 1981).

Ticari olarak dual fazlı çeliklerin üretiminde, genellikle sürekli tavlama (continous annealing), ve haddeleme (hot-strip mill Rolling) metodu ise gelişme aşamasında olduğundan dar bir uygulama alanına sahiptir (Coldren ve Eldir 1980).

ADP (Austenite Dual-Phase) ve IDP (Intercritical Dual-Phase) numuneleri arasındaki fark sadece martenzit morfolojisi farklılığından ibarettir. Martenzit fazının bu değişik oluşum

şekli, farklı şekilde ısıl işlem yapılan malzemelerin mekanik özelliklerini etkilemektedir (Callister 2000).

Dual fazlı çeliklerin devamlı akma davranışı %0,2 düşük akma gerilmesi, yüksek çekme gerilmesi ve daha yüksek toplam yüzde uzama gibi Temel özelliklere de sahiptir (Speich 1981).

Dual fazlı çelikler üzerine yapılan araştırmalar ve gözlemler yüksek oranla şekillendirilebilme kabiliyetleri üzerinedir. Sıklıkla yapılan TRIP ve DP mekanik özelliklerinin incelenmesi sonucu, yaygın kullanılan bu malzemelerin dinamik çekme karakteristikleri incelenmiş ve artan deformasyon oranı ile gerilme değerindeki artış, uzama miktarında ise hafif bir azalma gözlenmiştir. Dual fazlı çeliklerin deformasyon oranı hassasiyeti nispeten yüksek olduğu gözlenmiş ve vurgulanmıştır (Huh 2008).

Akma mukavemeti /çekme mukavemeti oranının düşük olması ve biçimlendirme kabiliyetlerinin yüksek olması sebebi ile dual fazlı çelikler, yüksek mukavemet / ağırlık oranına da sahip olduğundan 1975 yılı sonlarına doğru otomotiv sektöründe kullanılmaya başlanmıştır (Rashid ve ark 1977, 1983).

Dual fazlı (DP) çelikler üretildikleri HSLA (Yüksek Mukavemetli Düşük Alaşımlı) ve karbon çelikleri ile kıyaslandığında sürekli akma davranışı, düşük akma dayanımı, yüksek pekleşme hızı, düzgün ve toplam uzama ve düşük akma oranı gibi pek çok şart için ideal olarak ifade edilebilecek özelliklere sahiptir (Bayram ve ark. 1999, 1975).

Dual fazlı çeliklerin sert martenzit fazından dolayı mukavemeti yüksek, sünek ve ince ferrit tanelerinden dolayı şekil verilebilme yetenekleri yüksektir.

- Sürekli akma davranışı,
- Düşük akma/çekme dayanım oranı,
- Yüksek plastic deformasyon sertleşmesi oranı,

• Yüksek uniform ve toplam %uzama değerlerine göre dual fazlı çelikler karakterize edilirler (Llewellyn 1996).

Malzemelerin akma mukavemetlerinin düşük olması, plastic şekil verme işlemi sırasında uygulanan kuvvetle daha fazla bir deformasyon gerçekleştirilmesi veya aynı deformasyon işlemi için daha az bir kuvvet gerektirmesi açısından istenilen bir özelliktir. Çekme dayanımının yüksek olmasının malzemenin hasara uğramasını gerektirdiği bilindiğine göre akma/çekme dayanımı düşük olan dual fazlı çelikleirn derin çekme sacları olarak kullanımı önemlidir. Derin çekme işlemlerinde malzemenin kesiti azalacağından, şekil verme işleminin diğer kademelerdeki kuvvetleri karşılayabilmesi için yapının sertleşmesi gerekir. Mukavemet özelliklerinin yanısıra süneklik özellikleri de iyi olan dual fazlı çeliklerin yüksek deformasyon sertleşmesi oranna sahip olması bu bakımdan avantajdır (Durmuş 2000).

2.2. Dual Fazlı Çeliklerde Alaşım Elementlerinin Etkisi

DP600 ve DP800 çeliklerde bulunan alaşım elementleri Çizelge 2.1.'de gösterilmiştir. Çizelge 2.1. DP600 ve DP800 çeliklerinde bulunan alaşım elementleri(Anderson 2008)

Hacimsel Yüzde	DP600	DP800
C (maks %)	0,15	0,18
Si(maks %)	0,75	0,80
Mn (maks %)	2,5	2,5
P (maks %)	0,080	0,080
S (maks %)	0,015	0,015
Al (Range %)	0,01-1,5	0,01-2,0
Cu (maks %)	0,2	0,20
Ti+Nb (maks %)	0,15	0,15
Cr+Mo (maks %)	1,40	1,40
B (maks %)	0,005	0,005

Karbon

Ferrit ve martenzit fazlarındaki karbon miktarını kontrol etmek için, dual fazlı çeliklerdeki karbon miktarını %0,1 veya daha az olması istenir. Martenzit fazının gevrek olmaması, bu faz içindeki karbon miktarının düşük olması ile sağlanır (Piplani ve Raghavan 1981, Thomas ve Koo 1979). Dual fazlı çelikleirn sünekliği yapıda %80 ferritin bulunması halinde yüksektir (Marder 1977). $\alpha + \gamma$ bölgesindeki tavlama sıcaklığı arttırıldığında, ostenitin karbon içeriği azalacağından dönüşümün daha dikkatli kontrol edilmesi gerekir(Rigsbee veVanderarend 1977), çünkü ostenitteki karbon miktarının azalması sertleşme kabiliyetini azaltmaktadır. Ayrıca çeliğin karbon miktarının artması, kaynak kabiliyetini ve darbe direncini azaltır(Ensari ve Kayalı 1979), Ms sıcaklığını düşürerek ostenitin kararlılığını arttırır (Rigsbee veVanderarend 1977).

Manganez

Çeliğin A1 ve A3 sıcaklıklarının düşürür ve dönüşüm ürünlerinin tane boyutunu küçültür. (Piplani ve Raghavan 1981, Thomas ve Koo 1979). Manganezin çökeltide bulunmasui mukavemeti arttırırken sünekliği azaltmaz (Piplani ve Raghavan 1981). Ostenitin sertleşme kabiliyetini arttırdığı için dual fazlı çeliklerde istenen alaşım elementidir.(Davies 1978, Thomas ve Koo 1979) fakat M_s sıcaklığını düşürerek osteniti kararlı yapar (Rigsbee veVanderarend 1977). Çeliklerin korozyon ve darbe dirençlerinin artmasına yardımcı olur ve kaynak kabiliyeti açısından sınırlı olarak kullanılır (Ensari ve Kayalı 1979). Manganez miktarındaki artış, deformasyon yaşlanmasını geciktirici bir etken olan ince karbür dağılımına yol açar (Ensari 1977). Ancak çeliklerde manganez ve karbonun segregasyonu bandlaşmaya sebep olmaktadır (Koo ve Thomas 1977). Dual fazlı çeliklerde bulunan manganez miktarı %1,0 – 1,5 mertebesindedir (Piplani ve Raghavan 1981).

