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ABSTRACT

DOCTORATE THESIS

AN ANALYTICAL EVALUATION OF THE SECOND VIRIAL COEFFICIENT AND
THE FIRST ORDER QUANTUM CORRECTION TO THE SECOND VIRIAL
COEFFICIENT USING THE MORSE POTENTIAL

HATUN CACAN

TOKAT GAZIOSMANPASA UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF PHYSICS

SUPERVISOR: PROF. DR. BAHTiYAR MEHMETOGLU

The virial equation of state is valid over wide range of thermodynamic parameters and
practical since it allows using intermolecular interaction potential models via virial
coefficients to obtain thermodynamic properties accurately. For this purpose, an analytical
formula for the second virial coefficient (SVC) with Morse potential is established and the
obtained formula is applied to the SVC calculations of neutral atom gases and plasmas
of B,Si,Zn, H,, N,,0,,NO,CO, He, Ne, Ar, Kr, Xe and also for the speed of sound of
N,, Ar and Zn gases and found to provide reliable analytical solutions without any parameter
restrictions. The first quantum correction to the SVC is also analytically evaluated with the
Morse potential and applied for noble gases of He, Ne, Ar, Kr, Xe and also for CH4,CO,, N,
atoms and molecules for low temperatures. To our knowledge, except for some different
approximation approaches, this study is the first analytical method for the calculation of the
quantum correction to second virial coefficient with Morse potential and valid for all values of
parameters. The SVC quantum correction results of Morse potential are compared with the
literature especially with Lennard-Jones (12-6) and indicate a good agreement at higher
temperatures of the investigated temperature range.

2020, 55 PAGES

KEYWORD: The Virial Equation of State, Second Virial Coefficient, Quantum Corrections,
Morse Potential, Thermodynamic Properties.



OZET

DOKTORA TEZi

IKINCi VIRIAL KATSAYISI VE iKINCi VIRIAL KATSAYISININ BiRINCi
DERECE KUANTUM DUZELTME iFADELERININ ANALITIiK OLARAK
INCELENMESI

HATUN CACAN
TOKAT GAZIOSMANPASA UNIVERSITESI FEN BILIMLERI ENSTITUSU

FiZiK ANABILIM DALI

TEZ DANISMANI: PROF. DR. BAHTIYAR MEHMETOGLU

Termodinamik parametrelerin genis araliklarinda gegerli olan virial hal denklemi virial
katsayilar1 vasitasiyla molekiiller aras1 etkilesim potansiyeli modellerinin kullanimina olanak
saglamasiyla termodinamik ozelliklerin elde edilmesinde kolaylik saglar. Bu amag
dogrultusunda, Morse potansiyeli kullanilarak Ikinci Virial Katsayist (IVK) ifadesi icin
analitik bir formiil elde edildi ve higbir parametre kisitlamasi olmadan giivenilir ¢oziimler
sunan bu analitik ifade ,Si,Zn, H,, N,,0,,NO,CO, He, Ne, Ar, Kr , Xe gaz ve
plazmalarinin nétral atomlarmin IVK ve N,, Ar and Zn gazlarmin ses hizi hesaplamalarinda
kullanildi. Diisiik sicakliklarda ise IVK icin birinci derece kuantum diizeltme ifadesi Morse
potansiyeli kullanilarak analitik olarak hesapland1 ve soygazlardan He, Ne, Ar,Kr, Xe
atomlarina ve ayrica CHs, CO,, N, molekilleri icin uygulandi. Bilindigi kadariyla, bazi
yaklasik yontemler disinda, bu calisma iVK’'nin quantum diizeltme hesaplamalar igin
Morse potansiyeli kullanilarak olusturulan literatiirdeki ilk analitik metodtur ve
parametrelerin tim degerlerinde gecerli oldugu belirlenmistir. Morse potansiyeli ile
elde edilen IVK kuantum diizeltme ifadesi sonuglar literatiirden Lennard- Jones (12-6)
kullanilan sonuglarla karsilastirildi ve arastirilan sicaklik araliginin ytliksek
sicakliklarinda uyum gézlemlendi.

2020, 55 SAYFA

ANAHTAR KELIMELER: Virial Hal Denklemi, ikinci Virial Katsayisi, Kuantum
Diizeltmeler, Morse Potansiyeli, Termodinamik Ozellikler
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1. INTRODUCTION

In the beginning of the 19" century, the heat was converted to mechanical energy by using the
knowledge of energy conservation law known as the first law of thermodynamics. However,
the effects of temperature on atoms and molecules in microscopic states had not been known
yet. With the discovery of second law of thermodynamics, the irreversible processes of
physical systems are explained by means of entropy. At the second half of 19" century, the
fundamental principles of microscopic effects on macroscopic systems were able to be
explained by probability and statistical mechanics by using entropy as a tool to connect

microscopic and macroscopic systems (Logan, 1999).

The main purpose of natural sciences is the evaluation of physical, chemical and biological
properties of matter in all aspects. It is well known that the matter in universe may exist in
solid, liquid, gas, plasma or between any other possible transition states, which all require
special equations of state (EoS) to evaluate its macroscopic properties. From these properties,
evaluating matter in different states specifically for its thermodynamic properties is of

importance by using probability and statistical mechanics (Olla, 2015).

A physical system can be described in various kinds of equations depending on its certain
state associated with pressure, temperature and density at thermal equilibrium. The first
equation of state is called ideal gas EoS, which is the beginning of thermodynamics and
statistical mechanics of gases. When the pressure-temperature diagrams of matters are
examined, it has been realized that applicability of ideal gas EoS is very limited and new

EoS’s are established creating new branches of physics.

The extreme states of matter (high pressure, temperature, density and velocity) have become
the scientist’s research interests with new theoretical and technical developments. Therefore,
Maxwell-Boltzmann equation describing classical, non-relativistic and distinguishable
particles has been incapable of explaining the relativistic and quantum effects dominated
matter in the phase diagram. For this reason, different parts of the phase diagram of a
substance have to be treated with different equations of state. For instance, the temperature
increase in an ideal gas leads to ionization of gas (plasma), which EoS becomes Saha

equation. Increasing temperature more results in non-degenerate gas with free electrons.



When we consider the pressure increase of the gas at which Fermi energy of the gas becomes
much bigger than its thermal energy, the dominated quantum effects region with degenerate
electron gas can be achieved, which EoS is changed to Fermi-Dirac EoS. When the
degenerate electron gas at high pressure region (P > 102 atm) is considered, the Thomas-
Fermi EoS is used. With the more increased pressure regions, completely degenerate and
electron gases become relativistic except neutrons and protons. The highest pressure regions

at very high densities allow reactions creating neutron stars (Eliezer et al., 2002).

The first correction to ideal gas EoS is van der Waals EoS taking into consideration of
molecular interaction forces and molecular sizes. The Dieterici, Berthelot, Battie-Bridgeman,
Peng-Robinson, Benedict-Webb-Rubin and Redlich-Kwong equations of state are also used
for interactions of atoms and molecules, all of which have some limitations under some
circumstances. Van der Waals, Dieterici and Berthelot equations of state have some
difficulties during calculations of critical points. The Battie-Bridgeman Eo0S provides
insufficient data for high pressure region of gaseus state (Beattie et. al., 1927; Beattie et. al,
1928; Hirschfelder et. al, 1954). The Benedict-Webb-Rubin EoS has limited temperature and
density application region (Mamedov and Somuncu, 2014). The Redlich-Kwong EoS is
applied only for the gaseous state but not appropriate for the liquids. The Peng-Robinson EoS
was developed specifically for the liquid-vapor equilibrium properties of matter (Peng and
Robinson, 1976).

In the region of interacting, neutral particles with a molecular size, using the virial equation of
state is a reliable way for all temperature and pressure ranges of gases and neutral parts of
partially ionized plasmas at generalized chemical model investigating low density plasmas.
The virial EoS expansion includes additional terms in ideal gas EoS representing deviations
arising from particle interactions. This virial EoS series expansion contains increasing number
of virial coefficients starting from the second virial coefficient (SVC) demonstrating a volume
with two interacting particles (McQuarrie, D. A., 1976). These increasing number of virial
coefficients are used as a tool to reduce n-body problem of interacting particles to two body,
three body and so on problems corresponding to the second, third and so on virial coefficients
respectively depending on temperature, type of interaction potential and properties of gas
under consideration. An analytical calculation of the virial coefficients becomes more
complicated as the number of virial coefficient increases. Even for the SVC of simple hard

sphere potential (constants being independent from temperature), second, third and fourth



virial coefficients can be calculated analytically while higher order virial coefficients (fifth to
eleventh) need to be evaluated with numerical computation methods (Schultz and Kofke,
2014). These numerical methods include ab initio, Monte Carlo Simulation methods (Van,
2006), Molecular Dynamics, Density Functional Theory (Zeng, Ju and Xu, 2012) and
Hartree-Fock (Aziz, 1993), Mayer sampling Monte Carlo technique (Ushcats, 2016) and
semiclassical approximation (Hou, 2019). The computer simulation techniques allow
evaluation of complex physical systems that analytical solutions are not currently possible or
require approximations. The interaction potential value of the system has to be available as an

input for the calculations in simulation systems (Van, 2006).

The SVC calculations are affected by the type of atoms and molecules some of which can not
be described by summation of interacting particles’ pair potentials. This nonadditivity issue
arises from interatomic forces created by polarization and exchange effects (Kaplan, 2006).
Some examples of this situation include atoms and molecules possessing electrical charge
creating permanent dipole moments in molecules, which has to be considered by orientation
and induction forces. The additive intermolecular interaction potentials include point like
objects and rigid particles that do not depend on location of other particles such as
intermolecular potential of spherical substances used for SVC calculations only depending on
distance between the molecular centers of mass. However, the SVC of nonsperical atoms and
molecules have to be evaluated considering induction, dispersion, electrostatic and shape
effects. (Eslami et al., 2001). The most commonly used potentials for SVC of nonsperical
substances are the Stockmayer, Keesom, dipolequadrupole, polarizable dipole, polarizable
dipole-quadrupole, and polarizable dipole-quadrupole-steric (Johnson and Eubank, 1973). In
addition, the SVC for polarizable molecules are also evaluated in literature (Haris and Alder,
1953).

Another nonadditivity issue arises from quantum mechanics since charges can not be
described as rigid and point like particles. The quantum effects depending on the molecular
weight together with temperature and density are also some of the influencing factors on the
SVC calculations. Nearby and below the liquid transition region of low temperatures which
classical virial expansion series diverges due to high density, therefore the quantum effects
can not be ignored especially for lighter atoms such as H,, He and Ne. In this case of
overwhelming quantum effects, scattering state wave functions and phase shifts of interaction
potential have to be taken into account (McQuarrie, 1976). The quantum SVC calculations are



considered as a summation of SVC of quantum mechanical effects (B-direct) and exchange
effects (B-exchange) evaluated by quantum statistics (Bruch, 1971). The exchange SVC
formula is the reason for repulsion at short distances due to the asymptotic behavior of wave
function of H, molecules with respect to permutations of electrons, which leads to phase-
shifts (Boyd and Larsen, 1967). This repulsive exchange effects arising from the Pauli
exclusion principle diminish rapidly with the distance. On the other hand, it is also possible to
correct the classical SVC calculations nearby liquid-gas phase transition temperatures with
another more practical formula called quantum correction, which is also calculated

analytically for this study improving the accuracy of data especially for low temperatures.

