

T.C. UŞAK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

DEPREM YER HAREKETİ İLE ZEMİN ÖZELLİKLERİ ARASINDAKİ İLİŞKİLERİN İNCELENMESİ

YÜKSEK LİSANS TEZİ

HAKAN YILMAZ

UŞAK, 2017

T.C. UŞAK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ

İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

DEPREM YER HAREKETİ İLE ZEMİN ÖZELLİKLERİ ARASINDAKİ İLİŞKİLERİN İNCELENMESİ

YÜKSEK LİSANS TEZİ

HAKAN YILMAZ

UŞAK, 2017

Hakan YILMAZ tarafından hazırlanan 'Deprem Yer Hareketi ile Zemin Özellikleri Arasındaki İlişkilerin İncelenmesi' adlı bu tezin Yüksek Lisans tezi olarak uygun olduğunu onaylarım.

Prof. Dr. İsfendiyar EGELİ

Tez Danışmanı, İnşaat Mühendisliği Anabilim Dalı.....

Bu çalışma jürimiz tarafından oy birliği / oy çokluğu ile İnşaat Mühendisliği Anabilim dalında Yüksek Lisans tezi olarak kabul edilmiştir.

Prof. Dr. Mehmet İNEL

İnşaat Mühendisliği Anabilim Dalı, Pamukkale Üniversitesi.....

Prof. Dr. İsfendiyar EGELİ

İnşaat Mühendisliği Anabilim Dalı, Uşak Üniversitesi.....

Prof. Dr. İsa YEŞİLYURT

Makine Mühendisliği Anabilim Dalı, Uşak Üniversitesi.....

Yrd. Doç. Dr. Elif Çağda KANDEMİR MAZANOĞLU

İnşaat Mühendisliği Anabilim Dalı, Uşak Üniversitesi.....

Yrd. Doç. Dr. Onur MERTER

İnşaat Mühendisliği Anabilim Dalı, Uşak Üniversitesi.....

Tarih .../.../...

Bu tez ile Uşak Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu Yüksek Lisans derecesini onamıştır.

Prof. Dr. İsa YEŞİLYURT

.....

Fen Bilimleri Enstitüsü Müdürü

TEZ BİLDİRİMİ

Tez içindeki bütün bilgilerin etik davranış ve akademik kurallar çerçevesinde elde edilerek sunulduğunu, ayrıca tez yazım kurallarına uygun olarak hazırlanan bu çalışmada bana ait olmayan her türlü ifade ve bilginin kaynağına eksiksiz atıf yapıldığını bildiririm.

Hakan YILMAZ

DEPREM YER HAREKETİ İLE ZEMİN ÖZELLİKLERİ ARASINDAKİ İLİŞKİLERİN İNCELENMESİ

(Yüksek Lisans Tezi)

Hakan YILMAZ

UŞAK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Aralık, 2017

ÖZET

Deprem sebebi ile oluşan kuvvetli yer hareketinin etkisinin zemin özelliklerine bağlı değiştiği öteden beri bilinen bir gerçektir. Deprem dalgalarının etkisinin zemin ile değişimi ile ilgili literatürde çalışmalar mevcuttur. Ancak bunların çoğu kısıtlı zemin değişkenliği ve kısıtlı sayıda deprem kaydı için yapılmış durumdadır. Ayrıca mevcut çalışmalarda çoğunlukla deprem kayıtlarının üst yapılara etkisinden çok yer hareketi özelliklerindeki değişim değerlendirilmektedir. Mevcut durumda literatürde bu değişimlerin yapılara etkilerinin değerlendirilmesi çok daha kısıtlı olarak ele alınmaktadır.

Ülkemiz binaları tasarım ve sismik incelemesi için deprem etkileri Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik-2007 (DBYBHY-2007) Bölüm 2'de verilen spektruma göre hesaplanmaktadır. Şu halde DBYBHY-2007 tepki spektrumu depremlerin yapı üzerindeki etkilerinin belirlenmesinde kritik önemdedir. Tezin amacı deprem yer hareketinin zemin özelliklerine göre değişiminin incelenmesi ve bu bağlamda daha sonra yapılacak çalışmalarla TBDY-2016'da verilen zemin tanımı ve spektrumların birbiri ve doğadaki deprem verileri ile uygunluğunun değerlendirilmesidir.

Tez çalışması içinde TBDY-2016 Bölüm 6 sınıflandırma tanımlarına uygun 33 farklı zemin tipi 84 farklı deprem kaydı ile analiz edilmiştir. İvme kaydı setinin taban kayasında oluşma durumuna uygun, farklı frekans içeriği ve şiddete sahip olmasına özen gösterilmiştir. Bu

ivme kayıtları taban kayasından tanımlanan zemin modellerine uygulanacak ve zemin üst kısmındaki değişimleri hesaplanacaktır. Bu analiz işlemi uygunluğu literatürde kabul görmüş ProShake 2.0 yazılımı ile gerçekleştirilmiştir. Bu analizler sonucunda Türkiye Bina Deprem Yönetmeliği (TBDY) 2016 tanımlarına uygun 2772 ivme kayıtlık bir deprem veri setine sahip olunacaktır. Bu ivme kaydı seti tezin önemli çıktılarından biridir ve konu ile ilgilenen başka araştırmacılar için de önemli bir kaynak niteliğindedir. Bu sayede konu ile ilgili bilimsel çalışma ve yayınların artmasına zemin hazırlanmış olacaktır.

Bilim Kodu:

Anahtar Kelimeler: yer hareketi, tepki spektrumu, ivme kaydı, taban kayası, ProShake, büyütme oranı.

Sayfa Adedi: 83

Tez Yöneticisi: Prof. Dr. İsfendiyar EGELİ

ALTERATION OF THE SEISMIC GROUND MOTION WITH RESPECT TO SOIL LAYER PROPERTIES

(Master Dissertation)

Hakan YILMAZ

UŞAK UNIVERSITY INSTITUTE OF SCIENCE AND TECHNOLOGY December, 2017

ABSTRACT

It is a well-known fact that the strong ground motion effects caused by the earthquake depends on the soil properties. There are studies in the literature related to alteration of earthquake waves effects with changes of ground properties. However, most of the studies that have been in literature were limited with respect to background variability and small number of earthquake records. In addition, in such studies, results of the change in the ground motion characteristics is evaluated rather than the results on the superstructure. At present in the literature the evaluation of the effects of these changes is has been much more limited.

The earthquake effects for the design and seismic survey of our country are calculated according to the spectrum given in Section 2 of the Turkish Earthquake Code (TEC) 2007. In this case, TEC 2007 response spectrum is of critical importance in determining the effects of earthquakes on building the structures. The purpose of this thesis is to investigate the alteration of earthquake ground motions according to soil properties and to evaluate the appropriateness of the ground definitions and spectrums given in the Turkey Building Earthquake Code (TBDY) 2016 and also compare then with each other and earthquake data.

In the study, 33 different soil types in accordance with TBDY-2016 (Chapter 6 classification definitions), were analyzed with 84 different seismic recordings. Care has been taken to

ensure that the acceleration record set has a different frequency content and severity, suitable in terms of formations in the bedrock. These acceleration records will be applied to the ground models identified from the bedrock and the changes on the surface of the ground will be calculated. This analysis will be performed with ProShake yazılım, which is approved in the literature. As a result of these analyzes, an earthquake data set with 2772 acceleration records were be obtained in accordance with TBDY-2016 definitions. This acceleration record set is one of the important outputs of the thesis and is an important source for other researchers interested in the subject. In this regard, the groundwork for further scientific studies and publications related to the subject has been prepared.

Science Code:

Keywords: ground motion, response spectrum, acceleration record, bedrock, ProShake, amplification ratio

Page Number: 83

Adviser: Prof. Dr. İsfendiyar EGELİ

TEZ KAPSAMI

Bu çalışmanın konusu taban kayası özelliğinde olan deprem yer hareketi dalgalarının yüzeye ulaşana kadar geçirdikleri değişimleri incelemektir. Bu kapsamda Türkiye Bina Deprem Yönetmeliği (TBDY-2016) taslağından alınan zemin sınıfları tanımları kaynak alınarak 33 adet zemin profili belirlenmiştir. Sonrasında ise hem dünyada hem de Türkiye'de gerçekleşmiş depremlerin ivme kayıtları araştırılarak taban kayası özelliğine uygun bir ivme kayıtları elde edilmek istenmiştir. Tüm bu safhalarda farklı teknikler kullanılarak ivme kayıtları elde edilmiştir. Bunlar;

- Gerçek Deprem Kayıtları

- Türk Deprem Kayıtlarının Ters Evrişim Yöntemiyle Taban Kayası Özelliğinde Kullanılması

- Mevcut Depremlerin Ölçeklenmesi

- Sentetik (Artificial) Deprem Kayıtları olarak sıralanmaktadır.

Sonrasında tüm bu ivme kayıtları belirlenen zemin profillerinden geçirilerek yüzeydeki durumlarının incelenmesi amaçlanmıştır. Tüm bu işlemler ProShake 2.0 programıyla yapılmış ve bu bağlamda nümerik analiz sonuçları değerlendirilmek istenmiştir. Çalışma sonunda elde edilmiş olan 2772 adet ivme kaydı seti hem yönetmeliğimize yönelik hem de diğer akademik yayınlara kaynak olma açısından önemli görülmektedir.

İTHAF

Hayatıma anlam katan ve her an yanımda olan kıymetli aileme ve benim için çok ayrı değerli olan merhum küçük kardeşime ithaf ediyorum.

TEŞEKKÜR

Uşak Üniversitesi Fen Bilimleri Enstitüsü bünyesinde 'Yüksek Lisans Tezi' olarak hazırladığım bu çalışmanın planlanmasında ve yürütülmesinde, çalışmalarım süresince bilgi ve hoşgörüsüyle desteğini ve ilgisini esirgemeyen Sayın Hocam Prof. Dr. İsfendiyar EGELİ'ye,

Emeği geçen tüm değerli İnşaat Mühendisliği Anabilim Dalı hocalarıma,

Yüksek lisans tezimin düzenlenmesinde görüş ve önerilerini esirgemeyen değerli jüri üyesi hocalarıma,

Yüksek lisans tez çalışmam boyunca bilgi, tecrübe ve emeklerini benden esirgemeyen değerli hocam Dr. Ersen BALCIOĞLU'na

Uşak Üniversitesi Fen Bilimleri Enstitüsü'nde bir yüksek lisans tezi olarak bu çalışmanın yapılmasını maddi olarak destekleyen TÜBİTAK'a,

Ve ayrıca çalışmanın başından sonuna kadar desteklerini hiçbir zaman esirgemeyen annem ve babama sonsuz teşekkürlerimi sunarım.

İÇİNDEKİLER

ÖZET	v
ABSTRACT	vii
TEZ KAPSAMI	ix
İTHAF	X
TEŞEKKÜR	xi
İÇİNDEKİLER	xii
ŞEKİL LİSTESİ	xiv
ÇİZELGE LİSTESİ	xvi
KISALTMALAR LİSTESİ	xvii
1. GİRİS	1
2. ZEMİN BÜYÜTMESİ KONUSUNDA BİLGİLER	
2.1 Yerel Zemin Durumunun Yer Hareketi Üzerindeki Etkisi	
2.2 Doğrusal Olmayan Zemin Davranışı	6
2.3 Makaslama Dalga Hızının Zemin Büyütmesi Çalışmasındaki Önemi	
2.4 İvme Kaydı ile Yapı Deplasman Talebi Oranı İlişkisi	10
2.5 Taban Kayasında Oluşan Yer Hareketinin Zemin Üzerindeki Halinin Hesaplanması	12
3. CALISMA YÖNTEMİ	14
3.1 Zemin Profillerinin Belirlenmesi	
3.2 İvme Kaydı Setinin Olusturulması	18
3.2.1 Türkiye'de Gerçekleşen Yıkıcı Depremlerin Özellikleri	19
3.2.2 Gerçek Deprem Kaydı Seçimi	23
3.2.3 Ters Evrişim (Deconvolution) ile Elde Edilen Kayıtlar	29
3.2.4 Ölçeklenmiş Kayıtlar	37
3.2.5 Sentetik Kayıtlar	41
3.2.6 Elde Edilen İvme Kaydı Seti	43
4. BULGULAR	48
4.1 Büyütme Oranı – PGA İlişkileri	48

5.	SONUÇLAR VE ÖNERİLER	. 57
,	Yapılabilecek Çalışmalar ile İlgili Öneriler	. 59
8.	KAYNAKLAR	. 60

ZGEÇMİŞ

ŞEKİL LİSTESİ

Şekil 2.1 Taban kaya – yumuşak zemin arasındaki maksimum ivme ilişkisi (Idriss) [17,18] 4
Şekil 2.2 Büyütme faktörünün plastisite indisleri ile değişimi
Şekil 2.3 Büyütme faktörünün kum ve kil ortamlarında frekansa göre değişimi
Şekil 2.4 Bağıl büyütme faktörlerinin karşılaştırılması10
Şekil 2.5 Örnek analiz için verilen ivme kaydının 500 m kil ve kum zemin üstünde ivme
spektrum
Şekil 3.1 Japonya veri tabanı (COSMOS) genel arama ara yüzü
Şekil 3.2 Japonya veri tabanı (COSMOS) detaylı arama ara yüzü
Şekil 3.3 Japonya veri tabanı (COSMOS) detaylı arama sonuçları
Şekil 3.4 Yeni Zelanda veri tabanı arama sonuçları [55]
Şekil 3.5 İtalya veri tabanı arama sonuçları [56]
Şekil 3.6 Örnek lokasyonlar [53]
Şekil 3.7 Kullanılan lokasyonlar (lokasyon 6) [53]
Şekil 3.8 Kullanılan lokasyonlar (lokasyon 19) [53]
Şekil 3.9 Kullanılan lokasyonlar (lokasyon 30) [53]34
Şekil 3.10 PROSHAKE programında girilen profilin tabaka özellikleri [32]
Şekil 3.11 PROSHAKE programında girilen ivme kaydı ve özellikleri [32]
Şekil 3.12 Ters evrişim sonucu girilen kaydın PGA değerinin aşağı tabakadaki azalımı [32]
Şekil 3.13 Tüm doğal ve ölçeklenmiş kayıtların arasındaki PGV-Vmax/Amax ilişkisi 38
Şekil 3.14 Eldeki tüm doğal ve ölçeklenmiş kayıtların arasındaki PGV- Predominant Periyot
ilişkisi
Şekil 3.15 Eldeki tüm doğal ve ölçeklenmiş kayıtların arasındaki PGV- ortalama periyot
İlişkisi
Şekil 3.16 SeismoArtif programında taban kayası özelliği seçeneği [63]41
Şekil 3.17 Eldeki tüm doğal ve sentetik kayıtların arasındaki PGV-Vmax/Amax ilişkisi 42
Şekil 3.18 Eldeki tüm doğal ve sentetik kayıtların arasındaki PGV- predominant periyot
ilişkisi
Şekil 3.19 Eldeki tüm doğal ve sentetik kayıtların arasındaki PGV- ortalama periyot ilişkisi
Şekil 4.1 Analizler sonucunda ortaya çıkan T=0,2s için büyütme oranı – giriş PGA ilişkisi 48

Şekil 4.2 Analizler sonucunda ortaya çıkan T=1s için büyütme oranı – giriş PGA ilişkisi 49
Şekil 4.3 Analizler sonucunda ortaya çıkan T=6s için büyütme oranı – giriş PGA ilişkisi 50
Şekil 4.4 Analizler sonucunda ortaya çıkan T=0,2s için büyütme oranı – giriş spektral ivme
ilişkisi
Şekil 4.5 Analizler sonucunda ortaya çıkan T=1s için büyütme oranı – giriş spektral ivme
ilişkisi
Şekil 4.6 Analizler sonucunda ortaya çıkan T=6s için büyütme oranı – giriş spektral ivme
ilişkisi
Şekil 4.7 Analizler sonucunda ortaya çıkan T=0,2s için büyütme oranı – zemin makaslama
dalgası hızı ilişkisi
Şekil 4.8 Analizler sonucunda ortaya çıkan T=1s için büyütme oranı – zemin makaslama
dalgası hızı ilişkisi
Şekil 4.9 Analizler sonucunda ortaya çıkan T=6s için büyütme oranı – zemin makaslama
dalgası hızı ilişkisi

ÇİZELGE LİSTESİ

Çizelge 2.1 Büyütme oranları ile kayma dalgası hızı arasındaki korelasyon ilişkileri [28] 9
Çizelge 2.2 İvme kaydı ve DBYBHY-2007 ortalama çatı yer değiştirme talep değerleri ve
oranları (Ozmen, 2011) [31] 11
Çizelge 2.3 Örnek analiz için kil ve kum zeminde kalınlık ve PGA, PGV, PGD değişimi 13
Çizelge 3.1 Yerel Zemin Sınıfları [43] 15
Çizelge 3.2 Zemin Profilleri ve Özellikleri16
Çizelge 3.3 Zemin Profilleri ve Özellikleri (Devamı)17
Çizelge 3.4 Türkiye'de gerçekleşen yıkıcı depremlerin özellikleri 20
Çizelge 3.5 Peer veri tabanından elde edilen kayıtlar
Çizelge 3.6 Japonya veri tabanından elde edilen kayıtlar [54] 27
Çizelge 3.7 İtalya veri tabanından elde edilen tek ivme kaydı [56]
Çizelge 3.8 İvme kaydı setinde kullanılan ölçeklenmiş ivme kayıtları
Çizelge 3.9 İlk 3 grup ivme kaydı seti bilgileri 44

KISALTMALAR LİSTESİ

AFAD	:	Afet ve Acil Durum Yönetimi Başkanlığı	
Amax	:	Maksimum ivme	
COSMOS	:	Consortium of Organizations for Strong Motion Observation Systems	
DBYBHY	:	Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik	
EpiD	:	Epicentral distance (episantr uzaklığı)	
ITACA	÷	Italian Accelerometric Archive	
PEER	:	Pacific Earthquake Engineering Center	
PGA	:	Peak ground acceleration (Maksimum yer ivmesi)	
PGD	:	Peak Ground Displacement (Maksimum yer deplasmanı)	
PGV	÷	Peak ground velocity (Maksimum yer hızı)	
Ы	ł	Plastisite indisi	
PROSHAKE		Professional Shake	
TBDY	:	Türkiye Bina Deprem Yönetmeliği	
Tm	:	Mean (ortalama) periyot	
Тр	:	Predominant periyot	
TÜBİTAK	:	Türkiye Bilimsel ve Teknolojik Araştırma Kurumu	
USGS	:	United States Geological Survey	
Vmax	:	Maksimum hız	
Vs	:	Makaslama dalga hızı	

1. GİRİŞ

Üzerinde bulunduğumuz zemin veya içerisinde bulunan kayalar depremin oluşturmuş olduğu dalgalara karşı bir filtre gibi davranarak çeşitli periyotlardaki genlikleri bazen arttırırken bazen de azaltabilmektedir. Bu kavram 'zemin büyütmesi' olarak bilinmektedir [1].

