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ABSTRACT 

Master of Science 

 

A FIX-AND-OPTIMIZE HEURISTIC FOR THE INTEGRATED FLEET 

SIZING AND REPLENISHMENT PLANNING PROBLEM WITH 

PREDETERMINED DELIVERY FREQUENCIES 

Niousha KARIMI DASTJERD 

 

TOBB University of Economics and Technology 

Institute of Natural and Applied Sciences 

Industrial Engineering Science Programme 

 

Supervisor: Assoc. Prof. Dr.  Kadir ERTOĞRAL 

Date: April 2016  

We tackled an integrated fleet sizing and replenishment planning problem in a 

vendor managed inventory system. There is a set of customers which must be 

replenished based on a given set of predetermined frequencies. The vehicle fleet 

consists of multiple types of heterogeneous vehicles which differ in carrying 

capacity, cost per kilometer, and ownership costs. Customer demands are taken as 

deterministic values. The main decision we make in this problem is the triple 

asignment of vehicle-frequency-customer. As a result of these assignment decisions, 
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we obtain an annual costs consisting of vehichle ownership cost, routing cost, 

inventory holding and fixed replenishment costs. A key simplification in the model is 

the use of linear approxiamation for the routing cost based on the number of 

customers visited in a tour. The developed model, which is new in the literature, 

integrates fleet sizing and replenishment planning decisions.   

Our problem is NP-hard since it can be shown that a special case of our problem is a 

bin packing problem. In order to solve large problems efficiently, we suggested and 

applied a fix and optimize heuristic as a solution procedure. This fix and optimize 

heuristic divides the problem into smaller problems in which some variables are 

binaries and the others are linearly relaxed, and it fixes the linear decision variable 

iteratively. We also showed the effectiveness of the suggested heuristic solution 

procedure on a large set of randomly generated problems.  

Keywords: Fleet sizing, Replenishment planning, Predetermined frequencies, Fix 

and Optimize.  
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ÖZET 

Yüksek Lisans 

ÖNCEDEN BELİRLENMİŞ TESLİMAT FREKANSLARI İLE ENTEGRE 

FİLO BOYUTLANDIRMA VE İKMAL PLANLAMA PROBLEMİ İÇİN 

SABİTLE VE OPTİMİZE ET SEZGİSEL YÖNTEMİ UYGULANIŞI 

Niousha KARİMİ DASTJERD 

 

TOBB Ekonomi ve Teknoloji Üniveritesi 

Fen Bilimleri Enstitüsü 

Endüstri Mühendisliği 

 

Danışman: Doç. Dr. Kadir ERTOĞRAL 

Tarih: Nisan 2016  

Bu tez  çalışmasında satıcı yönetimli stok politikası uygulayan sistemler için filo 

büyüklüğü ve ikmal planlamasının entegre şekilde belirlenmesi ele alınmıştır. 

Önceden belirlenmiş frekans setine göre ikmal edilen müşteri seti mevcuttur. Araç 

filosu birden fazla farklı araçtan oluşmaktadır ve bu araçlar sabit kilometre başı 

maliyetler, taşıma kapasitesi ve edinme maliyetleri açısından farklılık arz 

etmekteler.  Müşteri talepleri deterministik değerler olarak alınmıştır. Bu problemde 

verilen asıl karar araç- frekans – müşteri üçlüsünün atamasıdır. Bu atama kararları 

sonucunda, araç edinme maliyeti, rotalama maliyeti, envanter tutma maliyeti ve 

sabit ikmal yapma maliyetinden oluşan toplam maliyet elde edilmektedir. Bu 
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modeldeki en önemli basitleştirme, rotalama maliyetinin bir tur içerisinde ziyaret 

edilen müşterilerin sayısına bağlı olarak yaklaşık bir değer şeklinde kullanılmasıdır. 

Bu tez çalışmasında geliştirilen model  literatürde yeni bir modeldir ve filo 

büyüklüğü belirleme ve ikmal planlaması kararlarını entegre şekilde vermektedir. 

Bizim problem kutulama probleminin özel haline dönüşebilmesi nedeni ile NP-Zor 

bir problemdir. Uzun çözüm sürelerini ortadan kaldırmak amacıyla sabitle ve 

optimize et sezgiseli çözüm yöntemi olarak önerilip uygulanmıştır. Sabitle ve 

optimize et yöntemi ana problemi bazı değişkenleri ikili ve diğer değişkenleri 

doğrusal olarak gevşetilmiş küçük problemlere ayırmaktadır, ve doğrusal karar 

değişkenleri  her iterasyonda sabitlenmektedir. Aynı zamanda, önerilen sezgisel 

yönteminin etkenliği rassal olarak  üretilmiş büyük problem setlerine uygulanarak 

gösterilmiştir. 

Anahtar kelime : Filo büyüklüğü belirleme, İkmal planlaması, Önceden belirlenmiş 

frekanslar, Sabitle ve Optimize et. 
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1. INTRODUCTION 

Considering distribution systems, one of the key factors is the efficient 

transportation. According to Hoff et al. (2010)  in general logistic costs constitute 

about 20% of the total cost of a product. Logistic costs can be reduced significantly 

by determining the fleet sizes efficiently since the owning and maintatining a fleet is 

a major cost componenet in total logistics cost for the firms that keeps a fleet. 

Generally speaking, a fleet, is composed of heterogeneous vehicles. In the industry, 

the vehicle fleets are used for long periods of time, and in these period a fleet will 

gain different vehicles due to technological developments and market situations. 

During this period vehicle’s maintenance, operation and depreciation costs will 

change. Another reason for preferring heterogeneous vehicle fleet is the operational 

constraints, and also the benefits which this flexibility provides inherently. 