A simple equation of state for the liquids do not provide enough accuracy, however when the
accuracy is increased one has to deal with complex methods. Although virial equation of state
diverges for the liquid substances, the SVC is used to create an analytical EoS for the liquids
down to freezing temperatures with a sufficient accuracy (Song and Mason, 1990). This rather
simple EoS includes three parameters: the SVC, scaling factor and the effective contact pair
distribution function. Another EoS of the SVC for fluids is an acentric factor dependent linear
equation (Pitzer and Curl, 1957). For the liquid mixtures, EoS of osmotic pressure in terms of
the SVC is applied to biopolymers (Dewi et al., 2020). A more comprehensive study includes
analytical calculations of the virial coefficients up to fourth virial coefficient for different D-
dimensional fluids (Baus and Colot, 1987).

The current improvements in plasma physics researches dealing with laser interaction with
matter, shock wave physics during especially inertial confinement fusions (ICF) and magnetic
field applications on plasmas to create confinement in tokamaks require EoS to be evaluated
and improved for these special cases. The SVC calculations are also important for fully
ionized plasmas under the influence of constant magnetic field which is often encountered for
the astrophysical aspects related to the physics of neutron stars and pulsars (Steinberg et al.,
2000). The magnetic quantum SVC and EoS calculations for fully ionized plasmas are carried
out in literature since their importance in application for the fields of quantum chaos as well

as astrophysics (Hussein et al., 2012).

The SCV calculations also have another interesting and distinct application for determining
the protein crystallization and solubility conditions and interactions between deoxyribonucleic
acids (DNA). The static light scattering (SLS) and self-interaction chromatography (SIC)

experimental methods are used to measure the value of osmotic SVC which should be
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between —0.5 x 10™* and —8.0 x 10~* mol ml gr? in order to form protein crystals in a
solution. The SVC values lower than —0.5 x 10~* mol ml gr? indicate stronger attraction
between proteins generating an amorphous solid and SVC values higher than —8.0 x 10~*
mol ml gr? demonstrate a repulsive protein-protein interaction (Wilson, 2014). The small
angle x-ray scattering (SAXS) method is applied to obtain the SVC values for DNA-DNA
interactions (Li et al., 2008). The magnitude and sign of SVC indicates the strength and
manner (repulsive or attractive) of the DNA-DNA interactions, respectively.

The value of temperature dependent second virial coefficient is also affected by the type of
interaction potential. A very well-known and widely used two parameter Lennard-Jones (6-
12) potential is a simple and practical choice for long range interactions (Galicia-Pimentel et
al., 2006). However, the evaluation of high temperature phase diagram of substances requires
a potential representing short range interactions well. The Morse and Rydberg potentials are
good candidates for short range interactions and three parameter Morse potential is relatively
easier to solve analytically. The Morse potential is suggested to be used for two body
interactions of covalently bound diatomic molecules and metals (Lim, 2003), DNA
denaturation (El Kinani et al., 2018), intermolecular interactions of cancer drugs (Naderi et
al., 2009), liquid transport properties via molecular dynamics simulation (Galicia-Pimentel et
al., 2006), crystal properties of cubic metals (Girifalco and Weizer, 1958), partially ionized
plasmas (Apfelbaum, 2017). These diverse applications of the Morse potential in many
research areas of literature make it a special potential to evaluate analytically, playing a key

role to extend someone’s research interest area beyond.

There are some experimental methods available in literature to determine the virial
coefficients to validate analytical results. The experimental results of pressure, density and
temperature are utilized to determine the second and third virial coefficients of a substance by
using curve-fitting techniques or advanced graphical analysis (Cristancho et al., 2015). The
compressibility factor obtained experimentally is another way of acquiring the SVC through

the accurate interpolation of P —V — T data (Deming and Shupe, 1931).

The recent progresses in plasma and astrophysics lead to investigation of thermodynamic
properties at high temperature ranges as a recent topic. For this purpose, the Morse potential is
chosen to evaluate high temperature low density neutral intermolecular interactions and
thermodynamic properties of nonpolar substances. Using only SVC for low density gases to
investigate the EoS and other thermodynamic properties and neutral interactions of partially

5



ionized plasmas is a good approximation. Therefore, an analytical solution for SVC with
Morse potential is established and applied to real systems of B, Si,Zn, H,, N,,0,,NO,CO,
He, Ne, Ar, Kr and Xe gases for this study. The results are compared with numerical
calculations and another analytical formula from literature and found to have advantages over
the literature when dealing with a substance having lower values of Morse parameters at high
temperatures such as Ar — He mixture plasmas (Pateyron, 1992). The obtained analytical
formula of SVC with Morse potential is used for the calculation of speed of sound for Zn, Ar
and N, gases at different temperature and pressure values and compared with literature
(Mamedov and Cacan, 2019).

The evaluation of quantum corrections to SVC with Morse potential at low temperature
region nearby the liquid transition of gases is also evaluated analytically for this study for
He,Ne, Ar,Kr,Xe, CH s, CO, and N, gases. The quantum correction effects onto the

molecular weight and temperature is assessed comparatively (Cacan and Mamedov, 2019).



2. THEORETICAL FOUNDATIONS
2.1. Virial Equation of State

In order to derive virial EoS, we start with the grand partition function and derive pressure

and density in term grand partition function (McQuarrie, 1976).

2V, T, = Y QN .V, T)2 (2.1.1)
N=0

where absolute activity is A = exp (u/kgT). Inthecase of N =0, Q(N =0,V,T) = 1.

2(V,T, ) =1+N§'Q_21QN v, T)AN (2.1.2)

The relationship between the grand partition function and PV is given as:
PV =k, TIN= (2.1.3)

The average number of molecules in the system can be given as:

N:kBT(alndj :z(a'”dj 2.1.4)
a/u v.T a//i’ Vv, T

A new activity z is assigned in terms of Ain such conditions that z — p as p — 0. When

A — 0, Eq.(2.1.4) becomes as following:

N:ﬁ(aln:) - 2Q, (2.1.5)
oA Jys

As A — 0, then p — 1Q,/V. In these conditions z is appointed as z = AQ,/V. We designate

a new parameter called configuration integral Zy as:

V N
Z,=N!l—| Q 2.1.6
§ (Qj § ( )

1

The grand partition function can be given in terms of the new activity z as:



E(V,T,,u)=1+i[Qg—VNN]ZN 2.1.7)

A newly defined quantity Z, can be used in Eq. (2.1.7).

==1+ E(MJ " (2.1.8)

N1 N!

The pressure can be written in powers of z as following:
P=k,T) bz’ (2.1.9)
j=1

We need to determine b; in terms of Zy. The Egs (2.1.8) and (2.1.9) are substituted into
= =exp(PV/k,T) and after some algebra.

b =@V)?'z, =1

b, =(2V)(Z,-22)

b, =(8V)™(2,-32,2, +22)

b, =(4V)"(2,-42,2,-32,* +122,7} -6Z,")

(2.1.10)

Now we have pressure in terms of activity z, we will have density in terms of z as well. Then,

we will obtain pressure in terms of density.

p:ﬂ:i(a'”dj :i(a'”dj :i(@j 2.1.11)
v vl ar by via ), KT\az),

Therefore, Eq.(2.1.12) can be obtained.

p=> jbz’ (2.1.12)
j=1

We have both pressure and density in terms of z in Egs.(2.1.9) and (2.1.12), respectively. The

quantity z can be determined and eliminated by some algebra.



Z=ap+a,ptap+.. (2.1.13)

Eq.(2.1.13) can be used in Eqg. (2.1.12).

8, =1
8, =20, (2.1.14)
a, =—3b, +8b,’

When the obtained equations are substituted in Eq. (2.1.9), the virial equation of state as a

power series expansion of number density (p) can be expressed as:

Z = é =14+B(T)p + C(T)p? + - (2.1.15)
where Z is the compressibility factor, R is the universal gas constant, B(T) and C(T) are the
temperature dependent second and third virial coefficients, respectively (Kaplan, 2006). The

second and third virial coefficients can be given as:

B(T) =—b, =—(2IV) (2, - Z}) (2.1.16)
C(T) =40} —2b, = —#(v (Z,-32,2,+22}° -3(Z,- 1)) (2.1.17)

Now, we can find Z,, Z, and Z3, then substitute the values into Egs.(2.1.16) and (2.1.17).

2.2. Classical Virial Coefficients

In this section, the second and third virial coefficients will be derived and then, their physical

significance will be discussed.

The classical canonical partition function of N atoms can be given as (McQuarrie, 1976):

1

Q=N

j...Ie’H/kBTdpl...dedrl...drN (2.2.1)
where the Hamiltonian can be given as following:

1 o0
H :%z P2, + Pl + Po +U (X Vi Zy) (2.2.2)
n=1



As a result of integration over momenta for Eq.(2.2.1), the partition function is obtained as:

1 (27mk. T V2
Q ( B j Z,, (2.2.3)

TNl R
The configuration integral Zy is defined as:
Z, = j j e Uv/Tdrdr,...dr, (2.2.4)

For the conditions of N = 1 and U = 0 (no external force), Eq. (2.2.3) becomes:

27mk.TY° v
le( L j v, (2.2.5)

where A is the thermal de Broglie wavelength. Eqg.(2.2.1) can be integrated over the momenta
for N > 1.

_1(aY
Qu = N !(v j Zy (2.2.6)

Now we can derive the first three configuration integrals of Z;,Z, and Z; appearing in
Eqgs.(2.1.15) and (2.1.16) to determine B(T) and C(T).

Z,=[dr, =V (2.2.7)
Z, = [e v/ drdr, (2.2.8)
Z,= I”e‘”3/kBTdr1dr2dr3 (2.2.9)

In order to determine the SVC, intermolecular potential U, (ry, 1) is considered to depend
only on the distance between two monoatomic particles as U, = u(ry3), where ry, = |r, —
r,|. After substituting Eqs.(2.2.7) and (2.2.8) into Eq.(2.1.16), The SVC can be obtained as:

B(T) = —%(z2 _72)= —% Jf[e e 1]arar, (2.2.10)

Since the coordinate elements dr; and dr, are close to each other, it is possible to change

integration variables.

10



l —-u(n
B(T) =~ [ dn [e " ~1jdr, (2.11)

When the values of dr; =V and dry, = 4mr? are substituted into Eq.(2.2.11), the SVC

becomes:

B(T) =—27[[e™ ™" —1]r’dr (2.2.12)
0

where f(r;;) = e7UTu)/keT — 1 s called the Mayer function and r;; = ry, for the SVC
calculations, which represent the interaction of two particles. The EQ.(2.2.12) can be
integrated by parts to express the SVC in a different way (Vargas et al., 2000).