Silisyum

Çeliğin dönüşüm sıcaklıklarını arttırdığından, tavlama işlemlerinde ferrit tanelerinin irileşmesine yol açar (Ensari 1977). Silisyum katı eriyik sertleşmesine katkıda bulunarak mukavemet/süneklik iliskisini gösterir.(Piplani ve Raghavan 1981, Davies 1977). Dual fazlı çeliklerde sünekliğin artması, silisyumun ferriteki karbon miktarını azaltarak ferriti temizlemesi ile sağlanır (Piplani ve Raghavan 1981, Davies 1977). ancak genel olarak silisyumun transizyon sıcaklığını arttırdığı bilinmektedir (Ensari 1977). Silisyum CCT diyagramında ferrit oluşum burnunu sola kaydırır (Piplani ve Raghavan 1981) ve ostenitin sertleşme kabiliyetini arttırarak martenzitik dönüşümü kolaylaştırır(Davies 1977). Ayrıca silisyum A3 sıcaklık eğrisinin eğimini arttırarak ısıl işlem alanine genişletir sağlanır (Piplani ve Raghavan 1981, Thomas ve Koo 1979). Silisyum sementit çökelme hızını ve temperleme sırasındaki yumusama hızını yavaslatır ve ototemperlemeyi engeller (Piplani ve Raghavan 1981). Silisyum içeriğindeki azalma, çeliğin ana yapısal özelliğini değiştirmesine rağmen, ferrit/martenzit arayüzeyinde gevrek karbürlerin oluşmasına sebep olur (Koo ve Thomas 1977). Genel olarak çeliğin soğuk deformasyonu esnasında siddetle deformasyon sertleşmesine yol açar (Ensari 1977). Dual fazlı çeliklerde bulunan silisyum %0,5-2 mertebesindedir (Piplani ve Raghavan 1981).

Molibden

Molibden $\alpha + \gamma$ bölgesinde tavlama ile oluşan ostenitin sertleşme kabiliyetini arttırarak, martenzitik dönüşümü teşvik eder sağlanır (Piplani ve Raghavan 1981, Thomas ve Koo 1979). Aynı ısıl işlem koşullarında, molibten içeren çelik, vanadium içerek çelikten daha yüksek sertleşme kabiliyetine sahiptir(Marder 1981). Molibden, CCT diyagramındaki perlit oluşum burnunu da çok saga kaydırarak, soğuma esnasında perlit oluşma ihtimalini azaltır (Piplani ve Raghavan 1981). Ayrıca A3 sıcaklık eğrisinin eğimini arttırarak ısıl işlem alanını genişletir (Thomas ve Koo 1979). Çeliğin tane boyutuna etkisi yoktur (Davies 1978). Ferrit fazında karbür oluşturur (Thomas ve Koo 1979). Ancak tavlama sıcaklığında bu karbürler çabuk erir (Davies 1978). Dual fazlı çeliklerde %0,1 – 0,5 mertebesinde molibden bulunur (Piplani ve Raghavan 1981).

Vanadyum

Ferrit tane boyutunu küçültür. Çözeltide ostenitin sertleşme kabiliyetini arttırır (Piplani ve Raghavan 1981). Derrit içinde ince çökeltilerin oluşmasına ve ferrit/ikinci faz arayüzeyinde süreksiz çökelmeye sebep olur ve ferrit içinde titanium ve niobium gibi arayer elementlerinin çözünürlüğünü azaltır. Ostenit fazındaki çözünürlüğü titanium ve neobyumdan fazladır (Piplani ve Raghavan 1981, Davies 1978). HSLA çeliklerinde %0,01 -0,12 arasında bulunur ve akma gerilmesini arttırırken, darbe direnci ile kaynak kabiliyetini fazla etkilemez. Ancak transizyon sıcaklığının artmasını önlediği gibi düşmesini de sağlar (Ensari 1979).

Krom

Ostenitin sertleşme kabiliyetini ve martenzitin bağlanmasını arttırır (Piplani ve Raghavan 1981, Thomas ve Koo 1979). CCT diyagramında beynit oluşumunu geciktirir (Piplani ve Raghavan 1981). Küçük oranlarda bulunduğu zaman iyi etkide bulunur ancak fazla miktarda bulunduğunda şekillendirilebilirlik özelliğini kötü yönde etkiler (Ensari 1977). Genel olarak krımun çelikteki bakır ve fosfor elementiyle beraber korozyon direncini arttırdığı bilinmektedir (Ensari 1979).

Niobyum

A3 sıcaklığı eğrisinin eğimini arttırır ve yapının Küçük taneli olmasını sağlar (Davies 1978, Thomas ve Koo 1979). Karbür oluşturarak ferritin arayer içeriğini azaltır (Davies 1977,1978). Bu elementin oluşturduğu karbonitrürler tavlama sıcaklığında çözeltiye giremezler (Davies 1978). Darbe direncindeki azalma ve transizyon sıcaklığındaki artma, alüminyum ilavesi ile giderilebilir. Ayrıca karbon oranının mümkün mertebe düşük olması bu iki sakıncanın oluşmasını büyük ölçüde önler (Ensari 1979).

Alaşım Elementi	Sertlik	Mukavemet	Akma Noktası	Uzama	Kesit Daralması	Darbe Direnci	Elastiste	Yūksek Sicakliğa Dayanım	Soğuma Hızı	Karbür Oluşumu	Aşınma Direnci	Dövülebilirlik	lşlenebilirlik	Oksitlenme Eğilimi	Korozyon Dayanımı
Si	1	1	††	ţ	~	ţ	111	1	ţ	ţ	↓↓↓	ţ	ţ	ţ	-
Mn*	1	1	1	~	~	~	1	~	Ļ	~	ļļ	1	ţ	~	-
Mn**	↓↓↓	1	ţ	111	~	-	-	-	ţţ	-	-	↓↓↓	↓↓↓	ļļ	-
Cr	††	† †	11	ţ	ţ	ţ	1	1	↓↓↓	† †	1	Ļ	-	↓↓↓	111
Ni	1	1	1	~	~	2	-	1	ţţ	-	ţţ	ţ	ţ	ţ	-
AI	-	-	-	-	ţ	ţ	-	-	-	-	-	ţţ	-	ţţ	-
w	1	1	1	ţ	ţ	~	-	111	ţţ	† †	† ††	ţţ	ţţ	ţţ	-
v	1	1	1	~	~	1	1	11	ţ	†† ††	† †	1	-	ţ	1
Co	1	1	1	ţ	ţ	ţ	-	††	† †	-	† ††	ţ	~	ţ	-
Мо	1	1	1	Ļ	ţ	ţ	-	† †	ţţ	111	††	Ļ	ţ	† †	-
s				ţ	ţ	ţ	-	-	-	-	-	ţţţ	111	-	ţ
Ρ	1	1	1	ţ	ţ	↓↓↓	-	-	-	-	-	↓↓↓	$\downarrow \downarrow \downarrow$	ţţ	† †
* perlitik ** östenitil	çelikle k çelik	rde lerde					a	1 rttırır	a	↓ altır	de	∼ ğiştirm	ez	önen	nsiz

Çizelge 2.2. Alaşım elementlerinin malzeme üzerindeki etkisi

2.3. Dual Fazlı Çeliklerde Deformasyon Sertleşmesi ve Deformasyon Sertleşmesi Üssü

Malzemelerin mutlak ergime sıcaklıklarından T_m oldukça düşük sıcaklıklarda (T<0,3 T_m) plastic deformasyona uğramaları sonucu mukavemetlerinin ve stertliklerinin artmasına deformasyon sertleşmesi denir. T<0,3 T_m şartlarında yapılan deformasyona soğuk deformasyon denir. Soğuk deformasyona uğramasından dolayı malzemede mukavemet artışı gerçekleşir. Ancak deformasyon sertleşmesinin meydana gelmesi için malzemeye plastik deformasyon uygulanması gerektiğinden, malzemenin sünekliği yüksek olmalıdır. Deformasyon sertleşme kabiliyetini ifade eden (n) değerine de deformasyon sertleşme üssü denir.