The vehicles distinguishing characteristics are divided into three categories: 

 Physical dimension 

 Compatibility constraints 

 Costs 

Physical dimensions such as length, height and width of a vehicle determine its 

carrying capacity. In road based transportations, sometimes physical dimensions 

obstruct reaching the route networks. As an example for this situation, we can 

mention the urban areas and narrow roads in villages, and limited space in ramps for 

loading and unloading. Dimension and weight constraints can vary during a given 

time horizon, as in seasonal axle pressure limits due to spring thaw. The vehicles 

speed, can also be categorized under physical dimensions class. Although vehicles 

with lower speed usually have lower unit cost, it is impossible to give less cost-

efficient solutions due to temporal constraints. 
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Except physical dimensions, there exists another characteristic which limits vehicles 

utilization; “compatibility constraints”. These constraints can sometimes limit the 

places to which vehicles travel and also the loads which vehicles can carry. Often, 

customers need vehicles that have special equipment for loading and unloading 

operations. Operating vehicles in some areas necessitates special certificates. To 

illustrate this, we can mention the urban areas wherein fuel and noise emissions can 

limit vehicle utilization. 

Another factor which affects vehicle fleet composition is the vehicle costs. Large 

vehicles usually have lower unit costs in comparison to small vehicles if their 

capacity is utilized effeciently. As mentioned before, when making decision about 

fleet compositions for a long period of time, the decision makers first of all have to 

make a strategic choice between renting and owning the vehicles in their fleet. 

Comparing the expected costs and incomes under uncertainty is one of the 

components which should be assessed before deciding about the fleet composition. 

As it is an important part of the total cost of logistics, the cost related to inventory 

must also be controlled efficiently. Inventory cost is composed of holding cost, and 

fixed replenishment cost. In recent years, a business application called “Vendor 

Managed Inventory (VMI)” is applied by the firms which aim at minimizing the 

inventory costs. VMI systems are the systems in which the customer’s inventories 

are totally controlled by the vendor. Vendor decides when and how much to 

replenish each customer under the limits and constraints that customers determine, 

e.i. the minimum and maximum inventory level. VMI systems have many benefits on 

supplier’s side. As long as the supplier does his responsibility of controlling 

inventory levels and omitting stock outs, supplier can be locked into a VMI system 

supplier-customer relationship for a long period of time. In this way there will be a 

steady income for the supplier and the risk of supplier changes on the side of 

customer will be reduced. In a VMI system, the supplier has the chance of planning 

his operations more efficiently due to the ability of monitoring customer’s inventory 

levels in a steady manner. Additionally, during this monitoring procedure the 

suppliers have a much better understanding of the customer’s consumption rates 

during a given period of time which will cause decreases in stock amounts. Planning 
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customer’s replenishments actually means that the supplier is determining the orders 

he faces largely by himself, and thus can make more effective production and 

replenishment decisions. In addition to all these benefits, a VMI system affords the 

supplier with the last customer’s demand instead of the filtered demand information 

provided by the firms and thus can make better demand forecasts.  

In supply chains, demand variability increases as moving downwards the chain. In 

the literature this phenomenon is called “bullwhip effect”.  Bullwhip phenomenon 

occurs due to material and information flows which are not done on the right time 

and with the right quantity throughout the supply chain. According to Hohmann and 

Zelewski (2012) another definition of bullwhip effect is the increase in variability of 

orders as a result of increase in customer demands. As illustrated formerly, in such a 

situation the flow of information and material along the supply chain layers will not 

be steadily. When bullwhip effect occurs, the orders look as if they have been hit by 

a whip and are fluctuated. This fluctuation in orders leads to higher inventory held in 

the warehouses and also quick responses to customer orders will not be guaranteed 

anymore. The factors which are effective in appearance of bullwhip effect are 

generally categorized as five groups: demand distortion, feedback 

misunderstandings, batch ordering, cost fluctuations and strategic behaviors. VMI 

systems are able to decrease the bullwhip effect in the supply chains to which they 

are applied due to their ability of allaying the demand distortion and feedback 

misunderstandings.  

Considering transportation costs, VMI provides several benefits for the suppliers in 

the cases that customers are highly dispersed through various geographic regions. 

VMI makes it possible for the suppliers to send customer orders in consolidated form 

which will cause more efficient utilization of vehicles and as a result declines in 

transportation costs are met.  

On the customer’s side, the most important aspect of VMI application is the decline 

in inventory holding costs. In many situations the customers make a payment of the 

amounts which they have sold and are not forced to pay the opportunity type costs. 

Furthermore, the application of VMI yields elimination of other inventory 

management related costs such as labor costs, supervisory costs on customer’s side. 
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In this thesis, we tackle a problem of simultaneously determining replenishment 

plans and fleet sizes. As mentioned in the literature, determining fleet composition 

needs solving vehicle routing problems. Finding optimal solution to vehicle routing 

problems requires a set of exact data about the locations of the customers, and leads 

into long solution times. We did not include exact routing in our modeling, which 

simplified the model drastically. There are several reasons for this simplification; 

First, the routing costs constitute relatively small portion of the total cost we have in 

our model and including routing cost in an aproximate fashion would not change 

final decisions significantly. Second, our model is a startegic model which considers 

routing cost in an approximate fashion since the exact routing and its costs would 

change from day to the next in a real problem. In the strategic type of problems the 

route length/ cost is assumed to be an approximate value in the literature as we point 

out in the literature part below. In general, the most of the studies in literature 

consider operational routing problems and to the best of our knowledge there are 

some papers which study strategic fleet sizing models. Among these fleet sizing 

models, none of them considers predetermined delivery frequencies and inventory 

related costs in a single model, which is the setup of our problem.  

As a solution approach to our problem we suggested a “ fix and optimize” heuristic. 

In this approach the main problem is divided into smaller sub problems. At each 

iteration, decision variables of one sub problem are defined as integers and the 

variables for other sub problems are linearly relaxed. After finding a full integer 

solution through utilization of this pattern, an improvement stage is executed.  

