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METRİK, ULTRAMETRİK VE SIRALI UZAYLARDAKİ SABİT NOKTA 
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ÖZET 

Bu tezin amacı Banach sabit nokta teoremini, ultrametrik uzay ve sıralı uzaylardaki sabit 

nokta teoremlerini Kuhlmann ve Kuhlmann (2015) çalışmasında ortaya atılan bir yöntem 

ile ele almaktır. Sözü edilen bu yöntem metrik, ultrametrik veya sıra yerine bunlarla elde 

edilen yuvar uzaylarını dikkate alarak ortak genel bir sabit nokta teoremi vermiştir. 

Altı bölümden oluşan bu tezin, birinci bölümü, giriş bölümü olup tezin içeriği hakkında 

bilgi verilmiştir. İkinci bölümde, metrik uzaylar ve sıralı uzaylar incelenmiştir. Üçüncü 

bölüm Banach sabit nokta teoreminin klasik ispatına ayrılmıştır. Dördüncü bölümde, 

ultrametrik uzaylar ve önemli örneklerinden p-sel metrik uzayları incelenmiş olup 

ultrametrik sabit nokta teoremi verilmiştir. Sıralı uzaylardaki sabit nokta teoremleri 

beşinci bölümde ele alınmıştır. Altıncı bölümde Kuhlmann ve Kuhlmann (2015) ışığında, 

üzerinde çalışılan uzay ister metrik, ultrametrik isterse de sıralı bir uzay olsun, bir sabit 

noktanın var olabilmesi için yeterli koşullar ele alınmıştır.  Son olarak, tezde ele alınan 

metrik ve ultrametrik teoremlerinin ve tam yarı sıralı uzaylarda ifade edilen Bourbaki-

Witt teoremlerinin hipotezlerinin genel sabit nokta teoreminin hipotezlerini sağladığı 

gösterilmiştir.   

Bilim Kodu               : 403.03.01 
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ABSTRACT 

This thesis aims to study a generalization of Banach Fixed Point Theorem in metric, 

ultrametric and ordered spaces following a recent paper of Kuhlmann and Kuhlmann (2015) 

which points out the common denominator of Banach's Fixed Point Theorem in metric, 

ultrametric and topological spaces. The general idea is to give a general fixed point theorem 

which works in all of these spaces by the structure of ball spaces and by the concept of 

spherical completeness. 

 This thesis includes six chapters. Chapter 1 introduces the literature and the objective of 

this thesis. Chapter 2 gives the preliminaries. In Chapter 3, Banach Fixed Point Theorem is 

given. In Chapter 4, we study the ultrametric spaces. Some examples including the 

remarkable p-adic spaces are given. Chapter 5 presents the ordered spaces and some  fixed 

point theorems in these spaces. In Chapter 6, we give the general fixed point theorem due 

to Kuhlmann and Kuhlmann (2015) which combines various contents. Finally, we 

conclude with the proofs of Banach fixed point theorem, ultrametric fixed point theorem and 

as a our contribution to literature Bourbaki and Witt theorems given in ordered spaces by 

applying the general fixed point theorem.  
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CHAPTER 1

INTRODUCTION

Fixed point theory deals with the maps defined on itself. Let X be a set and f be a

map defined on X , a fixed point theorem states simply that under some conditions

on X and f there exists a point x ∈ X such that f(x) = x. This point is called a

fixed point of f on X . Sometimes it is unique. It has various applications not only

in analysis and topology but also in various domains such as physics, economics and

informatics.

Banach Fixed Point Theorem provides a basis of fixed point theorems in different

branches of analysis. It is a very important tool in the studies of metric spaces and

its applications. Considering a metric space (X, d) and a mapping f defined from X

to itself, Banach Fixed Point Theorem states that the sufficient conditions for having

a unique fixed point on X are that (X, d) is complete and f is a contraction map.

It is first studied and stated by Stefan Banach (1892-1945) in his book published in

1922 ([1]) since then the theorem has been referred as Banach Fixed Point Theorem.

An iterative process producing approximations to the fixed point or the error bounds

are given as the first corollaries of the theorem1. Banach Fixed Point Theorem has

important applications in analysis itself. For instance, the theorem is used in order to

obtain the iteration methods for solving linear equations. Also, it is noted in Banach’s

book that the existence and the uniqueness of the solutions of differential and integral

equations while considering the function spaces was the first motivation of Banach

Fixed Point Theorem.

1 We will not discuss the iterative process in this thesis. One may refer to [2].
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Following Banach’s work [1], in the 20th century, the fixed point theory was devel-

opped in divers contexts. The questions like the following ones has arised: What are

the conditions on X and on f to have a fixed point? Is X a topological space? a

metric space? an ultrametric space, a partially ordered space or a lattice? What are

the conditions on f? Is f a continous map? a Lipschitz continuous? a contraction?

Or what about if f is not necessarily continuous but only a progressive map? All of

these questions lead the related litterature to classify the fixed point theorems.

Banach Fixed Point Theorem (or Contraction Mapping Theorem) is seen as the most

classical result of the fixed point theory. In the important works of Bourbaki (1949)

and Witt (1950) ([3] and [4]), the analogues of this classical result are given in the

ordered spaces. [5], [6], [7], [8], [9] and [10] give the extensions of Banach Fixed

Point Theorem in the case of ultrametric spaces. Recently, Kuhlmann and Kuhlmann

(2015) ([11]) points out the common denominator of Banach’s Fixed Point Theorem

and its analogues in ultrametric and topological spaces. A general fixed point theorem

is given in [11] which works in metric, ultrametric and topological spaces by the

structure of ball spaces and by the concept of spherical completeness.

In this thesis, we study the fixed point theorems in three main topics. These three top-

ics includes metrical, ultrametrical and ordered fixed point theorems. We first study

the Banach Fixed Point Theorem. The classical result is given with an application on

integral equations.2 Next, we study the ultrametric spaces. Some examples, includ-

ing the remarkable p-adic spaces, are given. We will give the proof of the ultrametric

fixed point theorem following the ideas given in [11]. The essential contribution is

this thesis is to give alternative proofs of the Bourbaki and Witt Theorems (first given

in [3] and [4], considered recently in [14]) by applying the general fixed theorem of

[11]. We prove two theorems of Bourbaki and Witt which are stated for a complete

partial order set for a progressive and order preserving functions respectively.

This thesis is organized as follows. In Chapter 2, we give some preliminary results in

order to present the basic definitions and tools of metrical, ultrametrical and ordered

fixed point theory. Chapter 3 is devoted to the classical proof of Banach Fixed Point

Theorem. In Chapter 4, we study the ultrametric spaces and we state a version of

2 One may refer to [12] and [13] for the applications of Banach Fixed Point Theory in economics.
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ultrametric fixed point theorem. Chapter 5 presents the ordered sets and a fixed point

theorems in these sets. Then, in Chapter 6, we give the general fixed point theorem

due to [11] which combines various contents.3 Finally, concludes with the proofs of

all the theorems given in Chapter 3,4 and 5 by using the general fixed point theorem.

3 In this thesis, we do not give a proof this theorem. For a complete proof of the theorem, one may refer to
[11].
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CHAPTER 2

PRELIMINARIES

In this chapter, we give some important concepts and definitions which will be helpful

for the rest of this thesis.

2.1 Metric Spaces

In this section, we will consider metric spaces. Metric spaces provides a base for the

important problems in analysis.

Definition 2.1. LetX be a nonempty set. Consider the distance map d : X×X → R+

such that the following axioms are satisfied:

(M1) For all x, y ∈ X , d(x, y) = 0 if and only if x = y

(M2) For all x, y ∈ X , d(x, y) = d(y, x)

(M3) For all x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

We call such a distance map d, a metric on X and we call the couple (X, d) a metric

space.

Example 2.2. Let X = R. Consider the map d : R× R→ R+ defined as

d(x, y) = |x− y|

The map d satisfies the conditions (M1)-(M3) for every x, y ∈ R. Therefore, d is a

metric (which is called the usual metric) on R.
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Example 2.3. Consider the map d : R2 × R2 → R+ defined by

d(x, y) = |x1 − y1|+ |x2 − y2|

where x = (x1, x2), y = (y1, y2). (R2, d) is a metric space since:

We have d(x, y) = 0 if and only if |x1 − y1| + |x2 − y2| = 0. |x1 − y1| = 0 and

|x2 − y2| = 0 implies that x1 = y1 and x2 = y2. Hence, x = y and (M1) is satisfied.