0

2 ¢ dU(r) _ymmT .3
B(T)=- —— e e ridr 2.2.13
™ 3k, T -c[ dr ( )

According to Eqg. (2.2.12), the SVC is independent from the diatomic interaction volume and
shape of the potential curve but it depends on temperature and the integral representing the
area limited by potential curve (Monajjemi et al., 2012). A typical potential curve and a graph

of Mayer function for the SVC is represented in Figure 2.1 (McQuarrie, 1976)

r—>

u(p) 0

Fila}

0 ’ T
-1

Figure 2.1. a) Intermolecular potential curve. b) Mayer function f(ry,) = e~V(2)/ksT — 1
versus intermolecular distance (McQuarrie, 1976).
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In order to derive the third virial coefficient, the intermolecular potential U (1, 7,,13) has to
be determined by using pairwise additivity of intermolecular forces and deviations from

pairwise additivity represented by A.
U, =u(r,) +u(rs) +u(ry,) + Ay, L, 1) (2.2.14)

The pairwise additivity deviations will be neglected for the following derivations. To derive
C(T), Eq.(2.1.17) shows that b; has to be determined which is given by 6Vb; = Z5 —
37,7, + 2Z3. The Z is given as:

Zy=[[J @+ 1,) @+ f5) (L+ f) dr, dr, di,

(2.2.15)
= J‘J‘J.(fﬂ f13 f23 + f12 f13 + f12 f23 + f13 f23 + f12 + f13 + f23 +1) drl dr2 dr3

The value of Z,Z; can be given with three equivalent equations, therefore each one will be

taken into consideration to create —3Z,Z,, where Z; = V.

2,2, =V [ [ (f,+1)dr dr, = [ [ [ (,, +1)drdr, dr,
=V [ [ (f,+Ddr,dr, = [ [ [ (f,;+1)dr, dr, dr, (2.2.16)
=V [[ (T +Ddr,dr, = [ [ [ (,, +Ddr,dr, dr,

Therefore the value of Z; — 3Z,Z; becomes:

Z2,-32.Z, = [ [ [ (£, figfya+ Ty fig £, Fpg - fi5 Ty = 2) dry diry (2.2.17)
The last term to get 6V b5 is 2Z3 = 2 [[[ dry drydrs.

6V, = [ [ [ (f,, fig oy i Fig + Ty Fog+ g ) dry dir (2.2.18)

In Eq.(2.1.17), C(T) is given as 4b2 — 2b5. The value of C(T) can be rearranged to include
6V b; as:

C(M)= —%(ng ~12Vh?) (2.2.19)

The last term to determine C(T) is 12V b2, which can be obtained as:

12



02 = [ fdr, | =[] t0r, ][ [ f0r,

(2.2.20)
aVIo} = [dr, [ £, [ f,0n, = [ [ [ £,y dr, dr, dr,

Two more equivalent equations to Eq.(2.2.20) can be derived by using fi3f23 and fi2f>3.
Therefore, these three equations together form the 12V b2 to be subtracted from 6V bs. Finally,

the third virial coefficient can be obtained.

1
C(T):_wﬂj f12 f13 f23dl’1dl’2 dl’3 (2'2'21)

The Eq.(2.2.21) represents interaction of three particles which are close to each other enough
to interact since the related Mayer functions vanish for large separations between pair of

particles.
2.3. The Potential Effects on Second Virial Coefficient

The intermolecular interactions between atoms and molecules of a system form a curve
displaying potential energy versus intermolecular distance of the system. This curve contains
important information such as potential well depth, equilibrium distance, force and
anharmonicity constants. In order to provide reliable information for the interactions, a
potential curve should satisfy some necessary conditions (Varshni, 1957). When the
intermolecular distance r = 0, the value of potential should be U = oo or large enough
representing very large repulsive force due to atomic or molecular volume. At r =1,
potential should have a minimum where attractive and repulsive forces are in equilibrium.
When r — oo, the attractive forces become dominant and potential has to reach a constant

value asymptotically.

In order to have a good representation of interactions, a widely used two parameter Lennard-
Jones (6-12) potential is suggested to obtain virial coefficients and thermodynamic properties
of non-bonded noble gas atoms. Since the Lennard Jones (6-12) potential is inadequate to
describe more interacting gases and molecules, it is modified to be used for metals as
Lennard- Jones (n-m) including adjustable potential parameters specifically determined for
the metals under consideration (Zhen and Davies, 1983). Another potential similar to

Lennard- Jones (6-12) but theoretically more accurate is called the Buckingham (exp-6)

13



potential which is also modified due to its incorrect approach for small intermolecular

distances (forr = 0, U(r) = —0).

D-fox+1/e 4%
—— = ffemiar-geay

7000

2000

Joo0

Y000

5000

6000

7000
£
8000

Figure 2.2. The potential curve of 0, for 3y state. Bold solid line RKR experimental
potential, solid line Rydberg potential, dashed line Morse potential (Rydberg, 1931).

A theoretically successful chose of potential for the calculation of SVC can be determined by
using experimental data. For this purpose, Rydberg—Klein—-Rees (RKR) method allows the
reconstruction of the potential curve by using experimental spectroscopic data. Therefore, the
RKR model is utilized for the comparative analysis between model potentials to determine the
mean deviation from the RKR experimental potential curve. The percent errors of potentials
are reported as 3.68 % for the Morse, 3.48% for the Poschl-Teller and 2.94% for the Rydberg
potential (Kaplan, 2006).

The evaluation of SVC by using various potentials is available in literature such as Lennard-
Jones (6-12), Rydberg, Morse, Keesom, Stockmayer and Boys- Shavitt potentials (Kaplan,
2006). The correct choice of potential depends on temperature range of study and structure of

the substance under evaluation as it is stated at introduction. Figure 2.3.1 displays the
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potential curves of Rydberg, Morse and RKR experimental potentials of O, for 32' state. The
Rydberg potential demonstrates a better curve being more close to the experimental RKR
curve since Morse potential includes an exponential attraction term leading to over estimation
of attractive forces for long ranges. Since long range attractive forces are negligible at high
temperatures, Morse potential can be a good candidate for representation of dominant strong
short range repulsion forces with its exponential repulsion term. The Morse, Rydberg,
Lennard- Jones (6-12) and Lennard- Jones (m-n) potential formulae are provided in
Eqgs(2.3.1)-(2.3.4), respectively.

U(r)y = Diexp[-2a(r —r,)] — 2exp|—a(r — 1,)]}. (2.3.1)
U(m)g = D[1+ b(r;; — 1p)]e 2070 (2.3.2)
U(r)L-j6-12) = 4€ {(%)12 = (5)6} (2.3.3)
U@sonen = e (22 (3) -2 ()} 234)

where potential parameters D and ¢ are in energy units, g, 7, and r, are in length units and b

and a are in reciprocal of length units.

In Figure 2.3, B(T) = 0 at a special temperature called as Boyle’s temperature (Tg) at which
gas molecules behave ideally since attractive and repulsive forces become equal. In literature,
Ty value of Argon is reported to be 410,151 °K for the Lennard- Jones (6-12) potential
(Somuncu, 2018).
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Figure 2.3. Different potential models versus intermolecular distance r and their
corresponding SVC values B, (T) versus temperature for argon. Holborn and Otto, Michels,
Wijker, and Wijker graphs are based on the experimental SVC results (McQuarrie, 1973).

2. 4. Quantum Effects

In quantum mechanics, in order uncertainty principle to be applicable, d separation between

particles has to be in order of de Broglie wavelength being proportional to uncertainty in
position Ax, so that particles wavelengths overlap ( Ax = g ~Agand Ax=dorlz =d).

Therefore, the quantum physics is applicable if the value of de Broglie wavelength A is close
or higher than the average distance between particles which is proportional to number density
as d~n~"/3. This case can be expressed as nA3 > 1and valid for high number density n or

low temperature of gases under consideration. According to equipartition theorem, average

2
energy of every particle in a gas with momentum Pand temperature T is :—m = %kBT. We can
substitute the value of momentum in de Broglie wavelength asip = \/% Therefore,
B

number density and temperature values play the key role to determine the behavior of gases
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and plasmas and the gasses with smaller molecular mass m encounter more quantum effects

at the same temperature (Karaoglu, 2009).

In quantum statistics, two main statistical distribution laws representing the identical particles
with half integer spins and integer values of spins called Fermi-Drac and Bose-Einstein
statistics, respectively. The main equations associated with these laws are represented by (+)
sign for the Fermi-Drac statistics and (-) sign for the Bose-Einstein statistics in Eqgs.(2.4.1)
(McQuarrie, 1976).

E(V,T,2) =[]t e7)"
k

_ le*ﬁgk
K1+ g P
AePa
N=>n=>» ———
; k gli ﬂe_ﬂgk (241)
Ae, e P

E=Ne=>ng =) —*

Zk: Kk Zk:li AePa

PV =4k, T Y In(l+ e ™)

k

where N is the number of particles, n, is the average number of particles in the energy state

of k and & is the average energy of a particle. The analytical solutions of Egs.(2.4.1) is not

available when A — 0 indicating the reduction of Egs.(2.4.1) to the classical Boltzmann

statistics that require A = gwhere q is the molecular partition function. For this reason, the

value of A is the indicator of behavior of a system whether it is a quantum or classical
statistics. The value of A is small when the density of a system is low and its temperature is
high corresponding to a classical Boltzmann statistics. However, the quantum statistical
behavior is expected for a system when A is large which is the case for high density and low
temperature values of a system (McQuarrie, 1973). Therefore, number density and

temperature values play the key role to determine the behavior of gases and plasmas.

n — T diagram of gases and plasmas can be divided into some areas in order to be treated by
an appropriate physical method. These areas are determined by the non-ideality and
degeneracy parameters. A plasma is considered as ideal if the ratio of the particle’s electrical

e?n

1/3 - :
P < 1). If the particle’s ratio

interaction energy over thermal energy is lower than 1(I" =
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of thermal energy over Fermi energy is much higher than 1, the plasma becomes classical

T _ 2mkgT

(non-degenerate) (0 = kEL o (3m?n,) /3 » 1). The quantum effects are dominant if
F

the degeneracy parameter becomes lower than 1 which is only possible with high number
density or low temperature values. Another parameter 5 is defined as quantum criteria of
ideality and it represents the ratio of electrical interaction energy to Fermi energy. The
condition of r, < 1 represents the ideal quantum gas region. Figure 2.4 illustrates then — T

diagram with non-ideality and degeneracy parameters (Omarbakiyeva, 2010).

~~
e
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10'5 1 1 1
10° 10° 109 W*® w2 W= W 15
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Figure 2.4. The Logn — LogT diagram of plasmas with terrestrial and cosmic examples
(Omarbakiyeva, 2010).

In this research, an analytical evaluation of the SVC with Morse potential is carried out for
high temperature region which is also suitable for the structure of Morse potential. Therefore,
dominant quantum effects for low temperature region are avoided. However, an analytical
evaluation of the quantum correction with Morse potential is obtained nearby liquid transition

region of some atoms and molecules at low temperature region.
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The expression of the first quantum correction arises from statistical thermodynamics. The
translational and rotational degrees of freedom of interacting molecules can be considered
classical since separations between levels are so small to be treated by an integral. However,
vibrational degrees of freedom have to be discussed quantum mechanically. Therefore, the
Hamiltonian of a system of interacting molecules and partition function become (McQuarrie,
1973).