Zemin koşulları yapılarda hasara neden olan faktörlerden birisidir. Taban kayası ile yüzey arasında deprem dalgaları için bir geçiş ortamı oluşturduğundan, zemin koşulları dalgaların karakterlerinin değişimi açısından önemli etkiye sahiptir. Depremlerde zemin koşullarının sebep olduğu hasarları; sıvılaşma sebebiyle yapı temelinin oturduğu zeminde mukavemet kaybı, şev kaymaları, heyelanların neden olduğu büyük yer değiştirmeler ve en son da tezde çalışılmış olan deprem dalgaları üzerinde büyütme etkisi olarak sıralayabiliriz. Bu büyütme etkisi depremlerin tümünde yaşanır ve yapıda hasarlara sebep olabilir [2]. (1967 Caracas, Venezuela depremi [3]; 1985 Meksika depremi [4], 1970 Gediz [5], 1992 Landers depremi [6], 1989 Loma Prieta [7], 1999 Kocaeli depremi [8]).

Belirli bir zemin tabakalanmasının deprem dalgalarını büyütme potansiyelinin yüksek olması bölgede meydana gelebilecek bir deprem esnasında yapıların hasar göreceği anlamına gelmez. Hasar depremin büyüklüğüne ve üst yapı ile zemin tabakalarının frekansa bağlı davranışlarındaki etkileşimin türüne göre değişir. Bu bağlamda yapı farklı derecelerde hasar görebilir ya da hiç hasar görmez [2]. Zemin tabakaları ile yapının hareket ederken aynı periyoda sahip olması hasar derecesini arttıran bir durumdur. Bununla beraber deprem dalgalarının hakim titreşim periyodunun da aynı olması daha da önemli bir etkiye sahiptir. Bu iki durumun da gözlendiği zemin tabakaları ve üst yapıların rezonsa maruz kalması söz konusudur ve bu durum 'çifte rezonans' olarak bilinir. [9].

Zemin koşulları ve yer hareketi arasındaki ilişki incelenirken dikkat edilmesi gereken unsurlar vardır. Bunlar; yüzeye ulaşan deprem dalgalarının özelliklerinin tespiti, zemin tabakalarının özelliklerinin tespiti, yer hareketinin etkileri açıklanmaya çalışırken kullanılacak olan parametrelerin tespiti olarak sıralanabilir. Bu tespitlerin sağlıklı yapılması önemlidir çünkü deprem dalgalarının zemin koşullarının çeşitliğine göre farklı etkiler ortaya çıkacaktır [2, 10].

Deprem riskine karşı sismik bölgelendirme çalışmaları yapan bir grup bilim adamı (The Technical Comitee for Earthquake Geotechnical Eng., TC4, 1993) [11], bir zemin tabakasında yüzeye yakın bölgelerde elde edilen kayma dalgası hızının, o zeminin büyütme seviyelerinin belirlenmesi açısından büyük öneme sahip bir zemin parametresi olduğunu belirtmiştir [11]. Shima (1978) [12], ana kayada ve zemin yüzeyinde ölçülen kayma dalgası hızlarının birbirine oranına bağlı olarak büyütme faktörünün analitik olarak hesaplanabileceğini göstermiştir.

2. ZEMİN BÜYÜTMESİ KONUSUNDA BİLGİLER

2.1 Yerel Zemin Durumunun Yer Hareketi Üzerindeki Etkisi

Yeraltında bir deprem meydana geldiğinde depremin oluşturduğu sismik dalgalar zemin tabakaları boyunca hızla yayılır. Bu dalgalar yüzeye vardığında dakikalara varabilecek sürelerde titreşimler üretebilir. Bu titreşimin şiddeti ve süresi, depremin büyüklüğüne, deprem kaynağına olan mesafeye ve o bölgedeki zemin özelliklerine bağlı olarak değişir. Depremin meydana geldiği nokta düşünüldüğü zaman üretilen bu dalgaların aldığı mesafenin çoğunluğu kaya özelliğindeki bölgelerde geçer fakat dalgalar yüzeye erişirken son bölgelerde farklı özelliklerdeki yumuşak bölgelerden geçmektedir. Çakıl, kum ve kil gibi kayaya göre daha yumuşak olan bu zemin tabakaları üretilen sismik dalgalar için adeta bir süzgeç gibidir ve meydana gelen titreşimin karakterini büyük ölçüde etkiler. Meydana gelen dalgaların zemin tabakalarından geçerken uğradığı bu değişimlere 'zemin etkisi' adı verilir. Bu değişim çoğu zaman genliklerin artması olarak meydana geldiğinden zemin etkisi terimi; zemin transfer fonksiyonu, zemin büyütmesi ve zemin tepkisi gibi adlarla da kullanılmaktadır. [13].

Zeminlerin mühendislik yönünden özellikleri birçok araştırmaya konu olmuştur ve bu çalışmalarda sismik hareket etkisi altında ilk 25-30 m aralığındaki zeminlerin yapı davranışını belirlemede daha çok öneme sahip olduğu görülmüştür (Finn 1991) [14], Ansal ve diğ. (1994) [15] ve Anderson ve diğ. (1996) [16]. Sismik dalgaların özelliklerinin zemine göre değişimiyle ilgili yapılan Power ve diğ, (1986) bir çalışmada da Japon aşağı kuyu (down – hole array) kayıt merkezlerinde, maksimum ivme değeri 0.1g olan bir deprem için 60 m'ye kadar alınmış olan kayıtların Shake programı ile analizi sonucunda en fazla büyütme oranına sahip olduğu bölgenin 10-20m aralığında olduğu belirtilmiştir. Bu çalışmada elde edilen kaydın frekans içeriğinin de önemli değişikliklere uğradığı belirtilmiştir.

Ülkemizde 13 Mart 1992 tarihinde meydana gelen Erzincan depreminde yüzeyden elde edilen kaydın (doğu-batı bileşeni) frekans içeriğinin ve maksimum ivme değerinin derinlikle değişimi incelenmiş ve 25 m derinlikte elde edilen spektrumların yüzey tabakalarının 0.1-0.3 s periyot aralıklarındaki davranışta etkili olduğu fakat 100 m derinlikte elde edilen

spektrumların 25 m den daha aşağıda olan tabakaların 0.5-0.7 s periyotlarında etkili olabileceği görülmüştür. Ansal (1994) [15] ve Lav (1994) [2].

Yapılan tüm bu çalışmalar ilk 30 m'nin çok kritik olduğunu ve yapılan sondajlarda en az 30 m'ye inilmesinin önemli olduğunu göstermektedir.

Yüzeydeki yer hareketi karakterini belirleyen parametrelerden biri de taban kayasında meydana gelen yer hareketinin şiddetidir. Yumuşak zemin tabakalarının taban kayasında meydana gelmiş olan farklı yer hareketlerine göre değişkenlik gösteren davranışları şekil 2.1'de görülmektedir.

Şekil 2.1 Taban kaya – yumuşak zemin arasındaki maksimum ivme ilişkisi (Idriss) [17,18]

Bu eğri de Idriss [17,18] tarafından 1985 Mexico City ve 1989 Loma Prieta depremlerinin verileri kullanılarak yumuşak zeminler için modifiye edilmiştir. Taban kayası ivmesinin 0.05-0.1 g olduğu değerlere, değişken kalınlık ve yumuşak kil tabakasının hakim olduğu bölgelere bakacak olursak büyütme oranlarının 1.5 ile 4 kat arasında olduğunu görebilmekteyiz. Şekil 2.1'deki gözlem ve analizlerde de açıkça görüldüğü gibi yumuşak zeminlerde ortalama büyütme oranı taban kayasındaki ivme artışı ile beraber düşme eğilimi göstermektedir. Taban kayasındaki düşük ivmelerde oran 2.5-3 arası iken 0.4 g lik bir kayıt için bu oran 1 olarak görülmektedir. Batı Amerika'da meydana gelmiş magnitüdü 6.5 olan

deprem kayıtları alınarak yapılan bir çalışma Seed ve diğ. [19] ile farklı zeminlerde meydana gelen pik ivmeler için istatistiksel bir çalışmaya bağlı olarak bir eğri önerilmiştir.

Geçmiş depremlerde yapılan aletsel ölçümlerin yer hareketini hem zaman hem de frekans yönünden etkilediği bilinmektedir. Deprem hareketine yerel zemin özelliklerinin etkisi birçok gözlem ve çalışma ile kanıtlanmıştır ve bunlardan en çok bilinenlerinden biri de 1967 Karakas depremidir. Bu depremde hem yapının hem de zemin tabakalarının aynı periyotta hareket ettiği ve bunun sonucunda da rezonans durumunun ortaya çıktığı gözlemlenmiştir. Karakas bölgesindeki zeminin rijitliği relatif olarak üniformdur ve bu yüzden zeminin periyoduna yakın periyoda sahip binalarda meydana gelen hasarların çoğunluğuna zemin derinliğindeki değişimin sebep olduğu belirtilmektedir [20].

Bir diğer örnekte ise zeminin ve yapının periyotlarının aynı zamanda yer hareketinin periyodu ile çakışmasıdır. 1985 Meksika depreminde odaktan 400 km uzaklıktan olan 50 m kalınlığındaki zemin tabakaları (Vs=1000 m/s), sert zemin bölgelerine göre sismik dalga genliklerini 5 kat daha fazla büyültmüş ve bölgedeki yüksek binalara (10-20 kat) ağır hasar vermiştir. Bölgedeki yumuşak kil tabakalarında 2 saniye periyodunda oluşan spektral ivmelerin kayaya göre 15-20 kat daha fazla olduğu görülmüştür. Killerin daha kalın olduğu bölgelerde de 3-4 saniye arasındaki periyotlarda spektral ivmenin 15 kat büyüdüğü fakat bu saniyelerde taban kaya ivmeleri düşük olduğundan yapı hasarlarına sebep olmadığı belirtilmektedir [21].

Yerel zemin şartlarının ivme değeri üzerindeki etkisini gösteren diğer bir örnek ise 1999 Kocaeli depremidir. İstanbul'da faya eşit uzaklıktaki bölgelerde yapılan ölçümler incelendiğinde en büyük ivme değerlerinin Maslak'ta 0.05g, Ataköy'de 0.17g ve Ambarlı'da 0.25g olduğu görülmüştür. Sonuç olarak yerel zemin şartlarına göre ivme değişimi 5 kata kadar farklılık gösterebilmektedir [22].

Yerel zemin şartlarının etkisi yer hareketi ile olan ilişkinin seviyesine göre değişebilmektedir. Taban kayasında ivme değerlerinin yüksek olması diğer tabakalara ulaşan kayma gerilmelerinin yüksek olmasına ve bunun sonucunda da yumuşak zeminlerde elasto-plastik davranışlara sebep olmaktadır. Bu durumda yüzeyde oluşacak ivme değerlerinde bir azalma görülebilir. 1933 Long Beach (Kaliforniya), 1971 San Fernando ve 1994 Northridge depremlerinin hasar dağılımı ile ilgili yapılan çalışmalarda [23,24],

zeminde büyük yer değiştirmelerin ve hareketlerin gözlemlendiği bölgelerin ve binalarda yüksek hasar olan bölgelerin farklı olduğu gözlemlenmiştir. Bu durum zeminin kötü olduğu yerlerde hasarın daha çok olacağı görüşüne uymamaktadır. Büyük deformasyon davranışı göstermiş zeminlerin olduğu bölgelerdeki binaların hasarında azalma görülebileceği belirtilmiştir.

Tezcan ve diğ., (2002) 1999 Kocaeli depremi dış merkezinin 120 km batısında bulunan Avcılar (İstanbul) bölgesindeki zemin büyütmesi olgusunu 8 temsili zemin profil kombinasyonunu ile Shake programını kullanarak incelemiştir. Analizlerde, 1999 Kocaeli depremi İzmit kaydı farklı modifikasyonlar ile kullanılmıştır. Analiz sonuçları büyütme faktörleri 2.5 ile 5 arasında değişen, 0.70, 1.00 ve 1.60 sn lerde üç pik periyota işaret etmiştir. Bu durumun 1999 Kocaeli depreminde, bölgede periyotları 0.70 ile 1.00 sn arasında değişebilen 5-8 katlı binalarda gözlenen hasar ile uyumlu olduğu düşünülebilir. Avcılar' daki hasar uzak kuvvetli yer hareketine rağmen ana kayadaki düşük ivme ile birlikte yumuşak zemin tabakalarında zemin büyütmesinin bir sonucu olduğu ileri sürülmektedir (Tezcan ve diğ., 2002). [25].

2.2 Doğrusal Olmayan Zemin Davranışı

Doğrusal olmayan zemin davranışını incelemek için değişmeyen kalınlıkta histerik davranış gösteren bir zemin tabakası dikkate alınır. Düşük titreşimlerde zeminin davranışı doğrusal (elastik) olacağından büyütme oranlarını etkileyen faktörler makaslama dalga hızı, kayma dalgası hızı, periyod ve tabaka derinliği gibi faktörler olacaktır. Fakat yer hareketinin genliği arttıkça zeminde meydana gelecek olan yer değiştirmeler de artacak ve nonlineer bir davranış gözlemlenecektir.

Nonlineer olan bu davranış modelinde makaslama dalga hızı ve sönüm genliği birbirine bağlıdır. Denklemde de görüldüğü gibi zemin tabakasındaki temel rezonans farkı deprem dalgasının yayılma hızı ile doğru orantılıdır. Bu yüzden büyüyen yer değiştirmeler ile birlikte kayma dalgası hızı azalacak ve bu elde edilen frekans değeri daha düşük değerlere doğru kayacaktır. Bununla beraber sönüm artışı ile de zayıf bir yer hareketine göre kuvvetli yer hareketi esnasında zeminin büyütmesi azalacaktır. [13].

 $f_0 = Vs / 4H$ (temel frekans)

Daha önce yapılmış deneysel çalışmalar ve ivme kayıtları bu tür durumlarda zeminin davranışının doğrusal davranışa yaklaştığını göstermektedir. H=20m tabaka kalınlığına ve Vs=100 m/s kayma dalgası hızına sahip bir zemin tabakasında 15, 50, 100 ve 200 olmak üzere farklı PI değerleri kullanılarak hesaplamalar yapılmıştır. Sonuçlar şekil 2.2'de görülmektedir.

Şekil 2.2 Büyütme faktörünün plastisite indisleri ile değişimi

Görülmektedir ki; plastisite indisi arttıkça zemin büyütme oranlarında ve spektral ivme değerlerinde artışlar görülmektedir. Zemin hakim periyodunda ise kısalmalar gözlemlenmiştir [26].

Plastisite indisi 50 olan kil için Seed ve Idris modelinde (1970) [27]'in kumlu ve killi zeminlerin davranışı şekil 2.3'de görülmektedir. Kumlu zeminlerin büyütmesi ile plastisite indisi 50 olan zeminlerin büyütmesi arasında yaklaşık 3 kat fark olduğu görülmektedir.

Yapılan bu çalışmada [27] çok yüksek plastisiteli killerin düşük plastisiteli killere göre 3-4 kat arası daha fazla bir büyütme gösterdiği mevcut zeminin tabaka kalınlığının artması ile de bu büyütmenin azalacağı sonucuna varılmıştır.

Şekil 2.3 Büyütme faktörünün kum ve kil ortamlarında frekansa göre değişimi

2.3 Makaslama Dalga Hızının Zemin Büyütmesi Çalışmasındaki Önemi

Makaslama dalgası hızı zeminlerin deprem dalgaları üzerinde meydana getireceği büyütmelerin hesaplanmasında kullanılan en önemli dinamik özelliklerden biridir. Mevcut zemin tabakalarının rijitliğiyle ilgili doğrudan bilgi verdiğinden zemin davranışını belirlerken bu parametreyi kullanmak önemlidir. Zeminin makaslama dalga hızını belirleyen ve etkileyen birçok faktör vardır. Bunlar derinlik, zeminin türü, jeolojik yük, konsolidasyon ve boşluk oranı olarak sıralanabilir. Ayrıca Vucetic ve Dobry (1991) [27]'in yaptığı çalışmalarda belirttiği plastisite indeksinin de maksimum kayma modülü üzerinde etkisi olduğundan kayma dalgası hızını etkilemektedir [13].

Yüzeye yakın zemin tabakalarının kayma dalgası hızı değerleri zeminin ivme üzerinde gerçekleştireceği büyütme oranı için oldukça önemli bir parametre olarak kabul edilmektedir. çizelge 2.1 ve Şekil 2.4'de farklı araştırmacılar tarafından yapılmış büyütme oranları ile yüzeye yakın zemin tabakalarının kayma dalgası hızı arasındaki korelasyonlar açıkça görülmektedir.

	Eşitlikler	
Midorikawa (1087)	A=68V ₁ ^{-0.6} (V1 < 1100 m/sn)	
Wildoffkawa (1967)	=1.0 (V1 < 1100 m/sn)	
Joyner and Fumal (1984)	$A = 23V_2^{-0.45}$	
Borcherdt vd. (1991)	$AHSA = 700/V_1$ (zayıf hareket için)	
	=600/V ₁ (kuvvetli hareket için)	

Çizelge 2.1 Büyütme oranları ile kayma dalgası hızı arasındaki korelasyon ilişkileri [28]

A: Zemindeki en büyük hız için bağıl büyütme faktörü

AHSA: 0.4 ~ 2.0 s periyod aralığında ortalama yatay spektral büyütme

V1: 30 m derinlik içerisindeki ortalama kayma dalgası hızı (m/sn)

V2: Bir saniye periyotlu dalga için ¼ dalga boyu derinliğe kadar ortalama kayma dalgası hızı (m/s)

Çizelge 2.1 de bulunan bağıntılar aracılığıyla belirlenen kayma dalgası hızlarının kullanımı, zemin tabakaları için Ansal (1994) [15] tarafından tanımlanmış olan eşdeğer kayma dalgası hızı hesaplanması ile gerçekleşmiştir. Bu eşdeğer kayma dalgası hızı, zemin tabakaları boyunca ağırlıklı ortalamalar kullanılarak hesaplanan bir değerdir. Zemin rijitliği hakkında fikir veren önemli parametrelerden biridir. Eşdeğer kayma dalgası hızı jeoteknik araştırmalarda kritik derinlik olarak kabul edilen 25-30m aralığında hesaplanmalıdır. Bazen zemin tabakası kendi içerisinde farklı özellikler gösterebilir. Bunun gibi heterojen tabakalarda birtakım üniform özelliklere sahip olduğu kabul edilmelidir [15].

Şekil 2.4 Bağıl büyütme faktörlerinin karşılaştırılması

2.4 İvme Kaydı ile Yapı Deplasman Talebi Oranı İlişkisi

Yapılarda deprem sebebiyle oluşacak yük etkileri çoğu durumda özel veya genel bir spektrumdan alınmaktadır. Örneğin ülkemizdeki yapılar için deprem yönetmeliğinde farklı zemin grupları için tanımlı tepki spektrumları verilmektedir (DBYBHY-2007, 2007). Deprem etkileri farklı deprem bölgeleri için tanımlanmış olan yer ivme değerlerinin bu spektruma göre değerlendirilmesi ile hesaplanmaktadır. Şu halde tepki spektrumları depremlerin yapı üzerindeki etkilerinin belirlenmesinde kritik önemdedir.

Önceki bölümlerde de belirtildiği gibi DBYBHY-2007'de zeminlerin tanımlanması ile ilgili olarak detaylı bilgiler verilmektedir [29]. Bu bilgiler ile yönetmelik 2. Bölümde verilen spektrum değerlerinin uyum sağlaması yönetmeliğin tutarlılığı açısından önemli bir konudur. Ancak yönetmeliğimizde verilen zemin sınıflandırması ile uyumlu ivme kayıtlarının elde edilerek değerlendirme yapılması zorluklar içermektedir. Mevcut depremlere ait ivme kayıtları genel olarak literatürde ilk 30 m kayma dalga hızına göre yer almaktadır (PEER internet sayfası) [30].