We have

d(x, y) = |x1−y1|+ |x2−y2| = |y1−x1|+ |y2−x2| = d(y, x) for every x, y ∈ R2

Therefore, (M2) is satisfied.

Finally, we have

d(x, z) = |x1 − z1|+ |x2 − z2| ≤ |x1 − y1|+ |y1 − z1|+ |x2 − y2|+ |y2 − z2|

= d(x, y) + d(y, z) for every x, y, z ∈ R2

Hence, (M3) is also satisfied.

This metric d is also called the taxicab metric.

Example 2.4. Consider the following setX which is defined as all bounded sequence

of real numbers:

X := {ξ = (ξ1, ξ2, ...)| |ξi| < c0, ξi ∈ R, c0 ∈ R+}

Let ξ, ξ
′ ∈ X , we have ξ = (ξ1, ξ2, ...) and ξ

′
= (ξ

′
1, ξ

′
2, ...). Let us define the map

d : X ×X → R+

with

d(ξ, ξ
′
) = supi∈N{|ξi − ξ

′

i|}

The map d satisfies axioms (M1) and (M2). Let us verify the axiom (M3): For any

ξ, ξ
′
, ξ

′′ ∈ X , we have

|ξi − ξ
′

i| = |ξi − ξ
′′

j + ξ
′′

j − ξ
′

i| ≤ |ξi − ξ
′′

j |+ |ξ
′′

j − ξ
′

i|

5



Hence,

d(ξ, ξ
′
) = supi∈N{|ξi − ξ

′

i|} ≤ supi,j∈N|ξi − ξ
′′

j |+ supi,j∈N|ξ
′′

j − ξ
′

i|

=⇒ d(ξ, ξ
′
) ≤ d(ξ, ξ

′′
) + d(ξ

′′
, ξ

′
)

Thus (X, d) is a metric space which is usually denoted by `∞.

Example 2.5. The usual metric defined on R2 can be generalized to as follows by the

help of Cauchy-Schwarz Inequality on n-dimension. Let d is a map which is defined

as:

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + .....+ (xn − yn)2

for every x = (x1, x2, ...., xn), y = (y1, y2, ....., yn) ∈ Rn. (Rn, d) is a metric space.

Example 2.6. Consider the map d : X ×X → R+ given by

d(x, y) =

0, if x = y

1, if x 6= y

The axioms (M1) and (M2) are clearly satisfied by the map d. Let us show that (M3)

is also satisfied for all x, y, z ∈ X :

For x 6= y, we have three cases:

Case 1: If z = x : We have d(x, z) = 0 and d(x, y) = d(y, z) = 1 which implies

0 = d(x, z) ≤ d(x, y) + d(y, z) = 2.

Case 2: If z = y : In this case, d(x, z) = d(x, y) = 1 and d(z, y) = 0. We have

1 = d(x, z) ≤ d(x, y) + d(y, z) = 1.

Case 3: If z 6= x and z 6= y : In this case d(x, z) = d(x, y) = d(y, z) = 1. We have

1 = d(x, z) ≤ d(x, y) + d(y, z) = 2.

For x = y, we have two cases:

Case 1: If z = x : In this case d(x, z) = d(x, y) = d(y, z) = 0. We have

0 = d(x, z) ≤ d(x, y) + d(y, z) = 0.

Case 2: If z 6= x : In this case d(x, y) = 0 and d(x, z) = d(y, z) = 1. We have

1 = d(x, z) ≤ d(x, y) + d(y, z) = 1.
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Hence, (X, d) is a metric space which is called discrete metric space.

Example 2.7. LetX be a set of all real-valued functions which x, y, ... are continuous

functions on closed interval I = [a, b]. Consider the map d : X ×X → R+ defined

as

d(x, y) = maxt∈I |x(t)− y(t)|

The map d satisfies the axioms (M1) and (M2). Let us verfy (M3): For every x, y, z ∈
X , we have

|x(t)− y(t)| = |x(t)− z(t) + z(t)− y(t)| ≤ |x(t)− z(t)|+ |z(t)− y(t)|

Hence,

d(x, y) = maxt∈I |x(t)− y(t)| ≤ maxt∈I |x(t)− z(t)|+maxt∈I |z(t)− y(t)|

which implies d(x, y) ≤ d(x, z) + d(z, y) for every x, y, z ∈ X

(X, d) is thus a metric space which is usually denoted by C[a, b].

Example 2.8. Let d : R× R→ R+ be a map defined by

d(x, y) = (x− y)2

We can immediately remark that for some values like x = 5, y = 4 and z = 1. (M3)

is not satisfied:

d(x, z) = 16 � d(x, y) + d(y, z) = 10.

Thus, d is not a metric on R.

Definition 2.9. Let (X, d) be a metric space. Let Y be a nonempty subset of X . Let

us define d′ := d|Y×Y . The metric d′ is said to be the induced metric by d on Y .

Example 2.10. The subsets Q and [0, 1] of R are metric spaces with induced metrics

on these sets by usual metric. Generally, all subsets on R are metric spaces with

induced metrics on these intervals by usual metric.

Definition 2.11. Let R be a ring with unity element 1 = 1R. A function N : R→ R+

is called a norm on R if the followings hold:

(N1) For all x ∈ R, N(x) = 0 if and only if x = 0

7



(N2) For all x, y ∈ R, N(xy) = N(x)N(y)

(N3) For all x, y ∈ R, N(x+ y) ≤ N(x) +N(y)

Let X be a vector space. (X,N) is called a normed space if the norm N defined on

X .

Example 2.12. Let X = Rn. Consider the map N : Rn → R+ defined as

N(x) = ‖x‖1 = |x1|+ |x2|+ ....+ |xn|

for any x ∈ Rn. The map satisfies the conditions (N1)-(N3). Then (R, N) is a normed

space.

Proposition 2.13. Every normed space is a metric space.

Proof: Let (X,N) be a normed space. Consider the map d : X ×X → R≥0 defined

by

d(x, y) = N(x− y)

For (M1): We have d(x, y) = N(x− y) = 0 if and only if x = y

For (M2): We have

d(x, y) = N(x− y) = N(−(y − x)) = N(−1)N(y − x) = N(y − x) = d(y, x)

For (M3): We have

d(x, y) = N(x− y) = N(x− z + z − y)

≤ N(x− z) +N(z − y) = d(x, z) + d(z, y)

Therefore, a norm on X defines a metric d on X which is defined by

d(x, y) = N(x− y)

for any x, y ∈ X and d is called the metric induced by the norm.

Example 2.14. Consider the (X, d) discrete metric space. Let x 6= y and |α| 6= 0, 1.

d(αx, αy) = d(α(x, y)) = |α|d(x, y) = |α| 6= 1 = d(x, y)

Thus, discrete metric is not a norm. So, every metric space is not a normed space.
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Definition 2.15. Let (X, d) be a metric space. A sequence (xn) defined on X is said

to be convergent if there is an element x of X such that limn→∞ d(xn, x) = 0. x is

called the limit of (xn) and we write limn→∞ xn = x. We say that (xn) converges to

x. If (xn) is not convergent, it is said to be divergent.

Remark 2.16. The convergence of the sequence (xn) is defined by the convergence

of the real numbers sequence an = d(xn, x). That is, limn→∞ xn = x means that for

an arbitrary ε > 0 , there exists N = N(ε) ∈ N such that for all an with n > N

implies |an − 0| < ε.

Example 2.17. Let (xn) be a sequence on the induced metric space (0, 1) ⊂ R by

usual metric such that (xn) = ( 1
n
). Consider

lim
n→∞

d(xn, 0) = lim
n→∞

∣∣∣∣ 1n − 0

∣∣∣∣ = 0

but 0 /∈ (0, 1). Thus (xn) is not convergent on (0, 1).