H = Heiass + Hauant

Q = QciassQquant (2.4.2)
where classical canonical partition function can be defined as:

Qclass = ﬁf e~ Hetass@D/K6T dp oo dqeiggs. (2.4.3)

The quantum mechanical form of the canonical partition function represented by the

summation of energy states can be reduced to classical one when A — 0.

Q:Ze—EJ/kBT N 1
]

NI .[...J‘e*H“‘Bpol...dedql...qu (2.4.9)

Now, we need an expression for the canonical partition function including non-ideal systems.
A general expression for the quantum correction can be derived starting from the partition

function.

Qu =D [wie "y dr,...dr, (2.4.5)

where B = 1/kgT.

The canonical partition function can be expressed as a power series of h, the first term being
the classical partition function wihout the N! due to neglected symmetry of the wave
functions (Kirkwood, 1933).

Qy :h%.f...je‘ﬁHw(pl...rN,ﬂ)dpl...drN (2.4.6)
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where the function w(p4, ..., Ty, B) is the representation of the quantum correction to the

classical partition function. This function is simply reduced to 1 as A — 0 or § = 0 and given
as:

W(Pyseons Ty, B) = ZhW. Prree Ty B). (2.4.7)

When the Eq.(2.4.7) is expanded, the first three expressions can be obtained as:

w, =1
__IEN

M om JZ; P VY (2.4.8)
__i ﬂ_z 3 2 _ﬂ_a N ﬁ_4 N 2

W, = Zm{ 2 ;VKU 3 LZ_;‘ (V) (Z PV j }4m [kz_; pk.vkuj }

where w; vanishes during the integration because of the odd function of momenta. When
Eqs.(2.4.8) are substituted into Eq.(2.4.6), Eq.(2.4.9) can be obtained.

3N/2

(272mkgT) K2 o2 ,
QN_ 4 o _” ﬁu{l_ ﬂ ( 2U —g(VkU) j+..}drl...drN (2.4.9)

By dividing Eq.(2.4.9) by N! and substituting it into Eqs(2.4.10) and (2.4.11), we can get
Eq(2.4.12).

N
Z, =N !(ij Q, (2.4.10)
Q
B, =—b2:—i(z -Z}) (2.4.11)
2V
B :—27;c e "2 _1)r2dr + f e ”YOr?dr +O(h? (2.4.12)
’ l( ) 6m(k T 3! ")

The first term in Eq.(2.4.12) is the classical SVC, the second term is the first order quantum
correction to the SVC and the small contribution coming from h3 term represents the quantum
mechanical ideal gas SVC which is negligible.
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2.5. Thermodynamic Properties

The basic thermodynamic relations are given in Egs.(2.5.1). The formulae of the internal

energy, enthalpy, entropy and Gibbs free energy are shown respectively (Kallmann, 1950).
T

E=[CdT
0

g
H =jcPdT 25.1)
0

toodT
s=|C,—

H-TS

F

where Cp is constant pressure heat capacity and Cy, is constant volume heat capacity. The

pressure derivatives of thermodynamic properties can be given in Egs.(2.5.2).

(51 (3143 (81

oP ); op) \ar ).’ \eP ), ot s

(5) (33 () -3
oP ). oP ). \ar )" Uer ) oT? ),

FF5)

All thermodynamic properties can be derived in terms of the SVC, starting from the truncated

virial equation of state for the real gases in Eq.(2.5.3).
PV =RT +B(T)P (2.5.3)

The partial differentials used for the derivation of thermodynamic properties can be obtained

using the Eq.(2.5.3) as following.
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ﬂ) _R,B
or ) P OT

o) o°B

or? ), or?

) (2.5.4)

a_V) __RT__(v-B)

oP ); P? RT

a_Pj R N RT

oT )y V-B (V-BY
Noting that, the terms higher than (V — B)~2 are neglected in Eq.(2.5.5).

2 2

P)__N B, R 259
or (v-B) oT (v-B) dT

The thermodynamic properties in terms of the SVC and its first and second derivatives can be
obtained by using Eqs.(2.5.4) and (2.5.5) substituted into Eq.(2.5.2).

(B(T)) P? N
2RT?

As =—RInp— 2P _
=

AH =P(B(T)—B,(T)+...

AE =—PB,(T) +...

AF =RTINP+PB(T)+... (2.5.6)

ac, - P(2BM+B,M) (Blm); Pt
T RT

ac, = PR
g

+...

Egs.(2.5.6) include A symbol meaning changes in enthalpy, entropy, internal energy, free

- - -, . 2
energy and specific heat capacities and B,(T) =T di (TT) and B,(T) = T? ddLT(T).

As one of the thermodynamic properties, the speed of sound ¢ can be represented in terms of

the SVC and its derivatives as:
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, yRT[. P 1
c 7|v| [1 ﬁ[zaa)u(y 1)B(r)+( 7) B,(T)+.. B (2.5.7)

where y is the adiabatic constant, R is the gas constant and M is molecular mass of the gas.
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3. METHODS AND RESULTS

3.1. A General Analytical Method for Evaluation of The Thermodynamic Properties of

Matters Using Virial Coefficients with Morse Potential at High Temperature!

The equation of state for imperfect gases is available in the literature as virial expansion in
terms of density (Kaplan, 2006). The SVC is the first term in the expansion representing the
first order deviation from the ideal gas, which is used for the calculations of thermodynamic
properties of gases and partially ionized plasmas. In order to have an analytical calculation of
SVC, various kinds of potentials are used for intermolecular interactions such as Lennard-
Jones (Mamedov and Somuncu, 2014) Rydberg (Sinanoglu and Pitzer, 1959), Mie (Heyes and
Vasconcelos, 2017) and Morse (Matsumoto, 1987) e.c.t. for gases and plasmas. To our
knowledge, the studies of the analytical evaluation approaches of the second virial coefficient
with Morse potential are quite limited in the literature. Although Morse potential
demonstrates more attraction for the long range interactions, it is preferred at high
temperature studies (T> 3000 °K) since contributions of short range interactions are more
significant at high temperatures. On the other hand, long range potentials such as Lennard-
Jones (6-12) and modified Buckingham provide more accurate results at lower temperatures

where plasmas can not exist (McQuarrie, 1976).

It is very important to have an accurate analytical solution of SVC for gases and also for
neutral interactions of partially ionized plasma for the Generalized Chemical Model in order
to achieve the exact values of thermodynamic properties of gases and plasmas. There are two
general kinds of approaches in plasma physics to have equation of state which are physical
and chemical methods. In the physical approach, electrons and protons are treated as
fundamental particles, but atoms and molecules as compound species formed via fundamental
particles’ bounding process (Omarbakiyeva, 2010). The first principles approach simulations
consider ions classically and electrons degenerate as a result of a quantum approach and
combined quantum molecular dynamics and density functional theory together (Recoules et
al., 2009). Average atom model also uses first principles method to describe electrons inside

the spherical neutral cell with Wigner-Seitz radius to determine the properties of plasmas

! This chapter is a slightly modified version of our manuscript published in Contributions to Plasma Physics and
has been reproduced here with the permission of the copyright holder.
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(Johnson et al., 2006), but average atom, first principles and molecular dynamics methods are
having difficulty when the density of the system is small since they are based on description
of crystal systems (Apfelbaum, 2017). Depending on first principle approaches, fugacity
expansion is given as an another example of physical approach which Ebeling used SVC
during his calculations of plasmas in weak magnetic fields (Ebeling et al., 2000). All the
components of partially ionized plasma (electrons, ions, neutral atoms and molecules) are
considered as separate species within the Generalized Chemical Model (GCM) (allowing
calculations at low density region), so that free energy can be evaluated as the sum of ideal,
and interacting particles between charged-charged, neutral-charged and neutral-neutral.
Apfelbaum considered plasmas with coupling parameter as I' < 1, so that interactions are
taken into account, but evaluated low density limit to avoid quantum effects and used Morse
potential for SVC calculations of neutral particles during his calculations (Apfelbaum, 2013;
Apfelbaum, 2016; Apfelbaum, 2017). Khomkin and Shumikhin also used chemical model but
they preferred Lennard-Jones (6-12) potential for the SVC of neutrals (Khomkin and
Shumikhin, 2014).

This study focuses on high temperature gas and partially ionized plasma investigation of
neutral atom interactions through an analytical calculation of the second virial coefficient with
preferably Morse potential which is used for many other purposes in the literature such as
evaluation of the vibrational energy transfer for diatomic molecules (Calvert and
Amme,1966), crystal properties of solids (Girifalco and Weizer, 1958), bound state solutions

of Schrédinger equation (Arda and Sever, 2011) and intermolecular forces in liquids (Mayer

and Careri, 1952). The bound states are available if the temperature obeys T < # (
B

ionisation energy | values are acquired from the NIST atomic spectra database ) approximate
expression which all the tabulated SVC values of all atoms and molecules are calculated up to
these values (Ebeling et al, 2017). Since noble gases have high ionization energy, their SVC
results are taken up to high temperature values. The classical statistics formulas obtained for
this study require considerable corrections at the low temperatures creating a low temperature

application limit for this study with dimensionless temperature value suggested to be T* >
25 (T* = T%B where kg is Boltzmann’s constant and D is the potential well depth) in order

to avoid quantum effects which have more influences on light gases such as He and H,
(Lucas, 1991). For the heavier gases, contributions arising from quantum effects becomes

much little and these gases tends to behave more classically at even more reduced temperature
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values (Hryniewicki, 2011). In the literature, tabulated quantum correction values are
provided for different potentials for down to T* = 0.3 values which can be a good
approximation for the other potentials (Hryniewicki, 2011; Boyd, 1970). In another study,
Konowalow et al. calculated the SVC and its temperature derivatives and tabulated SVC
values for the arbitrary values of the Morse parameter ¢ (depending on curvature of the
potential at the minimum) (Konowalow et al., 1961). Another analytical solution of SVC with
Morse potential which focuses on obtaining the Morse parameters for different atoms and
molecules and compares results with Lennard Jones (6-12) parameters (Matsumoto, 1987).
Saxena and Gambhir applied a combination rule for the calculation of SVC of gaseous

mixtures (Saxena and Gambhir,1963).

In this study, an accurate analytical solution of SVC with Morse potential is obtained, applied
to different atoms and molecules for up to the highest temperature that neutrals are still
available and compared with both another analytical and numerical value and proved to

provide reliable thermodynamic properties as well.
3.1.1. Analytical expression of SVC with Morse potential

The virial equation of state may be introduced in terms of a power series per volume as (Kunz
and Kapner, 1969):

PV _z7=1420, <D
RT %4 &

+ ... (3.1.1.1)

where Z is representing the compressibility factor, V7 is the molar volume and B(T) is the
second virial coefficient depending on temperature and intermolecular potential function
U(r).The SVC is defined as:

B(T) — —ZTTNA fooo[e—U(T)/kBT — 1] Tsz' (3112)

where N, is Avogadro’s number. An equivalent formula of SVC may be introduced as
(Vargas et al., 2001):

B(T) = — 27;:;3 fomdl;—g)e—U(ﬂ/kBTﬁdr (3.1.1.3)

Before introducing related thermodynamic functions, a unit conversion of B(T) is necessary

to convert SVC units from cm3/mol to cal/mol.atm ( 1 cal = 4.13 X 1072 L.atm ). The
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velocity of sound in different substances is one of the thermodynamic properties that can be
calculated using the SVC with Morse potential of this study as an application by using the
following formula (Hirschfelder et al., 1954):

2= %F + %(23@) +2(y — DB(T) + @&(ﬂ) +. . l (3.1.1.4)

dB(T)
ar

2
where P is the pressure, B;(T) =T and B,(T) = T? dj;Tm. Since the last two terms

including B,(T) and B,(T) in Eq.( 3.1.1.4) contribute very little for the given data range in
Table 5, they will be neglected during calculations. y, M and ideal speed of sound values c,;
are acquired from The NASA Computer program CEA (Chemical Equilibrium with
Applications) (CEARUN NASA, retrieved 2018).