Deformasyon sertleşmesine uğramış bir kristalde malzemenin mukavemetindeki deformasyon sertleşmesinden kaynaklanan artış;

 $\Delta \sigma = \alpha. G. b. \sqrt{\rho}$ bağıntısı ile bulunabilir. Burada (α) bir sabit olup değeri genelde 0,3-0,6 arasındadır. (R_0), dislokasyon yoğunluğudur.

Deformasyon sertleşmesinin toplam dislokasyon direncine etkisi önemli mertebede olup, artan deformasyon miktarı ile artmaktadır.

Soğuk deformasyon sınırı; bir metalin esas olarak deformasyon sertleşmesi yeteneğinden etkilenen bölgesel boyun verme olayından sonra şekillendirmeye devam etmenin mümkün olmadığı plastik kararsızlık anıdır.

Çekme deneyi ile malzemenin deformasyon sertleşmesi üssü(n) akma oranı (σ_A/σ_C), komojen(% ε_h) ve toplam uzama gibi endüstriyel öneme sahip mekanik özellikleri hakkında fikir sahibi olunabilir. Bunlar içinde en çok kullanılanlardan biri olan deformasyon sertleşmesi üssü(n) bir metalin bölgesel deformasyona olan direnme yeteneğidir. n değeri ne kadar yüksek ise şekillendirilebilme kabiliyeti de o derece büyüktür. Deformasyon sertleşmesi üssü (n), metalin gerilme gradyanı altında birim şekil değişimini dağıtabilme yeteneği olduğundan (n) değerinin yüksek olması, birim şekil değişiminin daha homojen olmasına ve malzemenin sertleşerek boyun vermeye daha fazla direnç göstermesine sebep olur. Deformasyon sertleşmesi üssü ne kadar yüksek ise akma mukavemeti ile orantı sınırı arasındaki (%) farklılık o kadar büyük olur.

Çekme deneyi verileri ile elde edilen gerçek gerilme-gerçek birim şekil değişdirme çizildiğinde, hemen hemen doğrusal bir ilişki gösteren metal ve alaşımların sayısı fazladır. Log σ -log ε grafiğinin doğrusal olduğu durumlarda Holloman Denklemi uygulanıp Mukavemet katsayısı olan K ve deformasyon sertleşme üssü n tespit edilebilir.

2.4. Deformasyon Hızının Etkisi

Deformasyon hızı, mühendislik(e') ve gerçek deformasyon hızı(ε') olmak üzere iki şekilde ifade edilebilir.

Mühendislik deformasyon hızı(e'). Çekme deneyinde cihazın çene hızı(V=dLi/dt) ile orantılı olup,

$$e' = \frac{de}{dt} = \frac{d((Li - L_0)/L_0)}{dt} = \frac{1}{L_0} \cdot \frac{dLi}{dt} = \frac{V'}{L_0}$$

Bağıntısı ile verilir.

Gerçek deformasyon hızı (ϵ') birim zamanda meydana gelen gerçek şekil değiştirme miktarını gösterir ve

$$\varepsilon' = \frac{d\varepsilon}{dt} = \frac{d(\ln Li - L_0)}{dt} = \frac{1}{L_i} \cdot \frac{dLi}{dt} = \frac{V'}{L_0}$$

Bağıntısıyla bulunur.

Gerçek deformasyon hızı ile mühendislik deformasyon hızı arasındaki ilişki;

$$\varepsilon' = \frac{e'}{1+e}$$

Sabit sıcaklık ve sabit birim şekil değiştirme miktarı için $\sigma = C \cdot \varepsilon'^m$ bağıntısı vardır.

Burada C,mukavemet katsayısı olan K'ya benzer sabit, m ise deformasyon hızı duyarlılığı üssüdür.

Deformasyon hızı duyarlılığı üssü, sabit T ve ε için çizilen $log\sigma - log\varepsilon$ grafiğinin eğimine eşittir.

Malzemenin sünekliliğini karakterize eden m için;

m<0,1 ise malzeme sünek değildir.

m=0,3-0,4 ise malzeme sünektir.

m>0,5 ise malzeme süperplastiktir.

m=1 ise malzeme cam gibi akar

2.5. Dual Fazlı Çeliklerde Gerilme - Birim Şekil Değiştirme Bağıntıları

Dual fazlı çeliklerin mekanik özelliklerini inceleyebilmek için gerçek gerilme ve gerçek birim şekil değiştirme eğrileri kullanılarak ampirik denklemler çıkartılmıştır. Ampirik denklemler Çizelge 2.3.'de gösterilmiştir.

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, F
$\sigma = K\varepsilon^n$	Holloman Denklemi
$\sigma = \sigma_a + K\varepsilon^n$	Ludwick Denklemi
$\sigma = \sigma_0 - \exp[-K(\varepsilon - \varepsilon_0)]$	Voce Denklemi
$\varepsilon = \varepsilon_0 + C\sigma^m$	Swift Denklemi

Çizelge 2.3. Mekanik özelliklerin incelenmesi için kullanılan ampirik ifadeler

Holloman Denklemi

Gerçek gerilme ve gerçek birim şekil değiştirme arasındaki parabolic ifade $\sigma = K\varepsilon^n$ şeklindedir (Lawson ve ark. 1981, Tomita ve Okabayashi 1985). Logaritmik ifadesi olarak $\log \sigma = \log K + n \log \varepsilon$ bağıntısı kullanılabilir (Lawson ve ark. 1981, Tomita ve Okabayashi 1985). Logaritmik denkleme göre elde edilen bağıntılar kullanılarak Log σ -log ε grafiğinin eğimi pekleşme üstelini verir. $\ln \varepsilon = 0$ noktasında Log σ -logK'dır. Buradan K değeri bulunabilmektedir.

Ancak, dual fazlı çeliklerde eğimin sabit olmamasından dolayı tek n değeri bulunamamaktadır. Bu sebeple Holloman denklemi dual fazlı çelikler için net ve doğru bir sonuç vermemektedir.

Ludwick Denklemi

Holloman denkleminin sağ tarafına akma gerilmesi eklenerek elde edilen ludwick denklemi şu şekildedir

$$\sigma = \sigma_a + K\varepsilon^n$$

Burada logaritmik ifade olarak kullanılan

 $\log(d\sigma/d\varepsilon) = \log K\varepsilon^n + (n-1)\log\varepsilon$

Denklemi ile deformasyon sertleşmesi hızı olarak ifade edilen $d\sigma /d\varepsilon$ ile birim şekil değiştirme arasındaki ifade bulunabilir. Bu denkleme göre çizilen $(d\sigma /d\varepsilon)$ -log ε grafiği malzemelerin deformasyon karakteristiği hakkında bilgi vermektedir ve Crussard-Jaoul Analizi olarak bilinmektedir. Buna göre $\log(d\sigma /d\varepsilon)$ -log ε grafiğinin eğimi (n-1)'e eşittir. $\log \varepsilon = 0$ olduğu konumda ise K değeri hesaplanabilmektedir.