Daha önce yapılan bir tez çalışmasında ivme kayıtlarının alındığı zeminlerin ilk 30 m kayma dalga hızına göre ile DBYBHY-2007 zemin grupları ile eşleşebileceği varsayımı ile deplasman talep değerleri üzerine bir çalışma yapılmıştır (Özmen, 2011), [31]. 864 bina modeli ve 264 ivme kaydı için 228096 deplasman talebi analizi içeren bu çalışma sonuçlarına göre 50 yılda aşılma olasılığı %50 olan depremin ve 50 yılda aşılma olasılığı %10 olan deprem grupları için ortalama değerler dikkate alındığında yönetmeliğe göre hesaplanan deplasman istemlerinin güvensiz yönde olduğu görülmüştür (Çizelge 2.2). Bazı zemin grupları için de sınır çok yakın değerler elde edilmiştir.

		Çatı Yer o	leğiştirme (m)	Oran	
İvme Grubu	Zemin Grubu	İvme Kaydı	Yönetmelik	(Kayıt/Yönetmelik)	
	A/Z1	0,039	0,030	1,32	
0.2g	B/Z2	0,043	0,037	1,16	
0,2g	C/Z3	0,046	0,049	0,95	
	D/Z4	0,049	0,063	0,78	
	A/Z1	0,070	0,060	1,17	
0.4 a	B/Z2	0,076	0,075	1,02	
0,+g	C/Z3	0,078	0,102	0,77	
	D/Z4	0,076	0,140	0,54	
	A/Z1	0,086	0,090	0,96	
0.6g	B/Z2	0,103	0,113	0,91	
0,0g	C/Z3	0,112	0,156	0,72	
	D/Z4	0,124	0,219	0,57	

Çizelge 2.2 İvme kaydı ve DBYBHY-2007 ortalama çatı yer değiştirme talep değerleri ve oranları (Ozmen, 2011) [31]

Ancak yukarda belirtilen nedenler ile tam yönetmeliğimize uygun ivme kaydı seti oluşturulamadığından durumun net olarak ortaya konması mümkün olmamıştır, Bununla birlikte, yönetmelik spektrum değerlerinin güvensiz olabileceğine dair işaretler elde edildiği düşünülebilir.

2.5 Taban Kayasında Oluşan Yer Hareketinin Zemin Üzerindeki Halinin Hesaplanması

Zemin özellikleri modellenerek, ivme kayıtlarının farklı zeminler için yüzeydeki halleri ProShake (ProShake) [32] yazılımı ile analiz edilerek belirlenebilmektedir. Bu yazılım farklı adlarla (Shake91, EduShake, ProShake) 1972 yılından beri bilinmekte (Schnabel et al., 1972) [33] ve geliştirilmekte, ilgili konuda kendini ispatlamış ve benzer konuda yönetmelik hazırlanması dahil birçok çalışmada kullanılmış ve kullanılmaktadır (BSSC, 1997; Bour et al., 1998; Yang et al., 2003; Kienzle et al., 2006; Boominathan et al., 2008; Rosset and Chouinard, 2009; Yamada et al., 2010; Meshram and Dandge, 2011, Caserta et al., 2012, vb,) [34-42]. Bu yazılım ile pilot bazı analizler yapılmıştır. Basit ve açıklayıcı olması bakımından taban kayası üzerinde tek tabaka olarak farklı kalınlıklarda kum ve kil için girdi ivme kaydının değişimine ait örnek değerler çizelge 2.3'te; aynı kaydın 500 m kil ve kum tabakası üstünde elde edilen ivme spektrumu ise Şekil 2.5'te verilmiştir. PGA maksimum yer ivmesi, PGV maksimum yer hızı, PGD maksimum yer deplasmanıdır. Girdi yer hareketi değerlerinde İvme ve deplasmanda 3 kata, hızda ise 2,5 kata varan değişimler çizelge 2.2'de, spektrumdaki önemli değişim ise Şekil 2.5'te açıkça görülmektedir,

		KİL		KUM		
H(m)	PGA(g)	PGV(m/s)	PGD(m)	PGA(g)	PGV(m/s)	PGD(m)
Girdi İvme Kaydı	0,198	0,107	0,010	0,198	0,107	0,010
5	0,199	0,109	0,010	0,201	0,111	0,010
20	0,426	0,117	0,011	0,642	0,227	0,015
50	0,546	0,234	0,018	0,404	0,213	0,018
150	0,359	0,199	0,023	0,281	0,151	0,022
500	0,227	0,152	0,020	0,131	0,077	0,034

Çizelge 2.3 Örnek analiz için kil ve kum zeminde kalınlık ve PGA, PGV, PGD değişimi

Şekil 2.5 Örnek analiz için verilen ivme kaydının 500 m kil ve kum zemin üstünde ivme spektrum

3. ÇALIŞMA YÖNTEMİ

3.1 Zemin Profillerinin Belirlenmesi

Çalışma kapsamında yönetmeliğimizde yer alan farklı zemin grupları için ana kayada oluşan yer hareketinin bu zeminlerden geçmesiyle oluşan değişim, parametrik bir bakış ve ülkemiz deprem yönetmeliği odaklı olarak incelenmesi planlanmaktadır. Böylelikle farklı özellikteki zeminler için deprem etkilerinin değişiminin daha iyi anlaşılması ve daha doğru tanımlanmasına katkı sağlaması amaçlanmıştır.

Deprem yönetmeliklerinde ivme spektrumları zemin durumuna göre farklı olarak verilmektedir. TBDY-2016'da zemin tanımları ile ilgili olarak detaylı açıklamaların yer aldığı bir tablo bulunmaktadır (Çizelge 3.1). Bu zemin sınıflarına uygun olarak da tepki spektrumu değerleri belirlenmektedir.

TBDY-2016 incelendikten sonra zemin sınıflarının belirlenmesindeki faktörlerde önceki yönetmeliğe göre önemli değişikler olduğu görülmüştür. Tüm zemin sınıflarında hem kayma dalgası hızı hem de malzeme türüne göre yapılan ayrımlar değişmiş olduğundan hazırlanmış olan üst zemin TBDY-2016'ya uygun olarak belirlenmiştir. Yönetmeliğin belirlediği yerel zemin sınıfları aşağıdaki tablodaki gibidir (TBDY-2016 Bölüm 16.5) [43].

Yerel		Üst 30 metrede ortalama			
Zemin Sınıfi	Zemin Zemin Cinsi Sınıfi		(N ₆₀) ₃₀ [darbe /30 cm]	(c _u) ₃₀ [kPa]	
ZA	Sağlam, sert kayalar	> 1500	-	-	
ZB	Az ayrışmış, orta sağlam kayalar	760 - 1500	-	-	
ZC	Çok sıkı kum, çakıl ve sert kil tabakaları veya ayrışmış, çok çatlaklı zayıf kayalar	360 - 760	> 50	> 250	
ZD	Orta sıkı – sıkı kum, çakıl veya çok katı kil tabakaları	180 - 360	15 - 50	70 - 250	
ZE	Gevşek kum, çakıl veya yumuşak – katı kil tabakaları veya PI > 20 ve $w > %$ 40 koşullarını sağlayan toplamda 3 metreden daha kalın yumuşak kil tabakası ($c_u < 25$ kPa) içeren profiller	< 180	<15	< 70	
ZF	 Sahaya özel araştırma ve değerlendirme gerektiren zeminler: 1) Deprem etkisi altında çökme ve potansiyel göçme riskine sahip zeminler (sıvılaşabilir zeminler, yüksek derecede hassas killer, göçebilir zayıf çimentolu zeminler vb), 2) Toplam kalınlığı 3 metreden fazla turba ve/veya organik içeriği yüksek killer, 3) Toplam kalınlığı 8 metreden fazla olan yüksek plastisiteli (<i>PI</i> > 50) killer, 4) Çok kalın (> 35 m) yumuşak veya orta katı killer. 				

Çizelge 3.1	Yerel Zemin	Sınıfları [43]
-------------	-------------	----------------

Ayrıca önceki yönetmelikten farklı olarak ZF adlı bir zemin sınıfı getirilmiş ve bu çeşit zeminlerde özel çalışma yapılması gerektiği belirtilmiştir. Buna göre ZF sınıfı olarak tanımlanan zeminlerin yüzeyindeki deprem yer hareketini belirlemek üzere sahaya özel zemin davranış analizinin yapılması zorunludur (TBDY-2016, Bölüm 16.5). Bu sebeple ZF zemin de dahil edilerek çizelge 3.2'de görülen 33 adet zemin üst profili içeren yeni bir model seti oluşturulmuştur.

Model setinde zemin sınıfları arasında yer alan geçiş değerlerinde zeminler bulunmasına dikkat edilmiştir. Çizelge 3.2'de yer alan 1. Zemin sınıfı modelin yönetmeliğe göre sınıfının gösterirken sınır değere yakın olan modellerde farklı olan 2. Zemin sınıfı modelin özelliklerinde çok küçük bir değişiklik ile yer alabileceği diğer zemin sınıfınıı göstermektedir.

Zemin No	Tabaka	Birim	Kalınlık (m)	Bir, Ağırlık (kN/m3)	Max, Shear Mod, (Mpa)	Kayma Dalgası Hızı (m/s)	Vs30 (m/s)	1, Zemin Sınıfı	2, Zemin Sınıfı
1	1	Sağlam, sert Kayalar	Sonsuz	25,50	5851,01	1500,00	1500,00	ZA	ZB
2	1	Az ayrışmış, orta sağlam Kayalar	Sonsuz	25,00	1472,57	760,00	760,00	ZB	ZC
3	1	Kum	3,00	18,60	37,18	140,00	760,87	ZB	ZC
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
4	1	Kil	3,00	15,70	31,38	140,00	760,87	ZB	ZC
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
5	1	Çakıl	3,00	16,70	33,38	140,00	760,87	ZB	ZC
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
6	1	Kum	3,00	18,60	1095,59	760,00	1366,91	ZB	ZB
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
7	1	Kil	3,00	15,70	924,77	760,00	1366,91	ZB	ZB
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
8	1	Çakıl	3,00	16,70	983,68	760,00	1366,91	ZB	ZB
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
9	1	Az ayrışmış, orta sağlam Kayalar	30,00	25,00	1472,57	760,00	760,00	ZC	ZB
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
10	1	Az ayrışmış, orta sağlam Kayalar	30,00	25,00	3255,40	1130,00	1130,00	ZB	ZB
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
11	1	Az ayrışmış, orta sağlam Kayalar	15,00	25,00	1472,57	760,00	1008,85	ZB	ZB
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
12	1	Az ayrışmış, orta sağlam Kayalar	15,00	25,00	3255,40	1130,00	1288,97	ZB	ZB
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
13	1	Az ayrışmış, orta sağlam Kayalar	3,00	25,00	1472,57	760,00	1366,91	ZB	ZB
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
14	1	Az ayrışmış, orta sağlam Kayalar	3,00	25,00	3255,40	1130,00	1452,44	ZB	ZB
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
15	1	Kum	15,00	18,60	61,46	180,00	321,43	ZD	ZD
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
16	1	Kil	15,00	15,70	51,87	180,00	321,43	ZD	ZD
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
17	1	Çakıl	15,00	16,70	55,18	180,00	321,43	ZD	ZD
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			

Çizelge 3.2 Zemin Profilleri ve Özellikleri

Zemin No	Tabaka	Birim	Kalınlık (m)	Bir, Ağırlık (kN/m3)	Max, Shear Mod, (Mpa)	Kayma Dalgası Hızı (m/s)	Vs30 (m/s)	1, Zemin Sınıfı	2, Zemin Sınıfı
18	1	Kum	15,00	18,60	245,83	360,00	580,65	ZC	ZC
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
19	1	Kil	15,00	15,70	207,50	360,00	580,65	ZC	ZC
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
20	1	Çakıl	15,00	16,70	220,71	360,00	580,65	ZC	ZC
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
21	1	Kum	15,00	18,60	1095,59	760,00	1008,85	ZB	ZB
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
22	1	Kil	15,00	15,70	924,77	760,00	1008,85	ZB	ZB
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
23	1	Çakıl	15,00	16,70	983,68	760,00	1008,85	ZB	ZB
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
24	1	Kum	30,00	18,60	61,46	180,00	180,00	ZE	ZD
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
25	1	Kil	30,00	15,70	51,87	180,00	180,00	ZE	ZD
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
26	1	Çakıl	30,00	16,70	55,18	180,00	180,00	ZE	ZD
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
27	1	Kum	30,00	18,60	138,28	270,00	270,00	ZD	ZD
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
28	1	Kil	30,00	15,70	116,72	270,00	270,00	ZD	ZD
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
29	1	Çakıl	30,00	16,70	124,15	270,00	270,00	ZD	ZD
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
30	1	Kum	30,00	18,60	594,84	560,00	560,00	ZC	ZC
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
31	1	Kil	30,00	15,70	502,09	560,00	560,00	ZC	ZC
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
32	1	Çakıl	30,00	16,70	534,07	560,00	560,00	ZC	ZC
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			
33	1	Kil	10,00	15,70	36,02	150,00	375,00	ZF	ZF
	2	Taban kaya	Sonsuz	25,50	5851,01	1500,00			

Çizelge 3.3 Zemin Profilleri ve Özellikleri (Devamı)

Zemin profillerindeki tabakalarda bulunan malzemelerin hacim ağırlıkları Dr. Turgay Beyaz'ın 2004 yılında yapmış olduğu 'Zemin Etkisinden Arındırılmış Deprem Kayıtlarına Göre Türkiye için Yeni Bir Deprem Enerjisi Azalım Bağıntısının Geliştirilmesi' adlı doktora tezi dikkate alınarak belirlenmiştir. Tez kapsamında yapılan çalışmalarda bu değerler ülkemiz ivme kaydı istasyonlarından alınan zeminin düşey stratigrafisi belirlendikten sonra kuyu jeofiziği yöntemiyle belirlenmiştir. Kuyu içi sismik deneyler yardımıyla zemin özellikleri belirlenmiştir ve bu ölçümler, yüzeyde oluşturulan dalga sinyallerinin kuyu içindeki jeofona varana kadar geçen süreden yararlanılarak yapılmıştır (Beyaz 2004).

3.2 İvme Kaydı Setinin Oluşturulması

İvme kaydı setinin doğaya uygun olması bakımından gerçek deprem kayıtlarından oluşmasına önem verilmiştir. İvme kayıtlarının taban kayası tanımına uygun olarak sert kaya zeminde kaydedilmiş gerçek deprem kayıtlarından seçilmesi amaçlanmıştır. Farklı genlik ve frekans içeriğinde kayıtlar seçilmesi parametrik çalışmanın amacı ve doğru değerlendirmelere ulaşılması açısından önemli görülmektedir.

Genlik açısından yönetmeliğimizde pik yer ivmesi dikkate alındığından ivme kayıtları PGA (maksimum yer ivmesi) olarak 0 ve 0,6g arasında her 0,05g'lik adımda farklı sayılarda kayıt bulunacak şekilde seçilmiştir. İlk 4 grupta (0-0,2g) 8'er, sonraki 4 grupta (0,2-0,4 g) 7'şer, son (0,4-0,6g) 4 grupta ise 6'şar deprem kullanılmıştır. Bu şekilde toplam kayıt sayısı 84'e ulaşmıştır.

Her bir aralıkta farklı sayıda deprem kullanılmasının sebebi farklı zeminlerle yapılan pilot evrişim (convolution) çalışmalarında kayıtların PGA değerlerinin 1-3 kat arasında artış göstermesidir. Bu ciddi artış gözleminden dolayı düşük ivmeli kayıtlara belli oranda ağırlık verilmiştir. Her 0,05g adımında farklı frekans içeriğini yansıtan kayıtlar bulunması için, seçilen kayıtların ivme spektrumları incelenerek, farklı predominant periyot ve PGV/PGA değerlerine sahip olmasına dikkat edilmiştir. Bilindiği gibi predominant periyot, ivme kaydı frekans içeriğindeki en büyük genliğe sahip dalganın periyodu olarak tanımlanmaktadır. PGV/PGA oranı ise basit harmonik bir dalga için T/2 π değerine sahiptir (Kramer, 1996) [44]. PGV/PGA oranının frekans içeriği ve ivme spektrumunun şekli ile ilgili önemli bir belirteç olduğu bilinmektedir (McGUIRE, 1978; Tso et al.,1992; Xu et al., 2008; Xu and Xie, 2009; Tselantis and Danciu, 2010; Kianoush and Ghaemmaghami, 2011), [45,46,47,48,49,50].

İvme kaydı seçimine büyük hassasiyet gösterilmiştir. Bununla birlikte ivme kaydı seçimi tez başlangıcında öngörülenden çok daha zor olmuştur. İstenilen özellikte ivme kaydı setinin oluşturulması için kaydedilen doğal deprem setlerinde önemli eksiklikler bulunmaktadır. Böyle bir çalışmanın literatürde daha önce yapılmamış olmasının nedenlerinden birinin de bu ivme kaydı eksikliği olduğu söylenebilir.

Bazı aralıklar için, istenilen özelliklere sahip gerçek deprem ivme kaydı bulunamaması durumunda, sentetik ivme kayıtları üretilmesi, bilinen bazı zeminlerde elde edilmiş kayıtların ters evrişim (deconvolution) ile taban kayası haline ulaşılması ve/veya küçük değerlerde olmak üzere bazı ivme kayıtlarının ölçeklenmesi yöntemleri kullanılmıştır. Aynı zamanda üretilen sentetik kayıtların veya ölçeklenen kayıtların özelliklerinin gerçek deprem kayıtlarına uygun olmasına özen gösterilmiştir. Bu şekilde farklı genlik ve frekans içeriğine sahip 84 ivme kaydı seçilmiştir.

İvme kaydı seçimini 4 ana başlıkta inceleyebiliriz;

- Gerçek Deprem Kayıtları

- Türk Deprem Kayıtlarının Ters Evrişim Yöntemiyle Taban Kayası Özelliğinde Kullanılması

- Mevcut Depremlerin Ölçeklenmesi
- Sentetik (Artificial) Deprem Kayıtları

3.2.1 Türkiye'de Gerçekleşen Yıkıcı Depremlerin Özellikleri

Çalışma kapsamında Türkiye odaklı bir çalışma yürütülmesi açısından Türkiye depremlerine yönelik bir ön araştırmanın yararlı olacağı öngörülmüştür. Evrensel ve Türkiye'de gerçekleşen depremlerin bazı noktalarda birbirinden farklı olmadığı düşünülmüş olsa da Türkiye'de daha önce gerçekleşmiş yıkıcı (can veya mal kaybı yaşanmış, magnitüd ≥ 6 olan) depremlerin odak derinliği ve fay mekanizması açısından incelenmesinin genel karakteri
saptama açısından yararlı olacağı düşünülmüştür. Çizelge 3.3'te 1903-2011 yılları arasında ülkemizde gerçekleşmiş yıkıcı depremler bulunmaktadır. Bu depremlere ait bilgiler farklı kaynaklardan alınmış olduğundan (Vikipedi 2016, Kandilli 2016, AFAD 2016) herbiri tek tek AFAD'ın veritabanı değerleri ile kontrol edilip magnitüd, magnitüd türleri ve odak derinliği parametreleri uyumlu bir şekilde elde edilmiştir (AFAD 2016), [51].