Definition 2.18. Let (X, d) be a metric space. A sequence (xn) defined on X is said

to be Cauchy sequence if for every ε > 0, there exists N = N(ε) ∈ N such that

d(xn, xm) < ε is satisfied for all m,n > N .

The metric space X is said to be complete if every Cauchy sequence defined on X

does converge in X .

Example 2.19. Let (xn) =
n+ 3

2n+ 1
be a sequence in R.

For any ε > 0, we can the choose N >
2− ε
(2ε)

such that the following holds for all

m,n > N :

|xn − xm| =
∣∣∣∣ n+ 3

2n+ 1
− m+ 3

2m+ 1

∣∣∣∣ = 3
|m− n|

(2n+ 1)(2m+ 1)

<
2m+ 2n

(2n+ 1)(2m+ 1)
=

(2m+ 1) + (2n+ 1)− 2

(2n+ 1)(2m+ 1)

=
1

(2m+ 1)
+

1

(2n+ 1)
− 2

(2n+ 1)(2m+ 1)

<
1

(2m+ 1)
+

1

(2n+ 1)

|xn − xm| <
2

(2N + 1)
< ε

Thus, (xn) is a Cauchy sequence in R.
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Example 2.20. Consider the sequence (xn) = (−1)n in R with usual metric. Since

|x2n+1 − x2n| = |(−1)2n+1 − (−1)2n| = 2

for all n ∈ N. Therefore (−1)n is not a Cauchy sequence.

Example 2.21. Let d : X×X → R≥0 be the discrete metric. Let (xn) be an arbitrary

Cauchy sequence in X .

Let ε = 1
2
. There exists N > 0 such that for all n,m > N , we have:

d(xn, xm) < ε =
1

2
.

Also, by the definition of discrete metric, since there are 0 and 1 as distance we have:

if d(xn, xm) = 0 <
1

2
then xn = xm.

(xn) is then a constant sequence, after an arbitrary natural number N which is (xn)

convergent in X . Hence, discrete metric space is a complete metric space.

Example 2.22. (Q, d) is a metric space with induced usual metric on R. We will

show that (Q, d) is not complete.

Consider the rational sequence (xn) which is given by the following sequence:

xn =


x0 = 2

xn+1 =
xn
2

+
1

xn

(xn) is a Cauchy sequence in Q but (xn) converges to
√

2 /∈ Q. Thus, Q is not

complete.

Definition 2.23. Let (X, d) be a metric space which is not complete. Let CX be the

limit points of Cauchy sequences defined onX . The set X̂= X∪CX is then a complete

metric space with respect to d̂:= d |X∪CX
. Thus a complete metric space is created

by adding all possible limit points of Cauchy sequences defined on that metric space.

(X̂,d̂) is called the completion of (X, d).

Theorem 2.24. R is a completion of Q with usual metric.1

1 We will see also [Chapter 4] that Q has an another completion with respect to p-adic metric. See also [15].
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In the following, we will consider various definitions and examples of continuous

functions.

Definition 2.25. Let (X, d) be a metric space. A mapping f : X → X is said to be

continous at x0 ∈ X , if for every ε > 0, there exists a δ > 0 such that

d(x, x0) < δ implies d(f(x), f(x0)) < ε.

If f is continuous at each x0 ∈ X then we say that f is continuous on X .

Example 2.26. Let us denote by dX the usual induced metric on R∗+. Let us show

that f(x) = x2 is a continuous map on R∗+: Let x0 ∈ X ⊂ R∗+. Assume d(x, x0) =

|x − x0| < δ. If we take δ := min(1, ε/2a) with a = x0 + 1, we have |x − x0| < 1.

This implies:

|x2 − x20| = |x+ x0||x− x0| ≤ 2a|x− x0| < 2aδ ≤ 2a
ε

2a
= ε

Hence, f is continuous at x = x0. But is it continous on whole R∗+? However, this x0

is chosen arbitrary then f is continuous where R∗+.

Example 2.27. The function f : R→ R defined as follows:

f(x) =

1 if x > 0

0 if x ≤ 0

is not continuous at x = 0 with respect to the usual metric on R, since,

For x = 0, choose δ > 0. Put x = δ/2. Then |x−x0| = δ/2 < δ but |f(x)−f(x0)| =
|1− 0| = 1 ≥ ε. Thus, f is not continuous at x0 = 0.

Definition 2.28. Let (X, d) be metric space. A function f : X → X is uniformly

continuous on X if for every ε > 0 there exists δ(ε) > 0 such that, for every x, z ∈ X
satisfying d(x, z) < δ, we have d(f(z), f(x)) < ε.

Example 2.29. Let us consider X = (0, 4) with usual induced metric and f is uni-

formly continuous on X , since:

f(x) = x2. Let δ = ε/8. x0 ∈ X with 0 < x0 < 4 and 0 < x < 4 so 0 < x+ x0 < 8.

Assume |x− x0| < δ. Then

|f(x)− f(x0)| = |x2 − x20| = |x− x0||x+ x0| < 8δ = ε.

11



Example 2.30. Let us now consider X = (0,∞). The function f(x) = x2 is not

uniformly continuous on X = (0,∞). Since: There exists ε > 0 and for all δ > 0 we

can find x0 ∈ X and x ∈ X such that |x− x0| < δ and |x2 − x20| ≥ ε.

Let ε = 1. Choose δ > 0. Let x0 = 1/δ and x = x0 + δ/2. Then |x− x0| < δ/2 < δ

but

|x2 − x20| = |(
1

δ
+
δ

2
)2 − (

1

δ
)2| = 1 +

δ2

4
> 1 = ε.

Definition 2.31. Let (X, d) be a metric space and f : X → X be a function. If there

exist λ > 0 such that

d(f(x1), f(x2)) ≤ λd(x1, x2)

then f is said to be Lipschitz continuous. The smallest λ for which the inequality

holds is called Lipschitz constant of f .

Definition 2.32. If f is Lipschitz continuous with λ = 1 then f is said to be non-

expansive, that is,

d(f(x1), f(x2)) ≤ d(x1, x2)

for all x1, x2 ∈ X .

Definition 2.33. Let (X, d) be a metric space. If, for all x1, x2 ∈ X we have

d(f(x1), f(x2)) = d(x1, x2)

then f is called an isometry.

Example 2.34. The function f(x) = x + 1 defined on R with usual metric d is an

isometry.

Definition 2.35. Let (X, d) be a metric space. A map f : X → X is called a

contraction map if there is λ with 0 ≤ λ < 1 such that for all x, y ∈ X

d(f(x), f(y)) ≤ λd(x, y)

Proposition 2.36. Let f be a contraction map on X . Then f is uniformly continuous

on X .

Proof: Given ε > 0 and let pick δ = ε. Then if d(x, y) < δ, we have

d(f(x), f(y)) ≤ λd(x, y) < λδ = λε < ε

which implies directly that f is uniformly continuous on X .
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Corollary 2.37. Let (X, d) be a metric space. A Lipschitz continuous map is uni-

formly continuous on X , hence continuous on X . The converse is not true in general.

Example 2.38. Let us show that cosx is a contraction on [0, π
2
] with the usual induced

metric.

By means of the Mean Value Theorem in differential calculus and the boundedness of

sine function on [0, π
2
], that is there exists c ∈ (0, π

2
) such that

| cosx− cos y| = |sinc||x− y| < |x− y| for every x, y ∈ [0,
π

2
] and c ∈ (0,

π

2
)

Therefore, cosx is a contraction mapping on [0, π
2
].

2.2 Ordered Sets

Let X be a set. The pair (X,4) is called a partially ordered set (poset) if for all

x, y, z ∈ X , the following conditions are satisfied:

(i) x 4 x (reflexivity)

(ii) If x 4 y and y 4 x then x = y (anti-symmetry)

(iii) If x 4 y and y 4 z then x 4 z (transitivity)

Remark 2.39. The following two conditions are equivalent:

(a) x ≤ y and y ≤ x implies x = y

(b) x ≤ y, x 6= y implies y � x

Suppose that statement (a) holds. Let x ≤ y and x 6= y. If y ≤ x by using definition

(a) we would have x = y but this is a contradiction because of the fact that x 6= y.

