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OPTIMIZATION OF THE SUSTAINABILITY OF CONTINGENCY 

LOGISTICS NETWORKS: APPLICATION OF A HYBRID HEURISTIC & 

A MULTI-OBJECTIVE OPTIMIZATION APPROACHES 

ABSTRACT 

Contingencies are unexpected crises or events that cause a major threat to the 

safety, security and well-being of a certain population. This research effort builds 

upon the work on contingency logistics reliability models by Miman (2008) who 

extended the preliminary work conducted by Thomas (2004) that provides the 

modeling approach which takes a mission success orientation and focuses on the 

ability to recover from or prevent a contingency logistics failure. Miman (2008) 

proposes the sustainability model of a contingency logistics network using the 

concept of selective maintenance.   This problem, once formulated, is a non-convex, 

non-linear, non-separable, multi-dimensional, discrete knapsack problem.  These 

problems are known to be NP hard. Therefore, one needs to explore heuristic 

solutions in search of robust and effective solution approaches. He developed a 

memetic algorithm, GAFTS, and proposed this for identifying the best set of 

maintenance actions to sustain the contingency logistics network. Besides, he used 

Physical Programming, a multi criteria optimization procedure, to exploit a network 

manager’s preference toward the numerous criteria (reliability, cost, time, resource 

utilization etc...) judiciously. 

 This research effort continues the exploration of heuristic techniques for the 

sustainability model developed by Miman (2008) and develops a hybrid heuristics 

technique, EDGASA, incooperating simulating annealing (SA) procedure with 

genetic algorithm (GA). Comparisons of EDGASA with GA and SA reveal that it 

outperforms in terms of average reliability, best reliability and worst reliability found 

at an expense of increased solution time.   

One of the contributions of this study is a multi-objective modeling approach 

developed based on utopia distance that aims at minimizing the weighted distance 

between a solution to the ideal point that could be achieved. The study fills some of 

the voids in the contingency logistics networks’ solution and modeling and highlights 

potential studies by applying the hybrid heuristic developed as well as multi-

objective modeling approach proposed to other problems.  
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BEKLENMEDİK DURUMLAR LOJİSTİK AĞLARININ 

SÜRDÜRÜLEBİLİRLİĞİNİN ENİYİLENMESİ: BİR HİBRİT SEZGİSEL 

YÖNTEMİN VE ÇOK AMAÇLI ENİYİLEME YAKLAŞIMININ 

UYGULANMASI 

ÖZET 

Beklenmedik durumlar, belirli bir halkın güvenlik ve zenginliğine büyük bir 

tehdit oluşturan beklenmedik kriz veya olaylardır. Bu çalışma, Thomas (2004)’ın 

gerçekleştirdiği ve beklenmedik durumlar lojistiğinin başarısızlığından kurtulma 

veya istenmeyen durumları önleme için görev başarısı mantığına dayalı öncü 

çalışmayı geliştiren Miman (2008)’in sağladığı beklenmedik durumlar lojistiği 

sürdürülebilirliği modelleri üzerine kurulmuş çalışmayı geliştiren bir araştırma 

çabasının ürünüdür. Miman (2008) seçici bakım kavramını kullanarak bir 

beklenmedik durumlar lojistik ağı için sürdürülebilirlik modeli önermektedir. Bu 

problem, formüle edildikten sonra, konveks olmayan, doğrusal olmayan, 

ayrılamayan, çok boyutlu, ayrık, bir knapsack problemidir. Bu tür problemler çözüm 

süresi açısından polinomsal olmayan (NP-zor) bilinmektedir.  Bundan dolayı esnek 

ve verimli çözüm yaklaşımlarında sezgisel çözümlerin araştırılmasına ihtiyaç vardır. 

Miman (2008) bir memetik algoritma (GAFTS) geliştirmiş ve beklenmedik durumlar 

lojistik ağını sürdürmede en iyi bakım faaliyetlerin kümesini belirlemek için bu 

algoritmayı önermiştir. Bundan başka, ağın yöneticisinin çok çeşitli kriterler için 

tercihlerini (güvenilirlik, maliyet, zaman, kaynak kullanım verimliliği… vb.) açıkça 

değerlendirmek üzere, birçokamaçlı eniyileme tekniği olan fiziksel programlamayı 

kullanmıştır.  

 Bu araştırma çabası Miman (2008) tarafından geliştirilen sürdürülebilirlik 

modeli için sezgisel yöntemlerin araştırılması ve keşfedilmesini devam ettirmekte 

olup benzetilmiş tavlama (SA)’yı genetik algoritma (GA) içinde kullanarak bir hibrit 

sezgisel yöntem (EDGASA) geliştirmektedir. EDGASA’nın GA ve SA ile 

karşılaştırmaları; onun artan çözüm süresi karşılığıyla; bulunan ortalama, en iyi ve en 

kötü güvenirliliklerde diğerlerinden daha iyi performansa sahip olduğunu 

göstermektedir.  

 Bu çalışmanın başka bir katkısı, bir çözümün başarılabilecek ideal noktaya 

uzaklığını en aza indirmeyi amaçlayan ütopya uzaklık mantığına dayalı geliştirilen 

birçok amaçlı modelleme yaklaşımıdır. Bu çalışma beklenmedik durumlar lojistik 

ağının çözümünde ve modellenmesinde bazı boşlukları doldurmakta ve önerilen çok 

amaçlı modelleme yaklaşımının yanında geliştirilen hibrit sezgisel algoritmanın diğer 

problemlere uygulanabileceğini vurgulayarak potansiyel araştırmalara ışık 

tutmaktadır.  
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1 
Introduction and Overview 

Contingencies are unexpected events or crisis that cause a major threat to the 

safety, security and well-being of specific populations. There are variety of situations 

such as terrorist attacks, military conflicts or natural disasters that can be regarded as 

a contingency. In the literature there are considerable number of studies that considers 

the typical logistics systems and supply chain networks, yet, there are limited ones that 

deals with the contingency logistics networks, especially the reliability of the network. 

Thomas (2004) explicitly considers the reliability of contingency logistics systems 

from the perspective of mission success where the missions assigned to the network in 

the contingency to recover can be achieved in terms of demand and supply 

interference. He proposes formulas for the base reliability based on the interference 

between demand and supply such that the reliability of the base is computed by the 

probability that the demand is less than the supply. He also proposes maximum entropy 

distributions to derive the base’s reliability in case of limited data on the demand and 

supply distributions. A considerable jump on the literature in reliability of contingency 

logistics networks (CLNs) was taken by Miman (2008). He considers stocks to be held 

by base due to uncertainties on the demand and supply for contingency operations. 

Further, he proposes a sustainability model for the reliability of contingency logistics 

networks through multi-action selective maintenance on the links between the central 

depot and operational bases. The resulting sustainability model is a non-linear, non-

separable, non-convex model, thus he proposes a set of metaheuristics, MULRR 

(Multi-level ruin and rebuild algorithm) and GAFTS (Genetic Algorithm fed by Tabu 
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Search) in addition to traditional methods of TS (Tabu Search) and GA (Genetic 

Algorithm) as a potential solution approaches to the model to identify the best set of 

maintenance actions to maximize the network’s reliability under the available budget 

and time limits for performing those actions. He concludes that the memetic algorithm 

he developed, GAFTS, outperforms the others in consideration along with an increased 

solution time. One of the contributions in contingency logistics network modeling 

provided by Miman (2008) is the application of PP as a multi-objective application 

technique to the sustainability model to exploit the decision makers preference  on 

each of the objectives (reliability, cost and time) through the desirability levels set by 

the decision maker. 

1.1. Problem Statement and Research Objectives 

As the main milestones for the literature on the contingency logistics networks 

and their reliability was mentioned above, this study on focus the investigation of 

robust and effective solution approaches for the model provided by Miman (2008) and 

multi-objective modeling approaches for the sustainability of the CLNs.  

The research statements for this study can be expressed as: 

 How well other traditional metaheuristics, namely SA (simulated 

annealing) and GA performs on the solution to the model? 

 Can a hybrid heuristic based on SA and GA improve the solution quality? 

 Is it possible to model the sustainability of CLN through a multi-objective 

optimization techniques?  

According to above research statements, this study aims at investigating the 

SA and GA, developing a hybrid heuristic, EDGASA based on GA and SA in search 

of robust and effective solution approaches to the sustainability model provided by 

Miman (2008). Another purpose of this study is to propose a multi-objective 

optimization model for the sustainability of the CLNs based on utopia distance. All of 

the above efforts eventually provided greater insights for the CLN planners in terms 

of modeling and solution approaches.  
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1.2. Research Motivation 

Today’s world, the probability of occurrence of a contingency event and/or the 

consequences of possible contingencies is not negligible, therefore it has a vital 

responsibility to get prepared for contingencies. One of the steps of it is to have a CLN 

design and plan to increase the probability of the network to recover from the 

contingency, i.e. reliability through the ability to perform the assigned missions. The 

sustainability model proposed by Miman (2008) identifies the best set of maintenance 

actions under limited budget and time to perform the actions to maximize the reliability 

of the CLN. In doing this, solution’s approach performances in quality and time of the 

solution has a significant role as in real life the problem size is likely to be large in 

addition to the model’s inherent non-linear- non-separable and  non-convex structure. 

Therefore, the investigation of solution approaches in search of robustness and 

effectiveness is very important. Along with the maximization of reliability of the 

network through selective maintenance, the minimization of cost of maintenance and 

time to perform maintenance activities can also play a significant role in planning a 

CLN. Hence, the investigation of multi-objective optimization techniques in the 

context of contingency logistics networks has also considerable level of importance as 

well.  

1.3. Coverage, Limitations and Assumptions 

This study focuses on the sustainability model proposed by Miman (2008). 

Although this model is a two-dimensional knapsack model, without loss of generality, 

the solution approaches investigated by this study is applicable to knapsack models 

with any dimensions. The model assumes that each link in the CLN has a Weibull life 

distribution. There is a single link between a central depot and each of the operational 

bases. The lateral shipments among bases are not allowed, hence, no link exists among 

bases. Each of operational bases supports unique single operation of the assigned 

mission. There are two main constraints to perform maintenance activities; available 

time and budget.  
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1.4. Thesis Overview   

To achieve the research goals highlighted above the thesis is arranged as 

follows: The second chapter of the thesis provides a detailed literature on the 

contingency logistics networks, solution approaches and multi-objective optimization 

techniques. In detail, the literature on the contingency logistics systems, supply chain 

and risk analysis for contingencies, relevant techniques for analysis of a CLN is 

exhaustively explored and provided. Chapter 3 constitutes the integral part of this 

study. It first gives the sustainability model in consideration and proposed by Miman 

(2008) in order to make the study self-standing. Next, it provides the details about the 

heuristic approaches namely GA, SA and a hybrid heuristic developed, EDGASA, in 

consideration as a solution approach to the sustainability model. Later, the 

performances of these algorithms are compared to each other based on an experimental 

design. Finally, a multi-objective optimization model of the sustainability of a CLN is 

proposed based on utopia distance approach. The study ends with conclusion and 

discussion part which highlights the results obtained through this research effort, 

contribution of this study to the literature and potential research directions the study 

can provide. 
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2 
Literature Review  

This chapter provides the results of exhaustive search on the literature related 

to the contingency logistics systems and optimization models that are used for them. 

In particular, it gives an investigation of the instruments and procedures that are 

appropriate for the analysis, optimization and evaluation of design plans for 

contingency systems. The first two parts (Section 2.1-2.2) give a general audit of 

contingency logistics systems and particularly inspect their flexibility in modeling 

interruptions and more pertinent literature as far as risks, especially those for failure to 

perform assigned missions to recover from the contingencies. Finally, relevant 

techniques including metaheuristics algorithms and multi-objective optimization 

approaches are provided as the optimization models in contingency logistics networks 

are more likely to be NP hard problems and there is a need for considering competing 

objectives at the same time. 

2.1. Contingency Logistics Systems 

A contingency is a randomly happening crisis, for example, a national 

catastrophe, civil disorder, or military invasion that causes a noteworthy threat to the 

safety and security of a population that requires a quick response where the 

development and maintenance of supply chains to give the logistics support capacities 

should be covered in the design and planning stages of the contingency logistics 

network (CLN). In the literature, one of the methods available for assessing the 

reliability of an operational base in a contingency logistics network bases on the 
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interference theory between the demand and supply for that base. From the perspective 

of mission success, the logistics network reliability is conceptualized as the likelihood 

of the network to perform the necessary operations required by the mission. This 

enforces the network to have mission necessities providing enough supplies to the 

bases that perform the operations (Thomas, 2004) or to perform the best set of selective 

maintenance actions on the links in the network (Miman, 2008). Both Thomas (2004) 

and Miman (2008) consider that the set of items required to perform operations in a 

given mission are supplied from a central distribution center (warehouse) to 

operational bases (sites) in the network to enable bases to be functioning in terms of 

equipment. Similarly, according to Miman (2008) a set of selective maintenance 

actions can be performed on the links in the network so that the network survives the 

mission. The functioning links transport equipment and materials required by bases, 

eventually the bases who have enough supplies (through interference theory) 

transported to them (through the links) can be regarded as functioning (reliable) for 

the contingency mission. 

Basically all means of ways in the CLN should be considered to provide the 

construction support for the mission as it is generally cumbersome and naturally 

difficult to satisfy the resources demanded and requests emerged by the tasks due to 

potential vulnerabilities with the accessibility of these resources and the requests for 

the tasks.  

Commonplace contingency missions are emerged to counter, hinder, or diffuse 

restricting strengths; save and aid victims; and restore open works foundation. There 

are set of basic requirements for sending work force, equipment, and supplies for 

conducting contingency operations to complete the mission in order to recover from 

the contingency.  

Logistics networks must be established for supply chains, replenishment, and 

distribution; medical treatment facilities; and shelter. In general, all contingency 

operations include considerable construction requirements for the construction, repair, 

and maintenance of facilities, roads, airfields, and utilities. Even in case of normal and 

ideal conditions managing these functions can be challenging. Uncertainties and 

urgency inherent in contingency operations make it more difficult to  the coordination 

of scheduling, tracking, and allocation of resources for accomplishing the mission.  
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Thomas (2008) presents a time dependent model for planning activities during 

sustainment operations. He assesses the mission reliability of a project using the 

probability of interference between a load measured in the number of days required to 

completion, and the capacity which is taken as the number of days available for 

accomplishing the construction mission based on the allotted resources. Although his 

statement was inspired by military cases, he claims that without loss of generality the 

models are valid for non-military cases as well.  

2.1.1. Contingency Construction 

All contingency operations incorporate some level of construction that is necessary 

for the accomplishment of the general mission. The amount and kind of support for 

this depends on the specific mission, such as military engagement with a hostile force, 

rescue and recovery operation or humanitarian relief operations (Thomas et al. (2002). 

They also describe the contingency operations in three district phases as: 

1. Mobilization and Deployment, 

2. Sustained Operations and 

3. Reconfiguration.  

According to Kiwus (1990) contingency construction can be categorized into 

three broad classes: temporary construction (utilization up to 3-6 months), 

expeditionary construction (utilization for a period of 6 months to 1 year) and 

permanent construction (not common in contingency operations).  

According to Kiwus (1990), the biggest challenge in managing contingency is 

tracking project performance and the effectiveness in supporting the mission 

requirements.  

2.1.2. Formulation and Analysis of Contingency Logistics Network Models 

A contingency logistics system (CLS) is defined by Thomas (2004) as “a set 

of processes and methods for providing the procurement, distribution, storage, and 

transportation of people, supplies, materials, and equipment for supporting 

contingency operations”. The fundamental characteristics of the contingencies are the 

uncertainty caused by the unexpected events and the significance of the reaction at the 
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prompt time. This implies the 3-R principle for contingency operations: providing right 

things, at the right place and at the right time.  In spite of the fact that a considerable 

number of studies have as of now, been directed in supply chain in terms of its financial 

profitability, few have concentrated on the reliability of the contingency logistics 

networks where guaranteeing mission achievement is much more critical than the 

expenses.  

Thomas (2004) appears to be the first one who explicitly considers the 

reliability of a contingency logistics system from the perspective of a defined mission 

where he characterizes a contingency as an unexpected crisis that generate a 

considerable threat to the wellbeing and security of a population. As he indicates, there 

is a variety of contingency circumstances ranged from military clashes that oblige 

engagement with hostile forces, police activities for civil disorders, to evacuate victims 

from catastrophes, such as earthquakes, hurricanes, tsunami and related disasters.  

Contingency events trigger a quick requirement for logistics support functions 

to sort out and activate individuals, equipment, materials and supplies for conducting 

contingency operations to recover from the contingency. The importance of 3R 

principle for contingency operations can be perceived through the contingency case of 

Hurricane Katrina in New Orleans in 2005, where the lack of complete reaction to it 

has been debated for a long time, which also has emphasized the importance of design 

and planning for contingency logistics networks. 

The logistics support functions for contingencies can be organized as a network 

of supply chain exercises for accepting, transporting, and circulating materials and 

equipment to guarantee "the right things are at the right place and at the right time." 

An integral part of contingencies are uncertainties and vulnerabilities they create. 

Thomas (2004) models a contingency system from the perspective of the 

reliability of a mission of interest. He considers a set of operational sites that oblige 

supplies from a central Distribution Center (DC) in support of the contingency 

operations. He models the life cycle and relative resource profile,  R t , for a 

contingency loading with three stages: deployment, sustainment, and reconfiguration 

as shown in Figure (2.1). 
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Figure 2.1. Resource Loading Profile for a CLS (Thomas, 2004).  

 

To focus the reliability of the CLS, Thomas (2004) regards each site as an 

operational node in the network that is expected to perform a set of operations for the 

mission to recover from the contingency.  He uses interference theory between demand 

and supply to assess the reliability of the site, which is assumed to hold no stocks. The 

network reliability is, then, computed according to the arrangement of sites in 

performing contingency operations, which can be characterized by a reliability 

structure function. 

Thomas (2004) investigated the objectives of the logistics networks models 

considered in past studies and pointed out that most of the models consider the cost of 

stock allocations, or profitability of networks and there was a void in the literature for 

a model that explicitly considers the mission success for contingency operations. In 

general, a network is consisting of a set of nodes and connections between nodes. He 

considers a specific instance of a CLN, where there is one central distribution center 

(DC) that supplies material to a set of bases, each of which is fed through a separate 

link from the DC. His model does not allow links between bases, hence the lateral 

shipments among bases are not possible. Thomas (2004) first provides the methods to 

assess the reliability of the nodes (sites, bases) in a CLN. He uses the interference 

theory between the demand of a base and the supply shipped to the base from the DC. 

The probability that the demand required by the base is less than amount supplied to 

the base is assessed as the reliability of the base. He derives set of formulas for the 

reliability of a base considering a set of probability distributions for the demand of the 

base, and the supply to the base. In case of limited data about demand and supply, he 
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suggests the use of maximum entropy principle to assess the reliability of the base. 

Eventually, he computes the network reliability based on the configuration of bases in 

the network.  

Thomas’s (2004) preliminary model was extended by Miman (2008) in a 

variety of ways that provides greater insights for contingency logistics networks 

planners. First of all, Miman (2008) allowed bases in a CLN to hold stocks before a 

contingency event occurs. This triggers the stock allocation problem in a CLN to 

maximize the network’s reliability, i.e. the probability of mission success to recover 

from the contingency in the network subject to available budget and stocks to be used 

for the allocation. He provides importance measure for a base in terms of the stock it 

holds for a series and parallel network structure and proposes the use of this importance 

measures based on the approach defined by Birnbaum (1969) in stock allocation model 

that can be described as a multi-dimensional knapsack problem. He demonstrates the 

use of importance measures for a small-size problem.  

Since numerous contingency networks have complex structures as well as there 

may not closed-from expression existing for the reliability of a base due to probability 

distributions used for the associated demand and supply, assessing the reliability of a 

site based on interference theory may not be possible or it can be cumbersome. For 

such cases, Miman (2008) also provides the guidelines of the use of Monte Carlo 

simulation to assess the node’s reliability. He demonstrates that the results of Monte 

Carlo simulation is matching those obtained from the interference theory for assessing 

base reliability as well as overall network reliability for the known cases, hence claims 

that Monte Carlo simulation is a promising approach to assess the network as well as 

node reliability for cases, especially when the demand and supply distributions do not 

allow closed form formulas to assess the base’s reliability and/or the network structure 

is too complex to be evaluated. Further, to cope with the uncertainties associated with 

demand and supply as well as the difficulties associated with the use of interference 

theory models, an approximation measure is introduced by Miman (2008) based on 

the mean value first order, second moment technique in modeling the risk of a logistics 

node. In addition, a decision maker’s tolerance for the risk associated with a node 

failure is incorporated through the use of distortion, whose basis constructed by 

McLeish and Reesor (2003), particularly dual power (DP) and proportional hazard 
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(PH) distortion functions that can be regarded as utility functions depending on the 

decision maker’s risk averseness to the specified probability of failure of a node. 

Distorted risks are basically considering risks higher than they actually are so that one 

can be more cautious for contingencies in designing the CLN.  

Apart from stock allocation models proposed by Miman (2008), a set of 

optimization model for the acquisition of appropriate risk mitigation systems to 

improve bases’ reliabilities, hence the probability of success in the CLN is also 

provided by Miman and Pohl (2008). In their approach to risk mitigation models for a 

CLN, they consider the risk mitigation systems where each has a certain effect on the 

risk of failure, i.e., the probability of being incapable of performing contingency 

operations properly and that acquisition the of each risk mitigation system decreased 

the risk of base’s failure by a specific proportion. The goal in their model is to decide 

what percent of each of the available risk mitigation systems is to be acquired with a 

given budget as there is a certain cost of acquisition of each risk mitigation system 

proportional to the amount of it acquired by the decision makers, probably CLN 

planners.  

Another contribution by Miman (2008) is the development of sustainability 

model for the CLN that considers the reliability of links explicitly in addition to the 

reliability of nodes. He considers the links existing between the central DC and each 

of the operational bases that are conceptualized as transportation means of supplies 

from the DC to the bases. The life time of each link is modeled through the Weibull 

life distributions and a multi-action selective maintenance model is embedded into the 

sustainability model. The objective of this model is to identify the best set of 

maintenance actions to be performed within the available budget and time. His model, 

whose details are provided in Section (3.1), constitutes the integral part of this thesis 

that investigates the optimization techniques for it as provided in Section (3.2) and 

evaluation of these algorithms as provided in Section (3.3).  

Miman and Pohl (2012) realized the need for considering the simultaneous 

optimizations of reliability of the CLN, cost of maintenance actions performed and 

total time required to perform maintenance actions for the sustainability model in 

identifying the best set of maintenance actions to perform on each of the links between 

the DC and each of the bases. In their multi-objective model, the reliability of the 
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network to be maximized, the total cost and total time for the maintenance actions to 

be minimized through the physical programming (PP) where decision makers set the 

desirability levels for each of the three objectives explicitly. They argue that this 

modeling approach can fit to the contingency environment as the inherent uncertainties 

related to contingencies can be treated through the desirability levels for each criteria 

to explicitly model where the decision maker wants to find/or does not want to find   

themselves in terms of these three objectives.  