Voce denklemi

Çoğunlukla Kabul edilen çoğu plastic deformasyon bağıntısından farklı olarak Voce denklemi

 $\sigma = \sigma_0 - \exp[-K(\varepsilon - \varepsilon_0)]$

bağıntısıyla ifade edilir. Burada σ_0 , ε_0 *ve K* malzeme parametreleridir ve denkleme göre deformasyon sertleşme hızı $d\sigma / d\varepsilon$;

 $\log(d\sigma / d\varepsilon) = (log K + 0.43 K \varepsilon_0) - 0.43 K \varepsilon$

denklemiyle ifade edilir (Lawson ve ark. 1981, Tomita ve Okabayashi 1985).

 $\log(d\sigma/d\varepsilon)$ - ε eğrilerinin birbirleriyle üstüste gelerek çakışmaları yani mikroyapıya karşı duyarlı olmamaları Voce denklemi yardımıyla dual fazlı çeliklerin deformasyon davranışlarına yaklaşımda bulunulamayacağını göstermektedir.

Swift Denklemi

Gerçek birim şekil değişimini, gerçek gerilme cinsinden ifade eden bağıntıdır.

 $\varepsilon = \varepsilon_0 + C\sigma^m \varepsilon_0$

C ve m malzeme parametreleridir.

 $\log(d\sigma/d\varepsilon) = (1-m)\log\sigma - \log Cm$

Bağıntısına göre çizile $\log(d\sigma/d\varepsilon) - \log\sigma$ grafiğinin eğiminden bulunur (Lawson ve ark. 1981, Tomita ve Okabayashi 1985). Söz konusu grafikte $\log\sigma = 0$ olduğu noktada $\log(d\sigma/d\varepsilon) = -\log Cm$ olmaktadır ve buradan C elde edilebilir. C-J analizine benzer farklı eğilimli deformasyon bölgelerinin mevcudiyeti dikkat çeker. Ancak farklı olarak $\log(d\sigma/d\varepsilon) - \log\sigma$ eğrisinin son noktası, maksimum gerilmeyi belirtmekte ve $d\sigma/d\varepsilon = \sigma$ şeklindeki kararsızlık kriteri ile uyum sağlamaktadır (Dieter 1976).

3. DENEYSEL ÇALIŞMALAR

Tez kapsamında dual fazlı DP600 çeliği ve DP800 çeliği kullanılmıştır. Kullanılan çeliklerin bileşimi Çizelge 2.1.'de gösterilmiştir.

Dual fazlı DP600 ve DP800 çeliklerinin farklı hızlarda çekme testleri yapılmıştır. Bu testlerde otomotiv sektöründe en fazla kullanılan kalınlıklardan biri olan 1.2mm kalınlık kullanılmıştır. Testler 7 farklı hızda (5,15,25,50,100,150,250 mm/dak) gerçekleştirilmiştir. Hadde yönünün 0, 45 ve 90 derece olduğu durumda ve yüksek balans için en az 5 tekrardan oluşmuştur.

3.1. Deney Numunesi

Çekme testinde kullanılan numuneler çekme test numunelerinin hassas ve çapaksız kesilmesi sac metal kesme kalıbında kesilmiştir.

Şekil 3.1.'de gösterilen deney numunesi ebatları Çizelge 3.1.'de verilmiştir. 5 tekrarla yapılan bu deneylerde çekme test cihazı çenelerinin test numunesi üzerinde kalan lokal kesme çapaklarından dolayı hatalı ölçüm yaptığı durumlarda test numunesi ıskarta edilerek yeni bir numune ile çalışılmıştır. Böylece çevresel veya deney prosesi dışındaki proseslerden kaynaklanan hatalar telafi edilerek gerçeğe daha yakın bulgular elde edilmiştir.

Şekil 3.1. Çekme test numunesi

	Cizelge 3.1.	Cekme te	est numunesi	ebatlar
--	--------------	----------	--------------	---------

,	
L	30 mm
L ₀	80 mm
L _c	120 mm
L _t	242 mm
h	48 mm
d	20 mm
R	20 mm

3.2. Deneysel Altyapı

Yapılan tüm deneyler Şekil 3.2.'de gösterilen UTEST marka 250kN kapasiteli çekme deney cihazında yapılmıştır. Ayrıca ölçümlerde otomatik ekstensometre kullanılmıştır.

Şekil 3.2. UTEST marka 250kN kapasiteli çekme test cihazı ve otomatik ekstensometre

rüki O	Uzama'	fer Degist	ime.
0	-		
0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000000000000000000000000000000	0 6.1123 6.7235 1.8031 2.7611 3.2700 4.2786 5.5010 6.59986 8.0071 8.99545 0.1011 0.1063 0.1161 0.1262 0.1369 07E-04 07E-04 07E-04 07E-04 07E-04 07E-04	2E-04 2ZE-03 34E-02 96E-02 91E-02 91E-02 24E-02 93E-02
0.08 0.09 0.1 0.12 0.18 0.27 0.32 0.32	-9,994 -9,994 -9,994 -1,998 -1,998 -1,998 -9,994	07E-04 07E-04 07E-04 07E-04 001E-03 001E-03 001E-03 001E-04 007E-04	0.1998/29 0.2099582 0.214848 0.2255446 0.237158 0.2472433 0.2521332 0.2622185 0.2622185
	0 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Şekil 3.3. Çekme test cihazından alınan ham data örneği

Deney test cihazında yapılan 7 farklı hızda (5, 15,25,50,100,150,250 mm/dak) ve en az 5 tekrarlı testler sonucu ham datalar alınmıştır. Şekil 3.2.'de örneklenen çekme test cihazından alınan ham datalar excel yardımıyla işlenerek istenilen sonuçlara ulaşılmıştır.

3.3. Çekme Testi Verilerinin Değerlendirilmesi

Çekme testinden çıkan ham verilerin işlenmesi sonucu elde edilen gerilme – şekil değiştirme eğrilerinde matematiksel ampirik denklemler Holloman, Ludwick, Voce ve Swift denklemleridir.

Çekme deneyi verilerinden elde edilen çekme kuvveti F ve yer değiştirme miktarı ($\Delta L=L-L_0$)

$$\sigma_{m\ddot{u}h} = F / A_0$$
$$\varepsilon_{m\ddot{u}h} = \Delta L / L_0$$

mühendislik gerilmesinin ve birim şekil değişiminin hesaplanmasında kullanılmaktadır.

 A_0 malzemenin başlangıç kesiti

 ΔL malzemenin anlık olarak alınan deformasyon miktarı ve

*L*⁰ başlangıç boy ölçüsüdür.

Mühendislik gerilmesi ve birim şekil değişimi denklemleri kullanılarak elde edilen gerçek gerilme ve gerçek birim deformasyon değerleri şu şekilde hesaplanmıştır.

$$\sigma_{ger} = \sigma_{m\ddot{u}h}(1 + \varepsilon_{m\ddot{u}h})$$
$$\varepsilon_{ger} = ln(1 + \varepsilon_{m\ddot{u}h})$$

Dual fazlı çelikleri ifade eden en iyi denklem Ludwick denklemidir. Buna göre

 $\log(d\sigma / d\varepsilon) = \log K \varepsilon^n + (n-1) \log \varepsilon$

kullanılarak deformasyon sertleşme üssü ve mukavemet katsayısı değerleri bulunmuştur.

Yine ilgili denklemde σ_a akma gerilmesi diğer tarafa alınarak $\sigma = \sigma_a + K\varepsilon^n$ denklemi elde edilmektedir.

