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Director

I certify that this thesis satisfies all the requirements as a thesis for the degree of

Master of Science.

Prof. Dr. Murat Alanyalı

Head of Department

This is to certify that we have read this thesis and that in our opinion it is fully

adequate, in scope and quality, as a thesis for the degree of Master of Science.

Asst. Prof. Dr. Ahmet Murat Özbayoglu
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MENU OPTIMIZATION WITH LARGE-SCALE DATA

ABSTRACT

The use of optimal menu structuring for different customer profiles is essential

because of usability, efficiency, and customer satisfaction. Especially in compet-

itive industries such as banking, having optimal graphical user interface (GUI)

is a must. Determining the optimal menu structure is generally accomplished

through manual adjustment of the menu elements. However, such an approach

is inherently flawed due to the overwhelming size of the optimization variables’

search space. We propose a solution consisting of two phases: grouping users and

finding optimal menus for groups. In first part, we used H(EC)2 S , novel Hybrid

Evolutionary Clustering with Empty Clustering Solution. For second part we

used Mixed Integer Programming (MIP) framework to calculate optimal menu.

We evaluated the performance gains on a dataset of actual ATM usage logs.

The results show that the proposed optimization approach provides significant

reduction in the average transaction completion time and the overall click count.

Keywords: Optimization, Bigdata, clustering,Automated Teller Machine.
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BÜYÜK VERİ İLE MENÜ ENİYİLEMESİ

ÖZET

Farklı müşteri profilleri için en uygun menü kullanımı kullanılabilirlik, verimlilik

ve müşteri memnuniyeti açısından esastır. Özellikle bankacılık gibi rekabetçi

sektörlerde, en iyi menü kullanıcı arayüzüne sahip olmak bir zorunluluktur. Op-

timal menü yapısının belirlenmesi genellikle menü elemanının manuel ayarlanması

ile gerçekleştirilir. Ancak, bu metot özellikle kompleks menülerde işe yaramaz. Bu

çalışmada iki aşamadan oluşan çözüm önerilmiştir: kullanıcıları gruplandırmak

ve gruplar için en uygun menüler bulmak. İlk bölüm için H(EC)2S, yeni hibrid

Evrimsel Kümeleme algoritmasını geliştirdik. Ikinci bölümde optimal menü

hesaplamak için Karışık Tamsayılı Programlama kullandık. Sonuçları gerçek

ATM logları üzerinde test ettik ve performans artımı olduğunu gözlemledik.

Anahtar Kelimeler: Eniyileme, büyük veri, kümeleme,bankamatik.
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1. INTRODUCTION

Graphical User Interface (GUI) is the key point in multi-profile customer systems.

Multi-profile customer systems can be considered as the systems that include

many customers of different types. For example, web site, Automatic Teller

Machine (ATM) or some phone app users can be divided to several types in terms

of their behaviors or actions. The efficiency of menus in GUI can be calculated

with click count, overall time, average time per transaction, and etc. to finish the

required action. Are the existing menu structures are designed according to these

requirements? Do they guarantee the optimum? These questions are important

for both customers and industry. For example, customers can wait less time in

ATM queues and companies can get customer satisfaction in return.

From initial perspective, menu optimization can be seen as a trivial problem. For

example, finding the most clicked menu items and putting them to initial menu

screens, is one solution. Moreover, when looking to menu items and their overall

click counts, one can redesign the menu in a more optimized way. However, as

menu structure gets complex we need deterministic solution, away from heuristics,

guaranteeing the optimum. One important thing is that, any false assumption in

heuristical based solutions can cost to companies to lose their customers.

Many researchers considered this problem to make better menus in GUI. Some

solutions considered designing menu for people with disabilities [2, 3]. Yet in

another solution ATM menus were designed based on questionnaires on customers

[4]. All previous research we investigated, propose a menu model for GUI, based

on some pre-assumptions. On the other hand, to be usable, the solution for

optimal menu problem should be generic and applicable. For example, the

solution should have no information about user types, their knowledge about

system, the location of the system, questionnaires and etc. Moreover, the

expected solution should be amorphous according to its application area and

easily adjustable. For example, some company may need a menu with minimum

click counts, other with minimum time, yet another with maximum menu item
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size and visibility. Furthermore, usability is one of the main factors affecting the

quality of software systems [5, 6, 7]. Therefore, the optimal menu has to ensure its

usability. For example, the structure of menu cannot contain any disambiguous

placement of menu items. So, the optimal menu is not just one solution but

generic framework.

To design such a menu, we propose a 2-stage solution: clustering users and finding

optimum solution for each group. For the first part, we developed a combined

solution which encompasses fast and quality clustering within it. For the second

part, mixed integer programming (MIP) framework is proposed.

The structure of this study is as follows. After this short introduction, we give

literature review in Section 2. Then we provide a detailed explanation and

solution of the problem in Section 3. Experiments are provided in Section 4.

Possible applications of our model to various research areas and open research

problems are given in Section 5. Our future work based on this method and

conclusions are provided in Section 6.
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2. RELATED WORK

There are various research conducted on clustering and GUI optimization. We

grouped related works into categories.

2.1 Clustering

Because of its simplicity and applicability k-means [8] is the most widely used

algorithm to cluster data. There are some studies implemented on optimizing

different objectives of k-means algorithm such as Euclidean k-medians [9, 10]

and geometric k-center [11]. Minimization of the sum of distances to the nearest

center is the goal for Euclidean k-medians, and minimization of the maximum

distance from every point to its nearest center is the one for geometric k-

center version. Another research was done to seek a better objective function

of k-means [12]. Although there are different versions of k-means that might

have advantages, parallelization o the algorithm in a single machine resulted

in significant performance improvement [13, 14]. Achieving the parallelization

over multiple machines results in even better improvements. The MapReduce

framework [1, 15] provides significant improvements to scalable algorithms.

There has been several studies for clustering large scale data on distributed

systems in parallel on Hadoop [16]. One such approach is Haloop [17], which

is a modified version of the Hadoop making the task scheduler loop-aware and

by adding various caching mechanisms. Another approach to cluster data in a

distributed system was using Apache Mahout library [18]. Moreover, clustering

of big data can be done on cloud also. In [19], the tests were running on Amazon

EC2 instances and the comparisons were made to realize the gain between the

nodes. Esteves et al. made comparisons over k-means and fuzzy c-means for

clustering Wikipedia large scale data set [20]. Both in [20] and [19], the authors

used Apache Mahout for clustering data.

3
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2.2 Hierarchical Menu Optimization

Hierarchical menu optimization has been the main topic of many research works.

In [21], authors developed an analytical model for search time in menus. The

advantage of menu’s breath over its depth is stated in [22]. Researchers also

showed experimentally that using broader and shallower menus instead of deeper

and narrower ones make it easier and faster to access information [23, 24]. There

are also hybrid solutions; in [25, 26] it is found that menus with larger breadth

at deeper layers were more efficient than menus that became narrower towards

the end. One of the earliest research conducted on menu optimization, [27], used

the hierarchical index of a digital phone book using the access frequencies of

phone numbers. Another approach is called ”split menus”[28] where frequently

accessed menu items are located at the top of the menu groups or menu pages

by splitting the menus. In [29], quantitive approach for hierarchical menu design

was proposed by authors. Using Huffman Code to optimize the menu structure

based on the probabilities of menu items’ access times is another approach that

was proposed in [30].

2.3 Heuristic Solutions

There are some recent works that focus on using evolutionary algorithms and

heuristics for menu optimization. Guided-Search algorithm is proposed in [31]

for defining the necessary components of a good user interface. The authors of

[32] used and tested the Guided-Search algorithm by analyzing the algorithm’s

performance under different scenarios in order to increase the satisfaction level.

Genetic algorithms were used for menu structure and color scheme selection in

[33, 34] and in [35] authors used genetic algorithm with simulated annealing

for optimizing the performance of menus on cell phones. Automated menu

optimization and design is desirable but semantics always play a role. Therefore,

some researchers suggested using human assistance as part of the optimization

4



and design process. In [36] authors present MenuOptimizer, a menu design

tool that employs interactive optimisation approach to menu optimisation. The

tool allows designers to choose good solutions and group items while delegating

computational problems to an ant colony optimizer. [37] also suggests using

informal judgements for the final menu structure along with an automated

procedure.

Authors discuss GUI optimization techniques for evaluating and improving cell

phone usability with efficient hierarchical menu design in [38]. Another research

about cell phone menu optimizations, utilized menu option usage frequencies and

recent usage history to find the best menu option ranking by using Ranking SVM

method [39]. ClickSmart system was proposed in [40], to adapt WAP menus to

mobile phones.

