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PREFACE 

 

 

 This thesis consists of two different parts. In the first part of this thesis, in a 

decentralized detection problem, it is shown that setting thresholds as random 

variables instead of deterministic ones can improve the performance according to the 

restricted Bayes criterion. And the second part of the thesis, in the presence of partial 

information, it is obtained that the optimal policy for an average power constrained 

jammer is to allocate its power among at most three different power levels. 

 I would like to, especially, thank Asst. Prof. Dr. Suat Bayram for providing 

me great research opportunities and environment as my advisor. His patience, 

generosity and inspirational personality have been a great admiration for me. Also I 

would like to thanks Prof. Dr. Etem Köklükaya and Asst. Prof. Dr. Ali Alpan for 

agreeing to serve on my thesis committee.  

 Finally, I would like to give a special thank to my wife Esra, my son Asım 

and my sweet daughter Meryem for their unconditional love and support throughout 

my studies.
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ÖZET 

 

SOKU, Hakan. Merkezi Olmayan Sezim Problemlerinde Eşik Değer Optimizasyonu 

Ve Belirsizlik Varliğinda En Uygun Sinyal Boğma Stratejisi, Yüksek Lisans tezi, 

Ankara, 2015 

 Tezin ilk kısmında, kısıtlı Bayes yaklaşımı ile merkezi olmayan sezim 

problemleri üzerinde çalışılmaktadır. Hangi Hipotezin doğru olduğu ile ilgili tüm 

kararlar, şartlı bağımsız gözlemler yoluyla yerel sensörler tarafından verilir. 

Sonrasında, bu kararlar nihai karar için füzyon merkezine iletilir. Geleneksel 

yaklaşımda, yerel sensörlerin ve füzyon merkezinin tüm eşik değerleri rasgele 

olmayan değişkenler olarak düşünülmüş, yerel sensörler ve füzyon merkezinin test 

istatistikleri için verilen kritere göre optimize edilmektedir. Bu kısımda, kısıtlı Bayes 

kriterine göre, eşik değerlerin rasgele olmayan değişkenler yerine rasgele değişkenler 

olarak atanması sonucunda performansın arttığı görülmektedir. Simulasyonlar 

yoluyla teorik sonuçlar incelenmektedir. 

 Tezin ikinci kısmında, ortalama bir güçle sınırlandırılmış, hedef sinyal 

hakkında kısmi bilgiler bulunduran sinyal boğucu için optimal sinyal boğma stratejisi 

elde edilmektedir. Neyman-Pearson çerçevesinde ele alınmakta ve kısmı bilginin 

sebep olduğu belirsizliği işlemek amacıyla Hodges-Lehmann Kuralı 

kullanılmaktadır. Amacımız, Sinyal bozucudaki kısmi bilgi miktarına göre 

ayarlanmış eşik değer seviyesinin altındaki bir alıcının uygun olan en küçük sezim 

olasılığını muhafaza ederken, akıllı alıcı sisteminin “beklenen” sezim olasılığına NP 

kriterine göre olabilecek en küçük değeri vermektir. Kısmi bilginin varlığında, 

ortalama bir güç ile sınırandırılmış sinyal boğucu için en uygun ilke olarak, en fazla 

üç farklı güç seviyesi arasından kendi gücünü ayırabildiği sonucuna varılmıştır. 

Bunlara ilave olarak, güç rasgeleleştirmesinin rasgele olmayan sinyal boğma 

yaklaşımları üzerinde gelişmeler sağlayıp sağlayamayacağı senaryolarını belirlemek 

için yeter koşullar elde edilmektedir. Son olarak, teorik bulguları incelemek için 

simülasyonlar sunulmaktadır. 

 

 



iii 
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ABSTRACT 

 

SOKU, Hakan. Threshold Optimization In Decentralized Detection Problems And 

Optimal Jamming In The Presence Of Uncertainty, Master Thesis, Ankara, 2015 

 In the first part of this thesis, restricted Bayes approach is studied in a 

decentralized detection problem. All decisions on which hypothesis is true are made 

by local sensors through conditionally independent observations. Then, these 

decisions are transmitted to the fusion center for the final decision. In the 

conventional approach, all thresholds of local sensors and the fusion center are 

considered as deterministic variables and optimized according to the given criterion 

for given test statistics of local sensors and the fusion center. In this part, it is shown 

that setting thresholds as random variables instead of deterministic ones can improve 

the performance according to the restricted Bayes criterion. Theoretical results are 

investigated through simulations.  

 In the second part of the thesis, the optimal jamming strategy is obtained for 

an average power constrained jammer that operates in the presence of partial 

information about the target signal. A Neyman-Pearson (NP) framework is 

considered, and the Hodges-Lehmann rule is employed in order to handle the 

uncertainty caused by partial information. The goal is to make the “expected” 

detection probability of a smart receiver operating according to the NP criterion as 

minimum as possible while keeping the least favorable detection probability of the 

receiver below a threshold level that is set based on the amount of partial information 

at the jammer. It is obtained that, in the presence of partial information, the optimal 

policy for an average power constrained jammer is to allocate its power among at 

most three different power levels. In addition, sufficient conditions are obtained to 

determine scenarios in which power randomization can or cannot provide 

improvements over the deterministic (i.e., fixed power) jamming approach. Finally, 

Simulations are performed in order to investigate the theoretical findings. 

 

Key Words: 

1. Decentralized detection 

2. Random threshold 
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3. Restricted Bayes 

4. Jamming 

5. Detection 

6. Radar 
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INTRODUCTION 

 

 Decentralized detection problem was first presented in [1], and have been 

studied extensively in recent years. A limited capacity of the wireless channel is one 

of the most important issues raised in decentralized detection problems. In [2], 

decentralized detection problem is studied in a binary hypothesis-testing framework 

under a limitation on the capacity of wireless channel, over which the maximum 

transmission rate is specified by R bits of information per unit time. It is shown that 

using R identical binary sensors is asymptotically the optimal strategy, where the 

number of observation at the local sensors converges to infinity and observations are 

modeled as an identical and independent Gaussian or exponential random variables. 

As an alternative approach to addressing limited capacity of the wireless channel, 

data reduction at the local sensors is considered in terms of the optimal quantizer 

design according to both Bayesian and Neyman-Pearson criteria [3]. In the presence 

of a full uncertainty about a distribution of the additive noise at the local sensors, a 

universal decentralized scheme is proposed in [4], which is operating under the 

bandwidth constrained communication channels between sensors and the fusion 

center. The error probability is shown to decay exponentially with a rate which is 

bounded from below by the noise range for bounded noise and by SNR for 

unbounded noise.   

 The frequency of occurrence of one hypothesis happens to be much higher 

than the others under some scenarios in decentralized detection problems [5, 6]. In 

those circumstances, the censoring scheme is proposed for sensor networks operating 

under the limited energy resources and limited wireless channel capacity in order to 

exploit this gap between the frequencies of occurrence of hypotheses [5]. Under the 

censoring scheme, local sensors do not transmit the observation for which the 

corresponding value of the local likelihood ratio is in the censoring interval, which 

means that the related observation is not considered as informative and simply 

discarded [5]. The censoring scheme is also studied for the sensor networks including 
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randomized decision rules and operating in presence of uncertainty about the 

observations at the local sensors [6].  

