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The virial equation of state is valid over wide range of thermodynamic parameters and 

practical since it allows using intermolecular interaction potential models via virial 

coefficients to obtain thermodynamic properties accurately. For this purpose, an analytical 

formula for the second virial coefficient (SVC) with Morse potential is established and the 

obtained formula is applied to the SVC calculations of neutral atom gases and plasmas 

of  𝐵, 𝑆𝑖, 𝑍𝑛, 𝐻2, 𝑁2, 𝑂2, 𝑁𝑂, 𝐶𝑂, 𝐻𝑒, 𝑁𝑒, 𝐴𝑟, 𝐾𝑟,  𝑋𝑒  and also for the speed of sound of 

𝑁2, 𝐴𝑟 and 𝑍𝑛 gases and found to provide reliable analytical solutions without any parameter 

restrictions. The first quantum correction to the SVC is also analytically evaluated with the 

Morse potential and applied for noble gases of 𝐻𝑒, 𝑁𝑒, 𝐴𝑟, 𝐾𝑟, 𝑋𝑒 and also for 𝐶𝐻4, 𝐶𝑂2, 𝑁2 

atoms and molecules for low temperatures. To our knowledge, except for some different 

approximation approaches, this study is the first analytical method for the calculation of the 

quantum correction to second virial coefficient with Morse potential and valid for all values of 

parameters. The SVC quantum correction results of Morse potential are compared with the 

literature especially with Lennard-Jones (12-6) and indicate a good agreement at higher 

temperatures of the investigated temperature range. 
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ÖZET 

 

DOKTORA TEZİ 

 

İKİNCİ VİRİAL KATSAYISI VE İKİNCİ VİRİAL KATSAYISININ BİRİNCİ 

DERECE KUANTUM DÜZELTME İFADELERİNİN ANALİTİK OLARAK 

İNCELENMESİ 

 

HATUN ÇAÇAN 

 

TOKAT GAZİOSMANPAŞA UNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ 

 

FİZİK ANABİLİM DALI 

 

 

TEZ DANIŞMANI: PROF. DR. BAHTİYAR MEHMETOĞLU 

 

Termodinamik parametrelerin geniş aralıklarında geçerli olan virial hal denklemi virial 

katsayıları vasıtasıyla moleküller arası etkileşim potansiyeli modellerinin kullanımına olanak 

sağlamasıyla termodinamik özelliklerin elde edilmesinde kolaylık sağlar. Bu amaç 

doğrultusunda, Morse potansiyeli kullanılarak İkinci Virial Katsayısı (İVK) ifadesi için 

analitik bir formül elde edildi ve hiçbir parametre kısıtlaması olmadan güvenilir çözümler 

sunan bu analitik ifade , 𝑆𝑖, 𝑍𝑛, 𝐻2, 𝑁2, 𝑂2, 𝑁𝑂, 𝐶𝑂,  𝐻𝑒, 𝑁𝑒, 𝐴𝑟, 𝐾𝑟 ,  𝑋𝑒  gaz ve 

plazmalarının nötral atomlarının İVK ve 𝑁2, 𝐴𝑟 and 𝑍𝑛 gazlarının ses hızı hesaplamalarında 

kullanıldı. Düşük sıcaklıklarda ise İVK için birinci derece kuantum düzeltme ifadesi Morse 

potansiyeli kullanılarak analitik olarak hesaplandı ve soygazlardan  𝐻𝑒, 𝑁𝑒, 𝐴𝑟, 𝐾𝑟, 𝑋𝑒 

atomlarına ve ayrıca 𝐶𝐻4, 𝐶𝑂2, 𝑁2 molekülleri için uygulandı. Bilindiği kadarıyla, bazı 

yaklaşık yöntemler dışında, bu çalışma İVK’nın quantum düzeltme hesaplamaları için 

Morse potansiyeli kullanılarak oluşturulan literatürdeki ilk analitik metodtur ve 

parametrelerin tüm değerlerinde geçerli olduğu belirlenmiştir. Morse potansiyeli ile 

elde edilen İVK kuantum düzeltme ifadesi sonuçları literatürden Lennard- Jones (12-6) 

kullanılan sonuçlarla karşılaştırıldı ve araştırılan sıcaklık aralığının yüksek 

sıcaklıklarında uyum gözlemlendi. 

2020, 55 SAYFA 

ANAHTAR KELİMELER: Virial Hal Denklemi, İkinci Virial Katsayısı, Kuantum 

Düzeltmeler, Morse Potansiyeli, Termodinamik Özellikler 
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1. INTRODUCTION 

In the beginning of the 19th century, the heat was converted to mechanical energy by using the 

knowledge of energy conservation law known as the first law of thermodynamics. However, 

the effects of temperature on atoms and molecules in microscopic states had not been known 

yet. With the discovery of second law of thermodynamics, the irreversible processes of 

physical systems are explained by means of entropy. At the second half of 19th century, the 

fundamental principles of microscopic effects on macroscopic systems were able to be 

explained by probability and statistical mechanics by using entropy as a tool to connect 

microscopic and macroscopic systems (Logan, 1999). 

The main purpose of natural sciences is the evaluation of physical, chemical and biological 

properties of matter in all aspects. It is well known that the matter in universe may exist in 

solid, liquid, gas, plasma or between any other possible transition states, which all require 

special equations of state (EoS) to evaluate its macroscopic properties. From these properties, 

evaluating matter in different states specifically for its thermodynamic properties is of 

importance by using probability and statistical mechanics (Olla, 2015). 

A physical system can be described in various kinds of equations depending on its certain 

state associated with pressure, temperature and density at thermal equilibrium. The first 

equation of state is called ideal gas EoS, which is the beginning of thermodynamics and 

statistical mechanics of gases. When the pressure-temperature diagrams of matters are 

examined, it has been realized that applicability of ideal gas EoS is very limited and new 

EoS’s are established creating new branches of physics. 

The extreme states of matter (high pressure, temperature, density and velocity) have become 

the scientist’s research interests with new theoretical and technical developments. Therefore, 

Maxwell-Boltzmann equation describing classical, non-relativistic and distinguishable 

particles has been incapable of explaining the relativistic and quantum effects dominated 

matter in the phase diagram. For this reason, different parts of the phase diagram of a 

substance have to be treated with different equations of state. For instance, the temperature 

increase in an ideal gas leads to ionization of gas (plasma), which EoS becomes Saha 

equation. Increasing temperature more results in non-degenerate gas with free electrons. 
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When we consider the pressure increase of the gas at which Fermi energy of the gas becomes 

much bigger than its thermal energy, the dominated quantum effects region with degenerate 

electron gas can be achieved, which EoS is changed to Fermi-Dirac EoS. When the 

degenerate electron gas at high pressure region (𝑃 > 109 atm) is considered, the Thomas-

Fermi EoS is used. With the more increased pressure regions, completely degenerate and 

electron gases become relativistic except neutrons and protons. The highest pressure regions 

at very high densities allow reactions creating neutron stars (Eliezer et al., 2002). 

The first correction to ideal gas EoS is van der Waals EoS taking into consideration of 

molecular interaction forces and molecular sizes. The Dieterici, Berthelot, Battie-Bridgeman, 

Peng-Robinson, Benedict-Webb-Rubin and Redlich-Kwong equations of state are also used 

for interactions of atoms and molecules, all of which have some limitations under some 

circumstances. Van der Waals, Dieterici and Berthelot equations of state have some 

difficulties during calculations of critical points. The Battie-Bridgeman EoS provides 

insufficient data for high pressure region of gaseus state (Beattie et. al., 1927; Beattie et. al, 

1928; Hirschfelder et. al, 1954). The Benedict-Webb-Rubin EoS has limited temperature and 

density application region (Mamedov and Somuncu, 2014). The Redlich-Kwong EoS is 

applied only for the gaseous state but not appropriate for the liquids. The Peng-Robinson EoS 

was developed specifically for the liquid-vapor equilibrium properties of matter (Peng and 

Robinson, 1976).  

In the region of interacting, neutral particles with a molecular size, using the virial equation of 

state is a reliable way for all temperature and pressure ranges of gases and neutral parts of 

partially ionized plasmas at generalized chemical model investigating low density plasmas. 

The virial EoS expansion includes additional terms in ideal gas EoS representing deviations 

arising from particle interactions. This virial EoS series expansion contains increasing number 

of virial coefficients starting from the second virial coefficient (SVC) demonstrating a volume 

with two interacting particles (McQuarrie, D. A., 1976). These increasing number of virial 

coefficients are used as a tool to reduce n-body problem of interacting particles to two body, 

three body and so on problems corresponding to the second, third and so on virial coefficients 

respectively depending on temperature, type of interaction potential and properties of gas 

under consideration. An analytical calculation of the virial coefficients becomes more 

complicated as the number of virial coefficient increases. Even for the SVC of simple hard 

sphere potential (constants being independent from temperature), second, third and fourth 
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virial coefficients can be calculated analytically while higher order virial coefficients (fifth to 

eleventh) need to be evaluated with numerical computation methods (Schultz and Kofke, 

2014). These numerical methods include ab initio, Monte Carlo Simulation methods (Van, 

2006), Molecular Dynamics, Density Functional Theory (Zeng, Ju and Xu, 2012) and 

Hartree-Fock (Aziz, 1993), Mayer sampling Monte Carlo technique (Ushcats, 2016) and 

semiclassical approximation (Hou, 2019). The computer simulation techniques allow 

evaluation of complex physical systems that analytical solutions are not currently possible or 

require approximations. The interaction potential value of the system has to be available as an 

input for the calculations in simulation systems (Van, 2006). 

The SVC calculations are affected by the type of atoms and molecules some of which can not 

be described by summation of interacting particles’ pair potentials. This nonadditivity issue 

arises from interatomic forces created by polarization and exchange effects (Kaplan, 2006). 

Some examples of this situation include atoms and molecules possessing electrical charge 

creating permanent dipole moments in molecules, which has to be considered by orientation 

and induction forces. The additive intermolecular interaction potentials include point like 

objects and rigid particles that do not depend on location of other particles such as 

intermolecular potential of spherical substances used for SVC calculations only depending on 

distance between the molecular centers of mass. However, the SVC of nonsperical atoms and 

molecules have to be evaluated considering induction, dispersion, electrostatic and shape 

effects. (Eslami et al., 2001). The most commonly used potentials for SVC of nonsperical 

substances are the Stockmayer, Keesom, dipolequadrupole, polarizable dipole, polarizable 

dipole-quadrupole, and polarizable dipole-quadrupole-steric (Johnson and Eubank, 1973). In 

addition, the SVC for polarizable molecules are also evaluated in literature (Haris and Alder, 

1953). 

Another nonadditivity issue arises from quantum mechanics since charges can not be 

described as rigid and point like particles. The quantum effects depending on the molecular 

weight together with temperature and density are also some of the influencing factors on the 

SVC calculations. Nearby and below the liquid transition region of low temperatures which 

classical virial expansion series diverges due to high density, therefore the quantum effects 

can not be ignored especially for lighter atoms such as 𝐻2, 𝐻𝑒  and 𝑁𝑒 . In this case of 

overwhelming quantum effects, scattering state wave functions and phase shifts of interaction 

potential have to be taken into account (McQuarrie, 1976). The quantum SVC calculations are 
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considered as a summation of SVC of quantum mechanical effects (B-direct) and exchange 

effects (B-exchange) evaluated by quantum statistics (Bruch, 1971). The exchange SVC 

formula is the reason for repulsion at short distances due to the asymptotic behavior of wave 

function of  𝐻2 molecules with respect to permutations of electrons, which leads to phase-

shifts (Boyd and Larsen, 1967). This repulsive exchange effects arising from the Pauli 

exclusion principle diminish rapidly with the distance. On the other hand, it is also possible to 

correct the classical SVC calculations nearby liquid-gas phase transition temperatures with 

another more practical formula called quantum correction, which is also calculated 

analytically for this study improving the accuracy of data especially for low temperatures. 

A simple equation of state for the liquids do not provide enough accuracy, however when the 

accuracy is increased one has to deal with complex methods. Although virial equation of state 

diverges for the liquid substances, the SVC is used to create an analytical EoS for the liquids 

down to freezing temperatures with a sufficient accuracy (Song and Mason, 1990). This rather 

simple EoS includes three parameters: the SVC, scaling factor and the effective contact pair 

distribution function. Another EoS of the SVC for fluids is an acentric factor dependent linear 

equation (Pitzer and Curl, 1957). For the liquid mixtures, EoS of osmotic pressure in terms of 

the SVC is applied to biopolymers (Dewi et al., 2020). A more comprehensive study includes 

analytical calculations of the virial coefficients up to fourth virial coefficient for different 𝐷- 

dimensional fluids (Baus and Colot, 1987). 

The current improvements in plasma physics researches dealing with laser interaction with 

matter, shock wave physics during especially inertial confinement fusions (ICF) and magnetic 

field applications on plasmas to create confinement in tokamaks require EoS to be evaluated 

and improved for these special cases. The SVC calculations are also important for fully 

ionized plasmas under the influence of constant magnetic field which is often encountered for 

the astrophysical aspects related to the physics of neutron stars and pulsars (Steinberg et al., 

2000). The magnetic quantum SVC and EoS calculations for fully ionized plasmas are carried 

out in literature since their importance in application for the fields of quantum chaos as well 

as astrophysics (Hussein et al., 2012). 