Fireworks algorithm, which was inspired by observing fireworks explosion, is a

recent meta-heuristic that was proposed by Tan et al [41]. Authors showed that it

outperforms Standard PSO and Clonal PSO in experiments. Enhanced Fireworks

Algorithm is the improved version of the Fireworks algorithm [42], which we used

in our model. Cuckoo search is another meta-heuristic that was proposed recently

by Yang et al. [42], which was inspired by obligate brood parasitic behavior of

some cuckoo species in combination with the Levy flight behavior of some birds

and fruit flies.

2.4 ATM Menu Optimization

There have been several studies to optimize the menu structure on ATM [43,

44, 45, 46, 47] to reduce click counts and therefore waiting queues. The main

objective is to display a menu that is optimal or results in less click counts to

finish the required tasks for all users. Online banking user interface optimized

with the same objective in [48]. Web site menu optimization is done with hill-

climbing method which minimizes average time to reach target pages in [49].

5



Some works on GUI optimization make specific assumptions about users before

optimization and optimize user menus accordingly. Authors emphasize the

contributions of cognitive psychology and human factors research in the design of

menu selection systems in [22]. In [50], authors concentrated on optimizing ATM

menus for the usage of student communities. In [51] on the other hand, authors

optimized ATM menus for illiterate people and tested on a group of six Dutch

and functionally illiterate persons. Mobile interface GUI optimization was done

for novice and low-literate customer usages in [52]. Designing ATM menus with

speech-based and an icon-based interfaces for literate and semi-literate groups was

conducted in [53]. In [54], authors reviewed a lot of different studies performed on

Human Computer Interaction Technology for ATMs where they included different

ATM design and implementations.

To the best of our knowledge, our solution is the first work on menu optimization

which guarantees the optimum solution. In our generic GUI optimization

framework in general and ATM menu optimization in particular, our solution

is independent of any human assumptions, heuristics and other factors.

6



3. PROPOSED SYSTEM

We propose a solution which consists of two parts. To make better user menus it

is crucial to cluster similar users and make menus for each cluster. In this way it

is possible to get better performance and quality.

3.1 Clustering Part

3.1.1 MapReduce Framework

MapReduce is a programming model, mainly inspired by functional programming,

used to process and generate large datasets with parallel and distributed

algorithm on a cluster[1, 15]. MapReduce is useful in a wide range of applications,

including distributed pattern-based searching, distributed sorting, web link-graph

reversal, document clustering, machine learning[55]. MapReduce’s stable inputs

and outputs are usually stored in a distributed file system. The transient data

is usually stored on the local disk and fetched remotely by the reducers. The

computational processing can occur on both unstructured and structured data.

The programming model is as follows [1]:

• The computation takes a set of input key/value pairs, and produces a set

of output key/value pairs.The user of the MapReduce library expresses the

computation as two functions: Map and Reduce.

• Map, written by the user, takes an input pair and produces a set of

intermediate key/value pairs: Map(k1,v1) → list(k2,v2).The MapReduce

library groups together all intermediate values associated with the same

intermediate key and passes them to the Reduce function.

• The Reduce function, also written by the user, accepts an intermediate

key and a set of values for that key: Reduce(k2, list (v2)) → list(v3).
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It merges together these values to form a possibly smaller set of values.

Typically just zero or one output value is produced per Reduce invocation.

The intermediate values are supplied to the user’s reduce function via an

iterator. This allows us to handle the lists of values that are too large to fit

in memory.

Figure 3.1 illustrates the MapReduce model Here the user program forks

Figure 3.1: Execution overview of MapReduce

the process to all nodes. Then the master node assigns the roles and the

responsibilities of mappers and reducers. After that, the input is splited into

several partitions to be processed in parallel for mappers-workers. After all of

the data is read, the map phase is finished. The input of the reducers is located

on the local disks. Then the reduce phase begins and each reducer produces their

output. More compact view of this model is shown in Figure 3.2

There has been several studies for clustering large scale data on distributed

systems in parallel on Hadoop[16]. One such approach is Haloop[17], which is

a modified version of the Hadoop MapReduce framework. The proposed model

8



Figure 3.2: Compact MapReduce programming model

dramatically improves the efficiency by making the task scheduler loop-aware and

by adding various caching mechanisms. Authors used the k-means algorithm to

evaluate their model against the traditional one and as a result, the proposed

model reduced the query runtimes by 1.85.

Another approach to cluster data in a distributed system was using Apache

Mahout library. Research was done to cluster data in the cloud [19]. The

tests were running on Amazon EC2 instances and the comparisons were made

to realize the gain between the node numbers. Yet another study was done to

cluster Wikipedia’s latest articles with k-means [20].

Another research was concentrated on MapReduce model’s not directly support-

ing processing multiple related heterogeneous datasets [56]. Authors called their

model Map-Reduce-Merge. It adds a Merge phase to the standard model. This

phase can efficiently merge the data already partitioned and sorted by the map

and reduce modules.

Meanwhile, working with large data sets in parallel and clustering them efficiently

requires scalable and multi node computing machines. MapReduce architecture

[1] is one particular example of such a system which had been in use more often

lately. There are advantages of MapReduce over parallel databases like storage-

system independence and fine-grain fault tolerance for large jobs[57].Because

9



MapReduce model works on multicore systems, there are some research done

to evaluates the suitability of the this model for multi-core and multi-processor

systems[58]. Authors of this research study Phoenix with multi-core and

symmetric multiprocessor systems. Afterwards, they evaluate its performance

potential and error recovery features. Moreover, they also compare the codes

of MapReduce and P-threads which is written in lower-level API. As a result,

authors conclude that MapReduce is a promising model for scalable performance

on shared-memory systems with simple parallel code. MapReduce model is

mostly used in offline jobs, because of its processing large data and late

response time. However, authors of [59] researched the online version of Hadoop

MapReduce framework.They propose a solution that allows users to see ’early

returns’ from a job while it is being computed and process continuous queries on

the framework.

3.1.2 k-means algorithm

k-means is one of the simplest unsupervised learning algorithms that attempts to

solve the well known clustering problem[8]. In k-means clustering, we are given

a set of n data points in d-dimensional space and an integer k and the problem

is to determine a set of k points within n data points, called centers or centroids,

so as to minimize the sum of mean squared distance from each data point to its

nearest center. Initially, k centroids must be defined, one for each cluster. These

centroids should be placed carefully because different location choices can result

in different cluster formations. That is why, some heuristics suggest to place the

centroids far away from each other as much as possible [60]. Afterwards, for each

point that belongs to the given data set, it is associated with the nearest centroid.

Then the new centroid is recalculated from the data points associated with each

centroid. After calculating k new centroids, the algorithm must be iterated once

again to find and associate each point to its nearest centroid. This loop continues

as long as the locations of the new centroids keep changing until they all remain

unchanged. The aim is to minimize the objective function given in (3.1)

10



J =
k
∑

j=1

n
∑

i=1

∥

∥

∥xj
i − cj

∥

∥

∥

2
(3.1)

where
∥

∥

∥xj
i − cj

∥

∥

∥ is a distance measure between a data point xj
i which is ith element

of the data set n belonging to jth centroid ,and the cluster center cj. To wrap up,

the pseudo-code for the algorithm can be rewritten in this way:

1. Select k points in the space of objects being clustered. These points are

initial centroids.

2. Calculate each object’s distance against all of the centroids and assign each

object to the group that has the closest centroid

3. When all objects have been assigned, recalculate the positions of the k

centroids by the formula:

cj+1 =
1

|Sj|

n
∑

i=1

xi (3.2)

where c is the new centroid,Sj is the number of x objects associated with

the jth centroid

4. If any of the new centroids that was found in step 3 is different from the

previous one, repeat Steps 2 and 3, else exit.

Time complexity of the k-means algorithm is O(mn) where n is the number

of data points and m is the number of iterations. The number of iterations

m tends to increase when the number of clusters (k) increases, however the

number of data points that change their associated centroids tend to decrease

during the consequent iterations, however the original k-means algorithm does

not utilize this phenomena, i.e. the number of operations performed at every

iteration is the same regardless of the number of data points that actually change

their centroids. Authors used MapReduce framework to implement k-means in
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parallel environment also[61]. One of the models we used to evaluate and compare

proposed solutions was [61].

In this first part of the study, we propose a simple heuristic that is aimed to utilize

the decreasing number of operations in these further iterations for k-means. We

implemented the algorithm both serially and in parallel to evaluate how much

efficiency is obtained under different scenarios.

3.1.3 Fireworks Algorithm

Enhanced Fireworks algorithm (EFWA) is a swarm intelligence algorithm and

adopts four parts to solve optimization problems. The first part is the explosion

operator. Suppose the population of EFWA consists of N D-dimensional vectors

as individuals, each individual ’explodes’ according to the explosion operator and

generates sparks around it. The second part is the mutation operator. Sparks

are generated under the effect of this operator in order to improve the diversity of

the population. The third part, namely as the mapping rule, is used to map the

sparks that are out of the feasible space into it. By applying this rule, the sparks

are pulled back to feasible space. The last part is called as selection strategy.