On the other hand, suppose that the statement (b) holds. Let x ≤ y and y ≤ x then by

using definition (b) we would have y � x. But this is a contradiction. Hence x = y.

Definition 2.40. Let X be a partially ordered set. Let x, y ∈ X , x and y are said to

be comparable if the relation "x 4 y or y 4 x" is true. X said to be totally ordered

if it is partially ordered and if any two elements of X is comparable. The pair (X,4)

is called a totally ordered set (toset).
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Example 2.41. Let X = R. Consider the relation 4 defined by

x 4 y ⇔ x ≤ y

The relation of≤ in real numbers satisfies the conditions (i),(ii) and (iii). Thus (R,≤)

is a partially ordered set. Moreover, for all x, y ∈ R, we have either x ≤ y or y ≤ x.

Therefore (R,≤) is a totally ordered set. In particular, we can choose any nonempty

subset of R instead of R. Thus, any subset of R is also a totally oredered set.

Remark 2.42. Every totally ordered set is a partially ordered set.

Every subset of totally ordered set is totally ordered by the induced ordering.

Example 2.43. Let Y be a set. All subsets of Y can be denoted as X = P (Y ).

We claim that X is a partially ordered set with the relation inclusion satisfying the

following conditions:

(i) For all A ∈ X we have A ⊆ A

(ii) For all A,B ∈ X if A ⊆ B and B ⊆ A we have A = B

(iii) For all A,B,C ∈ X if A ⊆ B and B ⊆ C we have A ⊆ C

Therefore, (X,⊆) is a poset. If Y is empty set or it has exactly one element, it can be

considered as totally ordered set with respect to the inclusion.

Let A = {a, b, c}. Let us draw the Hasse diagram of the set of all subsets which has

a three elements of the set A, by inclusion order:

14



Figure 2.1: This figure is adapted from the [14].

A is a partially ordered set with the inclusion. However, (P (A),⊆) is not a totally

ordered set with inclusion since, sets on the same horizontal level don’t share a prece-

dence relationship. Some other pairs, such as {a} and {b, c}, do not either.

Example 2.44. Let X = N. Consider the relation 4 defined by

x 4 y ⇔ x|y ∈ N

Note as a convention that 0 4 0. We claim that (N,4) is a partially ordered set:

(i) For all x ∈ N, we have x|x = 1, which implies x 4 x.

(ii) Let x 4 y and x 6= y. x|y means that y = ax for some a ∈ N. If y|x we have

x = by for some b ∈ N. Thus x = by = bax; so a = 1, b = 1. That is, x = y.

(iii) Let x, y, z ∈ N. Let x 4 y and y 4 z. We have y = ax and z = by for a, b ∈ N.

Therefore; z = (ax)b = (ab)x which implies x 4 z.

Thus (N,4) is a poset.

Since we can not have divisibility relation between an arbitrary natural numbers,

(N,4) is not a totally ordered set.
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CHAPTER 3

BANACH FIXED POINT THEOREM

In this chapter, we will present Banach Fixed Point Theorem and we give its proof

which is the primary source of the fixed point theory. We will also give some exam-

ples and applications.

Definition 3.1. Let (X, d) be a metric space and f : X → X be a map. If there exists

a point x0 ∈ X such that f(x0) = x0 then x0 is called a fixed point of f on X .

Example 3.2. Let f : R → R be a map such that f(x) = x2. Then f has two fixed

points on x = 0 and x = 1.

Remark that if f : (0, 1)→ (0, 1) the domain of f is changed as (0, 1) such that then

f has no fixed point on this domain.

Example 3.3. Let a 6= 0 and f : R→ R be a map. Let f(x) = x+ a. Then f has no

fixed point.

Theorem 3.4. (Banach Fixed Point Theorem) Let (X, d) be a metric space with

X 6= ∅. Suppose that (X, d) is complete and f : X → X is a contraction. Then f

has a unique fixed point x0 ∈ X .

Proof: First, we will show the uniqueness part. We will consider the case that we

have two distincts fixed points and end up with a contradiction by using property of

contraction map. Secondly, we will show the existence part. The idea of the proof is

we construct a Cauchy sequence by iteration in (X, d) and show that as it is Cauchy

therefore converges in the complete metric space (X, d), that is, has a limit x ∈ X .
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Then show that this x is the fixed point of f .

Uniqueness. Suppose that f has two fixed points x1, x2 ∈ X such that x1 6= x2, that

is f(x1) = x1 and f(x2) = x2 on X . Then we have,

d(x1, x2) = d(f(x1), f(x2)) ≤ λd(x1, x2)

with 0 ≤ λ < 1 as f is a contraction. This is only possible if d(x1, x2) = 0, i.e., if

x1 = x2. A contradiction.

Existence. Let us choose x0 ∈ X and define an iterated sequence xn+1 = f(xn) for

all n ∈ N such that by induction we will have:

x0, x1 = f(x0), x2 = f(x1) = f 2(x0)...

Now we can consider d(xn+1, xn) = d(f(xn), f(xn−1)) as follows

d(xn+1, xn) = d(f(xn), f(xn−1)) ≤ λd(xn, xn−1)

since f is a contraction. We will have then:

d(xn+1, xn) = d(f(xn), f(xn−1)) ≤ λd(xn, xn−1) = λd(f(xn−1), f(xn−2))

Again, using the fact that f is a contraction, we have:

d(xn, xn−1) = λd(f(xn−1), f(xn−2)) ≤ λ2d(xn−1, xn−2)...

Thus,

d(xn+1, xn) ≤ λnd(x1, x0) = λnd(f(x0), x0) for n ∈ N.

Hence for n ∈ N and m ≥ 1:

d(xn+m, xn) ≤ d(xn+m, xn+m−1) + d(xn+m−1, xn+m−2) + ...+ d(xn+1, xn)

≤ λn+m−1d(f(x0), x0) + λn+m−2d(f(x0), x0) + ...+ λnd(f(x0), x0)

= (λn+m−1 + λn+m−2 + λn+m−3 + ...+ λn)d(f(x0), x0)

= λn(1 + λ+ λ2 + ...+ λm−1)d(f(x0), x0)

= λn · 1− λm

1− λ
d(f(x0), x0) ≤

λn

1− λ
d(f(x0), x0)
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Since λ < 1, we can get the last expression as small as we want by choosing n large

enough. Given ε > 0, we can, in particular, find an N such that
λn

1− λ
d(f(x0), x0) <

ε. Thus for n, n+m ≥ N , we have

d(xn+m, xn) ≤ λn

1− λ
d(f(x0), x0) < ε

Therefore {xn} is a Cauchy sequence. Since (X, d) is complete {xn} converges to a

point x ∈ X .

To prove that x is a fixed point that we are looking for we can just observe that we

have xn+1 = f(xn) for all n, and taking limit as n goes to infinity we get f(x) = x.

x is a fixed point of f . By contraction of the Cauchy sequence with xn+1 = f(xn) for

all n and by the fact that f is a contraction which implies f is uniformly continuous

on X , we will have

lim
n→∞

xn+1 = lim
n→∞

f(xn)

= f(x)

and

lim
n→∞

xn+1 = x

Thus f(x) = x. �

Fredholm Integral Equation of Second Kind is one of the principal example for the

application of Banach Fixed Point Theorem. One may refer to [2] for different appli-

cations in mathematics.