2.1.3. Contingency Logistics Networks 

A contingency is any kind of disaster as explained in Section (2.1). Logistic 

networks involve warehouses, vehicles and every kind of transportation tools. When 

these are used for a possible contingency it is called a Contingency Logistics Network 

(CLN). In this study, CLN and CLS can be used interchangeably as it is done the 

Section (2.1.2).  This section provides the details of some of the previous studies 

conducted such as importance measures, distorted risks and so on to make 

conceptualization of this study more concrete.   

2.1.3.1. Importance Measures for CLN 

A representation of a supply chain network for a basic supply component, for 

example, ammo, is given in Figure (2.1) under the concept of CLN design based on 

Miman (2008).  
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Figure 2.2. Basic CLN with Stocks.   

 

In Figure (2.2), a supply component, for instance ammo, is circulating from a 

central distribution center that constitutes a higher echelon level, and provides control 

support for the ammo to n operational sites. In case of contingency event, specifically 

a terrorist attack, there is a mission of removing this threat which requires performing 

a set of operations by bases. Therefore, some amount of ammo is demanded by bases, 

which are uncertain in the design stage of the CLN. Similarly, during the contingency 

the amount that can be supplied from DC to each base is also uncertain.  

Thomas (2004) deals these uncertainties in demand and supply through 

probability distributions with enough data, and maximum entropy principle with 

limited data. The use of this principle enables him to maximize the reliability of the 

logistic network under chaotic circumstances and for the most pessimistic scenario. 

Miman (2008) allows bases to hold "safety" stock. That is, operational sites are 

provided with a few materials before a real crisis happens. In fact, during the 

contingencies characterized by uncertainties, it is easy to have materials allocated 

before the contingency rather than to ship them from a DC to the base at the time of 

contingency.  
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The risk associated with the node i of the network, which is assigned to perform 

a set of operations, is modeled by utilizing the interference theory where the risk, i ,  

     i i iPr S D   ,  for the node i is defined as the probability that the node i has 

lack of supplies i.e.,   i iS D . By conditioning on iD , then the probability of failure 

of site i  is obtained as it is in Equation (2.1).   

  

r

( ) ( ) for discrete ( , )

P { }
( ) ( ) for continuous ( , )

i i i i

y

i i i

i i i i
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

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





  (2.1) 

 

The importance measure for site i , regarding the parameter ip , can be 

characterized utilizing Birnbaum's (1969) methodology where the first order derivative 

is utilized:  

 

i

i

R

p






     (2.2) 

 

As i shows the impact of a unit difference in the failure parameter for site i , 

ip  on the reliability of the supply chain, R . This is a measure of the sensitivity of the 

whole system to differences in the parameter ip . Note that, Miman (2008) provides 

importance measures for site i in terms of mean demand, mean, supply and stock hold 

at that site.   

2.1.3.2. Distorted Risks in a CLN  

The consequences of a disaster in a contingency are considerably more severe 

than those of ordinary everyday events. Therefore risks related to contingencies cannot 

be ignored. Miman and Pohl (2008) handles this by applying the distortion functions 

to the risk of failure of each node in the network designed to perform missions to 
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recover from the contingency. This enables the CLN planners to reflect decision 

makers’ attitudes towards the risk of failure similar to utility functions.  

The most general form of distortion functions is gamma-beta (GB) distortion 

as provided by Offut et al., (2006) in Equation (2.3). GB distortion family, by setting 

its parameters, provides specific distortions such as proportional hazard (PH) and dual 

power (DP) in Equation (2.4) and Equation (2.5) respectively.   
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b
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Miman and Pohl (2008) applies PH and DP distortions to the risk of failure of 

node i in the CLN, and consequently gets distorted risks as in Equation (2.6) to reflect 

the decision maker’s risk tolerance. It is noteworthy that a distorted risk is higher than 

the actual probability of failure, as the perceived risks can be higher for a risk-averse 

decision maker.  The use of distortion to the risks in the CLN, introduced by Miman 

and Pohl (2008), provides a greater flexibility to plan the CLN.  
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The illustration of application of distortion is presented in Figure (2.3). 

 

 

 

Figure 2.3.  Distorted Link’s Effect on the System (Miman, 2008). 

 

Figure (2.3B) represents the linear relationship between the system's risk and 

the risk of component 5 for the network structure demonstrated in Figure (2.3A). In 

the event that the component is more vital for the logistics network planner, or the 

vulnerabilities on that component are not evaluated as completely as could be allowed, 

the distortion can be utilized to reflect the CLN planner's attitude towards the risk of 

failure of that component.  

When a PH distortion is applied, as it is in Figure (2.3C), as the distortion 

parameter a decreases, the perceived risk increases.  Miman and Pohl (2012) provide 

how the values of distortion parameters can be set according to decision-maker’s 

attitude towards risks as follows: 
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For as risk-neutral decision maker:   1;    1a b   

For a risk-seeking decision maker:   1a  ;       1b    

For a risk-averse decision maker:   1;   1a b   

They indicate that the selection of distortion parameters for a risk of failure of a base  

depends on;  

 Criticality, usefulness of the node;  

 Level of uncertainties associated with supply and demand  

 Decision maker’s attitudes towards risk 

2.1.3.2.1. Distorted Risk Measures (Series and Parallel)  

Miman and Pohl (2008) provide importance measures for the distorted risks, 

as ordinary importance measures may be misleading for low-probability events that 

have severe consequences depending on the network structures where sites are 

arranged either in series (Equations (2.7)-(2.8)) or in parallel (Equations (2.9)-(2.10)): 

Series are; 

   1
* max , 1,2,..., * max ρ , 1,2,...,

1 ρ
i

i

aPH i
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i
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Parallels are; 
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2.1.3.2.2. Risk Displacement Factor 

Risk displacement factor associated with a distortion is computed through 

Equation (2.11) and Miman and Pohl (2008) provides the risk and risk displacement 

factors associated with proportional hazard and dual power distortions applied to risks 

emerged from a variety of probability distributions for demand and supply as tabulated 

in Table (2.1).  

{ 0 : ( ) 0.5}

{ 0 : ( ) 0.5}
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x h x
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x h x
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Table 2.1. Displacement Factors through Distortion (Miman and Pohl, 2008). 
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Figure 2.4. Risk Surface under Distortion (Miman, 2008). 

 

Miman (2008) further introduce a new metric, called as natural vulnerability, 

which is defined as the risk of not accomplishing assigned operations by a node that 

has only security stock allowed to hold and the extra supply in case of contingency 

cannot be provided that node. This can be also interpreted through the previous 

definition of the risk of failure of the node where supply is set to zero.   
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Table 2.2. Displacement Factors for Natural Vulnerability (Miman, 2008). 
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Figure 2.5. Illustration of Replacement through Distortion (Miman, 2008). 

 

2.2. Supply Chain and Risk Analysis for Contingencies    

There have been several studies for the general emergency situations and 

studies that address the risk and uncertainty assessment in contingency networks in 

addition to the cost benefit analysis and one-for-one replenishment of spare parts in 

the emergency operations (Miman, 2008). For instance, Gupta and Bhattacharjee 

(2012) give more prominent experiences on adaptable logistics networks where the 

qualitative risk assessment of the supply chains is considered, hence, that can be 

connected with contingency operations. 

Parlar (1997) considered a stochastic inventory model in which the supply 

available is subject to randomness that may result from machine breakdowns, strikes, 

embargoes, and so on.  Their model assumes that the inventory managers deals with 

two suppliers who are either individually ON (available) or OFF (unavailable) where 

each supplier’s availability is modeled as a semi-Markov (alternating renewal) 

process.  

Archibald et al.  (1997) considered transshipments for contingency cases using 

the general inventory methodology. Specifically, they considered a multi-period and 
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periodic review model of two location inventory systems in which emergency 

transshipments can occur in case of stock outs.   

The contingency oriented administration is a powerful view of arranging, 

sorting out, and controlling that is customary to the settings and specific circumstances 

confronted by the organization (Wren, 1994). For this, there would not be a "one-best 

path" to oversee. However, there are a few promoters of the "best practice" approach 

(Lee and Siau, 2001).  

The contingency approach connected to supply chain administration would 

accept that there is no general response to accomplish as relevant elements and 

circumstances change and they change over the long run. That is, discovering or 

keeping up the best procedure is troublesome in today’s quickly changing business 

environment. As indicated by Chow et al.  (1995), lack of the one-best path way to 

deal with disruptions in a supply chain shows that alternatives, such as the contingency 

theory connected to supply chain administration could end up being more helpful case 

for investigation (Bowersox et al., 1999 and Bowersox and LaHowchic, 2008).  

One considerable and exceedingly noticeable commitment to deal with supply 

chain administration from the perspective of contingencies originates from Fisher 

(1997). Fisher argues that the supply chain structure and administration has to be 

anticipated for the types of products being produced and delivered through them. He 

categorizes the products as functional or innovative.  Commoditized products that 

normally satisfy basic needs such as staples can be given as an example of functional 

products. The main characteristics of functional product are not changing much over 

time, having lower profit margins, longer life cycles and low forecast uncertainty. 

Innovative products possess just opposite characteristics having frequent product 

launches and higher profit margins, shorter life cycles and less predictable demand. 

Electronics products such as cell phones provide good examples for such innovative 

items (Lee et al., 2007).  

The recent researches are generally based upon the pioneer models by Gross 

(1963) which determine the optimal redistribution and replenishment policies for a two 

store inventory system. Later, Krishan and Rao (1965) determine the optimal stock 

levels which minimize the one period inventory costs and transportation costs with 

emergency transshipments. 
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2.3. Relevant Techniques for Analysis of a CLN 

This section provides a set of techniques, including analytical approaches, 

simulation approaches, importance measures, optimization as a knapsack problem, 

multi-objective optimization, heuristic optimizations in analysis and modeling of 

contingency logistics networks. 

2.3.1. Analytical Approaches to CLN Design  

Kukreja and Schmidt (2005) analyze a model for lumpy demand parts in a 

multi-location inventory system with transshipment by using analytical and simulation 

techniques. They provide results for the mean and variance of the lead-time demand 

at various locations analytically and then use simulation methodology to determine 

inventory control policies for such a system Wong et al., 2006 propose an integer-

programming problem with a nonlinear objective function and non-linear constraints 

for multi-item multi-location spare parts systems with lateral transshipment and 

waiting time constraints. They conclude that among the four different heuristics they 

developed, greedy-type heuristic has the best performance in terms of their total costs 

and computation times.  

In general, it can be said that the analytical approaches handle costs and times 

for the logistics operations. Mathematical models and Markov process are some of the 

methods that can be encountered in the literature. Confronted with randomness and 

uncertainties by the decision-maker, fuzzy logic can appear as a promising way in 

decision making (Bevilacqua et al., 2006). Fuzzy theory, a theory to act in situations 

of uncertainty provides important tools for decision makers based on probability 

theory (Analytis et al., 2014), can be considered in case of contingency.   

2.3.2. Simulation Approach to CLN Design 

In general, multi-echelon supply chain problems involves with high level of 

complexity, that makes analytical approaches impossible or cumbersome to be applied. 

This triggers the need for simulation techniques to put more realism to the models.  

Needham and Evers (1998) investigate the interaction of relevant costs and 

transshipment policies via simulation study and present a method for determining a 
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threshold value at which the benefits of transshipments outweigh their costs. They also 

propose a meta-model to provide greater insights into cases where emergency 

transshipments should be employed. Their solution procedures based on infinitesimal 

perturbation analysis (IPA), is claimed to be an efficient simulation-based optimization 

technique (Ho. et al., 1979).  

2.3.3. Importance Measures and Sensitivity Analysis  

In the literature there is a variety of sensitivity analysis techniques based on the 

first order differential analysis developed by Birnbaum (2000), Lambert et al., (1998) 

and variations of these techniques, available for analyzing the reliability of a system. 

Some of the other techniques provide rank improvement actions (Xie and Shen, 1989) 

and an importance measure for the reliability of a k-out-of n system (Barlow and 

Proschan, 1975).  

Variance decomposition methods that partition the variance of the systems 

reliability estimate among the affects due to variance of the components-reliability 

estimate are other techniques used in the literature to identify which component 

contributes most to the variance of the system reliability estimate, hence needs 

improvement.  Coit and Smith (1996b) uses these methods for systems of mutually 

independent components arranged either in series or parallel. Further, Coit and Smith 

(1996a) also analyze redundancy allocation problem through Genetic Algorithm as 

well. In a similar way, Coit and Jin (2001) provide a ranking methodology to prioritize 

testing so as to minimize the system variance.  

Miman (2008) indicates that the maintenance of transportation links along with 

the operational nodes can affect the reliability and availability of the logistic network. 

Cassady et al. (2004) develop an importance measure for the availability estimate of a 

two state (functioning and failed) repairable system whose components have 

exponential failure and repair distributions. Miman and Pohl (2006) provide an 

assessment technique which utilizes the delta-method to provide an estimate of the 

variance for the system’s availability, consequently, they construct a variance 

importance measure so that one can have an improvement in the variance of the system 

level availability estimate through the reduction of the variance of the component 

availability estimates using this importance measure.  In addition, they developed a 
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cost model that trades-off cost and uncertainty. They conclude that the variance 

importance measure provides results that are consistent with reliability importance 

measures developed by Coit and Jin (2001).  

Simulation is another technique for the sensitivity analysis of a system. For 

instance, Snyder and Shen (2006) used simulation to investigate the differences 

between demand and supply uncertainty in multi-echelon supply chains. They 

concluded that the two types of uncertainty are mirror images of each other. That is 

the optimal strategy for dealing with supply uncertainty and may be just the opposite 

for the strategy used to cope with demand uncertainty. Brauers and Zavadskas (2010) 

considered a simple multi-echelon supply chain, first under demand uncertainty and 

then under supply uncertainty in the form of disruptions in search of best order 

frequency, inventory placement, or supply chain structure.  

2.3.4. Optimization-through Knapsack Approach and Multi-Objective Analysis 

Techniques 

Miman (2008) indicates that the stock allocation along with the selective 

maintenance problem requires an investigation of appropriate optimization approaches 

used for resource allocation problems. In many industrial and military agencies, one 

of the major cost component is money that is being spent on equipment maintenance 

activities. Cassady and Nachlas (1998) indicated that productivity can be increased up 

to thirty percent by implementing better maintenance policies.  

Cassady et al.  (2001) define the selective maintenance problem as “the process 

of identifying a set of maintenance actions to be performed from a set of potential 

maintenance actions, given a set of limited resources”. In general, this problem can 

arise for a system that performs a sequence of missions with a certain amount of 

resources (time, budget, etc.) allocated for maintenance between successive missions. 

Robertson and Ulrich (1998) classify these maintenance activities as either corrective 

maintenance (CM) that   refers to restoring failed equipment to a functioning condition 

or preventive maintenance (PM) that refers to performing maintenance on functioning 

equipment for the purpose of delaying future failures.  

A list of all potential corrective and preventive maintenance actions is prepared 

at the end of each mission, and after which, system managers should identify the best 
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set of actions that are particularly desirable due to the limited resources that do not 

allow actions to be performed practically. There are various studies in the literature 

that consider selective maintenance problem. Rice et al. (1998) developed a 

mathematical programming model, whose objective is to maximize the system 

reliability for a single mission, with maintenance time and maintenance cost as 

constraints, and use total enumeration to find an exact solution to the basic selective 

maintenance problem for a single mission.  

Cassady et al. (2001) extend the preliminary selective maintenance problem to 

permit any system structure considering reliability, maintenance cost and maintenance 

time. They provide two new extensions by introducing time-dependent failure rates 

for components and multiple maintenance options for which life time of the 

components are characterized by Weibull probability distributions. They consider 

three different type of maintenance options – minimal CM, perfect PM and replacing 

failed components –in their models.  

 Cassady and Pohl (2002) provide two extensions to the basic selective 

maintenance model by Rice et al. (1998) by introducing the acquisition of extra 

maintenance time at some cost during the break period and setting the optimum 

maintenance time between breaks for a new system where the objective is to identify 

this extra time with a minimal cost.  The second extension they provide is the use of 

Monte Carlo simulation to determine the optimum time allocated between the breaks. 

 Pohl et al. (2005) model the selective maintenance problem by expanding upon 

earlier models such that there is an opportunity for a decision maker to replace a 

component with an upgraded component. In their model, one has the option of 

replacing with current technology vs. the original technology during maintenance. 

The original selective maintenance problem of Rice et al. (1998) is modeled as 

a non-separable, non-linear knapsack problem with discrete decision variables. This 

class of knapsack problems presents a tremendous challenge with respect to 

identifying optimal solutions even when the decision variables are continuous 

(Bretthauer and Shetty, 2002). This is the reason explained by Rice et al. (1998) why 

they use total enumeration algorithm to solve the selective maintenance problem they 

formulated.  
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As the total enumeration strategy is not practical for reasonably sized problems, 

in the literature there are a variety of studies that explore approaches to address this 

issue. For example, Mathur et al. (1986) consider a general non-linear knapsack 

problem with a concave objective function and a single convex constraint and suggest 

the use of an implicit enumeration technique as a solution procedure. Kodialam and 

Luss (1998) deal with a simple resource allocation problem with a single resource 

constraint where the objective as well as resource usage functions are separable and 

convex. Ohtagaki et al. (2000) propose a heuristic approached, namely Smart Greedy, 

to solve a multi-dimensional nonlinear knapsack class of reliability optimization 

problems. Kevin and Sancho (2001) suggest the use of a hybrid ‘dynamic 

programming/depth-first search’ algorithm to solve non-linear programming problems 

resulted from redundancy allocation in reliability optimization. Overall, all of these 

approaches that can be employed to optimize the CLN design can be categorized into 

three groups: heuristics, approximations and exact methods for which Miman (2008) 

provide an extensive literature review as described in the remaining of this section. 

 As explained by Miman (2008), heuristics are intuitive methods to find a local 

or a near optimal solution (approximate optimal solution) by gradually improving an 

incumbent solution. Steepest ascent methods using sensitivity factors, boundary region 

search, increasing redundancy on minimal path sets, and metaheuristics can be listed 

in this category. The main characteristics of them are having a relatively short time of 

execution and providing reasonable solutions, which generally cannot be guaranteed 

to be global optimal. Authors who suggest the use of heuristic solutions often use 

metaheuristics, particularly, simulated annealing (SA), and genetic algorithms (GAs). 

(This is, in fact one of the motivation of this research to apply them as well as to 

develop a hybrid heuristic based on these two algorithms). For instance, Coit and 

Smith (1996b) developed a problem specific GA to analyze series parallel systems to 

determine the optimal design configuration when there are multiple component 

choices available for each of several k-out-of-n: G subsystems in terms of reliability 

allocation. Pohl et al. (2007) developed metaheuristics solutions to the multi-action 

selective maintenance problems of practical size. They conclude that MULRR is more 

robust and efficient while GAs require more tuning, though they are likely to have 

considerable potential with problem specific subroutines in mutation and crossover 

operators.  
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 For close estimation methods, a casual problem which has a bigger possible 

district contrasted with the first problem is determined and its ideal arrangement is 

adjusted off to a number arrangement. To tackle the casual problem, scientific 

programming strategies, for example, linear and nonlinear programs are regularly 

utilized. The principle weakness of this kind of calculation is that it obliges superb 

data, e.g., subordinates and scientific reformulation and accordingly, execution 

discriminatingly relies upon the system structure.  

 For approximation techniques, a relaxed problem of larger feasible region than 

that of the original problem is solved and its optimal solution is rounded to an integer 

solution (Miman, 2008). Generally, mathematical programming techniques, such as 

linear, nonlinear, and geometric programming are used to solve the relaxed problem. 

He claims that the main disadvantage of these types of algorithms is the requirement 

of high quality information, such as derivatives and mathematical reformulation; 

hence, the system structure affects the performance of these algorithms considerably.  

 Combinatorial optimization techniques can be used for global optimization 

methods, some examples of which are exact methods including dynamic 

programming, implicit enumeration, and branch-and-bound. The main characteristics 

of these approaches are guaranteeing global optimal solutions, however, being very 

exhaustive, their efficiency depends on the efficiency of the search space elimination. 

Ha and Kuo (2006) present an efficient branch-and-bound approach to solve non-

linear, non-convex and non-separable types of discrete knapsack problems, where the 

system of their interest is coherent, i.e., the objective and constraint functions have 

monotonic increasing properties.  

Apart from them, column generation has been known to be one of the most 

successful approaches for solving large scale integer programming problems over the 

last decade as used by Gilmore and Gomory (1961), Minoux (1987), Vance et al., 

(1994), Desrosiers et al. (1990), Vanderbeck and Wolsey (1996) and Zia and Coit 

(2006). 
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2.3.5. Metaheuristics Optimization Techniques 

This section provides information about metaheuristics optimization 

techniques including general optimization lexicon; characteristics of metaheuristics; a 

brief history of metaheuristics; metaheuristics that are used often such as simulated 

annealing (SA), genetic algorithms (GA), different evolution (DE), ant colony 

optimization (ACO), bee algorithms, particle swarm optimization (PSO), tabu search 

(TS), harmony search (HS), firefly algorithm (FA), cuckoo search (CS), water cycle 

algorithm (WCA), other metaheuristics algorithms and a general design example for 

metaheuristics based on work by Yang (2011). 

  The metaheuristics optimization treats optimization problems utilizing 

metaheuristics algorithms. Optimization using metaheuristics can be conducted for a 

wide range of areas from building configuration to financial aspects. The main 

considerations for their application are to provide a best evaluated solution with a 

reasonable objective function value by identifying the best set of decision variable 

under the limited resources such as available time and budget.  

The general form of realistic optimization problem is known to be nonlinear 

and multi-modal, under different complex constraints. Many times there can be 

competing objectives such as maximizing reliability of a CLN while minimizing cost 

of maintenance actions to be performed and minimizing the time required by selected 

maintenance activities. This makes the process of identifying the best set of decision 

variables difficult and not straight forward.   

One of the simplest optimization problems can be considered as a minimization 

or maximization problem. For instance, the function,   2f x x , has an optimal value 

0minf   at the solution of 0x   in the domain of   x  . For a sufficiently 

simple function, the first order differential   0f x   can be utilized to focus the 

potential areas in the solution space, the second differential  f x  can be used to 

check if the solution is a most extreme or least. However, for nonlinear, multi-modal, 

multi-variate functions, this approach may not be easy to use or may not be appropriate 

to be undertaken. Similarly, some of the functions may have discontinuities, and 

accordingly differentials is not easy to obtain.  
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2.3.5.1. General Optimization Lexicon  

Dantzig (1963) provides a general lexicon for an optimization problem as 

illustrated in Exhibit (2.1).  