 In the collaborative human decision making problem under a binary 

hypothesis testing framework, thresholds used by the individual human agents to 

decide on which hypothesis is true are modeled as random variables because of 

mainly unpredictability and cognitive limitations of humans [7]. Decentralized 

detection schemes find extensive applications areas in defense systems; thereby it is 

important to develop novel schemes performing better than conventional ones. To 

that end, in Chapter 1, thresholds of local sensors and the fusion center are set as 

random variables to improve the performance over the conventional approach, in 

which thresholds are deterministic, according to restricted Bayes criterion in a 

decentralized detection problem under a binary hypothesis testing framework. It 

turns out that optimum random thresholds are dependent on each other and the PDF 

(probability density function) of each consists of at most two point masses. This case 

can in fact be considered as dependent randomization of decision rules of local 

sensors and the fusion center, where each decision rule is selected from a set of 

deterministic decision rules based on the realization of the associated discrete 

random variable [8]. In our case, the set of deterministic decision rules consists of the 

decision rules with the same test statistics but different deterministic thresholds. 

Dependent randomization of decision rules is studied in [8] under the Neyman-

Pearson framework in a general sense. In this part of the thesis, we focus on 

threshold randomization, which is a special case of randomization of decision rules, 

under restricted Bayes framework. Focusing on threshold randomization instead of 

generic randomization of decision rules provides us with doing quantitative and 

detailed analysis of the proposed scheme. To our best knowledge, there is no study 

considering effects of replacing deterministic thresholds with random ones on 

decentralized detection under restricted Bayes framework. 

 In order to implement optimal random thresholds which are dependent on 

each other, one way is to allow the fusion center to control all thresholds of local 

sensors. However, this requires extensive communication capacity and increase in 

the level of centralization opposed to nature of decentralized detection as stated in [8] 

for dependent randomization of decision rules. There are two alternative ways 
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proposed in [8] for generic implementation of dependent randomization of decision 

rules under Neyman-Pearson framework. However, they can be easily adapted to our 

case of dependent randomization of thresholds as follows.  One of alternative ways is 

to make all local sensors and the fusion center implement a predefined sequence of 

the different sets of thresholds without any communication among themselves. The 

other alternative is to use the common clock in all local sensors and the fusion center 

to choose which threshold to use.  

 In Chapter 1, we consider the restricted Bayes criterion to handle the 

uncertainty in the observations of the local sensors. More specifically, the aim of this 

chapter is to investigate effects of setting and accordingly optimizing thresholds as 

random variables instead of deterministic variables under the restricted Bayes 

framework, whose aim is to minimize the global probability of error while keeping 

the worst-case global probability of error below the predefined level [9,10]. We also 

consider the likelihood ratio as a test statistic for the fusion center, which is a 

common use in practice. Uncertainty in the transmission of decisions of local sensors 

to the fusion center is modeled by a binary asymmetric channel (BASC). 

 To the best of our knowledge, restricted Bayes approach has never been 

studied before in decentralized detection problems. Therefore, this thesis also aims to 

illustrate the use of this approach in the presence of uncertainty about observations at 

the local sensors. Along with the illustration of restricted Bayes approach in sensor 

networks, it is also shown how to optimize restricted Bayes criterion by employing 

dependent random thresholds at the local sensors and the fusion center. 

  The effects of power randomization (time sharing) have been investigated for 

average power constrained jammers in some studies such as [11-13]. The power 

randomization for symmetric unimodal jammer noise is investigated in the presence 

of binary signaling and the maximum likelihood (ML) receivers in [11]. Allocating 

the power of the jammer between two different power levels is shown to maximize 

the average error probability under some conditions. It is proved that the optimal 

allocation policy is to randomize the jammer power between at most two different 

levels. The same problem is studied in [12] for the M-ary case and the ML receiver 

operating over an additive white Gaussian noise (AWGN) channel. Achieving an 

increase in the symbol error rate is shown to be possible through randomizing the 
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jammer power. Various optimal power allocation policies corresponding to different 

signal-to-noise ratio (SNR) conditions are developed.  

 The optimal probability density function (PDF) for a jammer is investigated 

in [14] for the case of a smart jammer subject to a power constraint and a smart 

receiver operating under the Neyman-Pearson (NP) criterion, both of which are 

instantaneously kept fully informed of each other. It is proved that the optimal PDF 

converges to Gaussian under certain conditions. In [15], the designs of a filter 

function at a smart receiver aiming to maximize the SNR and the spectral density of 

a noise of a smart jammer aiming to minimize the SNR are studied in a game theory 

framework. 

 In [13], unlike [11] and [12], generic PDFs for a jammer running over an 

arbitrary additive noise channel and generic detectors at the receiver running under 

the NP framework are considered in developing the optimal power allocation 

strategy for a  jammer, where the goal is to make the detection probability at the 

receiver as minimum as possible. Both the jammer and the receiver are smart in a 

way that they have full information about each other. It is shown that randomizing 

the jammer power between at most two different levels is the optimal allocation 

strategy for an average power constrained jammer. In practice, however, a smart 

jammer needs to learn about a receiver by certain means such as previous 

measurements (experience). For this reason, in most cases, a jammer has partial 

instead of full information about the receiver. To the best of our knowledge, the 

optimal power distribution of an average power constrained jammer has not been 

characterized in the presence of partial information about the receiver in the previous 

studies.  

 In Chapter 2, it is shown that an average power constrained jammer can 

handle partial information by allocating its power among at most three different 

levels instead of two different levels, which is the optimal power allocation policy 

when the jammer has full information on the receiver as discussed in [13]. The 

Hodges-Lehmann rule (restricted Bayes approach) [9,10] is adopted to obtain the 

optimal policy of allocating the power of a jammer running over an arbitrary  noise 

channel in the presence of partial information. The goal is reducing the “expected” 

detection probability of a smart receiver running under the NP framework and under 
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the constraint of keeping the least favorable detection probability of the receiver 

below a predefined level, which is determined according to the uncertainty level at 

the jammer. In addition, sufficient conditions are derived to check if power 

randomization can provide benefits with respect to a fixed power jamming strategy. 

Finally, simulations are performed to investigate theoretical findings.  

  

 



CHAPTER 1 

 

THRESHOLD OPTIMIZATION ACCORDING TO RESTRICTED BAYES 

CRITERION IN DECENTRALIZED DETECTION PROBLEMS 

 

 In Section 1.1, the problem formulation is given, and derivations for optimum 

random thresholds are provided. Section 1.2 studies the statistical characterization of 

the optimum random thresholds along with the calculation of the optimal PDFs of 

thresholds. A sufficient and necessary condition for the improvability of the 

conventional approach through replacing deterministic thresholds by random ones is 

provided in Section 1.3. Finally, Section 1.4 studies a numerical example to 

investigate theoretical results. 

 

 

1.1 PROBLEM FORMULATION 

 

 Consider the decentralized detection problem, in which each of local sensors 

decides on which hypothesis is true then all decisions of the local sensors are 

transmitted to the fusion center where the final decision is made. We have N local 

sensors and the observation vector 
i

x K∈R at the local sensor i can be expressed 

under binary hypotheses as follows: 

 

  0H   :  0i i i
= +x s n      ,  1H   :  1i i i

= +x s n    (1) 

 

 Where 
i

n  is the background noise with PDF 
inp ( · ). The signals are modeled 

as random vectors
0 10 20 0[ ... ]T T T T

N
=s s s s  with the estimated PDF 

0
( )sp ·  under the 

hypothesis 0H  and 
1 11 21 1[ ... ]T T T T

N
=s s s s with the estimated PDF 

1
( )sp ·  under the 

hypothesis 1H  . In practice, true PDFs of the signals can be very different from the 

estimated ones due to estimation errors in obtaining 
0
( )sp ·  and 

1
( )sp ·  [9, 10]. In other 

words, there exists uncertainty in the PDFs of the signals. In the restricted Bayes 
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criterion, the worst-case scenario is also involved to take this uncertainty into 

account [9, 10]. Therefore, in the restricted Bayes framework, the least-favorable 

PDFs of the signals corresponding to the worst-case scenario are also considered 

along with the estimated ones [9, 10]. Let us denote the least favorable PDFs of the 

signals under hypotheses 1H  and 0H  with 
1
( )sp
ls
·  and

0
( )sp
ls
· , respectively. 