This thesis is organized as below: first we will define our problem and analyze the 

complexity of the problem we have considered. Next the relevant literature is 

reviewed in chapter 3. After reviewing literature we will present numerical analysis 

of the problem in chapter 4. In chapter 5, valid inequalitis and lower bound analysis 

is illustrated. In chapters 6 and 7, we will present the heuristic we suggested and 

investigate the performance of the suggested heuristic. At the end, we summarize our 

work and contribution. 
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2. PROBLEM DESCRIPTION AND FORMULATION 

In this section we formally state the problem we tackle. Basically, in our problem 

setup we aim at minimizing sum of the transportation and the inventory cost of 

shipping a product from one origin to multiple customer destinations. Mainly, by 

bringing solution to the problem under study, we intend to decide how often and how 

much to replenish each customer along with the determination of the composition of 

vehicle fleet. A single product with deterministic demand is made available at the 

origin and the product is demanded at multiple destinations with a constant rate. A 

set of heterogeneous vehicles is used to ship the product to the customers. Vehicles 

vary in different aspects such as carrying capacity, cost per kilometer, and ownership 

costs. Replenishments are carried out based on a set of given frequencies, which are, 

in general, on weekly basis. To exemplify, a customer can be replenished weekly, 

biweekly, thrice or quarto-weekly on any day of the week. Additionally, we can also 

have a daily frequency. In total, we have 21 different possible frequencies 

(4*5+1=21).  

We are mainly concerned with determining the fleet size and the planning of the 

deliveries to the customers. To be more precise, the decisions our model will make 

are the number of each type of vehicle  in the fleet of the vendor, along with the 

frequency, and the vehicle type with which each customer should be served.  

Our objective function reflects a total annual cost and it is composed of two different 

types of costs; transportation related and inventory related costs. Transportation 

related costs consist of vehicle ownership costs and routing costs. Inventory related 

costs are fixed replenishment costs at the customers and inventory holding costs. All 

of these cost components are in the form of annual cost. 

We also made some assumption regarding operational issues in our problem. Each 

customer must be served using a single vehicle and a single frequency. This 

assumption is in line with practice as customers would prefer regularity of single 
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frequency in delivery. Considering real life situations, daily traffics, and long 

distances, we assume that each vehicle can make one route in a day and there is a 

constraint on the number of customers a vehicle can visit on its daily route. We also 

take into account the fact that customers can be grouped geographically, and two 

customers from different geographic regions may not be on the same route. 

An important aspect of our model is that it does not involve detailed routing 

decisions. Routing cost is taken into account in an approximate fashion as the 

product of the number of customers visited in a route and an average cost of travel 

between customers. The reason for this modeling approximation is that our model is 

a strategic one integrating several cost factors and routing cost is only one of these 

factors. Therefore, it is not worth to make the model very complicated to represent 

only one of the cost components in a detail manner. Besides, the routing cost, in 

general, does not represent a significant portion in the total cost that we consider in 

our approach. 

In the formulation, we use the notation given below: 

Sets: 

I   :    Set of customers 

V  :    Set of vehicles  

F  :   Set of frequencies, F= {1, 2, ..., 21} 

𝐹𝑗 :     Set of coinciding frequencies, ∀𝑗 = 1, … , 𝑛 

D :      Set of days of the week, D = {1, 2, …, 5} 

H :      Set of weeks per year, H = {1, 2, … , 52} 

 

Parameters: 

n :    Number of coinciding frequency sets 
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m :    Number of customers 

𝑟𝑣 : Approximate routing cost between two customers (fixed per kilometer cost of 

each vehicle) 

g     :   Dead heading cost 

𝑎𝑣   :  Annual ownership cost of vehicle type v 

𝜆𝑖𝑓  :   Annual demand of customer  i 

h     :    Annual inventory holding cost per unit of a product 

𝑘𝑖𝑓 :  Fixed cost of replenishing customer i using frequency f 

𝑠𝑚𝑎𝑥:  Maximum number of customers that can be visited during the day 

𝑐𝑣   :    Capacity of vehicle type v 

M   :    A big number 

𝑝𝑓  :    Total number of annual replenishments for frequency f 

𝑡𝑖𝑘 :   Incidence matrix of customers i and k (customers i and k can be in the same 

route if 𝑡𝑖𝑘=2, and cannot be in the same route when 𝑡𝑖𝑘=1) 

Using the notations above the mathematical model can be represented as follows: 

Min   ∑ 𝑔𝑝1𝐿𝑣1 +𝑣∈𝑉 ∑ ∑ ∑ 𝑔𝑅𝑑𝑣ℎ𝑣∈𝑉ℎ∈𝐻𝑑∈𝐷 +∑ ∑ 𝑟𝑣𝑓∈𝐹𝑣∈𝑉 . 𝑝𝑓 . 𝐶𝑣𝑓 

+  ∑ 𝑎𝑣 . 𝑉𝑣  𝑣∈𝑉  +∑ ∑ ∑ 𝜆𝑖𝑓 . ℎ. 𝑋𝑖𝑣𝑓 . (
1

2
)𝑓∈𝐹𝑣∈𝑉𝑖∈𝐼  + ∑ ∑ ∑ 𝑘𝑖𝑓𝑋𝑖𝑣𝑓𝑓∈𝐹𝑣∈𝑉𝑖∈𝐼  

Subject to: 

 

(2.1) 

∑ 𝑋𝑖𝑣𝑓𝑖∈𝐼 = 𝐶𝑣𝑓 ∀ 𝑣 ∈ 𝑉, ∀𝑓 ∈ 𝐹 (2.2) 

∑ ∑ 𝑋𝑖𝑣𝑓𝑓∈𝐹𝑣∈𝑉 =1 ∀ 𝑖 ∈ 𝐼 (2.3) 
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𝑀 𝐿𝑣𝑓 ≥ 𝐶𝑣𝑓 

 𝐿𝑣𝑓 ≤ 𝐶𝑣𝑓 

∀ 𝑣 ∈ 𝑉, 𝑓 ∈ 𝐹 

∀ 𝑣 ∈ 𝑉, 𝑓 ∈ 𝐹 

(2.4) 

𝑠𝑚𝑎𝑥𝑉𝑣  ≥ ∑ ∑ 𝑋𝑖𝑣𝑓𝑓∈𝐹𝑖  ∀ 𝑣 ∈ 𝑉 (2.5) 

∑ 𝜆𝑖𝑓𝑋𝑖𝑣𝑓𝑖∈𝐼 ≤ 𝑐𝑣 ∀𝑣 ∈ 𝑉, ∀𝑓 ∈ 𝐹 (2.6) 