Example 3.5. Let K(x, y) : I × I → R and g : I → R be continuous functions

where I = [a, b] for some a, b with a < b, let λ be a real number. Consider

f(t) = λ

∫ b

a

K(t, s)f(s)ds+ g(t) (3.1)

t ∈ [a, b]. This equation has a solution. We need to show that θ : C(I) → C(I) is a

contraction which is defined on the complete metric space C(I) and by Banach Fixed

Point Theorem θ will have a fixed point f0 ∈ C(I) such that f0 = θ(f0).
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dsup(θ(f), θ(f0)) = supt∈I |θ(f)(t)− θ(f0)(t)|

For f, f0 ∈ C(I), consider the following:

|θ(f)(t)− θ(f0)(t)| = |λ
∫ b

a

K(t, s)f(s)ds+ g(t)− λ
∫ b

a

K(t, s)f0(s)ds+ g(t)|

≤ |λ|
∫ b

a

|K(t, s)||f(s)− f0(s)|ds

≤ |λ| sups∈I |f(s)− f0(s)|
∫ b

a

|K(t, s)|ds

≤ |λ| sups∈I |f(s)− f0(s)|maxs,t∈I |K(s, t)|(b− a)

Just for notation Γ = |λ|maxs,t∈I |K(s, t)|(b− a). Thus we have,

dsup(θ(f), θ(f0)) ≤ Γ sups∈I |f(s)− f0(s)|

If Γ < 1 then θ will be a contraction and Banach Fixed Point Theorem tells us that

Fredholm Integral Equation of Second Kind has a solution.
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CHAPTER 4

ULTRAMETRIC SPACES

The aim of this section is to give a fixed point theorem which is an analogue of

Banach Fixed Point Theorem for ultrametric spaces. We give first the definition of

an ultrametric space. Then will give some related notions and some examples of

ultra metric spaces. p-adic metric spaces will be investigated as the most important

examples of ultrametric spaces.

Definition 4.1. Let X be a non-empty set. Let Γ be a partially ordered set and Γ0 =

Γ ∪ {0}. A map u : X ×X → Γ0 is called ultrametric if the followings hold:

(U1) For all x, y, z ∈ X , u(x, y) = 0 if and only if x = y

(U2) For all x, y, z ∈ X , u(x, y) = u(y, x)

(U3) For all x, y, z ∈ X , if u(x, y) ≤ r and u(y, z) ≤ r then u(x, z) ≤ r

When we replace Γ in the third axiom (U3) by a totally ordered set, the axiom be-

comes:

(U3
′) For all x, y, z ∈ X , u(x, z) ≤ max{u(x, y), u(y, z)} (Strong triangle inequal-

ity)

(X, u) is then called an ultrametric space.

Remark 4.2. A metric space (X, d) is an ultrametric space with Γ = R+ if it satisfies

for each x, y, z ∈ X :
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d(x, z) ≤ max{d(x, y), d(y, z)}

Example 4.3. Discrete metric space is an ultrametric space.

Proof: Let X be a non-empty set. The axioms (U1) and (U2) is clearly satisfied by d.

For x, y, z ∈ X let us show (U3):

For x 6= y, we have three cases:

Case 1: If z = x: In this case d(x, z) = 0 and d(x, y) = d(y, z) = 1. We have

d(x, z) ≤ max{d(x, y), d(y, z)}.
Case 2: If z = y: In this case d(x, z) = d(x, y) = 1 and d(z, y) = 0. We have

d(x, z) ≤ max{d(x, y), d(y, z)}.
Case 3: If z 6= x and z 6= y: In this case d(x, z) = d(x, y) = d(y, z) = 1. We have

d(x, z) ≤ max{d(x, y), d(y, z)}.

For x = y, we have two cases:

Case 1: If z = x: In this case d(x, z) = d(x, y) = d(y, z) = 0. We have

d(x, z) ≤ max{d(x, y), d(y, z)}.
Case 2: If z 6= x: In this case d(x, y) = 0 and d(x, z) = d(y, z) = 1. We have

d(x, z) ≤ max{d(x, y), d(y, z)}.

Remark 4.4. We will denote discrete metric by ud : X ×X → {0, 1}.

Definition 4.5. A norm is called ultranorm (or non-Archimedean) if (N3) is replaced

with

(N3′)N(x+ y) ≤ max{N(x), N(y)}

for all x, y ∈ R. It can be strengthened if (N3′) is replaced with

(N3′′)N(x+ y) = max{N(x), N(y)}

if N(x) 6= N(y).

Remark 4.6. A metric is an ultranorm(non-Archimedean) if it is induced by an ultra-

norm, since in that case;

d(x, y) = N(x− y) = N(x− z + z − y) ≤ max{N(x− z), N(z − y)} =

max{d(x, z), d(z, y)}
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One can say that the metric which is induced by an ultranorm is called an ultrametric

space.

Example 4.7. (Alphabetical metric) Let X be the set of words in alphabet of any

language. Let x, y ∈ X be two words of any length. Let n be the first letter where x

and y differ. The alphabetical metric ua : X ×X → [0, 1] is defined as:

ua(x, y) =


0, if x = y

1

2n−1
, if x 6= y

Let us check the axioms of an ultra metric given in definition 4.1. The axioms (U1)-

(U2) are satisfied trivially. We will verfy the axiom (U3):

If x = z then ua(z, x) = 0 ≤ max{ua(x, y), ua(y, z)}. Similarly, for y = z and

x = y.

When x 6= y and y 6= z and x 6= z, assume that ua(x, y) =
1

2n−1
, ua(y, z) =

1

2l−1

and ua(x, z) =
1

2m−1
.

Thus, for all j < n, xj = yj . For all j < l, yj = zj and for all j < m, xj = zj .

These facts imply that xj = zj for all j < min{n, l} and m ≥ min{n, l}.

Hence,
1

2m−1
≤ max{ 1

2n−1
,

1

2l−1
}

or equivalently

ua(x, z) ≤ max{ua(x, y), ua(z, y)}

Therefore (X, ua) is an ultra-metric space.

4.1 p-adic Metric Spaces

In the following, we will give the most common example of ultrametric spaces,

namely p-adic metric spaces. We give first the definition of p-adic order and then

we will define p-adic metric and show that p-adic metric is an ultrametric.
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Definition 4.8. Let p be a prime. Let R = Z. Let x be a non-zero integer x ∈ Z, we

define the p-adic order of x as follows:

ordpx := max{r | pr/x} ≥ 0

Let R = Q. For a/b ∈ Q, the p-adic order of a/b

ordp
a

b
= ordpa− ordpb.

Let us write y ∈ Q in the form y = a
b
pr where r, a, b ∈ Z, b 6= 0. Here p divides

neither a nor b then ordpy = r.

Example 4.9. Let x =
28

26
be a rational number. Let us show the 2-adic order of x:

ord2
28

16
= ord228− ord216

= ord2(7 · 22)− ord224

= 2− 4

= −2

Convention 4.10. We have then the following:

(i) ordp0 =∞

(ii) ordpp = 1

(iii) ordp1 = 0

Proposition 4.11. The p-adic order has the following properties:

(i) For all x, y ∈ Q, ordp(xy) = ordpx+ ordpy;

(ii) For all x, y ∈ Q, ordp(x + y) ≥ min{ordpx, ordpy} with equality if ordpx 6=
ordpy.

Proof: Let x, y be non-zero rational numbers. We have x = a
b
pr and y = c

d
ps.
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(i)

ordpx = max{` | p`/x} = max{` | p`/a
b
pr} = r

ordpy = max{m | pm/x} = max{m | pm/ c
d
ps} = s

However; xy = ac
bd
pr+s and p divides neither ac nor bd, bd 6= 0. So we have:

ordp(xy) = max{k | pk/xy} = max{k | pk/ac
bd
pr+s} = r + s = ordpx+ ordpy.

(ii) The case where x = 0 and (or) y = 0 straightforward.

If r = s, we have:

x+ y = pr(
a

b
+
c

d
) = pr

(ad+ bc)

bd
.

Thus, ordp(x+y) ≥ r = s since p does not divide neither b nor d so p does not divide

bd.

If r 6= s, let s > r. We have:

x+ y = pr(
a

b
+ ps−r

c

d
) = pr

(ad+ ps−rcb)

bd
.

Thus, ordp(x + y) = r = min{ordpx, ordpy} since p divides neither b nor d so p is

not divide bd and also s− r > 0.

Definition 4.12. Let p a prime. For x ∈ Q, define the p-adic norm of x as follows:

|x|p =


p−ordpx, if x 6= 0

0, if x = 0

Proposition 4.13. The p-adic norm |.|p : Q→ R+ has the properties

(N1) For all x ∈ Q, |x|p = 0 if and only if x = 0
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(N2) For all x, y ∈ Q, |xy|p = |x|p|y|p

(N3′) For all x, y ∈ Q, |x+ y|p ≤ max{|x|p, |y|p}, with equality if |x|p 6= |y|p.