 

       

   

   

1 1

 

,..., ,..., , ,...,

 

  0,  1,2,...,

  0,  1,2,...,

i I d

j

k

f x f x f x x x x

subject to

h x j J

g x k K



 

 

 

 

Exhibit 2.1. General Lexicon for Optimization Problems, (P1),  

         (Dantzig, 1963). 

 

In Exhibit (2.1), 1,...,  If f  are the objectives, while jh  and kg  are the equality 

and inequality constraints, respectively. The special case of   1I   is called as single-

objective optimization while the case where   2I   makes the optimization problem 

multi-objective problem whose optimal solution procedures are different than those 

for a single objective problem. He concerns single-objective optimization problems. If 

at least one of the functions if , jh  and kg  in the optimization problem are nonlinear 

in terms of decision variables represented by x, the optimization problem is said to be 

nonlinear. In the special case where each of these functions is linear in terms of 

decision variables, the optimization problem turns into a linear programming problem 

which can be solved through the standard simplex strategy (Dantzig 1963).  

Most of the metaheuristics optimization is concerned about nonlinear 

optimization problems. In general the maximization representation of model can be 

turned to the minimization representation or vise versa easily. That is, one modeling 

paradigm can also imply the other. As it is expected, the most straightforward instance 

of an optimization is unconstrained function optimization.  
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To treat optimization problems, effective approaches or optimization 

algorithms are required. In the literature, there are numerous optimization algorithms 

that can be classified in a variety of ways according to their focus and characteristics.  

Gradient-based algorithms where the derivative or gradient of a function is the 

focus such as hill-climbing, use derivative information efficiently. On the other hand, 

derivative-free algorithms such as Nelder-Mead downhill simplex do not use any 

information but the values of the function itself instead. They are very useful in case 

where derivatives do not exist or it is very cumbersome and expensive to calculate 

derivatives accurately. Depending on the number of agents/solutions an algorithm uses 

and, hence the number of paths it traces out as the iteration continues, algorithms can 

be classified into trajectory-based (ones with a single solution such as hill-climbing 

and SA) or population based (ones interacting multiple solutions such as PSO) 

according to Kennedy and Eberhardt (1995).  

An algorithm can also be classified as either deterministic (such as hill-

climbing and downhill simplex) if it works without any random nature, hence, it 

always find the same solution provided that it starts with the same initial solution or 

stochastic (such as GA or PSO) if there is a randomness in the algorithm, hence, in 

general it is likely that the algorithm end up with a different solution every time it is 

executed even when the same initial solution is used for each execution. Besides, 

depending on its search capacity, the algorithm can be classified as local search (such 

as hill-climbing) if it converges towards a local optimum or global search if it 

converges towards a global optimum. In general, randomization is regarded to be an 

efficient component for global search algorithms.  

An algorithm may not necessarily to fit into one of the categories specified 

above, but, it can be a combination of one algorithm with another, regarded as hybrid 

algorithm, in order to design more efficient algorithms. This idea motivates the 

development of the hybrid algorithm, EDGASA, whose details are provided in Section 

(3.2).   
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2.3.5.2. Characteristics of Metaheuristics 

According to convention introduced by Glover (1986) and Glover and 

Kochenberger (2003), all modern nature-inspired algorithms can be called as 

metaheuristics. The word meta means beyond and metaheuristic is used for an 

algorithm to imply that the modified algorithm is developed to perform better 

(generating better solutions) than simple heuristics (local points) (Glover and Laguna 

1997). In addition, metaheuristics are likely to generate quality solutions to difficult 

optimization problems, but cannot guarantee an the optimal solution. Though, Voss 

(2001) claims that they tend to be suitable for global optimization. 

Blum and Roli (2003) indicate two major components of any metaheuristics: 

exploration, which means generating diverse solutions generally through 

randomization to escape from local optima and exploitation, which means focusing the 

search in a local neighborhood that is likely to produce good solutions.  The global 

optimality is more likely to be achievable through the good combination of these two 

components.   

2.3.5.3. A Brief History of Metaheuristics  

Although heuristics methods had been used from the 1940s to 1960s in various 

applications, the first landmark in the history is provided through the development of 

evolutionary strategies and evolutionary programming. The first study on genetic 

algorithms was published by Holland (1975), who developed them in 1960s.  

Kirkpatrick et al. (1983) provided a big step for metaheuristics through the 

development of simulated annealing (SA) based on the inspiration by the annealing 

process of metals. This was followed by the development of artificial ımmune systems 

by Farmer et al.  in 1986. Glover introduced the use of memory in metaheuristics and 

tabu search (TS) based on this idea was published by Glover and Laguna (1997). 

Dorigo (1992) developed ant colony optimization (ACO) technique   that was inspired 

by the swarm intelligence of social ants using pheromone. In 1995, particle swarm 

optimization (PSO) was developed by Kennedy and Eberhart (1995). Differential 

evolution (DE) algorithm was developed by Storn and Price in 1997.  
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This was followed by the development of harmony search (HS) algorithm in 

2001 by Geem et al. More recently, Nakrani and Tovey proposed the honey bee 

algorithm and its application for optimizing internet hosting centers in 2004, while was 

a novel bee algorithm was developed by Pham et al.,  in 2005 and the artificial bee 

colony (ABC) was developed by Karaboga in 2005. In 2008, the firefly algorithm (FA) 

was developed by Yang.  Finally, Yang and Deb introduced an efficient cuckoo search 

(CS) algorithm (Yang and Deb, 2009; Yang and Deb, 2010), demonstrating that CS is 

far more effective than most existing metaheuristics algorithms.  

The most recently, Eskandar et al. (2012) developed a water cycle algorithm in 

2012 based on the observation of water cycle process and rivers and streams flow to 

the sea in nature for constrained optimization.  

2.3.5.4. Simulated Annealing 

Simulated annealing is originated from mimicking the metal annealing 

processing (Kirkpatrick et al., 1983) and has the ability to escape from local optima 

by allowing the acceptance of inferior solutions with a certain probability. Dissimilar 

to the gradient-based routines and other deterministic hunt strategies, the fundamental 

favorable position of simulated annealing is its capacity to obtain from being caught 

in neighborhood optima. The formulation of SA presented in this part below is based 

on (Kirkpatrick et al., 1983).  

The acceptance probability p is shown by Equation (2.13).  

 

exp
B

E
p

k T

 
  

 
            (2.13) 

 

where Bk  is the Boltzmann's constant, T  is the temperature for managing the 

annealing process and E  is the difference in energy. This transition probability is 

built on the Boltzmann distribution in statistical mechanics. The difference in the 

objective function, f , can be bonded to E  as in Equation (2.14). 
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γE f                   (2.14) 

 

where γ  is a real constant (typically, γ 1  for keeping it simple). From 

Equation (2.14), it is obvious that 0p   as 0T  .  The way to control the 

temperature variations also control the behavior of the algorithm, hence its efficiency.   

There are numerous approaches to control the cooling rate or the temperature 

decrease which can be either through a linear cooling schedule or geometric cooling 

schedule. For a linear cooling timetable, the current temperature, T, is provided by 

Equation (2.15).  

 

0 –T T t                  (2.15) 

 

where 0T  is the beginning temperature and t is a pseudo time that replaces the 

iterations. β is the cooling rate and should be selected  in such a method that 
fT T  

when ft t  (or the maximum number N  of iterations). This generally provides 

Equation (2.16);  

 

 0 /f fT T t                       (2.16) 

 

On the other hand, a geometric cooling time schedule decreases the temperature 

by a cooling factor 0  1   so that T  is replaced by T  or 

 

  0 ,  1,2,...,t

fT t T t t       (2.17) 

 



34 

 

The advantage of the geometric cooling schema is there is no need to set the 

maximum number of iterations as 0T  when. Therefore, the geometric cooling 

schedule is used more often. To enamel cooling process to be slow enough to let the 

system to stabilize, the alpha constant is generally set such 0.7,[ ]0.99 . 

SA evaluates the objective function multiple times in a given temperature. 

Either performing many evaluations at a few temperature or doing a few evaluations 

at many temperature levels are suggested due to the balance between the number of 

evaluations and solution quality. Number of iterations can be set by two major ways: 

through the fixed number of iterations at each temperature or in a variable way such 

that number of iterations at lower temperatures is increased to fully explore local 

minima. 

2.3.5.5. Genetic Algorithms 

Genetic algorithms (GAs) can be regarded as the most well-known 

evolutionary algorithms based on a population with a wide range of applications from 

discrete systems (such as travelling salesman problem) to continuous systems 

(efficient design of airfoil in aerospace engineering).  

The base of genetic algorithms consisting of encoding of solutions as arrays of 

bits or chromosomes and manipulation of these solutions selected based on their fitness 

and a set of genetic mechanisms. The procedure followed by genetic algorithms can 

be outlined through five steps (Yang, 2011) :  

1. Encoding scheme;  

2. Fitness function or selection criterion;  

3. Generation of a population of chromosomes;   

4. Evaluation of the fitness of each chromosomes in the population;  

5. Generation of next population based on the fitness;  

Steps 4 and 5 are repeated till stopping criterion (which is generally a certain number 

of generations) is satisfied.   

One of the ways to define the fitness function is the assessment of an individual 

fitness relative to the entire population as shown in Equation (2.18).   
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             (2.18) 

 

where i  is the phenotypic value of individual i, and N  is the population size. 

The basic mechanisms of the genetic algorithms are crossing over, elitism and 

mutation. Mutation is the change in some parts of chromosomes before they are 

transferred to the next population. Generally, mutation with a simple site is known to 

be inefficient. The selection of genetic algorithms’ parameters such as population size 

and rates for crossing over, elitism and mutation are very important and generally 

requires considerable efforts for tuning.  Figure (2.6) and Figure (2.7) illustrate the 

initial solutions used and final points obtained in a genetic algorithm application based 

on Yang (2011).    

 

 

 

Figure 2.6. Genetic Algorithm (Initial Population and Locations) (Yang, 2011). 

 

http://www.scholarpedia.org/article/File:Fig2a_xyang.png


36 

 

 

 

Figure 2.7. Genetic Algorithm (Final Locations) (Yang, 2011). 

 

2.3.5.6. Differential Evolution 

Differential evolution (DE) is a vector-based evolutionary algorithm that was 

developed in 1996 and 1997. It can be considered as a further development of genetic 

algorithm. It differs from genetic algorithms such that it carries out operations over 

each component (dimension of the solution) and almost everything is performed in 

terms of vectors.   

For a d-dimensional optimization problem with d parameters, a population of 

n solution vectors ix ,   1,2,...,  i n  is generated first and for each ix  at any 

generation t, the vector 
i

tx is used, which in turn represents a chromosome. (Storn and 

Price, 1997) 

 

1, 2, ,x (x , x ,..., x )t t t t

i i i d i           (2.19) 

 

This vector can be considered as a chromosome.  

 

http://www.scholarpedia.org/article/File:Fig2b_xyang.png


37 

 

DE consists of three main steps of three principle steps: mutation, crossover 

and selection. Mutation is performed through randomly selected three distinct vectors; 

px , 
qx  and rx  for each vector ix at any time (generation) t . Then, the donor vector is 

generated through the mutation scheme presented in Equation (2.20).  

 

1v x (x x )t t t t

i p q rF       (2.20) 

 

where [0,2]F is a differential weight parameter. Despite the fact that, as a principle, 

[0,2]F ; in practice a scheme with  [0,1]F is more efficient and stable. In general 

the minimum population size  4n  .  

The crossover, which is controlled by a probability [0,1]rC  , can be performed 

in two schemes: binomial scheme performs crossovers on each of the d components 

(variables, parameters). Replacement of a component using the donor vector is decided 

randomly by generating a uniformly distributed random [0,1]ir  , and the jth 

component of ix is set according to Equation (2.21).  

 

   1 1

, , if   , 1,2,...,t t

j i j i i rx v r C j d                        (2.21) 

 

Interested readers can find the details about DE, especially for different 

schemes used in DE, in the study of Price et al. (2005).  

2.3.5.7. Ant Colony Optimization 

Ant colony optimization was proposed by Dorigo in 1992 mimic the behaviors 

of ants. Ants use pheromone as a chemical messenger such that each ant lay pheromone 

to communicate with others, where each ant is able to follow the route marked with 

pheromone laid by other ants.  
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When a food source is found by an ant, the trail to and from it is marked with 

pheromone, whose concentration ϕ decays (evaporates) at a constant rate γ such that 

0( ) tt e    where 0 is the initial concentration at t = 0. Evaporation affects the 

possibility of convergence. Starting from following randomly route, the pheromone 

concentration varies and the route with higher pheromone concentration is followed 

by ants often, in turn, the pheromone is enhanced by increasing number of ants that 

follow the same route. This route eventually becomes a favored path.  

2.3.5.8. Bee Algorithms 

Bee algorithms, a few variant of which are known to be honeybee algorithm, 

artificial bee colony, bee algorithm, virtual bee algorithm and honeybee mating 

algorithms, are inspired by foraging behavior of bees. When bees find a good food 

source and bring some nectar back to the hive, they recruit more bees by using 

directional dancing with varying strength in order to communicate the direction and 

distance of the food source. In case of multiple food sources, such as flower patches, 

bee colony seems to be able to allocate forager bees among different flower patches to 

maximize their total nectar intake (Moritz and Southwick 1992).  

The historical developments on such algorithms can be summarized: Honey 

Bee Algorithm (HBA) was first formulated by Tovey and Nakrani in 2004 to allocate 

computers among different clients and web-hosting servers. Yang (2005) developed 

Virtual Bee Algorithm (VBA) to solve optimization problems. Pham et al. (2005) 

developed the bee algorithms which was followed by the development of Honey-bee 

mating optimization (HBMO) in 2005 by Haddad and Afshar (Haddad et al., 2006). 

At the same times, Artificial Bee Colony (ABC) algorithm was developed by 

Karaboga (2005).  

Ant and bee algorithms are more suitable for discrete and combinatorial 

optimization, and have a wide range of applications (Yang, 2011).     
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2.3.5.9. Particle Swarm Optimization 

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart 

(1995) based on observed swarm (such as fish and bird) behavior in nature. It has a 

wide range of applications in optimization (such as computational intelligence, and 

design/scheduling applications and their variants).  

PSO searches solution space by adjusting the trajectories of particles 

(individual agents), each of which traces a piecewise path that can be modelled as a 

time-dependent positional vector. The movement of a swarming particle consists of a 

stochastic component and a deterministic component. That is, each particle is attracted 

toward the position of the current global best,
*g , and its own best known location, 

*

ix ,  

although they have a tendency to move randomly. There is a current best for all 

particles at any time t at each iteration. The goal of PSO is to find the best global 

among as the current best solutions until the objective improves no longer or after a 

certain number of iterations. Given  ix  is the position vector and iv  is the velocity 

vector of particle i, which in practice takes a value between [0, vmax], the new velocity 

vector can be computed through the Equation (2.22).  

 

    1 *

1 2[ ]t t t t

i i i i iv v g x x x              (2.22) 

 

where 1  and 2  are two random vectors, whose each entry takes a value between  0 

and 1. α and β are learning parameters (acceleration constant) that are generally set 

taken as “≈ 2”.  

In general, the initial velocity of a particle can be set to zero, i.e., 0v 0t

i

  . The 

new position can be computed through the Equation (2.23).   

 

1 1x =x vt t t

i i i

           (2.23) 
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Figure 2.8. Display How All Particles Move Towards the Global Optimum  

                            (Yang, 2011).  

  

2.3.5.10. Tabu Search 

Tabu search was developed by Fred Glover in the 1970s, was published first in 

1997 (Glower and Laguna, 1997). The major component of the method is the use of 

memory and search history. Therefore, it can be considered as an intensive local 

search, and appropriate use of search history avoids revisiting local solutions through 

the records of recently tried solutions in tabu lists, that is likely to save considerable 

computing time, hence improve the search efficiency. 

2.3.5.11. Harmony Search  

Harmony Search (HS) was developed by Geem et al. in 2001 based on the 

improvisation process of a musician that indicates three choices:   

1. Musician can play any famous piece of music (a series of pitches); 

2. Musician can play something similar to a known piece (adjusting the pitch 

    slightly); 

3. Compose new or random notes.  

http://www.scholarpedia.org/article/File:Figpso_xyang.gif
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 From the perspective of Markov chain, the pitch adjustment can be considered 

to be a random walk that generates a new solution from the current solution oldx  

according to Equation (2.24): 

 

1

,
t t

new ol p id

tx x b e


               (2.24) 

 

where t

ie  is a random number obtained from a uniform distribution [−1, 1] and 
pb  is 

the bandwidth, which controls the local range of pitch adjustments. 

2.3.5.12. Firefly Algorithm 

The Firefly Algorithm (FA) was produced by Yang (2009) and is based on the 

flashing patterns and behavior of fireflies:   

1. Fireflies are unisex so that one firefly will be attracted to other regardless of 

their sex. 

2. The attractiveness is proportional to the brightness. Thus, for flashing two 

fireflies, the brighter firefly attract the other one. If neither one is brighter, a 

random move is performed. The attractiveness decreases as the distance 

between two fireflies increases.  

3. The brightness of a firefly is determined by the landscape of the objective 

function.  

A firefly’s attractiveness is proportional to the light intensity seen by adjacent 

fireflies, thus, the variation of attractiveness, β, with the distance r can be presented by 

Equation (2.25).          

 

2

0

re         (2.25) 

 

where β0 is the attractiveness at r = 0.  
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The movement of firefly i, attracted to another more attractive (brighter) 

firefly j, is determined according to Equation (2.26).  

 

2
1

0 ( )ijt t

i

r t t

j ii

t

ix x x xe e


 
          (2.26) 

 

where α represents randomization parameter and  t

ie  is a vector of random numbers 

that is obtained generally from either a Gaussian distribution or uniform distribution 

at time t. In the special case of  0 0   represents the random walk. Figure (2.9) 

demonstrates an illustrative.  

 

 

 

Figure 2.9. Firefly Algorithm and Fireflies Move Towards 4 Global Optima.  

                             (Yang, 2011) 

 

 

http://www.scholarpedia.org/article/File:Firefly_xyang.gif
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2.3.5.13. Cuckoo Search 

Cuckoo search (CS) was developed by Yang and Deb in 2009 based on the 

brood parasitism of some cuckoo species (Yang and Deb, 2010). One of the 

characteristics of cuckoos is having an aggressive reproduction strategy. For example, 

some species lay their eggs in communal nests. Even they can remove others’ eggs to 

increase the probability of their own eggs to hatch. Some of species lay their eggs in 

the nests of other host birds (often other species). The reproduction mechanism can be 

outlined in three stage (Yang, 2011): 

1. Each cuckoo lays one egg at a time in a randomly chosen nest. 

2. The best nests with high-quality eggs are remained in next generations. 

3. The number of available nest is fixed. There is a probability pa ∈ [0,1] for 

 the egg laid by a cuckoo to be discovered by the host bird. In this case, the host 

 bird can either eliminate the egg or simply abandon the nest and build a new  

 nest.  

A Lévy is performed according to Equation (2.27) to generate a cuckoo i, i.e. 

new solutions, tx .  

 

(t+1) (t)

i ix = x + L(s, )            (2.27) 

 

where α > 0 is the step size to be scaled according to the problem of interest. Note that 

Equation (2.27) represents a stochastic equation for a random walk, which is a Markov 

chain whose next status/location only depends on the current location, (t)

ix , with a 

transition probability, L(s, )  . The step length, s, of the random walk is obtained 

from a Lévy distribution; Equation (2.28):  

 

( , ) ,(1 3)L s s                (2.28) 
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Yang (2011) indicates that a Lévy flight is more efficient in the long run. He 

also claims that CS is potentially far more efficient compared to PSA and GA (Yang 

and Deb, 2010). 

2.3.5.14. Water Cycle Algorithm  

 One of the most recent metaheuristics inspired from the nature is water cycle 

algorithm (WCA) developed by Eskandar et al., (2012) based on water cycle process 

for constrained optimization. WCA. WCA begins with an initial population (consisting 

of raindrops). The best individual (raindrop/solution) is chosen as sea. Then a number 

of good raindrops are chosen as rivers and the rest of the raindrops are regarded as 

streams flowing to rivers and sea. Eskandar et al. (2012) indicate that WCA are 

competitive to other metaheuristics.  

2.3.5.15. Other Metaheuristics Algorithms  

Apart from algorithms mentioned above, there are many other metaheuristics 

in the literature, for instance, artificial immune systems based on the characteristics of 

the immune system of mammals, which was first proposed by Farmer et al. 1986 

followed by work of Bersini and Varela (1990) on immune networks. In 1989 Moscato 

proposes the memetic algorithm, which has a characteristics of multi-generation, co-

evolution and self-generation. Cross-entropy method, which can be regarded as 

generalized Monte Carlo method, developed by Rubinstein in 1997. Cross-entropy 

algorithm is consisting of generation of random samples and parameter updates to 

minimize cross entropy. Another algorithm that is inspired by nature is bacterial 

foraging optimization developed by Passino around 2002.  

Eventually, there are much more metaheuristics available in the literature, 

which cannot be possibly to mentioned all of them in this study. However, some of 

them are introduced with their key characteristics to enable readers to have enough 

knowledge about them so that they can conceptualize the contribution of this study 

better.  
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2.3.5.16. A General Design Example for Metaheuristics 

For the purpose of the illustration of design problems for which metaheuristics 

are used to optimize, this part presents a model used by Yang (2011). He considers the 

design of a compressional and tensional spring that involves three decision variables;   

wire diameter 1x , coil diameter 2x , and the length of the coil 3x . According to 

engineering specifications, the design model presented by Yang (2011) can be seen 

through Exhibit (2.2). 

 

   

 

 

 

 

2

1 2 3

3

2 3
1 4

1

2

2 1 2
2 3 4 2

1 2 1 1

1
3 3

2 3

1 2
4

1

minimize   2 

subject to the following constraints 

 1 0
71785

4 1
1 0

12566( ) 5108

140.45
1 0

1 0
1.5

The limits of the variables are;  

: 0.

f x x x x

x x
g x

x

x x x
g x

x x x x

x
g x

x x

x x
g x

d

 

  


   



  


  

1 2 2 3 305 2.0, : 0.25 1.3, : 2.0 15.0x d x d x     

 

Exhibit 2.2. General Design Optimization Model, (P2), (Yang, 2011).  

 

Depending on the engineering specification, (P2) seeks the minimization of the 

objective function ( )f x  subject to four constraints, ( ) i 1..4ig x  , depending on the 

relationships among the decision variables, 1..3ix i  , by identifying the best values 

for decision variables (i.e. design parameters of wire diameter, coil diameter, and the 

length of the coil) that have specified domains of  1. .3id i   . Yang (2011) uses 
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simulated annealing starting from an initial solution of  0 1.0,1.0,14.0x  . He also 

uses a population based algorithm, specifically PSO, starting from an initial population 

that is consisting of n solutions vector. The best solution found is represented by 

Equation (2.29).   

The accompanying best arrangement can be discovered effectively (Yang, 2011).  