Observations of the local sensors are also assumed to be conditionally independent. It 

should be noted that the least-favorable PDFs of the signals may be dependent on 

thresholds, that is, when the thresholds of the local sensors and the fusion center 

change the least-favorable PDFs may accordingly change in some cases. 

 The fusion center and all local sensors employ fixed test statistics. Let us 

denote the test statistic at the local sensor i with ( )
i
·T  and at the fusion center with 

( )·L . In the conventional approach, thresholds of the fusion center and local sensors 

are considered as deterministic variables, and optimized according to the given 

criterion [8, 16], which is the restricted Bayes criterion in this chapter. 

 Let us denote the threshold of the local sensor i with 
i
η  and the threshold of 

the fusion center with ττττ . In this part of the thesis, while a random variable is denoted 

in bold font, its realization is depicted without bold font. We define the random 

vector η with the PDF ( )p ·
η

 consisting of all thresholds of the local sensors: 

1 2[ ]T

N · · · η = η η η . 

 The decision rule at the local sensor i is denoted with 
iφ , where ( ) 1

i i
xφ = if 

( )
i i i

x η≥T , otherwise ( ) 0
i i

xφ = . The observation received at the fusion center from 

the local sensor i is denoted with 
i

u , where {0,1}
i

u ∈ . Define the random vector u 

consisting of all observations received at the fusion center from the local sensors: 

1 2[ ]T

Nu = u u u · · · . The fusion center makes a final decision based on the 

observation u, that is, ( ) 1uφ = if ( )u ≥ τL , otherwise ( ) 0uφ = , where ( )φ ·  is the 

decision rule employed at the fusion center. 

 Binary asymmetric Channel (BASC) is assumed, and the crossover 

probabilities are defined as 0 ( 1| ( ) 0)
i i i i

c xφ= =u= p  and 1 = ( 0 | ( ) 1)
i i i i

c xφ= =up  

for i = 1, 2…, N. 
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When the signal and thresholds of local sensors are given, observations (
i

u for i = 1, 

2..., N) at the fusion center are independent from each other. Accordingly, we have 

the following: 

           

   
1

( | , , ) ( | , , )
N

k k i i ik k

i

u uη η
=

= ∏H Hs sp p     (2) 

 

 The probability of local sensor i deciding on 1H  when the threshold and the 

signal are given is denoted with F ( , ) ( (x ) 1| , , )
ik i ik i i i ik k

η φ η= =ps s H . Then, 

( | , , )
i i ik k

u η Hsp  can be expressed as follows: 

 

                  1( 1| , , ) (1 )F ( , )
i i ik k i ik i ik

cη η= = −u Hp s s + 0 (1 F ( , ))
i ik i ik

c η− s   (3) 

        0( 0 | , , ) (1 )(1 F ( , ))
i i ik k i ik i ik

cη η= = − −up Hs s + 1 F ( , )
i ik i ik

c η s   (4) 

  

The PDFs of the observations received at the fusion center for the expected and the 

worst-case scenarios can be calculated as follows:     

           

  ( | ) ( | , , ) ( ) ( ) d d
N KN kk k k k ku u η η η= ∫ ∫p p p pH H
R R

s
s s s

η
  

  ( | ) ( | , , ) ( ) ( ) d d
N KN kk k k k ku u η η η= ∫ ∫p p p pH H
R R

ls ls

s
s s s

η
 

 

 In this thesis, the fusion center is assumed to use the likelihood ratio as a test 

statistic. When the thresholds of the local sensors are given, the likelihood ratio can 

be calculated as follows: 

           

  
1

0

1 1 1 1
1

0
0 0 0 0

( | , , ) ( )d G ( , )
( )

G ( , )( | , , ) ( )d

K

K

u u
u

uu

η η

ηη
= =
∫

∫
R

R

H

H

L
p p

p p

s

s

s s s

s s s

   (5) 

 

 Where G ( , ) ( | , , ) ( ) d
KN kk k k k ku uη η= ∫ p pH
R

s
s s s  for k = 0, 1. For convenience, 
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let us also define 
R

G ( , ) ( | , , ) ( ) d
KN kk k k k ku uη η= ∫ p pH

ls ls

s
s s s  for k = 0, 1. 

 Since {0,1}
i

u ∈ , the size of the set consisting of the possible realizations of u 

is 2N . Therefore, ( )uL  can take 2N different values corresponding to a possible 

realization of u. Let us arrange the values of ( )uL  in ascending order as 
1 2 2
, , ..., Nl l l  

with corresponding values of u denoted with 
1

u , 
2

u ,…, 
2N

u , that is, 

1

0

( , )

( , )
( )

i

i

i

i

G u η

G u η
u= =l L . 

 For convenience let us represent all thresholds with the random vector θθθθ  

having the PDF ( )p ·θθθθ , which is defined as [ ]T T=θ η τθ η τθ η τθ η τ . Then, probabilities of the 

fusion center deciding on 1H  given that the true hypothesis is 1H  (the global 

detection probability) for the expected and the worst-case scenarios can be calculated 

as follows: 

           

    
i

2 1

D D

0

P ( ) P ( )

N

i

θ θ
−

=

= ∑      (6) 

    
i

2 1

D D

0

P ( ) P ( )

N

i

θ θ
−

=

= ∑ls ls
     (7) 

 

Where
0D 1P ( ) I( )θ τ= ≤ l ,

( )
i

1 2 2

D 1 1 1 1P ( ) I( ) G ( , ) G ( , )   + G ( , )
Ni i

i i u u uθ η η η+ +
+= < τ ≤ + +l l ··· ,  similarly  

iD 1P ( ) I( )θ = τ ≤ls
l , ( )

i

1 2 2

D 1 1 1 1P ( ) I( ) G ( , ) G ( , )   + G ( , )
N

i i

i i u u uθ η η η+ +
+= < τ ≤ + + ···

ls ls ls ls
l l  

for i = 1, 2,…,( 2N -1) . Here, I( )·  denotes an indicator function: If the event A is true 

then I(A)  = 1, otherwise I(A)  = 0. 

 The probabilities of the fusion center deciding on 1H  given that the true 

hypothesis is 0H  (the global false alarm probability) for the expected and the worst-

case scenarios can be computed as follows: 
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i

2 1

F F

0

P ( ) P ( )

N

i

θ θ
−

=

= ∑       (8)

    
i

2 1

F F

0

P ( ) P ( )

N

i

θ θ
−

=

= ∑ls ls       (9) 

 

 Where
0F 1P ( ) I( )θ = τ ≤ l ,

( )
i

1 2 2

F 1 0 0 0P ( ) I( ) G ( , ) G ( , )   + G ( , )
Ni i

i i u u uθ η η η+ +
+= < τ ≤ + +l l ··· , similarly 

0F 1P ( ) I( )θ = τ ≤ls
l , ( )1 2 2

Fi 1 0 0 0P ( ) I( ) G ( , ) G ( , )   +G ( , )
N

i i

i i u u uθ η η η+ +
+= < τ ≤ + + ···

ls ls ls ls
l l  

for i = 1, 2,…,( N2 -1). 

 The global error probabilities at the fusion center for the expected and the 

worst-case scenarios can be calculated as follows:  

           

   E 1 D 1 FP ( ) (1 P ( )) (1 )P ( )θ π θ π θ= − + −      (10) 

   
E 1 D 1 FP ( ) (1 P ( )) (1 )P ( )θ π θ π θ= − + −ls ls ls    (11) 

 

 Where 1π  is the prior probability of hypothesis 1H . 

 In the restricted Bayes criterion, the goal is to minimize the global probability 

of error corresponding to the expected scenario under the constraint on the global 

error probability corresponding to the worst-case scenario. 