The individuals are selected from the whole population and passed down to the

next generation.

When a firework is set off, a shower of sparks will fill the local space around the

firework. In our opinion, the explosion process of a firework can be viewed as

a search in the local space around a specific point where the firework is set off

through the sparks generated in the explosion. Mimicking the process of setting

fireworks, a rough framework of the algorithm is depicted in Figure 3.3.
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Figure 3.3: Intuition behind EFWA

3.1.4 Clustering Performance Improvement

k-means is the best known algorithm for clustering for its usability and scalability.

Although there are numerous modifications of the k-means algorithm, both in

single machine and in MapReduce model, the complexity of the algorithm more

or less remains the same. In particular, Standard k-means (k-means-s) model

can not escape from the complexity of the algorithm where the new centroids

and nearest centroids are recalculated each time [61]. So, in each iteration:

• First part (P1) - All points are processed and the nearest centroids are

found

• Second part (P2) - All points are processed in k groups to find the new

centroids
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As can be seen above, reprocessing of all points twice in each iteration increases

the computation time of the algorithm linearly as the data and k value gets bigger.

Improvement for the first part was done in [62]. However, this improvement

have some disadvantages when working with big data. That is why, we further

improved the model proposed in [62] and proposed two new solutions for the

parallel computation with big data and the serial computation with non-big data.

We will show the threshold between big data and non-big data for the data sets

we used, in Section 4.

The models we propose, namely k-means-inbd (k-means improved for non-big

data or k-means Improved for Serial Computation) and k-means-ibd (k-means

improved for big data or k-means Improved for Parallel Computation), eliminates

the majority of the complexity associated with both parts of the standard

parallel k-means [61]. This improvement decreases the computation time and

the complexity of the algorithm considerably. So, let

• xi denote a single data point and S denote all set of points in data set,where

xi ∈ S∀i.

• ctj ∈ Ct denote the centroid computed in tth iteration, where j =

{1, 2, 3, ..., k}

• St
j denote the set of data points belonging to ctj

• P t
j denote the set of newly accepted points to cluster representing ctj

• M t
j denote the set of outgoing points from cluster representing ctj

• zi denote the distance between xi and its belonging centroid.

• vi denote the index of xth
i belonging centroid, ctk from the set Ct

• α be a constant value denoting threshold value where 0 < α < 1.

The first proposed model is k-means-inbd. General procedure of this model is as

follows:
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In the first iteration of k-means-inbd, for all data points, their nearest centroids

are calculated and for each xi ∈ S , we keep zi and vi. After that, new centroids

are calculated as in k-means-s. Beginning from t = 2th iteration, when computing

the nearest centroids for each data point, xi ∈ S, we calculate dt(xi ,c
t
vi
), distance

between current data point and its previous centroid’s new value. That is, ctvi
is the newly computed value of centroid ct−1

vi
. If dt ≤ zi, then xi stays in same

cluster. Thus, it can be ignored during the recalculation of the new centroid.

Otherwise, it means that xi has changed its cluster and it must be considered

while recalculating the new centroids. After processing all data points, only those

that were chosen are considered in the calculation of the new centroids. So, the

calculation of a new centroid is shown with Formula (3.3):

ctj =
ct−1
j ∗ |St−1

j | − (
∑a

i=1 m
t
i) + (

∑b
i=1 p

t
i)

|St−1
j | − a+ b

(3.3)

where ctj ∈ Ct is the jth centroid among k centroids at tth iteration, |St−1
j | is the

number of points belonging to ct−1
t , mt

i ∈ M t
j is ith point that is drawn out from

jth cluster at tth iteration, pti ∈ P t
j is ith point that is added to jth cluster at tth

iteration, b =
∣

∣

∣P t
j

∣

∣

∣ and a =
∣

∣

∣M t
j

∣

∣

∣. The pseudocode of k-means-inbd is shown in

Algorithm (1).

The second proposed model is k-means-ibd (k-means improved for big data). The

general structure of algorithm is as follows:

• Before threshold part (BT ) - For i iterations until reaching threshold value,

run as k-means-inbd. At each iteration t, compute threshold value αt.

• After threshold part (AT ) - if αt > α, then run Algorithm (3).

The first i iterations until reaching threshold value is as the same as k-means-

inbd. Beginning from (i+ 1)th iteration, we store centroids of previous iteration

and size of all clusters. The iteration number i is decided as a result of threshold

value α. That is, if the division of data points that changed their clusters to all
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Algorithm 1

1: procedure k-means-inbd(xi ∈ S, ∀i , k)
Require:S = {x0, x1...xn}, k is number of clusters
Ensure: c1, c2, ..., ck centroids

2: Initialize centroids for t = 1.
3: Run k-means with its standard execution for the first iteration and keep

zi and vi ∀ xi ∈ S.
4: Initialize Ct, set of resulting centroids at the end of iteration t = 1.
5: while ctj 6= ct−1

j ∀j do

6: t = t+ 1.
7: for all xi ∈ S do

8: Compute distance dt = d(xi, c
t
vi
) and dt−1 = zi.

9: if dt ≤ dt−1 then continue.
10: else

11: Compute ctb ∈ Ct, xth
i new associated centroid from set Ct, where b 6= j.

12: P t
b = P t

b

⋃

xi, add xi to set of new coming points for centroid ctb
13: M t

j = M t
j

⋃

xi, add xi to the set of outgoing points for centroid ct−1
j .

14: Save xth
i associated zi and vi, to use in the next iteration.

15: Compute the new centroids using Formula (3.3).

data points in tth iteration (αt =
|P t|

|S|
) is less than predefined threshold (α), then

we can be confident about clusters’ being mostly stable. Important point is that,

after threshold value is satisfied, in AT part, we do not keep all points’ associating

centroids, but the set of newly computed centroids, which can fit in memory in

big data sets. In AT part, when recomputing the object assignments to the new

centroids, the first to consider is the previous centroid. First we compute xth
i

previous nearest centroid, ct−1
j . When computing the new centroid, begin from

jth centroid from Ct, namely ctj. If d
t−1(xi, c

t−1
j ) ≥ dt(xi, c

t
j) , it means that the xi

stayed in the same cluster and there is no need to consider this data point when

computing the new centroids. Otherwise, the data point has changed its cluster

and it must be considered while recalculating a new centroid. Recalculating the

new centroid part is the same as k-means-inbd. The pseudocode of k-means-ibd

is shown in Algorithm (2).
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Algorithm 2

1: procedure k-means-ibd(xi ∈ S, ∀i , k)
Require:S = {x0, x1...xn}, k is number of clusters
Ensure: c1, c2, ..., ck centroids

2: while αt > α do

3: Run Algorithm (1) for 1 iteration.

4: Compute αt =
|P t|

|S|
, overall fraction of points that changed their

existing clusters. Here |P t| = |M t|

5: Run Algorithm (3) with required parameters from this
algorithm.

Since we compared both the parallel and the serial versions of the proposed mod-

els, MapReduce version of k-means-ibd and k-means-inbd was also implemented.

The algorithm is the same. However, the mapping of the serial version’s first

part (evaluating each data point’s nearest center) to the parallel version’s mapper

phase and the serial version’s second part (calculating the new centroids after all

data points chose their nearest centers) to the parallel version’s reducer phase is

enhanced. That is, in the mapper phase we find the data point’s nearest centroid

and in the reducer phase the new centroids are calculated from the points that

changed their cluster.

3.1.4.1 Analysis of Proposed Models

When analyzing the proposed models, we can divide the k-means-inbd and k-

means-ibd into two parts as k-means-s:

• First part - All points are processed and the nearest centroids are found.

• Second part - All points are processed in k groups to find the new centroids.

Both k-means-inbd and k-means-ibd have improvements in the second part. If

we examine Figure 3.4 which explains Formula (3.3), it can be seen that there are

two main subparts denoted as 1 and 2. First, denoted as 1, is a computationally
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Algorithm 3

1: procedure k-means-ibd-at(xi ∈ S, ∀i , k, Ct )
Require:S = {x0, x1...xn}, k is number of clusters, Ct set of

current centroids.
Ensure: c1, c2, ..., ck centroids

2: Initialize centroids for t = 1.
3: while ctj 6= ct−1

j ∀j where 0 < j ≤ k do

4: t = t+ 1.
5: for all xi ∈ S do

6: Among previous centroids, find the nearest centroid ct−1
j ∈ Ct−1 to

xi and compute distance between them dt−1
j = d(xi, c

t−1
j ).

7: Find dtj = d(xi, c
t
j), distance from xi to jth cluster from Ct, where j

is index of ct−1
j .

8: if dtj ≤ dt−1
j then continue.

9: else

10: Compute ctb ∈ Ct, xth
i new associated centroid from set Ct, where

b 6= j.
11: P t

b = P t
b

⋃

xi, add xi to set of new coming points that belong to
centroid ctb.