 0.051690, 0.356750,11.28126 , 0.0126 5) 6(x f x       (2.29) 

This small engineering design application is presented in this section to let 

readers understand the optimization model presented in Section (3.1) and for which a 

hybrid heuristics as well as traditional metaheuristics are to be investigated in Section 

(3.2) better.  Interested reader can refer the studies of Glover and Kochenberger 2003, 

Talbi 2009, Yang 2010 for further metaheuristics applications on engineering design 

optimization. 

2.3.6. Multi-Objective Analysis Techniques 

A multiple objective optimization problem (MOP) deals with the minimization 

or maximization of objective functions (more than one) subject to a set of constraints. 

This section provides a detailed information about some of the multi-objective 

optimization techniques such as goal programming (GP), weighted objective function, 

shannon entropy method, multi-moora method, fuzzy logic, multi-attribute utility 

function, pareto optimality, analytical hierarchy process (AHP),  physical 

programming (PP) and utopia distance that are used often in the literature. Therefore, 

once can better conceptualize the multi-objective modeling approach presented in 

Section (3.4). 

In general, a solution to MOP indicates a Pareto optimal solution due to 

tradeoffs between its competing objectives it has. The image of this solution in the 

space of objectives is termed as Pareto front. In fact, the resolution of a MOP can be 

regarded as an approximation of the Pareto front.  

As far as CLNs and the reliability optimization of them considered, there are 

several approaches that are listed in Table (2.3) and often used in the applications such 

as multi-action selective maintenance, redundancy allocation and sustainability 
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modeling. In supply chain networks, there is a variety of objectives such as increasing 

service level, decreasing warehouse costs, fixed costs, variable costs and total costs, 

decreasing lead time, consolidating supplier’s bases, improving base’s reliability and 

increasing the total quality of supply while setting the values for decision variable in 

the stage of decision making.  

In the literature, Liao and Rittscher (2007) consider optimization of total cost, 

the level of rejection rate, late delivery, flexibility rate in terms of supplier selection 

under the constraints of demand satisfaction and capacity utilization. Shannon and 

Weaver (1947) develops a multi-objective transshipment planning model for the 

petroleum industry where the objectives are minimizing total transshipment cost, 

maximizing the production, and conforming to demands. Coello (1999) investigates a 

multi-location inventory problems that have multiple objectives such as minimization 

of cost and maximization of fill rate.  

In terms of CLN design optimization in view of mission success, Miman and 

Pohl (2012) provides a multi-objective sustainability optimization model that tries the 

identify the best set of maintenance activities to perform on the links of the network 

with multiple objectives; maximizing the reliability of the CLN (mission success), 

minimizing the total cost of selective maintenance activities performed and 

minimizing the total time required by maintenance activities.  

In general, there it is likely that managers may have numerous goals to achieve, 

depending on the situation of managers. Managers want to satisfy the needs of the 

situation as desired by them.   
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Table 2.3. Multi-Objective Optimization Technics (Based on Miman, 2008).  

Method 
Final 

Solution 
Suitability Applicability 

G
o

al
 

P
ro

g
ra

m
m

in
g
 

unique directly 

rely on subjective weights 

final solution may not be the best compromise 

W
ei

g
h

te
d

 

O
b

je
ct

iv
e 

F
u

n
ct

io
n
 

unique directly 

rely on subjective weights 

final solution may not be the best compromise 

M
u

lt
i-

at
tr

ib
u

te
 

U
ti

li
ty

 

F
u

n
ct

io
n

s 

 unique directly utility function is difficult to determine 

P
ar

et
o

 

O
p

ti
m

al
it

y
 

set of non-

dominated 

solutions 

indirectly 

optimization algorithms can not be directly 

applied 

set of solutions yielded for further considerations 

A
H

P
 

unique not-suitable not appropriate for very large solution space 

U
to

p
ia

 

D
is

ta
n

ce
 

unique directly 

rely on relative scales for each measure, which 

act as weights 

final solution may not be the best compromise 

P
h

y
si

ca
l 

P
ro

g
ra

m
m

in
g
 

unique directly 

based on decision maker’s preferences 

acceptance parameter may need some small 

tunings 

final solution reflects the decision maker 

preference 

 

The details about each of the methods presented in Table (2.3) are provided in 

successive sub-sections.  
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2.3.6.1. Goal Programming  

Goal Programming is a pragmatic programming method that is able to choose 

from an infinite number of alternatives. In general it can be regarded as an extension 

or generalization of linear programming to handle multiple, normally conflicting 

objectives. Each of these objective (criteria) is given a goal (target) value to be 

achieved. It minimizes the deviations from this set of target values. In goal 

programming, each of the criteria is considered with a target value where deviations 

from the targets are minimized through the weighted penalties. In general Goal 

programming is used to perform three types of analysis (URL-1): 

1. Determine the required resources to achieve a desired set of objectives. 

2. Determine the degree of attainment of the goals with the available resources. 

3. Providing the best satisfying solution under a varying amount of resources and 

priorities of the goals. 

One of its advantages is its capacity to handle large-scale problems and to 

produce infinite alternatives depending on the situation. A major disadvantage is its 

ability to weigh coefficients for which many applications uses other methods such as 

analytical hierarchy process (AHP). GP has a wide range of applications from 

production planning and scheduling to health care and portfolio selection. DeCroix 

and Arreola-Risa,(1998) and Gigerenzer et al. (2005)  indicate that multi-criteria 

decision making (MCDM) methods such as AHP are most often utilized in 

applications that avoid most of GPs disadvantages.  

The basis of goal programing (GP) originated in 1955 by Charnes et al. (1955) 

despite the fact that the name “goal programming” was used first time by Charnes and 

Cooper (1961). Tan (2001) provides the application of goal programming to diverse 

issues. The main disadvantages of goal programming, as indicated in Table (2.3), is 

the ambiguity in the determination of coefficients (weights) (Vollmann and Cordon, 

1998).  

The most meaningful approach towards the mathematical formalization of 

fuzziness was pioneered by Zadeh (1965). Preliminary works on fuzzy decision 

making can be found in Kickert (1978) and Zimmermann (1987). Zimmermann (1991) 

provides applications of fuzzy theory in management, business and operational 
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research. Hannan (1981) develops the fuzzy goal programming (FGP), which is later 

used in multi-objective optimization problems.  

2.3.6.2. Weighted Objective Function  

In general all the multi-objective optimization techniques seek non-dominated 

solutions represented in Pareto front and illustrated in Figure (2.10) considering the 

tradeoffs among the objectives.   

 

 
 

Figure 2.10. Illustration of Domination (Das, 2005). 

 

If a solution is dominated with respect to all the objectives when compared to 

another solution (having more desirable performance for all of the objectives), the 

former is dominated by the latter and considered to be inferior. Weighted objective 

function techniques combine all objectives together in one function that is in the form 

of a linear combination of the objective function values. Different weights are assigned 

to the coefficients in the combination with the intention of approximating the Pareto 

optimal set of multiple objective solutions closely.  
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As it is described in Table (2.3), this technique also has disadvantages of 

tedious process of setting weights. Das (2005) describes complexities of the weighted 

sum of objectives and claims that the method is efficient in getting points from all parts 

of the Pareto set only when the Pareto curve is convex.  

Recently, Dağ and Miman (2015) provide a multi-objective optimization 

model for the reliability of a CLN through a weighted objectives function of the 

reliability of a network with distorted risks of failure of bases; cost of stock allocation 

and total stocks to allocate. The goal of them is maximizing the reliability of the 

network while minimizing the cost and total number of stocks for allocation. They 

illustrate their model with an example and its solution through Excel Solver, which 

indicates a Pareto optimality.  

2.3.6.2.1. Shannon Entropy Method  

Shannon and Weaver (1947) propose the use of the idea of entropy, also 

emphasized by Zeleny (1982),   in order to determine the weight (relative significance) 

of criteria. Entropy, which is a fundamental concept in physical sciences, social 

sciences and systems, represents the amount of uncertainty raised from the content of 

a message (Farzamnia and Babolghani, 2014).  The goal of this method is to provide 

more information to decision makers. Given m alternatives and n criteria, the data can 

be represented in the form of decision matrix as in Equation (2.30).   
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            (2.30) 
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The steps of determining the weight of every indicators are presented in 

Equation (2.31)-(2.35) according to Shannon and Weaver (1947):  

 

1

ij

ij m

ijt

x
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x
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
                  (2.31) 

 

The level of the jth index is obtained according to Equation (2.32):  
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Level of uncertainty or degrees of knowledge generated for the j-th index (
 jd ) is 

computed through Equation (2.33).  

 

 1 ;j j jd E             (2.33) 

 

Finally, the weight (
 jw ) of the indicators are computed through Equation (2.34)-

(2.35).   
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2.3.6.2.2. MultiMoora Method 

One of the power techniques that can be used in determining weights for 

criteria known as multi-objective optimization technique using ratio analysis 

(MOORA) developed by Brauers (2004).  Later, MULTIMOORA, wider version of 

MOORA, is proposed by Brauers and Zavadskas (2010). Considering the same 

decision matrix D where there are m alternatives    |   1,2,....iA i m  and n criteria

  |  1,2,...,jC j n  and knowing the relative weight of each criterion  jw , one can 

apply the MULTIMOORA technique in four steps (Balezentis and Shouzhen, 2013):  

Step One: The data contained in the choice matrix (D) is scaled according to Equation 

(2.36):  

2

1

ij

ij
m

iji

x
r

x




                    (2.36) 

 

Step Two: Positive indicators (such as profits) and negative ones (such as material 

costs) are separated according to Equation (2.37):  

 

  *

 1 1
  |  

g n

i ij i ij jj j g
A A Max r w r w

  
  

     (2.37) 

 

where   1,  2... j g  positive standards and    1,   2,...,j g g n    are negative 

standards.  

Step Three: Options based on the "reference point approach" upward (from low to 

high) are evaluated: 

 * *  {  |  | |i j ij jA A Min Max v r w 
      (2.38) 

where 

* maxj i ijv r
             (2.39) 
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Step Four: "perfect product" rankings are:  

 

1*

 

1

|

g

ij j

j

i n

ij j

j g

r w

A A Max

r w



 

  
  
    

  
    



         (2.40) 

 

where   1,  2... j g indices are positive and    1,   2,...,j g g n    indices are 

negative. 

2.3.6.3. Multi-Attribute Utility Function 

Most of the times decisions makers have an overview of the utility of the option 

or alternative available on the random bases. However, in multi-attribute utility 

optimization the decision makers are assumed to have perfect knowledge about the 

utilities that represent the boundaries in which the solution lies (Analytis et al., 2014). 

In their multi-attribute utility optimization model, the decision makers estimate the 

utility of the available alternatives and then prioritize them in the order of their 

desirability. There are three models of estimating utility:  the linear multi-attribute 

model, equal weighting of attributes and a single attribute heuristic model. The 

performance of these models in 12 real world experiments which ranged from 

consumer choice to industrial experiments is evaluated. 

Weitzman (1979) propose a general model for the selection of alternatives 

where the decision makers have low information about the alternatives in 

consideration initially but learn the exact utility contribution after paying a search cost. 

A recent study conducted by Dzyabura (2014) explicitly deals with how the step by 

step search can be guided by a multi-attribute utility model. 

According to Analytis et al., (2014), the decision makers’ preferences can be described 

by a linear utility model which play a significant role in cognitive search engines in 

generating the orders in which the alternatives are ranked. Luan et al., (2014) 

emphasize the need to integrate the decision making theories in psychology.   
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2.3.6.4. Pareto Optimality   

In general, there are several response variables or different objectives that will 

define the quality attributes of the final product which may be conflicting, non-

conflicting or partially conflicting in the nature of industrial processes. The conflicting 

objectives can be referred to those situations in which a particular objective can only 

be improved by comprising other objectives. The similar case is valid for the partially 

conflicting objectives. However, the partially conflicting objectives can be termed in 

those circumstances where the variables are conflicting on some common grounds. 

Carmon et al. (1994) indicate that there are various definitions of the terms conflicting 

with multi-objective optimization and decision making in the literature. According to 

Deb (2001), a set of objectives regarding as conflicting if no solution is able to achieve 

the optimal value for each defined criteria and vice versa. Tan (2001) defines a conflict 

as the existence of incomparable solutions in the search space. In the context of a multi-

objective optimization accompanied by a conflicting or a partially conflicting 

objectives, solution approaches yield not only one but different multiple solutions 

which are termed as non-dominated or Pareto optimal solutions (Vance et al., 1994). 

As previously mentioned, in multi-objective decision making environments, 

objectives are often likely to be conflicting in various areas, consequently there are 

tradeoffs among the performances obtained for multiple objectives for a given 

solution. Therefore only non-dominated solutions should be desired to be obtained 

while inferior solutions are ignored. The collection of non-dominated solutions is 

called as the Pareto optimal set and represented as a Pareto front as described in Figure 

(2.11). The goal of multiple objective approach is to find points in the Pareto front. As 

the number of objectives increases, the number of non-dominated solutions may 

increase a lot.  This is due to the fact that, in case of more objectives, the likelihood of 

domination with respect to all the objectives decreases. In such cases, the multi-

objective methods may struggle to converge and may be out performed by the single 

objective solutions as described in detail by recent studies such as Hughes (2003), 

Purshouse (2003) and so on.  
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Figure 2.11. Pareto-Optimal Solutions (Belton and Stewart, 2002).  

 

The most important task in multi-objective optimization is to come up with a 

subset of Pareto optimal solutions which represents the search space. Once the Pareto 

optimal solutions are found, the further step is the multi-criteria decision making 

analysis, such as AHP, which involves further consideration to arrive at an optimal 

solution.  

2.3.6.5. Analytical Hierarchy Process (AHP) 

The analytic hierarchy process (AHP) proposed by Saaty (1990) is a strong and 

executable multi-criteria decision making approach to deal with complex problems in 

which both qualitative and quantitative objectives are taken into account. The AHP 

helps analysts to structure crucial parts of a problem into a hierarchy similar to that of 

a family tree. This reduces complex decisions to a series of simple comparable ones 

which are evaluated at each level of hierarchy, and then synthesized to reach the final 

results (Bevilacqua et al., 2006). 

An AHP approach starts by defining the decision criteria in the form of a 

hierarchy of objectives. The hierarchy is structured on different levels starting from 

the top level i.e. the overall objective through the intermediate levels involving the 

criteria and sub criteria on which the subsequent levels depend to the lowest level i.e. 

the alternatives. After setting the hierarchy structure, a set of square pairwise 
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comparison matrices for each of the lower levels with seperate matrix for each element 

in the above level is constructed (Parlar and Berkin, 1991). 

AHP uses the simple pairwise comparisons to determine the weights and the 

ratings enabling the analyst can concentrate on only two attributes at a time. One of 

the strengths of the AHP approach is that it allows the decision makers to specify their 

own preferences using the verbal scale as indicated in Table (2.4). These verbal 

judgments are then converted into a score using the discrete 9-point scale. This 

hierarchy synthesis function is used to weight eigenvectors by the weights of the 

criteria and the sum is taken over all weighted eigenvector entries conforming to those 

in the next lower level of the hierarchy. 

Table 2.4. The Fundamental Scale for Pairwise Comparisons used in the AHP  

                       Approach (Saaty, 1980). 

Intensity of importance Definition 

1 Equal importance 

3 Moderate importance 

5 Strong importance 

7 Very strong importance 

9 Extreme importance 

2, 4, 6, 8 For compromises between the above 

 

  One of the disadvantages of the AHP is the large number of AHP pairwise 

comparisons which are required to produce the optimal solution for high dimensional 

decision making problems (Carmon et al. 1994). In addition, even under the best 

circumstances, the respondents of the survey is very likely to suffer from information 

overload in a very long discussion or interview resulted from a large number of 

pairwise comparisons, which makes the decision makers confused (Miller, 1956). 

However, when there are only few levels and sublevels, the AHP becomes a powerful 
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tool that can be applied straightforward to obtain the weights or relative preferences of 

the alternatives.  

 An AHP hierarchy is a structured means of describing the problem at hand, 

which consists of an overall goal, a group of options or alternatives for reaching the 

goal, and a group of factors or criteria that relate the alternatives to the goal. In most 

cases the criteria are further broken down into sub criteria, sub-sub criteria, and so on, 

in as many levels as the problem requires. The hierarchy can be visualized as a diagram 

like the one in Figure (2.12) where the goal is at the top, the alternatives at the bottom, 

and the criteria filling up the middle. Specifically, Figure (2.12) represent a 

hierarchical structure consisting of three levels: one goal (at the top), 5 criteria (in the 

middle) and three alternatives (on the bottom).   

 

 

 

Figure 2.12. A Hierarchy Structure in AHP (Saaty, 1990).  

 

Saaty (1990 and 1994) describe steps for applying AHP: 

i. Define the decision making problem and its overall goal, 

ii. Structure the hierarchy with the decision maker’s goal at the top with the criteria at 

the intermediate levels, and alternatives on the bottom,    

 

iii. Construct the set of pairwise comparison matrices for each to the lower levels with 
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one matrix for each element in the level immediately above. The pairwise comparisons 

that capture the preference of the decision maker are performed using the relative 

measurement scale presented in Table (2.4).  

iv. For a comparison matrix of size n, there are n (n-1)/2 judgments required to develop 

the matrix. Reciprocals are automatically assigned in each pair wise comparison.  

v. The hierarchy synthesis function is used to weight the eigenvectors by the weights 

of the criteria and the sum is taken over all weighted eigenvector entries corresponding 

to those in the next lower level of the hierarchy.  

vi. After all the pairwise comparisons are completed, the consistency of the 

comparisons is assessed by using the eigenvalue, λ, through the consistency index, C.I 

.computed according to Equation (2.41) (Saaty,1980).   

 

   . .  /  1C I n n                    (2.41) 

 

The consistency of pairwise judgements can be checked through the consistency 

ratio (C.R) computed by Equation (2.42) proportion ( . .C R ) (Saaty, 1980).   

 

C.I.
C.R. =  

R.I.
     (2.42) 

 

where R.I. stands for Random Consistency Index, for which the appropriate values are 

provided in  is given in Table (2.5) depending on the size of the comparison matrix.  

Saaty (1980) suggests that the C.R. is acceptable if it does not exceed 0.10. Otherwise, 

the judgment matrix is considered to be inconsistent, hence, the judgments should be 

reviewed and repeated to obtain a consistent matrix.  
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Table 2.5. Random Consistency Index (Triantaphyllou & Mann, 1995).  

n 1 2 3 4 5 6 7 8 9 10 11 

R.I. 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 

  

2.3.6.6. Physical Programming  

Physical programming (PP) developed by Messac (1996) is a multi-objective 

optimization technique that enables decision makers to express their preference on 

different objectives through the use of class functions. Class functions are functions of 

the corresponding objective values and are classified into four classes: smaller is better 

(i.e., minimization), larger is better (i.e., maximization), value is better, and range is 

better.  

Messac (1996) claims that his PP approach is an effective and computationally-

efficient approach for design optimization. He emphasizes the deficiencies of the 

traditional approaches such that weight-based (Archimedian) approaches as very 

difficult to implement in practice for realistic problems that comprise many weights as 

these methods generally require many iterations on the choice of weights; and there is 

no clear guidance provided by them to converge to the right set of weights.  Besides, 

preemptive approaches implicitly rank the objectives such that priority-1 objective is 

infinitely more important than a priority-2 objective, which is infinitely more 

important than a priority-3 objective and so on. Messac (1996) indicates that such 

preemptive approaches are unrealistic with their prioritizing under the implicit 

assumption that one objective is infinitely more important than another. PP applies 

“One vs. Others Criteria Rule (OVO) rule” which can be stated as a full reduction for 

one criterion (objective) across a given region (k = 3, 4, 5) is preferable to the full 

reduction for all the other criteria across the next better region, (k-1). 

Some of its applications include an optimization-based production planning 

model (Messac et al., 2002) and optimal redundancy allocations for multi-state series 

parallel systems (Tian et al., 2008). Recently, Miman and Pohl (2012) considers 

provides a multi-objective optimization model for the sustainability of a CLN where 

objectives are maximization of the sustainability and minimization of cost of 
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maintenance activities and time required by maintenance activities. Their model 

constitute the first time use of PP, applied to the area of contingency logistic design 

and selective maintenance optimization. They argue that the concept of PP provides 

greater flexibility and reflects the decision makers preferences explicitly hence 

facilitates the design of a CLN.  

2.3.6.7. Utopia Distance   

Kim and De Weck (2012) provide detailed information about utopia distance 

approaches. The fundamental philosophy of the utopia distance is to adaptively refine 

the Pareto front. It starts from the determination of a rough profile of the Pareto front, 

continues with the estimation of the size of each Pareto patch (line segment in the case 

of two-dimensional problems). Later and the regions for further refinement, which are 

specified as feasible domains for sub-optimization by assigning additional constraints,  

in the objective space are determined.  

In the bi-objective adaptive weighted sum method, the feasible domain for 

further exploration is determined by specifying two inequality constraints. The usual 

weighted sum method is then performed as sub-optimization procedure in these 

feasible domains obtaining more Pareto optimal solutions. The procedure is repeated 

for further refinement until a termination criterion is met. Figure (2.13) compares the 

typical weighted sum method and the bi-objective adaptive weighted sum method for 

a sample problem that has a relatively flat and non-convex region.  
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Figure 2.13. The Concept and Procedure of the Adaptive Weighted Sum Method  

(Kim and De Weck, 2012).  

 

In the first stage of Utopia Distance for multi-dimensional problems, the 

approximate shape of the Pareto front is determined by using the usual weighted sum 

method, then Pareto front patches are identified, and patches for further refinement are 

selected on the basis of the patch size. Figure (2.14) illustrates the concept of the multi-

objective adaptive weighted sum method with equality constraints for multi-objective 

optimization.  In the three-dimensional case, the Pareto front becomes a surface, and 

the linearized Pareto front patch is represented by four line segments that connect four 

vertices, as shown in Figure (2.15).  
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Figure 2.14. Adaptive Weighted Sum Method (Utopia Distance) 

  for Multi-Dimensional Problems (2-D Representation)  

  (Kim and De Weck, 2012). 

 

 

 
 

Figure 2.15. Utopia Distance for 3-D Problems (Kim  and De Weck, 2012).      

 

The complete and detailed procedure is presented in the following sub-sections.  
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2.3.6.7.1. Notation List for Utopia Distance  

This section provides the list of notations that are used to describe the 

procedures and mathematical formulation for a multi-objective formulation based on 

utopia distance according to Kim and De Weck (2012). 

 = objective function vector

 = design vector

 = vector of fixed parameters

 = inequality constraint vector

 = equality constraint vector

 = number of objectives

= th weighting factor

= normalized

i

iJ

J

x

p

g

h

m

i

* *

 objective function

= utopia point

= nadir point

= ith anchor point 

= position vector of the th expected solution on the piecewise linearized plane

Utopia

Nadir

i i

j

J

J

J J

p j

 

2.3.6.8.2. Procedures of Utopia Distance 

Procedures for executing the multi-objective utopia distance method are 

provided, based on Kim and De Weck (2012). 