 Therefore, in the conventional approach, the following optimization problem 

is solved to obtain optimum deterministic thresholds: 

           

    Emin P ( )
θ

θ  

    Subject to  
EP ( )θ β≤ls ,     (12) 

 

where β  is a predefined parameter determined based on the level of uncertainty 

[9,10,17]. Let us denote the optimal deterministic thresholds with 
o tθ p

, then in the 

conventional approach the global error probabilities corresponding to the expected 
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and the worst-case scenarios are 
EP ( )o tθ p  and 

EP ( )o tθls p , respectively. The restricted 

Bayes criterion generalizes the minimax and the Bayes criteria, and includes them as 

special cases. In (12), as β  increases the restricted Bayes criterion converges to the 

Bayes criterion, and after some value of β  the restricted Bayes becomes equivalent 

to the Bayes criterion [9,10]. Similarly, as β  decreases the restricted Bayes criterion 

converges to the minimax criterion, and at the minimum value of β  the restricted 

Bayes becomes equivalent to the minimax criterion [9,10]. In fact, the minimum 

value of β  is the probability of error when the minimax criterion is employed. 

 In the case of thresholds being random variables, the aim is to obtain 

optimum PDFs of the thresholds which minimize the average global probability of 

error corresponding to the expected scenario while keeping the average global error 

probability corresponding to the worst-case scenario below the predefined level: 

           

   
E

( )
min E {P ( )}
p ·θθθθ

θθθθ θθθθ       

   Subject to 
EE {P ( )} β≤ls

θθθθ θθθθ .    (13) 

 

It should be noted that when the value of β  is high enough so that the constraint on 

the average global error probability corresponding to the worst-case scenario 

becomes ineffective, then the optimization problem in (13) reduces to the 

minimization of average global probability of error corresponding to the expected 

scenario, which is the optimization problem of the Bayes criterion. Under this case, 

replacing deterministic thresholds by random ones is useless since optimal PDFs of 

random thresholds which minimize the average global error probability 

corresponding to the expected scenario consist of only one point mass, which means 

that random thresholds are indeed deterministic ones. 

 Since instantaneous error probabilities are equivalent to average error 

probabilities for deterministic thresholds, all error probabilities mentioned 

throughout the rest of this chapter are averaged ones. 
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1.2 CHARACTERIZATION AND CALCULATION OF OPTIMAL 

SOLUTION 

 

 The following proposition shows that optimal PDF of each of the thresholds 

consists of at most two point masses, and the optimal thresholds depend on each 

other. 

 

 Proposition 1: Assume that EP ( )θ  and 
EP ( )θls   are continuous functions, and 

θ  belongs to a finite closed set. Then, the optimum PDF for θθθθ  is in the form of 

1 2( ) ( ) (1 ) ( )θ θ λδ θ θ λ δ θ θ= − + − −p , where 0 1λ≤ ≤ . 

 

 Proof: The proof is similar with the proof of Proposition 1 in [13].  

 We can reformulate (13) by employing the results in Proposition 1: 

           

             
1 2

E 1 E 2
{ , , }
min P ( ) (1 )P ( )
λ θ θ

λ θ λ θ+ −  

   subject to 
E 1 E 2P ( ) (1 )P ( )ls lsλ θ λ θ β+ − ≤ .   (14) 

 

 Techniques for obtaining solution of (14) are extensively studied in [18]. In 

Section 1.4, the particle swarm optimization (PSO) algorithm is used to solve the 

problem in (14). 

Proposition 1 characterizes the optimal PDFs of random thresholds together with the 

optimum way of implementing them. Specifically, the optimal PDFs consist of at 

most two point masses, and the optimum way of employing thresholds is to sync 

them together. To exemplify, for a given time interval T, all local sensors and the 

fusion center synchronously employ the corresponding thresholds specified by 1θ  

during the time interval Tλ , and they use the thresholds specified by 2θ  in a 

synchronous manner in the rest part of the time interval (1- λ )T. According to 

Proposition 1, the only restriction on the thresholds is them being finite, which is 
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emphasized in there by the statement that θ  must be confined in finite set, which is 

already the case in practice. Thanks to results in Proposition 1, the optimization 

problem in (13) is reformulated in a manageable form, which has been already well 

studied.  
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1.3 A NECESSARY AND SUFFICIENT CONDITION FOR THE NON-

IMPROVABILITY 

 

 Next, a necessary and sufficient condition is presented for the non-

improvability of the conventional approach through replacing deterministic 

thresholds by random ones. To that end, define the auxiliary function 

E E(t) inf(P ( ) | P ( ) t)ls
J θ θ= = . Then, we have the following proposition: 

 

 Proposition 2: Conventional approach cannot be improved through 

replacing deterministic thresholds by random ones if and only if there exist 0ξ ≤  

such that 

   (t) (t ) ( )J J tβ ξ β≥ − + ∀      (15) 

  

 Proof: The proof is based on the approach in the proof of Proposition 3 in 

[13]. We only present the sufficiency of the condition due to space limitation. 

Consider a generic PDF for θθθθ  as 1 2( ) ( ) (1 ) ( )θ λδ θ θ λ δ θ θ= − + − −pθθθθ , then we have 

1 E 1=P ( )ls
t θ  and 

2 E 2=P ( )ls
t θ . Based on the condition in the proposition, we have the 

followings 1 1(t ) (t ) ( )J Jβ ξ β≥ − +  and 2 2(t ) (t ) ( )J Jβ ξ β≥ − + . Therefore, 

employing ( )θpθθθθ gives the following relation: 

E 1 E 2 1 2 1 2 EP ( ) (1 )P ( ) ( ) (1 ) ( ) ( ) ( ( (1 ) )) P ( )opt
J t J t J t tθ λ θ λ λ β ξ β λ λ θ+ − ≥ + − ≥ − − + − ≥

, because of 0ξ ≥  and 1 2(1 )t tλ λ β+ − ≤ . 

 In Proposition 2, we assume that 
EP ( )ls optθ β= , which is the case in practice 

since β  is set by the designer based on the uncertainty level. If  ( )J t  is first-order 

continuously differentiable, we have the relation '( )Jξ β= . 

 In some circumstances, deterministic thresholds turn out to be optimal. In 

those cases, there is no need to engage in the optimization problem in (13). 

Proposition 2 specifies these circumstances completely, and beforehand gives us 

certain information about the form of the solution. 
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1.4 NUMERICAL RESULTS 

 

 Consider the decentralized detection problem with two local sensors, and 

scalar observations at the local sensor i are given as follows: 

           

  0H  : i
=x n   , 1H  : i

= +x ns    (16) 

 

where s is a random variable with the PDF in the form of 

( ) 0.5 ( ) 0.5 ( )s s A s Aδ δ= − + +p
s

 where ( )δ ⋅  is the Dirac delta function and the 

value of A is estimated based on previous experience. In this model, the signal under 

1H  employs binary modulation, namely, binary phase shift keying (BPSK). The 

background noise n is symmetric Gaussian mixture with the PDF: 

           

    
M

1

( )( ) ii

i

in nψ µω
=

= −∑np     (17) 

 

where M is the number of Gaussian components in the mixture noise PDF, i
µ  is the 

mean values of the Gaussian components, 
1

M
1ii

ω
=

=∑ , 0iω ≥ , 

2 2( ) (1 2 )exp{ (2 )}i i iy yψ π σ σ= −  for i = 1, . . . , M , with iσ being the standard 

deviations of the Gaussian components. All parameters are adjusted to make the PDF 

symmetric around the origin. 