Bazı depremlerin mekanizma bilgisi olmadığından fayların eğiklik açısı (rake angle) değerlerine bakılarak mekanizma türleri belirlenmiştir (Davis ve Reynolds 1996) [52]. Fay atım mekanizması bilgisi için AFAD, TÜBİTAK ve ODTÜ ortak çalışması olan 'Türkiye Ulusal Kuvvetli Yer Hareketi Veri Tabanı' kaynak alınmıştır (AFAD 2016). Tüm bu araştırmalara karşın 1935 ve öncesi bazı depremlerde fay mekanizma bilgisine ulaşılamamıştır. Elde edilen tüm bilgiler çizelge 3.3'te özetlenmiştir.

Tarih	Zaman	Yer	Enlem	Boylam	Can Kaybı	Magnitüd	Odak Derin. (km)	Mekanizma
1903	01:46	Malazgirt, Muş	39,14	42,65	600	6,3 (MS)	30	
1912	03:29	Mürefte Tekirdağ	40,75	27,20	216	7,4 (MS)	10	Doğrultu Atımlı
1914	00:07	Burdur	37,82	30,27	300	7 (MS)	10	
1924	16:34	Horasan, Erzurum	40,00	42,10	60	6,8 (MS)	10	
1928	02:29	İzmir	38,50	28,00	50	6,2 (MS)	35	
1929	08:37	Suşehri, Sivas	40,20	37,90	64	6,1 (MS)	10	
1935	16:41	Erdek, Balıkesir	40,40	27,50	5	6,2 (MS)	35	
1938	12:59	Kırşehir	39,10	34,00	160	6,6 (MS)	10	Doğrultu Atımlı
1939	02:36	Dikili,İzmir	39,10	26,80	60	6,6 (MS)	10	
1939	23:57	Erzincan	39,77	39,53	32700	7,9 (MS)	20	Doğrultu Atımlı
1942	19:01	Bigadiç, Balıkesir	39,20	28,20	16	6,1 (MS)	10	

Çizelge 3.4 Türkiye'de gerçekleşen yıkıcı depremlerin özellikleri

1942	14:03	Erbaa,Tokat	40,87	36,47	3000	7 (MS)	10	
1943	17:32	Hendek, Adapazarı	40,60	30,50	336	6,6 (MS)	10	Doğrultu Atımlı
1943	22:24	Ladik,Samsun	41,05	33,72	4000	7,2 (MS)	10	
1944	03:25	Gerede,Bolu	40,80	32,20	3959	7,3 (MS,9	10	Doğrultu Atımlı
1944	04:34	Ayvalık,Balıkesir	39,37	26,53	30	6,8 (MS)	40	Normal
1949	20:43	Karlıova,Bingöl	39,54	40,57	450	6,7 (MS)	40	Doğrultu Atımlı
1951	18:36	Kurşunlu,Çankırı	40,88	32,87	50	6,9 (MS)	10	Doğrultu Atımlı
1953	21:06	Yenice, Çanakkale	40,02	27,53	265	7,2 (MS)	10	Doğrultu Atımlı
1955	09:07	Söke,Aydın	37,55	27,05	23	6,8 (MS)	40	Normal
1957	04:25	Fethiye,Muğla	36,50	28,60	67	7,1 (MS)	80	Doğrultu Atımlı
1957	06:36	Abant,Bolu	40,67	31,00	52	7,1 (MS)	10	Doğrultu Atımlı
1964	16:31	Manyas,Balıkesir	40,10	27,93	23	7 (MS)	34	Normal
1966	12:23	Varto,Muş	39,17	41,56	2396	6,9 (MS)	26	Ters
1967	16:56	Mudurnu, Adapazarı	40,67	30,69	89	6,8 (MS)	33	Doğrultu Atımlı
1968	10:19	Bartın	41,79	32,31	29	6,5 (MS)	5	Doğrultu Atımlı
1969	03:48	Alaşehir, Manisa	38,50	28,40	53	6,5 (MS)	4	Normal
1970	23:02	Gediz,Kütahya	39,20	29,50	1086	7,2 (MS)	18	Normal
1971	16:44	Bingöl	38,83	40,52	1000+	6,8 (MS)	3	Doğrultu Atımlı
1975	12:20	Lice,Diyarbakır	38,50	40,70	2385	6,6 (MS)	32	Ters
1976	14:22	Muradiye,Van	39,12	44,03	3840	7,2 (MW)	9	Doğrultu Atımlı

1983	07:12	Erzurum	40,33	42,19	1155	6,6 (MW)	15	Doğrultu Atımlı
1992	17,18	Erzincan	39,70	39,69	498	6,6 (MW)	22	Doğrultu Atımlı
1995	17:57	Dinar, Afyon	38,06	30,13	90	6,4 (MW)	31	Normal
1998	16:55	Ceyhan, Adana	36,88	35,31	146	6,3 (MS)	10	Doğrultu Atımlı
1999	03:02	İzmit	40,77	30,00	17118	7,5 (MW)	15	Doğrultu Atımlı
1999	18:57	Düzce	40,75	31,16	894	7,14(MW)	11	Doğrultu Atımlı
2002	07:11	Sultandağı, Afyon	38,57	31,27	44	6,5 (MW)	5	Normal
2003	05:26	Pülümür, Tunceli	39,46	39,79	1	6 (MW)	15	Doğrultu Atımlı
2003	00:27	Bingöl	39,01	40,46	177	6,3 (MW(10	Doğrultu Atımlı
2010	04:32	Karakoçan, Elâzığ	38,87	39,99	41	6,1 (MW)	5	Doğrultu Atımlı
2011	01:41	Tabanlı, Van	38,76	43,36	601	7,1 (MW)	19	Ters

Yerin 0-60 km. derinliğinde olan depremler sığ depremler olarak nitelendirilir. Yerin 60-300 km. derinliklerinde olan depremler orta derinlikte olan depremlerdir. Derin depremler ise yerin 300 km'den fazla derinlikte gerçekleşen depremlerdir. Türkiye'de gerçekleşen çoğu deprem sığ deprem kategorisindedir. Derin depremler çok daha geniş alanlarda hissedilir fakat verdikleri hasar buna ters orantılı olarak azdır. Sığ depremler ise dar alanlarda çok daha fazla hasar verirler (AFAD 2016), [51].

Fay atım mekanizması açısından incelendiğinde tespit edilen 32 deprem içerisinde 22 adet doğrultu atımlı, 7 adet normal atımlı, 3 adet ise ters atımlı fay özelliğine sahip deprem bulunmaktadır. %68,75 oranla doğrultu atımlı fayların Türkiye'de yıkıcı deprem oluşturma yönünden dominant olduğu görülmüştür. %21,88 oranla normal atımlı fayların da ülkemizde

önemli bir paya sahip olduğu bununla beraber ters atımlı fay özelliğine sahip depremlerin %9,37 oranla daha düşük sayıda olduğu tespit edilmiştir.

Bu bilgiler hem Türkiye'de gerçekleşmiş hem de ülkemiz dışında gerçekleşmiş depremler arasında mevcut parametreler ışığında bir kıyaslama yapmak açısından yararlı olabilir.

3.2.2 Gerçek Deprem Kaydı Seçimi

Bu safhada yapılan seçimler kayıt setinin ana iskeletini oluşturacağından her bir depremin farklı karakterde olması varılacak sonuçlar açısından önemlidir. Bu yüzden çalışmada ana hedeflerden biri olan taban kayası özelliğindeki depremleri seçmek önemli bir zaman almıştır. Bunun sebebi taban kayası karakterini temsil eden üst 30 m için hesaplanan kayma dalgası hızı olan Vs30 (Shear wave velocity) değerinin yaklaşık 1500m/s civarında kabul edilmesi ve bu kabule yakın değerler hedeflenmesidir.

İlk olarak PEER (Pacific Earthquake Engineering Center) kuvvetli yer hareketi veritabanından Vs30 değeri 1500m/s den büyük olan depremlerle bir set oluşturması hedeflenmiştir. Aynı zamanda sığ depremler ve EpiD (episantr yüzey düşümümün istasyona olan uzaklığı) değeri düşük olan depremler seçilmeye çalışılmıştır. Bu değerler Türkiye'de gerçekleşen yıkıcı deprem karakterine uygun olma açısından önem arz etmektedir. Veritabanında gerçekleştirilen hem kayıt bazlı hem de istasyon bazlı aramalarda 17 adet kayda ulaşılmıştır (Çizelge 3.4).

Dr, Turgay Beyaz'a ait 'Zemin Etkisinden Arındırılmış Deprem Kayıtlarına Göre Türkiye için Yeni Bir Deprem Enerjisi Azalım Bağıntısının Geliştirilmesi' adlı doktora tezinde ulusal ivme kaydı istasyonlarımıza ait elde edilen sondaj kesitlerinde (56 adet) farkedilmiştir ki; bir zeminde 1500 m/s gibi hızlara ulaşmadan 1000-1200 m/s gibi dalga hızlarında da taban kayasına ulaşmak mümkün olabilmektedir [53]. Buna dayanarak filtreler güvenli bir bölgede kalmak adına 1300m/s den yüksek hızlar şeklinde kullanılmıştır. Devam eden süreçte PEER veritabanının yeterli olmadığı anlaşıldığından diğer bölge ve ülkelerin veritabanlarını araştırılmıştır. Bunlar Japonya, ABD, Yeni Zelanda, İtalya ve Genel Avrupa veritabanı olarak belirlenmiştir.

Sıra	Deprem Adı	Dosya Adı	Vs 30 (m/s)	Bileşke	PGA (g)	PGV (cm/sec)	PGD (cm)	Uzaklık (km)
1	14219360	14219360\CICLCHHE.AT2	1464,00	90	0,011	0,213	0,004	21,65
2	Chuetsu-oki	CHUETSU\TCGH17EW.AT2	1432,75	90	0,026	0,713	0,535	113,77
3	Niigata, Japan	NIIGATA\TCGH17EW.AT2	1432,75	90	0,047	1,408	0,575	84,13
4	Iwate	IWATE\TCGH17NS.AT2	1432,75	0	0,060	2,930	1,438	250,04
5	Niigata, Japan	NIIGATA\TCGH17NS.AT2	1432,75	0	0,062	1,455	0,898	84,13
6	Iwate	IWATE\TCGH17EW.AT2	1432,75	90	0,085	2,571	1,130	250,04
7	Coyote Lake	COYOTELK\G01230.AT2	1428,14	230	0,089	4,456	0,812	12,57
8	Morgan Hill	MORGAN\G01320.AT2	1428,14	320	0,098	2,806	0,804	38,63
9	Hollister-03	HOLLISTR\A-G01157.AT2	1428,14	157	0,101	2,660	0,152	11,09
10	Coyote Lake	COYOTELK\G01320.AT2	1428,14	320	0,118	9,159	1,852	12,57
11	Chi-Chi, Taiwan	CHICHI\HWA003-N.AT2	1525,85	0	0,135	23,284	6,678	80,53
12	Hollister-03	HOLLISTR\A-G01247.AT2	1428,14	247	0,139	3,843	0,202	11,09
13	Northridge-01	NORTHR\PAC265.AT2	2016,13	265	0,328	22,730	4,826	20,36
14	Northridge-01	NORTHR\PAC175.AT2	2016,13	175	0,382	38,336	5,252	20,36
15	Loma Prieta	LOMAP\G01000.AT2	1428,14	0	0,441	29,866	7,028	28,64
16	Loma Prieta	LOMAP\G01090.AT2	1428,14	90	0,516	41,830	7,214	28,64
17	Landers	LANDERS\LCN345.AT2	1369,00	345	0,580	23,623	11,896	44,02

Çizelge 3.5 Peer veri tabanından elde edilen kayıtlar

İlk olarak COSMOS web sitesi üzerinden kayıt bulma işlemine başlanmıştır (COSMOS 2016). Sitenin basit arama motoru arayüzü aşağıda görülmektedir (Şekil 2.2.1). Arama özellikleri (advanced search kısmında dahi) PEER kadar ayrıntılı olmadığından, bazı uygun PGA ve magnitüd değerinde kayıtlar elde edilse de; bu ölçümlerin yapıldığı istasyona ait parametreleri (EpiD, Vs30 ve magnitüd tipi gibi) belirlemek oldukça zor olmuştur. Bunun sebebi bu parametrelerin değer olarak arama kısmına girilememesidir. Taban kayası özelliğinde çalışmamız gerektiğinden her bir istasyonun Vs30 değeri tek tek tespit edilmiştir. Japon Deprem kayıtlarıyla ilgili diğer bir sıkıntı ise birim farklılığıdır. PGA değerleri 'g' yerine 'gal' olarak kullanıldığından her bir kayıt sete işlenmeden önce gerekli birim işlemlerinin yapılması gerekmiştir.

Şekil 3.3'te görülmekte olan 105 adet sonucun yalnızca 8 tanesi kullanılabilmiştir (çizelge 3.5). Bunun sebebi uygun PGA değerini birçok kaydın sağlayamamasıdır. Bunun yanında

'Up' bileşenleri zaten düşey doğrultuda olduğundan kullanılamamıştır. Bu açılardan verimli kaydın 8 adete düşmesi normal görünmektedir.

I KONG-MO	TION VIRTU	AL DATA CENTER (VD
Global Componer	nt of the Center for l ain/Logoff · Downlo	Engineering Strong Motion Data ad AboutUs Contact
Earthquakes	Stations · Searc	h · Map · Adv. Search
	Basic S	Search
To search on database	parameters not found on	this name use the advanced search. Searc
Help	putuneters not round on	and puge, use the <u>navanced search</u> . Search
Note: Leave blank any	y fields that do not apply t	o your search.
Event Name:		(e.g. North Palm Springs)
Station Identifier:		(Station location or number assigned by the station owner.)
Mechanism	Structure	Site Conditions
 Unknown Theast 	🗹 Unknown	🗹 Unknown
Strike-slip	Ground	Hard Rock
Reverse-Oblique	Building	Rock
Reverse Reverse	Bridge	Very dense soil and soft rock
Normal-Oblique	✓ Dam	Stiff soil
 Normal 	Geotechnical array	 Soft soil
Enter minimum and/or	maximum values:	
Ma and take days	£	
Magnitude:	from	το
Date:	Start YearMont 1933 ▼ 1 ▼	thDay End Year MonthDay 1 ▼ 2016 ▼ 12 ▼
Peak Ground Accel.	(cm/s/s): from	to

Return earthquake, station, and accelerogram information

Return station information only

Return earthquake information only

Şekil 3.1 Japonya veri tabanı (COSMOS) genel arama ara yüzü

STRONG-MOTION VIRTUAL DATA CENTER (VDC)

 Global Component of the Center for Engineering Strong Motion Data

 Home
 Login/Logoff
 Download
 AboutUs
 Contact

 Earthquakes
 Stations
 Search
 Map
 Adv. Search

Advanced Search: Parameter Input

Enter search values into the text boxes below. You may leave boxes empty. Note: Parameters marked with an asterisk may not be present for all traces.

Numerical input fields:

Type	Parameter	Min/Max V	alues
Event	Event Depth (km)		50
Point	Epicentral Distance (km)		50
Station	S-wave Velocity Top 30m (m/s)*	1300	3000

 Display Results in HTML
 Display Results as Tab-delimited text
 Display Results as an HTML table
 Reset Form

 Save the Source as an rtf file, then import into your spreadsheet or database
 or database

<u>Home +Login +Download +About Us +Contact</u> <u>Earthquakes + stations + Search + Map +Advanced Search</u>

Şekil 3.2 Japonya veri tabanı (COSMOS) detaylı arama ara yüzü

Home · Log	gin/Logoff · Download	AboutUs	· Contact ·
Earthquakes	Stations - Search	. мар .	Adv. Search
	Advanced Searc	h: Results	
Event Depth (km) M	lax.: 50		
Event Depth (km) M	lin.: No condition		
Epicentral Distance	(km) Max.: 50		
Epicentral Distance	(km) Min.: No condition		
S-wave Velocity Top	30m (m/s)* Max.: 3000	~	
ur search resulted in 1	05 records.		
mp within page to:			
hoose an earthquake]	Ŧ	-	
mp within page to:			
Choose a station]	•		
Add all data on this p	age to the download bin <u>Map</u>		
Add all data on this p io to Download Bin] <u>View</u> ikoku	age to the download bin <u>' Map</u>		
Add all data on this p to to Download Bin <u>View</u> ikoku Tsushima, Japan	age to the download bin <u>- Map</u>	Нур	pocentral dist: 47.6 k u
Add all data on this p to to Download Bin View ikoku Tsushima, Japan KiKnet station EHMI	age to the download bin • Map 101	Нур	ocentral dist: 47.6 kr
Add all data on this p io to Download Bin View ikoku Fsushima, Japan KiKnet station EHMI Data Available: unco Summary Page for thi	age to the download bin 7 Map H01 Freeted acceleration only 8 Station	Нуг	Plot Acceleration
Add all data on this p io to Download Bin View ikoku Tsushima, Japan KiKnet station EHMI Data Available: unco Summary Page for this	age to the download bin <u>7 Map</u> H01 rrected acceleration only <u>5 Station</u>	Нур	pocentral dist: 47.6 k r Plot Acceleration
Add all data on this p io to Download Bin View ikoku Tsushima, Japan KiKnet station EHMI Data Available: unco Summary Page for this Add all of this stati	age to the download bin 7 Map 101 rrected acceleration only s Station on's data to the download bi	Нур	ocentral dist: 47.6 k <u>Plot Acceleration</u> Go to Bin
Add all data on this p o to Download Bin View ikoku Fsushima, Japan KiKnet station EHMI Data Available: unco Summary Page for thii Add all of this stati 100 m depth 🔲 Add tl	age to the download bin . Map d01 rrected acceleration only s Station on's data to the download bi his instrument's data to the d	Hyr n Iownload bin	Plot Acceleration Go to Bin
Add all data on this p • to Download Bin View ikoku Fasshima, Japan KiKnet station EHMI Data Available: unco Summary Page for thi • Add all of this stati i00 m depth • Add tt Component: 92	age to the download bin ' Map H01 rrected acceleration only s Station on's data to the download bit his instrument's data to the do PGA (cm/s/s): 1.40	n lownload bin PGV (cm/s): -	Plot Acceleration Go to Bin
Add all data on this p • to Download Bin View ikoku Fsushima, Japan KKInet station EHMI Data Available: unco Summary Page for this • Add all of this stati 100 m depth • Add tt Component: 92 Component: 2	age to the download bin • Map Hol rrected acceleration only s Station on's data to the download bin his instrument's data to the d PGA (cm/s/s): 1.10 PGA (cm/s/s): 1.10	n lownload bin PGV (cm/s): - PGV (cm/s): -	Plot Acceleration Go to Bin Add this to bin Add this to bin
Add all data on this p o to Download Bin View ikoku Fsushima, Japan KiKnet station EHNI Data Available: unco Summary Page for this Add all of this stati 100 m depth Add tt Component: 92 Component: Up	age to the download bin 7 Map H01 rrected acceleration only s Station on's data to the download bin his instrument's data to the download PGA (cm/s/s): 1.10 PGA (cm/s/s): 2.40	n lownload bin PGV (cm/s): - PGV (cm/s): - PGV (cm/s): -	Plot Acceleration Go to Bin Add this to bin Add this to bin Add this to bin Add this to bin
Add all data on this p o to Download Bin Yiew Fsushima, Japan KiKnet station EHMI Data Available: unco Summary Page for this Add all of this stati 100 m depth Add th Component: 92 Component: Up surface Add this in	age to the download bin / Map H01 rrected acceleration only s Station on's data to the download bin his instrument's data to the download PGA (cm/s/s): 1.40 PGA (cm/s/s): 2.40 strument's data to the download	n lownload bin PGV (cm/s): - PGV (cm/s): - PGV (cm/s): - oad bin	Plot Acceleration Go to Bin Add this to bin Add this to bin Add this to bin Add this to bin
Add all data on this p o to Download Bin Views ikoku Fsushima, Japan KiKnet station EHMI Data Available: unco Summary Page for thii Add all of this stati 100 m depth i Add th Component: 92 Component: 22 Component: 20 Warface Add this in Component: 90	age to the download bin . Map H01 rrected acceleration only s Station on's data to the download bin his instrument's data to the download PGA (cm/s/s): 1.40 PGA (cm/s/s): 2.40 strument's data to the download PGA (cm/s/s): 12.50	n lownload bin PGV (cm/s): - PGV (cm/s): - PGV (cm/s): - load bin PGV (cm/s): -	Plot Acceleration Go to Bin Add this to bin Add this to bin Add this to bin Add this to bin Add this to bin
Add all data on this p • to Download Bin View ikoku Fushima, Japan KiKnet station EHMI Data Available: unco Summary Page for this • Add all of this stati 100 m dept • Add th Component: 92 Component: 20 Paurface • Add this in Component: 90 Component: 0	age to the download bin ' Map H01 rrected acceleration only s Station on's data to the download bin his instrument's data to the do PGA (cm/s/s): 1.10 PGA (cm/s/s): 2.40 Strument's data to the download PGA (cm/s/s): 2.50 PGA (cm/s/s): 2.70	n lownload bin PGV (cm/s): - PGV (cm/s): - PGV (cm/s): - load bin PGV (cm/s): - PGV (cm/s): -	Plot Acceleration Go to Bin Add this to bin Add this to bin Add this to bin Add this to bin Add this to bin