The SCV calculations also have another interesting and distinct application for determining 

the protein crystallization and solubility conditions and interactions between deoxyribonucleic 

acids (DNA). The static light scattering (SLS) and self-interaction chromatography (SIC) 

experimental methods are used to measure the value of osmotic SVC which should be 
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between −0.5 × 10−4  and −8.0 × 10−4  mol ml gr-2 in order to form protein crystals in a 

solution. The SVC values lower than −0.5 × 10−4  mol ml gr-2 indicate stronger attraction 

between proteins generating an amorphous solid and SVC values higher than −8.0 × 10−4 

mol ml gr-2 demonstrate a repulsive protein-protein interaction (Wilson, 2014). The small 

angle x-ray scattering (SAXS) method is applied to obtain the SVC values for DNA-DNA 

interactions (Li et al., 2008). The magnitude and sign of SVC indicates the strength and 

manner (repulsive or attractive) of the DNA-DNA interactions, respectively. 

The value of temperature dependent second virial coefficient is also affected by the type of 

interaction potential. A very well-known and widely used two parameter Lennard-Jones (6-

12) potential is a simple and practical choice for long range interactions (Galicia-Pimentel et 

al., 2006). However, the evaluation of high temperature phase diagram of substances requires 

a potential representing short range interactions well. The Morse and Rydberg potentials are 

good candidates for short range interactions and three parameter Morse potential is relatively 

easier to solve analytically. The Morse potential is suggested to be used for two body 

interactions of covalently bound diatomic molecules and metals (Lim, 2003), DNA 

denaturation (El Kinani et al., 2018), intermolecular interactions of cancer drugs (Naderi et 

al., 2009), liquid transport properties via molecular dynamics simulation (Galicia-Pimentel et 

al., 2006), crystal properties of cubic metals (Girifalco and Weizer, 1958), partially ionized 

plasmas (Apfelbaum, 2017). These diverse applications of the Morse potential in many 

research areas of literature make it a special potential to evaluate analytically, playing a key 

role to extend someone’s research interest area beyond. 

There are some experimental methods available in literature to determine the virial 

coefficients to validate analytical results. The experimental results of pressure, density and 

temperature are utilized to determine the second and third virial coefficients of a substance by 

using curve-fitting techniques or advanced graphical analysis (Cristancho et al., 2015). The 

compressibility factor obtained experimentally is another way of acquiring the SVC through 

the accurate interpolation of  𝑃 − 𝑉 − 𝑇 data (Deming and Shupe, 1931). 

The recent progresses in plasma and astrophysics lead to investigation of thermodynamic 

properties at high temperature ranges as a recent topic. For this purpose, the Morse potential is 

chosen to evaluate high temperature low density neutral intermolecular interactions and 

thermodynamic properties of nonpolar substances. Using only SVC for low density gases to 

investigate the EoS and other thermodynamic properties and neutral interactions of partially 
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ionized plasmas is a good approximation. Therefore, an analytical solution for SVC with 

Morse potential is established and applied to real systems of 𝐵, 𝑆𝑖, 𝑍𝑛, 𝐻2, 𝑁2, 𝑂2, 𝑁𝑂, 𝐶𝑂, 

𝐻𝑒, 𝑁𝑒, 𝐴𝑟, 𝐾𝑟  and  𝑋𝑒  gases for this study. The results are compared with numerical 

calculations and another analytical formula from literature and found to have advantages over 

the literature when dealing with a substance having lower values of Morse parameters at high 

temperatures such as 𝐴𝑟 − 𝐻𝑒  mixture plasmas (Pateyron, 1992). The obtained analytical 

formula of SVC with Morse potential is used for the calculation of speed of sound for 𝑍𝑛, 𝐴𝑟 

and 𝑁2  gases at different temperature and pressure values and compared with literature 

(Mamedov and Cacan, 2019). 

The evaluation of quantum corrections to SVC with Morse potential at low temperature 

region nearby the liquid transition of gases is also evaluated analytically for this study for 

𝐻𝑒, 𝑁𝑒, 𝐴𝑟, 𝐾𝑟, 𝑋𝑒,  𝐶𝐻 4, 𝐶𝑂2  and 𝑁2  gases. The quantum correction effects onto the 

molecular weight and temperature is assessed comparatively (Cacan and Mamedov, 2019). 
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2. THEORETICAL FOUNDATIONS 

 

2.1. Virial Equation of State 

 

In order to derive virial EoS, we start with the grand partition function and derive pressure 

and density in term grand partition function (McQuarrie, 1976). 

0

( , , ) ( , , ) N

N

V T Q N V T 


=

 =                                                                                                       (2.1.1) 

where absolute activity is 𝜆 = exp (𝜇 𝑘𝐵𝑇⁄ ). In the case of 𝑁 = 0,  𝑄(𝑁 = 0, 𝑉, 𝑇) = 1. 

1

( , , ) 1 ( , ) N

N

N

V T Q V T 


=

 = +                                                                                                              (2.1.2) 

The relationship between the grand partition function and 𝑃𝑉 is given as: 

lnBPV k T=                                                                                                                                              (2.1.3) 

The average number of molecules in the system can be given as: 

,,

ln ln
B

V TV T

N k T 
 

     
= =   

   
                                                                                                    (2.1.4) 

A new activity 𝑧 is assigned in terms of  𝜆 in such conditions that  𝑧 ⟶ 𝜌 as 𝜌 ⟶ 0. When 

𝜆 ⟶ 0, Eq.(2.1.4) becomes as following: 

1

,

ln

V T

N Q 


  
= = 

 
                                                                                                                          (2.1.5) 

As 𝜆 ⟶ 0, then 𝜌 ⟶ 𝜆𝑄1 𝑉⁄ . In these conditions 𝑧 is appointed as 𝑧 = 𝜆𝑄1 𝑉⁄ . We designate 

a new parameter called configuration integral 𝑍𝑁 as: 

1

!

N

N N

V
Z N Q

Q

 
=  

 
                                                                                                                                    (2.1.6) 

The grand partition function can be given in terms of the new activity 𝑧 as: 
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1 1

( , , ) 1
N

NN

N
N

Q V
V T z

Q




=

 
 = +  

 
                                                                                                              (2.1.7) 

A newly defined quantity 𝑍𝑁  can be used in Eq. (2.1.7). 

( )

1

,
1

!

N N

N

Z V T
z

N



=

 
 = +  

 
                                                                                                                        (2.1.8) 

The pressure can be written in powers of 𝑧 as following: 

1

j

B j

j

P k T b z


=

=                                                                                                                                             (2.1.9) 

We need to determine 𝑏𝑗  in terms of 𝑍𝑁 . The Eqs (2.1.8) and (2.1.9) are substituted into 

exp( )BPV k T =  and after some algebra. 

1

1 1(1! ) 1b V Z−= =  

1 2

2 2 1(2! ) ( )b V Z Z−= −  

( )1 3

3 3 2 1 1(3! ) 3 2b V Z Z Z Z−= − +  

( ) ( )
1 2 2 4

4 4 3 1 2 2 1 14! 4 3 12 6b V Z Z Z Z Z Z Z
−

= − − + −  

…                                                                                                                                      (2.1.10) 

Now we have pressure in terms of activity 𝑧, we will have density in terms of 𝑧 as well. Then, 

we will obtain pressure in terms of density. 

, , ,

ln ln

V T V T V TB

N z z P

V V V z k T z






         
= = = =     

       
                                                              (2.1.11) 

Therefore, Eq.(2.1.12) can be obtained. 

1

j

j

j

jb z


=

=                                                                                                                                              (2.1.12) 

We have both pressure and density in terms of 𝑧 in Eqs.(2.1.9) and (2.1.12), respectively. The 

quantity 𝑧 can be determined and eliminated by some algebra. 
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1 2 3 ...z a a a  = + + +                                                                                                     (2.1.13) 

Eq.(2.1.13) can be used in Eq. (2.1.12). 

1

2 2

2

3 3 2

1

2

3 8

...

a

a b

a b b

=

= −

= − +
                                                                                                                (2.1.14) 

When the obtained equations are substituted in Eq. (2.1.9), the virial equation of state as a 

power series expansion of number density (ρ) can be expressed as: 

𝑍 =
𝑃

𝑅𝑇𝜌
= 1 + 𝐵(𝑇)𝜌 + 𝐶(𝑇)𝜌2 + ⋯                                                                                     (2.1.15) 

where 𝑍  is the compressibility factor, 𝑅 is the universal gas constant,  𝐵(𝑇) and 𝐶(𝑇) are the 

temperature dependent second and third virial coefficients, respectively (Kaplan, 2006). The 

second and third virial coefficients can be given as: 

1 2

2 2 1( ) (2! ) ( )B T b V Z Z−= − = − −                                                                                       (2.1.16) 

( )2 3 2 2

2 3 3 2 1 1 2 12

1
( ) 4 2 ( 3 2 3( )

3
C T b b V Z Z Z Z Z Z

V
= − = − − + − −                                         (2.1.17) 

Now, we can find  𝑍1, 𝑍2 and 𝑍3, then substitute the values into Eqs.(2.1.16) and (2.1.17). 

 

2.2. Classical Virial Coefficients 

 

In this section, the second and third virial coefficients will be derived and then, their physical 

significance will be discussed. 

The classical canonical partition function of 𝑁 atoms can be given as (McQuarrie, 1976): 

1 13

1
... ... ...

!
BH k T

N NN
Q e d d d d

N h

−=   p p r r                                                                              (2.2.1) 

where the Hamiltonian can be given as following: 

2 2 2

1 1

1

1
( , ,... )

2
xn yn zn N

n

H p p p U x y z
m



=

= + + +                                                                         (2.2.2) 
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As a result of integration over momenta for Eq.(2.2.1), the partition function is obtained as: 

3 2

2

21

!

N

B
N

mk T
Q Z

N h

 
=  

 
                                                                                                 (2.2.3) 

The configuration integral 𝑍𝑁 is defined as: 

1 2...
N BU k T

N NZ e d d d
−

=   r r r                                                                                                 (2.2.4) 

For the conditions of 𝑁 = 1 and 𝑈 = 0 (no external force), Eq. (2.2.3) becomes: 

3 2

1 2 3

2 Bmk T V
Q V

h

 
= = 

 
                                                                                                 (2.2.5) 

where Λ is the thermal de Broglie wavelength. Eq.(2.2.1) can be integrated over the momenta 

for 𝑁 > 1. 

11

!

N

N N

Q
Q Z

N V

 
=  

 
                                                                                                             (2.2.6) 

Now we can derive the first three configuration integrals of 𝑍1, 𝑍2  and 𝑍3  appearing in 

Eqs.(2.1.15) and (2.1.16) to determine 𝐵(𝑇) and 𝐶(𝑇). 

1 1Z d V= = r                                                                                                                       (2.2.7) 

2

2 1 2
BU k TZ e d d−=   r r                                                                                                            (2.2.8) 

3

3 1 2 3
BU k T

Z e d d d
−

=    r r r                                                                                                    (2.2.9) 

In order to determine the SVC, intermolecular potential 𝑈2(𝑟1, 𝑟2) is considered to depend 

only on the distance between two monoatomic particles as 𝑈2 = 𝑢(𝑟12), where 𝑟12 = |𝑟2 −

𝑟1|. After substituting Eqs.(2.2.7) and (2.2.8) into Eq.(2.1.16), The SVC can be obtained as: 

( )122

2 1 1 2

1 1
( ) ( ) 1

2 2

u r
Bk TB T Z Z e d d

V V

−

 = − − = − −
   r r                                                      (2.2.10) 

Since the coordinate elements 𝑑𝑟1 and 𝑑𝑟2 are close to each other, it is possible to change 

integration variables. 
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12( )

1 12

1
( ) [ 1]

2
Bu r k TB T d e d

V

−= − − r r                                                                                 (2.2.11) 

When the values of 𝑑𝑟1 = 𝑉  and 𝑑𝑟12 = 4𝜋𝑟2  are substituted into Eq.(2.2.11), the SVC 

becomes: 

( ) 2

0

( ) 2 [ 1]BU r k TB T e r dr


−= − −                                                                                         (2.2.12) 

where 𝑓(𝑟𝑖𝑗) = 𝑒−𝑈(𝑟𝑖𝑗) 𝑘𝐵⁄ 𝑇 − 1  is called the Mayer function and 𝑟𝑖𝑗 = 𝑟12  for the SVC 

calculations, which represent the interaction of two particles. The Eq.(2.2.12) can be 

integrated by parts to express the SVC in a different way (Vargas et al., 2000). 

( ) 3

0

2 ( )
( )

3
BU r k T

B

dU r
B T e r dr

k T dr




−= −                                                                                 (2.2.13) 

According to Eq. (2.2.12), the SVC is independent from the diatomic interaction volume and 

shape of the potential curve but it depends on temperature and the integral representing the 

area limited by potential curve (Monajjemi et al., 2012). A typical potential curve and a graph 

of Mayer function for the SVC is represented in Figure 2.1 (McQuarrie, 1976) 

 

 

 

Figure 2.1. a) Intermolecular potential curve. b) Mayer function 𝑓(𝑟12) = 𝑒−𝑈(𝑟12) 𝑘𝐵⁄ 𝑇 − 1 

versus intermolecular distance (McQuarrie, 1976). 
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In order to derive the third virial coefficient, the intermolecular potential 𝑈3(𝒓1, 𝒓2, 𝒓3) has to 

be determined by using pairwise additivity of intermolecular forces and deviations from 

pairwise additivity represented by ∆. 