 The local sensors employ the following test statistics 2

1 1 1( )x x=T and 

2

2 2 2( )x x=T . For this example, we can present F ( , )ik i iksη  in the closed form 

expression:           
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 ( )2F ( , ) (n+s ) | ,s ,ik i ik ik i i ik ksη η η Η= ≥ =p      

           

        
M

1

i ik m i ik m

m

mm m

s s
Q Q

η µ η µ
ω

σ σ=

    − − + −
 +   

    
    

∑ , 

 

where 0 0is = and 1 { , }is A A∈ − , and Q-function is given as 
2 2Q(x) (1 2 ) t

x
e dtπ

∞
−= ∫

. Based on previous experience, A is assumed to be estimated as 5, but it is also 

assumed to be known for sure that 3A ≥ . 

  In this case, the estimated PDF for the signal is obtained by inserting 5 for A 

in ( )sp
s

 since A is estimated as 5, and the least-favorable PDF is obtained by 

inserting 3 for A in ( )sp
s

 since in the scenario studied in the remaining part of the 

section the maximum value of means of the gaussian components in the background 

noise is 2, to which 3 is the closest value A can take. In this example, the least-

favorable PDF of the signal is independent from the thresholds for the scenario 

studied in the remaining part of the section. 
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Figure 1.1: The curves of error probability corresponding to the expected 

scenario versus error probability corresponding to the worst-case scenario for the 

case of using optimal deterministic thresholds and the case of using optimal random 

thresholds, where 0 1 0.01i ic c= = for i = 1,2, M = 2, 1 2 2µ µ= − = , 1 2 0.5ω ω= = , 

1 2 0.8σ σ= = , 1 0.82π = . 

 In the Figure 1.1, the curves of error probability corresponding to the 

expected scenario versus error probability corresponding to the worst-case scenario 

are plotted for the case of thresholds being optimal deterministic variables and the 

case of thresholds being optimal random variables, where 0 1 0.01i ic c= =  for i = 1, 2, 

M = 2, 1 2 2µ µ= − = , 1 2 0.5ω ω= = , 1 2 0.8σ σ= = , 1 0.82π = . The optimal random 

thresholds improve performance over optimal deterministic ones for 

(0.18, 0.2378)β ∈ , which is also confirmed by Proposition 2. In the cases of 

0.18β =  and 0.2378β = , the restricted Bayes criterion is equivalent to the minimax 

and Bayes criteria, respectively. And for these cases, using random thresholds does 

not provide any benefits over deterministic thresholds. It is also interesting to note 

that the curve corresponding to optimal random thresholds is convex. 
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β  λ  
11
η  12

η  1
τ  21

η  22
η  2

τ  

0.20 0.3621 10.4206 10.4376 3.2090 0 0.1320 0.3597 

0.21 0.4550 11.3602 8.0927 0.5258 0 2.1927 0.0916 

0.22 0.6974 9.9897 9.7801 1.0889 0 0.3333 0.2290 

0.23 0.13 0.0866 0 0.4212 9.8691 9.7368 0.4975 

0.24 1 9.4285 9.4285 0.7844 - - - 

 

Table 1.1: Optimal PDFS of random thresholds under the scenario in the Figure 1.1 

for various values of β , 1 2( ) ( ) (1 ) ( )θ λδ θ θ λ δ θ θ= − + − −pθθθθ , Where 1 11 12 1[ ]η ηθ = τ

and 2 21 22 2
[ ]η ηθ = τ . 

 

 In the Table 1.1, the optimal PDFs of thresholds are presented for various 

values of β . From the Table 1.1, it is observed that the optimal PDF of thresholds 

consists of at most two point masses as stated in Proposition 1. 

 Because of uncertainty issues, designer sets a upper bound for error 

performance according to design metrics. Performances higher than the upper bound 

are not tolerable from the designer’s perspective. In our, the upper bound is an error 

probability corresponding to the worst-case scenario. Therefore, designer first sets a 

upper bound, which is the worst-case error probability in our case, and then aims to 

optimize the expected error probability, which is true error probability if all 

estimations turn out to be perfectly correct. In the Figure 1.1, it is shown that for 

some values of the upper bound, which is the worst-case error probability, optimal 

random thresholds outperform optimal deterministic ones in terms of minimizing the 

expected error probability, which is the approach adopted in restricted Bayes 

criterion.



 

 

CHAPTER 2 

 

OPTIMAL JAMMING IN THE PRESENCE OF UNCERTAINTY 

 

 

In Chapter 2, in section 2.1, the problem formulation is given and derivations for 

optimal jamming in the presence of uncertainty are provided. Section 2.2 presents an 

optimization example to illustrate the theoritical results. 

 

 

2.1 PROBLEM FORMULATION AND ANALYSIS 

 

 Consider the problem formulation in [13], where a receiver aiming to detect a 

target under the jamming. Consider hypothesis testing between the presence and 

absence of the target, and the corresponding observation at the receiver is given as 

follows:  

   0H  :  = γy n + ε ,   1H   :   = + γy s n + ε    (18) 

 

where 1H  and 0H  represent the alternative and null hypotheses, respectively, s is the 

target signal with PDF ( )sp · , 
Ky∈R  is the observation , ε  is the measurement noise 

with PDF ( )p ·εεεε , and n is the jammer noise with PDF ( )np · , which is learned by the 

receiver. The jammer allocates the power over time according to the scalar variable γ

, which has a PDF denoted by ( )γp · . Since the receiver is smart, it is supposed that 

the receiver learns the value of γ  instantaneously [14]:  A jammer employs the 

variable γ  in a pattern, so a receiver can learn that pattern by observing the noise 

over some time, and accordingly gets the knowledge of γ  instantaneously. For the 

sake of simplicity, it is assumed that trace{Cov( )} =1n ; the corresponding constraint 

on the jammer is given by 
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2

γΕ {γ } ≤ β       (19)  

 

where β  represents the constraint level , that is, the jammer can allocate its power 

under the constraint in (19). 

 An NP framework is considered, where the receiver aims to maximize  

detection probability under the constraint that the false alarm can not exceed the 

constraint level α . The decision rule  is represented by
γφ ( )y  at the receiver, which is 

the probability of selecting 1H  [19]. In practice, the jammer can learn a target signal, 

which is modeled as ( )sp · , through previous experiences [9]. In this context, 

jammer’s knowledge about a target signal includes some degree of uncertainty 

depending on the circumstances under which the jammer operates. In order to handle 

the uncertainty issue related to the jammer, we employ the Hodges-Lehmann rule 

(restricted Bayes approach) [9], [10] in finding the optimal power allocation strategy 

for the jammer. According to this approach, the jammer aims reducing the 

“expected” average detection probability at the receiver as much as possible under 

the constraint that the least favorable (i.e., maximum) average detection probability 

at the receiver is below a predefined threshold and under the constraint on  average 

power of the jammer. The jammer achieves this aim by allocating its power, which is 

specified by the PDF of γ . As the receiver is considered to be smart,  the 

correspondıng detector is accordingly  designed as a function of γ , i.e., ( )γφ · , and 

the receiver can adapt a decision rule for each value of γ . As in [13], generic 

decision rules are considered (i.e., suboptimal or optimal), each of the decision rules 

equates the false alarm rate to α .  