For the calculation of SVC with the Morse potential where its first exponential expression
represents the repulsive forces due to the Pauli Exclusion Principle and the second one stands

for the attractive forces between atoms and defined as (Al-Maaitah, 2018):
U(r) = D{exp[—2a(r —1.)] — 2exp[—a(r — )]} (3.1.1.5)

Where D is the potential well depth, 7, is equilibrium distance and a represents the potential’s
curvature at its minimum. In order to reconstruct Eq. (3.1.1.3), new expressions are offered in
Egs.(3.1.1.6) and Eq. (3.1.1.7) obtained in literature (Matsumoto, 1987):

D
p=ps, b=pexp(ar), x=bexp(-ar). (31.1.6)

With the new definitions, the SVC may be introduced as following

B(T) = 4;zNAj(ﬁ_x)(e-mﬁ)(m%f dx (3.1.1.7)

3t

For the analytical solution of Eq. (3.1.1.7), an alternative approach is applied by using a third

power binomial expansion theorem.
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b b b
B(r)_4”N { (Inb)* p [e ¥ Inxdx-3(Inb)* [ xe ™ ** In xdx +/p [ ** (In x)’dx
0 0

0
b

b b
_I xe ™2V (In x)’dx - 3In b\/EJ' e 2 (Inx)’dx+3In bJ. xe™ 2V (In x)°dx
0 0

0

b b
—(In b)3 \/Bj e X 2P iy +(In b)3 j xexz*zxﬁdx} (3.1.1.8)
0

0

The following exponential series expansion formula is used for the term e?*v? in Eq.(3.1.1.8):

ey

o0
i=0 I

(3.1.1.9)

After substituting Eqg. (3.1.1.9) into Eqg. (3.1.1.8), we have obtained a general analytical

formula for the SVC with Morse potential as:

47N,107%

B(T): 307

{K(p.b)+L(p,b)+M (p,b)+N(p,b)+P(p,b)+R(p,b)+S(p,b)+V (p,b)}(3.11.10)

where 1072 arises from the unit conversion of 1 A3 = (1078)3 cm3 and the analytical
solutions of eight integrals appearing in EQ.(3.1.1.8) are given in the same order in
Eq.(3.1.1.10). In Eq.(3.1.1.10), the quantities

K(p,b),L(p,b),M(p,b),N(p,b),P(p,b),R(p,b),S(p,b)andV (p,b) are defined as,

respectively:

~3/p(Inb) ZZC—)( 2p) (31.1.11)

i=0

L(p)=2(no 3 S o ) 31112

i=0
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()= 2 (25 (31113
n(p5)=-3 2 ) (31114

—aino53 F0 2 ) 1119
R(p)=ans3: ) (2 ) (3.0
S(p.0)=-Jp (b’ eV (Ext (b-p )+t (9)) (31117)
V(pi0)= (o) 5[1-e** e oz et (o- J5) -t (V5 (31118)

In Egs. (3.1.1.11), (3.1.1.12), (3.1.1.13), (3.1.1.14), (3.1.1.15) and (3.1.1.16), the general

functions of C, D and F are introduced as:

1 1

1 n+1 ' n+1 n+1
C(n,b)=—=| 2| —=.,b? |Inb+G3?| b? +T| —= || =2Inb+Inb? - “”(] 3.1.1.19
() 4[ (2 ) “[ o o ”;1] (2 )( VL)) e
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D(n,b)= 116[81“( > j(lnb) 8r(”2+1 b j(lnb) 12r(”2+1j(|nb) Inb2+6F( , jlnb(l b?) -

n+1 L1 LA
2 ~30| K 40| |2
r[ , j(lnb) ~12(Inb)* G2? b\o, y n;rl ~12InbG;; b‘o, o o M|

11 11 11 11 2
1 n+1 n+1 n+1
6G5° | b? w30 M2 | (22Inb+ Inb? ( er( Inb| »© j -
“5[ ‘o, 0, 0, 0, ”T” (2 (~2Inb-+nb?)"y! 2 2 Vo
2
n+1 n+1 n+1 n+1 n+1 n+1
ar Inb? r——| " +3r 2Inb—Inb? )y
(55 (W[2D+(ZJE‘” 2 e 5

n+1 n+1 n+1 n+1 n+1
ar (N[ j m( j+r( j @( j 3.1.1.20
( 2 jW 2 v 2 2 v 2 ( )

F(n,b):%(4 [”glj(l b)’ 4r(”7+1 b? )(lnb)2—4 [ngljlnblnbz

- L, 1 L1 1
3,0 2 4,0 2
r( > j(lnb) ~4InbG3S b‘O’ 4 HTH ~2G}s b‘O, > o nTJrl +

O e L L R 8 e

where gamma, incomplete gamma, digamma and Meijer G functions appear in Eqgs.
(3.1.1.19), (3.1.1.20) and (3.1.1.21) and polygamma functions are introduced in Egs.
(3.1.1.20) and (3.1.1.21) may be defined as respectively (Gradshteyn and Ryzhik, 1965):

a) =Tta’1e"dt (3.1.1.22)

F(a,x)= [t-e-tdt (31.1.23)
_d _r()

wo(z)_EEJnI(z)_-r(z) (3.1.1.24)

2°ds (3.1.1.25)
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vo(2)= 0 (z))=:_;%= ;"Z"n vo(2) (31.1.26)

3.1.2. Computational results of established formula and its application

The SVC values of some atoms and molecules for different temperatures, crucial for the
evaluation of the thermodynamical properties of gases and the generalized chemical model of
partially ionized plasmas, are acquired for this study as an application to real gases by using
Eqg. (3.1.1.10). Tables 3.2-3.4 introduces the SVC values of corresponding temperature in
each row with three results for every atom or molecule that the first one stands for the
analytical result of Eq. (3.1.1.10), the second one represents the analytical result of literature
(Matsumoto, 1987) and the third one is the numerical result of the SVC with Morse potential
for noble gases of He, Ne, Ar, Kr and Xe , semiconductors B,Si and metal Zn and
molecules of H,, N,,0,,NO, CO, respectively. Noting that, a useful approach given in the
literature (Matsumoto, 1987), with the analytical formula was established under assumption
for b — co. This corresponds to lower temperatures which provides very practical and
accurate results at this temperature region. The main advantage of our established formula is
its validity for arbitrary values of parameter b leading to evaluation of the SVC for all

temperature ranges.

During the calculations, Morse parameters appeared in Eq. (3.1.1.5) are introduced for each
atom and molecule in Table 3.1. Figs. 3.1-3.3 demonstrates the analytical SVC values with
Morse potential using Eq. (3.1.1.10) for different temperatures for noble gases of He, Ne,
Ar, Kr and Xe, semiconductors B, Si and metal Zn and molecules of H,, N,,0,,NO,CO,
respectively. The noble gases results from Table 3.2 display the exact match between the two
analytical methods and differ very slightly from the numerical results that the maximum
percent error found to be % 0.0074 for He gas at 21000 °K, proving the accuracy of the new
analytical method. The results of B,Si and Zn from Table 3.3 demonstrate the equal
analytical results except for Si at 4000 °K and 7000 °K, which results from Eq. (3.1.1.10) for
Si display closer values (or exact for 7000 °K) to the numerical results. Table 3.3 also
displays another fact that three results for each temperature value can be distinguished easily
at lower decimal places when the values of b and p (from Eqg.( 3.1.1.6)) are high such as B

and Si results. When the Table 3.4 examined, only the two analytical data for O, at 5000 °K
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and 6000 °K differ slightly from each other and values from literature (Matsumoto, 1987) are

closer to the numerical values.

As an application, the three speed of sound values for each temperature are calculated for
Zn,Ar and N, for the temperature range between 3000-7000 °K in Table 3.5. The first
obtained ¢, value is for 0.1 atm and the second one is for 1 atm that demonstrates the
deviation from the ideal gas behavior except for Zn at 3000-6000 °K temperature range. In
this temperature region of Zn, the SVC is negative indicating the existence of dominant
intermolecular attractive forces resulting in pressure decline compared to that acquired values
using ideal gas law (Lucas, 1991). The results are compared with ideal speed of sound data
from NASA chemical equilibrium with applications and found to be in a good agreement
between them, ensuring that the obtained analytical formula is convenient for acquiring the

further thermodynamic properties.

After providing an analytical solution to the SVC over Morse potential, it has been applied to
some atoms and molecules for different temperature values for the application by using
Mathematica 7.0 software. The values of SVC with Morse potential of another analytical
solution from the literature and numerical values are calculated and tabulated for the
comparison. It has been proved that the new analytical solution provides us accurate
analytical SVC and speed of sound results being in a good agreement with compared results

from literature and operates precisely at any arbitrary temperature value.

Table 3.1. Morse potential parameters are obtained from literature for Zn (Apfelbaum, 2017),
for B and Si (Apfelbaum, 2013) and the remaining from literature (Matsumoto, 1987).

D/kg Te a
°K A A1

He 12.6 2.92 2.197
Ne 51.3 3.09 2.036
Ar 118.1 4.13 1.253
Kr 149.0 4.49 1.105
Xe 226.9 4.73 1.099
B 32144.478 1.59 1.962
Si 37946.731 2.246 1.438
Zn 522.203 1.19 2.9496
H, 494 3.29 1.923
N, 934 4.43 1.166
0, 152.4 3.75 1.542
co 100.3 4.27 1.136
NO 131.8 4.22 1.309
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Table 3.2. The first result in each box is the analytical result of Eq. (3.1.1.10), the second one
is the analytical result of the literature (Matsumoto,1987) and the third one is the numerical
result of the SVC with Morse potential for the noble gases of He, Ne, Ar, Kr and Xe for

different temperatures.. All the B(T) results in Tables 3.2-3.5 are in cm3. mol ™! units.