12: M t
j = M t

j

⋃

xi, add xi o the set of outgoing points that belonged to

centroid ct−1
j .

13: Save only the set Ct to be used in the next iteration.

14: Compute the new centroids using Formula (3.3).

constant time operation. As we will discuss in the experimental results, it is

seen that second part, denoted as 2, consists of a small minority of the points

of the whole data set, so as the iterations progress, the number of operations

keep decreasing geometrically, i.e. the total number of operations converges to a

constant; hence the whole formula can become a constant time operation.

Figure 3.4: Improvement done on second part of k-means algorithm

While analyzing the first part of proposed models, in k-means-ibd model, we are

interested in minimizing the overall data sent from mapper to reducer phase and

minimizing I/O time. The main advantage of k-means-ibd is that, it does not
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change the original data after threshold is satisfied. So, there is no disc-write

overhead, in any iteration after αt < α. Important point here is that, after

threshold value is satisfied, overall points tend to stay in their existing clusters,

as we will see in Section 4. Therefore, we switch to Algorithm (3). This algorithm

keeps only the previous centroids set which can be kept in the memory for very

large data sets. That is why, as the size of the data gets bigger, k-means-ibd starts

outperforming k-means-inbd in MapReduce parallel computing model. k-means-

inbd on the other hand, has less complexity compared to k-means-ibd. Because

k-means-inbd model keeps all data points’ previous centroids, after several steps,

calculation of the new centroids is taking O(1) instead of O(k) time most of the

time. However k-means-inbd has an obvious space disadvantage. That is, when

working with big data, in every iteration, all data points’ centroids must be read

and written to the disc, since they can not be kept in the memory. As it will be

seen in Section 4, there is threshold value for data set depending on the overhead

of writing big data to disc that dominates over k-means-inbd’s improvement in

the first part of the algorithm. That is why, we considered this algorithm to be

the best for the serial implementation and for the parallel implementation with

upper bound data size.

As demonstrated in [63], the worst-case running time of k-means is superpolyno-

mial by improving the best known lower bound from Ω(n) iterations to 2Ω(
√
n).

That is, k-means always has an upper bound, therefore it always converges. So,

because it always converges, the displacement speed of centroids must go to zero

as iterations go to some finite number. Therefore, their speed must decrease,

otherwise the algorithm cannot converge. Because centroids’ speed decrease, the

points that belong to particular centroid, tend to stay in that cluster.

3.1.5 Clustering Quality Improvement

Even though k-means is not the best performing data clustering algorithm, it

is still by far the most widely-used one due to its simplicity, scalability and
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convergence speed. However, depending on the initial starting centroid points,

significantly different results can be obtained, so the algorithm is highly sensitive

to its random centroid selection.

Meanwhile there is also another notable problem with k-means algorithm. When

the number of cluster formations increase, the possibility of obtaining empty

clusters (locations that do not have any data points associated with the clusters)

also increases at each iteration. This becomes an unavoidable issue when k >> 1.

This issue was not addressed thoroughly in most of the studies.

In this study we not only aim to improve the clustering quality of k-means,

but also provide a methodology that can overcome ”empty clustering” problem

without jeopardizing the convergence speed, so the proposed model could be used

for all clustering problems regardless of the number of data points, number of data

dimensions and number of clusters. We achieved this by using an initial centroid

selection algorithm based on a hybrid model that is a combination of evolutionary

algorithms (Fireworks and Cuckoo search) and some additional heuristics.

Our model, H(EC)2S, Hybrid Evolutionary Clustering with Empty Clustering

Solution, consists of 4 parts: Representative Construction (RC) part, Enhanced

Fireworks algorithm for Clustering (EFC) part, Cuckoo Search for Clustering

(CSC) part and k-means part. Firstly, instance reduction is done to select

representatives for existing data. This part does the main job to eliminate Empty

Clustering problem, because in latter parts, the centroids are selected among

representative points only. Secondly, in EFC part, the solution space is searched

using Enhanced Fireworks algorithm. Thirdly, in CSC part, we construct new

solutions and based on Cuckoo Search algorithm, place solutions to ”host nests”.

Finally, we pass the selected best firework to the k-means and converge. The

pseudo-code of the proposed model is given in Algorithm 5. Some notations are

given in Table 3.1.
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3.1.5.1 RC Part

The main purpose of RC part is to select ”representative” instances among data

which eliminate the instance count significantly. The important point is that, in

RC part we can detect outliers and eliminate them also. Algorithm 4 shows the

pseudo-code of RC-part. Lines 3-8 show the process of discretizing the values

to find how many distinct data point there are at each dimension. Here si[j]

denotes the jth dimension value of ith data point. Equation 3.16 maps each data

point to a representative value, where mini and maxi represent min and max

elements at ith dimension respectively. To do this, it divides dimension range

into Fi and finds in which portion the data is. Lines 9-13 find the representative

values rV alue for each data point. Lines 13-16 show the elimination part of

representatives. That is, if the number of belonging data points are less than the

specified threshold, co, then the data points can be considered as outliers and

representative can be deleted. Else, we find the average of all its belonging data

points in each dimension and update the representative value. Finally, lines-17-

20 show the case where the number of representative values do not fit into the

memory, they are more than predefined threshold. In this case we either select

another f function which is ”more” decreasing or increase cf or do both.

Algorithm 4 shows the main intuition behind RC part, which be can easily

converted to MapReduce algorithm. That is, first we calculate distinct values

in Mapper and send them to Reducers so that it can combine all distinct values

in each dimension. Secondly, in Mapper we find each point’s representative and

send it to Reducer with the point itself. Reducer gets the representative and

its points and calculates the average of the points. Figure 3.5 shows the overall

intuition over the RC part, where romb-like rectangles are representatives and

black points are data.
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Algorithm 4 RC-Part

Require: si ∈ S data points
1: Let Hk be the HashMap related with kth dimension of data points, where

k = {1, 2...cd}
2: Ak be a vector, denoting the count of distinct values in kth dimension,

where k = {1, 2...cd}
3: for all si ∈ S do:
4: for j = 1 to cd do:
5: xi[j]← Round si[j] to cf decimal places.
6: Put Hj a new entry with key=xi, value=1. If already exists, increment

value.
7: Ai ←

∑

ej∈Hi

ej.value, ∀(i = {1, 2, ...cd})

8: Fi ← f(Ai)∀(i = {1, 2, ...cd})
9: for all si ∈ S do:
10: Compute rIDk k = 1, 2, ..cd using Equation 3.16
11: Rid ← Rid ∪ rID
12: D(rID) ← D(rID) ∪ si

13: for all rIDi ∈ Rid do:
14: if ||D(rIDi)|| ≤ co then

15: Data points belonging to representative rIDi are outliers, so eliminate
rIDi

16: else rV alueki ←

∑

sj∈D(rIDi)

sj [k]

||D(rIDi)
|| , ∀k = 1, 2, ...cd

17: if representatives are higher than predefined threshold (do not fit in memory)
then

18: f()← f(f())
19: Increase cf
20: Restart algorithm

Algorithm 5 H(EC)2S

1: Run RC part
2: for t = 1 to itermax do:
3: Run EFC
4: Run CSC
5: Run k-means with the best firework
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Table 3.1: Notations.

rIDk
i ∈

Rid

The ID of ith representative data point, possibly int values
denoting the range index, where k denotes dimension

rV alueki ∈
Rvalue

The actual value of ith representative data point, where k
denotes dimension

f : R→ R Decreasing function from real numbers to real numbers
cf Constant denoting how many decimal places should data be

rounded
maxd Maximum data point in dth dimension
mind Minimum data point in dth dimension
Ni Number of distinct data points in ith dimension
Fi Number of distinct data points in ith dimension after applying

f function to Ni

cd Dimension size of a data point
co Threshold value for ”representative” values to be used in

outlier detection.
D(rID) or
D(rV alue)

Set of belonging data points to representative rID or rV alue

E[i][j][n][k] Similarity matrix, that shows the shared data points count
between ith firework’s jth cluster and nth firework’s kth cluster

fwj
i ∈ F Firework (a possible solution) of index i in set F , where k is

the centroid of firework.
K Number of clusters
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Figure 3.5: Demonstration of RC part

3.1.5.2 EFC Part

In this part, we use Enhanced Firework Algorithm (EFW) to search the solution

space for ”good” initial points. Initially, the model starts with random solution,

converts it to representative using Equation 3.16 and calculates amplitude and

and sparks locations. The sj[i] represents ith dimension value for some sj ∈

S, mini and maxi are minimum and maximum values in ith dimension. After

that, while computing their fitness values, it also derives 4 dimensional similarity

matrix E. The important point is that, we use the reduced data set with only

representatives for selecting centroids, Rvalue, derived in RC part. Then, we find

the amplitude and spark sizes in each dimension of firework and update fireworks.