 Before going through the analysis of the proposed optimal power allocation 

policy for the jammer in the presence of partial information, some remarks are 

provided about the restricted Bayes approach in the context of the jammer. In 

practice, the jammer can estimate the probability distribution of the target signal s, 

( )sp · , based on previous observations/experience. Therefore, there exist estimation 

errors causing uncertainty in the knowledge of ( )sp ·  [10]. Two conventional 
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approaches, known as “classical” and minimax, are extensively employed in such 

situations. In the classical approach, the jammer neglects the estimation errors and 

uses the estimated probability distribution of the signal as if it were the true 

probability distribution of the signal, ( ).sp ·  In this case, the neglected uncertainty 

may cause undesired performance for the jammer. The classical approach is the 

optimum one in the case of perfect estimation of the PDF of a target signal; that is, 

the jammer has the exact knowledge of the PDF ( ).sp ·  On the other hand, in the 

minimax approach, the jammer takes the worst-case scenario into account by 

adopting the least-favorable probability distribution for the target signal. In this case, 

even if the jammer has the some information on ( )sp ·  obtained based on previous 

experience, it is not taken into account at all by the jammer. Therefore, this approach 

is too conservative in terms of jammer’s performance. The minimax approach is the 

optimum one when the jammer does not have any information on the PDF of the 

signal; that is, there is full uncertainty in the PDF ( )sp · . However, in reality, having 

full knowledge and full uncertainty for the PDF ( )sp ·  are the exceptional cases; 

hence, these two approaches correspond to two extreme cases. In practice, the 

jammer has partial information on the PDF ( )sp · , and there have been various 

approaches for taking partial information into account such as restricted Bayes, Γ-

minimax, mean-max, robust Bayes, and empirical Bayes [9]. In this study, we 

employ the restricted Bayes approach (Hodges-Lehmann rule) to take the partial 

information of the jammer into account in developing the optimum power allocation 

strategy of the jammer.  

 Denote the estimated and the least-favorable PDFs for the signal s as 
est

( )sp ·  

and 
ls
( )sp · , respectively. It is noted that the estimated PDF is the PDF information at 

the jammer, which is not perfect, and that the least favorable PDF is the one that 

maximizes the average detection probability at the receiver, which corresponds to the 

worst-case scenario for the jammer. The “expected” (estimated) and least-favorable 

detection probabilities of the receiver are calculated, respectively, as 
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est

est

D 1P ( ) ( )
K

dγγ = φ ( )∫ y y yp
R

    (20) 

    
ls

ls

D 1P ( ) ( )
K

dγγ = φ ( )∫ y y yp
R

    (21) 

 

where est

1 ( )yp  and ls

1 ( )yp  are, respectively, the estimated and the least-favorable 

distributions of  the observation under the alternative hypothesis. Since n, ε  and s in 

(18) are independent, est

1 ( )yp  and ls

1 ( )yp  are computed as 

  

  
est est

1

1
( ) ( ) ( )

K K
d d

 
=  

γ γ 
∫ ∫ n s

y - s - e
e s e syp p p pεεεε

R R

   (22) 

  
ls ls

1

1 -
( ) (e) ( )

K K
d d

 
=  

γ γ 
∫ ∫ n s

y - s e
s e syp p p pεεεε

R R

   (23) 

 

Thus, 
estDP ( )γ  and 

lsDP ( )γ  in (20)-(21) are given by  

 

 
est

est

D

1 -
P ( ) ( ) ( ) ( )

K K K
d d dγ

 
γ = φ  

γ γ 
∫ ∫ ∫ n s

y s - e
y e s e s yp p pεεεε

R R R

  (24) 

 
ls

ls

D

1 -
P ( ) ( ) ( ) ( )

K K K
d d dγ

 
γ = φ  

γ γ 
∫ ∫ ∫ n s

y s - e
y e s e s yp p pεεεε

R R R

.  (25) 

 

The average detection probabilities of the receiver for the “expected” and the least-

favorable cases are given as follows: 

 

    { }
est est est

avg

D D DP ( ) ( )P ( ) E P ( )d
∞

γ γ
−∞

γ = γ γ γ = γ∫ p    (26) 

   { }
ls ls ls

avg

D D DP ( ) ( )P ( ) E P ( )d
∞

γ γ
−∞

γ = γ γ γ = γ∫ p    (27)  

 

where 
estDP ( )γ  and 

lsDP ( )γ  are as in (24) and (25), respectively. In the proposed 

approach, which is based on the Hodges- Lehmann rule (restricted Bayes approach), 

the goal is to develop the optimal power allocation strategy of the jammar, i.e., ( )γp · , 
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which reduces “expected” average detection probability at the receiver as much as 

possible under constraints on the least-favorable average detection probability at the 

receiver and the average power level of the jammer. The proposed problem 

formulation is stated as follows:  

 

    
est

avg

D
( )

minimize   P
γp ·

     (28) 

     subject to 
ls

avg

DP κ≤        (29) 

     
2

γΕ {γ } ≤ β      (30) 

 

where 
est

avg

DP  and 
ls

avg

DP  are as in (26)-(27), and κ  is the constraint on the least-favorable 

(i.e., maximum) average detection probability of the receiver. Constraint κ  is 

adjusted to compensate the uncertainty due to the errors resulting from the estimation 

of the signal PDF. In the case of an increase in the uncertainty level, the value of κ  is 

reduced to compensate the increased uncertainty. The minimum possible value of κ  

is the one obtained from the solution of the minimax problem, which minimizes 
ls

avg

DP  

under the power constraint 
2

γΕ {γ } ≤ β . For that value of κ , the proposed 

formulation in (28)-(30) reduces to the minimax approach, which ignores the 

information about the PDF of the signal and considers the worst-case scenario. On 

the other hand, when the constraint on the least-favorable average detection 

probability in (29) is not considered, the proposed formulation reduces to the 

classical approach in which the PDF of the signal is assumed to be known perfectly. 

In fact, this scenario corresponds to the one studied in [3]. By employing a suitable 

value for κ  according to the amount of uncertainty, the proposed formulation in 

(28)-(30) can handle the amount of uncertainty (partial information) efficiently. The 

optimization problem in (28)-(30) involves the minimization of the expected value of 

a function of γ  (see (26) and (28)) over the PDF of γ  under the constraints on the 

expected values of two other functions of γ  (see (27), (29), and (30)). In such 

problems, Carathéodory’s theorem [20] can be invoked to show that, under certain 

regularity conditions, the minimizer of the optimization problem in (28)-(30) can be 
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represented by a discrete probability distribution with at most three point masses 

(see, e.g., [21]). More formally, assuming that γ  is in a finite closed set and that 

estDP ( )γ  in (24) and 
lsDP ( )γ  (25) are continuous functions; the PDF corresponding to 

an optimal power allocation strategy is given as 

 

    
3

opt

1

( ) λ δ(γ - γ )i i

i

γ
=

γ =∑p      (31) 

 

Where 
3

1
λ 1ii=

=∑  and λ 0i ≥  for i = 1,2,3. In other words, the optimal power 

allocation policy of the jammer involves randomization among at most three 

different power levels. This is different from the conventional on-off jamming or the 

optimal jamming in the absence of uncertainty, which is performed between at most 

two different power levels [13]. Based on (26)-(31), the optimization problem in 

(28)-(30) can be simplified as follows: 

 

    
3 est

1

3

D
{λ ,γ }

1

minimize   λ P (γ )
i i i

i i

i= =
∑  

   subject to    
ls

3

D

1

λ P (γ )i i

i

κ
=

≤∑ , 
3

2

1

λ γi i

i=

≤ β∑ , 

            
3

1

λ 1i

i=

=∑ , λ 0i ≥ , {1,2,3}i∀ ∈ .   (32) 

 

The optimization problem in (32), which involves optimization over five variables 

(utilizing the equality constraint), is computationally much simpler than the problem 

in (26)-(31), which requires optimization over PDFs. The analytical and numerical 

techniques in [21] can be employed to obtain the solution of the optimization 

problem in (32). 

 It is noted that the optimal jamming strategy in (32) covers the deterministic 

(no randomization) approach of transmitting at the maximum average power, which 

is specified by ( ) δ(γ γ = γ − β)p . In other words, in some cases, the solution to (32) 

can correspond to the deterministic jamming strategy in which the jammer steadily 
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operates at the power limit of β . In the following propositions, sufficient conditions 

are presented in order to specify if the solution of the optimal jamming problem in 

(32) corresponds to the deterministic jamming approach or involves randomization 

among multiple power levels. These conditions are simple to check and they provide 

guidelines about the necessity for solving the optimization problem in (32). 