Hence, |.|p is an ultranorm (non-Archimedean norm) on Q.

Proof: First property is trivial. We will therefore prove (N2) and (N3).

For (N2): If xy = 0 then x = 0 and (or) y = 0 then it is evident. Let xy 6= 0. Then

|xy|p = p−ordpxy = p−(ordpx+ordpy)

= p−ordpxp−ordpy

= |x|p|y|p

For (N3′): Let ordpx ≤ ordpy, that is, max{ordpx, ordpy} = ordpy and then

max{|x|p, |y|p} = |x|p. Moreover with the fact that ordp(x+y) ≥ min{ordpx, ordpy} =

ordpx, we will have

|x+ y|p =
1

pordp(x+y)
≤ 1

pordpy
= |y|p ≤ max{|x|p, |y|p}

If ordpx 6= ordpy, then ordp(x + y) = min{ordpx, ordpy} = ordpx then we have

the equality

|x+ y|p =
1

pordp(x+y)
=

1

pordpx

= |x|p

= max{|x|p, |y|p}

Example 4.14.

|75|5 = |3.52|5 =
1

52
=

1

25

| 2

375
|5 = |2

3
.5−3|5 = 53 = 125

|3|5 = |4|5 = |7|5 = |12

5
|5 =

1

50
= 1
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Definition 4.15. The map |.|p : Q×Q→ R+ induced by p-adic norm(ultranorm) is

called a p-adic metric. (Q, |.|p) is then a p-adic metric space with dp(x, y) = |x−y|p.

Example 4.16. Let d(x, y) = |x− y|3.

d3(3, 30) = |30− 3|3 = |27|3 = |33|3 =
1

33
=

1

27

d3(2, 3) = |3− 2|3 = |1|3 = |30|3 =
1

30
= 1

Proposition 4.17. The p-adic metric is an ultrametric.

Proof: (U1) and (U2) proporties are trivial. We will therefore prove (U3). Let x, y be

non-zero rational numbers. We have x =
a

b
pr and y =

c

d
ps.

For (U3): Since x− z = (x− y) + (y − z),

ordp(x− z) ≥ min{ordp(x− y), ordp(y − z)}

We have

|x− z|p = p−ordp(x−z) ≤ max{p−ordp(x−y), p−ordp(y−z)} = max{|x− y|p, |y − z|p}

Theorem 4.18. Given a prime p and the p-adic metric, every rational number can be

written in a unique way as a power series of the form

∞∑
k=n

bkp
k forsome n ∈ Z, and bk ∈ 0, 1, ..., p− 1 for each k ≥ n

We will not give a proof of Theorem 4.18. One may for a proof refer to [16] or [17].

This series is called the p-adic expansion of the number. If z ∈ Z≥0 has a finite

expansion. For example; let us look to 3-adic expansion of 25:

25 = 1.30 + 2.31 + 2.32 + 0.33 + 0.34 + ...

Negative integers and many non-integers are represented by infinite series. Let us

write the 3-adic expansion of −1:

Let (zn) be a sequence such that zn = 2.30 + 2.31 + 2.32 + ...+ 2.3n.

zn = 2.(1 + 3 + ...+ 3n−1 + 3n) = 2.
1− 3n+1

1− 3
= 3n+1 − 1
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and

lim
n→∞

|zn − (−1)|3 = lim
n→∞

|3n+1 − 1 + 1|3 = lim
n→∞

|3n+1|3 = 0

Hence,

−1 = 2.30 + 2.31 + 2.32 + ...+ 2.3n + ...

Similarly,

−2 = 1.30 + 2.31 + 2.32 + ...+ 2.3n + ...

−3 = 0.30 + 2.31 + 2.32 + ...+ 2.3n + ...

−4 = 2.30 + 1.31 + 2.32 + ...+ 2.3n + ...

The p-adic metric, for a fixed prime p, two points are close each other if their differ-

ence is divisible by a large positive power of p. In example 4.16., d(3, 30) < d(2, 3).

In the following, we will give a picture due to [18] of a 3-adic metric space (Z, d3).1

Example 4.19. (Picture of a p-adic metric space). Let us consider the metric space

(Z, dp). Let p = 3. In this example, we sketch a picture of 3-adic metric space Z3.

The 3-adic metric between any two integers x and y can be at most 1, corresponding

to ord3(x − y) = 0 and can be closer with possible distances 1/3, 1/32, 1/33, etc.

Thus, this metric space can be traced as a rooted tree, where the root represent the

least possible order ord3 = 0 and highest possible distance 1/30 = 1. There will be

infinitely many order and distance levels.

The 3-adic metric between any two integers x and y is the height, as labeled in the

distance column, to which one must climb in traversing a path from x’s leaf to y’s leaf.

Figure 4.1: This figure is adapted from [16].

1 In the literature, we may also cite [19] for a different picture of p-adic spaces.
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4.2 Fixed Point Theorem for Ultra Metric Spaces

In this section, we first give some topological properties of an ultrametric space fol-

lowing [11], [20], [21] and [22].

Definition 4.20. In a metric space, given a point x0 ∈ X and a real number r > 0,

the set

B(x0, r) = {x ∈ X | d(x0, x) ≤ r} is a called a closed ball with center x0 and

radius r.

In a ultrametric space, given a point x0 ∈ X and a real number α > 0, the set

B(x0, α) = {x ∈ X | u(x0, x) ≤ α} is a called a closed ball with center x0 and

radius α.

Remark 4.21. Let x, y, z ∈ X . Each three points x, y, z of any ultrametric space

represent either vertices of an equilateral triangle or vertices of an isocales triangle

with the unequal side being the shortest one. So each triangle in an ultrametric space

is isocals or equalited. We will should show that u(x, z) = u(x, y) = u(y, z) or

u(x, z) = u(x, y) (or u(x, z) = u(y, z)).

When u(x, y) = u(y, z) by the condition (U3) we have

(1) u(x, z) ≤ u(x, y) or u(x, z) ≤ u(y, z)

In the case (1), we have two cases

(1a) u(x, z) < u(x, y)

(1b) u(x, z) = u(x, y)

If u(x, y) 6= u(y, z) by the condition (U3) we have

(2) u(x, z) ≤ u(x, y) or u(x, z) ≤ u(y, z)

In the case (2) we have two cases

(2a) u(x, z) = u(x, y)
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(2b) u(x, z) < u(x, y)

But also u(x, y) ≤ max{u(x, z), u(z, y)}. If max{u(x, z), u(z, y)} = u(x, z) or

max{u(x, z), u(z, y)} = u(z, y), therefore u(x, y) < u(x, z). This case is a contra-

diction with (2b). So, u(x, z) = u(x, y).

Proposition 4.22. Let (X, u) be an ultrametric space if y ∈ B(x, α) then B(x, α) =

B(y, α). That is, every element of a closed ball is also center of the ball. In that

sense, the ultrametric can be called a democratic metric.

Proof: By definition, y ∈ B(x, α) if and only if u(x, y) < α. Let z ∈ X such

that u(x, z) < α. We have u(x, y) ≤ max{u(x, z), u(z, y)} < α. This implies that

z ∈ B(y, α) which shows that B(x, α) ⊂ B(y, α). In a similar way, we have

B(x, α) ⊃ B(y, α). Thus B(x, α) = B(y, α).

Proposition 4.23. Let (X, u) be an ultrametric space. Every closed balls of X are

either distinct or nested.

Proof. Let a 6= b. Let B(a, α1) = {x ∈ |u(a, x) ≤ α1} and B(b, α2) = {x ∈
|u(b, x) ≤ α2} two closed balls in X with the property that α1 ≤ α2. Therefore,

there are two possibilities either B(a, α1) ∩B(b, α2) = ∅ or B(a, α1) ⊆ B(b, α2). In

particular, if α1 < α2 and if a ∈ B(b, α2) then B(a, α1) ⊆ B(b, α2).

Two closed balls in (X, u) are contained in each other, i.e., B(a, α1) ∩ B(b, α2) is

non-empty then either B(a, α1) ⊆ B(b, α2) or B(a, α1) ⊇ B(b, α2).