After updating, we convert them to representative values with Equation 3.16. The

pseudo-code for this part is given in Algorithm 6.

The construction of firework fw as a solution is done via concatenating the k

centroids. That is, because we seek a solution of k centroids to cluster data, we

represent the solution, fw, as a combination of k cluster centroids. Equation

3.11 controls the Ak
min, the amplitude of firework. It starts with a higher value
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initially to explore the solution space and diminishes gradually. Here t refers

the number of function evaluation at the beginning of the current iteration, and

evalsmax is the maximum number of evaluations. Ainit and Afinal are the initial

and final minimum explosion amplitude, respectively. Equation 3.12 controls

the amplitude so that it does not become too small. Equation 3.13 calculates

the value of amplitude, where g is fitness function, ymax = max(g(Xi)) and

ymin = min(g(Xi)) are the two constants to control the explosion amplitude

and the number of explosion sparks, respectively, and ǫ is the machine epsilon.

Equation 3.14 calculates the number of sparks.

Algorithm 6 EFC-part

1: Initialize random fireworks fwi ∈ F
2: Calculate fitness of each firework fti ∈ FT using Equation 3.15, where M

is positive constant, sji is jth dimension value of si and cj is jth centroid
which sji belong to. While doing this, update the value of E array,
such that, if data point belongs to fwk

i and fwm
j then, E[i][k][j][m] ←

E[i][k][j][m] + 1
3: Calculate si, the number of explosions for each firework using Equation

3.14
4: Calculate Ai for every firework using Equation 3.13, 3.12 and 3.11

5: for all fwi in F do:
6: for j = 1 to si do:
7: ∆Xk

i ← round(rand(0, 1)) ∗Ai ∗ rand(−1, 1)∀(k), calculate displacement,
where 1 ≤ k ≤ K is cluster count

8: if Xk
i is out of bounds then

9: Xk
i ← Xk

min + |X
k
i |%(Xk

max −Xk
min)

10: Xk
i ← Xk

i +∆Xk
i ∀(1 ≤ k ≤ K)

11: Perform k-means and update E array
12: Calculate fitness values of fireworks fwi ∈ F using Equation 3.15

Ak
min(t) = Ainit −

Ainit − Afinal

evalsmax

√

(2 ∗ evalsmax − t)t (3.4)

Ak
i =











Ak
min if Ak

i < Ak
min,

Ak
i otherwise.

(3.5)
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Ai = Â ·
g(Xi)− ymin + ε

||F ||
∑

i=1
(g(Xi)− ymin) + ε

(3.6)

si = Me ·
ymax − g(Xi) + ε

∑||F ||
i=1 (gmax − f(Xi)) + ε

(3.7)

J =

k
∑

j=1

n
∑

i=1

∥

∥

∥sji − cj
∥

∥

∥

2

M
(3.8)

rIDi ←
sj[i]−mini

maxi−mini

Fi

∀(i = 1, 2, ...cd) (3.9)

3.1.5.3 CSC Part

In this part, new fireworks are constructed and joined to firework set. We use E,

4 dimensional array to construct new solutions and use Cuckoo Search algorithm

to select fireworks in F to pass to the next generation. To construct the new

fireworks, k different centroids from different fireworks are found and joined.

The important point is that, k different centroids cannot share any data points,

because in a particle centroids do not have any common data points.

For example, Figures 3.6 and 3.7 show the procedure of creating new firework

with k=3 and ||F ||=2. Figure 3.6 and Figure 3.7 are before-after situations of

constructing new firework. In Figure 3.6, one firework is denoted with rectangle

and another with triangle. CSC computes that centroids denoted with 0 − 0 ,

1 − 1 and 0 − 1 do not share any common data points,where f − k means kth

centroid of f th firework. As a result, the new particle can be created as shown in

Figure 3.7 with plus sign. Indeed, if this was a separate particle, it would have

better fitness value than the existing ones.
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Figure 3.6: Before CSC part

Figure 3.7: After CSC part

We use the similarity array E to form a graph consisting of vertices denoted with

centroids and edges having value of that vertex’s fitness value. Since the similarity

array keeps the sharing data point count between centroids, if the shared element

count is zero, then the corresponding centroids can be concatenated to form a

new firework. As can be seen from Figure 3.8, the source node is the double

lined circle. It has ||F || ∗K child nodes, since that is precisely the total number

of centroids within the firework set. The source node do not share any points

with any of the centroids. As a result, some path, with the minimum sum of

edge values, consisting of K consecutive nodes is found, where the incoming edge

value of a particular node is its fitness value. Important point is that, the K

consecutive nodes can be anywhere in the graph, might not necessarily begin
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from the source node. To solve this problem, dynamic programming is used and

all possibilities are tried like brute force, but in a ”careful” way.

DP (k, ckp) = argmin(DP (k − 1, nk
p) + fk

p , DP (k, nk
p))∀(n

k
p) (3.10)

As can be seen from Equation (3.10), finding the minimum length k united nodes

is implemented recursively, where nk
p is the child node of ckp. The number of

nodes needed and the current node are the two arguments given to function DP .

Finding the minimum path length consisting of k nodes can be done by either

taking the current node into consideration, running the same function for the rest

of its child nodes with (k − 1) needed nodes and summing them, or not taking

the current node into the consideration and running the function with K and all

of current node’s child nodes arguments, and giving the minimum of this results

as an output. We used memoization in order to get the advantages of dynamic

programming. That is, if some value of DP (k, nk
p) = c then it is stored, and after

if it is needed, then the answer is retrieved in constant time and used.

After finding new solutions we use Cuckoo Search to place them. The pseudo-code

for Cuckoo search is given in Algorithm 7.

Figure 3.8: Intuition behind constructing new firework using graph.
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Algorithm 7 CSC-part

1: Calculate objective functions fobj(fwi)∀fwi ∈ F with Equation 3.15.
2: Get ni ∈ N new firework solutions with Equation 3.10
3: for i = 0 to itermax do

4: Chose random ni

5: Chose random fi
6: if fobj(ni) isbetterthan fobj(fwi) then
7: Replace fwi by ni with some probability

8: Delete pa fraction of F and build new fireworks randomly.

3.2 Optimization Part

Having clustered users, it is essential to construct a menu for each of the groups.

The reason that we cluster users first is that to group them into similar clusters

which can lead to better menus for each group. Obviously, it is not possible to

make better menu for all users. Therefore, grouping them and making optimal

menu for each group leads to better performance.

To explain overall system, we first present the problem definition with possible

input and output constraints and optimization framework.

3.2.1 Before Optimization

Optimizing menu for specific needs is a challenge because it is vital to have

understandable and usable menu after optimization part. There are some input

and output specifications to be cleared before constructing a model. The steps

that we have done before optimization, including in Clustering part:

• Mine user logs. The logs of user transactions have to be mined and for each

user its corresponding customer profile must be derived.

• Cluster users. That was the process we have done in first part of solution.

• Derive menu tree. Here the menu screens can be thought as tree vertices
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and relations between screens are edges in tree. For example, in Figure 3.9,

the sample menu tree of some website is shown.

• Define optimization objective. For example, minimizing click count,

maximizing menu visibility, minimizing overall session time and etc. can be

objective for menu optimization. In this study we focused on minimizing

click count problem.

• Calculate click counts for each menu screen for each cluster. The click count

of each menu screen is not calculated as the number of clicks for particular

menu item. Instead, our objective is to get actual aim of user. For example,

if user clicks menu A then B and then C, and stays in A and B negligible

time, then his/her aim is to reach menu C. So, counting menus A and B

for this aim is worthless. Therefore it can be the case that the menu item

under other menu item can have high click count than its ”parent” menu.

• Put click counts on tree nodes for each cluster. In menu tree, we put click

count of each menu screen to its relative vertex. That is, the value on

the vertex corresponding to particular menu screen, is equal to that menu

screen’s click count.

Having input specifications our aim is :

• Construct a menu tree out of existing one such that the overall click count

is minimized. For example, if menu C is under menu B and menu B is under

menu A (A→B→C), and if menu C is very usable (having high click count),

then to reach this menu users click more. If we reposition menu C is nearer

position to main menu (A), then overall click count can be minimized.

• Ensure the usability and understandability. To reconstruct the menu in

optimum way, one can say that using Huffman coding [64] and placing the

most clicked menu on top and reconstructing all subtree in this manner

gives the best solution. This is true but how about usability? For example,

we have in original menu structure ”Fox”,”Cat” and ”Elephant” is under
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Figure 3.9: Sample component design of web page

the ”Animal” menu. If ”Cat” is clicked much more than others, we cannot

be put ”Cat” on top of ”Animal” menu, because this would mislead the

users and affect usability negatively.