Şekil 3.3 Japonya veri tabanı (COSMOS) detaylı arama sonuçları

Sıra	Deprem Adı	Dosya Adı	Vs 30 (m/s)	Bileşke	PGA (g)	PGV (cm/sec)	PGD (cm)	Uzaklık (km)
1	Tottori, Japan	TOTTORI,1\YMGH06NS.AT2	2100	0	0,005	1,392	1,304	236,0
2	Shikoku2	EHMH010104252340EW2	2000	90	0,161	2,578	0,304	36,5
3	Western Tottori12	OKYH090010061330NS2	1600	0	0,181	8,168	3,061	28,5
4	Western Tottori6	OKYH080010061330EW2	1400	0	0,190	7,526	2,773	43,5
5	Western Tottori8	OKYH080010061330NS2	1400	90	0,232	8,235	1,944	43,5
6	Western Tottori4	OKYH070010061330NS2	1400	0	0,253	11,903	5,181	29,5
7	Western Tottori16	OKYH100010061330NS2	2200	0	0,289	11,181	2,586	47,5
8	Western Tottori10	OKYH090010061330EW2	1600	90	0,290	8,886	4,250	28,5

Çizelge 3.6 Japonya veri tabanından elde edilen kayıtlar [54]

Sonrasında USGS (Amerika Birleşik Devletleri Jeoloji Araştırma Kurumu) Veritabanı'nda yapılan aramalarda o ana kadar elde ettiğimiz kayıtlardan farklı başka hiç bir kayda rastlanmamıştır (USGS 2016). Bu sitede Vs30 değeri girişi arama kısmında olmadığından çıkan sonuçlar tek tek kontrol edilerek sonuca ulaşılmıştır.

Bu durum Yeni Zelanda veri tabanı için de kendini tekrar etmiştir (GeoNet 2016), [55]. Yapılan kontrollerde ulaşılan 90 adet kaydın elde edildiği istasyonların hiçbirinde istenilen Vs30 değeri sağlanamadığından bu veritabanından da bir sonuç elde edilememiştir (Şekil 3.4).

Strong motion database

Searched records

90 records were found.

Sort key: Station code Sort order: Ascent
 Sort [Return to search form] Code Event time M_{IMA} h Station Δ PGA I_{IMA} Tr215 📥 째 Annex and Main Bldg., Building Research Institute 2014/09/16 12:28 5.6 47 ANX 19 59 3.4 242 📥 째 Annex and Main Bldg., Building Research Institute 2016/05/16 21:23 42 ANX 5.5 20 53 3.6 183 ᆋ 째 2016/02/07 19:26 Annex and Main Bldg., Building Research Institute 4.6 43 ANX 17 53 2.8 101 📥 🟧 2005/02/16 04:46 5.4 45 BRI Seismological Training Laboratory, Building Research Institute 19 77 3.8 149 📥 째 2005/04/20 06:11 14 FKO Fukuoka Government Office Bldg, #2 5.8 16 189 4.4 212 📥 째 9 FKO Fukuoka Government Office Bldg. #2 28 2005/03/20 10:53 7.0 118 4.7 160 📥 🟧 2016/01/11 15:26 10 HCN2 Annex, Hachinohe City Hall 4.6 23 52 3.2 130 📥 🚾 2016/06/16 14:21 11 HKD Hakodate Development and Construction Department 26 81 5.3 3.3 71 📥 째 34 HMO 1997/10/11 14:44 5.0 Hamaoka Nuclear Power Plant 25 82 3.3 63 📥 🟧 43 HRO Hiroo Town Office 2004/01/13 05:12 4.6 12 102 3.5 72 🍐 째 2003/09/28 09:23 43 HRO Hiroo Town Office 5.0 2 131 3.8 159 📥 🔜 49 HRO Hiroo Town Office 2012/08/25 23:16 6.1 17 145 4.4 136 📥 🔤 46 HRS 2001/03/24 15:27 6.7 Hiroshima Government Office Bldg. #2 36 116 4.7 114 📥 🔤 2011/04/11 18:05 5.1 12 IWK Iwaki City Hall 15 50 3.7 131 📥 🚾 2013/09/20 02:25 17 IWK Iwaki City Hall 5.9 17 173 4.8 104 📥 째 Iwaki City Hall 2011/05/06 02:04 6 IWK 5.2 8 56 4.0 166 📥 🟧 6 IWK Iwaki City Hall 2011/04/11 17:16 7.0 22 161 5.0 95 📥 째 Iwaki City Hall 2011/04/12 14:07 6.4 15 IWK 21 186 5.2 173 🃥 🟧 42 KSG Koshigaya Branch, Saitama Legal Affairs Bureau 2016/07/17 13:24 5.0 19 52 3.4 160 📥 🔤 1998/09/15 16:24 5.2 13 MIYA Mivagino Elementary School 13 142 3.7 60 ᆋ 째 12 MIYA2 Miyagino Elementary School 2003/07/26 07:13 6.4 27 91 3.6 60 📥 째 5.6 12 MIYA2 Miyagino Elementary School 28 2003/07/26 00:13 52 3.1 130 📥 🏧 Misato City Hall 2005/02/16 04:46 45 MST 22 106 5.4 4.1 120 📥 🟧 47 MST Misato City Hall 66 2005/10/16 16:05 5.1 23 3.4 95 📥 🟧 Matsusaka Office, Mie Prefecture 2000/10/31 01:42 39 MTS 68 5.7 37 4.2 89 ᆋ 째 26 Matsusaka Office, Mie Prefecture 2007/04/15 12:19 5.4 16 MTS 54 3.7 183 📥 🔤 2014/07/05 07:42 49 MYK Miyako City Hall 5.9 15 90 4.4 149 📥 째 47 MYK 2011/05/28 08:01 4.5 Miyako City Hall 23 2.5 53 178 ᆋ 째 23 MYK Miyako City Hall 2012/04/30 00:02 5.6 27 68 3.4 107 📥 🔤 Miyako City Hall 2004/08/10 15:13 5.8 48 MYK 15 86 4.4 292 📥 🟧 2012/03/27 20:00 6.6 21 MYK Miyako City Hall 36 84 4.2 64 📥 째 6.7 38 MYZ Miyazaki Prefectural Office 1996/12/03 07:17 29 110 4.7 160 📥 🛲 Nagamachi Elementary School 1998/09/15 16:24 5.2 13 NAGA 11 171 4.6 120 ᆋ 째 12 NAKA2 Nakano Elementary School 2003/07/26 07:13 6.4 21 4.0 114 60 📥 째 Nakano Elementary School 2003/07/26 00:13 5.6 12 NAKA2 23 113 3.6 35 NBO 121 📥 🟧 Nobeoka Office, Miyazaki Prefecture 2006/03/27 11:50 5.5 46 78 3.7 121 📥 🟧 2005/12/24 11:01 4.8 43 NGY Nagoya Government Office Bldg. #1 7 51 2.9 3.8 160 ᆋ 째 2016/05/16 21:23 42 NIT Nippon Institute of Technology 5.5 15 97 160 📥 🟧 2016/02/07 19:26 43 NIT Nippon Institute of Technology 4.6 17 53 3.3 51 📥 🟧 2003/03/13 12:12 47 NIT Nippon Institute of Technology 5.0 14 52 3.4 128 📥 🟧 2012/06/01 17:48 5.1 44 NIT Nippon Institute of Technology 14 104 3.8

Şekil 3.4 Yeni Zelanda veri tabanı arama sonuçları [55]

İtalya'ya ait arşivde sadece 1 adet yüksek ivmeli ve kriterlere uygun ivme kaydı elde edip sete eklenebilmiştir (Itaca 2016), [56]. İstasyon bazlı aramada Vs30 değeri 1300-3000 m/s girildikten sonra 3 istasyona ait verilere ulaşılmıştır (Şekil 3.5). Fakat bu 3 istasyona ait kayıtlardan sadece 1 tanesinde uygun PGA değeri tespit edilebilmiştir (Çizelge 3.6).

di ev	tituto Nazionale Geofisica /ulcanologia					ltaca						(
omepage	Waveforms	Stations Events	REXELite								And	onymous use
- Station	s Search						Parini		Ceca	() cond		
Station Code	contains	•			Mappa Satellite	and and and and		7 Monac di Bavie	o pirve	ma Slovacchia	in the second	Ucra
Station Name	contains	•						Lanne	Austria	Budipest	Molda	ovia Odessa
Latitude (e.g. 45.27)		from [2]: to	[<]:			F F	rancia	Svizzera	Slovenia	analisia (Romania	Odeca
Longitude (e.g. 12.7)		from [2]: to	{<}:						Croazia	Bosnia ed	Bucarest	5
Nation	- •	Any value	•				111	Ionaco		Erzegovina Serbia	in	
Region	contains	•			17 19 19	The market and the service		Ita	alia	Sarajero Sof Montenegro Cóф	a ra	
Province	contains	•			14/16	Am	lorra	1 A 1	3 an	Podgoncas/ Kosovo	Bulgaria	
Aunicipality	contains	•			Porto	Ba	rcellona	2 I	екота	Tirange (FYROM)	into lat	anbul
/s30 [m/s]		from [2]: 1300 to	[<]: 3000		1.1	Madrid			-	Albania	в	o ursa
C8		Any value •			Portogallo	Spagna Valencia		Mar Titleo	10	- Contraction	- (20)s	0.100
opography		Any value		•	Lisbona	opagna				A	ene Smirne	
Morphology		Any value *			Y.	and the second second			Henry	AB	gva o	1.14
Number of Records					L Sm	Granada oMtalaga		Tunisi				Adalia
Export in		Export in Google Earth for	mat Ø		Gi	bilterra	And a state of the	10	Malta			
format		export in doogle carerror			Google Rabat	1999	V 4172	100		Mar		
	_				9	Map data	82016 Geoßasie DE/BKO (4	(2009) Opogie, Inst. Geogr.	Nacional, Mapa GISra	el, ORION-ME 200 km L	Termini e condizioni d'uso	o 🖗 Segnala i
Searc	h					К	ayma Dalga	isi miziari	N			
									-			
Results 1 - 3 of	3											
Network	Code	Station Name	Nation	Region	Province	Municipality	Latitude	Longitude	EC8	V ₅₃₀ Topography	Morph.	Rec.
г	ISI Ø	ISPICA	Italy	Sicilia	Provincia di Ragusa	Ispica	36.797760	14.892357	A	1449 T1		6
Т	MRM @	MORMANNO	Italy	Calabria	Provincia di Cosenza	Mormanno	39.883205	15.989555	A	1400 T2		15

Şekil 3.5 İtalya veri tabanı arama sonuçları [56]

Çizelge 3.7 İtalya veri tabanından elde edilen tek ivme kaydı [56]

Sıra	Deprem Adı	Dosya Adı	Vs 30 (m/s)	Bileşke	PGA (g)	PGV (cm/sec)	PGD (cm)	Uzaklık (km)
1	CENTRAL_ITALY	IV.MI05.HNE.D.20090407.17473.C.ACC	Eurocode A	90	0,592	21,132	1,506	3,6

Tüm bu araştırmalar sonucunda öngördüğümüz ivme kaydı setinin önemli kısmı gerçek deprem kayıtlarından elde edilebilmiştir.

3.2.3 Ters Evrişim (Deconvolution) ile Elde Edilen Kayıtlar

İvme kaydı seçiminde yaşanan taban kayası özelliğindeki deprem sayısının yetersizliği bazı alternatif çözümlere yönelmeyi gerekli kılmıştır. Bunlardan bir tanesi de ters evrişim tekniğidir. Bu işlemi gerçekleştirebilmek için deprem kaydınının alındığı istasyonun bulunduğu zemin özelliklerine sahip olunması gerekmektedir. Ters evrişim tekniğini ivme kayıtlarındaki zemin etkisini gidermek ve kaydı zeminin en alt seviyesi olan taban kayasına taşımak olarak özetleyebiliriz.

Ters evrişim tekniği ile ivme kaydı oluşturulması özellikle Türkiye depremlerinin ivme kaydındaki ağırlığının arttırılması için arzu edilmiştir. Bu şekilde taban kayası özelliği taşımadığından ivme kaydı setine katılmayan bazı Türkiye depremlerinin dikkate alınması mümkün olmuştur.

Belli bir derinlikteki hareket zemin yüzeyindeki cihazlar tarafından kaydedilir. Bu esnada yüzeye kadar olan tabakaların ve özelliklerinin etkisi transfer fonksiyonu deprem kaydı da çıkış fonksiyonu kabul edilirse geriye dönük hesaplar ile kaydın ilk değeri belirlenebilir (Beyaz, 2004), [53]. Yer özelliklerini içeren bir fonksiyonu ve yer içi özelliklerini tanımlayan katsayıları elde edilebilirse kayıt bu fonksiyon süzgecinden geçirilerek istenen ana veri elde edilebilir. Bu işleme ters evrişim (deconvolution) denilmektedir.

Ters evrişim işleminde deprem kayıt istasyonunun dinamik zemin özelliklerine ihtiyaç duyulur. Bu özellikler bilindiğinde, çıktı verilerine filtreleme ve ters evirişim işlemi uygulanarak sisteme gelen ilk dalga özellikleri belirlenebilir. Tüm bu işlemler ile ilgili hesaplamalar ProShake 2.0 programı kullanılarak yaptırılmıştır.

Tüm bu işlemleri yapabilmek için sağlıklı kayıt alabilen istasyonların stratigrafileri gereklidir. Bu istasyonların tabakaları ve özellikleri 2004 yılında Dr. Turgay Beyaz'ın yapmış olduğu 'Zemin Etkisinden Arındırılmış Deprem Kayıtlarına Göre Türkiye için Yeni Bir Deprem Enerjisi Azalım Bağıntısının Geliştirilmesi' adlı doktora tezinden alınmıştır.

Şekil 3.6 Örnek lokasyonlar [53]

Tez içeriğinde şekil 3.6'da görüldüğü gibi zemin özellikleri hem tabaka kalınlığı hem de tabaka cinsi açıkça görülmektedir. Bunun yanında birim hacim ağırlığı ve Vs (kayma dalgası hızı) değeri de elimizde olduğundan ters evrişim işlemini yapmak mümkün olmaktadır.

Tez içerisinde bu şekilde toplam 56 adet stratigrafi bulunmaktadır. Bunların arasından lokasyon no 6, 19 ve 30 kullanılmıştır, Bu lokasyonların kullanılmasının sebebi öngörülen taban kayası Vs değerine sondaj sonunda ulaşmış olması ve bu istasyonlarda uygun kayıtların bulunmasıdır.

LOK	ASYON 6		_				
] Danin kili	Kuyunun Orjin	al Stratigrafisi	N Dariu VI	fodelde Kullani	lan Kuyu Stratigra	fisi	
(n)	Stratigrafi	Tanım	(m)	Stratigrafi	Tanım	γ (kN/m ³)	V _S (m/s)
0-		Kumlu kil	0-		12:1		
-2		Çakıllı kumlu kil	5		171	15,70	200
		Killi calulla launa			Kum	10.44	700
-10-		Kılıl çakılı kullı	-10 _		1 xuur	18,64	/00
-12- -14-		Bloklu çakıl	-12-		Calal	20.60	500
-17-		Killi çakıl	-17.		Çaklı	20,00	500
-20 -		Kil	-20_		Kıl	15,70	750
24		Killi çakıl	24		Çakıl	20,60	211
-24-			-24				
20		Çakıllı kumlu kil			Kil	15,70	643
-30 -	•		-30 -				
-35-		Bloklu killi çakıl	- 35'				
-37-		1711: 1 I					
-40 -		Killi çakıl	-40-		Çakıl	20,60	750
-45		Kumlu çakıl					
-45 -		Bloklu cakıl					
- 50-		2 Toning your	-50_				
-51-		Ana Kaya	-16-		Ana Kaya	25,51	1500
60			-60_				
-00-							
-70-			- 70 –				
-80-			-80 -				
-90 -			-90 -				
100			-100				
-100-							

Şekil 3.7 Kullanılan lokasyonlar (lokasyon 6) [53]

LOI	KASYON 19)					
	Kuyunun Orjir	al Stratigrafisi	N	/lodelde Kullanı	lan Kuyu Stratigra	fisi	
Derinlik (m)	Stratigrafi	Tanım	Derinlik (m)	Stratigrafi	Tanım	γ (kN/m ³)	V5 (m/5)
0-		Çakıllı kumlu kil	0-		Kil	15,70	667
-10		Çakıllı kum	-8 -10 - -14		Kum	18,64	857
-20-		Çakıllı kumlu kil	-20 - -24		Kil	15,70	1111
-30-			-30-		Kil	15,70	455
-40-		Kumlu kil	-40_		Kil	15,70	833
-50-		Çakıllı kumlu kil	-50-		Kil	15,70	769
-60 -		Kumlu çakıllı kil	-60=		Kil	15,70	1000
-70 -		Çakıllı kumlu kil	-64 -70- -74		Kil	15,70	1000
-80-			-80-		Kil	15,70	769
-90 -		Killi kumlu çakıl	-84 -90-		Kuyu tabanı (Kaya)	25,51	1200
-96 -100		Çakıl boyutu kayaç kırıntısı Kuyu tabanı (Kaya)	-100-				

Şekil 3.8 Kullanılan lokasyonlar (lokasyon 19) [53]

LO	KASYON 3	0					
	Kuyunun Orjir	al Stratigrafisi	N	/lodelde Kullanı	lan Kuyu Stratigra	fisi	
Derinlik (m)	Stratigrafi	Tanım	Deninlik (m)	Stratigrafi	Tanım	γ (kN/m ³)	Vs (m/s)
0-		Çakıllı kil	0-		Kil	15,70	364
-10-		Çakıllı killi kum	-8 -10_ -14		Kum	18,64	125
-20-		Çakıllı kumlu kil	-20-		Kil	15,70	520
-30		Çakıllı killi kum	-27- -30-		Kum	18,64	350
-40		Kum ve çakıl boyutu kırıntı Kuyu tabanı	-40-		Çakıl Kuyu tabanı	20,60 25,51	600 1000
-50 -		(кауа)	-50 -		(Kaya)		
-60.			-60-				
-70-			-70_				
-80-			-80 -				
-90.			-90-				
-100-	<u> </u>		-100_] .		