T(°K) He Ne Ar Kr Xe
3000 35.9486494
35.9486494
35.9486492
4000 27.7713544 36.5717095
27.7713544 36.5717095
27.7713543 36.5717091
5000 26.9053877 36.2883854
26.9053877 36.2883854
26.9053876 36.2883855
6000 20.9185322 26.0026119 35.6801636
20.9185322 26.0026119 35.6801636
20.9185321 26.0026119 35.6801635
7000 20.1275058 25.1354372 34.9566325
20.1275058 25.1354372 34.9566325
20.1275055 25.1354371 34.9566324
8000 9.19066093 19.4132444 24.3247278 34.2037308
9.19066093 19.4132444 24.3247278 34.2037308
9.19066084 19.4132442 24.3247277 34.2037308
9000 8.87889049 18.7668436 23.5738170 33.4590529
8.87889049 18.7668436 23.5738170 33.4590529
8.87889041 18.7668436 23.5738170 33.4590527
10000 4.65901985 8.60194506 18.1793251 22.8798761 32.7392050
4.65901985 8.60194506 18.1793251 22.8798761 32.7392050
4.65901666 8.60194876 18.1793252 22.8798761 32.7392049
11000 4.48955651 8.35339003 17.6427123 22.2380999 32.0510383
4.48955651 8.35339003 17.6427123 22.2380999 32.0510383
4.48955333 8.35338997 17.6427124 22.2380999 32.0510382
12000 4.33797783 8.12837996 17.1502085 21.6433209 31.3966814
4.33797783 8.12837996 17.1502085 21.6433209 31.3966814
4.33797553 8.12837990 17.1502086 21.6433200 31.3966814
13000 4.20120210 7.92318218 16.6961033 21.0906271 30.7759434
4.20120210 7.92318218 16.6961033 21.0906271 30.7759434
4.20120209 7.92318212 16.6961033 21.0906272 30.7759434
14000 4.07685942 7.73486469 16.2756117 20.5755723 30.1875140
4.07685942 7.73486469 16.2756117 20.5755723 30.1875140
4.07685940 7.73486464 16.2756116 20.5755724 30.1875140
15000 3.96309080 7.56108535 15.8847157 20.0942198 29.6295818
3.96309080 7.56108535 15.8847157 20.0942198 29.6295818
3.96309077 7.56108530 15.8847157 20.0942198 29.6295818
16000 3.85841299 7.39994552 15.5200256 19.6431172
3.85841299 7.39994552 15.5200256 19.6431172
3.85841296 7.39994548 15.5200255 19.6431172
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Table 3.2. (Continuous) The first result in each box is the analytical result of Eq. (3.1.1.10),
the second one is the analytical result of the literature (Matsumoto,1987) and the third one is
the numerical result of the SVC with Morse potential for the noble gases of He, Ne, Ar, Kr
and Xe for different temperatures.. All the B(T) results in Tables 3.2-3.5 are in cm3. mol™?!

units.

17000

18000

19000

20000

21000

22000

23000

24000

25000

26000

27000

28000

29000

3.76162495
3.76162495
3.76162492
3.67174148
3.67174148
3.67174145
3.58794516
3.58794516
3.58794514
3.50955089
3.50955089
3.50955088
3.43597917
3.43597917
3.43572596
3.36673581
3.36673581
3.36673581
3.30139625
3.30139625
3.30139625
3.23959323
3.23959323
3.23959323
3.18100714
3.18100714
3.18100714
3.12535823
3.12535823
3.12535824
3.07240037
3.07240037
3.07240037
3.02191594
3.02191594
3.02191595
2.97371171
2.97371171
2.97371171

7.24988617
7.24988617
7.24988613
7.10961242
7.10961242
7.10961238
6.97803778
6.97803778
6.97803775
6.85424232
6.85424232
6.85424229
6.73744067
6.73744067
6.73744064
6.62695737
6.62695737
6.62695733
6.52220751
6.52220751
6.52220746
6.42268146
6.42268146
6.42268139
6.32793268
6.32793268
6.32793259

34

15.1786657
15.1786657
15.1786656
14.8581819
14.8581819
14.8581819
14.5564674
14.5564674
14.5564674

19.2192479
19.2192479
19.2192479



Table 3.3. The SVC results with Morse potential for semiconductors B and Si and a metal Zn
for different temperatures (in units of cm3. mol™1). The data order is the same as Table 3.2.

T(°K) B Si Zn

3000 —0.4260046839
—0.4260046839

—0.4260046830

4000 —11117.56202 —114758.18272 —0.20409416099
—11117.56202 —114758.18295 — 0.20409416099
—11117.56175 —114758.18241 —0.20409416072

5000 —2632.43424  —20107.87978 —0.08399215083
—2632.43424 —20107.87978 —0.08399215083
—2632.43417 —20107.87937 —0.08399215063

6000 —1039.90451  —6506.85868 —0.01152871933
—1039.90451  —6506.85868 —0.01152871933
—1039.90742  —6506.85837  —0.01152871917

7000 —545.26640  —2970.98960  0.03528301237
—545.26640  —2970.99320  0.03528301237
—545.26883  —2970.98960  0.03528301250

8000 —338.88353  —1672.42072  0.06694048142
—338.88353  —1672.42072  0.06694048142
—338.88354  —1672.42063  0.06694048154

9000 —234.80665 —1077.48480 0.0890358175
—234.80665  —1077.48480 0.0890358175
—234.80666  —1077.48477 0.0890358173

10000 —175.05970 —760.50421 0.104793783
—175.05970 —760.50421 0.104793783
—175.05970 —760.50424 0.104793777

11000 —572.350416 0.1161892485
—572.350416 0.1161892485

—572.350440 0.1161892379
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Table 3.4. The SVC results (in units of cm3. mol™1) with Morse potential for the molecules of
H,, N,,0,,NO and CO for different temperatures. The data order is the same as Table 3.2.

T(°K) H, N, 0, co NO
3000 28.65738215
28.65738215
28.65738224
4000 27.71234964
27.71234964
27.71234977
5000 20.69163013 26.71583362
20.67873806 26.71583362
20.67874537 26.71583362
6000 12.00716902 24.22172893 20.05344948 19.33848082 25.77737605
12.00716902 | 2422172893 | 20.05324495 | 19.33848082 | 25.77737605
12.00716879 | 2422172890 | 20.05310004 | 19.33848090 | 25.77737604
7000 11.50990765 | 23.18612419 | 19.46881920 | 18.48583473 | 24.91834190
11.50990765 | 23.18612419 | 19.46881920 | 18.48583473 | 24.91834190
11.50990744 23.18612416 19.46882447 18.48583482 2491834192
8000 11.08067387 | 22.26909846 | 18.93010686 | 17.72496125 | 24.13705955
11.08067387 22.26909846 18.93010686 17.72496125 24.13705955
11.08067369 22.26909627 18.93011141 17.72496129 24.13705956
9000 10.70435223 21.45079662 18.43496634 17.04270880 23.42591050
10.70435223 21.45079662 18.43496634 17.04270880 23.42591050
10.70435209 | 21.45079669 | 18.43497026 | 17.04270879 | 23.42591049
10000 10.37023632 20.71498260 17.97932967 16.42731422 22.77639301
1037023632 | 2071498260 | 17.97932967 | 16.42731422 | 22.77639301
10.37023619 20.71498271 17.97933306 16.42731418 22.77639296
11000 10.07049292 | 20.04863994 | 17.55886419 | 15.86889401 | 22.18064065
10.07049292 20.04863994 17.55886419 15.86889401 22.18064065
10.07049280 20.04863994 17.55886717 15.86889396 22.18063426
12000 9.79923267 19.44134062 17.16953463 15.35929966 21.63179822
9.79923267 19.44134062 17.16953463 15.35929966 21.63179822
9.79923256 | 19.44134070 | 17.16953734 | 15.35929961 | 21.63179812
13000 9.55192432 18.88467802 16.80776328 14.89183464
9.55192432 | 18.88467802 | 16.80776328 | 14.89183464
9.55192422 18.88467807 16.80776588 14.89183460
14000 932501217 | 1837181543 | 1647044112 | 14.46097784
9.32501217 18.37181543 16.47044112 14.46097784
9.32501207 18.37181544 16.47044374 14.46097781
15000 9.11565818 17.89713997 16.15488670 14.06215012
9.11565818 17.89713997 16.15488670 14.06215012
9.11566080 | 17.89713995 | 16.15488943 | 14.06215009
16000 892156334 | 17.45600011 13.69152683
892156334 | 17.45600011 13.69152683
8.92156325 | 17.45600006 13.69152680
17000 8.74084095 | 17.04450627 1334589015
8.74084095 17.04450627 13.34589015
8.74084087 17.04450622 13.34589011
18000 8.57192479 16.65937860
8.57192479 16.65937860
8.57192471 | 16.65937854
19000 16.29782962
16.29782962
16.29782956
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Table 3.5. The speed of sound calculations for Ar, N, and Zn by using Eq. (3.1.1.4) for
temperature range 3000- 7000 K. The first value of ¢, is calculated for P = 0.1 atm and the
second one for P = 1 atm for each temperature and atom or molecule.

T(°K) B(T) <@> co(m/s) coi (m/s)” = Cp M(ﬁ)*
mol from Eq. (3.1.1.4) Cv
from Eq.(3.1.1.10)
Ar | 3000 23.6623759 1020.52 1020.1 1.6667 39.948
1021.41
4000 22.7401176 1178.37 1177.9 1.6667 39.948
1179.10
5000 21.7989151 1317.44 1317.0 1.6667 39.948
1318.07
6000 20.9185322 1443.16 1442.7 1.6667 39.948
1443.71
7000 20.1275058 1558.78 1558.3 1.6667 39.948
1559.27
N, | 3000 28.20951488 1071.55 1071.1 1.2885 28.013
1072.66
4000 26.74266023 1212.01 1211.6 1.2330 27.936
1212.89
5000 25.40735099 1327.69 1327.3 1.1284 26.63
1328.43
6000 24.22172893 1638.86 1638.3 1.1169 20.759
1639.58
7000 23.18612419 2099.50 2098.8 1.1521 15.222
2100.26
Zn | 3000 -0.4260046839 797.530 797.3 1.6665 65.39
797.517
4000 -0.20409416099 919.780 919.5 1.6624 65.39
919.770
5000 -0.08399215083 1020.860 1020.6 1.6383 65.39
1020.858
6000 -0.01152871933 1097.7313 1097.4 1.5786 65.39
1097.7310
7000 0.03528301237 1153.3992 1153.1 1.4938 65.39
1153.3998

*Data are taken from CEARUN, NASA.
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Figure 3.1. Dependence of the SVC with Morse potential (Eq. (3.2.9)) on temperature for He,
Ne, Ar, Kr and Xe.
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Figure 3.2. Dependence of the SVC with Morse potential (Eg.(3.2.9)) on temperature for B, Si

and Zn.
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Figure 3.3. Dependence of the SVC with Morse potential (Eg.(3.2.9)) on temperature for the
molecules of H,, N,,0,, NO and CO.

3.2. The Comparative Analytical Evaluation of Quantum Corrections to The Second

Virial Coefficient with Morse Potential and Its Applications to Real Systems?