• Ensure the additional constraints. Some devices can have constraints such

as maximum menu buttons for each page. For example, in phone or ATM

menus the space constraints are important issue. Our model handles it

considering each menu screen’s maximum children menu pages.

Figure 3.10 gives sample menu structure of ATM, where rectangle boxes represent

menu item, the numbers above boxes represent their ID, the ones below boxes

represent click counts for particular menu item and black boxes represent ”leaf”

menu items, meaning last menu item in the click path. Moreover, we assume

that the menu shown in Figure 3.10 can have at most 3 children per node.
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The optimal version of that menu based on the click count is given in Figure

3.11. It is clear that, the menu is optimum when it conserves both usability

and understandability. Meanwhile, in this particular case, finding the optimal

menu for Figure 3.10 is not very hard. However, considering very large menus for

complicated systems or enormous networks, the optimization is not an easy task.

Figure 3.10: Sample menu structure of ATM before optimization

3.2.2 Optimization Framework

To optimize user menus we assume that, the user logs are mined in an efficient

way, they are clustered and click counts of menu items for each cluster is known.

Using MIP framework we guarantee the optimum. The key concepts are

represented in Table 4.1 and in Figure 3.12. In this solution, we represent the

menu as tree and show the existing problem as a network flow problem. The flow

generated in each node is equal to overall click count on particular node and aim
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Figure 3.11: Sample menu structure of ATM after optimization.

is to minimize the overall flow. Figure 3.12 shows the original menu and dashed

lines represent possible connections between nodes that can be selected while

optimization. As can be seen from Figure 3.12, we introduce 2 new node types:

optimizers (triangle-like boxes) and combiners (romb-like boxes). The details and

their usage is given below:

• Optimizers - These are menu nodes introduced in this study to bring best

leaf node or menu subtree to upper levels. That is, the optimizer has

possible connections to all ”grandchildren” nodes of its parent, but selects

only out of them. For example, in Figure 3.12, nodes with ID=14,17 and 18

are optimizers and all lower level nodes with same parent (Main Screen) are

connected to them. The optimizer selects the best option as there can be

only one child for each of optimizers. Optimizers can have in all levels of a

menu tree but the leaf level. For simplicity, in Figure 3.12, we put them only

in the first level. The important point is that, optimizers can connect to

not all low level menu nodes but only same-parent menu nodes with itself.

Moreover, the cost of connecting to optimizer is zero. This constraint is

put to encourage nodes to go to upper levels with minimum cost and the
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Table 3.2: Terminology for MIP Formulations

Variable Description

S (Given) Set of all original menu nodes, excluding optimizers and
combiners.

SOPT (Given) Set of Optimizer menu items (triangles in Figure 3.12)

S0(Given) The root or top level menu item. (Node with ID=0 in Figure
3.12)

SCOMB(Given) Set of Combiner menu items, the ones shown with romb in
Figure 3.12)

Ci(Given) Integer that shows click count for ith node.

INi (Given) Set of candidate incoming nodes to ith node.

OUTi (Given) Set of candidate outgoing nodes from ith node

Li
IN(Given) Constant number that shows the number of child nodes of ith

menu node. This number is maximum number of incoming
nodes to ith node.

Li
OUT (Given) Constant number that shows the number of parent nodes of ith

menu node. This number is the maximum allowed number of
outgoing nodes from a particular node i.

fij(Variable) Amount of flow (click in this case) between menu nodes i and j

aij(Variable) Boolean variable which denotes if there exist a flow between the
nodes i and j

dij(Given) Integer value denoting the weights of arcs. In general, all weights
are equal to one, but the ones incoming to SOPT are equal to 0

M(Given) Large constant with respect to given parameters in problem.

optimizer will select the best option to minimize overall system’s cost.

• Combiners - These are menu nodes introduced in this study to combine

same level nodes under one menu node and take them one level below. For

example, node with ID 16 is combiner. All same level nodes are possible

child nodes of combiner. The main point is that, if some nodes in the same

level are chosen to go downwards, they are collected under the combiner

node with name like ”Others” and their previous places are taken by another

menu nodes from downwards.
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It is assumed that whatever the size of menu is, we have quite powerful machine

to compute its optimum form. The model consists of several linear equations

given below:

aij ∈ {0, 1} ∀i ∈ S, ∀j ∈ OUTi (3.11)

fij ≥ 0 ∀i ∈ S, ∀j ∈ OUTi (3.12)

∑

j∈OUTi

fij −
∑

j∈INi

fji =











−
∑

i∈S−S0
Ci, i = S0

Ci, ∀i ∈ S − S0

(3.13)

fij ≤Maij, ∀i ∈ S, j ∈ OUTi (3.14)

∑

j∈OUTi

aij











≤ 1, ∀i ∈ SOPT ∪ SCOMB

= Li
OUT , otherwise

(3.15)

dij =











0, if j ∈ SOPT

1, otherwise
∀i ∈ S, ∀j ∈ OUTi (3.16)

∑

j∈INi

aji











≤ 1, ∀i ∈ SOPT

≤ Li
IN , otherwise

(3.17)

Minimize :
∑

j∈OUTi

dijfij∀i ∈ S (3.18)

Equation 3.11 shows that aij is a boolean variable for all possible arcs defined in

the system. Constraint 3.12 represents the non-negativity of flows in our model.
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Here, flow is the click count of a particular node. Equation 3.13 provides the flow

balance in the system. There can be 2 separate cases. If the node is a sink node,

that is, the one at the top level, then all incoming flow is equal to the sum of all

flows generated in other nodes, since flows are made from clicks. Otherwise, the

flow generated in particular node is the difference between incoming and outgoing

flows. In equation 3.14, we are converting flows to binary variables to be used in

later equations. Equation 3.15 shows the constraint related with outer arcs from

a particular node. That is, there must be exactly Li
OUT number of arcs going out

of ith node, if the menu node is neither SOPT , nor SCOMB. This means that, a

particular node in the menu must be connected to the menu and it cannot be lost

even it has no clicks. But in the case of SOPT and SCOMB nodes, they are free

to be connected to the tree or not. We are not forcing them to do so. Equation

3.16 shows the constant dij, which represents the weights of arcs. We say that

every arc in a tree has an equal weight of 1, except the ones incoming to SOPT

menu nodes. Since we want to encourage other nodes to connect to these nodes,

their weights are 0. Equation 3.17 does the same for constraining the number of

incoming arcs to a particular menu node. This can be thought as the maximum

number of menu items under a particular menu item. We constrained SOPT ’s

incoming nodes to maximum 1 node, as we are allocating SOPT nodes itself and

taking more than one incoming node would not optimize the system efficiently.

Equation 3.18 shows our objective function. This is simply the minimization of

flows multiplied by the arc weights. This can also be considered as the cost of a

flow.

The important point is that, our model does not enforce using combiners and

optimizers. If it is optimal, the system uses them in some or all levels of the

menu tree. Another important point to mention is that, the click count of non-

leaf nodes is not computed as regular. For example, there can be the case that,

for one menu node m1 click count is c1, and for another menu node m2 click count

is c2, where c2 > c1 and m2 is child node of m1. Here, for non-leaf menu nodes, we

do not compute click count as regular. If the user stays at a particular menu item

for longer than some threshold time, then we add click count for that particular
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menu node, else we consider that user’s purpose was not actually looking for this

page; therefore, we do not add click count.

Figure 3.12: Sample menu structure of ATM after optimization.
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4. EXPERIMENTS AND ANALYSIS

Because our solution is multi-objective, we grouped the experiments from general

to specific to menu optimization. Firstly, the clustering performance improvement

experiments are presented. Then clustering quality improvement experiments are

presented. Finally, considering clustering results are ready, we optimize menu

structure and show results.

4.1 Experiments on Clustering Performance

Improvements

The experiments were conducted both in serial and parallel environment.

MapReduce framework of Cloudera’s Apache Hadoop distribution was used for

parallel environment. The environment consisted of 17 connected computers with

100Mbit/s Ethernet. Each computer had Intel i7 CPU and 4GB RAM capacity.

Among the 17 computers, 16 of them were worker nodes and 1 was the master

node.

Two different data sets were used to run the experiments. First data set (DS-

1) was, “Individual household electric power consumption Data Set” 1 and the

second one (DS-2) was, “US Census Data (1990) Data Set” 2. The lengths of

feature vectors of DS-1 and DS-2 are 7 and 68 and the size of data sets are

2075259 and 2458285 instances respectively. Both data sets were divided into

different number of clusters and the algorithms run with different initial centroids.

Finally, we chose α threshold to be 0.15 in experiments.

We have performed numerous experiments both in serial and parallel environ-

ments. We compared our proposed improvements with the models proposed in

1 https://archive.ics.uci.edu/ml/machine-learning-databases/00235/
2https://archive.ics.uci.edu/ml/machine-learning-databases/census1990-mld/

38



[62], [65] and standard k-means - (k-means-s) [61]. The complexity and efficiency

of the models described in [62] and [65] are mainly the same. Therefore we

implemented the model shown in [62] to compare with our proposed algorithms.