3 12 13 23 12 13 23( ) ( ) ( ) ( , , )U u r u r u r r r r= + + +                                                                          (2.2.14) 

The pairwise additivity deviations will be neglected for the following derivations. To derive 

𝐶(𝑇), Eq.(2.1.17) shows that 𝑏3  has to be determined which is given by 6𝑉𝑏3 = 𝑍3 −

3𝑍2𝑍1 + 2𝑍1
3. The 𝑍3 is given as: 

3 12 13 23 1 2 3

12 13 23 12 13 12 23 13 23 12 13 23 1 2 3

(1 ) (1 ) (1 )

( 1)

Z f f f d d d

f f f f f f f f f f f f d d d

= + + +

= + + + + + + +

  

  

r r r

r r r
                        (2.2.15) 

The value of 𝑍2𝑍1 can be given with three equivalent equations, therefore each one will be 

taken into consideration to create −3𝑍2𝑍1, where 𝑍1 = 𝑉. 

1 2 12 1 2 12 1 2 3

13 1 3 13 1 2 3

23 2 3 23 1 2 3

( 1) ( 1)

( 1) ( 1)

( 1) ( 1)

Z Z V f d d f d d d

V f d d f d d d

V f d d f d d d

= + = +

= + = +

= + = +

    

    

    

r r r r r

r r r r r

r r r r r

                                                         (2.2.16) 

Therefore the value of  𝑍3 − 3𝑍2𝑍1 becomes: 

3 1 2 12 13 23 12 13 12 23 13 23 1 2 33 ( 2)Z Z Z f f f f f f f f f d d d− = + + + −   r r r                                    (2.2.17) 

The last term to get 6𝑉𝑏3 is 2𝑍1
3 = 2 ∭ 𝑑𝒓1 𝑑𝒓2𝑑𝒓3. 

3 12 13 23 12 13 12 23 13 23 1 2 36 ( )Vb f f f f f f f f f d d d= + + +   r r r                                                  (2.2.18) 

In Eq.(2.1.17), 𝐶(𝑇) is given as 4𝑏2
2 − 2𝑏3. The value of  𝐶(𝑇) can be rearranged to include 

6𝑉𝑏3 as: 

2

3 2

1
( ) (6 12 )

3
C T Vb Vb

V
= − −                                                                                              (2.2.19) 

The last term to determine  𝐶(𝑇) is 12𝑉𝑏2
2, which can be obtained as: 
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2
2

2 12 12 12 12 13 13

2

2 1 12 12 13 13 12 13 1 2 3

4

4

b f d f d f d

Vb d f d f d f f d d d

     = =
     

= =

  

     

r r r

r r r r r r
                                                           (2.2.20) 

Two more equivalent equations to Eq.(2.2.20) can be derived by using 𝑓13𝑓23 and 𝑓12𝑓23. 

Therefore, these three equations together form the 12𝑉𝑏2
2 to be subtracted from 6𝑉𝑏3. Finally, 

the third virial coefficient can be obtained. 

12 13 23 1 2 3

1
( )

3
C T f f f d d d

V
= −  r r r                                                                                    (2.2.21) 

The Eq.(2.2.21) represents interaction of three particles which are close to each other enough 

to interact since the related Mayer functions vanish for large separations between pair of 

particles. 

 

2.3. The Potential Effects on Second Virial Coefficient 

 

The intermolecular interactions between atoms and molecules of a system form a curve 

displaying potential energy versus intermolecular distance of the system. This curve contains 

important information such as potential well depth, equilibrium distance, force and 

anharmonicity constants. In order to provide reliable information for the interactions, a 

potential curve should satisfy some necessary conditions (Varshni, 1957). When the 

intermolecular distance 𝑟 = 0 , the value of potential should be 𝑈 = ∞  or large enough 

representing very large repulsive force due to atomic or molecular volume. At 𝑟 = 𝑟𝑒 , 

potential should have a minimum where attractive and repulsive forces are in equilibrium. 

When 𝑟 → ∞, the attractive forces become dominant and potential has to reach a constant 

value asymptotically. 

In order to have a good representation of interactions, a widely used two parameter Lennard-

Jones (6-12) potential is suggested to obtain virial coefficients and thermodynamic properties 

of non-bonded noble gas atoms. Since the Lennard Jones (6-12) potential is inadequate to 

describe more interacting gases and molecules, it is modified to be used for metals as 

Lennard- Jones (n-m) including adjustable potential parameters specifically determined for 

the metals under consideration (Zhen and Davies, 1983). Another potential similar to 

Lennard- Jones (6-12) but theoretically more accurate is called the Buckingham (exp-6) 
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potential which is also modified due to its incorrect approach for small intermolecular 

distances (for 𝑟 = 0, 𝑈(𝑟) = −∞). 

 

 

Figure 2.2. The potential curve of  𝑂2  for ∑′3  state. Bold solid line RKR experimental 

potential, solid line Rydberg potential, dashed line Morse potential (Rydberg, 1931). 

A theoretically successful chose of potential for the calculation of SVC can be determined by 

using experimental data. For this purpose, Rydberg–Klein–Rees (RKR) method allows the 

reconstruction of the potential curve by using experimental spectroscopic data. Therefore, the 

RKR model is utilized for the comparative analysis between model potentials to determine the 

mean deviation from the RKR experimental potential curve. The percent errors of potentials 

are reported as 3.68 % for the Morse, 3.48% for the Pöschl-Teller and 2.94% for the Rydberg 

potential (Kaplan, 2006). 

The evaluation of SVC by using various potentials is available in literature such as Lennard- 

Jones (6-12), Rydberg, Morse, Keesom, Stockmayer and Boys- Shavitt potentials (Kaplan, 

2006). The correct choice of potential depends on temperature range of study and structure of 

the substance under evaluation as it is stated at introduction. Figure 2.3.1 displays the 
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potential curves of Rydberg, Morse and RKR experimental potentials of 𝑂2 for ∑
′3
 state. The 

Rydberg potential demonstrates a better curve being more close to the experimental RKR 

curve since Morse potential includes an exponential attraction term leading to over estimation 

of attractive forces for long ranges. Since long range attractive forces are negligible at high 

temperatures, Morse potential can be a good candidate for representation of dominant strong 

short range repulsion forces with its exponential repulsion term. The Morse, Rydberg, 

Lennard- Jones (6-12) and Lennard- Jones (m-n) potential formulae are provided in 

Eqs(2.3.1)-(2.3.4), respectively. 

𝑈(𝑟)𝑀 = 𝐷{𝑒𝑥𝑝[−2𝛼(𝑟 − 𝑟𝑒)] − 2𝑒𝑥𝑝[−𝛼(𝑟 − 𝑟𝑒)]}.                                                    (2.3.1) 

𝑈(𝑟)𝑅 = 𝐷[1 + 𝑏(𝑟𝑖𝑗 − 𝑟0)]𝑒−𝑏(𝑟𝑖𝑗−𝑟0)                                                                             (2.3.2) 

𝑈(𝑟)𝐿−𝐽(6−12) = 4𝜀 {(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6
}                                                                                  (2.3.3)   

𝑈(𝑟)𝐿−𝐽(𝑚−𝑛) = 𝜀 {
𝑚

𝑛−𝑚
(

𝑟0

𝑟
)

𝑛

−
𝑛

𝑛−𝑚
(

𝑟0

𝑟
)

𝑚
}                                                                    (2.3.4)   

where potential parameters 𝐷 and 𝜀 are in energy units, 𝜎, 𝑟𝑒 and 𝑟0 are in length units and 𝑏 

and 𝛼 are in reciprocal of length units.  

In Figure 2.3, 𝐵(𝑇) = 0 at a special temperature called as Boyle’s temperature (𝑇𝐵) at which 

gas molecules behave ideally since attractive and repulsive forces become equal. In literature, 

𝑇𝐵  value of Argon is reported to be 410,151 °K for the Lennard- Jones (6-12) potential 

(Somuncu, 2018). 
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Figure 2.3. Different potential models versus intermolecular distance 𝑟  and their 

corresponding SVC values 𝐵2(𝑇) versus temperature for argon. Holborn and Otto, Michels, 

Wijker, and Wijker graphs are based on the experimental SVC results (McQuarrie, 1973). 

 

2. 4. Quantum Effects  

In quantum mechanics, in order uncertainty principle to be applicable, 𝑑 separation between 

particles has to be in order of de Broglie wavelength being proportional to uncertainty in 

position ∆𝑥, so that particles wavelengths overlap ( ∆𝑥 ≈
ℏ

2
≈ 𝜆𝐵  and  Δ𝑥 ≈ 𝑑 or 𝜆𝐵 ≈ 𝑑). 

Therefore, the quantum physics is applicable if the value of de Broglie wavelength 𝜆𝐵 is close 

or higher than the average distance between particles which is proportional to number density 

as 𝑑~𝑛−1 3⁄ . This case can be expressed as 𝑛𝜆𝐵
3 ≥ 1 and valid for high number density 𝑛 or 

low temperature of gases under consideration. According to equipartition theorem, average 

energy of every particle in a gas with momentum 𝑃and temperature 𝑇 is  
𝑃2

2𝑚
=

3

2
𝑘𝐵𝑇. We can 

substitute the value of momentum in de Broglie wavelength as 𝜆𝐵 =
ℎ

√3𝑚𝑘𝐵𝑇
. Therefore, 

number density and temperature values play the key role to determine the behavior of gases 
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and plasmas and the gasses with smaller molecular mass 𝑚 encounter more quantum effects 

at the same temperature (Karaoğlu, 2009). 

In quantum statistics, two main statistical distribution laws representing the identical particles 

with half integer spins and integer values of spins called Fermi-Drac and Bose-Einstein 

statistics, respectively. The main equations associated with these laws are represented by (+) 

sign for the Fermi-Drac statistics and (-) sign for the Bose-Einstein statistics in Eqs.(2.4.1) 

(McQuarrie, 1976). 
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                                                                                      (2.4.1) 

 where 𝑁 is the number of particles, 
kn is the average number of particles in the energy state 

of 𝑘 and 𝜀 ̅ is the average energy of a particle. The analytical solutions of Eqs.(2.4.1) is not 

available when 𝜆 → 0  indicating the reduction of Eqs.(2.4.1) to the classical Boltzmann 

statistics that require 𝜆 =
𝑁

𝑞
 where 𝑞 is the molecular partition function. For this reason, the 

value of  𝜆 is the indicator of behavior of a system whether it is a quantum or classical 

statistics. The value of 𝜆 is small when the density of a system is low and its temperature is 

high corresponding to a classical Boltzmann statistics. However, the quantum statistical 

behavior is expected for a system when 𝜆 is large which is the case for high density and low 

temperature values of a system (McQuarrie, 1973). Therefore, number density and 

temperature values play the key role to determine the behavior of gases and plasmas. 

 𝑛 − 𝑇 diagram of gases and plasmas can be divided into some areas in order to be treated by 

an appropriate physical method. These areas are determined by the non-ideality and 

degeneracy parameters. A plasma is considered as ideal if the ratio of the particle’s electrical 

interaction energy over thermal energy is lower than 1(Γ =
𝑒2𝑛1 3⁄

𝜀0𝑘𝐵𝑇
< 1). If the particle’s ratio 
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of thermal energy over Fermi energy is much higher than 1, the plasma becomes classical 

(non-degenerate) (𝜃 =
𝑘𝐵𝑇

𝐸𝐹
=

2𝑚𝑘𝐵𝑇

ℏ2 (3𝜋2𝑛𝑒)−2 3⁄ ≫ 1). The quantum effects are dominant if 

the degeneracy parameter becomes lower than 1 which is only possible with high number 

density or low temperature values. Another parameter 𝑟𝑠  is defined as quantum criteria of 

ideality and it represents the ratio of electrical interaction energy to Fermi energy. The 

condition of 𝑟𝑠 < 1 represents the ideal quantum gas region. Figure 2.4 illustrates the 𝑛 − 𝑇 

diagram with non-ideality and degeneracy parameters (Omarbakiyeva, 2010).  

 

 

Figure 2.4. The 𝐿𝑜𝑔𝑛 − 𝐿𝑜𝑔𝑇  diagram of plasmas with terrestrial and cosmic examples 

(Omarbakiyeva, 2010). 

In this research, an analytical evaluation of the SVC with Morse potential is carried out for 

high temperature region which is also suitable for the structure of Morse potential. Therefore, 

dominant quantum effects for low temperature region are avoided. However, an analytical 

evaluation of the quantum correction with Morse potential is obtained nearby liquid transition 

region of some atoms and molecules at low temperature region. 
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The expression of the first quantum correction arises from statistical thermodynamics. The 

translational and rotational degrees of freedom of interacting molecules can be considered 

classical since separations between levels are so small to be treated by an integral. However, 

vibrational degrees of freedom have to be discussed quantum mechanically. Therefore, the 

Hamiltonian of a system of interacting molecules and partition function become (McQuarrie, 

1973). 

𝐻 = 𝐻𝑐𝑙𝑎𝑠𝑠 + 𝐻𝑞𝑢𝑎𝑛𝑡 

𝑄 = 𝑄𝑐𝑙𝑎𝑠𝑠𝑄𝑞𝑢𝑎𝑛𝑡                                                                                                               (2.4.2) 

where classical canonical partition function can be defined as: 

𝑄𝑐𝑙𝑎𝑠𝑠 =
1

𝑁! ℎ𝑠𝑁 ∫ 𝑒−𝐻𝑐𝑙𝑎𝑠𝑠(𝒑,𝒒)/𝑘𝐵𝑇𝑑𝒑𝑐𝑙𝑎𝑠𝑠 𝑑𝒒𝑐𝑙𝑎𝑠𝑠.                                              (2.4.3) 

The quantum mechanical form of the canonical partition function represented by the 

summation of energy states can be reduced to classical one when ℏ → 0. 