Proposition 4.24. Let (X, u) be an ultrametric space. Let B(a, α1) and B(b, α2) two

closed balls in X . If B(a, α1) ⊆ B(b, α2) and if b /∈ B(a, α1) then u(b, a) = u(b, z)

for each z ∈ B(a, α1).

Proof. Since u(b, a) > α1 and as u(a, z) ≤ α1 for every z ∈ B(a, α1), we have

u(b, a) > u(a, z). However, u(b, z) = max{u(b, a), u(a, z)} = u(a, z).

Example 4.25. Remember the discrete metric is an ultrametric. Let us define the

closed balls in discrete metric. In particular, if α < 1 then the closed ball B(x, α) =

{x} and if α ≥ 1 then B(x, α) = X . Moreover, if y ∈ B(x, α) then B(x, α) =

B(y, α).
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Definition 4.26. Any collection of balls in B which is totally ordered by inclusion is

called a nest of ball.

Definition 4.27. (X, u) is a spherically complete if every nest of balls has non-empty

intersection.

Definition 4.28. Let (X, u) be an ultrametric space. A map f : X → X is called a

contracting map such that for all x, y ∈ X

u(f(x), f(y)) < u(x, y)

Definition 4.29. Let (X, u) be an ultrametric space. f is contracting on orbits if

u(f(x), f 2(x)) < u(x, y)

for all x ∈ X such that x 6= f(x).

Theorem 4.30. (Ultrametric Fixed Point) Every non-expanding function on a spher-

ically complete ultrametric space that is also contracting on orbits has a fixed point.

We will give the proof of Theorem 4.30 in Chapter 6.
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CHAPTER 5

ORDERED SPACES

In this section, we will give some fixed point theorems in the spaces, notably in totally

ordered spaces and in complete partially ordered spaces. We had already defined the

totally ordered set and partially ordered set in Chapter 2.

In the following, we define complete partially ordered space and lattices ( [13], [14]

and [23]).

Definition 5.1. Let (X,4) be a partially ordered space. (X,4) is complete if every

nonempty subspace S of X has a least upper bound in X .

Definition 5.2. A complete partially ordered set is a pointed complete partially or-

dered set if each of its subsets has a least element.

Definition 5.3. A partially ordered space (X,4) is a lattice if and only if every S ⊆
X consisting exactly two elements has a least upper bound and a greatest lower

bound.

Example 5.4. Let X be a cartesian square some of the natural numbers such that

X = {(0, 0), (0, 1), (1, 0), (1, 1)}. X is a partially ordered set with (a, b) ≤ (c, d) if

a ≤ c and b ≤ d. Every two-elements subset of X has least upper bound (1, 1) and

greatest lower bound (0, 0) in X . So, X is a lattice.

Definition 5.5. A partially ordered space (X,4) is a complete lattice if and only if

every S ⊆ X has a least upper bound and greatest lower bound.

Remark 5.6. Every complete lattice is a bounded lattice.

Definition 5.7. Let X be a partially ordered set. An interval R in X is said to be a
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rectangle if it is defined as follows:

R = {x ∈ X | a ≤ x ≤ b, a ≤ b and a, b ∈ X}

Theorem 5.8. If X is a complete lattice, then for any a, b ∈ X , the interval R =

{x ∈ X | a ≤ x ≤ b} is a complete lattice.

Proof. Consider any subset S of R. We will prove that S has a least upper bound and

a greatest lower bound.

Since X is a complete lattice than, there exists s∗ in X such that supS = s∗. We will

show that s∗ ∈ R.

As b is an upper bound for R. Then, b is also an upper bound for S ⊆ R such that

s∗ ≤ b.

As a is a lower bound for R. Then, a is also an lower bound for S ⊆ R such that

a ≤ x ≤ s∗ ≤ b for any x in S. Thus s∗ ∈ R.

On the other hand, since X is a complete lattice then, there exists a s̄ in X such that

infS = s̄. We will show that s̄ ∈ R.

As a is a lower bound for R, a is also a lower bound for S ⊆ R such that a ≤ s̄.

As b is an upper bound for R, b is also an upper bound for S ⊆ R such that a ≤ s̄ ≤
y ≤ b for any y in S. Therefore, s̄ ∈ R.

Hence, every S ⊆ R has a least upper bound and a greatest lower bound, which

means R is a complete lattice.

Definition 5.9. Let (X,4) is ordered space. Let f : X → X be defined. If f(x) ≥ x

where x ∈ X then f is called progressive function.

Definition 5.10. Let (A,4) and (B,4) are ordered spaces. Let f : A → B be a

function satisfying x 4 y implies f(x) 4 f(y) where x, y ∈ A then f is called an

order preserving function.

5.1 Fixed Point Theorems for Ordered Spaces

In the following, we will state the fixed point theorems for an order preserving and

progressive function which are defined in an ordered space.

The following theorem is important in the same that in order to have a fixed point
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in totally ordered space X = ([0, 1],≤), we will not need continuity, being order

preserving will suffice.

Theorem 5.11. Let f : [0, 1] → [0, 1] be an order preserving function. Then f has a

fixed point.

Proof. Let A := {x ∈ [0, 1] | x ≤ f(x)}. We will show that there exists α such that

supA = α and then f(α) = α.

First observe that 0 ∈ A by definition of A and f on [0, 1]. A is bounded since

A ⊂ R. There exists α ∈ [0, 1] such that α = supA because A is nonempty and

bounded. Therefore, for every x ∈ A, x ≤ α. Then we have

x ≤ f(x) ≤ f(α).

Thus, f(α) is an upper bound for A such that

α ≤ f(α) (1).

By using (1) and as f is increasing, f(α) ≤ f(f(α)). This implies that f(α) ∈ A by

definition of A. Therefore,

f(α) ≤ α = supA (2).

By the (1) and (2), we will have f(α) = α. Thus α is a fixed point of f .

Similarly, let B := {x ∈ [0, 1] | x ≥ f(x)}. We will show that there exists β such

that infB = β and then f(β) = β.

First, observe that 1 ∈ B by definition of f and f on [0, 1]. B is bounded since

B ⊂ R. There exists β ∈ [0, 1] such that β = infB because B is nonempty and

bounded. Therefore, for every x ∈ B, x ≥ β. Then we have

x ≥ f(x) ≥ f(β).

Thus, f(β) is an lower bound for B such that

β ≥ f(β) (3).

By using (3) and as f is decreasing, f(β) ≥ f(f(β)). This implies that f(β) ∈ B by

definition of B. Therefore,

f(β) ≥ β = infB (4).

33



Inequalities (3) and (4) show us that f(β) = β. Thus β is a fixed point of f , then the

result follows. �

Theorem 5.12. (Bourbaki-Witt 1) Let (X,≤) be a complete partially ordered space.

Then, every progressive function f : X → X has a fixed point on X .

Theorem 5.13. (Bourbaki-Witt 2) Let (X,≤) be a pointed complete partially ordered

space. Then, every order preserving function f : X → X a fixed point on X .

The proofs of Theorem 5.12 & Theorem 5.13 are given in Chapter 6.
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CHAPTER 6

A GENERAL FIXED POINT THEOREM

In this chapter, we will give a general fixed point theorem given in [11]. This theorem

offers a general idea on the fixed point theorem which is in fact working with ball

spaces instead of metrics, ultrametrics, order or topology.

Our aim in this chapter is to prove the fixed point theorems that we gave in Chapter

3, 4, 5 by using this general fixed point theorem due to [11].

We have already presented the notion of "ball", "nest of balls", "spherically complete-

ness" in Chapter 4 for ultrametric spaces. We will also present the analogue notions

for metric spaces and ordered spaces.

We first define the ball spaces which will be common for all the spaces.

Definition 6.1. (Ball Space) Let X be a space (with a metric, ultrametric or ordered

space). Let B is a collection of closed balls with respect to the structure of the space.

(X,B) is the called a ball space.

Then the following theorem stated in ball spaced notions will cover all concepts of

metric, ultrametric and ordered spaces.

Theorem 6.2. (General Fixed Point Theorem) Let (X,B) be a spherically complete

ball space. Let f : X → X be a function on a ball space (X,B) satisfying the

following conditions:

(1) f(B) ⊂ B for all B ∈ B

(2) B is a singleton or there exists a ball B
′ $ B

(3) The intersection of any nest of balls is a singleton or contains a ball
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Then f has a fixed point.