As the authors of [62] called their model as enhanced k-means, for simplicity we

called their model as k-means-e.

Before discussing the results, one important thing is that, there is no k-means-s

in figures, because the graphs show relative results with respect to k-means-s.

Since in all of the fore-mentioned models we are trying to achieve improvements

over k-means-s, all graphs shown in this section used k-means-s performance as

the basis. This is accomplished by dividing the result of the particular model

running time by the running time of k-means-s. This can also be considered as a

normalization.

Figure 4.1: Comparison of three models in serial environment with DS-1.

Figure 4.1 shows the comparison of our proposed models and k-means-e [62]

in terms of their efficiency towards k-means-s [61] with DS-1 in the serial

environment. It is clear that k-means-ibd is less efficient compared to the other

two models. As stated above, all proposed models consist of two parts: first part

and second part. Here k-means-ibd mainly takes advantage of the improvement
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Figure 4.2: Comparison of three models in serial environment with DS-2.

of the second part when compared to k-means-s. k-means-e also takes advantage

of the improvement of the first part, when finding the nearest centroids. However,

k-means-inbd is improved both in the first and the second part, that is why, it

performs better than the other models. In general, it is obvious that when the

data is small compared to the memory size and in the serial environment, first

part of the models dominates the second part. That is why, even though k-

means-ibd performs better than k-means-s, it is still slower than the other two

models.

Figure 4.2 shows the same procedure as Figure 4.1 with DS-2. It is clearly seen

that the overall concept is pretty much the same. Meanwhile, all models more or

less have improved their performance slightly by decreasing their computation

time. This is due to the fact that the feature vector size in DS-2 was 68,

whereas it was 7 in DS-1. However, k-means-inbd and k-means-e improved their

computation time more than k-means-ibd, when compared to Figure 4.1 because

k-means-e and k-means-inbd benefit computationally over k-means-s in part-1

which is directly related to the vector size, more than k-means-ibd. As the vector
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dimension increases, k-means-inbd and k-means-e have more dominance over k-

means-s, since the first part of the proposed models have dominance over the

second part in the serial environment.

The performance improvement over standard k-means increases with larger k

values due to the increase in the number of iterations to converge, as seen in

Figures 4.1 and 4.2. As the number of iterations increase, we have much more

benefit using our proposed models compared to standard k-means.

Figure 4.3: Comparison of three models in parallel w.r.t. data size.

Figure 4.3 shows the comparison of the proposed models over k-means-s in the

parallel environment. We used Cloudera’s Hadoop distribution with 17 nodes in

this experiment. The main purpose of this experiment was to find the threshold

value for the size of the data set where k-means-ibd starts outperforming k-

means-inbd. Therefore we simulated DS-1 to have a larger data set. As stated

during the analysis of the algorithms, the main disadvantage of k-means-e and

k-means-inbd is their necessity to keep all data points’ previous centroids. If

the serial environment is used with a data size that is less than the memory

size, they can be kept in the memory. However with the increasing data size, it

will not be possible to achieve that. In MapReduce implementation, k-means-e
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Figure 4.4: Comparison of three models in w.r.t. node number.

and k-means-inbd change the data set with their modified centroids and in every

iteration output the result. That is, in every iteration, stated models read O(2n)

data points and output O(2n) data file size. As the size of the data file gets larger,

the dominance of the improvements keep decreasing due to the increasing I/O

time to output and write to the large disc files. Moreover, reading time is also

increased due to extra O(n) data read in each iteration. As the iteration number

gets larger to converge, this drawback becomes a major issue for k-means-s and

k-means-inbd. We can see that in Figure 4.3 for DS-1, k-means-ibd keeps getting

slightly better as the data size increases, because of the improvement in I/O and

in the reducer side of MapReduce. However, k-means-e and k-means-inbd have

a deteriorating performance with the increase in the data size due to the reason

stated above. Another notable observation is, k-means-e’s data size threshold

being less than k-means-inbd. This is mainly due to the fact that it has no

improvements in the reducer side and all points are sent from the mapper to the

reducer in every iteration. However, in k-means-inbd as well as in k-means-ibd

only those that have changed their cluster are considered for processing in the

reducer. The reducer and the partition phase take longer when the data set

becomes larger. However, as k-means-ibd does not send all data points from the
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mapper to the reducer, it takes advantage of the reducer phase improvement

and this advantage becomes more significant with increasing data size. Also, k-

means-ibd has an I/O advantage over the other models, because of getting rid of

reading O(n) and writing extra O(2n) data in each iteration.

Figure 4.4 shows the comparison of the proposed models’ computation time over

k-means-s with different number of nodes using MapReduce. In Figure 4.4, we

used DS-2 with its size simulated up to 400MB and k = 100 in this graph. We

simulated the data set in order to see real outputs that were less influenced by

the network overhead. Here it is seen that k-means-inbd and k-means-ibd have

increasing performance improvement over k-means-s as the number of nodes in

the cluster increase. The main reason for this is, if we have O(x) improvement

in one node and if we distribute the job to m nodes, we will have O(x ∗ m)

improvement, not considering the network overheads. However, the improvement

of k-means-e is less than k-means-inbd as the number of nodes increase. Again the

reason is k-means-e’s not getting the advantage of the reducer side improvement.

Overall picture is the same for data set 1, but again, have slight improvements

in k-means-ibd and more improvements in k-means-e and k-means-inbd. The

reason can be explained as follows: k-means-inbd and k-means-e have mapper

improvements, that is why, they outperform k-means-ibd in small data sizes (in

this particular case, with a data size of 400MB). As we increase the size of data

set, the relative performance of k-means-ibd increases and after the size threshold

value, it outperforms other algorithms.

Figure 4.5 shows the percentage of data points that was processed in the reduce

step in both k-means-ibd and k-means-inbd for k = 5. This case was chosen as

an example to demonstrate the general concept in a realistic environment. In

that particular graph, it can be observed that after a certain iteration, all data

sets had decreasing number of operations performed at each following iteration.

This was our main motivation to the improvement achieved on the second part

of the proposed models, namely, processing of only those points which altered

their clusters to compute the new centroids. Since not all of the points are
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Figure 4.5: Percentage of points changed in clusters in reduce step for k=5.

considered in finding the new centroid (which is not the case in standard k-

means), after several iterations the number of points that has changed their

cluster decreases drastically. If this graph had included k-means-s, all lines

would be (percentage = 100) straight lines; that is, no matter which iteration

was carried, all reducers process all points. However, in our proposed models,

as the iteration numbers increase, clusters tend to converge and the number of

operations reduce geometrically. For simplicity, we show the graph until the 12th

iteration, because after that, points in all the clusters change less than 1 percent

until convergence. It is obvious from the graph that, as the number of iterations

increase, our proposed models demonstrate better efficiency.

Figure 4.6 shows the number of iterations needed to satisfy threshold α and the

ones needed to converge. This is the point where k-means-ibd switches from

Algorithm (1) to Algorithm (3). Since k-means algorithm is greedy, it converges

at the first local minimum. Therefore after a few steps, the clusters tend to be

stable as their centroids tend to move more slowly. So, with increasing k values,

we have more iterations after threshold. This means that we can take more

advantage on reducer side at each step.
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Figure 4.6: Number of iterations before and after α = 0.15 threshold with DS-2.

4.2 Experiments on Clustering Quality

Improvements

We used two data sets for test our model. First data set, DS1 [66], is public

data set. Second data set, DS2, is the ATM logs data set, we used for case

study. First data set contains 17389 instances and 16 attributes. DS2 contains

20 million instances consisting of 50 attributes. DS2 contains the user profile

vectors for ATM customers. To construct a vector, we used the count of the

customers’ clicks for each transaction for a period of time. To test our results,

we used Cloudera’s Hadoop distribution on 5 Intel i5 machines.

We used [67], [68], [69] and our model to make comparisons. For simplicity, we

called them rk-means, ck-means, FGKA andH(EC)2S respectively. Because the

fitness function, Equation 3.15, uses minimization objective, the better clustering

quality is achieved with lesser fitness value.

Figure 4.7 shows the effect of increasing k value to the models with DS2. Here, the

models with lesser fitness values are better because fitness function’s, Equation
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Figure 4.7: Effect of k to fitness function.

3.15, objective is minimization. As can be seen, the standard k-means cannot

survive to k=100 with DS2, because of empty clustering problem. The same can

be said to FGKA algorithm after k=100 and etc. The reason is that, DS2 data set

is very crowded in specific places and solution space is very large. That is, most

of the users do same operations and dividing them into k >> 1 clusters is very

difficult. The important thing in H(EC)2S model is that as k value increases,

the gap between other models increases linearly. This is because of CSC part, in

which new solutions are found and placed into fireworks. So, as k gets bigger,

in CSC part, we have many solutions to select among, one of which can be the

optimum solution as well. Table 4.1 shows the numerical results based on this

experiment. Here − sign indicates that the model could not find the solution

because of empty clustering problem.