∑ ∑ 𝜆𝑖𝑓𝑋𝑖𝑣𝑓𝑓∈𝐹𝑗𝑖∈𝐼 ≤ 𝑐𝑣 ∀ 𝑣 ∈ 𝑉, ∀𝑗 = 1, … , 𝑛 (2.7) 

∑ 𝐶𝑣𝑓

𝑓∈𝐹𝑗

≤  𝑠𝑚𝑎𝑥 ∀ 𝑣 ∈ 𝑉, ∀𝑗 = 1, … , 𝑛 (2.8) 

∑ 𝑋𝑖𝑣𝑓𝑓∈𝐹𝑗
+∑ 𝑋𝑘𝑣𝑓𝑓∈𝐹𝑗

≤ 𝑡𝑖𝑘 ∀𝑣 ∈ 𝑉, 𝑖 ∈ 𝐼, 𝑘 ∈ 𝐼, ∀𝑗 = 1, … , 𝑛 (2.9) 

 Objective of the problem is to minimize the total cost of transportation, inventory 

holding and replenishment operations. Transportation costs are presented in the form 

of separate elements such as dead heading costs, routing costs as an approximate 

value, and ownership cost. Here in our model, dead heading cost is defined as the 

cost of travelling from vendor to the first customer and from the last customer in a 

route back to the vendor. Routing costs are integrated to the model as approximate 

values. Cost of making a route is given by the multiplication of number of customers 

𝑅𝑑𝑣ℎ ≥ 𝐿𝑣𝑓-𝐿𝑣1 ∀𝑣∈𝑉,  d ∈ 𝐷, f∈𝐹𝑗, h∈H (2.10) 

𝑋𝑖𝑣𝑓 ∈ {0,1} ∀ 𝑖 ∈ 𝐼, ∀𝑣 ∈ 𝑉, ∀𝑓 ∈ 𝐹 (2.11) 

𝐿𝑣𝑓 ∈ {0,1} ∀𝑣 ∈ 𝑉, ∀𝑓 ∈ 𝐹 (2.12) 

𝐶𝑣𝑓 ∈ 𝑍≥0 ∀𝑣 ∈ 𝑉, ∀𝑓 ∈ 𝐹 (2.13) 

𝑉𝑣 ∈ {0,1} ∀𝑣 ∈ 𝑉 (2.14) 

𝑅𝑑𝑣ℎ ∈ {0,1} d ∈ 𝐷,v ∈ 𝑉,  h∈H (2.15) 
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which are replenished by vehicle type v and frequency f and an average cost per 

kilometer of vehicle type v. Annual ownership cost is calculated as the product of 

number of type v vehicles and the corresponding ownership cost for that type of 

vehicle. Other two cost components (holding and replenishment costs) are used as it 

is in well-known EOQ model.  

By constraint (2.2) we determine the number of customers being replenished by 

vehicle type v and frequency f. Demand satisfaction condition is forced by adding 

constraint (2.3) to the model. With constraint (2.4), we make sure that 𝐿𝑣𝑓 is one if 

we use any vehicle v and frequency f to cover any customer demand. By utilizing 

(2.5) we determine if a vehicle is used for replenishing any customers, or not.  

It is always important not to overload the vehicles. To meet this restriction, we 

utilized constraint (2.6). Total amount being shipped to customer i which is 

replenished by vehicle type v and with frequency f must be less than available 

capacity of vehicle v. This condition must hold for all of the 21 available 

frequencies. In our problem, the largest loads are shipped on coinciding frequencies 

and capacity must not be exceeded, and this restriction is forced by constraint (2.7). 

Obviously, in real life situations, the number of customers which can be visited on a 

specific route depends on the distances, traffic and some other factors. We embedded 

this constraint in our model as constraint (2.8), which forces the routes to consist of 

customers less than a predetermined maximum number of customers. For tackling 

geographically dispersed customers we used constraint (2.9) which allows us to take 

some customers in a route and exclude the ones which are not eligible to enter this 

specific route. Entrance eligibility is given by the incidence matrix, which has value 

of 1 representing the customers that are not allowed to be on the same route, and 

value of 2 for the ones which are eligible to enter the same route. By addition of 

constraint (2.10) we omit the extra repetition of deadheading cost. To handle this 

extra cost of redundant dead headings we check if there is any vehicle that 

replenishes any customer with daily frequency. In the case that such a customer 

exists, all other frequencies assigned to that specific vehicle will be set to zero and 

their deadheading cost will not affect the objective function value. Actually, in this 

constraint we subtract 𝐿𝑣1 from all other 𝐿𝑣𝑓 variables and set 𝑅𝑑𝑣𝐻 as greater or 
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equal to subtraction of these two variables. In this way if for example vehicle 1 

replenishes any customer daily, all of the 𝑅𝑑1𝐻 variables become zero and daily trips 

number are multiplied with fixed deadheading cost parameter. On the other hand, if 

no vehicle is assigned to daily frequency, based on the correspondence between f 

values, d and H (for example f =3 means weekly Tuesdays and corresponds to the 

second day of the week, that is d = 2 and H = 1,.., 52) the related 𝑅𝑑𝑣𝐻 is equated to 1 

and is multiplied by deadheading cost. (2.11)- (2.15) present the domain for the 

decision variables. 

2.1 Problem Complexity Analysis 

In this section we show that the problem tackled in this thesis is a NP-Hard problem 

through polynomial time reduction from the “One- dimensional bin packing 

problem” which is proved to be strongly NP hard in E. G. Coffman et al. (1997). In 

the bin packing problem, objects of different volumes must be packed into a finite 

number of bins or containers each of volume V in a way that minimizes the number 

of bins used.  

Considering our problem, under some assumptions we can transform the current 

problem to bin packing problem in pseudo-polynomial time. Consider the scenario 

for our problem where there is a single vehicle type, a single frequency, no 

clustering, and all the costs excluding the vehicle ownership cost are equal to zero. 

Also assume that ownership cost fo a vehicle is equal to 1. This setup is equal to 

following parameter setting for our problem: 

F= {1}, n = 𝑟𝑣 = g = 𝑘𝑖𝑓 =  h = 0, 𝑠𝑚𝑎𝑥=∞, 𝑡𝑖𝑘=2 for all (i, k) pairs,  𝑎𝑣= 1 for all 

vehicles. 