Virial coefficients with various potentials, playing significant role to determine intermolecular
interactions, thermodynamic and transport properties of the gases and liquids, require some
corrections at low temperature range where quantum effects are gradually increasing with
decreasing temperature (McQuarrie, 1976; Landau and Lifshitz, 1980). Especially, the virial
coefficients with Morse potential are very important in the evaluation of the thermodynamic
and transport properties of gases and plasmas (Matsumoto, 1987; Apfelbaum, 2013;
Apfelbaum, 2016; Apfelbaum, 2017). Also, the significant studies have been carried out on
the investigation of drug design and DNA end-to-end stacking interactions by using second
virial coefficients over the recent decades (Li et al., 2008). It is specifically emphasized that

intermolecular potential energy surface obtained by using Hartree-Fock theory for drug

2 This chapter is a slightly modified version of our manuscript published in The Journal of Chemical
Thermodynamics and has been reproduced here with the permission of the copyright holder.
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interactions with specific atoms creates satisfying results with SVC results especially with the
Morse potential (Monajjemi et al., 2012). Noting that, analytical evaluation methods of the
classical virial coefficients with Morse potential carried out so far is very limited (Konowalow
et al., 1961; Matsumoto, 1987). In this sense, the obtained formula in the study (Matsumoto,
1987) is very useful approximation for the calculation of the thermodynamic properties of
gases. However, classical SVC results need a quantum correction term at low temperatures
where more significant effects have been observed at light molecules such as He and H,
(Hryniewicki, 2011). In the literature, numerous analytical methods for the quantum
corrections of SVC with different potentials for both isotropic and anisotropic interactions
exist such as Lennard-Jones (12-6) (Mamedov and Somuncu, 2016), Stockmayer (McCarty
and Babu, 1970), Berns and van der Avoird (Corbin et al., 1984). Besides, one of the
numerical methods of adaptive grids using polynomial interpolants of different degree is used
for the quantum corrections to SVC with the Lennard-Jones (12-6), Rice and Hirschfelder
modified Buckingham (exponential-six) and Buckingham and Corner modified Buckingham
(Hryniewicki, 2011). An analytical evaluation attempt to classical and quantum corrections of
second virial coefficient (SVC) with Morse potential have been analyzed in work (Bruch,
1967) to our knowledge. In the study (Bruch, 1967) , the proposed approach for the first
quantum correction of SVC with Morse potential was evaluated by using the Laplace
transforms and applied to only He gas above 100 °K. As stated by the author, this
approximate solution to both classical and first quantum correction of SVC with Morse
potential is limited in the application since the approximation is only valid for certain range of

temperature and potential parameters of certain molecules.

In this study, we have proposed an efficient analytical formula for the evaluation of the
quantum correction of SVC with Morse potential and applied it to isotropic interactions. As
seen from calculation results, the obtained formulae are useful for accurate evaluation of
guantum correction of SVC with wide range of thermodynamic parameters. As an application,
the correctness of the obtained results for the quantum correction of SVC with Morse has
been compared with Lennard- Jones (12-6) potential data (Somuncu et al., 2019) and the
classical SVC with Morse (Matsumoto, 1987) and Lennard- Jones (12-6) (Mamedov and
Somuncu, 2014) calculations are included to display the significance of quantum correction

effects on classical SVVC results.

40



3.2.1. Analytical expressions of quantum correction to SVC with Morse potential

BO(T) is defined as classical SVC and the remaining terms represent the quantum corrections,

the SVC can be given as a series expansion (Boyd, 1970):
B(T) = B°(T) + qB*(T) + q*B*(T) + --- (3.2.1.1)

where g = A%/m and m is the mass of molecule. The first two terms in Eq.( 3.2.1.1) can be
given (Uhlenbeck and Beth, 1936):

(" -u(r) 2 =(du(r)Y v
B(T)=—2nNAI(e @T_l}zdw%g)sf{ dfr)je %BTerr (3.2.1.2)
0 0

where U(r) is intermolecular interaction potential, N, is Avagadro’s number, £ is reduced

Planck constant and kg is Boltzmann’s constant.

In this study, intermolecular interaction potential U(r) is the Morse potential and defined as
(Kaplan, 2006):

U(r) = D{exp[—2a(r — r,)] — 2exp[—a(r — )]} (3.2.1.3)
In order to solve the first quantum correction to SVC with Morse potential, we need to use
some dimensionless parameters introduced in literature (Matsumoto, 1987) as following

D
p=7-, b=\pexplar), x=bexp(-ar). (3.2.1.4)

By substituting Eq.( 3.2.1.3) into Eq.( 3.2.1.2) and using expressions in Eq.( 3.2.1.4), we

obtain the first quantum correction to SVC with Morse potential (second terms in Eq.(

21‘[NA0'3

3.2.1.1) and (3.2.1.2)) as divided by Van der Waals value of b, = 5

(in cm3/mol units)

and dimensionless quantum mechanical parameter A* = h /o VvmD given as (Hirschfelder et
al., 1954):

B*(T) = aB' (M) _ _p 3'4)((\/6_)()2 (e—x2+2xﬁ)(|n§j2 dx (3.2.1.5)
0

A*?b, ~ 16m2c

where a new constant is introduced as ¢ = oa that o is the distance where the potential
becomes zero. In order to solve B*1(T), two second order binomial expansions are utilized
for Eq.(3.2.1.5).
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b b b
B™(T)= 16p2 {4 p[x(Inx)"e™>VPdx—8pln bJ.x Inxe ™ >Pdx+4p(Inb)* [ xe ™ *"Pdx
0

_8\/_IX |nX 2 g +2X‘/—dX+16\/_|an.X In xe™* +2X\/—dx 8\/_ |nb j 2 —x +2x\/—dx

0

+4Ix Inx) 2o oo gy 8Inb_[x In xe X*“J—dx+4(lnb) j x%e X 2P gy (3.2.1.6)

0

the following serial expansion formula for the term e?*V? in Eq.(3.2.1.6) are used
(Gradshteyn and Ryzhik, 1965):

(3.2.1.7)

A dimensionless value of B*!(T) in Eq.( 3.2.1.6) can be obtained as:
BH(T) = —E—{C(p,b) + D(p,b) + E(p,b) + F(p,b) + G(p,b) + H(p,b) + K(p, b) +
L(p,b) + M(p, b)} (3.2.1.8)

where the analytical solutions of nine integrals appearing in Eq.(3.2.1.6) are given in the same
order in Eq.(3.2.1.8) and expressions C(p,b), D(p,b), E(p,b), F(p,b),G(p,b), H(p,b),
K(p,b), L(p,b) and M(p, b) are defined as, respectively.

n N (i,b i
C(p,b) = 4p Z%(zﬁ) (3.2.1.9)

n

D(p,b) = —8pInb Z (\/_) (3.2.1.10)

i=0

E(p,b) = 2p(inb)?(1 — e PO=2VP) 4 P [pVr(Erf (b — \[p) + Erf (/D)) (3.2.1.11)

n N(i+1b i
F(p,b) = —8@2('i—+!)(2\/5) (3.2.1.12)
G(p,b) = 16\/_1an Hlb ( \/B) (3.2.1.13)
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H(p,b) = —2,/p(inb)?e " (—2e*2VP (b + [p) + 2e*"/p + e®*+P(1 + 2p)Vr(Erf (b —

Jp) + Erf(\/p) (3.2.1.14)
K(p,b) 42 (i+2b) (2\/_) (3.2.1.15)
L(p, b)=—8In b ;M(Zﬁ) (3.2.1.16)

M(p,b) = (Inb)%e~b*(2e?*(1 + p) — 2e2PVP(1 + b% + b\/p+p)+ eb2+p\/5(3 +
2p)Vr(Erf(b —\[p) + Erf(\/p)) (3.2.1.17)

The general functions N and S appearing in Egs.( 3.2.1.9), (3.2.1.10), (3.2.1.12), (3.2.1.13),
(3.2.1.15), (3.2.1.16) can be defined as:

N(n,b) = §<4r (§+ 1) (Inb)2 — 4T (§+ 1,b2) (Inb)? — 4T (g + 1) Inblnb? +
1 1> 204"( 1 1 1 >+
n+2 | — ’ n+2

0 2 selo0 0 0 22

2r (5+1) @Inb b2y (3+1) +T (5 + 1)<¢0 (§+1))2+r(§+1)¢1(§+1)>

(3.2.1.18)

r(g + 1) (Inb?)2 — 41Inb Gy <b2 "

0 (1) n_12>+r(§+ 1)(=2Inb + Inb? —

v 5+ 1))) (3.2.1.19)

Gamma, incomplete gamma, polygamma and Meijer G functions in Egs.( 3.2.1.18) and

S(n, b) = —i(zr(§+ 1,b2)Inb + G52 <b2

(3.2.1.19) can be given as, respectively (Gradshteyn and Ryzhik, 1965; Copuroglu and
Mehmetoglu, 2015; Mamedov and Copuroglu, 2016; Copuroglu, 2017).

o)

I'(s) = f t5le~tdt (3.2.1.20)
0
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[ee)

(s, x) =Jt5‘1e‘tdt (3.2.1.21)

X

Y (z) = :—;FF((ZZ)) (3.2.1.22)
" (b - " I'(1-a.
Gpm,qn(z|a1’“"apJ: l-J. szlr(l S)Hj:lr(l aj+s) 25ds (3.2.1.23)
Uy )27 A T r(a-b )]0, (a -s)

3.2.2. Computational results of quantum correction to the SVC and its applications on

some atoms and molecules

In Table 3.6, all necessary parameters for each atom and molecule are provided in order to
calculate Egs. (3.2.1.6) and (3.2.1.8). By using these values from Table 3.6., the first quantum
correction to SVC with Morse potential analytical calculation results for the gases of
He,Ne,Ar,Kr,Xe, CHs, CO, and N, are displayed in Table 3.7. for the temperatures down
to boiling points of each specific gas except for the lighter atoms such as He and Ne. The
boiling points temperature limits are chosen since the virial expansion diverges at a specific
densities and temperatures (not quite appropriate for liquids) but lighter atoms are exceptional
since classical statistics approach of virial expansions is not valid anymore for boiling point of
He gas (4.222 °K) and He data is suggested not to be considered below 40 °K ( McQuarrie,
1976).

The comparative results between the quantum correction to SVC with Morse and Lennard-
Jones (12-6) potentials displayed in Table 3.7. indicate two important facts depending on
temperature and type of the atoms and molecules. In Table 3.7., the dimensionless quantum
corrections of SVC with Morse B*1(T),, and Lennard- Jones (12-6) B*l(T)L_, represent the
same pattern for each molecule having very close quantum correction results for high
temperatures but quantum correction with Morse potential results gradually become more
significant with decreasing temperature that might be due to stronger attractive interaction
structure of the Morse potential (McCarty and Babu, 1970). This heavy quantum correction
with Morse potential at low temperature effect is more notable for lighter molecules and
gradually decreases for heavier molecules as seen from Table 3.7. total quantum correction to

SVC with Morse potential results A**byB*1(T).
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The last two columns of Table 3.7. represent the analytical evaluation of classical SVC with
Morse potential B°(T), and Lennard-Jones potential B®(T),_; results for corresponding
temperatures in order to determine the quantum contribution effects on the classical SVC with
two different potentials. Noting that, the negative signs appearing before the classical terms
indicate a dominant attractive intermolecular interactions, but quantum correction terms are

always positive (Mcquarrie, 1976).

The results of this work conclude that potentials showing more attractive interactions than
Lennard-Jones (12-6) such as Morse and Stockmayer might have important contributions of
guantum correction to SVC for relatively heavier atoms and molecules. The similar results
from literature using Stockmayer potential for quantum correction to SVC confirm this
statement (McCarty and Babu, 1970). Therefore, results of this work may help improve the
accuracy of thermodynamic properties of the heavier atoms and molecules at low
temperatures, providing accurate analytical data to include quantum effects.