Figure 4.8 shows the dependence between data size and execution time imple-

mented on DS1 on Hadoop environment based on 5 nodes. We simulated the

data to increase its size. Because there are not scalable versions of other models

given in Figure 4.7, we only considered k-means parallel [61] and H(EC)2S. It is

clear that k-means performs better in terms of performance time because of its
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Table 4.1: Fitness values of different models w.r.t. k value.

k-
means

rk-
means

ck-
means

FGKA H(EC)2S

k=5 1302 1185 955 1060 760
k=100 − 1512 1341 1270 800
k=
200

− − 2007 − 1500

k =
500

− − − − 1698

Figure 4.8: Effect of increasing data size to execution time.

greedy nature. However, H(EC)2S does not increase exponentially with respect

to k-means. This is because of its scalability.

Figure 4.9 shows the dependence between co and fitness function in H(EC)2S

model on DS2. Because co is outlier threshold, based on data set, it can vary.

DS2 is very crowded data set in specific places of solution space. So, making

outlier threshold bigger, can eliminate the necessary fireworks too. Therefore,

after 1000 the fitness value gets worse.

Figure 4.10 shows the dependence between fireworks set size and fitness function

value on DS1. As the fireworks set gets bigger, the probability of finding the new

better solutions also increases. However, after some certain value, depending on

the data set, the increase may not continue. The same applies to this Figure. We

can conclude that the fireworks set size for this data set can be chosen nearly 50,

because increasing further increases the time complexity also.
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Figure 4.9: Effect of threshold level co on fitness value.

Figure 4.10: Effect of fireworks set size on fitness value.
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4.3 Experiments on Numerical Optimization

We obtained initial results for only one ATM out of 2000 machines and we divided

users into 3 profiles using the clustering algorithm we proposed before. Our data

size is 4 ∗ 107 ATM logs.

We used MapReduce framework [1] to mine and process the data and CPLEX

[70] to find the optimum solution using MIP [71]. Overall structure of the system

design is as follows:

1. First we mine large amount of data using MapReduce and cluster the users.

2. Second, for each cluster we get the click counts of the leaf menu items using

MapReduce.

3. Third, we find the optimum menu structure for each user group using the

method explained in Section 3.2.2.

As the first and second steps are not the focus of this study, we try to concentrate

on the third step. However, in the first step we choose k, the number of clusters

to be 3 and separated users into 3 categories according to their actions in ATM,

which are:

1. C1, Users that mostly took cash from ATM and look to their balance.

2. C2, Users that mostly took cash from ATM and almost never look to their

balance.

3. C3, Users that do advanced operations in ATM such as money transfer,

credit card operations, automatic bill payment and etc.

Our menu structure that we wanted to optimize consists of 35 menu items. The

time taken to optimize this count of nodes is low (i.e., it was less than a second).
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Figure 4.11: Overall number of clicks with new model (NM) and previous model
(PM).

However we are working on heuristic methods to optimize huge number of menu

structures. We tested our results with two methods. In first method (FM),

we mined all logs of ATM derived a conclusion about overall click count with

new menu structure. In second method (SM), we chose random person from

the customers of the bank, and asked to use our app developed in iOS. SM is

subset of FM because FM includes all user transactions in the past 18 month for

a particular bank.

Figure 4.11 shows overall count of clicks with new (NM) and previous (PM)

models. There is approximately 10% click reduction in the new model.

Figure 4.12 shows the user profile click gains. Here NM-k shows the kth profile

users with new model and the PM-k shows the same with previous model.

Because there was no user profiling in previous model, we did the same procedure

(clustering of users) to the previous one to compare the results. The results show

that, there is a significant reduction of clicks in C1 and C2. This is because of

the fact that, C1 and C2 clusters are more specific profiles. C3 cluster users do

all kind of operations and mostly advanced ones. So, as the clusters get more

specific, the menu gets more efficient optimized structure. That is, getting single
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Figure 4.12: Profile based comparison of number of clicks.

optimum menu for all users is harder and inefficient than getting the same for

clustered or profiled users.

Figure 4.13 shows the average session time with previous and new models which

showcases the gains brought by the proposed MIP model. As the users are more

efficiently clustered, the reduction in completion time will higher, which is among

our ongoing research efforts. Figure 4.14 shows the percentage of users that used

our new optimizer menu items which was created by our model. As can be seen

C1 and C2 users tend to use more, because they represent more specific profiles.

51



Figure 4.13: Average session time (in sec) on ATM with new model(NM) and
previous model (PM).

Figure 4.14: Percentage of users used our model’s optimization menu items
(SOPT ).
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5. APPLICATION AREAS

Main applications of our work is related with UI included systems. For example,

as shown in Figure 5.1a, when customers use X operating system, after some

time based on their actions the system can change its structure, because they

can be seen as a tree of menu items. Moreover, there are many web sites that

do research to satisfy their customers, try to learn their behaviors and satisfy

them. Considering that web pages also have menu tree, customizations can be

made based on group of users of for single user separately. Another possible

application that we made was the application to ATM menus. In this research, as

indicated in [72], we reached significant improvements. Yet another application

is for mobile device menus, as shown in Figures 5.1b and 5.1d, because they

are getting more and more popular. Yet another application is vehicle routing

problem. In some cases, vehicles cannot go to any places and must go through

several nodes before going to the next. This can also be converted to menu tree

problem and solved with our methods proposed. Moreover, optimum bookmark

browsers can be developed using this model as shown in Figure 5.1c. That is,

based on user actions in the web, bookmarks can be selected automatically.
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(a) Usage of solution in operating
systems, MAC OSX in this case.

(b) Usage of solution in mobile slide-
menu.

(c) Usage of solution in web-
browsers, chrome in this case.

(d) Usage of solution in mobile tab
bars.

Figure 5.1: Some possible usages of proposed model
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6. CONCLUSION

In this study, we tried to solve menu optimization problem with a deterministic

solution and at the same time developed new models for clustering. So, we

reached 3 main improvements to consider them all as a whole solution.

Firstly, we suggest a solution of improvement over the standard k-means

clustering algorithm. In particular, instead of using the full data set in the

centroid updating step of the algorithm, only the data points which will change

their cluster (by associating themselves to a different cluster centroid) would be

considered. This adjustment on the algorithm provides a considerable efficiency.

We used two different versions of this algorithm depending on the data size, cluster

size and serial or parallel environment. We call these algorithms k-means-inbd

and k-means-ibd. Furthermore, both serial and parallel implementations were

implemented; MapReduce was used for this purpose. The results indicate that

using this new enhanced algorithm not only provided a considerable performance

improvement over the classic algorithm but also outperformed an improved k-

means algorithm from the literature in all tested cases. When the number of

the iterations increased, the amount of work k-means had to perform increases

linearly. Also increasing the number of clusters resulted in higher number

of iterations, hence, it resulted in a linear increase in workload for k-means.

However, since the amount of work performed by the proposed algorithms tend

to become smaller at each iteration (after the initial adjustment period), the

total amount of work that needed to be performed compared to k-means kept

decreasing.

Secondly, we present a new hybrid solution that improves clustering quality,

detects outlier data points and eliminates Empty Clustering problem significantly.

Our model has a runtime disadvantage with respect to original k-means; however,

both of them are linear with respect to the total number of the data points. To

test our model we used two data sets, one of which is very crowded and difficult to

cluster when k >> 1. We compared our model with original k-means and several
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other improved clustering solutions. The experiments show that it outperforms

other models and shows significant clustering quality gain.

Thirdly, we propose a novel optimization framework to menu optimization.

Optimization of ATM menu structures is an important problem to reduce the

delay experienced by the users and for the efficiency of utilizing ATMs. It is also

imperative to formulate the optimization problem in a generic fashion so that

many ATM menu types can be addressed within a single optimization framework.

In this study, we built a novel MIP framework to address this open question, which

has never been systematically investigated in the literature before. We present the

results of performance evaluations of our optimization model by using real data

collected from a large transaction database. Our results reveal that significant

reduction in click count, thereby, in ATM transaction completion time is possible

when the menu structure is optimized by the novel MIP framework presented in

this study.

6.1 Future Work

This research can be extended in several ways, such as:

• Mobile device version of this model can be studied. The developer of mobile

device can include the library to its application source code and set its

parameters. Then application periodically can connect to main optimizer

which will be in the cloud and find optimum slide menu items or tab bar

menu items for particular application based on customer usage.

• The optimization of large menus that is difficult to find with MIP model

can be researched. Here, meta-heuristic methods can be applied to search

the solution space.

• Menu optimization and its correlation with demographic studies is another

topic to be researched.
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