Under this setting our problmes turns into one dimensional bin packing problem, 

where we try to minimize the number of vehicles.  
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3. LITRATURE 

The problem tackled in this thesis is the problem of replenishment planning along 

with the fleet size determination. To the best of our knowledge among the researches 

in the literature, there is not any paper which integrates replenishment and fleet size 

planning problems. Generally speaking, the researches done on the field of our 

interest have usually ignored detailed transportation costs which correspond to nearly 

60% of total costs in distribution systems. One other aspect which makes our 

problem different from the researches existing in the literature of subject is the 

approximate route costs. The works done on routing problems are using vehicle 

routing solution methods to a great extent which usually causes difficulty in terms of 

solution times and data gathering. We utilized approximate routing costs in order to 

simplify the process of problem solution.  

Along with all these discrepancies, there are some papers which are close to the 

problem we considered to some extent. Shipment planning problems which utilize 

predetermined frequencies, fleet sizing problems, inventory routing problems, the 

papers which applied fix and optimize heuristic and also the researches about 

continuous approximation models are among the fields which have some aspects in 

common with the problem of consideration. 

3.1 Predetermined Frequencies 

One of the papers which uses predetermined frequencies is Bertazzi et al. (1997). As 

in our paper, products are shipped from one origin to multiple destinations with a set 

of given frequencies. Another similarity to our study which makes the mentioned 

paper interesting for us is the objective of the problem, which is to minimize the 

costs occurring during transportation and also inventory related costs. Here the 

approach for solving the problem consists of two phases. First they apply a heuristic 

based on solving the model as a single link problem. The second phase is dedicated 

to local improvement of the solution achieved in the previous step. In Bertazzi and 
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Speranza (2002), the problem of shipping several products from a common origin to 

a common destination is considered. The objective function of the problem aims at 

minimizing the sum of inventory and transportation costs as it is in our problem. 

There are two cases considered in Bertazzi and Speranza (2002): deriving a shipping 

strategy in existence of continuous frequencies and a set of given discrete 

frequencies. In this work transportations costs are not considered in detail. That is, 

dead heading costs and vehicle ownership costs are not integrated to the model. 

These cost factors constitute a significant part of distribution systems’ total costs. 

Another important point which is neglected in the studies existing in the litrature is 

that generally routing costs are not considered. Another outsanding charactristic of 

our problem which makes it significant is that all the inventory related costs, i.e. 

holding cost, replenishment costs are considered in our model.  

Another work considering feasible predetermined frequencies is Maria Grazia 

Speranza and Ukovich (1994). In this work, integer and mixed integer linear 

programming models are developed for four situations. Assumptions of the problem 

tackled in this study are the proportionality of transportation costs with the number of 

journeys that a typical vehicle makes, and the demand divisibility.  Luca Bertazzi 

(2000) considers the problem of shipping several products from an origin to a single 

destination under a predetermined frequency set. In this paper dominance rules are 

derived and the efficiency of a branch and bound algorithm is improved using these 

dominancy rules. Additionally, some heuristics are suggested and compared with 

EOQ-type algorithms. Bertazzi and Grazia Speranza (1999) investigates the problem 

of minimizing sum of the inventory and transportation costs in the multi-products 

logistics with one origin, some intermediate nodes, and a destination in existence of 

predetermined frequency set. As a solution approach heuristics based on 

decomposition of sequences or based on the solution of simpler problems are 

proposed. One other research work done by Bertazzi et al. (2005), which also has 

some aspects in common with the subject under consideration in this paper, tackles a 

complicated production-distribution system in which several items are produced 

repeatedly, and they are distributed to a set of retailers using a fleet of vehicles. VMI 

strategy studied in their work is evaluated in two categories and two different 

decompositions of the problem along with presented optimal or heuristic procedures 
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for the solution of the sub problems. In M. G. Speranza and Ukovich (1996) again 

the problem of distributing various products from a single source to a multiple set of 

destinations in existence of the given frequencies is studied. Here, the Np-hardness 

of the problem is proved and a branch and bound method is applied as a solution 

method. 

In general, in works which have considered predetermined frequencies the 

replenishment costs are not taken into consideration. Additionally, ownership costs 

are ignored and are not included in the mathematical models which they suggested. 

Another difference of our model from these works is that we consider routing costs 

in two different parts, i.e. deadheading and cost of travelling between two customers, 

while in predetermined frequency works transportation costs are taken as a value 

proportional to number of trips that a vehicle makes. In our model, we consider 

coinciding frequency effects which is neglected in the works mentioned above. To 

summarize, our problem is more detailed and includes all the costs which can effect 

the replenishment and fleet sizing decisions. 

3.2 Fleet Sizing Problems 

In Baldacci et al. (2008) an overview of approaches for solving heterogenous VRPs 

is given and as no exact algorithms has been presented for the problem under 

consideration, some lower bound assessments are given. In Żak et al. (2011) a fleet 

sizing problem in a road freight transportation company with heterogeneous fleet is 

considered. Sayarshad and Ghoseiri (2009) suggested a new formulation and solution 

procedure for optimizing the fleet size and freight car allocation wherein as in our 

problem car demands are assumed to be deterministic. Crainic (2000) introduces a 

new classification of service network design problems and formulations in addition 

to presentation of a state-of-the-art review about studies on service network design 

modelling and mathematical formulation developments for network design. Another 

research paper which deals with a problem that has some aspects seeming similar to 

the problem we have focused on in here, is the work done by Desrochers and 

Verhoog (1991). In their paper, a problem of simaltaneously selected composition 

and routing of a fleet of vehicle is addressed wherein customer demands are known 

and are from a centeral depot. As a solution approach, a new savings heuristic is 
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used. One of the aspects which makes our problem different from their work is that 

we utilize a strategic routing problem. To illustrate, fleet sizing problems in general 

use exact routing algorithms which requires large amounts of precise data and 

excessive solution times. Conversely, in our research we use average cost of the leg 

between two customers as an approximate value which will simplify the problem 

solution to a large extent considering the slight effect that routing cost has in total 

transportation costs.  