Şekil 3.9 Kullanılan lokasyonlar (lokasyon 30) [53]

Şekil 3.10'da PROSHAKE programında lokasyon 6 nın tabakalanması görülmektedir. Aynı stratigrafiyle uyumlu olarak 8 tabakadan oluşmaktadır ve ilgili tüm parametreleri şekilde girilmiştir.

Şekil 3.11'de ise bu lokasyona tanımlanan 6 adet ivme kaydı görülmektedir. Kayda ait temel parametreler de program tarafından otomatik olarak yazılmaktadır. Sağdaki 'object motion plots' kısmından da kayda ait istenen spektrum ya da grafik çizdirilebilmektedir.

Ters evrişim için en sol alta 'object motion location' en üst tabaka numarası girilecektir. Bunun sebebi elimizdeki deprem kaydının en üst seviyede kaydedilmiş olmasıdır. Yazılım yardımıyla bu ivme kaydının en alt tabakadaki hali elde edilebilmektedir.

Şekil 3.12'de ise orijinal kaydın PGA değeri 0,023 iken ters evrişim sonucunda bu değerin 0,016 ya düştüğü görülmektedir. Tüm bu işlemler sonucunda artık elimizde taban kayası özelliğinde yeni depremler bulunmaktadır ve böylelikle ivme kaydı seti özellikle de Türkiye depremleri açısından daha da zenginleştirilmiştir.

ProShak	ke Input Manager - C t Manager - Solution	Managar Ou	diversion of the second	Halo		_	-	lare Gapti Set	- Wattach Land	-	_		
Profile								Input	Motion			Report	
		Pro	file Title:	isyon 6									
	Dete	No. c	of Layers:						Depth to	Water Table:	n		m
aummary		4 9 0 7	0										
1	cloy	16.4						Clay (Idriss 1990)					
2	sand	23.0	118.7	19451.7	2296.6	Sand (Seed and Idriss 1970)		Sand (Idriss 1990)					
3	grave)	16.4	131.1	10967.9	1640.4	Grovel (Seed et al.)		Gravel (Seed et al.)					
4	day	9.8	99.9	18807.8	2460.6	Clay (Seed and Sun 1989)		Clay (khiss 1990)					
5	gravel	13.1	131.1	1953.2	692.3	Gravel (Seed et al.)		Gravel (Seed et al.)					
6	dey	29.5	99.9	13824.1	2109.6	Clay (Seed and Sun 1989)		Clay (Idriss 1990)					
7	gravel	59.1	131.1	24677.8	2460.6	Gravel (Seed et al.)		Gravel (Seed et					
8	bedrock	Infinite	162.4	122238.9	4921.3	Rock		Rock					
							Units @ LL S	S. C S.I.		T			
		Select Qu	itput									⊻iew Profile	

Şekil 3.10 PROSHAKE programında girilen profilin tabaka özellikleri [32]

ProShake Input Manager - CAPROSH MANOKASY - N	116320	love Kapli Septer. Microsoft Work				
rele Input Manager Solution Manager Dutput Mana	iger Help	input Motion		Report		
Number of Mo Strain I Motion 1 Motion 2 Motion 3 Motion 4 Motion 5	Noton 6		Maximut	m Number of Renations. 2 Error Tolerance: 2 8%		
Object Motion			Object Mot	ion Plots		
File Name:	C:\PROSHAKE\DAPHNE\LOK&([~1\H4\SHAK	E60.EQ		Acceleration vs Time		
	<u>O</u> pen	Bemove		Velocity vs Time		
Description:	Acceleration [cm/sec2]			Displacement vs Time		
				Husid Plot		
Г	No of Acceleration Values:	8231		Fourier Spectrum		
	Peak Acceleration (g):	0.02		Phase Spectrum		
	Time Step (sec): Cutoff Frequency (Hz):	58.00		Power Spectrum		
	No of Terms in Fourier Series:	16384		Response Spectrum		
¥ L						
Object Motion Location	C Outcrop	Animation No Yes		Other Parameters		

Şekil 3.11 PROSHAKE programında girilen ivme kaydı ve özellikleri [32]

Output Geound lightion Desc and Shan Berganse Spectrum Depth Flois Other Personation January Function 1 1 1 No 1 </th <th>Peak Acceleration (g): 0.014 Peak Valuary (n/sec) 0.015</th>	Peak Acceleration (g): 0.014 Peak Valuary (n/sec) 0.015
Genual bytes Description Deprint State Deprint Procession Deprind Procession <thdeprind procession<="" th=""></thdeprind>	Peak Acceleration (g): 0016 Peak Velocity (n/sec) 0015
1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 3 1 1 1 3 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	Peak Acceleration (g): 0.016 Peak Velocity (n/sec) 0.015
1 2 No 1 3 No 1 4 No 1 5 No 1 5 No 1 6 No 1 7 No 1 7 No 2 1 No 2 2 No 2 3 No	Peak Velocity (m/sec)
1 3 No 1 4 No 1 5 No 1 6 No 1 7 No 1 7 No 2 1 No 2 2 No 2 3 No	
1 5 No 1 6 No 1 7 No 1 7 No 2 1 No 2 2 No 2 3 No	Peak Displacement (m) 0.037
1 6 No 1 7 No 1 8 No 2 1 No 2 2 No 2 2 No 2 3 No	RMS Acceleration (g): 0.004
I I No Z 1 No Z 2 No Z 3 No	Arias Intensity (m/sec) 0.002
Z 1 Ho Z Z Ho Z 3 No	0.129
2 2 No 2 3 No	Presponse spotanin mensity (g. c).
	Predominant Period (sec):
2 4 No	Mean Period (sec):
2 5 No	Bracketed Duration (sec): 163.000
2 7 No	Trifunac Duration (sec): 10.150
2 8 No	Spectral Acceleration at 0.3 sec (g):
3 1 No 3 2 No	Spectral Acceleration at 1.0 sec (g):
3 3 No	Observativitie laterality (e ⁺¹ Street [*] 0 St.
3 4 No	Cirracterissic Intellisity (g. 1.5-sec. 0.5):
3 5 No	
3 7 No	Copy to Report Calculate

Şekil 3.12 Ters evrişim sonucu girilen kaydın PGA değerinin aşağı tabakadaki azalımı [32]

3.2.4 Ölçeklenmiş Kayıtlar

Ters evrişim tekniği ivme kaydı setini zenginleştirmiş olsa da öngörülen kayıt sayısına ulaşılamadığından bazı depremlerin ölçekleyerek kullanılması düşünülmüştür. Bu işlem yapılırken dikkat edilmesi gereken en önemli unsur ölçekleme işlemi yapılırken kullanılacak olan değerin (ölçek) eldeki kaydın karakteristiğini bozmayacak bir seviyede olmasıdır. Bu şekilde kullanılan ivme kayıtları ile gerçekçi sonuçlardan uzaklaşılması ihtimali ortaya çıkmaktadır.

Literatürde zaman tanım alanında doğrusal ölçekleme gibi ivme kayıtlarını ölçekleme teknikleri mevcuttur. Bu yöntemde ivme kaydı belirlenen sabit bir katsayı ile çarpılır ve aşağı veya yukarı doğru istenen hedef spektrumuna yaklaştırılır. Bu yöntemde ivme kayıtlarının frekans içerikleri bir değişikliğe uğramamaktadır. Zaman tanım alanında ölçekleme tekniğinde tasarım spektrumu ile eldeki ivme spektrumu arasındaki farkın azaltılması amacıyla en küçük kareler kullanılmaktadır (Fahjan 2008) [64].

Bu çalışmada ölçekleme işlemi ivme kaydındaki ivme değerlerinin sabit bir değerle çarpılarak kayıt setinde ihtiyaç duyulan PGA değerlerine ulaştırılması şeklinde yapılmıştır.

Benzer çalışmada maksimum ivme değeri 0,25-4,00 dışında bir katsayı ile ölçeklendiğinde kayıtların spektral davranışlarının belirsiz olduğu gözlemlenmiştir (Yağcı, 2005), [57].

Gerçek deprem kayıtları üzerinde yapılacak ölçekleme işleminin belirli limitleri aşmaması farklı çalışmalarda önerilmektedir. Doğrusal analizlerde en fazla 4 kabul edilirken; doğrusal olmayan analizlerde ölçek katsayısının 0,5-2 aralığında olması gerektiği belirtilmiştir. Ayrıca sıvılaşma işlemleri için bu katsayının 2 den fazla olmaması önerilmektedir (Vatansever 2011, Krinitzsky ve Chang 1977, Vanmarcke1979), [58,59,60].

Tüm bu sonuçlara bakıldığında uygun bir ölçek aralığı tespit edilmesi gerekmektedir. Mevcut kayıtların Vmax/Amax, ortalama periyot ve predominant periyot gibi değerlerinin belli oranda korunarak ölçeklenmesi depremin frekans içeriği-genlik ilişkisini bozmadan daha doğru sonuçlara ulaşma açısından önemli görülmektedir.

Frekans içeriği-genlik ilişkisinin bozulmaması amacıyla mevcut literatürden çok daha dar bir aralık olarak maksimum ölçek değerinin 1,3 ve minimum ölçek değerinin ise 0,7 olarak alınması uygun görülmüştür. Şekil 3.13, 3.14 ve 3.15'te çalışma kapsamında incelenen doğal ve ivme setinde kullanılan ölçekli depremler için genlik (PGV) ve farklı frekans içeriği parametreleri ilişkileri verilmiştir. Bu ilişkiler incelendiğinde ölçekli depremlerin doğal depremlerden ayrışması (farklı bir noktada toplanma, tüm doğal depremlerin altında, üstünde, ileri veya gerisinde yoğunlaşma, vb.) gibi bir görüntünün oluşmadığı görülmektedir. Bu durum ölçekleme ile ivme kayıtlarının frekans-genlik ilişkisinin bozulmadığını göstermektedir.

Genlik parametresi olarak PGV'nin kullanılma nedeni literatürde bu parametrenin diğer ivme kaydı parametreleri ile korelasyonu en yüksek parametre olarak gösterilmesidir (Amiri ve Dana, 2005; Ozmen ve Inel 2016) [61,62].

Şekil 3.13 Tüm doğal ve ölçeklenmiş kayıtların arasındaki PGV-Vmax/Amax ilişkisi

Şekil 3.14 Eldeki tüm doğal ve ölçeklenmiş kayıtların arasındaki PGV- Predominant Periyot ilişkisi

Şekil 3.15 Eldeki tüm doğal ve ölçeklenmiş kayıtların arasındaki PGV- ortalama periyot İlişkisi

Sıra	Grup No	PGA Aralık (g)	Deprem Adı	Dosya Adı	Vs 30 (m/s)	Ölçek	Bileşke	PGA (g)	PGV (cm/sec)	PGD (cm)	Uzaklık (km)
1	GRUP 3	0,1-0,15	Shikoku2	EHMH010104252340EW2	2000,00	0,90	90	0,142	2,320	0,274	36,50
2	CDUD		Chi-Chi Taiwan	CHICHI\HWA003-N.AT2	1525,85	1,25	0	0,168	29,105	8,348	80,53
3	GRUP 4	0,15-0,2	Hollister-03	HOLLISTR\A-G01247.AT2	1428,14	1,25	247	0,174	4,804	0,253	11,09
4	•		Western Tottori6 OKYH080010061330EW2		1400,00	0,80	0	0,190	7,526	2,773	43,50
5	GRUP	0.2.0.25	Shikoku2	EHMH010104252340EW2	2000,00	1,30	90	0,210	3,351	0,395	36,50
6	5	0,2-0,23	LOK30I1455NS	55NS	1000,00	0,85	0	0,235	42,604	35,282	
7	GRUP	0.25.0.2	Western Tottori4	OKYH070010061330NS2	1400,00	1,30	0	0,253	11,903	5,181	29,50
8	6	0,23-0,5	Western Tottori8	OKYH080010061330NS2	1400,00	1,30	90	0,299	10,705	2,527	43,50
9			Western Tottori6	OKYH080010061330EW2	1400,00	1,30	0	0,315	12,229	4,506	43,50
10	GRUP	0 2 0 25	LOK30 I14 55 EW	55 EW	1000,00	1,10	90	0,324	46,473	16,133	
11	7	0,3-0,33	Northridge-01	NORTHR\PAC265.AT2	2016,13	0,80	265	0,328	22,730	4,826	20,36
12			Loma Prieta	LOMAP\G01000.AT2	1428,14	0,75	0	0,331	22,399	5,271	28,64
13			Northridge-01	NORTHR\PAC265.AT2	2016,13	0,90	265	0,370	25,572	5,429	20,36
14	GRUP	0.35.0.4	Loma Prieta	LOMAP\G01000.AT2	1428,14	0,85	0	0,375	25,403	5,974	28,64
15	8 0,55-0,2		Northridge-01	NORTHR\PAC175.AT2	2016,13	0,90	175	0,382	38,336	5,252	20,36
16			LOK30 I14 55 EW	55 EW	1000,00	1,30	90	0,386	55,325	19,206	
17	GRUP 9	0,4-0,45	LOK30 I14 53 EW	53EW	1000,00	0,82	90	0,448	65,333	52,142	
18			Loma Prieta	LOMAP\G01090.AT2	1428,14	0,90	90	0,463	37,562	6,492	28,64
19			LOK30 I14 53 EW	53EW	1000,00	0,86	90	0,470	68,520	54,685	
20	GRUP 10	0,45-0,5	LOK 30 I22 293 NS	\$ 30 I22 293 NS 293 NS		0,70	90	0,473	38,309	11,574	
21			Loma Prieta	LOMAP\G01000.AT2	1428,14	1,10	0	0,485	32,853	7,731	28,64
22			Northridge-01	NORTHR\PAC265.AT2	2016,13	1,20	265	0,492	34,096	7,239	28,64
23			LOK 30 I22 293 NS	293 NS	1000,00	0,78	90	0,526	42,565	12,860	
24			Northridge-01	NORTHR\PAC175.AT2	2016,13	1,25	175	0,531	53,245	7,295	20,36
25	GRUP 11	0,5-0,55	CENTRAL_ITALY	IV.MI05.HNE.D.20090407. 174737.C.ACC	Eurocode A	0,77	90	0,537	19,143	1,365	3,60
26			Landers	LANDERS\LCN260.AT2	1369,00	0,77	260	0,546	75,119	54,290	44,02
27			Landers	LANDERS\LCN345.AT2	1369,00	0,71	345	0,549	22,332	11,246	44,02
28			Loma Prieta	LOMAP\G01000.AT2	1428,14	1,25	0	0,551	37,332	8,785	28,64
29			Loma Prieta	LOMAP\G01090.AT2	1428,14	1,10	90	0,565	45,908	7,934	28,64
30	CDUD		LOK30 I22 293 EW	293 EW	1000,00	0,72	90	0,573	44,083	9,943	
31	12	0,55-0,6	Landers	LANDERS\LCN345.AT2	1369,00	0,75	345	0,580	23,623	11,896	44,02
32			CENTRAL_ITALY	IV.MI05.HNE.D.20090407.17473. C.ACC	Eurocode A	0,85	90	0,592	21,132	1,506	3,60
33			LOK30 I14 53 EW	53EW	1000,00	1,10	90	0,600	87,641	69,946	

Çizelge 3.8 İvme kaydı setinde kullanılan ölçeklenmiş ivme kayıtları

3.2.5 Sentetik Kayıtlar

İvme kaydı seti, doğal, ölçeklenmiş ve ters evrişim tekniği ile elde edilen ivme kayıtları kullanılarak belli bir zenginliğe ulaşsa da yalnız bu yöntemler ile istenilen seviyede ivme kaydı oluşturulması mümkün olmamıştır. Bunun sebebi gerçek deprem kayıtlarının ve ters evrişim tekniği ile üretilen kayıtların oldukça az olmasıdır. Ölçekleme yönteminin de çokça kullanılmasıyla set içinde aynı özellikli depremler baskın olabileceğinden sete sentetik kayıt eklenmesi gerekli olmuştur.

Sentetik kayıtlar üretilirken elde edilen depremlerin doğal depremlere uygun olmasına önem verilmiştir. Tezde dikkate alınan taban kayası özelliğindeki depremleri üretebilmek ilk dikkat edilmesi gereken hususlardan biridir. Bu amaçla proje için SeismoArtif programının kullanılması yazılıma taban kayası özelliği girilebildiğinden uygun görülmüştür (SeismoArtif 2016), [63]. Şekil 3.16'da görüldüğü üzere programda çok sert kaya değeri girilerek ivme kaydı üretilebilmektedir. Bunun dışında spesifik bir magnitüd değeri tanımlanabilmektedir.

Şekil 3.16 SeismoArtif programında taban kayası özelliği seçeneği [63]

Tüm bu çalışmalar sonrasında ise üretilen sentetik kayıtların doğal kayıtlarla olan uyumu PGV-Vmax/Amax, PGV-Tp, PGV-Tm bazında grafiksel olarak incelenmiştir. Deneme yanılma yoluyla çok sayıda farklı frekans içeriğinde ivme kaydı üretilmiş, doğal kayıtlardan uzaklaşanlar elenmiştir.

Şekil 3.17 Eldeki tüm doğal ve sentetik kayıtların arasındaki PGV-Vmax/Amax ilişkisi

Şekil 3.18 Eldeki tüm doğal ve sentetik kayıtların arasındaki PGV- predominant periyot ilişkisi

Şekil 3.19 Eldeki tüm doğal ve sentetik kayıtların arasındaki PGV- ortalama periyot ilişkisi

3.2.6 Elde Edilen İvme Kaydı Seti

Farklı dört yöntemle oluşturulmuş olan ivme kaydı seti çalışmaları sonucunda 84 adet deprem kaydına sahip bir set elde edilmiştir (Çizelge 3.8). Bu kapsamda ivme kayıtlarının hem taban kayası tanımına uygun hem de farklı genlik ve frekans içeriğine sahip kayıtlar olduğu düşünülmektedir. Öncelik Türkiye depremlerine ve gerçek deprem kayıtlarına verilmiş daha sonra ters evrişim, ölçekleme, sentetik kayıt üretme teknikleri kullanılarak set son haline getirilmiştir.