/ /0

1 13

1
... ... ...

!

j B B
E k T H k T

N NN
j

Q e e d d d d
N h

− −→= ⎯⎯⎯→   p p q q                                               (2.4.4) 

Now, we need an expression for the canonical partition function including non-ideal systems. 

A general expression for the quantum correction can be derived starting from the partition 

function. 

1...N m m N

m

Q e d d  − = r r                                                                                               (2.4.5) 

where 𝛽 = 1 𝑘𝐵𝑇⁄ .  

The canonical partition function can be expressed as a power series of ℎ, the first term being 

the classical partition function wihout the 𝑁!  due to neglected symmetry of the wave 

functions (Kirkwood, 1933). 

1 13

1
... ( ... , ) ...H

N N NN
Q e w d d

h

 −=   p r p r                                                                            (2.4.6) 
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where the function 𝑤(𝒑1, … , 𝒓𝑁, 𝛽) is the representation of the quantum correction to the 

classical partition function. This function is simply reduced to 1 as ℏ → 0 or 𝛽 = 0 and given 

as: 

1 1

0

( ,..., , ) ( ,..., , )l

N l N

l

w w 


=

=p r p r .                                                                               (2.4.7) 

When the Eq.(2.4.7) is expanded, the first three expressions can be obtained as: 

 

( )
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1

1

2 22 3 4
22

2

1 1 1 1

1

.
2

1 1
. . ...

2 2 3 4

N

j j

j

N N N N

k k k k k k

k k k k

w

i
w U

m

w U U U U
m m m



  

=

= = = =

=

= − 

      
= −  −  +  +      

       



   

p

p p

   (2.4.8) 

where 𝑤1 vanishes during the integration because of the odd function of momenta. When 

Eqs.(2.4.8) are substituted into Eq.(2.4.6), Eq.(2.4.9) can be obtained. 

( )
( )

3 /2 2 2
22

13
1

2
1 ... ...

12 2

N
N

B U

N k k NN
k

mk T
Q e U U d d

h m

  −

=

  
= −  −  +  

  
 r r                       (2.4.9) 

By dividing Eq.(2.4.9) by 𝑁! and substituting it into Eqs(2.4.10) and (2.4.11), we can get 

Eq(2.4.12). 

1

!

N

N N

V
Z N Q

Q

 
=  

 
                                                                                                           (2.4.10) 

( )2

2 2 2 1

1

2
B b Z Z

V
= − = − −                                                                                                (2.4.11) 

( )( )
( )

( )2
2

2 ( )

2
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2 3
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2 1

6
( )

U r U r

B

B e r dr
m k T

dU r
e r dr O h
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 



− −

 
+ = +


−


−                         (2.4.12) 

The first term in Eq.(2.4.12) is the classical SVC, the second term is the first order quantum 

correction to the SVC and the small contribution coming from ℎ3 term represents the quantum 

mechanical ideal gas SVC which is negligible. 
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2.5. Thermodynamic Properties 

The basic thermodynamic relations are given in Eqs.(2.5.1). The formulae of the internal 

energy, enthalpy, entropy and Gibbs free energy are shown respectively (Kallmann, 1950). 

0

0

0

T

v

T

P

T

P

E C dT

H C dT

dT
S C

T

F H TS

=

=

=

= −







                                                                                                                        (2.5.1) 

where 𝐶𝑃 is constant pressure heat capacity and 𝐶𝑉 is constant volume heat capacity. The 

pressure derivatives of thermodynamic properties can be given in Eqs.(2.5.2). 

2

2

2

2

, , ,

, ,

T T P T P

P

T T P T P

V

TT V

F S V H V
V V T

P P T P T

CE V V V
P T T

P P T P T

C P V
T

P T P

             
= = − = −         

             

          
= − − = −         

             

      
=     

      

                                          (2.5.2) 

All thermodynamic properties can be derived in terms of the SVC, starting from the truncated 

virial equation of state for the real gases in Eq.(2.5.3). 

( )PV RT B T P= +                                                                                                               (2.5.3) 

The partial differentials used for the derivation of thermodynamic properties can be obtained 

using the Eq.(2.5.3) as following. 
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 

 
= + 

 −  −

                                                                                              (2.5.4) 

Noting that, the terms higher than (𝑉 − 𝐵)−2 are neglected in Eq.(2.5.5). 

( ) ( )

2 2

2 22 2

2P V B RT B

T T TV B V B

   
= + 

  − − 
                                                                               (2.5.5)   

The thermodynamic properties in terms of the SVC and its first and second derivatives can be 

obtained by using Eqs.(2.5.4) and (2.5.5) substituted into Eq.(2.5.2). 

( )
2 2

1

2

( )( )
ln ...

2

B T PB T P
S R P

T RT
 = − − − +                                                                                  

( )1( ) ( ) ...H P B T B T = − +                                                                                                           

1( ) ...E PB T = − +                                                                                                                     

ln ( ) ...F RT P PB T = + +                                                                                                  (2.5.6)                  

( ) ( )
2 2

1 2 1

2

2 ( ) ( ) ( )
...v

P B T B T B T P
C

T RT

+
 = − − +                                                                           

2 ( )
...p

PB T
C

T
 = − +                                                                                                                 

Eqs.(2.5.6) include ∆ symbol meaning changes in enthalpy, entropy, internal energy, free 

energy and specific heat capacities and  𝐵1(𝑇) = 𝑇
𝑑𝐵(𝑇)

𝑑𝑇
 and 𝐵2(𝑇) = 𝑇2 𝑑2𝐵(𝑇)

𝑑𝑇
. 

As one of the thermodynamic properties, the speed of sound 𝑐 can be represented in terms of 

the SVC and its derivatives as: 
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
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  
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                                            (2.5.7)              

where 𝛾 is the adiabatic constant, 𝑅 is the gas constant and 𝑀 is molecular mass of the gas. 
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3. METHODS AND RESULTS 

 

3.1. A General Analytical Method for Evaluation of The Thermodynamic Properties of 

Matters Using Virial Coefficients with Morse Potential at High Temperature1 

 

The equation of state for imperfect gases is available in the literature as virial expansion in 

terms of density (Kaplan, 2006). The SVC is the first term in the expansion representing the 

first order deviation from the ideal gas, which is used for the calculations of thermodynamic 

properties of gases and partially ionized plasmas. In order to have an analytical calculation of 

SVC, various kinds of potentials are used for intermolecular interactions such as Lennard-

Jones (Mamedov and Somuncu, 2014) Rydberg (Sinanoğlu and Pitzer, 1959), Mie (Heyes and 

Vasconcelos, 2017) and Morse (Matsumoto, 1987) e.c.t. for gases and plasmas. To our 

knowledge, the studies of the analytical evaluation approaches of the second virial coefficient 

with Morse potential are quite limited in the literature.  Although Morse potential 

demonstrates more attraction for the long range interactions, it is preferred at high 

temperature studies (T> 3000 °K) since contributions of short range interactions are more 

significant at high temperatures. On the other hand, long range potentials such as Lennard- 

Jones (6-12) and modified Buckingham provide more accurate results at lower temperatures 

where plasmas can not exist (McQuarrie, 1976). 

 

It is very important to have an accurate analytical solution of SVC for gases and also for 

neutral interactions of partially ionized plasma for the Generalized Chemical Model in order 

to achieve the exact values of thermodynamic properties of gases and plasmas. There are two 

general kinds of approaches in plasma physics to have equation of state which are physical 

and chemical methods. In the physical approach, electrons and protons are treated as 

fundamental particles, but atoms and molecules as compound species formed via fundamental 

particles’ bounding process (Omarbakiyeva, 2010). The first principles approach simulations 

consider ions classically and electrons degenerate as a result of a quantum approach and 

combined quantum molecular dynamics and density functional theory together (Recoules et 

al., 2009). Average atom model also uses first principles method to describe electrons inside 

the spherical neutral cell with Wigner-Seitz radius to determine the properties of plasmas 

 
1 This chapter is a slightly modified version of our manuscript published in Contributions to Plasma Physics and 

has been reproduced here with the permission of the copyright holder. 
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(Johnson et al., 2006), but average atom, first principles and molecular dynamics methods are 

having difficulty when the density of the system is small since they are based on description 

of crystal systems (Apfelbaum, 2017). Depending on first principle approaches, fugacity 

expansion is given as an another example of physical approach which Ebeling used SVC 

during his calculations of plasmas in weak magnetic fields (Ebeling et al., 2000). All the 

components of partially ionized plasma (electrons, ions, neutral atoms and molecules) are 

considered as separate species within the Generalized Chemical Model (GCM) (allowing 

calculations at low density region), so that free energy can be evaluated as the sum of ideal, 

and interacting particles between charged-charged, neutral-charged and neutral-neutral. 

Apfelbaum considered plasmas with coupling parameter as Γ ≤ 1, so that interactions are 

taken into account, but evaluated low density limit to avoid quantum effects and used Morse 

potential for SVC calculations of neutral particles during his calculations (Apfelbaum, 2013; 

Apfelbaum, 2016; Apfelbaum, 2017). Khomkin and Shumikhin also used chemical model but 

they preferred Lennard-Jones (6-12) potential for the SVC of neutrals (Khomkin and 

Shumikhin, 2014). 

 

This study focuses on high temperature gas and partially ionized plasma investigation of 

neutral atom interactions through an analytical calculation of the second virial coefficient with 

preferably Morse potential which is used for many other purposes in the literature such as 

evaluation of the vibrational energy transfer for diatomic molecules (Calvert and 

Amme,1966), crystal properties of solids (Girifalco and Weizer, 1958), bound state solutions 

of Schrödinger equation (Arda and Sever, 2011) and intermolecular forces in liquids (Mayer 

and Careri, 1952).  The bound states are available if the temperature obeys 𝑇 <
𝐼

10 𝑘𝐵
  (  

ionisation energy I values are acquired from the NIST atomic spectra database ) approximate 

expression which all the tabulated SVC values of all atoms and molecules are calculated up to 

these values (Ebeling et al, 2017). Since noble gases have high ionization energy, their SVC 

results are taken up to high temperature values. The classical statistics formulas obtained for 

this study require considerable corrections at the low temperatures creating a low temperature 

application limit for this study with dimensionless temperature value suggested to be 𝑇∗ ≥

25  (𝑇∗ = 𝑇
𝑘𝐵

𝐷
  where 𝑘𝐵 is Boltzmann’s constant and 𝐷 is the potential well depth) in order 

to avoid quantum effects which have more influences on light gases such as 𝐻𝑒  and 𝐻2 

(Lucas, 1991). For the heavier gases, contributions arising from quantum effects becomes 

much little and these gases tends to behave more classically at even more reduced temperature 
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values (Hryniewicki, 2011). In the literature, tabulated quantum correction values are 

provided for different potentials for down to 𝑇∗ = 0.3  values which can be a good 

approximation for the other potentials (Hryniewicki, 2011; Boyd, 1970). In another study, 

Konowalow et al. calculated the SVC and its temperature derivatives and tabulated SVC 

values for the arbitrary values of the Morse parameter 𝑐  (depending on curvature of the 

potential at the minimum) (Konowalow et al., 1961). Another analytical solution of SVC with 

Morse potential which focuses on obtaining the Morse parameters for different atoms and 

molecules and compares results with Lennard Jones (6-12) parameters (Matsumoto, 1987). 

Saxena and Gambhir applied a combination rule for the calculation of SVC of gaseous 

mixtures (Saxena and Gambhir,1963). 

 

In this study, an accurate analytical solution of SVC with Morse potential is obtained, applied 

to different atoms and molecules for up to the highest temperature that neutrals are still 

available and compared with both another analytical and numerical value and proved to 

provide reliable thermodynamic properties as well. 

3.1.1. Analytical expression of SVC with Morse potential 

The virial equation of state may be introduced in terms of a power series per volume as (Kunz 

and Kapner, 1969): 

𝑃 𝑉

𝑅 𝑇
= 𝑍 = 1 +

𝐵(𝑇)

 𝑉
+

𝐶(𝑇)

 𝑉2 + …                                                                                       (3.1.1.1) 

where Z is representing the compressibility factor, 𝑉̅ is the molar volume and 𝐵(𝑇) is the 

second virial coefficient depending on temperature and intermolecular potential function 

𝑈(𝑟).The SVC is defined as: 

𝐵(𝑇) = −2𝜋𝑁𝐴 ∫ [𝑒−𝑈(𝑟) 𝑘𝐵𝑇⁄ − 1]
∞

0
𝑟2𝑑𝑟                                                                     (3.1.1.2) 

where 𝑁𝐴  is Avogadro’s number. An equivalent formula of SVC may be introduced as 

(Vargas et al., 2001): 

𝐵(𝑇) = −
2𝜋𝑁𝐴

3𝑘𝐵𝑇
∫

𝑑𝑈(𝑟)

𝑑𝑟

∞

0
𝑒−𝑈(𝑟) 𝑘𝐵𝑇⁄ 𝑟3𝑑𝑟                                                                        (3.1.1.3) 

Before introducing related thermodynamic functions, a unit conversion of 𝐵(𝑇) is necessary 

to convert SVC units from  cm3 mol⁄  to cal mol. atm⁄  ( 1 𝑐𝑎𝑙 = 4.13 × 10−2 L. atm ). The 
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velocity of sound in different substances is one of the thermodynamic properties that can be 

calculated using the SVC with Morse potential of this study as an application by using the 

following formula (Hirschfelder et al., 1954): 

𝑐0
2 =

𝛾𝑅𝑇

𝑀
[1 +

𝑃

𝑅𝑇
(2𝐵(𝑇) + 2(𝛾 − 1)𝐵1(𝑇) +

(𝛾−1)2

𝛾
𝐵2(𝑇)) + .  .  . ]                           (3.1.1.4) 

where  𝑃 is the pressure,  𝐵1(𝑇) = 𝑇
𝑑𝐵(𝑇)

𝑑𝑇
 and 𝐵2(𝑇) = 𝑇2 𝑑2𝐵(𝑇)

𝑑𝑇
. Since the last two terms 

including 𝐵1(𝑇) and 𝐵2(𝑇) in Eq.( 3.1.1.4) contribute very little for the given data range in 

Table 5, they will be neglected during calculations. 𝛾, 𝑀 and ideal speed of sound values 𝑐0𝑖 

are acquired from The NASA Computer program CEA (Chemical Equilibrium with 

Applications) (CEARUN NASA, retrieved 2018). 