Table 3.6. Morse, Lennard- Jones and quantum mechanical parameters used for calculations
in Table 3.7.

Morse Paramaters (Matsumoto, Lennard- Jones parameters | Quantum
1987) (Matsumoto, 1987; ?ai‘;m:t[:f'
Mamedov and Somuncu, (Hirschfelder et
2014) al., 1954)
D/kg(°K) |r.(A) |a (A1) |D/kg (°K) o (A) A
He 12.6 2.92 2.197 10.22 2.56 2.67
Ne 51.3 3.09 2.036 35.6 2.75 0.593
Ar 118.1 4.13 1.253 120 3.40 0.186
Kr 149.0 4.49 1.105 171 3.60 0.102
Xe 226.9 4.73 1.099 220 4.10 0.064
CH, 149.1 4.50 1.166 148.4 3.81 0.239
co, 196.7 5.18 1.02 189 4.48 0.0804
N, 93.4 4.43 1.166 95.9 3.706 0.228
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Table 3.7. The comparative calculation results of quantum correction to SVC with Morse and
Lennard-Jones (12-6) potentials.

T(K) | A%beB(T)y | A*BYT)y BTy B(T), B°(T)y B°(T),;
(em? /mol) Eq.(3.2.1.8) | (Somuncu et (ecm®/mol) (em®/mol)
al., 2019) (Matsumoto, Mamedov and
1987) Somuncu,
2014)
256 0.620983 0.0293461 0.0041165 0.00301586 11.9165 11.1838
163.8 1.17205 0.0553883 0.00776955 0.0051656 12.0519 10.903
He 835 3.28254 0.155125 0.02176 0.0121032 10.7904 8.85924
64 5.27642 0.249351 0.0349774 0.0172638 9.48849 7.17024
40.9 12.5087 0.591129 0.0829201 0.0325495 5.55298 244914
890 0.0455055 0.00173483 0.0049334 0.00302287 13.8922 13.8633
557 0.0899740 0.00343012 0.00975438 0.00532031 13.7478 13.4734
392 0.154335 0.0058838 0.0167320 0.00824122 12.9234 12.4978
Ne 2225 0.418476 0.0159537 0.0453684 0.0173099 9.4141 8.86959
142.4 1.05224 0.0401152 0.114077 0.0325731 3.38414 3.02745
95 3.06185 0.116728 0.331945 0.0610677 -6.653 -6.20557
57 18.2717 0.696581 1.9809 0.151338 -31.8123 -27.5516
900 0.0253301 0.000510964 0.0147695 0.0135492 19.7215 19.6465
700 0.0386980 0.000780624 0.0225640 0.0190251 15.8243 15.4605
500 0.0707185 0.00142655 0.0412345 0.0306725 7.46732 7.02514
Ar 300 0.199967 0.00403378 0.116597 0.0680158 -16.1271 -15.4972
200 0.537735 0.0108473 0.313542 0.140083 -51.3545 -47.8059
100 5.7881 0.116759 3.37492 0.654731 -193.948 -172.516
87.29 10.6843 0.215527 6.22983 0.945785 -247.965 -218.326
900 0.0131783 0.000223939 0.0215243 0.0219473 17.028 15.7565
700 0.0206311 0.000350595 0.0336981 0.0314805 9.23382 7.67843
500 0.0392666 0.000667277 0.0641365 0.0526836 -6.8245 -8.25538
Kr 300 0.123126 0.00209234 0.201109 0.127118 -51.2354 -50.6705
200 0.37938 0.006447 0.619665 0.290023 -118.094 -113.178
120.85 2.50218 0.0425207 4.08696 1.02619 -289.508 -272.564
900 0.0158788 0.000182666 0.0445962 0.0315107 8.55413 11.3064
700 0.0261108 0.000300371 0.0733329 0.0461072 -7.03685 -5.28859
Xe 500 0.0547254 0.000629547 0.153698 0.0799171 -38.587 -37.8982
300 0.218996 0.00251927 0.615057 0.208791 -127.101 -125.808
200 0.964258 0.0110926 2.70815 0.524327 -268.851 -260.319
166.1 2.21043 0.0254282 6.20805 0.852911 -376.286 -358.843
900 0.0858647 0.00123092 0.0215494 0.0180359 22.1221 22.8098
700 0.134029 0.00192138 0.033637 0.0256296 14.9504 14.8925
CH, 500 0.254273 0.00364516 0.0638147 0.0421936 0.0616688 -0.818914
300 0.784843 0.0112512 0.196971 0.098092 -41.3699 -42.5704
200 2.40897 0.034534 0.604576 0.213946 -103.98 -103.242
111.65 22.8895 0.328134 5.74455 0.861177 -306.099 -289.714
900 0.0254415 0.000224152 0.0346993 0.0252848 22.4848 24.8008
700 0.0409242 0.000360562 0.0558158 0.0365358 6.15843 7.02238
co, 500 0.0823397 0.000725454 0.112302 0.0619412 -27.058 -27.957
300 0.296164 0.00260935 0.403933 0.153911 -119.59 -121.399
194.65 1.25768 0.0110808 1.71533 0.387611 -277.574 -273.612
900 0.0330619 0.000514936 0.00992174 0.0101081 27.0828 28.8338
N 700 0.0496851 0.00077384 0.0149103 0.0140464 23.9397 24.9508
2 500 0.0882299 0.00137417 0.0264774 0.0222395 16.7783 16.9116
300 0.232046 0.0036141 0.0696361 0.0473478 -4.17354 -4.88676
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200 0.565899 0.00881382 0.169824 0.0928184 -35.5581 -36.0363
100 4.34164 0.0676206 1.30291 0.376509 -157.307 -151.446
77.355 12.1711 0.189563 3.65248 0.713356 -249.88 -236.369

4. CONCLUSION

The Virial Equation of State considers molecular sizes and attractive —repulsive forces
between atoms and molecules via intermolecular potential, which is essential for describing
the behavior of real gases. The SVC representing the first deviation from the ideal gas has
numerous applications including gases, liquids, neutral parts of partially ionized plasmas,
fully ionized plasmas under constant magnetic field, quantum SVC calculations and osmotic
SVC for biological purposes. One of the most important effects of determining the value of
SVC is the choice of intermolecular potential which is the Morse potential for this study since
its features are proper for the evaluation of the SVC at high temperature range. The analytical
evaluation of SVC using Morse potential might be an appropriate choice for the plasma and
high temperature gas studies since the repulsive forces, represented by an exponential term

within the Morse potential, are more effective at high temperature region.

The analytical formula in Eq.(3.1.1.10) is established by using binomial expansion theorem,
exponential series expansion formula and some special functions in Mathematica 10 software.
The real system applications of the obtained analytical formula of SVC with Morse potential
are demonstrated on neutral atom gases and plasmas of B, Si,Zn, H,, N,,0,,NO,CO, He,
Ne, Ar, Kr, Xe and provided reliable and accurate data since our study doesn’t have any
parameter restrictions. An approximate maximum temperature is specifically chosen for every
atom and molecule considering its specific ionization energy to make sure the gas still
includes neutrals. Similarly, a minimum specific temperature is considered for every

substance to avoid temperatures below the liquid phase transition.

The results of obtained analytical formula for the SVC with Morse potential in Eq.(3.1.1.10)
are compared with both numerical and another analytical formula from literature (Matsumoto,
1987). Tables 3.2-3.4 includes these comparative results of SVC with Morse potential for
,Si,Zn, H,, N,,0,,NO,CO, He, Ne, Ar, Kr, Xe gases at different temperatures and
Figures 3.1-3.3 illustrates the results of Eq.(3.1.1.10). The negative signs of SVC results in
Table 3.3 indicate the existence of dominant attractive intermolecular forces between gas
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molecules and the positive signs in Table 3.2 and Table 3.4 denote repulsive intermolecular
forces at corresponding temperatures. The main obstacle of the compared literature is its

approximation of b — oo in Eq.(3.1.1.7), which loses its validity at high temperature region
with a gas of lower values of Morse parameters (b = /% e%e — 0). It can be deduced that,
B

our analytical formula for the evaluation of the SVC has advantages over the literature
especially at high temperatures since it does not include any approximations. Therefore, our
analytical formula is valid for all values of parameters, creating accurate thermodynamic

properties such as speed of sound.

The thermodynamic properties of substances can be calculated by using obtained analytical
formula of SVC with Morse potential by using Eq.(2.5.6) and Eq.(3.1.1.4). As a real system
application, the speed of sound of N,, Ar and Zn gases are calculated and tabulated for
temperatures between 3000-7000 °K for 0.1 and 1 atm pressures in Table 3.5. The higher
pressure speed of sound results displayed more deviations from the ideal speed of sound
values except for Zn at 3000-6000 °K. This unexpected behavior of Zn might be due to the
negative signs of SVC values at 3000-6000 °K which represent attractive forces and form a
reduced pressure effect inside the gas. The remaining results are compared with literature data
from NASA and found to produce satisfying data.

The virial EoS diverges at low temperature region nearby gas-liquid transition due to quantum
effects at high density and low temperatures, which can be corrected by the quantum
correction terms. The first quantum correction using the Morse potential has been evaluated
analytically and applied to He, Ne, Ar, Kr, Xe,CH 4, CO, and N, gases for the low
temperature range nearby liquid transition region which density of every gas increases
significantly. Since lighter atoms are more vulnerable to quantum effects, He data for
quantum correction is not provided for below 40 °K as recommended in literature
(McQuarrie, 1976). In a study (Bruch, 1967), first quantum correction to SVC is evaluated
with an approximation limiting its real system application on gases, but our study provides
exact analytical solution without any parameter restrictions using binomial expansion,

exponential series expansion and special functions in Mathematica 10 software.

Table 3.6. includes first quantum correction to SVC results for Morse and Lennard-Jones (6-

12) potentials for the comparison. The classical SVC results of Morse and Lennard-Jones (6-
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12) potentials are also included in Table 3.7 since Eq.(3.2.1.1) expresses that classical and
quantum correction of SVC must be added to form total SVC value at a given temperature of
a gas. Table 3.7 also demonstrates that although the SVC results may be positive or negative,
the first quantum correction results are always positive (McQuarrie, 1976). Table 3.7 displays
a similar temperature dependence of first quantum correction values of both Morse and
Lennard-Jones (6-12) potentials since temperature reduction creates more quantum effects
inside the gas. The analytical calculation results of first quantum correction to SVC with
Morse potential compared to literature with corresponding correction data using Lennard-
Jones (6-12) potential and found to provide mostly higher correction values than Lennard-
Jones (6-12) used results. However, the differences between the results are found to be not
significant at higher values of temperature range.

The results of analytical evaluation of SVC and speed of sound using Morse potential is
published in Contribution to Plasma Physics (Mamedov and Cacan, 2019). Besides, the
findings of analytical evaluation of first quantum correction to SVC using Morse potential is

published in Journal of Chemical Thermodynamics (Cacan and Mamedov, 2019).
Our next goal is to achieve a more practical analytical solution for the SVC with Morse

potential so that its first and second temperature derivatives can be calculated easily to

consider in calculations of thermodynamic properties.
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