Her bir grup içinde fay tipi, deprem özellikleri, frekans içeriği, ivme kaydı üretim yolu (doğal, ters evrişim, sentetik, ölçekli) açılarından farklı özellik ve dağılımda ivme kaydı bulunmasına özen gösterilmiştir. Ülkemiz ve Dünya'nın kalanında istenilen özellikte kaydedilmiş doğal ivme kaydı sayısının son derece az olması sebebiyle ivme kaydı setinin oluşturulması oldukça zaman alıcı ve büyük çaba gerektiren bir işlem olmuştur.

Türkiye depremlerinin sayısının arttırılması amacıyla Türkiye için ters evrişim ile üretilen bazı depremlerin ölçeklenmesi yoluna da gidilmiştir. İvme kaydı setinde ilgili eksikliğin giderilmesi için elde kalan son yol sentetik ivme kaydı üretimidir. İvme kaydının tamamen sentetik olmasından ise ters evrişim ve ölçekleme yoluyla elde edilmesi tercih edilmiştir.

Sıra	Grup No	PGA Aralık	Deprem Adı	Vs 30 (m/s)	Bileşke	PGA (g)	PGV (cm/sec)	Fay Tipi	Ölçek	Тір
1			Tottori, Japan	2100	0	0,005	1,392	Strike-Slip	1,00	Orijinal
2			14219360	1464	90	0,011	0,213	Strike-Slip	1,00	Orijinal
3			LOK6I4460NS	1500	0	0,016	1,155	Strike-Slip	1,00	Ters Evrişim
4	CPUP 1	0.00.0.05	LOK30I1447NS	1000	0	0,024	1,066	Strike-Slip	1,00	Ters Evrișim
5	UKUF I	0,00-0,05	Chuetsu-oki	1433	90	0,026	0,713	Reverse	1,00	Orijinal
6			Artificial 5	2900		0,036	0,925		1,00	Sentetik
7			Niigata, Japan	1433	90	0,047	1,408	Reverse	1,00	Orijinal
8			Chi-Chi, Taiwan	1526	90	0,050	10,270	Reverse-Oblique	1,00	Orijinal
9			LOK6I463NS	1500	0	0,052	3,412	NORMAL	1,00	Ters Evrişim
10			Artificial 9	2900		0,057	1,709		1,00	Sentetik
11			Iwate	1433	0	0,060	2,930	Reverse	1,00	Orijinal
12		0.05.0.1	Niigata, Japan	1433	0	0,062	1,455	Reverse	1,00	Orijinal
13	UKUI 2	0,05-0,1	LOK30I163NS	1000	0	0,074	1,163	Strike-Slip	1,00	Ters Evrișim
14			Iwate	1433	90	0,085	2,571	Reverse	1,00	Orijinal
15			Coyote Lake	1428	230	0,089	4,456	Strike-Slip	1,00	Orijinal
16			Morgan Hill	1428	320	0,098	2,806	Strike-Slip	1,00	Orijinal
17			Hollister-03	1428	157	0,101	2,660	Strike-Slip	1,00	Orijinal
18			LOK19I6120EW	1200	90	0,107	23,649	Strike-Slip	1,00	Ters Evrișim
19			Coyote Lake	1428	320	0,118	9,159	Strike-Slip	1,00	Orijinal
20	CPUD 3	01015	LOK30I2223EW	1000	90	0,123	2,030	Strike-Slip	1,00	Ters Evrișim
21	- GRUP 3 0,1-0,15	0,1-0,15	Chi-Chi, Taiwan	1526	0	0,135	23,284	Reverse-Oblique	1,00	Orijinal
22			Artificial 22	2900		0,132	8,220		1,00	Sentetik
23			Hollister-03	1428	247	0,139	3,843	Strike-Slip	1,00	Orijinal
24			Shikoku2	2000	90	0,142	2,320		0,90	Ölçekli

Çizelge 3.9 İlk 3 grup ivme kaydı seti bilgileri

25			Artificial 25	2900		0,153	10,328		1,00	Sentetik
26			Shikoku2	2000	90	0,161	2,578		1,00	Orijinal
27			Chi-Chi, Taiwan	1526	0	0,168	29,105	Reverse-Oblique	1,25	Ölçekli
28	CDUD 4		Hollister-03	1428	247	0,174	4,804	Strike-Slip	1,25	Ölçekli
29	GRUP 4	0,15-0,2	Western Tottori12	1600	0	0,181	8,168	Unknown	1,00	Orijinal
30			LOK19I6120NS	1200	0	0,184	38,998	Strike-Slip	1,00	Ters Evrișim
31			Western Tottori6	1400	0	0,190	7,526		0,80	Ölçekli
32			LOK30I2230EW	1000	90	0,194	3,093	Strike-Slip	1,00	Ters Evrișim
33			Artificial 33	2900		0,203	22,456		1,00	Sentetik
34			Shikoku2	2000	90	0,210	3,351		1,30	Ölçekli
35			LOK30I2230NS	1000	0	0,218	3,371	Strike-Slip	1,00	Ters Evrișim
36	GRUP 5	0,2-0,25	Western Tottori8	1400	90	0,232	8,235		1,00	Orijinal
37			LOK30I1455NS	1000	0	0,235	42,604	Strike-Slip	0,85	Ters Evrişim-Ölçekli
38			Artificial 38	2900		0,240	27,581		1,00	Sentetik
39			Artificial 39	2900		0,249	29,037		1,00	Sentetik
40			Western Tottori4	1400	0	0,253	11,903		1,30	Ölçekli
41			Artificial 41	2900		0,260	30,213		1,00	Sentetik
42			Artificial 42	2900		0,264	30,858		1,00	Sentetik
43	GRUP 6	0,25-0,3	Artificial 43	2900		0,273	29,512		1,00	Sentetik
44			Western Tottori16	2200	0	0,289	11,181		1,00	Orijinal
45			Western Tottori10	1600	90	0,290	8,886		1,00	Orijinal
46			Western Tottori8	1400	90	0,299	10,705		1,30	Ölçekli

Çizelge 3.8 İkinci 3 grup ivme kaydı seti bilgileri (Devamı)

47			Western Tottori6	1400	0	0,315	12,229		1,30	Ölçekli
48			Artificial 49	2900		0,319	30,352		1,00	Sentetik
49			LOK30 I14 55 EW	1000	90	0,324	46,473	Strike-Slip	1,10	Ters Evrişim-Ölçekli
50	GRUP 7	0,3-0,35	Northridge-01	2016	265	0,328	22,730	Reverse	0,80	Ölçekli
51			Loma Prieta	1428	0	0,331	22,399	Reverse-Oblique	0,75	Ölçekli
52			Artificial 52	2900		0,339	42,184		1,00	Sentetik
53			Artificial 53	2900		0,346	62,140		1,00	Sentetik
54			Artificial 54	2900		0,352	44,406		1,00	Sentetik
55			Artificial 55	2900		0,361	48,213		1,00	Sentetik
56			Northridge-01	2016	265	0,370	25,572	Reverse	0,90	Ölçekli
57	GRUP 8	0,35-0,4	Loma Prieta	1428	0	0,375	25,403	Reverse-Oblique	0,85	Ölçekli
58			Northridge-01	2016	175	0,382	38,336	Reverse	0,90	Ölçekli
59			LOK30 I14 55 EW	1000	90	0,386	55,325	Strike-Slip	1,30	Ters Evrişim-Ölçekli
60			Artificial 60	2900		0,394	58,504		1,00	Sentetik
61			Artificial 61	2900		0,405	65,569		1,00	Sentetik
62			Northridge-01	2016	265	0,410	28,413	Reverse	1,00	Orijinal
63	CDUDO	0 4 0 45	Artificial 62	2900		0,412	75,806		1,00	Orijinal
64	UKUP 9	0,4-0,43	Northridge-01	2016	175	0,425	42,596	Reverse	1,00	Orijinal
65			Loma Prieta	1428	0	0,441	29,866	Reverse-Oblique	1,00	Orijinal
66			LOK30 I14 53 EW	1000	90	0,448	65,333	Strike-Slip	0,82	Ters Evrişim-Ölçekli

Çizelge 3.8 Üçünci 3 grup ivme kaydı seti bilgileri (Devamı)

67			Artificial 63	2900		0,456	61,113		1,00	Sentetik
68			Loma Prieta	1428	90	0,463	37,562	Reverse-Oblique	0,90	Ölçekli
69		LOK30 I14 53 EW	1000	90	0,470	68,520	Strike-Slip	0,86	Ters Evrişim-Ölçekli	
70	GRUP IU	0,45-0,5	LOK 30 I22 293 NS	1000	90	0,473	38,309	Strike-Slip	0,70	Ters Evrişim-Ölçekli
71			Loma Prieta	1428	0	0,485	32,853	Reverse-Oblique	1,10	Ölçekli
72			Northridge-01	2016	265	0,492	34,096	Reverse-Oblique	1,20	Ölçekli
73		Loma Prieta	1428	90	0,516	41,830	Reverse-Oblique	1,00	Orijinal	
74			LOK 30 I22 293 NS	1000	90	0,526	42,565	Strike-Slip	0,78	Ters Evrişim-Ölçekli
75		05055	Northridge-01	2016	175	0,531	53,245	Reverse	1,25	Ölçekli
76		0,5-0,55	CENTRAL_ITALY	Eurocode A	90	0,537	19,143	NORMAL	0,77	Ölçekli
77			Landers	1369	260	0,546	75,119	Strike-Slip	0,77	Ölçekli
78			Landers	1369	345	0,549	22,332	Strike-Slip	0,71	Ölçekli
79			Loma Prieta	1428	0	0,551	37,332	Reverse-Oblique	1,25	Ölçekli
80			Loma Prieta	1428	90	0,565	45,908	Reverse-Oblique	1,10	Ölçekli
81	CDUD 12	0.55.0.6	LOK30 I22 293 EW	1000	90	0,573	44,083	Strike-Slip	0,72	Ters Evrişim-Ölçekli
82	— GRUP 12 0,55-0,6	JP 12 0,55-0,6	Landers	1369	345	0,580	23,623	Strike-Slip	0,75	Ölçekli
83		CENTRAL_ITALY	Eurocode A	90	0,592	21,132	NORMAL	0,85	Ölçekli	
84			LOK30 I14 53 E	1000	90	0,600	87,641	Strike-Slip	1,10	Ölçekli

Çizelge 3.8 Son 3 grup ivme kaydı seti bilgileri (Devamı)

4. BULGULAR

4.1 Büyütme Oranı – PGA İlişkileri

PGA değerinin artması ile T=0,2 s spektral ivme büyütme oranının azaldığı görülmektedir. 0,1 PGA değeri altında azalım (1'den küçük büyütme oranları) pek gözlenmezken artan PGA oranları ile büyütme değerinin 1'in altına daha çok düştüğü görülmektedir. PGA değerinin artışı ile büyütme oranlarındaki saçılım azalmaktadır. Küçük PGA değerlerinde 9lara varabilen büyütme oranları 0,6g PGA değeri civarında yaklaşık 5 kata ulaşan değerlere de varabilmektedir. Ancak yine de yer hareketi ve değişken zemin durumu neticesinde davranışın oldukça karmaşık olduğu grafikte yer alan büyük saçılımdan anlaşılmaktadır.

Şekil 4.1 Analizler sonucunda ortaya çıkan T=0,2s için büyütme oranı – giriş PGA ilişkisi

PGA değerinin artması ile T=1s spektral ivme büyütme oranının azaldığı görülmektedir. 0,2 PGA değeri altında azalım (1'den küçük büyütme oranları) pek gözlenmezken artan PGA oranları ile büyütme değerinin 1'in altına daha çok düştüğü görülmektedir. Yine de 0,2s spektral ivme büyütme oranlarına kıyasla 1 in altında büyütme oranı sayısı çok daha azdır. PGA değerinin artışı ile büyütme oranlarındaki saçılım belirgin bir şekilde azalmaktadır. Küçük PGA değerlerinde 7'lere varabilen büyütme oranları 0,6g PGA değeri civarında yaklaşık 3,5-4 kata ulaşan değerlere de varabilmektedir. Ancak yine de yer hareketi ve değişken zemin durumu neticesinde davranışın oldukça karmaşık olduğu grafikte yer alan büyük saçılımdan anlaşılmaktadır.

Şekil 4.2 Analizler sonucunda ortaya çıkan T=1s için büyütme oranı – giriş PGA ilişkisi

PGA değerinin artması ile T=0,2 s spektral ivme büyütme oranının yine azaldığı görülmektedir. Fakat artık 6s spektral ivme büyütme oranlarının neredeyse hiçbir PGA değerinde 1 den az büyüme yapmadığı görülmektedir. PGA değerinin özellikle 0,2g den sonraki değerleri için büyütme oranlarındaki saçılım oldukça azalmaktadır. Diğer grafiklere kıyasla 6s için hesaplanan büyütme oranlarında değerler 1-2 arasında yoğunlaştığından saçılım oldukça azdır. Küçük PGA değerlerinde 6'lara varabilen büyütme oranları 0,6g PGA değeri civarında yaklaşık 2 kata ulaşan değerlere de varabilmektedir. Ancak yine de yer hareketi ve değişken zemin durumu neticesinde davranışın oldukça karmaşık olduğu grafikte yer alan büyük saçılımdan anlaşılmaktadır.

Şekil 4.3 Analizler sonucunda ortaya çıkan T=6s için büyütme oranı – giriş PGA ilişkisi

4.2 Büyütme Oranı – Giriş Spektral İvme İlişkileri

T=0,2s Sa (spektral ivme) girdi değerinin artması ile T=0,2s spektral ivme büyütme oranının azaldığı görülmektedir. Değerlere ve eğilim çizgisine bakıldığında bu azalmanın doğrusala yakın bir azalma olduğu görülmektedir. Yatay eksenin PGA değeri olduğu grafiklerle kıyaslandığında büyütme oranının belli bir bölgede yığılma yapmadığı daha çok azalarak saçılımın devam ettiği görülmektedir. 0 ila 9,25 arasında neredeyse her değerde büyütme oranına rastlanmaktadır. Küçük Sa girdi değerlerinde 9'lara varabilen büyütme oranları 1,6 Sa girdi değeri civarlarında 2'ye kadar düşmektedir, 1'den düşük Sa girdi değerleri için en çok 1 ve 3 arasında büyütme olduğu açıkça görülmektedir.

Şekil 4.4 Analizler sonucunda ortaya çıkan T=0,2s için büyütme oranı – giriş spektral ivme ilişkisi

T=1s Sa (spektral ivme) girdi değerinin artması ile T=1 s spektral ivme büyütme oranının azaldığı görülmektedir. Değerlere ve eğilim çizgisine bakıldığında bu azalmanın doğrusala yakın bir azalma olduğu görülmektedir. 0,2s için elde edilen grafiğe kıyasla 1'in altında büyütme oranı oldukça azalmıştır. 0 ila 7 arasında neredeyse her değerde büyütme oranına rastlanmaktadır. Küçük Sa girdi değerlerinde 7'lere varabilen büyütme oranları 0,6 Sa girdi değeri civarlarında 1'e yaklaşmaktadır. 0,1'den düşük Sa girdi değerleri için en çok 1 ve 2 arasında büyütme olduğu açıkça görülmektedir.

Şekil 4.5 Analizler sonucunda ortaya çıkan T=1s için büyütme oranı – giriş spektral ivme ilişkisi

T=6s Sa (spektral ivme) girdi değerinin artması ile T=6s spektral ivme büyütme oranının azaldığı görülmektedir. Yüksek periyotlarda spektral ivme değerleri çok azaldığından büyütme oranları grafiğin dikey eksenine çok yakındadır. Grafikte 0,03g'nin altındaki Sa girdi değerleri için büyütme oranlarının 1-2 değerleri arasında yoğunlaştığı görülmektedir. Küçük Sa girdi değerlerinde 6'lara varabilen büyütme oranları 0,14 Sa girdi değerl değerleri civarlarında 1'e kadar düşmektedir. 0,03'den düşük Sa girdi değerleri için en çok 1 ve 2 arasında büyütme olduğu açıkça görülmektedir.

Şekil 4.6 Analizler sonucunda ortaya çıkan T=6s için büyütme oranı – giriş spektral ivme ilişkisi

4.3 Büyütme Oranı – Makaslama Dalgası Hızı İlişkileri

Kayma dalgası hızının artışıyla T=0,2s için büyütme oranları incelendiğinde en yüksek büyütme oranlarının 600 m/s civarında olduğu görülmektedir. Genel olarak kayma dalgası hızı arttıkça büyütme oranları artan bir eğilim göstermektedirler fakat 600 m/s değerinden sonra büyütme oranlarının artık azaldığı açıkça görülmektedir. 0,2s civarındaki periyot değerlerinde taban kayası özelliğine yaklaşan zeminlerin daha az büyütme yaptığı söylenebilir. Fakat 0,2s periyot değerlerinde en yüksek büyütme ZC sınıfı zeminler için görülmektedir. Bu zemin değerlerinde büyütme oranı 9'lara kadar ulaşabilmektedir, Yine 760 m/s değerini geçen ve ZD zemin sınıfına bakıldığında 6'ya varan ciddi büyütme oranlarına rastlanmaktadır. Burdan yola çıkarak düşük periyot değerlerinde, ki bizim için en kritik bölgedir, büyütme oranlarını 2 farklı bölgede değerlendirmek daha faydalı olacaktır.

Şekil 4.7 Analizler sonucunda ortaya çıkan T=0,2s için büyütme oranı – zemin makaslama dalgası hızı ilişkisi

Kayma dalgası hızının artışı ile T=1s için büyütme oranları incelendiğinde eğilimin taban kayası özelliğine yaklaştıkça azalarak gittiği görülmektedir. Düşük kayma dalgası hızı 200m/s civarındayken büyütme değerleri 7'lere kadar ulaşırken, hız arttıkça bu değerlerin düzenli bir şekide azalarak 1'e yaklaşmaktadır. ZC sınıfı zeminlerde büyütme oranlarının bir miktar yükseldiği görülse de bu durum genel eğilimi bozmamıştır. Genel anlamda T=1s için 0,2s'nin aksine oldukça düzenli bir davranış olduğu söylenebilir.

Şekil 4.8 Analizler sonucunda ortaya çıkan T=1s için büyütme oranı – zemin makaslama dalgası hızı ilişkisi
Kayma dalgası hızının artışı ile T=6s için büyütme oranları incelendiğinde eğilimin taban kayası özelliğine yaklaştıkça azalarak gittiği görülmektedir. Fakat bu azalma düzenli bir azalma olarak kendini göstermemektedir. T=0,2s'ye benzer bir şekilde en yüksek büyütme oranları 600 m/s civarında ve ZC zemin sınıflarında görülmektedir ve değerler 6'lara kadar ulaşmaktadır. Bu durum genel azalma eğilimini bozmasa da ZC zemin sınıflarının yüksek büyütme oranlarına sahip olması dikkat çekicidir. Daha yüksek kayma dalgası hızı değerlerinde ise büyütmeler hem periyodun 6s olmasından hem de zeminlerin taban kayası özelliğine yaklaşmasından dolayı oldukça azalmıştır.

Şekil 4.9 Analizler sonucunda ortaya çıkan T=6s için büyütme oranı – zemin makaslama dalgası hızı ilişkisi

5. SONUÇLAR VE ÖNERİLER

Bu çalışmada 84 farklı deprem kaydı ve 33 farklı zemin tipi için deprem dalgalarının zemin tabakalarına göre değişimi incelenmiştir, Tüm analizler için ProShake programı kullanılmıştır.