[Step 1] Stage = 1. Normalization of the objective functions. When *i
x  is the optimal 

solution vector for the single objective optimization of the ith objective function iJ , 

the utopia point UtopiaJ is defined by Equation (2.43): 

 

 1* 2* *

1 2[ ( ) ( )... ( )]Utopia m

mJ J x J x J x          (2.43) 

 

And the pseudo nadir point NadirJ  is given by Equation (2.44).   

 

1 2[ ... ]Nadir Nadir Nadir Nadir

mJ J J J                     (2.44) 
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where m is the number of objective functions or the dimension of the objective space, 

and each component Nadir

iJ is determined by Equation (2.45): 

 

1* 2* *max[ ( ) ( )... ( )]Nadir m

i i i iJ J x J x J x            (2.45) 

 

The ith anchor point *iJ is defined in Equation (2.46): 

 

* * * *

1 2[ ( ) ( )... ( )]i i i i

mJ J x J x J x                   (2.46) 

 

Normalized objective function 
iJ   is calculated through Equation (2.47):   

 

Utopia

i i
i Nadir Utopia

i i

J J
J

J J





            (2.47) 

 

[Step 2] Perform multi-objective optimization using the standard weighted sum 

approach with a small number of divisions, ninitial, for three objective functions, the 

weighted single objective function TotalJ is obtained via Equation (2.48):   

 

2 1 1 1 2 2 3

1 2 1 1 2 2 2 3

[ (1 ) ] (1 )

(1 ) (1 ) , [0,1]

Total

i

J J J J

J J J

   

     

    

     

         (2.48) 

 

where i  is the ith weighting factor. As a general form, the weighted single objective 

function of m objective functions, m

TotalJ  , is computed according to Equation (2.49): 
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1

1 1(1 ) , 2m m

Total m Total m mJ J J m 

          (2.49) 

 

where 1

1TotalJ J  . Be aware of that (m-1) weighting factors are necessary to explore an 

m-dimensional objective space. 

The uniform step size of the ith weighting factor 
i  is determined by the 

number of initial divisions along the ith objective dimension as given by Equation 

(2.50): 

 

,

1
, 1,..., 1i

initial i

i m
n

       (2.50) 

 

One can use the same step size for all weighting factors. In fact, there is a 

scheme that systemically determines each weighting factor and helps produce well-

distributed solutions. In the adaptive weighted sum method, however, the usual step 

size strategy can be used because this approximate multi-objective optimization is 

conducted only once, after which adaptive refinement is conducted (Kim and De 

Weck, 2012). 

 [Step 3] Delete nearly overlapping solutions, which are obtained often when the 

weighted sum method is used. The Euclidian distances between these solutions are 

nearly zero, and among these, only one solution is needed to represent the Pareto front. 

In the computer implementation, if the distance among solutions in the objective space 

is less than a predetermined distance (ε), then all solutions except one are deleted. 

 [Step 4] Identify Pareto-front patches. Patches of any shape can be used, for example 

Kim and De Weck (2012) use quadrilateral patches in three-dimensional problems. In 

their case, four Pareto-optimal solutions become the four nodes of each patch, and 

edges are line segments that connect two neighboring nodes of each patch. They argue 

that constructing and maintaining meshes on the Pareto front may be tedious, but there 

are two advantages of using a mesh, for which interested reader can refer the work of 
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Kim and De Weck (2012). In general, patches play the role of primitives for further 

refinement for subsequent stages, as will be seen in Step 5, and if only non-dominated 

solution points are displayed, it is difficult to visualize and interpret the shape of the 

Pareto front. A mesh representation makes it very easy to visualize the Pareto surface 

as in the case of finite element meshes. 

 [Step 5] Stage = Stage + 1. Determine the layout for further refinements in each of 

the Pareto-front patches.  

 

 

Figure 2.16. Adaptive Refinement Procedure (Kim and De Weck, 2012). 

 

The larger the patch is, the more it needs to be refined. Figure (2.16) shows an 

example of refinement, in which a patch is composed of four nodes in three 

dimensional objective space. Kim and De Weck (2012) indicate that, because the lower 

patch is larger, it is refined more than the upper one. In each mesh, the locations of 

expected solutions are determined by interpolation, and sub-optimizations are 

conducted along the lines that connect the pseudo nadir point and the expected 

solutions. The actual solutions may be different from expected solutions, and there can 

be dominated solutions, which must be deleted by a Pareto filter. 

The position vector of the thj expected solution on the piecewise linearized 

plane ( jP ) is obtained as the weighed sum of the four vectors of the nodal solutions 

through Equation (2.51):    

 

1 2 3 4

1 2 3 4 , [0,1]j

ip N N N N                     (2.51) 
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where iN is the position vector the ith node of a Pareto-front patch, and i   is a 

weighting factor for interpolation.  

The normalized vector of jP is obtained according to Equation (2.52): 

 

j Utopia
j i i

i Nadir Utopia

i i

P J
P

J J





            (2.52) 

 

where j

iP  is the ith coordinate of the thj  expected solution on the piecewise linearized 

(hyper-) plane. The refinement level, which is represented by the step size of weighting 

factors, is determined based on the relative average length of the patch in each 

direction.  

[Step 6] Impose an additional equality constraint (as illustrated in Figure (2.17) 

visiually) for each expected solution and conduct a sub-optimization with the weighted 

sum method. For the jth normalized expected solution, jP , the sub-optimization 

problem is provided in Exhibit (2.3) according to Kim and De Weck (2012). 

 

    

minimize * ( )

( ).( ( ) )
subject to 1

( )

( ) 0

( ) 0

i

j Nadir Nadir

j Nadir Nadir

w J x

P J J x J

P J J x J

h x

g x

 


 





 

 

Exhibit 2.3. Sub-Optimization Problem for the jth Normalized  

                         Expected Solution, (P3), (Kim and De Weck, 2012).  
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where ( )j Nadir

iw P J     is a vector of weighting factors, ( )h x  and ( )g x are 

normalized equality and inequality constraint vectors. The normalized nadir point 

NadirJ  is a vector whose components are one, i.e. (1,1,...,1).NadirJ   

 

 

Figure 2.17. Configuration of an Additional Equality Constraint for Refinement  

                          (3-D Representation) (Kim and De Weck, 2012). 

 

Kim and De Weck (2012) explain the model represented in Exhibit (2.3) as follows: 

The equality constraint    ( ).( ( ) ) / ( ) 1j Nadir Nadir j Nadir NadirP J J x J P J J x J      

makes the two vectors j NadirP J  and ( ) NadirJ x J be collinear in the objective space. 

Therefore, this constraint ensures that the solution is obtained only along the line 

j NadirP J  , which connects the expected solution on the piecewise linearized plane 

and the pseudo nadir point. The objective function ( ). ( )j NadirP J J x   is a scalar 

function to be minimized determining the solution that is nearest to the utopia point in 

the direction of ( )j NadirP J  . The actual solution obtained for the jth normalized 

expected solution, *jP  , would be different from the expected solution as In Figure 

(2.17), the origin of the vector j NadirP J is actually (0,0,0) but moved for better 

visualization.  
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[Step 7] Perform Pareto filtering. Bi-objective adaptive weighted sum method, where 

non-Pareto optimal solutions are automatically rejected, does not require filtering. 

Contrary, in the multi-objective adaptive weighted sum method, any solution that lies 

on the equality constraint is feasible, and non-Pareto optimal solutions may be 

obtained. In each step, it is necessary to perform Pareto filtering to obtain the true 

Pareto front (as illustrated in Figure (2.18)).     

[Step 8] Delete overlapping solutions. Identify Pareto-front patches with all Pareto 

optimal solutions including newly obtained solutions in the previous steps. If a 

termination criterion is met, stop; otherwise go to Step 5. Kim and De Weck (2012) 

indicate several types of termination criteria:  

1. The number of stages reaches a prescribed number;  

2. The size of largest Pareto-front patch falls below a prescribed value; 

3. The standard deviation among the sizes of all Pareto-front patches 

falls below a prescribed value.  

They use the maximum number of stages as the termination criterion in their work.              

 

 

Figure 2.18. Pareto front Obtained by the Usual Weighted Sum Method 

       (Kim and De Weck, 2012).   
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Kim and De Weck (2012) claim that the utopia distance method solves multi-

objective optimization problems with more than two objective functions effectively. 

While bi-objective adaptive weighted sum method, which is applicable to only 

optimizations with two objective functions, uses inequality constraints to specify 

regions for further refinement; the utopia distance method, which is scalable to n-

dimensional problems, uses equality constraints, allow modelers to decide where to 

obtain additional solutions, and this makes the Pareto front mesh well conditioned. 

Recently, Dağ and Miman (2014) propose a multi-objective optimization 

model for the sustainability of a CLN based on utopia distance approach. Their model 

tries to minimize the weighted utopia distance between any point objective space and 

ideal solution in an effort to maximizing the sustainability while minimizing the cost 

of selective maintenance and time required to perform maintenance activities. They 

take the ideal point as (1,0,0) which indicates having a CLN with reliability of one, 

and zero cost and time.  
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3 
Sustainability Optimization of a Contingency Logistics Network: 

A Multi-Dimensional Knapsack Approach 

 

This chapter constitutes the fundamental part of this study including the 

contribution to the literature on contingency logistics systems, filling the some of the 

voids there providing metaheuristics solutions, developing hybrid solutions to the 

sustainability model as well as a different multi-objective optimization approach based 

on utopia distance for this model as proposed by Miman (2008). To achieve this the 

rest of this chapter is organized as follows: First, the necessary details on the 

sustainability model is provided, based on the study of Miman (2008) to enable this 

study to be self-standing so that who reads the study better comprehend the 

contributions and make use of them. Next, the details on the application of traditional 

techniques; genetic algorithm (GA) and simulated annealing (SA) along with a hybrid 

heuristic, EDGASA, is provided in Section (3.2), whose robustness and effectiveness 

are compared to each other and evaluated based on an experimental design presented 

in Section (3.3). The last part of this chapter introduces utopia distance approach to 

model the sustainability of the CLN as a multi-objective optimization technique where 

objectives are maximizing the sustainability while minimizing the total costs and total 

time required by maintenance activities. 
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3.1. Sustainability Model for a CLN 

The sustainability of a CLN was defined by Miman (2008) to model the 

maintenance alternatives in the contingency logistics network settings where the life 

of each link between central warehouse and operational sites is modeled though a 

Weibull distribution and the bases’ reliabilities are obtained through interference 

between demand and supply. The rest of this section provides the necessary details 

about the sustainability optimization model for a CLN as proposed by Miman (2008), 

which is the focus of this study in order to make this study self-standing. 

3.1.1. Notation List 

As defined by Miman (2008) following the notation lists to model the 

sustainability of the network.  

V  : set of nodes  in the CLN  

V   : set of nodes except the central depot, i.e., operational sites in the CLN  
oV  : set of bases that can support the operation o  

n  : number of independent operational sites (nodes) = V   

A  : set of links, i.e. arcs in the CLN    

A  :
set of links, from the central depot to operational nodes (bases),

i.e, {( , ) : 0, 1, .. 2 . }i j i j n 
 

 ijl  :
denotes the link ( , ) between node and

node

 

 such that  and ( , ) 

i Vi

j V i j i j A

j 

  
 

( )ijX k  :
binary variable that indicates the status of link ( , )  

at the beginning of mission  such that

1 , if link ( , ) is functioning at the beginning of mission 
( )

0 , if link ( , ) is failed at the be
ij

i j

k

i j k
X k

i j


ginning mission k





  

( )ijX k  :
binary variable that indicates the status of link ( , )  

at the end of mission  such that

1 , if link ( , ) is functioning at the end of mission 
( )

0 , if link ( , ) is failed at the end of missio
ij

i j

k

i j k
X k

i j

 
n k





 

( )jx k  :
binary variable that indicates the status of the node for mission 

such that

1 , if node  is functioning
( )

0 , if node  is failed
j

k

j
x k

j


 

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( )c

jx k  :  min ( ), (

binary 

)  suc

variable ind

h that

icating the status

1 , if cell  is functioning
(

 of the cell  for

)
0 , if cell  is faile

 mission ;

d

j j

c

j

X k

k

x k

j
x k

j

j




 


 

( )cx k  :
 1 2

-tuples of status vector for the cells for misison ;

( ), ( ),....,  ( )c c c

n

n k

x k x k x k
 

 CLN ( )cx k  :structure function for the CLN  

ijF  : time to failure distribution for the link ( , )i j  

( )ij k  :
Weibull life distribution scale parameter

for the link ( , ) for mission i j k
  

( )ij k  :
Weibull life distribution shape parameter for the link ( , ) 

for mission 

i j

k
 

( )ij k   :
Weibull life distribution scale parameter for the upgraded link ( , )

for mission 

i j

k
 

( )ij k   :
Weibull life distribution shape parameter for the upgraded link ( , )

for mission 

i j

k
 

( )l

ijr k  :
probability of link ( , ) survival during mission  given it exists at

the beginning of the mission 

i j k

k
   

( )l

ijR k  : probability that the link ( , ) survives, mission i j k   

( )n

jR k  :
probability that the node  is mission-  capable based on the inference

of demand and supply

j k
   

( )ijv k  : virtual age of the link ( , ) at the begining of mission i j k  

( )ijv k  : virtual age of the link ( , ) at the end of mission i j k  

( )ije k  : repair effectiveness for the link ( , ) after mission i j k  

( )ij k  :
amount of time, transportation time, the link ( , ) is used 

during the mission 

i j

k
  

ija (k) :
imperfect repair adjustment factor for the link ( , ) 

during the mission 

i j

k
 

( )c

jR k  : probability that the cell  is operable for the mision j k  

( )R k  : probability that the CLN is capable, i.e. reliable, for the mission k  

jD  : random variable that represents the demand emerged at the node j   

jS  : random variable that represents the amount suppliable to the node j  
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j  : rate of demand at the node  for exponential distributionj  

j  : rate of supplied to the node  for exponential distributionj  

j  : failure probability of node j based on the inference  

ijcmr  : cost to repair a failed link ( , )i j  

ijcrl  : cost to replace a failed link ( , ) with an identical new linki j  

ijcrl  : cost to replace a failed link ( , ) with an improved type linki j  

ijcrfl  : cost to replace an existing old link ( , ) with an identical new linki j  

ijcrfl  : cost to replace an existing link ( , ) with an improved type linki j  

ijtmr  : time required to repair a failed link ( , )i j  

ijtrl  : time required to replace a failed link ( , ) with an identical new linki j  

ijtrl  : time required to replace a failed link ( , ) with an improved type linki j  

ijtrfl  :
time required to replace an existing link ( , ) 

with an identical new link

i j
 

ijtrfl              : time required to replace an existing link ( , ) with an improved type linki j  

( )ijC k  :
cost associated with the maintanenace activity peformed

 after mission  for the link ( , ) k i j
 

( )ijT k  :
time associated with the maintanenace activity performed

after mission  for the link ( , ) k i j  

( )C k  :
total cost of maintanenace activities

performed  after the mission  in the CLN k    

( )T k  :
total time required for maintanenace activities

performed  after the mission  in the CLN k    

0 ( )C k  :
Available budget for maintanenace activities

to be performed  after the mission  in the CLN k
    

0 ( )T k  : 

Available time for maintanenace activities

to be performed  after the mission  in the CLN k
 

( )ijW k  :
binary variable indicating whether the link ( , ) is repair

after missi  

d 

n

e

o

i j

k
 

( )ijV k  :
binary variable indicating whether the link ( , ) is replaced with an

new identical new one after mission 

i j

k
 

( )ijZ k  :
binary variable indicating whether the link ( , ) is replaced with  an

new improved one after missionk

i j
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3.1.2. Modeling Node Reliability 

The node reliability of base j in a CLN represents the ability of the operational 

base j to be able to perform the mission with critical supplies that are required by the 

base. Considering the random nature of a contingency, the node reliability can be 

modeled through interference theory between demand and supply, which are given by 

Equation (3.1) and Equation (3.2). 

 

   

 

( ) ( ) 1 1 ( ) 0 1 ( )

         1 (k) ( )

n

j j j j

j j

R k P x k P x k k

P S D k

      

  
          (3.1) 

 

for discrete ( , )( ) ( )

Pr{   }=
for continuous ( , )( ) ( )

j jJ j

y

j j j
j jJ j

y

S DS y g y

S D
S DS y g y







  






                 (3.2) 

 

If (k) ~ ( ) and (k) ~ ( )j j j jS Expo D Expo 
 
are assumed, then Equation (3.1) 

can be reduced to Equation (3.3).  

 

            ( )
jn

j

j j

R k 




 
                                           (3.3) 

 

3.1.3. Modeling Link Reliability 

Generally, the link (i, j) can be modeled in a variety of ways in order to capture 

a variety of insights for a CLN in terms of disruptions in the network. For example, 

the link can be regarded as the reliability of a specific transportation mode from node 

i to node j. This section models the reliability of links under the assumption that the 

life of the link in a contingency operation may be a function of how long it has been 

in operation before it fails or is disrupted.  That is, the link is assumed to follow a 
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Weibull distribution (note that by specifying parameters of the Weibull distributions 

different maintenance characteristics can be captured) and, upon conclusion of a 

mission, the decision maker has multiple options: minimally repair a failed or broken 

link, replace a failed or disconnected link, replace a functioning link, or upgrade a link 

in order to improve its performance. Considering the links only between the depot and 

operational bases, i.e. the domain of links is A- and the lateral shipments are ignored, 

the subscript i in the link reliabilities can be omitted as it is zero for all the links in 

consideration. The final link j reliability can be expressed by Exhibit (3.1) based on 

Miman (2008): 

 

 

   

( 1) ( 1)

( 1) ( 1) 1 ( 1) ( 1)

( 1) ( 1) ( 1)
               exp ( 1)     (o)

( 1) ( 1)

( 1) ( ) ( ) 1 ( ) ( ) 1 ( ) ( ) 1

j j

l l

j j j j

k k

j j j

j

j j

j j j j j j j

R k P X k r k X k

k k k
X k

k k

where

X k X k W k X k V k X k Z k

 

  

 



 

  

      

       
                

        

 

   

 

( ) (e1)

( 1) ( ) ( ) ( ) ( ) ( ) 1 ( ) ( ) ( )                 (e2)

( ) ( 1) ( ) ( ) 1 (k) 1 (k)                                          (e3)

( 1) ( ) 1 (k) ( )

j

j j j j j j j j j

j j j j j j

j j j j

X k

k k k V k k Z k a k k W k

a k a k e k W k V Z

k k Z k Z

    

  



   





     

    

   

 

(k)                                                           (e4)

( 1) ( ) 1 (k) ( ) (k)                                                            (e5)

 

( ) ( ) ( ) 1        

j

j j j j j

j j j

k k Z k Z

subject to

W k V k Z k

      

                                                                                 (c1)

( ) binary                                                                                                      (d1)jW k

V ( ) binary                                                                                                       (d2)

( ) binary                                                                        

j

j

k

Z k                                (d3)
 

 

Exhibit 3.1. Link j Reliability Definition in a CLN with Maintenance, (P4).  
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 In Exhibit (3.1); 

(o) represents the reliability of the link (0 ,j) -survival probability of link between the 

depot and base j for mission (k+1). 

(e1) represents the updated link j status for mission k+1 (at the beginning of the mission 

(k+1)) base on the status of the link j at the end of the mission k and the maintenance 

action taken at the end of the mission k.  

(e2) represents the updated age of the link j at the beginning of the next mission (k+1) 

based on the age of the link j at the end of mission k, the percentage of improvement 

after repair is decreased during mission k, and the maintenance action taken at the end 

of the mission k.  

(e3) represents the updated percentage of improvement after repair is decreased by a 

percentage for mission (k+1) repair based on percentage of improvement after repair 

is decreased for mission k, and the maintenance action taken at the end of the mission 

k. 

(e4) represents the updated Weibull life distribution shape parameter for link j for 

mission (k+1) based on Weibull life distribution shape parameter for link j for mission 

k and Weibull life distribution shape parameter for upgraded link j for mission k and 

the maintenance action taken at the end of the mission k.  

(e5) represents the updated Weibull life distribution scale parameter for link j for 

mission (k+1) based on Weibull life distribution scale parameter for link j for mission 

k and Weibull life distribution scale parameter for upgraded link j for mission k and 

the maintenance action taken at the end of the mission k.  

(c1) represents the constraint that at most one of the maintenance actions (repair, 

replacement with the new identical one and replacement with the upgraded, i.e., 

superior or improved, one) on link j can be performed at the end of the mission k.  

(d1) represents the decision variable concerning the repair of link j at the end of the 

mission k such that;  
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1 if the link  is repaired after mission 

( ) but before mission ( +1)

0 otherwise

j

j k

W k k




 



               (3.4) 

 

(d2) represents the decision variable concerning the replacement of link j with the new 

identical one at the end of the mission k such that;  

 

1 if the link  is replaced with a new identical one 

( ) after mission  but before mission ( +1)

0 otherwise

j

j

V k k k




 



    (3.5) 

 

(d3) represents the decision variable concering the replacement of link j with the new 

improved (upgraded, superior) one at the end of the mission k such that; 

  

1 if the link  is replaced with an improved one 

( ) after mission  but before mission ( +1)

0 otherwise

j

j

Z k k k




 



    (3.6) 

 

Note that, the link reliability is highly non-linear, in terms of decision variables.  

3.1.4. Modeling the Sustainability of a CLN  

As explained  by Miman (2008) the links  can be conceptualized as the 

transportation means from the depot to the base  and operational base together with the 

link to the base can be regarded  as an operational cell whose status can be expressed 

as a binary variable, ( )c

jx k . Then the CLN can be expressed as the arrangements of 

the n-cells, which constitute the n-tupelos of the status vector, composed of individual 

cell statuses expressed by ( )cx k . The optimization model for the sustainability of the 

CLN developed by Miman (2008) as a multi-dimensional knapsack model, which is 
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the focus of this study is presented in Exhibit (3.2) and Figure (3.1)-(3.2) In order to 

enable readers to have more concrete conceptualization of this study.  

 

 
   

CLN

CLN

( )

0

max ( 1) (k 1) = ( 1) ( 1)                    (0)
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    
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Exhibit 3.2. The Sustainability Optimization Model for a CLN, (P5),  

                                  (Based on Miman, 2008).  
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In Model (P5);   

(0): represents the sustainability of the CLN (the CLN survives for mission (k+1)), 

which depends on the structure of the logistics network, which can be expressed using 

the structure function    CLN ( )cx k , to be maximized. Note that (0.1)-(0.6) have the 

same meanings as those in Exhibit (3.1).  

(1) : represents that the total cost of maintenance activities performed on links in the 

CLN at the end of mission k, should not exceed the available budget at the end of 

mission k for maintenance activities.  

 (1.1): represents the total cost associated with the maintenance activities on the 

CLN while (1.1.1) represents the cost of maintenance activity performed on link j  that 

is composed of the mutually exclusive five cost components; cost due to the link repair, 

cost associated with replacing a failed link with a new identical one, cost due to 

replacement of failed link with a new improved one, cost due to replacement of the 

functioning link with a new identical link and cost due to replacement of functioning 

link with a new improved one as represented by (1.1.1.1)-(1.1.1.5) respectively.  