Plastik bölge kullanılarak alınan değerler kullanılarak $\log(\sigma - \sigma_a) - \log \varepsilon_p$ grafikleri çizilmiştir.

 $\log \varepsilon = 0$ olduğu durumda K değeri ve n değeri bulunmaktadır.

4.BULGULAR

Tez kapsamında yapılan deneylerde farklı hızlarda(5, 15, 25, 50, 100, 150, 200 mm/dak) ve her bir hız için 5 tekrarla 1,2 mm kalınlıktaki DP600 ve DP800 malzemelerine çekme testleri uygulanmıştır. DP600 ve DP800 malzemeleri için yapılan çekme testleri sonuçları çizelge haline getirilerek (Çizelge 4.1. -4.8.) ortalamaları alınmıştır.

Gerçek gerilme - gerçek birim deformasyon ve mühendislik gerilmesi – mühendislik birim deformasyon eğrileri Şekil 4.1., Şekil 4.2., Şekil 4.8., Şekil 4.9.'da gösterilmiştir.

Akma gerilmesinin deformasyon hızlarına göre değişimleri Şekil 4.3. ve Şekil 4.10.'da verilmiştir. Deformasyon hızının artması ile hem DP600 hem de DP800 malzemesi için akma mukavemetlerinde artış gözlenmiştir. DP600 malzemesi için 5 mm/dak deformasyon hızı ile 250 mm/dak deformasyon hızı arasında %13 oranında akma mukavemetinde artış olduğu belirlenmiştir. DP800 malzemesi için bu artış %11 oranındadır.

Deformasyon hızının artışı ile çekme mukavemeti arasındaki ilişki Şekil 4.4. ve Şekil 4.11.'de gösterilmiştir. 5 mm/dak deformasyon hızı ile 250 mm/dak deformasyon hızı göz önüne alındığında hem DP600 hem de DP800 malzemeleri için çekme mukavemetlerindeki artış %5 mertebesinde olmuştur.

Uniform Uzama ve Toplam yüzde uzama deformasyon hızı yükseldikçe düşmüştür. Şekil 4.5. ve Şekil 4.12'de deformasyon hızlarına göre uniform uzama grafikleri görülmektedir.

Özellikle soğuk şekil verme işleminde pekleşme katsayısının yüksek olması istenir. Bu durum uygulanan yükler altında malzeme elastik bölgeden hızlıca çıkarak plastik şekil verme bölgesine sebep olur. Bu duruma bağlı olarak ta mukavemet ve sertlik değerleri yüksek olur. DP600 ve DP800 malzemelerinin Şekil 4.6. ve Şekil 4.13'te gösterildiği gibi 5 mm/dak deformasyon hızından 250 mm/dak deformasyon hızına geçmesi durumunda

pekleşme katsayısının azaldığı görülmüştür. Böylece Şekil 4.7. ve Şekil 4.14.'te gösterildiği şekilde mukavemet katsayısında da düşüş gözlenmiştir. Böyle bir durum soğuk şekil verme işleminde istenmeyen bir durumdur.

		Akma		Çekme		Uniform	Toplam	Pekleşme	Mukavemet
		Dayanımı		Dayanımı		Uzama	Uzama	Katsayısı	Katsayısı
		351,27593		597		0,22	0,235	0,202	1094
		358,38994	353,5748	593		0,21	0,225	0,2	1055
	5mm/dk	354,72696		605	601	0,19	0,205	0,206	1200
		352,2156		602		0,23	0,245	0,198	1109
		351,2654		608		0,2	0,215	0,2	1094
		359,651		620		0,18	0,195	0,203	1052
		382,054		619		0,18	0,195	0,201	1212
	15mm/dk	355,41	362,9131	624	617,6	0,22	0,235	0,199	1100
		364,94		605		0,23	0,245	0,198	1219
		352,5106		620		0,19	0,205	0,201	1057
		361,651		609		0,17	0,185	0,196	1095
0	25mm/dk	358,78	362,3509	612	614	0,19	0,205	0,204	1104
		359,135		613		0,18	0,195	0,198	1085
		380,1212		617		0,21	0,225	0,199	1076
0		352,0674		619		0,19	0,205	0,2	1025
		353,871		622		0,22	0,235	0,189	1100
F		366,16		624		0,18	0,195	0,196	1045
R	50mm/dk	344,7878	367,3471	620	624,4	0,17	0,185	0,201	1098
F		359,1685		631		0,19	0,205	0,195	1035
		412,7484		625		0,2	0,215	0,197	1038
F		381,574		618		0,16	0,175	0,196	960
1		371,2		629		0,19	0,205	0,197	1010
	100mm/dk	368,074	373,2626	632	625,6	0,22	0,235	0,199	990
		385,715		629		0,18	0,195	0,189	1100
		359,7499		620		0,17	0,185	0,195	1025
		396,0012		621		0,16	0,175	0,19	957
		391,748		620		0,16	0,175	0,191	1019
	150mm/dk	361,7486	380,8726	618	623,8	0,21	0,225	0,193	1011
		359,3528		635		0,19	0,205	0,192	1087
		395,5125		625		0,17	0,185	0,192	1014
		393,7485		633		0,18	0,195	0,183	936
		388,4155		633		0,18	0,195	0,191	1008
	250mm/dk	367,0135	381,3333	634	633	0,14	0,155	0,19	1009
		380,7405		633		0,22	0,235	0,188	1066
		376,7485		632		0,19	0,205	0,19	998

Çizelge 4.1. DP600 Hadde yönüne göre 0 derece çekme testi verileri

			Akma		Çekme		Uniform	Toplam	Pekleşme	Mukavemet
			Dayanımı		Dayanımı		Uzama	Uzama	Katsayısı	Katsayısı
			349,6581		605		0,23	0,245	0,202	1203
		5mm/dk	355,6257		600		0,2	0,215	0,21	1103
			353,9193	352,4066	603	601,6	0,21	0,225	0,198	1060
			352,6298		597		0,18	0,195	0,2	1040
			350,2		603		0,22	0,235	0,2	1102
			380,153		616		0,2	0,215	0,2	1102
			347,28		596		0,2	0,215	0,202	1064
		15mm/dk	368,8715	364,4633	623	605,4	0,22	0,235	0,199	1020
			365,9521		597		0,24	0,255	0,196	1200
			360,06		595		0,18	0,195	0,201	1121
			370,752		621	617,4	0,22	0,235	0,195	1089
		25mm/dk	372,4012	372,7271	625		0,19	0,205	0,201	1073
			360,002		601		0,18	0,195	0,196	1250
	4		388,74		616		0,2	0,215	0,2	1084
	5		371,7405		624		0,19	0,205	0,21	1070
		50mm/dk	373,6104		627		0,19	0,205	0,2	1075
	d		370,7489		622		0,21	0,225	0,196	1038
	е		367,0451	376,988	617	619,4	0,17	0,185	0,2	1045
	r		387,7466		621		0,19	0,205	0,196	1000
	е		385,7891		610		0,2	0,215	0,198	1085
	с		395,6413		625		0,22	0,235	0,196	965
	е		364,3146		620		0,18	0,195	0,198	1145
		100mm/dk	375,1452	374,6103	619	621,2	0,17	0,185	0,194	1025
			377,6354		622		0,2	0,215	0,191	960
			360,315		620		0,21	0,225	0,194	997
			370,7193		630		0,2	0,215	0,2	970
			391,2022		618		0,2	0,215	0,181	1153
		150mm/dk	366,4512	376,7013	619	619,8	0,17	0,185	0,195	1057
			374,0001		621		0,22	0,235	0,191	950
			381,1335		611		0,18	0,195	0,192	992
			390,5315		640		0,14	0,155	0,181	935
			387,2525		627		0,19	0,205	0,179	1003
		250mm/dk	369,321	381,7904	638	636,4	0,18	0,195	0,196	1007
			391,5314		639		0,17	0,185	0,177	1062
			370,3155		638		0,22	0,235	0,192	995