 

For the calculation of SVC with the Morse potential where its first exponential expression 

represents the repulsive forces due to the Pauli Exclusion Principle and the second one stands 

for the attractive forces between atoms and defined as (Al-Maaitah, 2018): 

𝑈(𝑟) = 𝐷{𝑒𝑥𝑝[−2𝛼(𝑟 − 𝑟𝑒)] − 2𝑒𝑥𝑝[−𝛼(𝑟 − 𝑟𝑒)]}                                                     (3.1.1.5) 

Where 𝐷 is the potential well depth, 𝑟𝑒 is equilibrium distance and 𝛼 represents the potential’s 

curvature at its minimum. In order to reconstruct Eq. (3.1.1.3), new expressions are offered in 

Eqs.( 3.1.1.6) and Eq. (3.1.1.7) obtained in literature (Matsumoto, 1987): 

𝑝 =
𝐷

𝑘𝐵𝑇
 ,    𝑏 = √𝑝 exp(𝛼𝑟𝑒) ,       𝑥 = 𝑏exp (−𝛼𝑟) .                                                    (3.1.1.6) 

With the new definitions, the SVC may be introduced as following 

( )( )
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3
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4
( ) ln
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x x pAN x
B T p x e dx

b





− +  
= −  

 
                                                                (3.1.1.7) 

For the analytical solution of Eq. (3.1.1.7), an alternative approach is applied by using a third 

power binomial expansion theorem.  
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The following exponential series expansion formula is used for the term 𝑒2𝑥√𝑝 in Eq.(3.1.1.8): 

( )
0

1
!
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x
e
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


=

=   .                                                                                                           (3.1.1.9) 

After substituting Eq. (3.1.1.9) into Eq. (3.1.1.8), we have obtained a general analytical 

formula for the SVC with Morse potential as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  ( )
24
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where 10−24  arises from the unit conversion of 1 Å3 = (10−8)3 cm3 and the analytical 

solutions of eight integrals appearing in Eq.(3.1.1.8) are given in the same order in 

Eq.(3.1.1.10). In Eq.(3.1.1.10),  the quantities  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , , , , , , , and ,K p b L p b M p b N p b P p b R p b S p b V p b   are defined as, 

respectively: 
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In Eqs. (3.1.1.11), (3.1.1.12), (3.1.1.13), (3.1.1.14), (3.1.1.15) and (3.1.1.16), the general 

functions of 𝐶, 𝐷 and 𝐹 are introduced as: 

( ) ( ) ( )02 3,0 2 2

2,3

1, 1
1 1 1 1

, 2 , ln 2ln ln .191
4 2 2 20, 0

3.
,

2

1.1
n n n

C n b b b G b b bn 

  
 + + +       = −  + + − + −+                 

  

 



30 
 

( ) ( ) ( ) ( ) ( )

( ) ( )

23 3 22 2 2

3 22 3,0 2 4,0 2

2,3 3,4

5,0 2

4,5

1 1 1 1 1
, 8 ln 8 , ln 12 ln ln 6 ln ln

16 2 2 2 2

1, 1 1, 1, 1
1

ln 12 ln 12ln1 1
2 0, 0, 0, 0, 0,

2 2

1, 1, 1

6

n n n n
D n b b b b b b b b

n
b b G b bG bn n

G b

 + + + +       
=  −  −  +  −       

       

   
+      − − −+ +          

   

( ) ( ) ( )

( ) ( ) ( ) ( )

2
2 0 02

2 3

0 0 12 2

, 1,
1 1 1 1

3 2ln ln 6 ln1
2 2 2 20, 0, 0, 0,

2

1 1 1 1 1 1
3 ln 3 2ln ln

2 2 2 2 2 2

3

n n n n
b b bn

n n n n n n
b b b

 

  

 
 + + + +         +  − + +  −+                     

 

   + + + + + +           
 + +  − +              
              

 ( ) ( ) ( ) ( )0 1 21 1 1 1
3.1.

1
.21 0

2 2 2 2 2

n n n n n
  

+ + + + +         
+          

         

 

( ) ( ) ( )

( )

( ) ( )

2 22 2

2
2 3,0 2 4,0 2

2,3 3,4

02

1 1 1 1
, 4 ln 4 , ln 4 ln ln

8 2 2 2

1, 1 1, 1, 1
1

ln 4ln 21 1
2 0, 0, 0, 0, 0,

2 2

1 1 1
2 2ln ln

2 2 2

n n n
F n b b b b b b

n
b bG b G bn n

n n n
b b 

 + + +     
=  −  −  +     

     

   
+      − − ++ +          

   

+ + +     
 − +     
     

( ) ( ) ( )
2

0 1
3.1

1 1 1
.21

2 2 2
.1

n n n
 

 + + +     
+               

 

where gamma, incomplete gamma, digamma and Meijer G functions appear in Eqs. 

(3.1.1.19), (3.1.1.20) and (3.1.1.21) and polygamma functions are introduced in Eqs. 

(3.1.1.20) and (3.1.1.21) may be defined as respectively (Gradshteyn and Ryzhik, 1965): 
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3.1.2. Computational results of established formula and its application 

The SVC values of some atoms and molecules for different temperatures, crucial for the 

evaluation of the thermodynamical properties of gases and the generalized chemical model of 

partially ionized plasmas, are acquired for this study as an application to real gases by using 

Eq. (3.1.1.10). Tables 3.2-3.4 introduces the SVC values of corresponding temperature in 

each row with three results for every atom or molecule that the first one stands for the 

analytical result of Eq. (3.1.1.10), the second one represents the analytical result of literature 

(Matsumoto, 1987) and the third one is the numerical result of the SVC with Morse potential 

for noble gases of 𝐻𝑒, 𝑁𝑒, 𝐴𝑟, 𝐾𝑟  and  𝑋𝑒 , semiconductors 𝐵, 𝑆𝑖  and metal 𝑍𝑛  and 

molecules of 𝐻2, 𝑁2, 𝑂2, 𝑁𝑂, 𝐶𝑂, respectively. Noting that, a useful approach given in the 

literature (Matsumoto, 1987), with the analytical formula was established under assumption 

for 𝑏 → ∞. This corresponds to lower temperatures which provides very practical and 

accurate results at this temperature region. The main advantage of our established formula is 

its validity for arbitrary values of parameter 𝑏  leading to evaluation of the SVC for all 

temperature ranges. 

 

During the calculations, Morse parameters appeared in Eq. (3.1.1.5) are introduced for each 

atom and molecule in Table 3.1. Figs. 3.1-3.3 demonstrates the analytical SVC values with 

Morse potential using Eq. (3.1.1.10) for different temperatures for noble gases of 𝐻𝑒, 𝑁𝑒,

𝐴𝑟, 𝐾𝑟  and  𝑋𝑒 , semiconductors 𝐵, 𝑆𝑖  and metal 𝑍𝑛  and molecules of 𝐻2, 𝑁2, 𝑂2, 𝑁𝑂, 𝐶𝑂 , 

respectively. The noble gases results from Table 3.2 display the exact match between the two 

analytical methods and differ very slightly from the numerical results that the maximum 

percent error found to be % 0.0074 for 𝐻𝑒 gas at 21000 °K, proving the accuracy of the new 

analytical method. The results of 𝐵, 𝑆𝑖  and 𝑍𝑛  from Table 3.3 demonstrate the equal 

analytical results except for 𝑆𝑖 at 4000 °K and 7000 °K, which results from Eq. (3.1.1.10) for 

𝑆𝑖  display closer values (or exact for 7000 °K) to the numerical results. Table 3.3 also 

displays another fact that three results for each temperature value can be distinguished easily 

at lower decimal places when the values of 𝑏 and 𝑝 (from Eq.( 3.1.1.6)) are high such as 𝐵 

and 𝑆𝑖 results. When the Table 3.4 examined, only the two analytical data for 𝑂2 at 5000 °K 
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and 6000 °K differ slightly from each other and values from literature (Matsumoto, 1987) are 

closer to the numerical values. 

 

As an application, the three speed of sound values for each temperature are calculated for 

𝑍𝑛, 𝐴𝑟  and 𝑁2  for the temperature range between 3000-7000 °K in Table 3.5. The first 

obtained 𝑐0  value is for 0.1 atm and the second one is for 1 atm that demonstrates the 

deviation from the ideal gas behavior except for 𝑍𝑛 at 3000-6000 °K temperature range. In 

this temperature region of 𝑍𝑛 , the SVC is negative indicating the existence of dominant 

intermolecular attractive forces resulting in pressure decline compared to that acquired values 

using ideal gas law (Lucas, 1991). The results are compared with ideal speed of sound data 

from NASA chemical equilibrium with applications and found to be in a good agreement 

between them, ensuring that the obtained analytical formula is convenient for acquiring the 

further thermodynamic properties. 

 

After providing an analytical solution to the SVC over Morse potential, it has been applied to 

some atoms and molecules for different temperature values for the application by using 

Mathematica 7.0 software. The values of SVC with Morse potential of another analytical 

solution from the literature and numerical values are calculated and tabulated for the 

comparison. It has been proved that the new analytical solution provides us accurate 

analytical SVC and speed of sound results being in a good agreement with compared results 

from literature and operates precisely at any arbitrary temperature value. 

Table 3.1. Morse potential parameters are obtained from literature for 𝑍𝑛 (Apfelbaum, 2017), 

for 𝐵 and 𝑆𝑖 (Apfelbaum, 2013) and the remaining from literature (Matsumoto, 1987). 

 𝑫 𝒌𝑩 ⁄  

°𝑲 

𝒓𝒆 

Å 

𝜶 

Å−𝟏 

𝐻𝑒 12.6 2.92 2.197 

𝑁𝑒 51.3 3.09 2.036 

𝐴𝑟 118.1 4.13 1.253 

𝐾𝑟 149.0 4.49 1.105 

𝑋𝑒 226.9 4.73 1.099 

𝐵 32144.478 1.59 1.962 

𝑆𝑖 37946.731 2.246 1.438 

𝑍𝑛 522.203 1.19 2.9496 

𝐻2 49.4 3.29 1.923 

𝑁2 93.4 4.43 1.166 

𝑂2 152.4 3.75 1.542 

𝐶𝑂 100.3 4.27 1.136 

𝑁𝑂 131.8 4.22 1.309 
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Table 3.2. The first result in each box is the analytical result of Eq. (3.1.1.10), the second one 

is the analytical result of the literature (Matsumoto,1987) and the third one is the numerical 

result of the SVC with Morse potential for the noble gases of 𝐻𝑒, 𝑁𝑒, 𝐴𝑟, 𝐾𝑟  and 𝑋𝑒  for 

different temperatures.. All the 𝐵(𝑇) results in Tables 3.2-3.5 are in cm3. mol−1 units. 

𝑻(°𝑲) 𝑯𝒆 𝑵𝒆 𝑨𝒓 𝑲𝒓 𝑿𝒆 

3000     35.9486494 

35.9486494 

35.9486492 

4000    27.7713544 

27.7713544 

27.7713543 

36.5717095 

36.5717095 

36.5717091 

5000    26.9053877 

26.9053877 

26.9053876 

36.2883854 

36.2883854 

36.2883855 

6000   20.9185322 

20.9185322 

20.9185321 

26.0026119 

26.0026119 

26.0026119 

35.6801636 

35.6801636 

35.6801635 

7000   20.1275058 

20.1275058 

20.1275055 

25.1354372 

25.1354372 

25.1354371 

34.9566325 

34.9566325 

34.9566324 

8000  9.19066093 

9.19066093 

9.19066084 

19.4132444 

19.4132444 

19.4132442 

24.3247278 

24.3247278 

24.3247277 

34.2037308 

34.2037308 

34.2037308 

9000  8.87889049 

8.87889049 

8.87889041 

18.7668436 

18.7668436 

18.7668436 

23.5738170 

23.5738170 

23.5738170 

33.4590529 

33.4590529 

33.4590527 

10000 4.65901985 

4.65901985 

4.65901666 

8.60194506 

8.60194506 

8.60194876 

18.1793251 

18.1793251 

18.1793252 

22.8798761 

22.8798761 

22.8798761 

32.7392050 

32.7392050 

32.7392049 

11000 4.48955651 

4.48955651 

4.48955333 

8.35339003 

8.35339003 

8.35338997 

17.6427123 

17.6427123 

17.6427124 

22.2380999 

22.2380999 

22.2380999 

32.0510383 

32.0510383 

32.0510382 

12000 4.33797783 

4.33797783 

4.33797553 

8.12837996 

8.12837996 

8.12837990 

17.1502085 

17.1502085 

17.1502086 

21.6433209 

21.6433209 

21.6433200 

31.3966814 

31.3966814 

31.3966814 

13000 4.20120210 

4.20120210 

4.20120209 

7.92318218 

7.92318218 

7.92318212 

16.6961033 

16.6961033 

16.6961033 

21.0906271 

21.0906271 

21.0906272 

30.7759434 

30.7759434 

30.7759434 

14000 4.07685942 

4.07685942 

4.07685940 

7.73486469 

7.73486469 

7.73486464 

16.2756117 

16.2756117 

16.2756116 

20.5755723 

20.5755723 

20.5755724 

30.1875140 

30.1875140 

30.1875140 

15000 3.96309080 

3.96309080 

3.96309077 

7.56108535 

7.56108535 

7.56108530 

15.8847157 

15.8847157 

15.8847157 

20.0942198 

20.0942198 

20.0942198 

29.6295818 

29.6295818 

29.6295818 

16000 3.85841299 

3.85841299 

3.85841296 

7.39994552 

7.39994552 

7.39994548 

15.5200256 

15.5200256 

15.5200255 

19.6431172 

19.6431172 

19.6431172 
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Table 3.2. (Continuous) The first result in each box is the analytical result of Eq. (3.1.1.10), 

the second one is the analytical result of the literature (Matsumoto,1987) and the third one is 

the numerical result of the SVC with Morse potential for the noble gases of 𝐻𝑒, 𝑁𝑒, 𝐴𝑟, 𝐾𝑟 

and 𝑋𝑒 for different temperatures.. All the 𝐵(𝑇) results in Tables 3.2-3.5 are in cm3. mol−1 

units. 