3.3 Inventory Routing Problems 

The inventory routing problem is a problem in which inventory management, vehicle 

routing and delivery schedualing decisions are made simaltaneously. Generallay, in 

these class of optimization problems, a single product is shipped from a single origin 

to multiple destinations in a period of T while total cost of all operations is 

minimized. The demand for a typical customer i is equal to 𝑢𝑖 and each customer is 

able to keep a local inventory of product up to a maxmimum of 𝐶𝑖. Customer i has 

the inventory equal to 𝐼𝑖 at time 0. For accomplishing shipments a homogeneous fleet 

of m vehicles is available. Carrying capacity of each vehicle which is included in the 

available fleet is equal to Q. Here the objective is to minimize the distribution costs 

and also obstruct stockouts at any of the customers. 

According to Campbell et al. (1998) in a typical inventory routing problem we are 

about to make three important decisions as below: 

 When to serve a customer? 

 How much to deliver to a customer when it is served? 

 Which delivery routes to use? 

One of the papers which we analyzed under the category of IRP( Inventory Routing 

Problem), is Leandro C. Coelho (2014). In this research inventory routing problem is 

defined as a combination of vehicle routing and inventory management problems in 

which a supplier has to deliver products to a number of geographically dispersed 

customers, subject to side constraints. The paper aims at reviewing the IRPs with 

respect to their structural variants and the availability of information in customer 

demand. Coelho and Laporte (2013) has proposed a branch and cut algorithm for the 
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exact solution of several categories of inventory routing problems. Another review 

paper is the one by Moin and Salhi (2007) which classifies the models of IRP based 

on the planning horizon they have employed. The aspect which makes IRPs similar 

to problem of our interest is that in both problems demands of geographically 

dispersed customers are distributed.  

The most important differences of our problem from IRPs are the main focuses of 

our problem, which are determining the composition of the fleet considering the 

ownership cost, and the assignment of both frequency and vehicles to customers 

considering detailed inventory related costs. In terms of delivery frequencies, as 

mention in problem definition section, we utilize predetermined frequencies which, 

to the best of our knowledge, is not generally utilized in inventory routing problems. 

Inventory routing problems are extensions of vehicle routing problems and are 

classified as operational problems. Here, we do not attack an operational problem, 

instead we suggest an strategic problem which uses approximate routing costs 

instead of solving vehicle routing problems.  

3.4 Fix And Optimize Heuristic 

In order to understand the heuristic method which we decided to apply to our model 

in this thesis research comprehensively we investigated the papers which applied this 

approach to various problems previously. One of the researches is Gintner et al. 

(2005) in which fix and optimize heuristic is used for bus scheduling problem. 

Federgruen et al. (2007) has applied the fix and optimize heuristic to multi-products, 

capacitated lot sizing problem. In Helber and Sahling (2010) the same heuristic is 

utilized for soling the multi-level capacitated lot sizing problem. One problem which 

has some similarities to our problem is the one studied in Dorneles et al. (2014). The 

problem considered in this research is a full integer problem with all variables 

defined as binaries except for one integer variable. Fix and optimize heuristic is 

applied to the problem and the efficiency of the algorithm is analyzed. It is stated that 

the proposed fix and optimize heuristic were able to find new best known solutions 

for seven instances including three optimal ones.  
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3.5 Continuous Approximation Models 

As mentioned before, here we consider a strategic problem, thus the routing costs are 

taken as approximated values. Jabali et al. (2012) presents a cotinuous approximation 

model for determining the long-term vehicle fleet composition needed for 

performing distribution activities. As in our problem, vehicles differ in terms of their 

capacities, fixed cost per kilometer and an extra difference which is route durations. 

The assumption here is that customers are dispersed in a circular service region 

which is partitioned into zones that each of them are serviced by a single vehicle. 

The routing costs are assessed by means of a continous approximation model as we 

will do in our research. Huang et al. (2013) also uses continuous approximation 

model for routing teams to different communities to assess damage and relief needs 

following a disaster. The model named as continuous approximation model yields 

solutions which are easily implemented and reduces the neccassity for detailed data 

and computational requirements. In our problem we use the routing cost of a leg 

between two customers as an approximate value. As mentioned before, in total, 

routing costs constitute a small portion of costs of distribution systems in comparison 

with total cost of a product. As a result, handling the routing costs as approximate 

values will not affect the decisions which are to be made in a great extent inspite the 

simplification it causes in problem solution. In the problem which we have worked 

on, we calculate the routing costs as multiplication of an approximate route cost, 

number of customers being replenished with a specific vehicle type and a specific 

frequency and total number of replenishments per year.  
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4.  NUMERICAL ANALYSIS OF THE PROBLEM 

The problem tackled here, is an integration of fleet sizing and replenishment 

planning problem and it is presented as a mixed integer programming model. Several 

customers must be replenished by a single frequency and a single vehicle. In order to 

have an understanding of the behavior of the solution of our problem and derive 

some managerial insight, we have solved the model under four different demand 

scenarios, and 24 different parameter settings. We used CPLEX OPL V. 12.4 on a 

PC with Intel Core i7-3612QM 2.10 GHz processor, 6.00GB of RAM. Solution time 

for all of the scenarios was under 2 hours except for the parameter settings which 

were not solved to the optimal in 2 hours. The problems solved optimally took a time 

period from a few minutes to more than half hour. 

In this section, we will first introduce the data set we utilized, then we will explain 

the scenarios and parameter settings. Finally will present analysis based on the 

results we obtained. 

4.1 Data Set 

We worked on a problem composed of 20 customers with deterministic demand. The 

annual demand values are sampled randomly from a uniform distribution between 80 

and 120 (𝐷𝑖 ∈ Uniform [80,120]). The demand is presented on annual basis 

considering the possible frequencies. We have a given set of discrete frequencies, 

which are daily, weekly, biweekly, thrice-weekly, and quarto-weekly. Thus, we have 

21 different frequencies available (5*4+1). As mentioned previously, demand has 

been adjusted considering available frequencies, that is, the annual demand for a 

customer being replenished every week is calculated as “annual demand/number of 

weeks in a year “, etc. Another cost parameter to be considered is the cost of 

replenishment operations presented by “k”. k is also adjusted according to the 

available set of frequencies, that is, the k value for a customer being replenished 

biweekly is calculated as “k *(number of weeks in a year/2)”. Here k is equated to 
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50. Since replenishment costs are calculated as multiplication of k, annual 

replenishment number and the customer demands, number of possible replenishment 

in one year must be applied to the model. For this purpose, we defined parameter 𝑝𝑓 

which represents the number of replenishments during one year under frequency f. 