Similarly, 

(2) : represents the total time required to perform maintenance activities on links in the 

CLN at the end of mission k, should not exceed the available time at the end of mission 

k for maintenance activities.  

 (2.1): represents the total time associated with the maintenance activities on the 

CLN while (2.1.1) represents the time of maintenance activity performed on link j  that 

is composed of the mutually exclusive five time components ; time required to repair 

the link, time associated with replacing a failed link with a new identical one, time 

required to replace the failed link with a new improved one, time required to replace 

the functioning link with a new identical link and time required to replace functioning 

link with a new improved one as represented by (2.1.1.1)-(2.1.1.5) respectively.  

It is apparent from Exhibit (3.2) that the sustainability model which is focused 

on this study is a non-linear, non-convex and non-separable mathematical program 

modeled as a multi-dimensional knapsack problem, which motivates this study in 

search of effective and robust optimization techniques whose details are provided in 

Section (3.2). 
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Figure 3.1. Network Representation of the CLN in Consideration. 
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 Figure 3.2. CLN Sustainability: Mission Perspective. 

 

In Figure (3.2), a mission-k emerges as a result of a contingency event and 

consists of sets of operations 1 to m that need to be accomplished to recover from the 

contingency. Each operation can be supported by a variety of bases provided that the 

bases (nodes) are mission capable, i.e. have enough supplies to perform the assigned 

task. If each base j can support only one operation o, which can eventually be supported 

by several bases and in order to mission-k to be achieved all operations o = 1..m must 

be achieved, then the reliability of the system can be calculated using the Equation 

(3.7).  

 

( ) ( )
o

c

j

o j V

R k R


                                                (3.7)     
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3.2. Heuristic Approaches Investigated 

This section provides the details about the traditional heuristic algorithms, GA, 

SA as well as the hybrid heuristic developed EDGASA, which are in consideration for 

investigation in search of robust and effective solution approach to the sustainability 

model which is presented in Exhibit (3.3) one more time to make conceptualization 

more concrete.   

max ( )                                            (0)

. .

( ) ( )                                         (1)

( ) ( )                                          (2)  

( ) ( ) ( ) 1 , =1..      

o

o

j j j

R k

s t

C k C k

T k T k

W k V k Z k j n





     (3)

( )     binary , 1,...,                  (4)

( )   binary , 1,...,                 (5)

( )  binary , 1,...,                 (6)

j

j

j

W k j n

V k j n

Z k j n







 

 

Exhibit 3.3. Sustainability Model as an IP for a CLN in compact form, (P6).  

 

In model (P6), (0) represents the network reliability to maximize based on the 

maintenance actions taken. (1) and (2) represents the constraints related to resources, 

budget and time respectively, available for the maintenance to perform. (3) represents 

that at most one of the maintenance alternatives (repair, replace with an original link 

and replaced with an improved link) can be selected to be performed for each link  

j=1,…,n. (4-6) represent the binary decision variables for each link  j=1,…,n. Note that 

including do nothing there are four possibilities (do nothing, repair, replace with an 

identical link, replace with an improved link) which can be modeled as a two-bit 

system in a solution representation for a base depending on the values of decision 

variables (4-6 in (P6)) as shown in Table (3.1).  
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Table 3.1. Two-bit Binary Representation for Maintenance Alternatives of link j. 

Encoding Action Taken 

0  0  Wj = 0 ; Vj = 0 ; Zj = 0 None 

      0  1  Wj = 1 ; Vj = 0 ; Zj = 0 repair 

      1  0  Wj = 0 ; Vj = 1 ; Zj = 0 replacement with a new identical link 

      1  1  Wj = 0 ; Vj = 0 ; Zj = 1 replacement with a new improved link 

 

Note that this two-bit representation of a solution for a base yields a solution 

encoded binary with a length of 2n for a CLN consisting of n operational sites (bases) 

as displayed in Figure (3.3).  

 

    … …   

     Site-1       Site-2            Site-n  

 

Figure 3.3. Encoding of a Solution for the CLN with n-bases.  

 

3.2.1. Traditional Heuristic Approaches Investigated  

This section provides the details on the pure GA and SA, which have been 

extensively used in the literature for a variety of problem structures where the 

problems are NP hard. In this study their details are provided so that one can better 

conceptualize the hybrid heuristic, EDGASA, developed and presented in Section 

(3.2.2). The selection of parameters for algorithms under investigation is based on the 

findings of Miman (2008), who first time investigated meta-heuristics for the presented 

sustainability model.  

3.2.1.1. Genetic Algorithm   

GA is an evolutionary technique where in this study the evaluation started from 

an initial population consisting of 50 individuals generated randomly. In each 

generation, the fitness of every individual in the population is computed. Infeasible 

solutions are penalized with a large penalty for each unit of excess cost and/or time 

over available amounts where the fitness of such infeasible solutions is assigned as 
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one over the resulting absolute performance after the penalty is imposed. (For SA and 

EDGASA, the same penalty scheme is applied) Before generation of next population 

starts, the chromosomes are arranged according to their fitness according to which 

each chromosome in the population has a likelihood -through computeFR function- to 

be selected for crossing over mechanism as a parent. Then, the next generation in GA 

is obtained through the eliciting, crossing-over and mutation mechanisms as displayed 

in Figure (3.4).  
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Figure 3.4. Next Population Generation in GA. 
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In eliciting, the 4% of the best chromosomes which has the highest fitness are 

transferred to the next generation as they are. In crossing-over, the 56 % the next 

population are obtained through a single crossing over mechanisms where parents are 

stochastically selected based on their fitness out of 50 Individuals from the current 

population and modified using a single crossover mechanism. In the single cross over 

mechanism a parents Exchange the solution parts from the single point that are selected 

randomly yielding two off-springs to be placed into next generation. Single bit 

mutation is applied (the value of the bit is reversed, i.e. one turns to zero, zero turns to 

one) to a random subset of the population 40% - and added to the new population. The 

new population is then used in the next iteration (generation) of the algorithm. The 

algorithm terminates when a maximum number of generations (250) have been 

produced. The essential codes of the GA are presented in Appendix 5. Note that the 

rates of eliciting, crossing over or mutation rates can be arranged depending on the 

problem size as well as dynamically during the execution time. 

3.2.1.2. Simulated Annealing  

SA is a metaheuristics originated by mimicking the behavior of annealing of 

the iron at different temperatures. In this application of SA to the sustainability model, 

initial solution is set to be “do nothing” for each base. To initialize the algorithm, the 

final solution (the best evaluated solution so far) as well as the current solution are set 

to the initial solution (do nothing), the initial temperature (tinitial =1000 ) thus final 

temperature (tfinal =tinitial/m where m=100) , the parameter for how many times new 

solutions are explored at the  specified temperature (n1=500), and the parameter to 

find a new temperature ( v1=1 initially, where v1 is increased by 1 for each iteration) 

are specified. For a given temperature (represented by t in the code where t=tinitial/v1) 

the algorithm searches new solution by changing a single bit of a current solution 

similar to single-bit mutation employed in GA.  

If the solution found has superior objective function, then the current solution 

as well as the final solutions are updated to this new superior solution. If the solution 

found is worse than the final solution found so far, there is still a certain probability 

depending on the current temperature to accept this inferior solution as a current 
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solution (in order to move a different point in the solution place to explore). This 

probability is given by Equation (3.8).       

 

  
deltasol/tU(0,1) e             (3.8) 

 

At the end of the exhaustive attempts (number of times that is equal to n1=500) for a 

desirable solution at the current temperature, the current solution is updated to the best 

evaluated solution so far; i.e. final solution, and new temperature for which the solution 

space is to be explored staring from the current solution is set (through findtemparature 

function in the code).  

The loop of search continues until the current temperature falls below the final 

temperature. These steps of simulated annealing algorithm are displayed in Figure 

(3.5). The essential codes of the SA are presented in Appendix 6.   
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   set

   xcurrent = do nothing              

   xfinal = xcurrent     

   set 

   t = tinitial 

   cursol = evaluate (xfinal)

   finalSol = cursol 

   tfinal = find temprature (t initial, m) 

while (t >= t final)
     for (int i = 1, i < = n1; r + + ) 
{
         xtempt = nextmove (xcurrent)
         tempSol = evaluate (xtempt) 
         deltaSol = tempSol – finalSol 

if (deltaSol > 0) {
      xcurrent = xtempt 
      cursol = tempSol 

        xfinal = xcurrent 
        finalSol = cursol          
}

  else { 
if (rand() < (exp-(deltaSol)/t)

  ) 
      xcurrent = xtemp 
      cursol = tempSol 

         } 
}

t = findtemprature ( t initial, v1 ) 
v1 = v1 + 1 
xcurrent = xfinal 

              cursol = finalSol 
}

Report

xfinal 

finalSol 

 Initial Solution

                                                

Inialize 

Annealing 

 
 

      Figure 3.5. Steps of Simulated Annealing Algorithm Applied. 
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3.2.2. A Hybrid Heuristic: EDGASA (Genetic Algorithm with Simulating   

          Annealing by Esra Dağ)  

In literature GA is known to be a good technique to find a promising 

neighborhood for a good solution while, the SA is known to be a good technique to 

search exhaustively in a given neighborhood. This motivates to develop the hybrid 

heuristic, EDGASA, by combining the power of both of the heuristics. In this hybrid 

algorithm, the goal is to combine the ability of a GA to search a broad and diverse set 

of neighborhoods with the power of a SA that aggressively searches for better solutions 

in a specific neighborhood.   

EDGASA combines the GA and SA into a hybrid algorithm for the non-

separable, non-linear, non-convex, multi-dimensional knapsack problem discussed 

earlier. Inıtial population of EDGASA is obtained as follows: The specified number of 

solutions (indicated as “level” in Figure (3.6), and recursive in java code as seen in 

Appendix 7) is obtained through annealing procedure while the rest of the solutions in 

the initial population is generated randomly. 
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Figure3.6. Initial Population in EDGASA. 

 

 

 

 

 

 

 

 



93 

 

           The next generation in EDGASA is obtained with the same mechanisms as 

those in GA with a difference in the eliciting mechanism as illustrated in Figure (3.7). 

In eliciting in the hybrid heuristic developed, EDGASA, the best solution according to 

fitness are subject to annealing and the final solution obtained from annealing is placed 

into next population. This final solution is subject to annealing recursively number of 

times as specified by level (recursive=1 in this study). The crossing over and mutation 

mechanism are similar to those applied in GA.  
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Figure 3.7. Generation Formation in EDGASA. 
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Table (3.2) compares these three algorithms investigated in this study in terms 

of initial solution/population, mechanism to obtain next solution/population and 

stopping criteria they use. 

Table 3.2. Comparison of Algorithms based on their Mechanisms. 

Algorithm 

Applied 

The way  initial 

solution / 

initial population 

generated 

The way next solution / 

next population 

generated 

Stopping criteria 

SA 
Single solution: 

do nothing 

Single bit change 

in current solution 
(t<tfinal) 

GA 
50 solutions: 

generated randomly 

Eliciting of some percent 

of best solutions 

Specified 

generation number 

(250) 

Single point crossing 

over depending on the 

fitness 

Single bit mutation of 

some percent of worst 

solutions 

EDGASA 

50 solutions: starting 

from do nothing 

solution the specified 

number of solutions 

are obtained through 

the application of 

annealing recursively. 

The  rest of the 

solutions are generated 

randomly 

 

 

Eliciting of the best 

solution along with 

application of annealing 

Specified 

generation number 

(250 as it is in GA) 

Single point crossing 

over as it is in GA 

Single bit mutation as it 

is in GA 

 

Table (3.2) indicates the mechanisms employed by each of the heuristics for 

which a set of experiments are designed in Section (3.3) to compare the efficiency and 

robustness of their performances.  

3.3. Comparisons of Algorithms Investigated 

 This section provides the details about how algorithms specified in Section 

(3.2) are investigated according to their performance on solution quality and solution 

time. Specifically, it presents experimental design used for this comparison and the 

results of analysis. 
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3.3.1. Experimental Design 

To compare the performances (quality of the solution found, and the time to 

find that solution) of each algorithms considered (namely GA, SA, EDGASA), a set 

of experiments are performed according to the design described below. This also 

compares the robustness and efficiency of each of the algorithms. The purpose of the 

experiment design is to illustrate the relative strengths of each of the algorithms based 

on random cases. To do this 100 experimental cases are generated randomly and each 

of these cases are solved 10 times by each of the algorithms to get their performances 

(average quality of the solution (Average-R), the best solution found out of 10 attempts 

(R-max), the worst solution found out of 10 attempts (R-min) and  average solution 

times) of them for comparison.  

In generating random experiment cases, the same approach used by Miman 

(2008) is employed. Specifically, in generating original and improved technologies’ 

failure parameters, it is assumed that the improved links have a longer meantime to 

failure, i.e.    
jjjj  /11/11   . This can be modeled by setting the expected 

scale, 

j , and shape parameter 

j  for the improved links greater than those of original 

systems; j and j respectively. In terms of specifying cost parameters, the average 

imperfect maintenance cost, i.e., repair activity cost,
jcmr , is assumed to be less than 

that of average cost of perfect maintenance of replacements with original and improved 

links where average improved technology cost is greater than that of the original one.  

Further, that replacement costs are supposed to be greater when the link is 

functioning (This might be because of different procedures to replace or due to the 

disposing of the functional link). Similarly, the average time to repair a link is assumed 

to be greater than the average time for replacements where replacement with the 

improved link is assumed to require more time than replacement with the original link 

due to potential setup and procedure changes.  

The Table (3.3) provides the assumed expected values for cost and time 

requirements for each of the maintenance alternatives k M where k = 1 refers do 

nothing k = 2 refers to repair, k = 3 refers to replacement of a failed link with an 

identical link k = 4 refers to the replacement of a functioning link with an identical link 
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as described by Miman (2008). The plus indicates replacement with upgraded 

(superior) link. 

Table 3.3. Expected Values for Decision Alternatives. 

Mk 

E[Tk]   

(hrs) 

 

E[Ck]    

($) 

1 0 0 

2 45 30 

3 30 70 

3+ 35 100 

4 32 80 

4+ 40 120 

 

The random variables of maintenance cost and time are modeled through 

uniform distributions such that kT ~  k

T

k

T ULLLU ,  and kC ~  k

C

k

C ULLLC , . The intervals 

are allowed to overlap in order to represent all possible conditions such as if a new 

technology is not readily available, the required time may become longer etc.  

Expected maintenance requirements (in terms of time and budget) for a risk neutral 

decision maker are taken into account in determination of available budget and cost 

which are modeled to be uniformly distributed as oC ~  o

C

o

Co ULLLC ,  and oT ~

 o

T

o

To ULLLT ,  respectively: For a single link, the expected maintenance cost can be 

given by Equation (3.9). For a risk neutral decision maker, each of the three 

alternatives: repair, replacement with identical link, replacement with improved link 

are equally likely for a failed link while replacement with original link and replacement 

with improved link is also equally likely for a functioning link where a link at the 

beginning of maintenance decision is equally likely to be found failed or functioning 

as described by Miman (2008).  
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 2 3 3 4 41 [ ] [ ] [ ] 1 [ ] [ ]
[ ]

2 3 2 2

E C E C E C E C E C
E C

      
    

   
            (3.9) 

 

Similarly, for a single link the expected maintenance time can be given by 

Equation (3.10). 

 

2 3 3 4 41 [ ] [ ] [ ] 1 [ ] [ ]
[ ]

2 3 2 2

E T E T E T E T E T
E T

      
    

   
                (3.10) 

 

According to experimental design, expected maintenance cost and time 

parameters specified in Table (3.3), a single link’s expected maintenance cost and time 

for a neutral decision-maker are (do nothing is a default action hence excluded from 

computations in terms of budget and time requirements) found to be approximately 

$85.00 and 36.58 hrs respectively. Therefore for a 16-links system considered in this 

study whose reliability block diagram can be seen from Figure (3.8), the expected cost 

and time required for maintenance alternatives are $85.00×16=$1360 and 36,58 

hrs×16=585,28 hrs respectively. While budget and time availabilities are represented 

in the experimental design by uniformly distributed random variables, their expected 

values are modeled to be in accordance with approximately the half of the risk neutral 

CLN maintenance requirements, i.e. close to 700 and 290 respectively. To ensure at 

least one maintenance activity can be performed the lower limits of these distributions 

are set to be  k

C
k

o

C ULMaxLL   and  o k

T T
k

LL Max UL .  

Further, the node reliabilities are generated through a U(0.84, 0.99) distribution 

in place of the interference model as current main interest here is the maintenance 

alternatives on the links. Table (3.4) displays the associated parameters for the 

experimental designs that are generated to test the effectiveness of the each of the 

algorithms: 
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Table 3.4. Experimental Design Parameters.  

 

        

  Parameter Distribution   

    U(50,150)   

    U(1.1,2.1)   

    U(0,50)   

    U(90,210)   

    U(1.5,3.0)   

    U(0.35,0.95)   

    U(0.05,0.25)   

    U(75,100)   

    U(20,40)   

    U(50,90)   

    U(70, 130)   

    U(60,100)   

    U(90,150)   

    U(30,60)   

    U(20,40)   

    U(25,45)   

    U(30,34)   

    U(35,45)   

    U(0.84,0.99)   

   C0(k) U(550,750)   

   T0(k) U(200,380)   

        

j

j

j 

j


ja

( )je k
( )j k

jcmr

jcrl

jcrl

jcrfl

jcrfl

jtmr

jtrl

jtrl

jtrfl

jtrfl

( )jv k

( )n
jR k

 

 

Note that, the failure parameters of the links ( , , ( ), , , , ( ), ( )j j j j j j j jv k a e k k      ) are 

generated through exactly the same probability distributions used by Miman (2008) 

while the maintenance costs and time parameters are generated through the 

distributions specified in Table (3.4). 

In the experimental study, 100 random instances of the problem were generated 

and each instance was solved using the GA, SA, and EDGASA heuristics 10 times to 

compare the robustness and efficiency of each of the algorithms.  The appropriateness 

of this approach is based on Miman (2008). Each of the heuristics has the do-nothing 

option as an initial solution and the remainder of the initial solution set is generated 

randomly.   For each problem instance, 10 replications are performed for those 

heuristics that have stochastic components: GA, SA and EDGASA and the average 

performance across 10 replications as well as the best and worst solutions found were 

used to compare these heuristics. The goal of this experimentation is to be able to 
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analyze the relative performance of each of the heuristics on this class of problem 

introduced by Miman (2008).   

 

Site 1
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Figure 3.8. The Structure of the CLN Considered for the Experimentation. 

 

In generating experimental designs, Eclipse is used as an Integrated 

Development Environment (IDE) for codes developed in Java Programming 

Language. It is also used to code the solution algorithms in consideration. Particular 

to the generation of an experimental design for each problem instance and collection 

of the statistics about the performance of each of the algorithms (average quality of the 

solution (Average-R) for 10 attempts to each problem instance, the best solution found 

out of 10 attempts (R-max) to each problem instance, the worst solution found out of 

10 attempts (R-min) to each problem instance and average solution times) Java 

Simulation Library (JSL) version jsl-Beta-r4-v19 is used. Specifically, random 

package of JSL is used to generate each problem instance according to parameters 

specified in Table (3.4) and statistics package of JSL is used to collect the statistics 

about performances of each of the algorithm. The detailed information about JSL is 

provided by Rossetti (2008) who has developed the software kit, which is available at 

URL -2. The detailed results associated with each experimental setups solved through 

GA, SA and EDGASA are provided in Appendix 8, 9 and 10 respectively.  
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3.3.2 Analysis of Results 

Using the contingency logistics models for selective maintenance alternatives’ 

optimization previously formulated and the associated 100 randomly generated 

problem instances, the performance of each of the solution approaches: GA, SA, and 

EDGASA is investigated.  This will give greater insights into solution approaches to 

adopt in response to the investigation of each algorithm’s robustness to such problem 

structures as an extension of study conducted by Miman (2008) who analyzed the GA, 

TS, MULRR and GAFTS algorithms.  The descriptive statistics for each algorithm are 

analyzed in Minitab and displayed in Table (3.5) below.  

 

Table 1.5. Descriptive Statistics for Heuristic Solutions in terms of Average 

        Reliability. 
 

 

 

Variable  Method    N   N*    Mean  SE Mean    StDev  CoefVar  Minimum       Q1   Median 

AverageR  EDGASA  100   0  0,76419  0,00628  0,06279     8,22  0,55003  0,72521  0,76941 

          GA      100   0   0,5767   0,0148   0,1477    25,60   0,1091   0,4693   0,6135 

          SA      100   0  0,68381  0,00831  0,08310    12,15  0,42879  0,63132  0,69394 

 

Variable  Method       Q3  Maximum 

AverageR  EDGASA  0,81137  0,89744 

          GA       0,6822   0,8050 

          SA      0,75049  0,82540 

  

 

The results displayed in Table (3.5) indicated that EDGASA dominates all 

other algorithms (GA and SA) with regard to the performances across the problem 

domain for mean, median, minimum and maximum reliabilities for average of 10 

attempts to each problem instances’ solution of the network. It also has the lowest 

coefficient of variation which suggests that the algorithm is more robust than the 

others. Further, the results are analyzed statistically as illustrated in Table (3.6) 

according to the procedures employed by Rajagopalan and Cassady (2006) and later 

by Miman (2008) paired t-test on differences between mean performances on Average-

R each algorithm finds based on 10 replications.  
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Table 3.6. Hypothesis Testing for the Average Reliability of a CLN by Heuristics.  
 

Test Hypothesis T-Value P-Value 
95%CI on the 

mean difference  Conclusion 

1 
H0 : µR

GA = µR
SA               

H1 : µR
GA µR

SA 
-12.44 0.000 (-12422 , -0.09004)  µR

SA > µR
GA   

2 
H0 : µR

EDGASA = µR
SA         

H1 :µR
EDGASA µR

SA 
24,64 0.000 (0.07391 , 0.08686)  µR

EDGASA > µR
SA   

 

 

A paired t-test, as performed by Rajagopalan and Cassady, (2006) and later by 

Miman (2008), is employed to compare the improvements through heuristics. First the 

evolutionary technique, GA was compared with simulated annealing technique, SA. 

The paired t-test indicates that SA GA
R R   for the CLN built by the parameters tabulated 

in Table (3.4). In the second test, the hybrid heuristic where genetic algorithm is fed 

by the solutions obtained through simulated annealing, EDGASA, was compared 

against the pure classical SA.  The analysis concludes that EDGASA SA
R R  . When these 

two results are combined, the hybrid heuristics developed and proposed by this thesis, 

EDGASA, found to be superior to both of the traditional techniques GA and SA.  