33 farklı zemin tipi TBDY-2016 taslağındaki kıstaslara göre belirlenmiştir.

84 adet deprem kaydı ise gerçek deprem kaydı, ölçeklenmiş deprem kaydı, sentetik deprem kaydı ve ters evrişim ile elde edilmiş deprem kaydı olmak üzere 4 farklı teknikle elde edilmiştir.

- Hem düşük periyotlarda hem de yüksek periyotlarda artan PGA ile birlikte büyütme oranları gözle görülür şekilde azalmaktadır fakat düşük periyotlarda 9 kata kadar çıkabilen bu oranlar yüksek periyotlarda 6 değerini görebilmektedir. Düşük periyotlarda saçılım oldukça düzensiz iken yüksek periyotlarda büyütme oranı değerleri 1 değeri etrafında yığılmıştır. Bu açıdan düşük periyotların daha riskli olduğu tezi desteklenmektedir.
- Artan spektral giriş değeri incelendiğinde bu parametredeki büyütme oranları değişimi yine azalan bir eğilim göstermektedir ve bu azalımın artan PGA değerine kıyasla daha düzenli olduğu söylenebilir. Düşük periyotlarda 9,5 i bulan büyütme oranları yüksek periyotlarda en fazla 5'i görebilmiştir. Yüksek periyotlarda büyütme oranlarını 1 değeri etrafında yoğunlaşması ve genel davranışa bakıldığında büyütme oranlarının artan PGA değeri ve artan spektral giriş değeriyle benzer değişimler gösterdiği söylenebilir.
- Büyütme oranlarını artan Vs30m değerleriyle karşılaştırdığımızda ise çok daha farklı bir manzara ortaya çıkmaktadır, Düşük periyotlarda büyütme oranları iki farklı eğilim göstermiştir. İki eğilim de maksimum değerini 600 m/s makaslama dalga hızına sahip zeminlerde göstermektedir. Bu büyütme oranının 9'a kadar varabildiğini gördüğümüzden düşük periyotlarda bu değere sahip zeminlerin tehlikeli olduğu sonucuna varılabilmektedir. 750 m/s civarında dalga hızına sahip zeminlerde ciddi büyütme oranları göstermektedir ve bu oranlar taba kayasına yaklaştıkça (1500 m/s) 1'e kadar düşmektedir. Yine 600 m/s'den en düşük makaslama dalga hızına sahip

zeminlere yaklaştıkça (200 m/s civarı) büyütme oranları 1'e doğru devam etmektedir.

- 1s periyodundaki büyütme oranı değerleri ise artan makaslama dalgası hızıyla düzenli denilebilecek seviyede düşmektedir. Bu periyot değerinde 150 m/s civarındaki zeminler için oran 7'ye varabilirken, 600 m/s civarında 4 ve taban kayası özelliğinde yeniden 1 civarına düşmektedir.
- Yüksek periyotlarda ise artan Vs30m değerleriyle birlikte büyütme oranları yine azalım eğilimindedir fakat iki farklı bölgede bu eğilimin şiddeti değişmektedir. 600 m/s'ye kadar olan bölgedeki azalımın daha sert olduğu çok net görülmektedir. Fakat genel olarak azalım eğilimi olmasına rağmen maksimum büyütme oranlarının yine 600 m/s değerine sahip zeminlerde görülmesi dikkat çekicidir.

Tüm bu bilgiler ışığında özellikle ülkemizde en sık rastlanan zemin sınıflarından biri olan ZC zemin sınıfının düşük ve yüksek periyotlarda en yüksek büyütme oranlarını vermesi endişe vericidir.

Genel tabloya bakıldığında ise düşük periyotların daha tehlikeli olduğunu görmekteyiz. Periyodun bu kadar belirleyici olması binalarımızda kütle ve eleman rijitliği kavramlarının önemine vurgu yapmaktadır.

Yapılabilecek Çalışmalar ile İlgili Öneriler

Çalışma kapsamında hem depem yönetmeliğimizdeki zemin tanımlarına uygun zemin profilleri hem de ülkemiz ve dünyada gerçekleşen depremlerin ivme kayıtları kullanıldığından 2772 adet ivme kaydı içerisinden istenilen özellikte olanlar kullanılarak;

- 1. Elde edilecek olan tasarım ivme spektrumları aracılığıyla hesaplanabilecek deprem kuvvetleri esas alınarak mevcut binalarımız doğrusal olmayan analiz yöntemiyle analiz edilerek maksimum göreli kat ötelemeleri incelenebilir.
- 2. Yine aynı teknikler kullanılarak zemin sınıflarının değişimine göre deplasman talepleri hesaplanabilir.
- 3. Yeni bir tasarım spektrumu oluşturularak yönetmeliğimizdeki spektrum ile karşılaştırılabilir ve daha ideal bir tasarım spektrumuna sahip olunup olunamayacağı incelenebilir.

8. KAYNAKLAR

- Eyidogan, H., (2002), Mühendislik Sismolojisi, İTÜ Maden Fakültesi Jeofizik Mühendisliği Böl,, Ders Notları, İstanbul,
- [2] Lav, A,, (1994), "İstanbul ve Erzincan Şehirlerinde Zemin Büyütme Etkilerine Göre Mikrobölgeleme" Doktora Tezi, İ,T,Ü, Fen Bilimleri Enstitüsü, İstanbul,
- [3] Seed, H,B,, Whitman, R,V,, Dezfulian, H,, Dobry, R,, Idriss, I,M,, (1972) " Soil Conditions and Building Damage in the 1967 Caracas Earthquake", Journal of the Soil Mechanics Foundations Division, ASCE, Vol,98, pp: 787-806,
- [4] Rosenblueth, E., (1986) "The Mexican Earthquake, A Firsthand Report", ASCE, CivilEng,, New York, pp: 38-40, January
- [5] Tezcan SS, Ipek M, (1973) Long distance effects of the March 28, 1970 Gediz Turkey earthquake, Earthquake Engineering and Structural Dynamics; 1:203–15,
- [6] Field, E,H, and the SCEC Phase III Working Group, (2000), "Accounting for SiteEffects in Probabilistic Seismic Hazard Analyses of Southern California: Overview of the Scec Phase III Report", Bulletin of the Seismological Society of America, 90,6B, pp: S1–S31, December,
- [7] Idriss, I,M,, (1990) "Response of Soft Soil Sites During Earthquakes", Proc, H, BoltonSeed Memorial Symposium, Berkeley, California, Vol,2,
- [8] Toksöz, M, N,, R, E, Reilinger, C, G, Doll, A, A, Barka, and N, Yalcin (1999), "Izmit (Turkey) earthquake of 17 August 1999": first report, Seism, Res, Lett, 70, pp: 669–679,
- [9] Elton, D,J,, Martin, J,R, (1989) "Dynamic Site Periods in Charleston, SC", Earthquake Spectra, Vol,5, No,4, pp: 703-734,
- [10] Aki, K., (1970) "Local Site Effects on Strong Ground Motion", EarthquakeEngineering Structural Dynamics II, Proc, of the Speciality Conf, ASCE, June 27-30,Park City, Utah,
- [11] İzmir Deprem Senaryosu, (2000) Erisim: http:// www,izmirbld,gov,tr/izmirdeprem/izmirrapor,htm

- [12] Shima, E, (1978) "Seismic Microzoning map of Tokyo" Proc, Second Inter, Conf, on Microzonation, (1) pp: 433-443
- [13] Beliceli A, (2006), Eskişehir Yerleşim Yeri Zeminin Büyütme Etkisinin Makaslama Dalga Hızına Bağlı Olarak Belirlenmesi (Yüksek Lisans Tezi), Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Balıkesir,
- [14] Finn, W,D,Liam, (1993), "Characterization Of Site Effects And Soil-StructureInteraction For Seismic Design Codes", Seismic Soil / Stucture _nteraction Seminar, Vancouver, British Columbia, May 29,
- [15] Ansal,A,M,, (1994), "Effects of Geotechnical Factors and Behavior of Soil LayersDurin Earthquakes", State-of-the-Art Lecture, Proc, of 10th European Conference onEarthquake Engineering, (1) pp: 467-476,
- [16] Anderson, J,G,, Lee, Y,, Zeng, Y, & Day, S, (1996) "Control of Strong Motionby the Upper 30 Meters" BSSA, (86) pp: 1749-1759,
- [17] Idriss, I, M,, (1990) "Response of Soft Soil Sites During Earthquakes," In Proceedings of the Symposium to Honor Professor H, B, Seed, Berkeley, USA,
- [18] Idriss, I, M,, (1990), "Influence of Local Site Conditions on Earthquake Ground Motions," In Proceedings of the 4th U,S, National Conference on Earthquake Engineering, Palm Springs, 1, p, 55-57,
- [19] Seed, H, B,, R, Murarka, J, Lysmer, and I, M, Idriss, (1976), "Relationships Between Maximum Acceleration, Maximum Velocity, Distance from Source and Local Site Conditions for Moderately Strong Earthquakes," Bulletin of the SeismologicalSociety of America, 66 (4), p,1323-1342,
- [20] Rodriguez-Marek, A,, Bray, J,D,, Abrahamson, N,A,, (2001), "An emprical Geotechnical seismic site response procedure" Earthquake Spectra,
- [21] Seed, H, B,, M, P, Romo, J, I, Sun, A, Jaime, and J, Lysmer, (1988), "The MexicoEarthquake of September 19, 1985--Relationships Between Soil Conditions and Earthquake Ground Motions," Earthquake Spectra, 4(4), p,687-729,

- [22] Ansal, A., Biro, Y., Erken, A., Gülerce, Ü., Özçimen, N., (2001), "Seismic zonationin Istanbul: A case study" Geotechnical Earthquake Engineering and Microzonation Seminar, Istanbul,
- [23] Trifunac, M, D,, (2003), "Nonlinear soil response as a natural passive isolation mechanism, Paper II, The 1933, Long Beach, California earthquake", Soil Dynamics and Earthquake Engineering, 23, p,549,
- [24] Trifunac, M, D,, Todorovska, M, I,, (2004), "1971 San Fernando and 1994 Northridge, California, earthquakes: did the zones with severely damaged buildings reoccur?", Soil Dynamics and Earthquake Engineering, 24, p,225,
- [25] TEZCAN, S.,S., KAYA, E., BAL, "E., ÖZDEMIR, Z., (2002), Seismic amplification at Avcılar İstanbul, Engineering Structures, 24, 661-7,
- [26] Kutanis, M., Elmas, M., (2005), "Yerel Zemin Sartlarının Tasarım Yer Hareketi Üzerinde Etkileri", Kocaeli 2005 Deprem Sempozyumu, sayfa: 1208, İzmit,
- [27] Vucetic, M., Dobry, R. (1991), "Effect Of Soil Plasticity On Cyclic Response", Journal Of Geotechnical Engineering, ASCE, Vol,117, No,1 pp: ,89-107
- [28] ISSMFE, (1993), "Manual for Zonation on Seismic Geotechnical Hazards, Published by Japanese Society of Soil Mechanics and Foundation Engineering, Tokyo,
- [29] DBYBHY-2007, Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Ankara, (2007)
- [30]PEER, Pacific Earthquake Engineering Research Center, http://peer,berkeley,edu/smcat/index,html,
- [31]ÖZMEN, H,B,, Düşük ve Orta Yükseklikteki Betonarme Yapıların Deprem Performanslarını Etkileyen Faktörlerin İrdelenmesi, (Doktora Tezi), Pamukkale Üniversitesi Fen Bilimleri Enstitüsü, Denizli (2011),
- [32] ProShake 2,0, (2017), www,proshake,com,
- [33] SCHNABEL, P, B,, J, LYSMER and H, B, SEED, "SHAKE": (1972), A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites, Report No, EERC 72/12, Earthquake Engineering Research Center, University of California, Berkeley,

- [34] BSSC, (1997), NEHRP Recommended Provisions for Seismic Regulations for New Buildings, Part 1 Provisions, 1997 Edition, Building Seismic Safety Council, Washington, D,C,, pp: 337,
- [35] BOUR, M,, FOUISSAC, D,, DOMINIQUE, P,, MARTIN, C,, (1998), On the Use of Microtremor Recordings in Seismic Microzonation, Soil Dynamics and Earthquake Engineering, 17 (7-8), 465-74,
- [36] YANG, W,-L,, CHEN, G,-X,, WANG, Z,-H,, (2003), 2D and 3D Seismic Response Analyses of Supergiant Bridge Pier-Group Piles-Soil Interaction System on Deep Overburden Layers, Journal of Earthquake Engineering and Engineering Vibration, 23(6), 124-132,
- [37] KIENZLE, A,, HANNICH, D,, WIRTH, W,, EHRET, D,, ROHN, J,, CIUGUDEAN, V, and CZURDA, K,, /2006), A GIS-Based Study of Earthquake Hazard as a Tool for the Microzonation of Bucharest, Engineering Geology, 87, 13-32,
- [38] BOOMINATHAN, A,, DODAGOUDAR, G,R,, SUGANTHI, A,, UMA MAHESWARI, R,, (2008), Seismic Hazard Assessment of Chennai City Considering Local Site Effects, Journal of Earth System Science, 117, 853-63,
- [39] ROSSET, P, and CHOUINARD, L,E,, (2009), Characterization of Site Effects in Montreal, Canada, Natural Hazards, 48(2), 295-308,
- [40] YAMADA, M,, MORI, J,, OHMI, S,, (2010), Temporal Changes of Subsurface Velocities during Strong Shaking As Seen from Seismic Interferometry, Journal of Geophysical Research B: Solid Earth, 115(3),
- [41] MESHRAM, V,G, and DANDGE, A,L,, (2011), A study of local site effects on seismic design of buildings, 4th International Conference on Technology of Architecture and Structure, ICTAS 2011, Xi'an, China, pp:1742-45,
- [42] CASERTA, A,, MARTINO, S,, BOZZANO, F,, GOVONI, A,, MARRA, F,, (2012), Dynamic properties of low velocity alluvial deposits influencing seismically-induced shear strains: The Grottaperfetta valley test-site (Rome, Italy), Bulletin of Earthquake Engineering 10(4), 1133-62,

- [43] TBDY-2016, Türkiye Bina Deprem Yönetmeliği Taslağı, 2016,
- [44] KRAMER S,L,, (1996), Geotechnical Earthquake Engineering, Prentice Hall, Pp: 653,
- [45] McGUIRE R,K, (1978), Seismic ground motion parameter relations, ASCE Journal of the Geotechnical Engineering Division, 104(GT4), 481–90,
- [46] TSO, W, K,, ZHU, T, J, and HEIDEBRECHT A,C, (1992), Engineering Implications of Ground Motion A/V Ratio, Soil Dynamics and Earthquake Engineering, 11(3), 133– 144,
- [47] XU L,, HU J, and XIE L,, (2008), On Characteristics of Ground Motion Parameters for Special Long-Period Ground Motions, Journal of Earthquake Engineering and Engineering Vibration, 28(6), 20-27,
- [48] XU L, and XIE L,, (2009), Variations of Seismic Design Acceleration Amplitude with Depth for Underground Structures, World Information on Earthquake Engineering, 25(2), 54-59,
- [49] TSELENTIS G-A, and DANCIU L,, (2010), Probabilistic Seismic Hazard Assessment in Greece – Part 1: Engineering Ground Motion Parameters, Natural Hazards and Earth System Sciences, 10, 25-39,
- [50] KIANOUSH M,R, and GHAEMMAGHAMI A,R, (2011), The effect of earthquake frequency content on the seismic behavior of concrete rectangular liquid tanks using the finite element method incorporating soil–structure interaction, Engineering Structures, 33, 2186–200,
- [51] AFAD, Afet ve Acil Durum Yönetimi Başkanlığı, https://deprem,afad,gov,tr/,
- [52] Davis, G,H, and Reynolds S,J, (1996) Structural Geology of Rock and Regions, John Wiley and Sons Inc., New York,
- [53] Beyaz T, (2004), Zemin Etkisinden Arındırılmış Deprem Kayıtlarına Göre Türkiye için Yeni Bir Deprem Enerjisi Azalım Bağıntısının Geliştirilmesi (Doktora Tezi), Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara,
- [54] COSMOS, http://strongmotioncenter,org/vdc/scripts/default,plx
- [55] GeoNet, https://www.geonet,org,nz/

- [56] Itaca, http://itaca,mi,ingv,it
- [57] Yağcı B, (2005), Mikrobölgeleme Metodolojileri ve Balıkesir için Bir Uygulama (Doktora Tezi), Balıkesir Üniversitesi, Fen Bilimleri Enstitüsü, Balıkesir,
- [58] VATANSEVER S ,(2011), Gerçek Deprem Kayıtlarının Ölçeklendirme Yöntemlerinin Karşılaştırılması, (Yüksek Lisans Tezi), Gebze İleri teknoloji Enstitüsü, Mühendislik ve Fen Bilimleri Enstitüsü, Gebze,
- [59] Krinitzsky, E, L, and Chang, F, K, (1977), State of the Art for Assessing Earthquake Hazards in the United States; Specifying Peak Motion for Design Earthquakes, Miscellaneous Paper S-73-1, Report 7, Jan, U,S, Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss,
- [60] Vanmarcke E, H,, (1979), State of the Art for Assessing Earthquake Hazards in the United States; Representation of Earthquake Ground Motion: Scaled Accelerograms and Equivalent Response Spectra, Miscellaneous Paper S-73-1, Report 14, Aug, U,S, Army Engineer Waterways Experiment Station, Geotechnical Laboratory, Vicksburg, Miss,
- [61] Amiri GG, Dana FM (2005) Introduction of the most suitable parameter for selection of critical earthquake, Computers and Structures, 83:613–626,
- [62] Ozmen HB, Inel M (2016) Damage potential of earthquake records for RC building stock, Earthquakes and Structures, 10:1315–1330,
- [63] Seismo Artif, http://www,seismosoft,com/SeismoArtif
- [64] Fahjan, Y., (2008) Türkiye Deprem Yönetmeliği (DBYBHY-2007) tasarım ivme spektrumuna uygun gerçek deprem kayıtlarının seçilmesi ve ölçeklenmesi. İMO Teknik Dergi 19;3 4423-4444

ÖZGEÇMİŞ

Kişisel Bilgiler

Soyadı, Adı	:	YILMAZ HAKAN
Uyruğu	:	T.C
Doğum Tarihi ve Yeri	:	26.05.1990 İZMİR
Medeni Hali	:	Bekar
Telefon	:	554 701 89 08
e-mail		hyilmaz@usak.edu.tr

<u>Eğitim Bilgileri</u>

Lisans	:	Celal Bayar Üniversitesi	2014
Lise	:	Orhan Dengiz Anadolu Lisesi	2008

<u>İş Deneyimi</u>

Banaz Uşak Yapı Denetim, Riskli Yapılardan Sorumlu Kontrol Mühendisi (8 ay)

DBYBHY – 2007 Tepki Spektrumu ve Deprem Yer Hareketinin Zemine Bağlı Değişiminin Değerlendirilmesi '' başlıklı <u>Tübitak 3001</u> projesi bursiyeri (2 yıl)

Yabancı Dil

İngilizce, Almanca

<u>Hobiler</u>

Futbol, Yüzme, Sinema, Trekking, İzcilik ve Kampçılık, Halk Oyunları ve Müzik,