Çizelge 4.2. DP600 Hadde yönüne göre 45 derece çekme testi verileri

		Akma		Çekme		Uniform	Toplam	Pekleşme	Mukavemet
		Dayanımı		Dayanımı		Uzama	Uzama	Katsayısı	Katsayısı
		380,651		608		0,2	0,215	0,2	1070
		339,684		600		0,24	0,255	0,198	1106
	5mm/dk	352,6165	357,8181	609	606,4	0,26	0,275	0,201	1063
		365,61		605		0,18	0,195	0,199	1247
		350,5289		610		0,21	0,225	0,202	1091
		352,651		600		0,19	0,205	0,201	1058
		380,8498		612		0,18	0,195	0,197	1123
	15mm/dk	348,13	361,8599	610	608,4	0,22	0,235	0,2	1106
		357,7947		608		0,2	0,215	0,198	1095
		369,874		612		0,18	0,195	0,202	1079
		361,5745		606	613,6	0,18	0,195	0,196	1185
		391,8989		614		0,2	0,215	0,2	1095
	25mm/dk	362,1505	371,0795	611		0,22	0,235	0,197	1088
9		380,7481		621		0,17	0,185	0,199	1024
0		359,0253		616		0,24	0,255	0,196	1040
		381,1144		620		0,16	0,175	0,191	1095
D		361,6221		700		0,2	0,215	0,196	1094
Е	50mm/dk	364,4104	366,9664	573	618,4	0,22	0,235	0,199	1044
R		352,1212		617		0,17	0,185	0,2	1100
Е		375,564		582		0,18	0,195	0,21	1054
С		365,3204		621		0,17	0,185	0,198	1045
Е		357,6448		629		0,18	0,195	0,195	1087
	100mm/dk	381,9845	379,055	629	619,6	0,2	0,215	0,2	950
		390,0023		609		0,17	0,185	0,191	1108
		400,3232		610		0,24	0,255	0,192	931
		350,7848		627		0,22	0,235	0,189	962
		347,2105		611		0,18	0,195	0,196	1027
	150mm/dk	355,7889	378,2891	625	627,6	0,17	0,185	0,191	1043
		507,351		660		0,19	0,205	0,19	1077
		330,3105		615		0,2	0,215	0,192	1009
		388,9712		624		0,15	0,165	0,18	946
		368,3242		630		0,19	0,205	0,188	1005
	250mm/dk	379,654	379,1174	623	627,6	0,2	0,215	0,179	1012
		369,7482		631		0,17	0,185	0,192	1069
		388,8896		630		0,18	0,195	0,198	998

Çizelge 4.3. DP600 Hadde yönüne göre 90 derece çekme testi verileri

	DP600											
Çekme Hızı	Akme Deyanım" ¹ MPa	Çekme Dayanına MPs	Uniform Uzama mm	Topiam Tüzde Uzama	Pekleşme Katsayısı	Mukavemet Katsayi s						
5 mm/dk	354,5998083	603	0,212	0,227	0, 20106667	1109,133333						
15 mm/dk	363,07878	610,4567	0, 200667	0,215667	0, 19986667	1107,2						
25 mm/dk	368,7191733	615	0, 195333	0,210333	0, 1991 33 33	1092,2						
50 mm/dk	370,43386	620,7333	0,19	0,205	0,1976	1063,066667						
100 mm/dk	375,64264	622,1333	0, 190667	0,205667	0,195	1019,866667						
150 mm/dk	378,6210067	623,7533	0,188	0,203	0, 19166667	1021,866667						
250 mm/dk	380,74704	632,3333	0,18	0,195	0, 18693333	1003,266667						

Çizelge 4.4. DP600 Çekme testi verileri ortalaması

Şekil 4.1. DP600 Gerçek gerilme – gerçek birim deformasyon eğrisi

Şekil 4.2. DP600 Mühendislik gerilme - mühendislik birim deformasyon eğrisi

Şekil 4.3. DP600 Akma dayanımı – çekme hızı grafiği

Şekil 4.4. DP600 Çekme dayanımı – çekme hızı grafiği

Şekil 4.5. DP600 Uniform uzama – çekme hızı grafiği

Şekil 4.6. DP600 Pekleşme katsayısı – çekme hızı grafiği

Şekil 4.7. DP600 Mukavemet katsayısı – çekme hızı grafiği

			Akma		Çekme		Uniform	Toplam	Pekleşme	Mukavemet
			Dayanımı		Dayanımı		Uzama	Uzama	Katsayısı	Katsayısı
			410,3215		801		0,14	0,16	0,142	1256
		5mm/dk	430,165		798		0,12	0,16	0,145	1201
			420,0012	421,32458	811	807	0,12	0,145	0,144	1348
			436,135		809		0,17	0,185	0,132	1257
			410,0002		816		0,12	0,17	0,139	1256
			429,761		829		0,1	0,145	0,143	1210
			442,274		823		0,09	0,13	0,146	1364
		15mm/dk	485,74	451,2622	829	823,8	0,15	0,14	0,137	1230
			445,38		811		0,17	0,19	0,132	1360
			453,156		827		0,11	0,15	0,14	1205
			431,761		817		0,09	0,14	0,134	1263
		25mm/dk	426,89	439,34692	821	820,4	0,1	0,145	0,139	1275
			441,355		817		0,11	0,13	0,132	1237
	0		470,7812		822		0,15	0,17	0,144	1235
	U		425,9474		825		0,11	0,125	0,138	1185
	П		433,981		829	831	0,14	0,165	0,117	1278
	F		448,71		832		0,09	0,11	0,119	1220
	R	50mm/dk	412,7778	444,16314	829		0,1	0,12	0,132	1261
	F		449,7185		835		0,13	0,155	0,118	1227
	Ċ		475,6284		830		0,12	0,14	0,127	1226
	F		471,794		832		0,08	0,1	0,124	1185
	-		460,97		844		0,1	0,135	0,12	1201
		100mm/dk	448,734	461,65658	848	840,4	0,15	0,18	0,13	1200
			465,375		846		0,12	0,14	0,112	1318
			461,4099		832		0,09	0,11	0,125	1243
			486,2212		838		0,151	0,18	0,118	1127
			481,518		838		0,06	0,09	0,114	1218
		150mm/dk	442,4086	469,26662	837	842,8	0,13	0,17	0,124	1209
			439,0128		855		0,13	0,15	0,115	1299
			497,1725		846		0,08	0,1	0,122	1196
			483,9685		849		0,08	0,1	0,111	1124
			478,1855		850		0,09	0,105	0,114	1188
		250mm/dk	447,6735	469,7273	852	851	0,05	0,075	0,121	1207
			460,4005	-	852		0,15	0,18	0,111	1258
			478,4085		852		0,1	0,13	0,12	1199