 

EDGASA SA GA
R R R                                               (3.11) 

 

These results verify the research logic behind the hybrid algorithm, EDGASA, 

in combining the power of the SA in aggressively exploring the neighborhood with the 

power of GA in finding a good neighborhood. As a result, the performance of the pure 

SA is improved through the utilization of the neighborhood search of the GA in 

EDGASA. 

Based on the initial analysis, EDGASA is found to be superior to all the other 

heuristics under consideration.  Therefore, it can provide greater insights about the best 

solution approaches for the CLN design and can be further compared to GAFTS, which 

is proposed by Miman (2008) as the best solution approach for the problem structure 

for the sustainability of the CLN studied. To provide a measure of statistical 
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confidence on the comparisons of all alternative heuristics, (k = 3) a multi-comparison 

approach as described by Goldsman and Nelson (1998) was performed: 

 Let  1  % be the confidence over all of the comparisons of  0i
   

where  0 & A,EDGASA i G SA  such that  

 

0

2 2 2 2

1 , 1 0 1 , 1

0 0

0

in n i

i i

i

t S t S
d Y Y

n n

 
 

   
                                 (3.12) 

 

  where       
 1/ 1

1 1
k

 


    

If d ≤ 0, then the adopted approach, EDGASA, should be kept in use as it does 

a better job at identifying superior solutions. Table (3.7) contains the results of the 

simultaneous multiple comparison test, which is also used by Miman (2008).  

 

Table 3.7. Multiple Comparisons with EDGASA.  

Performance 

I 

EDGASA GA SA 

i
Y  0.76419 0.57670 0.68381 

2

i
S  0.00394 0.02182 0.00691 

ni 100 100 100 

d 

N/A 

-0.15695 -0.06056 

heuristic 

choice 
EDGASA EDGASA 

 

Note that for the above multiple comparisons:   1/21 0.95 0.97467    for 

an overall 95% confidence for the all possible comparisons with EDGASA.  Now it 

can be said that the hybrid algorithm’s (EDGASA’s) performance is better than any 

other traditional metaheuristics examined on this problem with 95% confidence. 

This results are verified by ANOVA analysis conducted by Minitab v17.0 with 

Tukey post hoc tests for simultaneous comparisons whose results are displayed in 
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Table (3.8) along with the Tukey’s simultaneous 95% confidence intervals (CIs) plot 

provided in Figure (3.9).  

 

Table 3.8. Results for Simultaneous Comparisons of Mean Performances of  

                      Heuristics on Average-R in Minitab. 

Means 

Method    N     Mean    StDev        95% CI 

EDGASA  100  0,76419  0,06279  (0,74366; 0,78472) 

GA      100   0,5767   0,1477  ( 0,5561;  0,5972) 

SA      100  0,68381  0,08310  (0,66328; 0,70434) 

Pooled StDev = 0,104324 

  

Tukey Pairwise Comparisons  

 
Grouping Information Using the Tukey Method and 95% Confidence 

 

Method    N     Mean  Grouping 

EDGASA  100  0,76419  A 

SA      100  0,68381    B 

GA      100   0,5767      C 

 

Means that do not share a letter are significantly different. 

 

 

Tukey Simultaneous Tests for Differences of Means 

 

Difference   Difference       SE of                               Adjusted 

of Levels      of Means  Difference        95% CI        T-Value   P-Value 

GA - EDGASA     -0,1875      0,0148  (-0,2220; -0,1530)   -12,71     0,000 

SA - EDGASA     -0,0804      0,0148  (-0,1149; -0,0459)    -5,45     0,000 

SA - GA          0,1071      0,0148  ( 0,0726;  0,1417)     7,26     0,000 

 

Individual confidence level = 98,01%  

 

 
 

It is seen from Table (3.8) that all of the pairwise 95% Confidence Intervals 

constructed on mean performance of each heuristics do not overlap each other. This 

implies that the differences between mean performances of algorithms are statistically 

significant which is visually demonstrated in Figure (3.9) as none of the CIs about 

pairwise differences contains zero. The Tukey Pairwise Comparisons used for 

grouping by Minitab also indicates that each of the heuristics mean solution quality in 

terms of Average-R are different than the others (highlighted by different letter in 

Table (3.8)) with EDGASA, SA and GA in diminishing order. 
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Figure 3.9. Tukey’s Simultaneous 95% CIs Plot for Pairwise Differences. 

 

Note that as it is seen from Figure (3.9), none of the CIs about the pairwise 

difference of mean performance on average reliability provided by each of the 

algorithm contains zero, hence, the difference of mean performances are significant. 

Finally, reliability is a measure of probability and cannot exceed 1 or go below 0. 

Hence, natural bounds on the average performance of each of the algorithms are given 

through Equation (3.13): 

 

1 0EDGASA SA GA
R R R                                           (3.13) 

 

Further, being a coherent system, a maintenance action taken will not make the 

system to have inferior reliability than before, hence the do-nothing option provides a 

lower bound while  perfect maintenance with upgraded technology on each link, 

although it may be  infeasible in terms of cost and time, provides an absolute upper 

bound on the system. As exactly the same distributions are used for the failure 

parameters as those provided by Miman (2008); the lower and upper bounds proposed 

by him can also be adopted to this study such that:  
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0.056   0.939GA SA EDGASA
R R R                                   (3.14) 

 

When a measure of the closeness to the upper bound for GA, SA and EDGASA 

was computed, EDGASA solutions on average are found to be within 18.61% of the 

best possible solution without time and budget constraints while SA solutions on 

average were within 27.17% of the upper bound and GA solutions on average were 

within 38.58 % of the upper bound. This reflects that on the average EDGASA 

solutions are 8.56 % closer to the upper bound for the problem compared to second 

best solutions of algorithms considered in this study, specifically solutions provided 

by SA. 

Average reliability performances of heuristics are related to the defined 

distributions for the parameters. In order to provide greater insights into the relative 

performance of each of the algorithms, the heuristics can be compared to each other in 

terms of the number of times their objective function is superior to the ones obtained 

through other algorithms over the 100 randomly generated problem instances. Such 

analysis were conducted for average reliability of 10 solution attempts to each problem 

instances of total 100 experimental designs; the best solution (maximum reliability) of 

10 solution attempts to each problem instances of total these 100 instances and the 

worst solution (minimum reliability) of 10 solution attempts to each problem instances 

of total these 100 instances and the results are summarized in Table (3.9)-(3.12) 

respectively.  
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Table 3.9. Comparison of Algorithms in ability to find a Better Solution  

                              in Terms of Average Reliability. 

# of Times Average Performances   

(OUT OF 100) 

Proportion 

of Time 
95% CI 

Half-width 

SA>GA                                             

(SA is better) 
99 0.99 0.019 

SA>=GA                                               

(SA is not worse than) 
99 0.99 0.019 

EDGASA>SA                                            

(EDGASA is better) 
100 1.00 

- 

 

EDGASA>=SA                                                                                         

(EDGASA is not worse than) 
100 1.00 - 

EDGASA>GA                                             

(EDGASA is better) 
100 1.00 - 

EDGASA>=GA                                               

(EDGASA is not worse than) 
100 1.00 - 

 

Table (3.9) provides consistent results with Table (3.5)-(3.8) reflecting that that 

EDGASA’s performance is superior to SA, which is superior to GA in their ability to 

converge to a better solution. In detail, out of 100 problem instances, each of which 

are solved 10 times by each of the heuristics, on average SA provides 99% of times 

better solutions than those provided by GA and 99% of times its solutions are no worse 

than those of GA. Moreover, on average EDGASA provides always superior solutions 

compared to both SA and GA, i.e., 100% of times.  

Table 3.10. Comparison of Algorithms in ability to find a Better Solution  

                               in terms of Minimum Reliability.  

# of Times Worse Performances   

(OUT OF 100) 

Proportion 

of Time 
95% CI 

Half-width 

SA>GA                                             

(SA is better) 
99 0.99 0.019 

SA>=GA                                               

(SA is not worse than) 
99 0.99 0.019 

EDGASA>SA                                            

(EDGASA is better) 
100 1.00 

- 

 

EDGASA>=SA                                                                                         

(EDGASA is not worse than) 
100 1.00 - 

EDGASA>GA                                             

(EDGASA is better) 
100 1.00 - 

EDGASA>=GA                                               

(EDGASA is not worse than) 
100 1.00 - 
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Each of the 100 problem instances generated randomly was solved 10 times 

due to inherent randomness of the solution procedures through each of the algorithms 

considered and when the worst solution (minimum reliability) of these 10 attempts to 

each problem instance were compared in Table (3.10); the same results as those 

obtained for average reliability are obtained. Specifically, SA performs better than GA 

99% of times and it also provides no solutions worse than SA %99 of times. The hybrid 

heuristics developed and proposed by this study, EDGASA, provides always, i.e. 

100% of times, superior solutions in terms of worst solutions it provides compared to 

worst solutions SA and GA provide.    

 

Table 3.11. Comparison of Algorithms in ability to find a Better Solution  

                               in terms of Maximum Reliability. 

# of Times Best Performances   

(OUT OF 100) 

Proportion 

of Time 
95% CI 

Half-width 

SA>GA                                             

(SA is better) 
88 0.88 0.06 

SA>=GA                                               

(SA is not worse than) 
88 0.88 0.06 

EDGASA>SA                                            

(EDGASA is better) 
93 0.93 0.05 

EDGASA>=SA                                                                                         

(EDGASA is not worse than) 
100 1.00 - 

EDGASA>GA                                             

(EDGASA is better) 
100 1.00 - 

EDGASA>=GA                                               

(EDGASA is not worse than) 
100 1.00 - 

 

As explained earlier, each of the 100 problem instances generated randomly 

was solved 10 times due to inherent randomness of the solution procedures through 

each of the algorithms considered and when the best solution (maximum reliability) of 

these 10 attempts to each problem instance were compared in Table (3.11); SA 

performs better than GA 88% of times and it also provides no solutions worse than 

GA 88% of times. The hybrid heuristics developed and proposed by this study, 

EDGASA, provides 93% of times better results in terms of best solutions it provides 

compared to best solutions SA provides. Note that EDGSA never provides inferior 

solution compared to SA in terms of maximum reliability they found. When EDGASA 
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compared to GA in terms of best solution they can provide; EDGASA always 

outperforms GA, i.e., %100 of times, hence, never provides no worse solutions than 

GA. 

Another point of interest is the amount of time a heuristic takes to find a good 

solution, hence the average solution time, obtained through the Mac OS X with Intel 

core i5, 2.5 GHz processor, for each of the heuristic techniques were analyzed and 

analysis results were tabulated in Table (3.12).  

 

  Table 3.12. Descriptive Statistics for Heuristics in terms of Average Solution Time.  

 

Variable     Method    N   N*   Mean  SE Mean  StDev  CoefVar  Minimum      Q1  Median 

AverageTime  EDGASA  100   0  101336     8371  83706    82,60    74447   92801   93092 

             GA      100   0  49,316    0,201  2,006     4,07   46,800  47,900  48,900 

             SA      100   0  190,46    0,754   7,54     3,96   183,30  185,90  187,85 

 

Variable     Method      Q3  Maximum 

AverageTime  EDGASA   93284   929786 

             GA      49,975   56,300 

             SA      191,85   224,20 

 

 

Table (3.12) reveals that, without a need for further hypothesis testing, the 

ranking of average execution time for each heuristic is given by Equation (3.15).  

 

GA SA EDGASA
T T T                                                  (3.15) 

 

This implies that the solution quality of SA is improved significantly through 

the hybrid heuristic EDGASA through the feeding GA population with SA as well, 

yet, with a substantial increased solution time. However, there is a potential to decrease 

the solution time by setting the GA parameters as well as SA parameters that are being 

used in EDGASA carefully, which can be a potential future research’s topic.  
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3.4. Multi-Objective Optimization Modeling for the Sustainability of a CLN                  

       based on Utopia Distance 

This section proposes a multi-objective optimization of the sustainability of a 

CLN based on utopia distance paradigm. In the sustainability optimization of the 

model for whom metaheuristics are investigated is a multi-dimensional knapsack 

problem developed by Miman (2008). He analyzed this system as multi-objective 

optimization through physical programming. Here, as an alternative to his study, a 

multi-objective optimization model is to be developed based on utopia distance 

paradigm. In this model, the overall reliability of the CLN (sustainability) is to be 

maximized while the cost of selective maintenance actions for the sustainability, and 

time required by the selective maintenance actions are to be minimized. To develop 

the multi-objective optimization model; first, additional notations are introduced over 

the notation list presented in Chapter 3.1, the mathematical formulation based on 

utopia distance paradigm is introduced. The solution of the model presented in this 

section is not handled, but, is left for further studies.  

3.4.1. Additional Notation List  

curx  : current solutions in terms of decision variables for selective maintenance 

          actions for each base-n tubules  

curR : reliability of the CLN based on curx   

curC : cost of the selective maintenance actions performed based on curx   

curT : time required for the selective maintenance actions performed based on curx   

curP  : current performance vector for the sustainability of the CLN-3 tubules 

          ( , , )cur cur cur curP R C T  

U    : utopia point, the ideal performance of the CLN, based on performances  

         (1,0,0)U   

d     : The weighted distance between curP and U to be minimized 

    : weight for curR in d  

    : weight for curC in d  

    : weight for curT in d  
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3.4.2. Multi-Objective Model Developed  

The multi-objective model to be developed has three dimensions; specifically 

the reliability of the CLN, the total cost of maintenance actions performed and the total 

time required to perform the maintenance actions. Each of these dimensions can be 

displaced in the performance space based on the current solution as illustrated in 

Figure (3.10). Ideally, maximum reliability is desired to be achieved with a minimal 

cost and time. This implies that, in terms of utopia distance paradigm, the ideal 

performance based on the maintenance actions pursued is achieving reliability of 1 

with zero cost and zero time. This constitutes to the utopic point to arrive. The model 

proposed by this study tries to minimize the weighted distance, as shown in Figure 

(3.10), between current performances and utopic point based on the model displayed 

in Exhibit (3.4) with the decision variables as those in Exhibit (3.3). 

p
cur

 = (R
cur

, C
cur

, T
cur

)d

Utopic Distance 

R (k) 

C (k)   

T (k) 

U

Rcur 

Ccur 

Tcur 

1

 

Figure 3.10. Performance Space for Utopia Distance Model. 
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Exhibit 3.4. Multi-Objective Optimization Model based on Utopia Distance, (P7). 
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The algorithm for the model presented in Exhibit (3.4) is displaced in Figure (3.11).  

currentSolution

x cur

Evaluate Performance

P cur = (R cur, C cur, T cur)

d cur  

update currentSolution

find    P new, d new 

 d new <  d cur

?

Stopping Criteria 
met? 

xfinal =  x cur

d cur =  d new 
No

Yes

Report result
 x final, finalSol

Yes

No

through 
heuristics

 

 

Figure 3.11. Solution Steps for Multi-Objective Optimization Model. 
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Note that in the step of updating current solution and finding newd , 

metaheuristics such as EDGASA can be used as the model presented here is a also 

non-linear, non-separable and non-convex mathematical program. For the model 

proposed in Exhibit (3.4), one can foresee that the selection of the weights for each 

performance dimension is one of the areas that needs further investigation. Some of 

the modeling issues developed and proposed in this section was presented by Dağ and 

Miman (2014).  
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4 
CONCLUSION AND DISCUSSION 

 

This research effort can be regarded as a building stone over the study 

conducted by Miman (2008) in terms of the investigation of heuristic solutions to the 

sustainability of contingency logistics networks (CLNs) and multi-objective 

optimization modeling for the sustainability of CLNs.  The reliability of CLNs was 

explicitly modeled first time from the perspective of mission success by Thomas 

(2004) where he modeled a logistics network’s ability to respond to a contingency in 

which that response is defined to be the proper set of operations for a mission or set of 

missions to recover from the contingency event. Miman (2008) extended preliminary 

study of Thomas (2004) in several ways. Among one of them, there is a sustainability 

model proposed which is based on a multi-action selective maintenance model for the 

links in the logistics network. His model enables contingency logistics network 

planners to identify the most proper maintenance actions for the links from a central 

distribution center to the operational bases (nodes) so that the logistic network’s ability 

to respond to the contingency; i.e. the probability of success of contingency mission, 

is maximized subject to budget and time availability constraints for maintenance 

actions on the links. Miman (2008) investigates metaheuristics, particularly traditional 

metaheuristics genetic algorithm (GA) and tabu search (TS) and proposes multi-level 

ruin and rebuid heuristic (MULRR) and genetic algorithm fed by tabu search (GAFTS) 
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he developed as solution procedures for the non-linear, non-separable and non-convex 

two-dimensional knapsack sustainability model. He concludes that memetic heuristic 

GAFTS he developed outperforms other heuristics in terms of solution quality at an 

expense of solution time required. In addition to the sustainability model as a two 

dimensional knapsack problem, he proposes the use of physical programming (PP) as 

a multi-objective optimization technique for the sustainability of the CLN. 

This research effort continues the investigation of heuristics approaches for the 

sustainability model developed by Miman (2008). At the beginning, an extensive 

literature review is provided, including the recent literature on contingency logistics 

networks, heuristics solutions and multi-objective optimization techniques in Chapter 

2. Next, traditional metaheuristics genetic algorithm (GA), simulated annealing (SA), 

a hybrid heuristic based on genetic algorithm, and simulated annealing, EDGASA, 

developed are analyzed and compared to each other in terms of solution quality 

(average reliability, best reliability, worst reliability they can find) and solution time 

they require in Chapter 3 of the study. The performance of the hybrid heuristic, 

EDGASA, is found to be superior to pure GA and pure SA in terms of solution quality 

at an expense of substantially increased solution time required to reach the solution.  

This research also contributes to multi-objective optimization modeling 

paradigm for the sustainability of the CLN providing a multi-objective optimization 

model for the sustainability based on utopia distance. This provides greater insights to 

the network planners in terms of modeling.  

This study can trigger a set of further studies. First of all, there is research 

potential on tuning the parameters on GA and SA that are used in EDGASA to improve 

further not only the solution quality but the solution time of EDGASA as well. Later, 

the performance of EDGASA developed here and GAFTS developed by Miman 

(2008) can be compared. Other heuristics such as ant colony optimization (ACO) and 

water cycle algorithm (WCA) can be investigated in search of the most robust, 

effective and efficient solution approach to the sustainability model developed by 

Miman (2008).  

Further, the EDGASA can be applied to the general selective maintenance 

problems and other integer programs. Moreover, the sustainability model can be 

extended by including stock allocations for the nodes (bases) along with the selective 
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maintenance for the links in the network. Hence a set of heuristics techniques can be 

investigated in search of the most robust, effective and efficient solution approach to 

the resulting model.  

 

Finally, the multi-objective optimization model for the sustainability based on 

utopia distance developed in this study can be solved through the set of heuristics such 

as EDGASA, GAFTS, GA, TS, ACO, WCA and so on. It is also seen that there are 

available potential in the literature for the application of the multi-objective 

optimization modeling approach proposed in this study to other multi-criteria decision 

making environments.    
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APPENDICES 

This section provides supplementary materials refereed inside the text to make 

this study easy to be understood. 
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APPENDIX 2. Initial Variables and Parameter Used in Codes 
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APPENDIX 3.  makeExperimentalSetup Function 
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APPENDIX 4. Common Functions used in all of the Algorithms 
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APPENDIX 5. Codes of Functions for GA Algorithm  
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APPENDIX 6. Codes of Functions for SA Algorithm 
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APPENDIX 7.  Codes of Functions for EDGASA Hybrid Algorithm 
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APPENDIX 8. Results Obtained from GA  

Experiment 

No 
Average R R-min R-max 

Standard 

Error 
  

Average 

Time 

Min 

Time 

Max 

Time 

1 0,687440 0,613922 0,742850 0,011549 *** 56,3 46 129 

2 0,678824 0,540079 0,765085 0,021950 *** 48,3 47 50 

3 0,751765 0,681254 0,826583 0,013189 *** 49,1 47 55 

4 0,674582 0,603715 0,751341 0,016576 *** 48,6 47 51 

5 0,454754 0,370622 0,591898 0,020826 *** 48,2 47 51 

6 0,622029 0,539559 0,688785 0,016329 *** 47,9 46 51 

7 0,547025 0,436013 0,653130 0,024485 *** 47,1 44 53 

8 0,793690 0,677980 0,827405 0,013202 *** 47,8 47 50 

9 0,737874 0,641151 0,787757 0,014071 *** 48,8 45 53 

10 0,775584 0,746260 0,812039 0,006461 *** 55,6 52 61 

11 0,688360 0,592826 0,768652 0,016804 *** 50,0 47 55 

12 0,632743 0,575544 0,714534 0,012923 *** 49,8 46 54 

13 0,452717 0,375142 0,549149 0,018071 *** 51,6 48 55 

14 0,573178 0,405668 0,686715 0,028640 *** 48,8 47 51 

15 0,410613 0,256494 0,572826 0,030570 *** 55,0 47 61 

16 0,661439 0,628390 0,710713 0,009005 *** 49,5 47 51 

17 0,699478 0,654115 0,749920 0,010411 *** 47,0 45 49 

18 0,620941 0,539739 0,714134 0,016757 *** 53,7 46 58 

19 0,536633 0,494548 0,592186 0,009106 *** 53,3 46 58 

20 0,731437 0,648317 0,773403 0,011832 *** 51,5 47 57 

21 0,668108 0,620738 0,753983 0,013274 *** 49,6 48 52 

22 0,644410 0,554411 0,781035 0,026949 *** 54,1 48 58 

23 0,709667 0,616252 0,766081 0,015474 *** 49,3 46 55 

24 0,353597 0,138915 0,603743 0,042491 *** 49,7 48 52 

25 0,699178 0,658135 0,729908 0,007488 *** 48,9 47 53 

26 0,436448 0,241816 0,667427 0,040052 *** 50,0 49 52 

27 0,282473 0,063601 0,574676 0,058837 *** 49,6 47 55 

28 0,675367 0,570691 0,766268 0,021016 *** 47,6 45 51 

29 0,722478 0,641396 0,763817 0,013313 *** 49,7 48 52 

30 0,630214 0,544824 0,717323 0,018198 *** 49,9 47 53 

31 0,746787 0,655184 0,795197 0,013638 *** 47,5 45 50 

32 0,588274 0,513214 0,662180 0,015073 *** 48,9 46 53 

33 0,681593 0,646392 0,744250 0,009655 *** 46,8 45 49 

34 0,467769 0,355084 0,546209 0,017747 *** 48,1 46 51 

35 0,615271 0,498016 0,704611 0,018565 *** 48,3 46 53 

36 0,227501 0,096752 0,347713 0,027715 *** 49,2 46 55 

37 0,693593 0,633122 0,767353 0,014114 *** 47,3 45 52 

38 0,325243 0,061969 0,514790 0,051525 *** 47,5 46 50 

39 0,694398 0,578912 0,833625 0,025197 *** 47,1 44 52 

40 0,491900 0,279183 0,569303 0,029920 *** 48,7 46 52 

41 0,366544 0,311577 0,401614 0,007858 *** 48,6 46 52 

42 0,722917 0,669441 0,752516 0,008844 *** 46,8 45 50 

43 0,605055 0,547966 0,693466 0,017077 *** 47,8 46 55 

44 0,428617 0,243844 0,525715 0,025248 *** 49,6 47 55 

45 0,682299 0,618098 0,724277 0,008935 *** 49,0 46 55 

46 0,664019 0,608181 0,712651 0,012341 *** 49,8 47 55 

47 0,515142 0,402044 0,644951 0,028204 *** 47,3 45 50 

48 0,596402 0,513122 0,681261 0,016120 *** 48,0 46 51 

49 0,668572 0,613327 0,710287 0,010476 *** 48,9 46 53 

50 0,576414 0,485395 0,704180 0,021996 *** 49,6 47 52 
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Experiment 