17000 3.76162495 

3.76162495 

3.76162492 

7.24988617 

7.24988617 

7.24988613 

15.1786657 

15.1786657 

15.1786656 

19.2192479 

19.2192479 

19.2192479 

 

18000 3.67174148 

3.67174148 

3.67174145 

7.10961242 

7.10961242 

7.10961238 

14.8581819 

14.8581819 

14.8581819 

  

19000 3.58794516 

3.58794516 

3.58794514 

6.97803778 

6.97803778 

6.97803775 

14.5564674 

14.5564674 

14.5564674 

  

20000 3.50955089 

3.50955089 

3.50955088 

6.85424232 

6.85424232 

6.85424229 

   

21000 3.43597917 

3.43597917 

3.43572596 

6.73744067 

6.73744067 

6.73744064 

   

22000 3.36673581 

3.36673581 

3.36673581 

6.62695737 

6.62695737 

6.62695733 

   

23000 3.30139625 

3.30139625 

3.30139625 

6.52220751 

6.52220751 

6.52220746 

   

24000 3.23959323 

3.23959323 

3.23959323 

6.42268146 

6.42268146 

6.42268139 

   

25000 3.18100714 

3.18100714 

3.18100714 

6.32793268 

6.32793268 

6.32793259 

   

26000 3.12535823 

3.12535823 

3.12535824 

    

27000 3.07240037 

3.07240037 

3.07240037 

    

28000 3.02191594 

3.02191594 

3.02191595 

    

29000 2.97371171 

2.97371171 

2.97371171 
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Table 3.3. The SVC results with Morse potential for semiconductors 𝐵 and 𝑆𝑖 and a metal 𝑍𝑛 

for different temperatures (in units of cm3. mol−1). The data order is the same as Table 3.2. 

 

 

 

 

 

 

 

 

 

𝑻(°𝑲) 𝑩 𝑺𝒊 𝒁𝒏 

3000  

 

 

 −0.4260046839 
−0.4260046839 
−0.4260046830 

4000 −11117.56202
− 11117.56202 

−11117.56175 

−114758.18272 

−114758.18295 

−114758.18241 

−0.20409416099
− 0.20409416099 

−0.20409416072 

5000 −2632.43424 

−2632.43424 

−2632.43417 

−20107.87978 

−20107.87978 

−20107.87937 

−0.08399215083 
−0.08399215083 
−0.08399215063 

6000 −1039.90451 

−1039.90451 

−1039.90742 

−6506.85868 

−6506.85868 

−6506.85837 

−0.01152871933 
−0.01152871933 
−0.01152871917 

7000 −545.26640 

−545.26640 

−545.26883 

−2970.98960 

−2970.99320 

−2970.98960 

0.03528301237 
0.03528301237 
0.03528301250 

8000 −338.88353 

−338.88353 

−338.88354 

−1672.42072 

−1672.42072 

−1672.42063 

0.06694048142 
0.06694048142 
0.06694048154 

9000 −234.80665 

−234.80665 

−234.80666 

−1077.48480 
−1077.48480 
−1077.48477 

0.0890358175 
0.0890358175 
0.0890358173 

10000 −175.05970 

−175.05970 

−175.05970 

−760.50421 

−760.50421 

−760.50424 

0.104793783 
0.104793783 
0.104793777 

11000  −572.350416 

−572.350416 

−572.350440 

0.1161892485 
0.1161892485 
0.1161892379 
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Table 3.4. The SVC results (in units of cm3. mol−1) with Morse potential for the molecules of  

𝐻2, 𝑁2, 𝑂2, 𝑁𝑂 and 𝐶𝑂 for different temperatures. The data order is the same as Table 3.2. 

𝑻(°𝑲) 𝑯𝟐 𝑵𝟐 𝑶𝟐 𝑪𝑶 𝑵𝑶 
3000     28.65738215 

28.65738215 

28.65738224 

4000     27.71234964 

27.71234964 

27.71234977 

5000   20.69163013 

20.67873806 

20.67874537 

 26.71583362 

26.71583362 

26.71583362 

6000 12.00716902 

12.00716902 

12.00716879 

24.22172893 

24.22172893 

24.22172890 

20.05344948 

20.05324495 

20.05310004 

19.33848082 

19.33848082 

19.33848090 

25.77737605 

25.77737605 

25.77737604 

7000 11.50990765 

11.50990765 

11.50990744 

23.18612419 

23.18612419 

23.18612416 

19.46881920 

19.46881920 

19.46882447 

18.48583473 

18.48583473 

18.48583482 

24.91834190 

24.91834190 

24.91834192 

8000 11.08067387 

11.08067387 

11.08067369 

22.26909846 

22.26909846 

22.26909627 

18.93010686 

18.93010686 

18.93011141 

17.72496125 

17.72496125 

17.72496129 

24.13705955 

24.13705955 

24.13705956 

9000 10.70435223 

10.70435223 

10.70435209 

21.45079662 

21.45079662 

21.45079669 

18.43496634 

18.43496634 

18.43497026 

17.04270880 

17.04270880 

17.04270879 

23.42591050 

23.42591050 

23.42591049 

10000 10.37023632 

10.37023632 

10.37023619 

20.71498260 

20.71498260 

20.71498271 

17.97932967 

17.97932967 

17.97933306 

16.42731422 

16.42731422 

16.42731418 

22.77639301 

22.77639301 

22.77639296 

11000 10.07049292 

10.07049292 

10.07049280 

20.04863994 

20.04863994 

20.04863994 

17.55886419 

17.55886419 

17.55886717 

15.86889401 

15.86889401 

15.86889396 

22.18064065 

22.18064065 

22.18063426 

12000 9.79923267 

9.79923267 

9.79923256 

19.44134062 

19.44134062 

19.44134070 

17.16953463 

17.16953463 

17.16953734 

15.35929966 

15.35929966 

15.35929961 

21.63179822 

21.63179822 

21.63179812 

13000 9.55192432 

9.55192432 

9.55192422 

18.88467802 

18.88467802 

18.88467807 

16.80776328 

16.80776328 

16.80776588 

14.89183464 

14.89183464 

14.89183460 

 

14000 9.32501217 

9.32501217 

9.32501207 

18.37181543 

18.37181543 

18.37181544 

16.47044112 

16.47044112 

16.47044374 

14.46097784 

14.46097784 

14.46097781 

 

15000 9.11565818 

9.11565818 

9.11566080 

17.89713997 

17.89713997 

17.89713995 

16.15488670 

16.15488670 

16.15488943 

14.06215012 

14.06215012 

14.06215009 

 

16000 8.92156334 

8.92156334 

8.92156325 

17.45600011 

17.45600011 

17.45600006 

 13.69152683 

13.69152683 

13.69152680 

 

17000 8.74084095 

8.74084095 

8.74084087 

17.04450627 

17.04450627 

17.04450622 

 13.34589015 

13.34589015 

13.34589011 

 

18000 8.57192479 

8.57192479 

8.57192471 

16.65937860 

16.65937860 

16.65937854 

   

19000  16.29782962 

16.29782962 

16.29782956 
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Table 3.5. The speed of sound calculations for 𝐴𝑟, 𝑁2  and 𝑍𝑛  by using Eq. (3.1.1.4) for 

temperature range 3000- 7000 𝐾. The first value of 𝑐0 is calculated for 𝑃 = 0.1 atm and the 

second one for 𝑃 = 1 atm for each temperature and atom or molecule. 

 𝑻(°𝑲) 
𝑩(𝑻) (

𝒄𝒎𝟑

𝒎𝒐𝒍
) 

from Eq.(3.1.1.10) 

𝒄𝟎(𝒎/𝒔) 

from Eq. (3.1.1.4) 

𝒄𝟎𝒊 (𝒎/𝒔)* 

 
𝜸∗ =

𝑪𝑷

𝑪𝑽 
 𝑴 (

𝒈

𝒎𝒐𝒍
)* 

𝑨𝒓 3000 23.6623759 1020.52 

1021.41 

1020.1 1.6667 39.948 

 4000 22.7401176 1178.37 

1179.10 

1177.9 1.6667 39.948 

 5000 21.7989151 1317.44 

1318.07 

1317.0 1.6667 39.948 

 6000 20.9185322 1443.16 

1443.71 

1442.7 1.6667 39.948 

 7000 20.1275058 1558.78 

1559.27 

1558.3 1.6667 39.948 

𝑵𝟐 3000 28.20951488 1071.55 

1072.66 

1071.1 1.2885 28.013 

 4000 26.74266023 1212.01 

1212.89 

1211.6 1.2330 27.936 

 5000 25.40735099 1327.69 

1328.43 

1327.3 1.1284 26.63 

 6000 24.22172893 1638.86 

1639.58 

1638.3 1.1169 20.759 

 7000 23.18612419 2099.50 

2100.26 

2098.8 1.1521 15.222 

𝒁𝒏 3000 -0.4260046839 797.530 

797.517 

797.3 1.6665 65.39 

 4000 -0.20409416099 919.780 

919.770 

919.5 1.6624 65.39 

 5000 -0.08399215083 1020.860 

1020.858 

1020.6 1.6383 65.39 

 6000 -0.01152871933 1097.7313 

1097.7310 

1097.4 1.5786 65.39 

 7000 0.03528301237 1153.3992 

1153.3998 

1153.1 1.4938 65.39 

*Data are taken from CEARUN, NASA. 
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Figure 3.1. Dependence of the SVC with Morse potential (Eq. (3.2.9)) on temperature for 𝐻𝑒,

𝑁𝑒, 𝐴𝑟, 𝐾𝑟 and 𝑋𝑒. 

 

 

Figure 3.2. Dependence of the SVC with Morse potential (Eq.(3.2.9)) on temperature for 𝐵, 𝑆𝑖 

and 𝑍𝑛. 
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Figure 3.3. Dependence of the SVC with Morse potential (Eq.(3.2.9)) on temperature for the 

molecules of 𝐻2, 𝑁2, 𝑂2, 𝑁𝑂 and 𝐶𝑂. 

 

3.2. The Comparative Analytical Evaluation of Quantum Corrections to The Second 

Virial Coefficient with Morse Potential and Its Applications to Real Systems2 

Virial coefficients with various potentials, playing significant role to determine intermolecular 

interactions, thermodynamic and transport properties of the gases and liquids, require some 

corrections at low temperature range where quantum effects are gradually increasing with 

decreasing temperature (McQuarrie, 1976; Landau and Lifshitz, 1980). Especially, the virial 

coefficients with Morse potential are very important in the evaluation of the thermodynamic 

and transport properties of gases and plasmas (Matsumoto, 1987; Apfelbaum, 2013; 

Apfelbaum, 2016; Apfelbaum, 2017). Also, the significant studies have been carried out on 

the investigation of drug design and DNA end-to-end stacking interactions by using second 

virial coefficients over the recent decades (Li et al., 2008). It is specifically emphasized that 

intermolecular potential energy surface obtained by using Hartree-Fock theory for drug 

 
2 This chapter is a slightly modified version of our manuscript published in The Journal of Chemical 

Thermodynamics and has been reproduced here with the permission of the copyright holder. 
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interactions with specific atoms creates satisfying results with SVC results especially with the 

Morse potential (Monajjemi et al., 2012). Noting that, analytical evaluation methods of the 

classical virial coefficients with Morse potential carried out so far is very limited (Konowalow 

et al., 1961; Matsumoto, 1987). In this sense, the obtained formula in the study (Matsumoto, 

1987) is very useful approximation for the calculation of the thermodynamic properties of 

gases. However, classical SVC results need a quantum correction term at low temperatures 

where more significant effects have been observed at light molecules such as 𝐻𝑒 and 𝐻2 

(Hryniewicki, 2011). In the literature, numerous analytical methods for the quantum 

corrections of SVC with different potentials for both isotropic and anisotropic interactions 

exist such as Lennard-Jones (12-6) (Mamedov and Somuncu, 2016), Stockmayer (McCarty 

and Babu, 1970), Berns and van der Avoird (Corbin et al., 1984). Besides, one of the 

numerical methods of adaptive grids using polynomial interpolants of different degree is used 

for the quantum corrections to SVC with the Lennard-Jones (12-6), Rice and Hirschfelder 

modified Buckingham (exponential-six) and Buckingham and Corner modified Buckingham 

(Hryniewicki, 2011). An analytical evaluation attempt to classical and quantum corrections of 

second virial coefficient (SVC) with Morse potential have been analyzed in work (Bruch, 

1967) to our knowledge. In the study (Bruch, 1967) , the proposed approach for the first 

quantum correction of SVC with Morse potential was evaluated by using the Laplace 

transforms and applied to only 𝐻𝑒  gas above 100 °K. As stated by the author, this 

approximate solution to both classical and first quantum correction of SVC with Morse 

potential is limited in the application since the approximation is only valid for certain range of 

temperature and potential parameters of certain molecules. 