We will not give a proof of the Theorem 6.2 in this thesis but refer to [11] for a proof.

In the following, we will give the proofs of Theorem 3.4, Theorem 4.30, Theorem

5.11 and Theorem 5.12 by using the General Fixed Point Theorem.

6.1 Proof of Theorem 3.4

First of all, let us construct the ball space (X,B) for the complete metric space X .

By the generalized triangle inequality axiom of a metric space and since f is a con-

traction with 0 < c < 1, we have:

d(x, f(x)) ≤ d(x, f(x)) + d(f(x), f 2(x)) + ....+ d(f i−1(x), f i(x))

≤ d(x, f(x))(1 + c+ c2 + ...+ ci−1)

≤ d(x, f(x))
∞∑
i=0

ci =
d(x, f(x))

1− c

Thus, we can choose the collection of the following balls in order to have a ball space

(X,B).

Bx := {y ∈ X | d(x, y) ≤ d(x, f(x))

1− c
}

As (X, d) is complete, (X,B) is spherically complete.

By this choice of ball, it is clear that f i(x) ∈ Bx for all i ≥ 0. In particular, x ∈ Bx.

We wish to show that f(Bx) ⊂ Bx and Bfk(x) ( Bx.

For y ∈ Bx,

d(x, f(y)) ≤ d(x, f(x)) + d(f(x), f(y))

≤ d(x, f(x)) + cd(x, y)

≤ d(x, f(x)) + c
d(x, f(x))

1− c

=
d(x, f(x))

1− c

f(y) ∈ Bx which will imply also f(Bx) ⊂ Bx in the case of x 6= f(x). (1) is

satisfied.
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Let x 6= f(x). Let z ∈ Bf(x), where

Bf(x) = {z ∈ X | d(f(x), z) ≤ d(f(x), f 2(x)

1− c
}

then we will have

d(f(x), z) ≤ d(f(x), f 2(x))

1− c
≤ c

d(x, f(x))

1− c
<
d(x, f(x))

1− c
which means z ∈ Bx, hence Bf(x) ⊆ Bx.

We will prove also that for some k > 1, Bfk(x) ⊆ Bx.

Since one can always find k ≥ 1 for c > 1 such that

ck

1− c
<

1

2

we will have

d(fk(x), fk+1(x))

1− c
≤ ck

1− c
d(x, f(x)) <

1

2
d(x, f(x))

which implies that x and f(x) can not lie in Bfk(x). Hence Bfk(x) ( Bx.

Hence there is a ball B′ ( B for all B ∈ B or B is a singleton. (2) is satisfied.

Take a nest of balls N = {Bk := Bfk(x0)} where x0 ∈ ∩N .

Pick any Bk ∈ N , k > 0.

d(fk(x), f(x0) ≤ c d(fk−1(x), x0) (6.1)

using x0 ∈ ∩N ⊆ Bfk(x)

d(x0, f(x0)) ≤ d(x0, f
k(x)) + d(fk(x), f(x0))

≤ d(x0, f
k(x)) + c d(fk−1(x), x0)) by (6.1)

≤ d(fk(x), fk+1(x))

1− c
+ c

d(fk−1(x), fk(x))

1− c

≤ ckd(x, f(x))

1− c
+
c ck−1d(x, f(x))

1− c

≤ 2
ck

1− c
d(x, f(x))

Since, limit of right hand side is 0 as k →∞.

Thus, x0 = f(x0), we have found a fixed point that means also Bx0 ⊆ ∩N , in fact

∩N = x0 = Bx0 . (3) is satisfied.
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Then, f has a fixed point.

Note that if we had two distinct fixed x0 and y0 points then d(x0, y0) = d(f(x0), f(y0) ≤
c : d(x0, y0). 0 < c < 1 contradiction. �

6.2 Proof of Theorem 4.30

First of all, let us construct the ball space (X,B) for the spherically complete ultra-

metric space (X, u) with the following balls:

Bx := {y ∈ X | u(x, y) ≤ u(x, f(x))}

(X, u) is spherically complete then every nest of these balls of also has non-empty

intersection. By this choise of balls, it is clear that

x ∈ Bx as u(x, x) = 0 ≤ u(x, f(x))

Let y ∈ Bx. Thus by the definition of balls,

u(x, y) ≤ u(x, f(x)) (6.2)

Since (X, u) is an ultrametric space u(f(y), x) ≤ max{u(f(y), f(x)), u(f(x), x)}.
Morever since f is non-expanding, u(f(y), f(x)) ≤ u(y, x) but by (6.2), we will have

u(f(y), f(x)) ≤ u(y, x) = u(x, y) ≤ u(x, f(x))

Hence max{u(f(y), f(x)), u(f(x), x)} = u(f(x), x) and we will have u(f(y), x) ≤
u(f(x), x) that means by the definition of Bx that f(y) ∈ Bx. We have thus showed

that if y ∈ Bx then f(y) ∈ Bx, which can be written as f(Bx) ⊂ Bx. Condition (1)

of General Theorem is satisfied.

If z ∈ By=f(x),we will have

u(y, z) ≤ u(y, f(y)) ≤ u(x, f(x)) = u(x, y)

Also u(z, x) ≤ max{u(z, y), u(y, x)} = u(x, f(x)) which implies z ∈ Bx.

Thus, we have proven that By ⊂ Bx, which is equal to Bf(x) ⊆ Bx. If x 6= f(x),

Bf(x) ( Bx. Thus (2) is satisfied.

Let N be a nest of balls Bx. If z ∈ ∩N 6= ∅ we have Bz ⊂ ∩N . Since Bz ⊆ Bx

for every z ∈ Bx which is implied by (1) as z ∈ Bx which means that f(z) ∈ Bx. If

Bz = {z} we have ∪N = {z}. (3) is satisfied.
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6.3 Proof of Theorem 5.12

Let us choose the ball space (X,B) for the complete partially ordered space. (X,B)

is a spherically complete space. We have :

Bx := {[x,+∞) | x ∈ X}

We wish to show that x ∈ Bx and f(Bx) ⊂ Bx.

Let y ∈ Bx. Since f prograssive and by the definition of ball:

f(y) ≥ y ≥ x

Hence f(y) ∈ Bx which will imply f(Bx) ⊂ Bx for all x ∈ X in the case of

x 6= f(x). (1) is satisfied.

If there does not exist a y ∈ X such that y > x, Bx = [x,+∞) = {x}. Bx is a

singleton.

Otherwise, if y ∈ X there exist such that y > x which implies the existence of B′

such that B′
= [y,+∞) ( Bx = [x,+∞). (2) is then satisfied.

Take a nest of balls of Bxi N = {[xi,+∞)}i∈I . As X is a complete partially ordered

set such that there exist a s = sup{xi | i ∈ I}. Therefore ∩{[xi,+∞)}i∈I = [s,+∞)

is a ball. (3) is satisfied.

By General Fixed Point Theorem, there exist a x0 such that f(x0) = x0.

6.4 Proof of Theorem 5.13

Let us choice the ball space (X,B) for the complete partially ordered space. (X,B)

is a spherically complete space. We have:

Bx := {[x,+∞) | f(x) ≥ x} ∪ {x}

We wish to show that y ≥ x. Since f order preserving function

f(y) ≥ f(x) ≥ x

Hence f(y) ∈ Bx which will imply also f(Bx) ⊂ Bx for all x ∈ X in the case of

x 6= f(x). (1) is satisfied.
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If f(x) = x. Bx = {x} such that Bx is a singleton. Otherwise, if f(x) > x,

B
′
= [f(x),+∞) ⊂ Bx = [x,+∞). (2) is satisfied.

Take a nest of balls N = {[xi,+∞)}i∈I . As X is a complete partial order set such

that there exist a s = sup{xi | i ∈ I}. s ≥ xi and since f order preserving f(s) ≥
f(xi) ≥ xi by definition of Bx. Therefore ∩[xi,+∞) = [s,+∞) ∈ Bx is a ball. (3)

is satisfied.
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