Çizelge 4.5. DP800 Hadde yönüne göre 0 derece çekme testi verileri

		Akma		Çekme		Uniform	Toplam	Pekleşme	Mukavemet
		Dayanımı		Dayanımı		Uzama	Uzama	Katsayısı	Katsayısı
		449,805		805		0,15	0,195	0,142	1365
		429,052	436,98848	801		0,11	0,15	0,155	1249
	5mm/dk	409,4005		805	803,6	0,14	0,165	0,136	1208
		456,156		800		0,12	0,145	0,134	1188
		440,5289		807		0,14	0,16	0,139	1264
		420,263		815		0,12	0,165	0,14	1260
		427,5		796		0,11	0,135	0,147	1216
	15mm/dk	419,2015	426,83732	824	806,4	0,15	0,18	0,137	1150
		426,2821		799		0,18	0,2	0,13	1341
		440,94		798		0,1	0,125	0,14	1269
	25mm/dk	440,862		825		0,14	0,155	0,133	1257
		440,5112	449,72314	824		0,1	0,16	0,136	1244
		442,222		801	818,6	0,11	0,15	0,13	1402
4		479,4		817		0,14	0,16	0,145	1243
5		445,6205		826		0,11	0,135	0,148	1230
	50mm/dk	453,7204		830		0,11	0,13	0,128	1253
d		453,2989		826		0,12	0,145	0,119	1213
е		435,0351	453,80402	816	820,8	0,1	0,12	0,131	1208
r		478,2966	-	821		0,13	0,165	0,119	1192
е		448,6691		811		0,12	0,16	0,128	1273
С		485,8613		835		0,14	0,16	0,124	1190
е		454,0846		831		0,09	0,12	0,121	1336
	100mm/dk	455,8052	463,0043	831	830,8	0,1	0,135	0,125	1235
		457,2954		829		0,14	0,16	0,114	1178
		461,975		828		0,13	0,145	0,124	1215
		460,9393		843		0,12	0,145	0,128	1140
		480,9722		832		0,1	0,13	0,104	1352
	150mm/dk	447,1112	465,09526	834	833,6	0,09	0,11	0,126	1255
		453,6601		837		0,16	0,185	0,114	1162
		482,7935		822		0,09	0,12	0,122	1174
		480,7515		852		0,04	0,08	0,109	1123
		477,0225		840		0,1	0,125	0,102	1183
	250mm/dk	449,981	470,18438	852	849,4	0,09	0,105	0,127	1205
		471,1914		854		0,1	0,135	0,1	1254
		471,9755		849		0,13	0,16	0,122	1196

Çizelge 4.6. DP800 Hadde yönüne göre 45 derece çekme testi verileri

		Akma		Çekme		Uniform	Toplam	Pekleşme	Mukavemet
		Dayanımı		Dayanımı		Uzama	Uzama	Katsayısı	Katsayısı
		421,805		821		0,12	0,145	0,14	1232
	5mm/dk	418,052	435,27928	814		0,15	0,165	0,143	1252
		437,4005		818	817,8	0,19	0,2	0,139	1211
		446,61		815		0,12	0,15	0,133	1395
		452,5289		821		0,13	0,18	0,141	1253
		432,761		812		0,11	0,155	0,141	1216
		431,2898		825		0,09	0,14	0,142	1275
	15mm/dk	438,68	430,2339	824	820	0,15	0,155	0,138	1236
		418,0147		817		0,14	0,16	0,132	1236
		430,424		822		0,1	0,15	0,141	1227
		431,6845		817		0,1	0,14	0,134	1353
9	25mm/dk	460,0089	448,07546	826	825,4	0,11	0,145	0,135	1266
		444,3705		824		0,15	0,18	0,131	1240
		471,4081		835		0,11	0,14	0,144	1183
0		432,9053		825		0,16	0,175	0,134	1200
		461,2244		830		0,08	0,125	0,119	1273
D		444,1721		911		0,11	0,13	0,119	1269
Е	50mm/dk	432,4004	443,78242	785	830,4	0,15	0,185	0,13	1207
R		442,6712		830		0,11	0,14	0,123	1292
Е		438,444		796		0,1	0,155	0,14	1242
С		455,5404		838		0,09	0,11	0,126	1270
Е		447,4148		847		0,09	0,13	0,118	1278
	100mm/dk	462,6445	467,44904	848	838,6	0,13	0,155	0,131	1160
		469,6623		829		0,11	0,14	0,114	1326
		501,9832		831		0,16	0,18	0,122	1149
		441,0048		853		0,11	0,13	0,117	1132
		436,9805		832		0,08	0,1	0,119	1226
	150mm/dk	436,4489	466,68314	847	851,2	0,09	0,105	0,122	1241
		587,011		883		0,13	0,15	0,113	1289
		431,9705		841		0,11	0,13	0,122	1191
		479,1912		845		0,05	0,085	0,108	1134
		458,0942		852		0,1	0,12	0,111	1185
	250mm/dk	460,314	467,51144	846	850,6	0,11	0,135	0,11	1210
		449,4082		855		0,1	0,135	0,115	1261
		490,5496		855		0,09	0,12	0,128	1199

Çizelge 4.7. DP800 Hadde yönüne göre 90 derece çekme testi verileri

			P800				
Çekme Hızı	Akma Dayanım" "MPa	Gelome Uniform Uzema Mayanuran MPa mm		Toplam Tüzde Uzama	Pekleşme Katsayısı	Mukavemet Katsayi si	
5 mm/dk	431,1974467	809,4667	0,136	0,165	0,14026667	1262,333333	
15 mm/dk	436,11114	816,7333	0,124667	0, 154667	0,13906667	1253	
25 mm/dk	445,7151733	821,4667	0,119333	0,15	0,13713333	1254,2	
50 mm/dk	447,24986	827,4	0,114	0,143	0,1246	1242,266567	
100 mm/dk	464,03664	836,6	0,114667	0,14	0,122	1232,266667	
150 mm/dk	467,0150067	842,5333	0,108733	0,13 3	0,11866667	1214,066667	
250 mm/dk	469,14104	850, 3333	0,092	0, 119333	0,11393333	1195,066667	