 Proposition 3 presents sufficient conditions for the superiority of power 

randomization over the deterministic strategy in the presence of uncertainty, which 

can be proved based on similar techniques to those in [13]. 

 

Proposition 3: Define functions F(a) and G(a) as ( ) ( )
estDF =Pa a  and 

( ) ( )
lsDG =Pa a , respectively, and assume that F(a) and G(a) are second-order 

continuously differentiable around β . If  F(a) and G(a) are strictly concave and 

concave at a = β , respectively, that is, (F ) 0 ′′ β <  and (G ) 0 ′′ β ≤ , power 

randomization outperforms the deterministic strategy. 

 

 When the conditions hold, deterministic jamming is not optimal, and the 

solution of (32) involves a randomization of the jammer power. Next proposition 

presents a sufficient condition under which the deterministic jamming approach is 

optimal; that is, power randomization cannot outperform the deterministic strategy in 

the presence of uncertainty.
1
 

 

Proposition 4: Suppose that [0, maxγ ∈ γ ] , where maxγ is the upper limit for γ . Then, 

the solution of (32) does not involve power randomization if there exists 0θ ≤  such 

that at least one of the following inequalities hold:  

 

   ( ) ( )
est estD DP ( ) Pa a θ≥ − β + β , 2

max[0, γ ]a∀ ∈   (33) 

   ( )
lsDP ( )a a θ κ> − β + , 2

max[0, γ ]a∀ ∈    (34)

                                                             
1
 The proof, omitted since it is simple, is an extension of the proof of Proposition 3 in [13] to the 

optimal jamming problem in the presence of uncertainty. 
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 When the conditions in Proposition 4 hold, there is no need to solve the 

problem (32) since the optimal solution is already specified by deterministic 

jamming.
2
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                             
2
 In Proposition 3 and 4, the goal is to determine if power randomization provides an advantage over 

deterministic jamming. Therefore, while checking conditions in the propositions, it is convenient to 

set 
lsDP ( )κ = β  as employed in Section 2.2. 
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2.2 NUMERICAL RESULTS 

 

 In this section, numerical results are presented in order to explore the 

theoretical results in the previous section. Consider the observations modeled as in 

(35). Signal s is a scalar random variable with a PDF in the form of  

 

   (s) δ (s ) (1 )δ (s )A Aρ ρ= − + − +sp     (35) 

 

Where ρ is known exactly and A is known with some uncertainty, and the 

measurement noise ε   and the jammer  noise n are taken as symmetric Gaussian 

mixture noise with PDFs in the form of  

 

   
1

(( )) i

N

i i

i

ϕξ µ
=

ε = ε −∑pεεεε , 
1

(n(n ))
N

i

i

i i
ϕ µξ

=

= −∑n

%

% %%p   (36) 

 

where N and N%  are  Gaussian component numbers in the mixtures, i
µ  and i

µ%  are  

the means of the Gaussian components, 
1 1

1
N N

i ii i
ξ ξ

= =
= =∑ ∑

%

% , 0iξ ≥ , 0iξ ≥% , 

2 2(y) (1 2 )exp{ (2 )}
i i i

yϕ π σ σ= − , and 2 2(y) (1 2 )exp{ (2 )}
i i i

yϕ π σ σ= −% % % , with 

iσ  and iσ%  depicting the standard deviations of the components. All parameters are 

assigned in a way to ensure that the mixtures are symmetric around the origin. 

 The receiver employs the following decision rule, and adjusts its threshold to 

keep its false alarm probability constant at α  as γ  varies.3 

 
0, y

1, oth
y

erwise
{

η ηγ γ

γ

− ≤ ≤
φ ( ) =    (37) 

where the threshold value 0ηγ >  is adjusted by the receiver to ensure that the false 

                                                             
3
 Due to symmetry,  negative values of γ  are not taken into account in the simulations. 

 



28 

 

alarm rate is to equal to α . From (35), (36), and (37), the false alarm rate is derived 

as follows: 

   
F

2 2 2 2 2 2
1 1

P ( )
i j i

N N

i i

i j
i j i j

jη η
Q Qξ ξ

σ σ σ σ= =

    − γ + γ    γ = +
    + γ + γ   

µ − µ µ

 

+ µ
∑∑

%

%

% %

% %
γ γγ γγ γγ γ

  (38) 

 

Figure 2.1: The “expected” average detection probability versus the least favorable 

average detection probability κ , where β = 0.5 . 

 

where ( )
2 2( ) 1 2 e .u

x
Q x duπ

∞
−= ∫ . The value of η γ

 is obtained from the relation 

FP ( ) .αγ =  Then the detection probability can be obtained as follows: 

 

 
D

2 2 2 2 2 2
1 1

P ( )
N N

i i

i j
i j

j

j

j i

i

iη A η A
Q Qξ ξ ρ ρ

σ σ σ σ

γ γ

= =

    − − µ − µ µ + µγ + + γ    γ = + +
    + γ + γ   

∑∑
%

%

% %

% %
 

  
2 2 2 2 2 2

(1 ) (1 )
i j i j

i j i j

η A η A
Q Qρ ρ

σ σ σ σ

γ γ
   + − γ − + γ    − + −
   + γ + γ  

µ − µ µ +



µ% %

% %

 (39) 

 

 In this example, the uncertainty is originated from A, which is estimated 
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based on previous observations (experience). If the estimated value of A is used in 

(39), then the detection probability in (39) becomes the “expected” detection 

probability, 
estDP (γ) . On the other hand, if the least favorable value of A, which 

means the worst case scenario for the jammer, is used, then the detection probability 

in (39) becomes the least favorable detection probability, 
lsDP (γ) . It should be noted 

that the least favorable value of A is also dependent on γ . In the numerical results, 

the background noise ε  is characterized by parameters 2N = , 1 2 0.5ξ ξ= = , 

1 -1µ = , 2 1µ = , and 
1 2 0.3σ σ= = , and jammer’s standard noise n is specified by 

2N =% , 1 0.1ξ =% , 2 0.9ξ =% , 1 2 0µ = µ =% % , 
1 3σ =% , and 

2 1 3σ =%  (see (36)). Jammer 

standard noise is modeled as a random variable with a zero mean and unit variance, 

which has heavier tails than Gaussian random variable with the same variance and 

the zero-mean. In the simulations, 0.5ρ =  and 0.001α =  are employed. In addition, 

it is assumed that based on the previous experience, A is estimated as 5 , and it is also 

observed that 6A ≤ . In this scenario, the least favorable value of A is 6  for all 

values of γ ; thus, the estimated and the least favorable PDFs of the signal are 

obtained by replacing A with 5 and 6 in (35), respectively. 

 

κ  
1λ  2λ  1γ  2γ  3γ  

0.4612 0.4549 0.1465 0.6613 0.8420 0.7034 

0.4882 0.5147 0.1043 0.6754 0.7173 0.7452 

0.5081 0.3853 0.1126 0.7313 0.5622 0.7173 

0.5288 0.2344 0.7481 0.5821 0.7494 0.1664 

 

Table 2.1: PDFs for the optimum power allocation policy, where β  = 0.5, 

OPT

1 1 2 2 1 2 3( ) λ δ( ) λ δ( ) (1 λ λ )δ( )γ γ = γ − γ + γ − γ + − − γ − γp . 

 

 In Figure 2.1, the “expected” average detection probability is plotted against 

the least favorable average detection probability for β = 0.5 . In the Figure 2.1, the 

end points correspond to the classical approach (no uncertainty assumption) and the 

minimax approach (full uncertainty assumption), and the interior part of the curve 
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corresponds to the proposed approach based on the restricted Bayes approach for 

different values of κ . In the Figure 2.1, the tradeoff between the “expected” and the 

least favorable average detection probabilities is clearly observed. In the Table 2.1, 

the PDFs of the optimal power allocation policy are presented for different values of 

κ , where β = 0.5 . As observed from the Table 2.1, the optimal strategy involves 

randomization among up to three different power levels as stated in the first section 

of Chapter 2. 