To illustrate more, suppose one customer is replenished thrice-weekly. The number 

of replenishments occurring during a year of thrice-weekly replenishments is 

calculated as: P(f) = 52/3 (It is obvious that we have 52 weeks in a year). Holding 

costs usually play an important role in making replenishment decisions. Sometimes 

extremely high holding cost factors force the decision maker to choose more frequent 

replenishment plans in order to trade-off the replenishment and holding costs. 

Conversely, a system with very low holding costs will prefer less frequent 

replenishments to save more of transportation and replenishment costs. Thus, holding 

cost is an important factor, here in our study, we used a holding cost of 300 and 600 

for different scenarios. 

For accomplishing transportation operations, we have unlimited number of 

heterogeneous vehicles. Mainly, the vehicles differ in carrying capacity, ownership 

cost and costs per kilometer. In terms of carrying capacity, we have three types of 

vehicles in hand. Capacity of these vehicles is calculated based on weekly, bi-weekly 

and thrice-weekly demands of customers. Average annual demand of customers is 

equal to 100. On average, the daily demand of a customer is about 0.27397 

(100/365). Calculating the same customer’s weekly demand we have “number of 

days in a week * daily demand” which is equal to: 5*0.27397=1.36986. As 

mentioned before, we have a constraint on the maximum number of customers which 

a vehicle can visit on a single day. Each vehicle can at most visit 5 customers during 

a single day and thus the lot size which it carries is equal to 5*1.36986= 6.85~7. 

Thus, the smaller vehicle’s carrying capacity is set to 7 units. The same procedure 

was applied to the vehicles with carrying capacity based on bi-weekly and thrice-

weekly replenishment plans and the result was 14 and 21 units. Carrying capacity for 

the larger vehicles is calculated as “smaller capacity+40%*smaller capacity” which 

equates to 10 units for smaller vehicles with capacity 7, to 20 for smaller vehicles 

with capacity 14 and to 27 for smaller vehicles with capacity 21. 
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Ownership costs include all the vehicle related costs such as depreciation costs, labor 

costs, taxes and etc. The ownership cost for smaller capacities is equal to 40800 

TL/year. Ownership costs were adopted from Ertogral and Gonzalez (2015), and 

reflect real life situation costs. For the case in which larger carrying capacities are 

considered, two situations are tackled. One of this situations is the one in which the 

vehicle with larger capacity cost the vendor “40800+ 20%*40800” and the other 

situation is which the vendor faces the cost equal to “40800+ 40%*40800”.  

In addition to ownership costs, cost per kilometer factor affects the total expenses. In 

general, among the papers existing in the literature of inventory routing and 

distribution systems, routings is done based on solving normal VRP or IRPs. 

Bringing optimal or near optimal solutions to routing problems needs accurate data 

and also a plentiful amount of solution times. This aspect of routing problems makes 

them difficult for handling in everyday life. Here in this thesis, we used cost per 

kilometers as approximate values which will simplify the process of solving the 

problem. Cost per kilometer of vehicles, 𝑟𝑣, with smaller carrying capacity is equated 

to 7 which was adopted from the research done by Ertogral and Gonzalez (2015). 

Cost per kilometer of vehicles with higher carrying capacity is calculated as “cost per 

kilometer of smaller vehicles + 20% *cost per kilometer of smaller vehicles” and 

“cost per kilometer of smaller vehicles + 40% *cost per kilometer of smaller vehicles 

“.  

In some real life situations we face the customers that are dispersed widely in very 

distant geographical locations. Putting all these customers together on the same route 

will not be possible all the time. To handle such circumstances, we defined an 

incidence matrix which represents the fact that customer i cannot be on the same 

route with customer k or vice versa. Elements of incidence matrix are expressed as 

value of 1, standing for the customers which are not possible to be visited on the 

same routes, and 2 for the ones who are free to be on the same routes.  

In order to evaluate the results under various scenarios we made use of the incidence 

matrix in which the customers with the possibility of allocation to the same routes 

are shown with number 2, and the customers which cannot be on the same route are 

presented by 1. One other parameter used in the model, is H which stands for the 
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frequencies on the basis of weeks and it is used for deletion of the redundant 

repetitions occurring on the coinciding frequencies. To illustrate more, H for weekly 

replenished customers is presented as 1,2,3,…,52 whereas in case of customers being 

replenished thrice-weekly have H values of 3,9,..,52. 

Scenarios being considered here are the problems with normal demand and no/four 

clusters, and with 50% higher demand no/ four clusters. In each of these four 

scenarios, effects of each factor (holding cost, cost per kilometer, capacities and…) 

are investigated and also the changes appeared in costs in cases of the various 

scenarios are analyzed. The scenarios and parameter settings are as shown below in 

Table  4.1 and Table  4.2. 

Table  4.1: Demand Scenarios and their indicators. 

Scenarios Indicators 

No cluster, Normal demand 1 

Clustered, Normal demand 2 

No cluster, 50% increased demand 3 

Clustered, 50% increased demand 4 
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Table  4.2: Parameter settings and indicators. 

Parameter Setting Indicator 

k=50 

h=300 

A 20% 

R20% 

Cap 7,10 1 

Cap 14,20 2 

Cap 21,27 3 

R40% 

Cap 7,10 4 

Cap 14,20 5 

Cap 21,27 6 

A 40% 

R20% 

Cap 7,10 7 

Cap 14,20 8 

Cap 21,27 9 

R40% 

Cap 7,10 10 

Cap 14,20 11 

Cap 21,27 12 

h=600 

A 20% 

R20% 

Cap 7,10 13 

Cap 14,20 14 

Cap 21,27 15 

R40% 

Cap 7,10 16 

Cap 14,20 17 

Cap 21,27 18 

A 40% 

R20% 

Cap 7,10 19 

Cap 14,20 20 

Cap 21,27 21 

R40% 

Cap 7,10 22 

Cap 14,20 23 

Cap 21,27 24 
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4.2 Results And Analysis 

In this section, we would like to investigate the way that clustering and increase in 

demand affect the results we get from the problem. In Chart  4.1 we represent the 

changes in the objective function value in percentages in comparison to base case of 

each scenario (no cluster, normal demand case is assumed as base for normal 

demand scenarios, and high demand no cluster is the basis for other two cases).  