Çizelge 4.8. DP800 Çekme testi verileri ortalaması

Şekil 4.8. DP800 Gerçek gerilme – gerçek birim deformasyon eğrisi

Şekil 4.9. DP800 Mühendislik gerilme - mühendislik birim deformasyon eğrisi

Şekil 4.10. DP800 Akma dayanımı – çekme hızı grafiği

Şekil 4.11. DP800 Çekme dayanımı – çekme hızı grafiği

Şekil 4.12. DP800 Uniform uzama - çekme hızı grafiği

Şekil 4.13. DP800 Pekleşme katsayısı – çekme hızı grafiği

Şekil 4.22. DP800 Mukavemet katsayısı – çekme hızı grafiği

5.SONUÇLAR

- 1. DP600 ve DP800 malzemelerinin deformasyon hızları arttırıldığında uzama miktarlarının azaldığı tespit edilmiştir.
- DP600 malzemesinin aynı deformasyon hızları altında (5, 15, 25, 50, 100, 150, 250 mm/dak) uzama miktarı DP800 malzemesinden fazladır.
- Deformasyon hızı arttırıldığında DP600 malzemenin akma mukavemetindeki artış (%13) DP800 malzemesinin akma mukavemetindeki artıştan (%11) fazla olduğu tespit edilmiştir.
- 4. DP600 ve DP800 malzemelerinin deformasyon hızına bağlı olarak çekme mukavemetindeki artışların aynı oranda olduğu (%5) tespit edilmiştir.
- DP600 malzemesinin deformasyon hızının artışına bağlı olarak uniform uzamasındaki azalma oranı (%15) DP800 malzemesinin aynı deformasyon hızının artışındaki uniform uzamasındaki azalma oranından (%30) fazladır.
- DP600 malzemesinin deformasyon hızının artışına bağlı olarak toplam uzamasındaki azalma oranı (%13) DP800 malzemesinin aynı deformasyon hızının artışındaki uniform uzamasındaki azalma oranından (%27) fazladır.
- DP800 malzemesinin deformasyon hızı artışı ile beraber pekleşme katsayısındaki azalma oranı DP600 malzemesinin aynı deformasyon hızı değerlerinde pekleşme katsayısındaki azalma oranından fazladır.
- DP800 malzemesinde deformasyon hızının artışındaki mukavemet katsayısındaki azalma oranı DP600 malzemesinin yaşadığı mukavemet katsayısı azalma oranından azdır.
- Çekme deneylerinde DP600 ve DP800 malzemeleri için gerilme birim şekil değiştirme eğrilerinde alt ve üst akma noktaları görülmemiştir.
- 10. Kullanılan ampirik ifadelerde (Holloman, Ludwick, Voce, Swift) Holloman ve Voce denklemlerinin hem DP600 hem de DP800 malzemelerinin deformasyon davranışlarını karakterize edemediği gözlenmiştir.

KAYNAKLAR

Akay, S.K. 2005. Otomotiv endüstrisinde kullanılan çift fazlı çeliklerin fiziksel özelliklerinin araştırılması. *Doktora Tezi*, UÜ Fen Bilimleri Esntitüsü, Makine Anabilim Dalı, Bursa.

Aksoy, M. 1989. Duel-Faz Çeliklerinin Mekanik Özelliklerine Mikroyapının Etkisi. 3.

Anderson, D. 2008. Application and Repairability of Advanced High Strength Steels, America Iron and Steel Institute, 2008, USA.

Anonim, 2010. Materials, and Vehicle Weight Reduction. Will Joost Energy, 2010, USA

Anonim, 2012. Enerji Raporu, 2012. Dünya Enerji Konseyi Türk Milli Komitesi, yayın no: 0021/2012, Ankara.

Bayram, A. 1998. Dual fazlı çeliklerde martenzit ve yükleme hızının mekanik özelliklere etkisi. Pamukkale Üniversitesi, Mühendislik Mimarlık Fakültesi Dergisi, cilt 4, sayı 3, 692-697 s.

Bayram, A., Uğuz. A., Ula. M. 1999. Effects of microstructure and notches on theCallister, W.D. 2000. Materials Science and Engineering An Introduction. John Wiley &Sons Inc., USA, 500 pp.

Çimenoğlu, H. 1984. Alaşımsız dual-fazlı çeliklerde mikroyapı-mekanik özellik ilişkileri. *Yüksek Lisans Tezi,* İ.T.Ü., Fen Bilimleri Enstitüsü, Bursa.

Çimenoğlu, H. 1988. Çift fazlı çeliklerin deformasyon davranışı. *Doktora Tezi,* İ.T.Ü., Fen Bilimleri Enstitüsü, Bursa.

Çimenoğlu, H., Kayalı. E.S. 1990. Çift fazlı çeliklerde deformasyon davranışı analizi. İ.T.Ü., cilt 48, sayı 2.

Davies, R.G. 1977. On the ductility of two-phase steels. Formable HSLA and dual-phase steels. Ed. Davenport, Aime, 25-39 pp.

Davies, R.G. 1978. Influence of martensite composition and content on the properties of dual-phase steels. Met. Trans., vol. 9, 671-679 pp.

Demirkol, M. 1991. Mekanik metalorji ders notları. İ.T.Ü., Makine Fakültesi, İstanbul.

Denizli Malzeme Sempozyumu, Denizli.

Dieter, G.E. 1976. Mechanical Metallurgy. 2nd Ed. Mc Graw Hill Book Comp., New York.

Dieter, G.E. 1988. Mechanical Metallurgy. SI Edition, Mc Graw-Hill, Singapure.

Dollar, M., Gorczyca. S. 1982. The effect of grain size on polycrystals hardening. Scripta Mettalurgy, vol. 16, 901-906.

Durmuş, A. 2000. Dual fazlı çeliklerde gerilme şekil değiştirme eğrilerinin analizi. Yüksek Lisans Tezi, Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Makine Anabilim Dalı, Bursa.

Embury, J.D., Duncan. J.L. 1981. Fundamentals of dual phase steels. Ed. R.A. Kot and B.L. Bramfit, Aime, 333-346 pp.

Ensari, C. 1977. Düşük karbonlu çeliklerde üretim koşullarının ve bileşimin deformasyon yaşlanmasına etkileri. *Doktora Tezi*, İ.T.Ü. Maden Fakültesi Ofset Baskı Atelyesi.

Ensari, C., Kayalı. E.S. 1979. Yüksek dayanımlı az alaşımlı çeliklerin özellikleri ve kullanım alanları. 2. Demir çelik sanayi, Karabük.

Furukawa, T., Morikawa. H., Takechi. B., Koyama. K. 1979. Process factors for highly ductile dual phase sheet steels. Paper presented at Tms-Aime Aunual Meeting, New Orleans.

Hayami, S.,Furukawa, T. 1975. A family of high strength cold rolled steels, Proceedings of Micro-Alloying. Internatinal Symposium on HSLA, 11-20 March, 1975, Washington D.C, USA.

Huh, H., Kim, B. S., Song, H.J., Lim, H.J. 2008. Dynamic tensile characteristics of TRIPtype and DP-type steel sheets for an auto-body. *International Mechanical Sciences*, 50: 918-931.

Kabakçı, F. 2006. Çift fazlı çeliklerde mikroyapının mekanik özelliklerie etkisi. *Bilim Uzmanlığı Tezi*, Z.K.Ü. Fen Bilimleri Enstitüsü, Makine Anabilim Dalı, Bursa.

Kayalı, E.S., Ensari. C. 1986. Malzemelerin Yapısı ve mekanik davranışları. İ.T.Ü, İstanbul, TÜRKİYE,

Kayalı, E.S., Ensari. C. 1991. Metallere plastik şekil verme ilke ve uygulamaları. İ.T.Ü, İstanbul, TÜRKİYE, 110-114 s.

Lawson, R.D., Matlock. D.K., Kraous. G. 1981. In Fundamentals of dual-phase steels. Ed. By. R.A., Kot and B.L. Bramfit, Aime, 347-381.

Llewell, D.T., Hills, D.J 1996. Dual-phase Steels. Review, Ironmaking and Steelmaking, vol.23, 471-478 pp.

Piplani, R.K., Raghavan, G. 1981. Microstructure and its correlation properties in dual phase steel India, vol. 4, 1-21 pp.

Preprint., , 938-949, 760206.

Rashid, M.S. 1976. GM 980X Unique high strenght sheet steel formability. SAE Preprint 760206.

Rashid, M.S. 1980. High Strength Low Alloy Steels. (GMR) Publication, No:3239, Warren, Michigan.

Rashid, M.S.1976. Gm 980x-A unique high strength sheet steel with superior formability.Speich, G.R. 1996. Dual Phase Steels, Properties and Selection: Irons, Steels and High Performance Alloys ASM Handbook, USA, 424-429 pp.