In this study, we have proposed an efficient analytical formula for the evaluation of the 

quantum correction of SVC with Morse potential and applied it to isotropic interactions. As 

seen from calculation results, the obtained formulae are useful for accurate evaluation of 

quantum correction of SVC with wide range of thermodynamic parameters. As an application, 

the correctness of the obtained results for the quantum correction of SVC with Morse has 

been compared with Lennard- Jones (12-6) potential data (Somuncu et al., 2019) and the 

classical SVC with Morse (Matsumoto, 1987) and Lennard- Jones (12-6) (Mamedov and 

Somuncu, 2014) calculations are included to display the significance of quantum correction 

effects on classical SVC results. 
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3.2.1. Analytical expressions of quantum correction to SVC with Morse potential 

𝐵0(𝑇) is defined as classical SVC and the remaining terms represent the quantum corrections, 

the SVC can be given as a series expansion (Boyd, 1970): 

𝐵(𝑇) = 𝐵0(𝑇) + 𝑞𝐵1(𝑇) + 𝑞2𝐵2(𝑇) + ⋯                                                                    (3.2.1.1) 

where 𝑞 = ℏ2/m and   𝑚  is the mass of molecule. The first two terms in Eq.( 3.2.1.1) can be 

given (Uhlenbeck and Beth, 1936): 

𝐵(𝑇) = −2𝜋𝑁𝐴

( )
  2

0

1B

U r
k T

e rr d
 − 

− + 
 


ℏ2𝜋𝑁𝐴

6𝑚(𝑘𝐵𝑇)3

( ) ( )
 

2

2

0

B

U r
k TdU r

e r dr
dr

 − 
 
 
                  (3.2.1.2) 

where 𝑈(𝑟)  is intermolecular interaction potential, 𝑁𝐴  is Avagadro’s number, ℏ is reduced 

Planck constant and 𝑘𝐵 is Boltzmann’s constant. 

In this study, intermolecular interaction potential 𝑈(𝑟) is the Morse potential and defined as 

(Kaplan, 2006): 

𝑈(𝑟) = 𝐷{𝑒𝑥𝑝[−2𝛼(𝑟 − 𝑟𝑒)] − 2𝑒𝑥𝑝[−𝛼(𝑟 − 𝑟𝑒)]}                                                  (3.2.1.3) 

In order to solve the first quantum correction to SVC with Morse potential, we need to use 

some dimensionless parameters introduced in literature (Matsumoto, 1987) as following 

𝑝 =
𝐷

𝑘𝐵𝑇
 ,    𝑏 = √𝑝 exp(𝛼𝑟𝑒) ,       𝑥 = 𝑏exp (−𝛼𝑟).                                                   (3.2.1.4) 

By substituting Eq.( 3.2.1.3) into Eq.( 3.2.1.2) and using expressions in Eq.( 3.2.1.4), we 

obtain the first quantum correction to SVC with Morse potential (second terms in Eq.( 

3.2.1.1) and (3.2.1.2)) as divided by Van der Waals value of 𝑏0 =
2𝜋𝑁𝐴𝜎3

3
 ( in 𝑐𝑚3 𝑚𝑜𝑙⁄  units) 

and dimensionless quantum mechanical parameter Λ∗ = ℎ /𝜎 √𝑚𝐷 given as (Hirschfelder et 

al., 1954): 

𝐵∗1(𝑇) =
𝑞𝐵1(𝑇)

Λ∗2𝑏0
=

𝑝

16𝜋2𝑐 ( ) ( )
2

2
2

2

0

4 ln

b

x x p x
x p x e dx

b

− +  
−  

 
                                        (3.2.1.5) 

where a new constant is introduced as 𝑐 = 𝜎𝛼  that 𝜎  is the distance where the potential 

becomes zero.  In order to solve 𝐵∗1(𝑇), two second order binomial expansions are utilized 

for Eq.(3.2.1.5). 
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b
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− +



  

 the following serial expansion formula for the term 𝑒2𝑥√𝑝  in Eq.(3.2.1.6) are used 

(Gradshteyn and Ryzhik, 1965): 

( )
0

1
!

i
ix

i

x
e

i




=

= 
                                                                                                             (3.2.1.7) 

A dimensionless value of   𝐵∗1(𝑇) in Eq.( 3.2.1.6) can be obtained as: 

𝐵∗1(𝑇) =
𝑝

16𝜋2𝑐
{𝐶(𝑝, 𝑏) + 𝐷(𝑝, 𝑏) + 𝐸(𝑝, 𝑏) + 𝐹(𝑝, 𝑏) + 𝐺(𝑝, 𝑏) + 𝐻(𝑝, 𝑏) + 𝐾(𝑝, 𝑏) +

𝐿(𝑝, 𝑏) + 𝑀(𝑝, 𝑏)}                                                                                                          (3.2.1.8) 

where the analytical solutions of nine integrals appearing in Eq.(3.2.1.6) are given in the same 

order in Eq.(3.2.1.8) and expressions 𝐶(𝑝, 𝑏), 𝐷(𝑝, 𝑏), 𝐸(𝑝, 𝑏), 𝐹(𝑝, 𝑏), 𝐺(𝑝, 𝑏), 𝐻(𝑝, 𝑏),

𝐾(𝑝, 𝑏), 𝐿(𝑝, 𝑏) and 𝑀(𝑝, 𝑏) are defined as, respectively. 

𝐶(𝑝, 𝑏) = 4𝑝
( )

( )
0

,
2

!

n

i

iN i b
p

i=

                                                                                      (3.2.1.9) 

𝐷(𝑝, 𝑏) = −8𝑝 ln 𝑏
( )

( )
0

,
2

!

n i

i

S i b
p

i=

                                                                          (3.2.1.10) 

𝐸(𝑝, 𝑏) = 2𝑝(𝑙𝑛𝑏)2(1 − 𝑒−𝑏(𝑏−2√𝑝) + 𝑒𝑝√𝑝√𝜋(𝐸𝑟𝑓(𝑏 − √𝑝) + 𝐸𝑟𝑓(√𝑝))           (3.2.1.11) 

𝐹(𝑝, 𝑏) = −8√𝑝
( )

( )
0

1,
2

!

n i

i

N i b
p

i=

+
                                                                         (3.2.1.12) 

𝐺(𝑝, 𝑏) = 16√𝑝 ln 𝑏
( )

( )
0

1,
2

!

n i

i

S i b
p

i=

+
                                                                    (3.2.1.13) 
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𝐻(𝑝, 𝑏) = −2√𝑝(𝑙𝑛𝑏)2𝑒−𝑏2
(−2𝑒2𝑏√𝑝(𝑏 + √𝑝) + 2𝑒𝑏2

√𝑝 + 𝑒𝑏2+𝑝(1 + 2𝑝)√𝜋(𝐸𝑟𝑓(𝑏 −

√𝑝) + 𝐸𝑟𝑓(√𝑝))                                                                                                          (3.2.1.14) 

𝐾(𝑝, 𝑏) =4
( )

( )
0

2,
2

!

n i

i

N i b
p

i=

+
                                                                                  (3.2.1.15) 

𝐿(𝑝, 𝑏)=−8ln 𝑏
( )

( )
0

2,
2

!

n i

i

S i b
p

i=

+
                                                                           (3.2.1.16) 

𝑀(𝑝, 𝑏) = (𝑙𝑛𝑏)2𝑒−𝑏2
(2𝑒𝑏2

(1 + 𝑝) − 2𝑒2𝑏√𝑝(1 + 𝑏2 + 𝑏√𝑝 + 𝑝) + 𝑒𝑏2+𝑝√𝑝(3 +

2𝑝)√𝜋(𝐸𝑟𝑓(𝑏 − √𝑝) + 𝐸𝑟𝑓(√𝑝))                                                                              (3.2.1.17) 

The general functions 𝑁 𝑎𝑛𝑑 𝑆 appearing in Eqs.( 3.2.1.9), (3.2.1.10), (3.2.1.12), (3.2.1.13), 

(3.2.1.15), (3.2.1.16) can be defined as: 

𝑁(𝑛, 𝑏) =
1

8
(4Γ (
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2
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2
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2
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2
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(3.2.1.18) 

𝑆(𝑛, 𝑏) = −
1

4
(2Γ (

𝑛

2
+ 1, b2) ln 𝑏 + 𝐺2,3

3,0 (𝑏2 |
1 1

0 0
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2

) + Γ (
𝑛

2
+ 1) (−2 ln 𝑏 + ln𝑏2 −

𝜓0 (
𝑛

2
+ 1)))                                                                                                                 (3.2.1.19) 

Gamma, incomplete gamma, polygamma and Meijer G functions in Eqs.( 3.2.1.18) and 

(3.2.1.19) can be given as, respectively (Gradshteyn and Ryzhik, 1965; Copuroglu and 

Mehmetoğlu, 2015; Mamedov and Copuroglu, 2016; Copuroglu, 2017). 

Γ(𝑠) = ∫ 𝑡𝑠−1𝑒−𝑡𝑑𝑡                                                                                                                (3.2.1.20)

∞

0
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Γ(𝑠, 𝑥)  = ∫ 𝑡𝑠−1𝑒−𝑡𝑑𝑡                                                                                                          (3.2.1.21)

∞

𝑥

 

    𝜓𝑛(𝑧) =
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                                                                                                               (3.2.1.22) 
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3.2.2. Computational results of quantum correction to the SVC and its applications on 

some atoms and molecules 

In Table 3.6, all necessary parameters for each atom and molecule are provided in order to 

calculate Eqs. (3.2.1.6) and (3.2.1.8). By using these values from Table 3.6., the first quantum 

correction to SVC with Morse potential analytical calculation results for the gases of 

𝐻𝑒, 𝑁𝑒, 𝐴𝑟, 𝐾𝑟, 𝑋𝑒, 𝐶𝐻4 , 𝐶𝑂2  and 𝑁2 are displayed in Table 3.7. for the temperatures down 

to boiling points of each specific gas except for the lighter atoms such as 𝐻𝑒 and 𝑁𝑒. The 

boiling points temperature limits are chosen since the virial expansion diverges at a specific 

densities and temperatures (not quite appropriate for liquids) but lighter atoms are exceptional 

since classical statistics approach of virial expansions is not valid anymore for boiling point of  

𝐻𝑒 gas (4.222 °K) and  𝐻𝑒 data is suggested not to be considered below 40 °K ( McQuarrie, 

1976). 

The comparative results between the quantum correction to SVC with Morse and Lennard- 

Jones (12-6) potentials displayed in Table 3.7. indicate two important facts depending on 

temperature and type of the atoms and molecules. In Table 3.7., the dimensionless quantum 

corrections of SVC with Morse 𝑩∗𝟏(𝑻)𝑴 and Lennard- Jones (12-6) 𝑩∗𝟏(𝑻)𝑳−𝑱 represent the 

same pattern for each molecule having very close quantum correction results for high 

temperatures but quantum correction with Morse potential results gradually become more 

significant with decreasing temperature that might be due to stronger attractive interaction 

structure of the Morse potential (McCarty and Babu, 1970). This heavy quantum correction 

with Morse potential at low temperature effect is more notable for lighter molecules and 

gradually decreases for heavier molecules as seen from Table 3.7. total quantum correction to 

SVC with Morse potential results Λ∗2𝑏0𝐵∗1(𝑇). 
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The last two columns of Table 3.7. represent the analytical evaluation of classical SVC with 

Morse potential 𝐵0(𝑇)𝑀  and Lennard-Jones potential 𝐵0(𝑇)𝐿−𝐽   results for corresponding 

temperatures in order to determine the quantum contribution effects on the classical SVC with 

two different potentials. Noting that, the negative signs appearing before the classical terms 

indicate a dominant attractive intermolecular interactions, but quantum correction terms are 

always positive (Mcquarrie, 1976). 

The results of this work conclude that potentials showing more attractive interactions than 

Lennard-Jones (12-6) such as Morse and Stockmayer might have important contributions of 

quantum correction to SVC for relatively heavier atoms and molecules. The similar results 

from literature using Stockmayer potential for quantum correction to SVC confirm this 

statement (McCarty and Babu, 1970). Therefore, results of this work may help improve the 

accuracy of thermodynamic properties of the heavier atoms and molecules at low 

temperatures, providing accurate analytical data to include quantum effects. 

 

Table 3.6. Morse, Lennard- Jones and quantum mechanical parameters used for calculations 

in Table 3.7. 