No 
Average R R-min R-max 

Standard 

Error 
  

Average 

Time 

Min 

Time 

Max 

Time 

51 0,390572 0,199076 0,568919 0,038970 *** 47,9 46 50 

52 0,745675 0,672119 0,809281 0,013846 *** 47,9 46 50 

53 0,583844 0,462175 0,674813 0,022291 *** 48,4 46 51 

54 0,614176 0,504510 0,689639 0,019781 *** 49,9 47 54 

55 0,722985 0,636818 0,811410 0,017462 *** 50,1 47 57 

56 0,489499 0,489499 0,489499 0,000000 *** 48,9 47 53 

57 0,290675 0,119650 0,471676 0,034467 *** 52,1 50 56 

58 0,109080 0,011435 0,450635 0,048074 *** 50,5 48 54 

59 0,779928 0,716073 0,839974 0,014212 *** 47,4 45 51 

60 0,492253 0,383527 0,590022 0,024127 *** 51,0 47 58 

61 0,668171 0,502848 0,753398 0,022309 *** 48,1 46 50 

62 0,271680 0,115734 0,437242 0,030236 *** 47,9 47 50 

63 0,289243 0,160211 0,408029 0,029132 *** 49,4 47 52 

64 0,596327 0,490392 0,703313 0,020668 *** 48,0 46 50 

65 0,473731 0,294945 0,667630 0,032240 *** 47,9 46 50 

66 0,454638 0,262155 0,577349 0,025889 *** 49,0 46 52 

67 0,411657 0,157367 0,548763 0,033603 *** 48,3 46 51 

68 0,441123 0,378941 0,551280 0,018531 *** 47,8 46 51 

69 0,454159 0,310672 0,625316 0,032782 *** 48,1 47 51 

70 0,705571 0,604935 0,781427 0,016847 *** 48,0 46 51 

71 0,567937 0,523598 0,607478 0,008722 *** 48,4 46 52 

72 0,316962 0,187059 0,433055 0,024172 *** 48,6 47 52 

73 0,415697 0,282375 0,583305 0,027999 *** 48,8 46 54 

74 0,614628 0,451175 0,719321 0,025411 *** 49,1 46 53 

75 0,750755 0,711396 0,800243 0,009792 *** 47,2 46 49 

76 0,591392 0,537935 0,667416 0,012976 *** 48,9 47 54 

77 0,612809 0,484129 0,721619 0,027152 *** 47,4 46 50 

78 0,487545 0,350257 0,651900 0,033949 *** 48,1 46 50 

79 0,608866 0,573948 0,677275 0,009482 *** 47,2 46 49 

80 0,564205 0,389889 0,645292 0,025505 *** 50,1 46 58 

81 0,422127 0,248734 0,573875 0,044390 *** 51,3 47 57 

82 0,681371 0,613627 0,734742 0,013577 *** 51,1 47 57 

83 0,669198 0,624401 0,715047 0,009454 *** 52,4 45 57 

84 0,610274 0,572796 0,674949 0,010178 *** 50,6 47 60 

85 0,750458 0,697379 0,784392 0,008322 *** 53,7 46 57 

86 0,805027 0,773945 0,830047 0,007057 *** 52,0 46 60 

87 0,429157 0,298061 0,527248 0,022768 *** 50,3 47 53 

88 0,241340 0,040309 0,463919 0,049825 *** 50,0 47 57 

89 0,554915 0,456995 0,682209 0,023083 *** 48,5 46 51 

90 0,533150 0,371452 0,673398 0,029864 *** 49,2 47 52 

91 0,569100 0,433842 0,667828 0,020497 *** 48,4 47 52 

92 0,665127 0,611422 0,746672 0,012595 *** 47,7 45 52 

93 0,545560 0,432526 0,664188 0,023901 *** 47,2 44 50 

94 0,628912 0,540589 0,690734 0,013037 *** 48,1 46 52 

95 0,751985 0,708385 0,800789 0,010381 *** 47,6 46 50 

96 0,618007 0,539661 0,698949 0,013788 *** 49,6 47 55 

97 0,681726 0,631263 0,726614 0,010002 *** 49,5 47 53 

98 0,667292 0,563740 0,786763 0,019699 *** 55,0 48 76 

99 0,735036 0,642503 0,813471 0,017919 *** 50,0 47 54 

100 0,680713 0,643342 0,725525 0,007958 *** 47,9 47 50 
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APPENDIX 9. Results Obtained From SA 

Experiment 

No 
Average R R-min R-max 

Standard 

Error 
  

Average 

Time 

Min 

Time 

Max 

Time 

1 0,722815 0,676502 0,754335 0,007804 *** 197,2 180 294 

2 0,749214 0,706796 0,793760 0,008240 *** 187,1 179 201 

3 0,784764 0,744860 0,816533 0,006639 *** 188,6 179 195 

4 0,741770 0,642659 0,790495 0,013797 *** 200,1 184 219 

5 0,558556 0,483425 0,623699 0,013702 *** 192,2 180 208 

6 0,695783 0,666677 0,746435 0,008975 *** 199,7 185 215 

7 0,660733 0,596096 0,705692 0,009888 *** 188,1 179 206 

8 0,789648 0,745584 0,812504 0,006656 *** 184,7 182 190 

9 0,765473 0,726321 0,795440 0,007861 *** 186,3 182 190 

10 0,800147 0,788798 0,819709 0,003714 *** 183,7 180 193 

11 0,782505 0,741363 0,820067 0,007437 *** 184,3 180 190 

12 0,708913 0,651738 0,743915 0,010595 *** 183,9 179 193 

13 0,599841 0,517847 0,662676 0,015518 *** 187,3 179 203 

14 0,759640 0,714397 0,803751 0,011586 *** 204,3 191 225 

15 0,598053 0,498816 0,676476 0,016614 *** 192,9 183 222 

16 0,710033 0,677862 0,742026 0,007414 *** 186,7 179 192 

17 0,724902 0,693255 0,747015 0,005762 *** 191,9 187 197 

18 0,724211 0,656812 0,763358 0,009467 *** 186,8 181 197 

19 0,599184 0,541148 0,679524 0,011831 *** 187,1 182 193 

20 0,757631 0,723721 0,784051 0,006624 *** 187,6 182 194 

21 0,708488 0,687089 0,742878 0,006444 *** 190,1 182 207 

22 0,789391 0,748234 0,828304 0,007515 *** 188,6 184 195 

23 0,788957 0,735033 0,824312 0,007334 *** 193,0 185 215 

24 0,685054 0,625925 0,753691 0,012444 *** 187,6 181 192 

25 0,708505 0,663416 0,744932 0,008217 *** 186,9 182 198 

26 0,667949 0,606400 0,732706 0,013660 *** 187,6 179 191 

27 0,632224 0,550785 0,706158 0,016357 *** 184,9 180 191 

28 0,738221 0,676693 0,782266 0,009909 *** 185,2 178 195 

29 0,779976 0,750048 0,822114 0,007811 *** 184,2 179 188 

30 0,697329 0,668391 0,742438 0,007671 *** 184,9 182 189 

31 0,776083 0,765108 0,792491 0,002815 *** 193,2 187 219 

32 0,725151 0,677189 0,802534 0,011990 *** 194,6 186 230 

33 0,758320 0,719550 0,796993 0,008881 *** 188,3 180 197 

34 0,565021 0,496435 0,597701 0,010193 *** 191,2 186 203 

35 0,636540 0,609080 0,657541 0,004368 *** 189,7 183 195 

36 0,461383 0,347476 0,645205 0,030312 *** 186,7 184 194 

37 0,751804 0,711138 0,776616 0,006767 *** 188,1 180 196 

38 0,550350 0,463330 0,634278 0,017582 *** 189,5 182 213 

39 0,784155 0,753532 0,815132 0,006001 *** 184,6 178 194 

40 0,678603 0,617862 0,718926 0,009979 *** 189,2 183 199 

41 0,428785 0,385762 0,494252 0,012407 *** 190,0 181 205 

42 0,745941 0,716503 0,781268 0,007616 *** 186,7 180 196 

43 0,659314 0,577693 0,739717 0,015352 *** 192,6 186 209 

44 0,630176 0,551891 0,700045 0,014443 *** 190,5 185 197 

45 0,707047 0,683428 0,741238 0,005086 *** 187,3 180 192 

46 0,671788 0,594921 0,726799 0,011983 *** 192,3 188 205 

47 0,614562 0,509748 0,674968 0,017231 *** 190,5 184 207 

48 0,678908 0,658953 0,709420 0,005510 *** 185,8 180 189 

49 0,701817 0,672968 0,729096 0,005195 *** 185,6 181 194 

50 0,680005 0,610969 0,703086 0,009124 *** 197,3 183 210 
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Experiment 

No 
Average R R-min R-max 

Standard 

Error 
  

Average 

Time 

Min 

Time 

Max 

Time 

51 0,620470 0,507255 0,686736 0,020256 *** 210,2 204 219 

52 0,799105 0,777481 0,824150 0,004496 *** 202,6 193 216 

53 0,618832 0,567003 0,676998 0,013040 *** 208,2 204 213 

54 0,712080 0,651465 0,764710 0,011733 *** 216,7 209 227 

55 0,771752 0,742250 0,810719 0,009692 *** 224,2 209 239 

56 0,695206 0,576924 0,759750 0,020437 *** 213,2 202 218 

57 0,522647 0,352505 0,593360 0,022732 *** 207,1 180 215 

58 0,486837 0,415332 0,555415 0,017362 *** 208,7 186 229 

59 0,817483 0,781860 0,854971 0,007066 *** 189,5 182 211 

60 0,599500 0,516862 0,655052 0,013632 *** 189,3 184 200 

61 0,708505 0,631922 0,761220 0,012885 *** 189,0 180 199 

62 0,501576 0,418920 0,614757 0,017228 *** 188,2 183 198 

63 0,590752 0,416470 0,676368 0,023113 *** 193,8 182 216 

64 0,742168 0,658449 0,790266 0,011742 *** 187,2 180 197 

65 0,665983 0,575851 0,741613 0,016872 *** 187,4 182 195 

66 0,555130 0,481674 0,616509 0,013723 *** 187,1 181 191 

67 0,594863 0,468601 0,723028 0,020849 *** 185,2 180 193 

68 0,600080 0,521719 0,645376 0,012178 *** 187,7 183 198 

69 0,577180 0,539153 0,626827 0,007314 *** 185,2 180 190 

70 0,762770 0,743068 0,794418 0,005564 *** 185,9 181 193 

71 0,660943 0,613925 0,745326 0,012705 *** 187,7 183 199 

72 0,597716 0,504635 0,647062 0,014214 *** 195,1 183 209 

73 0,618988 0,549677 0,704046 0,013916 *** 185,8 179 196 

74 0,686834 0,610091 0,766412 0,016064 *** 183,7 179 192 

75 0,792478 0,747026 0,818858 0,006450 *** 183,8 178 191 

76 0,649229 0,618715 0,672772 0,006386 *** 184,5 180 189 

77 0,670804 0,612935 0,719307 0,010331 *** 190,6 181 216 

78 0,660192 0,608627 0,740755 0,014816 *** 186,1 181 194 

79 0,635537 0,605690 0,677040 0,007388 *** 187,5 180 195 

80 0,667314 0,641602 0,699540 0,005693 *** 184,8 178 194 

81 0,670100 0,494116 0,746077 0,024887 *** 185,4 181 195 

82 0,716197 0,661289 0,755221 0,010311 *** 200,1 183 211 

83 0,750911 0,727697 0,779053 0,006119 *** 195,8 183 212 

84 0,673412 0,643785 0,705511 0,006792 *** 187,1 182 198 

85 0,765007 0,736925 0,795761 0,007054 *** 188,4 182 192 

86 0,825397 0,782265 0,857721 0,007691 *** 191,7 182 218 

87 0,567619 0,507921 0,630162 0,014575 *** 189,7 184 196 

88 0,631016 0,500279 0,776754 0,028208 *** 188,1 181 201 

89 0,660698 0,565987 0,757940 0,019739 *** 186,7 182 193 

90 0,644705 0,600887 0,685440 0,009834 *** 185,1 180 188 

91 0,672850 0,598894 0,718816 0,011497 *** 186,7 180 189 

92 0,739634 0,709121 0,777039 0,006638 *** 185,9 181 193 

93 0,641573 0,597554 0,697771 0,010780 *** 186,5 179 195 

94 0,692673 0,648729 0,745526 0,009374 *** 185,8 181 192 

95 0,774476 0,753928 0,799735 0,005838 *** 188,0 181 197 

96 0,705221 0,621627 0,776746 0,017461 *** 188,6 185 199 

97 0,708666 0,656194 0,749361 0,010038 *** 188,3 181 195 

98 0,783601 0,718366 0,822372 0,010032 *** 185,7 179 196 

99 0,818694 0,785041 0,851743 0,006441 *** 183,3 178 188 

100 0,719784 0,688040 0,743481 0,006009 *** 185,9 181 196 
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APPENDIX 10. Results Obtained From EDGASA  

Experiment 

No 

Average 

R 
R-min R-max 

Standard 

Error 
  

Average 

Time 

Min 

Time 

Max 

Time 

1 0,775605 0,770169 0,776209 0,006405 *** 92123,5 91882 92348 

2 0,793760 0,793760 0,793760 0,000000 *** 92652,4 92423 92935 

3 0,844172 0,836307 0,845895 0,001158 *** 92296,6 92175 92453 

4 0,820449 0,820449 0,820449 0,000000 *** 93254,3 93041 93584 

5 0,672472 0,672472 0,672472 0,000000 *** 74447,1 92749 6451482 

6 0,754873 0,753658 0,755177 0,001860 *** 92485,6 87149 93272 

7 0,742086 0,726134 0,745896 0,002542 *** 93663,5 91956 97532 

8 0,842098 0,840567 0,845503 0,002717 *** 96447,8 93681 100360 

9 0,829287 0,823656 0,832811 0,001205 *** 97793,8 95205 101226 

10 0,822553 0,822125 0,824265 0,0063047 *** 94759,4 92385 100447 

11 0,832515 0,827098 0,835169 0,001097 *** 92826,2 92732 92896 

12 0,768326 0,760102 0,770382 0,001371 *** 92475,0 92213 92632 

13 0,681849 0,669922 0,689500 0,002665 *** 93005,2 92840 93223 

14 0,818048 0,818048 0,818048 0,000000 *** 93015,9 92879 93268 

15 0,713447 0,703852 0,714514 0,001066 *** 93067,7 92994 93287 

16 0,764518 0,760193 0,766605 0,008017 *** 92560,3 92346 92817 

17 0,793579 0,772627 0,796068 0,002329 *** 93251,3 93143 93384 

18 0,772895 0,764966 0,775346 0,001099 *** 93159,6 93042 93445 

19 0,669551 0,658367 0,681987 0,003125 *** 92650,9 92455 92769 

20 0,797678 0,796372 0,798237 0,006626 *** 92594,5 92224 93461 

21 0,767582 0,761731 0,769044 0,008080 *** 93219,3 92884 94703 

22 0,828304 0,828304 0,828304 0,000000 *** 93249,5 93091 93356 

23 0,822045 0,815074 0,824312 0,001174 *** 92387,3 92258 92513 

24 0,812849 0,806013 0,817406 0,001861 *** 93399,3 93300 93622 

25 0,774321 0,755059 0,776461 0,002140 *** 92707,6 92553 92814 

26 0,781047 0,779510 0,781217 0,003989 *** 93230,2 93099 93439 

27 0,768654 0,760757 0,776551 0,002632 *** 93288,4 93153 93706 

28 0,797525 0,785909 0,801535 0,001850 *** 93119,2 92982 93303 

29 0,840547 0,827428 0,842005 0,001458 *** 93187,7 93117 93258 

30 0,798178 0,798178 0,798178 0,000000 *** 93065,3 92953 93147 

31 0,846308 0,843732 0,847807 0,007673 *** 93175,5 93093 93271 

32 0,802534 0,802534 0,802534 0,000000 *** 93094,8 92978 93175 

33 0,814666 0,810163 0,815792 0,007291 *** 92868,4 92767 93032 

34 0,656548 0,651620 0,659834 0,001341 *** 93831,2 93683 93918 

35 0,717289 0,707123 0,718419 0,001130 *** 93199,7 93089 93326 

36 0,671424 0,669659 0,671620 0,000684 *** 93269,2 93100 93409 

37 0,804405 0,798315 0,805297 0,001345 *** 92955,9 92837 93151 

38 0,685301 0,661592 0,693366 0,003583 *** 93139,0 92917 93345 

39 0,875043 0,873029 0,876386 0,006692 *** 92874,0 92768 92951 

40 0,769090 0,769090 0,769090 0,000000 *** 93443,9 93345 93567 

41 0,550033 0,508184 0,554683 0,004650 *** 93657,8 93585 93708 

42 0,797461 0,791873 0,800502 0,004293 *** 93353,9 93207 93542 

43 0,771511 0,762146 0,776584 0,001591 *** 93811,5 93686 93934 

44 0,762579 0,759794 0,762889 0,009898 *** 93831,5 93736 93939 

45 0,753247 0,745855 0,759190 0,001665 *** 93167,5 93049 93229 

46 0,754215 0,754215 0,754215 0,000000 *** 93075,2 92938 93217 

47 0,702194 0,676883 0,708950 0,004220 *** 92976,1 92857 93113 

48 0,738921 0,728682 0,744600 0,002372 *** 92869,6 92748 93017 

49 0,757057 0,757057 0,757057 0,000000 *** 93431,5 93245 93529 

50 0,789080 0,788105 0,797570 0,007925 *** 93381,7 93113 93627 
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Experiment 

No 

Average 

R 
R-min R-max 

Standard 

Error 
  

Average 

Time 

Min 

Time 

Max 

Time 

51 0,724471 0,720911 0,725996 0,004946 *** 929786,0 92823 93091 

52 0,837522 0,837341 0,837568 0,002207 *** 92827,2 92713 93144 

53 0,739379 0,724876 0,740991 0,001611 *** 93234,8 93080 93375 

54 0,768615 0,766764 0,770855 0,008474 *** 93717,3 93636 93843 

55 0,820340 0,818470 0,823144 0,000920 *** 93233,9 93098 93352 

56 0,811810 0,800678 0,819231 0,003030 *** 93029,4 92881 93194 

57 0,681741 0,666820 0,683399 0,001658 *** 93312,4 93177 93414 

58 0,594955 0,582283 0,598891 0,002054 *** 93684,5 93489 93943 

59 0,881445 0,881445 0,881445 0,000000 *** 93349,2 92581 94730 

60 0,665812 0,662724 0,667870 0,005129 *** 93445,4 93293 93611 

61 0,788568 0,788568 0,788568 0,000000 *** 92929,1 92757 93054 

62 0,651196 0,631423 0,655074 0,002391 *** 93066,0 92637 93658 

63 0,697987 0,697488 0,699152 0,000371 *** 93218,5 92860 93979 

64 0,832614 0,828797 0,835803 0,001103 *** 93104,9 92996 93256 

65 0,756678 0,742524 0,764290 0,002471 *** 93103,4 92981 93322 

66 0,635484 0,629851 0,647092 0,001383 *** 93170,0 92611 93470 

67 0,746310 0,719359 0,755094 0,004773 *** 92595,1 92452 92830 

68 0,683977 0,666259 0,697102 0,003699 *** 92758,6 92632 92923 

69 0,679791 0,662165 0,690132 0,003409 *** 93722,6 93551 93867 

70 0,810057 0,810057 0,810057 0,000000 *** 92842,2 92637 93008 

71 0,769725 0,751944 0,779983 0,004198 *** 93170,6 93027 93379 

72 0,683942 0,659742 0,688721 0,003275 *** 92747,2 92595 92958 

73 0,726186 0,717163 0,736528 0,002930 *** 92617,9 92416 92780 

74 0,780639 0,779819 0,781185 0,009132 *** 92861,8 92431 93169 

75 0,858029 0,852996 0,859698 0,006005 *** 92516,0 92279 92656 

76 0,708398 0,704158 0,716828 0,001841 *** 92856,9 92579 93073 

77 0,748231 0,719315 0,761216 0,003394 *** 92814,3 92611 92998 

78 0,770961 0,754372 0,780461 0,003275 *** 94667,4 92900 101658 

79 0,715724 0,714496 0,715860 0,009517 *** 92916,5 92771 93083 

80 0,724879 0,706408 0,731939 0,003021 *** 92718,1 92420 92856 

81 0,783635 0,780577 0,785675 0,002001 *** 93041,6 92840 93207 

82 0,765483 0,757352 0,767406 0,004292 *** 93266,2 93128 93360 

83 0,816756 0,814911 0,819524 0,006969 *** 93454,0 93272 93538 

84 0,722837 0,714570 0,723755 0,007518 *** 93266,5 93039 93481 

85 0,808259 0,797088 0,816691 0,002387 *** 93039,9 92888 93320 

86 0,897441 0,897441 0,897441 0,000000 *** 93289,5 93162 93436 

87 0,678681 0,659114 0,690226 0,004065 *** 92558,8 92464 92666 

88 0,773500 0,760484 0,776754 0,002169 *** 93089,0 92880 93618 

89 0,757940 0,757940 0,757940 0,000000 *** 93140,3 92656 93436 

90 0,728235 0,706866 0,733647 0,002653 *** 92336,2 91988 92599 

91 0,751144 0,749099 0,753124 0,008430 *** 93062,9 92860 93258 

92 0,807854 0,804161 0,808460 0,009336 *** 92797,2 92308 93049 

93 0,732752 0,729446 0,733565 0,009816 *** 92944,8 92882 93000 

94 0,743951 0,739224 0,746158 0,001035 *** 93253,5 93127 93421 

95 0,815023 0,812192 0,815731 0,002777 *** 94018,4 93232 95451 

96 0,788506 0,782479 0,789482 0,002627 *** 92569,1 92466 92688 

97 0,765613 0,765613 0,765613 0,000000 *** 92442,5 92356 92575 

98 0,842928 0,842928 0,842928 0,000000 *** 92577,4 92413 92776 

99 0,851743 0,851743 0,851743 0,000000 *** 92172,5 91992 92334 

100 0,771779 0,765686 0,776055 0,001662 *** 92505,0 92347 92649 
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