 

 

Figure 2.2: Plots of F′′(β ) and G′′(β ) in Proposition 3. 

 

 Figure 2.2 presents the plots of   F ( )′′ β  and  G ( )′′ β  to investigate 

Proposition 3. Based on the sufficient conditions in Proposition 3, it is concluded that 

power randomization is guaranteed to improve the jamming performance over the 

deterministic approach for 0.1586β < . 

 Based on the sufficient conditions in Proposition 4, it is obtained from the 

numerical calculations that power randomization cannot be the solution of the 

optimization problem in (32) for 0.228 0.248≤ β ≤  and 0.571β ≥ . It should be 

noted that 
lsDP ( )κ = β  is employed in the implementation of Propositions 3 and 4. 
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CHAPTER 3 

 

CONCLUSIONS 

 

 

In Section 3.1, concluding remarks and future works are presented.  

 

3.1 CONCLUDING REMARKS AND FUTURE WORKS 

 

 In this thesis, firstly, the effects of replacing deterministic thresholds of local 

sensors and the fusion center by random ones have been investigated according to the 

restricted Bayes criterion. It has been shown that the optimal random thresholds are 

dependent on each other, and contain at most two point masses. Two methods for the 

implementation of the optimal random thresholds are proposed. A necessary and 

sufficient condition has been presented to determine when employing the optimal 

random thresholds outperforms employing the optimal deterministic ones. Through 

simulations, the effectiveness of the using the optimal random thresholds in place of 

the optimal deterministic ones has been observed. Employing the absolute worst-case 

error probability as a performance metric in place of the average worst-case error 

probability as a more conservative approach will be investigated as future work. 

Considering the fact that implementing independent randomized rules is much less 

costly than implementing dependent randomized ones, optimization of independent 

random thresholds instead of dependent ones can also be investigated as future study. 

Effects of adding correlated noises to observations at local sensors can be 

investigated as another future work. 

Secondly, for an average power constrained jammer, the optimal jamming 

strategy is obtained. A Neyman-Pearson (NP) framework is considered, and the 

Hodges-Lehmann rule is employed in order to handle the uncertainty caused by 

partial information. The “expected” detection probability of a smart receiver is made 
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as minimum as possible while keeping the least favorable detection probability of the 

receiver below a threshold level. It is obtained that the optimal policy for an average 

power constrained jammer is to allocate its power among at most three different 

levels in the presence of partial information. Sufficient conditions are obtained to 

determine scenarios in which power randomization can or cannot provide 

improvements over the deterministic (i.e., fixed power) jamming approach. Finally, 

Simulations are performed in order to investigate the theoretical findings. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 

 

 

 

REFERENCES 

 

[1] Tenney, R.R., Sandell, N.R.(1981). Detection with distributed sensors. IEEE 

Transactions on Aerospace and Electronic Systems, 17, 501-510. doi:  

10.1109/TAES.1981.309178 

[2] Chamberland, J.F., Veeravalli, V.V.(2003). Decentralized detection in sensor 

networks. IEEE Transactions on Signal Processing, 51, 407 – 416. doi: 

10.1109/TSP.2002.806982 

[3] Duman, T.M., Salehi, M.(1998). Decentralized detection over multiple-access 

channels. IEEE Transactions on Aerospace and Electronic Systems, 34, 469-476. 

doi: 10.1109/7.670328 

[4] Jin-Jun, X., Zhi-Quan, L.(2005). Universal decentralized detection in a bandwidth-

constrained sensor network. IEEE Transactions on Signal Processing, 53, 2617-

2624. doi: 10.1109/TSP.2005.850334 

[5] Rago, C., Willett, P., Bar-Shalom, Y.(1996). Censoring sensors: A low-

communication-rate scheme for distributed detection. IEEE Transactions on 

Aerospace and Electronic Systems, 32, 554-568. doi: 10.1109/7.489500 

[6] Appadwedula, S., Veeravalli, V.V., Jones, D.L.(2008). Decentralized Detection With 

Censoring Sensors. IEEE Transactions on Signal Processing, 56, 1362-1373. doi: 

10.1109/TSP.2007.909355 

[7] Wimalajeewa, T., & Varshney, P. K. (2013). Collaborative human decision making 

with random local thresholds. IEEE Transactions on Signal Processing, 61, 2975–

2989. doi: 10.1109/TSP.2013.2255043 

[8] Papastavrou, J., & Athans, M. (1995). The team roc curve in a binary hypothesis 

testing environment. IEEE Transactions on Aerospace and Electronic Systems, 31, 

96–105. doi: 10.1109/7.366296 

[9] Hodges, J. L., Lehmann, Jr. & E. L. (1952). The use of previous experience in 

reaching statistical decisions. The Annals of Mathematical Statistics, 23, 396–407. 

doi: 10.1214/aoms/1177729384 

[10] Lehmann, E. L. (1986). Testing Statistical Hypotheses (2nd ed.). New York, NY: 

Chapman & Hall. 

[11] Azizoglu, M. (1996). Convexity properties in binary detection problems. IEEE 

Transactions on Information Theory, 42, 1316–1321. doi: 10.1109/18.508867 

[12] Loyka, S., Kostina, V., Gagnon, F. (2010). Error rates of the maximumlikelihood 

detector for arbitrary constellations: Convex/concave behavior and applications. 

IEEE Transactions on Information Theory, 56, 1948-1960. doi: 

10.1109/TIT.2010.2040965 

[13] Bayram, S., Vanli, N.D., Dulek, B., Sezer, I., Gezici, S. (2012). Optimum power 

allocation for average power constrained jammers in the presence of non-gaussian 

noise. IEEE Communications Letters, 16, 1153 –1156. doi: 

10.1109/LCOMM.2012.052112.120098 



34 

 

[14] Weiss, M., Schwartz, S.C.(1985). On optimal minimax jamming and detection of 

radar signals. IEEE Transactions on Aerospace and Electronic Systems, AES-21, 

385–393. doi: 10.1109/TAES.1985.310569 

[15] Zetterberg, L.H.(1962). Signal detection under noise interference in a game situation. 

IRE Transactions on Information Theory, 8, 47–52. doi: 10.1109/TIT.1962.1057773 

[16] Viswanathan, R., & Varshney, P. K.(1997). Distributed detection with multiple 

sensors I. fundamentals. Proceedings of the IEEE, 85, 54–63. doi: 10.1109/5.554208 

[17] Bayram, S., & Gezici, S. (2011). On the restricted neyman-pearson approach for 

composite hypothesis-testing in presence of prior distribution uncertainty. IEEE 

Transactions on Signal Processing, 59, 5056–5065. doi: 10.1109/TSP.2011.2153846 

[18] Bayram, S., Gezici, S.(2012). Stochastic resonance in binary composite hypothesis-

testing problems in the Neyman-Pearson framework. Digital Signal Processing, 22, 

391 – 406. doi: 10.1016/j.dsp.2012.02.003 

[19] Poor, H.V.(1994). An Introduction to Signal Detection and Estimation (2nd ed.).New 

York, NY, USA: Springer-Verlag. 

[20] Bertsekas, D.P., Nedic, A., Ozdaglar, A.E.(2003). Convex Analysis and 

Optimization. Boston, MA: Athena Specific. 

[21] Bayram, S., Gezici, S., Poor, H.V.(2010). Noise enhanced hypothesis testing in the 

restricted Bayesian framework. IEEE Transactions on Signal Processing, 58, 3972–

3989. doi: 10.1109/TSP.2010.2048107 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