 Morse Paramaters (Matsumoto, 

1987) 

Lennard- Jones parameters 

(Matsumoto, 1987; 

Mamedov and Somuncu, 

2014) 

Quantum 

mechanical 

parameter 

(Hirschfelder et 

al., 1954) 

 𝑫 𝒌𝑩⁄  (°K) 𝒓𝒆 (Å) 𝜶 (Å−𝟏) 𝑫 𝒌𝑩⁄   (°K) 𝝈 (Å) 𝚲∗ 

𝑯𝒆 12.6 2.92 2.197 10.22 2.56 2.67 

𝑵𝒆 51.3 3.09 2.036 35.6 2.75 0.593 

𝑨𝒓 118.1 4.13 1.253 120 3.40 0.186 

𝑲𝒓 149.0 4.49 1.105 171 3.60 0.102 

𝑿𝒆 226.9 4.73 1.099 220 4.10 0.064 

𝑪𝑯4 149.1 4.50 1.166 148.4 3.81 0.239 

𝑪𝑶𝟐 196.7 5.18 1.02 189 4.48 0.0804 

𝑵𝟐 93.4 4.43 1.166 95.9 3.706 0.228 
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Table 3.7. The comparative calculation results of quantum correction to SVC with Morse and 

Lennard-Jones (12-6) potentials. 

 𝑻(𝑲) 𝚲∗𝟐𝒃𝟎𝑩∗𝟏(𝑻)𝑴 

(𝑐𝑚3 𝑚𝑜𝑙⁄ ) 

𝚲∗𝟐𝑩∗𝟏(𝑻)𝑴 

 

𝑩∗𝟏(𝑻)𝑴 

Eq.(3.2.1.8) 

𝑩∗𝟏(𝑻)𝑳−𝑱 

(Somuncu et 

al., 2019) 

𝑩𝟎(𝑻)𝑴 

(𝑐𝑚3 𝑚𝑜𝑙⁄ ) 

(Matsumoto, 

1987) 

𝑩𝟎(𝑻)𝑳−𝑱 

(𝑐𝑚3 𝑚𝑜𝑙⁄ ) 

Mamedov and 

Somuncu, 

2014) 

𝑯𝒆 

256 

163.8 

83.5 

64 

40.9 

0.620983 

1.17205 

3.28254 

5.27642 

12.5087 

0.0293461 

0.0553883 

0.155125 

0.249351 

0.591129 

0.0041165 

0.00776955 

0.02176 

0.0349774 

0.0829201 

0.00301586 

0.0051656 

0.0121032 

0.0172638 

0.0325495 

11.9165 

12.0519 

10.7904 

9.48849 

5.55298 

11.1838 

10.903 

8.85924 

7.17024 

2.44914 

𝑵𝒆 

890 

557 

392 

222.5 

142.4 

95 

57 

0.0455055 

0.0899740 

0.154335 

0.418476 

1.05224 

3.06185 

18.2717 

0.00173483 

0.00343012 

0.0058838 

0.0159537 

0.0401152 

0.116728 

0.696581 

0.0049334 

0.00975438 

0.0167320 

0.0453684 

0.114077 

0.331945 

1.9809 

0.00302287 

0.00532031 

0.00824122 

0.0173099 

0.0325731 

0.0610677 

0.151338 

13.8922 

13.7478 

12.9234 

9.4141 

3.38414 

-6.653 

-31.8123 

13.8633 

13.4734 

12.4978 

8.86959 

3.02745 

-6.20557 

-27.5516 

𝑨𝒓 

900 

700 

500 

300 

200 

100 

87.29 

0.0253301 

0.0386980 

0.0707185 

0.199967 

0.537735 

5.7881 

10.6843 

0.000510964 

0.000780624 

0.00142655 

0.00403378 

0.0108473 

0.116759 

0.215527 

0.0147695 

0.0225640 

0.0412345 

0.116597 

0.313542 

3.37492 

6.22983 

0.0135492 

0.0190251 

0.0306725 

0.0680158 

0.140083 

0.654731 

0.945785 

19.7215 

15.8243 

7.46732 

-16.1271 

-51.3545 

-193.948 

-247.965 

19.6465 

15.4605 

7.02514 

-15.4972 

-47.8059 

-172.516 

-218.326 

𝑲𝒓 

900 

700 

500 

300 

200 

120.85 

0.0131783 

0.0206311 

0.0392666 

0.123126 

0.37938 

2.50218 

0.000223939 

0.000350595 

0.000667277 

0.00209234 

0.006447 

0.0425207 

0.0215243 

0.0336981 

0.0641365 

0.201109 

0.619665 

4.08696 

0.0219473 

0.0314805 

0.0526836 

0.127118 

0.290023 

1.02619 

17.028 

9.23382 

-6.8245 

-51.2354 

-118.094 

-289.508 

15.7565 

7.67843 

-8.25538 

-50.6705 

-113.178 

-272.564 

𝑿𝒆 

900 

700 

500 

300 

200 

166.1 

0.0158788 

0.0261108 

0.0547254 

0.218996 

0.964258 

2.21043 

0.000182666 

0.000300371 

0.000629547 

0.00251927 

0.0110926 

0.0254282 

0.0445962 

0.0733329 

0.153698 

0.615057 

2.70815 

6.20805 

0.0315107 

0.0461072 

0.0799171 

0.208791 

0.524327 

0.852911 

8.55413 

-7.03685 

-38.587 

-127.101 

-268.851 

-376.286 

11.3064 

-5.28859 

-37.8982 

-125.808 

-260.319 

-358.843 

𝑪𝑯𝟒 

900 

700 

500 

300 

200 

111.65 

0.0858647 

0.134029 

0.254273 

0.784843 

2.40897 

22.8895 

0.00123092 

0.00192138 

0.00364516 

0.0112512 

0.034534 

0.328134 

0.0215494 

0.033637 

0.0638147 

0.196971 

0.604576 

5.74455 

0.0180359 

0.0256296 

0.0421936 

0.098092 

0.213946 

0.861177 

22.1221 

14.9504 

0.0616688 

-41.3699 

-103.98 

-306.099 

22.8098 

14.8925 

-0.818914 

-42.5704 

-103.242 

-289.714 

𝑪𝑶𝟐 

900 

700 

500 
300 

194.65 

0.0254415 

0.0409242 

0.0823397 
0.296164 

1.25768 

0.000224152 

0.000360562 

0.000725454 
0.00260935 

0.0110808 

0.0346993 

0.0558158 

0.112302 
0.403933 

1.71533 

0.0252848 

0.0365358 

0.0619412 
0.153911 

0.387611 

22.4848 

6.15843 

-27.058 
-119.59 

-277.574 

24.8008 

7.02238 

-27.957 
-121.399 

-273.612 

𝑵𝟐 

900 
700 

500 

300 

0.0330619 
0.0496851 

0.0882299 

0.232046 

0.000514936 
0.00077384 

0.00137417 

0.0036141 

0.00992174 
0.0149103 

0.0264774 

0.0696361 

0.0101081 
0.0140464 

0.0222395 

0.0473478 

27.0828 
23.9397 

16.7783 

-4.17354 

28.8338 
24.9508 

16.9116 

-4.88676 
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200 
100 

77.355 

0.565899 
4.34164 

12.1711 

0.00881382 
0.0676206 

0.189563 

0.169824 
1.30291 

3.65248 

0.0928184 
0.376509 

0.713356 

-35.5581 
-157.307 

-249.88 

-36.0363 
-151.446 

-236.369 

 

 

4. CONCLUSION 

The Virial Equation of State considers molecular sizes and attractive –repulsive forces 

between atoms and molecules via intermolecular potential, which is essential for describing 

the behavior of real gases. The SVC representing the first deviation from the ideal gas has 

numerous applications including gases, liquids, neutral parts of partially ionized plasmas, 

fully ionized plasmas under constant magnetic field, quantum SVC calculations and osmotic 

SVC for biological purposes. One of the most important effects of determining the value of 

SVC is the choice of intermolecular potential which is the Morse potential for this study since 

its features are proper for the evaluation of the SVC at high temperature range. The analytical 

evaluation of SVC using Morse potential might be an appropriate choice for the plasma and 

high temperature gas studies since the repulsive forces, represented by an exponential term 

within the Morse potential, are more effective at high temperature region.  

 

 The analytical formula in Eq.(3.1.1.10) is established by using binomial expansion theorem, 

exponential series expansion formula and some special functions in Mathematica 10 software. 

The real system applications of the obtained analytical formula of SVC with Morse potential 

are demonstrated on neutral atom gases and plasmas of 𝐵, 𝑆𝑖, 𝑍𝑛, 𝐻2, 𝑁2, 𝑂2, 𝑁𝑂, 𝐶𝑂, 𝐻𝑒,

𝑁𝑒, 𝐴𝑟, 𝐾𝑟, 𝑋𝑒 and provided reliable and accurate data since our study doesn’t have any 

parameter restrictions. An approximate maximum temperature is specifically chosen for every 

atom and molecule considering its specific ionization energy to make sure the gas still 

includes neutrals. Similarly, a minimum specific temperature is considered for every 

substance to avoid temperatures below the liquid phase transition.  

 

The results of obtained analytical formula for the SVC with Morse potential in Eq.(3.1.1.10) 

are compared with both numerical and another analytical formula from literature (Matsumoto, 

1987). Tables 3.2-3.4 includes these comparative results of SVC with Morse potential for 

, 𝑆𝑖, 𝑍𝑛, 𝐻2, 𝑁2, 𝑂2, 𝑁𝑂, 𝐶𝑂,  𝐻𝑒, 𝑁𝑒, 𝐴𝑟, 𝐾𝑟 ,  𝑋𝑒  gases at different temperatures and 

Figures 3.1-3.3 illustrates the results of Eq.(3.1.1.10). The negative signs of SVC results in 

Table 3.3 indicate the existence of dominant attractive intermolecular forces between gas 
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molecules and the positive signs in Table 3.2 and Table 3.4 denote repulsive intermolecular 

forces at corresponding temperatures. The main obstacle of the compared literature is its 

approximation of 𝑏 → ∞ in Eq.(3.1.1.7), which loses its validity at high temperature region 

with a gas of lower values of Morse parameters (𝑏 = √
𝐷

𝑘𝐵𝑇
𝑒𝛼𝑟𝑒 → 0). It can be deduced that, 

our analytical formula for the evaluation of the SVC has advantages over the literature 

especially at high temperatures since it does not include any approximations. Therefore, our 

analytical formula is valid for all values of parameters, creating accurate thermodynamic 

properties such as speed of sound.  

 

The thermodynamic properties of substances can be calculated by using obtained analytical 

formula of SVC with Morse potential by using Eq.(2.5.6) and Eq.(3.1.1.4). As a real system 

application, the speed of sound of 𝑁2, 𝐴𝑟  and 𝑍𝑛  gases are calculated and tabulated for 

temperatures between 3000-7000 °K for 0.1 and 1 atm pressures in Table 3.5. The higher 

pressure speed of sound results displayed more deviations from the ideal speed of sound 

values except for 𝑍𝑛 at 3000-6000 °K. This unexpected behavior of 𝑍𝑛 might be due to the 

negative signs of SVC values at 3000-6000 °K which represent attractive forces and form a 

reduced pressure effect inside the gas. The remaining results are compared with literature data 

from NASA and found to produce satisfying data.  

 

The virial EoS diverges at low temperature region nearby gas-liquid transition due to quantum 

effects at high density and low temperatures, which can be corrected by the quantum 

correction terms. The first quantum correction using the Morse potential has been evaluated 

analytically and applied to 𝐻𝑒, 𝑁𝑒, 𝐴𝑟, 𝐾𝑟, 𝑋𝑒, 𝐶𝐻 4, 𝐶𝑂2  and 𝑁2  gases for the low 

temperature range nearby liquid transition region which density of every gas increases 

significantly. Since lighter atoms are more vulnerable to quantum effects, 𝐻𝑒  data for 

quantum correction is not provided for below 40 °K as recommended in literature 

(McQuarrie, 1976). In a study (Bruch, 1967), first quantum correction to SVC is evaluated 

with an approximation limiting its real system application on gases, but our study provides 

exact analytical solution without any parameter restrictions using binomial expansion, 

exponential series expansion and special functions in Mathematica 10 software. 

 

Table 3.6. includes first quantum correction to SVC results for Morse and Lennard-Jones (6-

12) potentials for the comparison. The classical SVC results of Morse and Lennard-Jones (6-
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12) potentials are also included in Table 3.7 since Eq.(3.2.1.1) expresses that classical and 

quantum correction of SVC must be added to form total SVC value at a given temperature of 

a gas. Table 3.7 also demonstrates that although the SVC results may be positive or negative, 

the first quantum correction results are always positive (McQuarrie, 1976). Table 3.7 displays 

a similar temperature dependence of first quantum correction values of both Morse and 

Lennard-Jones (6-12) potentials since temperature reduction creates more quantum effects 

inside the gas. The analytical calculation results of first quantum correction to SVC with 

Morse potential compared to literature with corresponding correction data using Lennard- 

Jones (6-12) potential and found to provide mostly higher correction values than Lennard- 

Jones (6-12) used results. However, the differences between the results are found to be not 

significant at higher values of temperature range. 

The results of analytical evaluation of SVC and speed of sound using Morse potential is 

published in Contribution to Plasma Physics (Mamedov and Cacan, 2019). Besides, the 

findings of analytical evaluation of first quantum correction to SVC using Morse potential is 

published in Journal of Chemical Thermodynamics (Cacan and Mamedov, 2019). 

 

Our next goal is to achieve a more practical analytical solution for the SVC with Morse 

potential so that its first and second temperature derivatives can be calculated easily to 

consider in calculations of thermodynamic properties.   
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