 

Chart  4.1: Percentage changes of objective function values.  

As it is obvious from the chart, the addition of clusters and increase in demand result 

in an increase in the objective function value. This increase is sharper for the 

problems with vehicle capacities of (7,10). This may be due to the capacity limitation 

which will lead to higher routing costs or replenishment costs. Lower capacities limit 

the size of the lots which are transported and this will necessitate more frequent 

replenishments. One of the important parts of objective function is routing cost. In 

our model, routing cost consists of dead heading costs and travel costs between 

customers.  
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Chart  4.2: Percentage changes of routing costs 

Routing costs decrease proportional to increase in carrying capacity. The reason is 

that the lot consolidation possibility is proportional to vehicle capacity. The higher 

vehicle capacities facilitate more lot consolidation. As it is revealed in the chart, in 

scenario 4 routing costs increases when the vehicle capacity increases from 14 and 

20 to 21 and 27. This increase is due to the utilization of smaller vehicles instead of a 

combination of large and small vehicles. This change of vehicle utilization may 

cause the number of replenishments to increase which results in higher deadheading 

costs. Another situation in which routing costs escalate is demand increase. The 

reason is that satisfying increased demands with the same vehicle capacity yields 

utilization of more vehicles which imposes the extra ownership costs to routing cost. 

Ownership costs also reveal changes along different scenarios.  
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Chart  4.3: Percentage changes of ownership costs 

The addition of clusters, does not affect the utilization of vehicles with capacities 27 

and 21 units. Identically, demand increase does not change the number of vehicles 

which have capacities equal to 21 and 27 units. That is, the same number of vehicles 

with capacity 21 is used along all of the scenarios. This may be due to the relation of 

capacity and lot sizes. The capacity of 21 units is satisfactory amount for handling 

replenishment of customers with these demand values. 

The ownership cost for vehicles with capacities of 7 and 10 increases when 

customers are divided into clusters and demand is increased. This increase in 

ownership costs is due to low possibility of lot consolidation in clustered case which 

leads to utilization of higher number of vehicles. In addition to clustering, increase in 

demand causes the lot sizes to become larger and it forces the usage of more vehicles 

to compensate the disadvantage of low capacity. The ownership cost for vehicles 

with capacities 14 and 20 increases by clustering the customers. The reason for this 

increase is that optimization tries to reduce the replenishment cost and also routing 

cost by means of using maximum possible capacity that allows lot consolidation. 

Ownership cost for the scenario with increased demand and clusters is less than the 

cost for normal demand and clustered case. The reason for this situation can be 

explained in terms of vehicle type utilization. In the case with clusters vehicle 

capacity is used in a way that affords maximum consolidation thus a combination of 
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high and low capacities are used. Conversely, in the case with increased demand and 

no clusters, consolidation is allowed and no restrictions exist except the vehicle 

capacity. Thus, there must be a trade-off between ownership and replenishments 

costs. This tradeoff leads into using low capacity vehicles.  

The reason for low capacity utilization is that they have enough capacity which 

means that the difference between 20 and 14 units of capacities does not worth 

paying the difference in the ownership costs. Thus here the low capacities are 

preferred which reduce the ownership cost in comparison to the scenario 1. 

 

Chart  4.4: Percentage change of holding costs 

Holding cost in clustered normal demand scenario decreases for all of the capacities 

because there is a restriction of lot consolidation resulting from routing rule. Routing 

rules forces some customers not to be on the same route with some other customers. 

This means that simply a vehicle cannot consolidate the demand of different 

customers on the same trip. Another restriction for consolidation is the capacity of 

the vehicles which do not allow the vendor to send lots larger than a specific size. 

Smaller lots lead to less holding costs. 

Holding costs for vehicles with capacities 7, 10 and 14, 20 increases with the demand 

increase which may be due to the increase in vehicle utilization. That is, in the 
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scenario with normal demand and four clusters, total number of vehicles used is 

equal to 8 while in other scenarios total vehicle number changes to 16 for capacities 

7, 10 and 9 for capacities 14, 20. 

For the increased demand with clusters the number of vehicles is the same as number 

of the vehicles in no cluster increased demand case but the combination differs. In 

this scenario more large vehicle is used which means that much larger lots can be 

transported. This will lead to higher stocks in warehouses and respectively higher 

holding costs. 

The holding cost value for vehicles with capacities 21 and 27 decreases when 

customers are divided to clusters and have increased demands. In this case there 

exists enough capacity for possible consolidation but routing rules will not allow 

consolidation more than a limited value. Thus the vehicles are transporting lots with 

lower sizes which cause lower holding costs. 

Another cost factor which is affected by the addition of clusters is the replenishment 

cost. 

Chart  4.5 shows how replenishment costs changes. 
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Chart  4.5: Percentage changes of replenishment costs 

When clusters are considered in normal demand scenarios, the size of transported 

lots decreases due to routing rules and thus more frequent replenishments are needed 

which lead in to higher replenishment costs. 

The same pattern is followed by vehicles with capacities 14, 20 and 21, 27 through 

scenarios 3 and 4. In scenario 4 the replenishment cost for vehicles with capacities 7, 

10 decreases. The reason is that an equal number of high and low capacity vehicles 

are used that have enough capacity for consolidating the amount allowed by routing 

rules. 
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Chart  4.6: Percentage changes of average frequency 

Here in this chart, average frequency is calculated as [ (∑ 𝑥𝑖𝑣𝑓 ∗ P(f) )/ number of 

customers] and the frequencies are numbers like 1.2 (meaning replenishments are 

done weekly or biweekly), 2.4 (replenishments are done biweekly or thrice weekly). 

Our expectation about the decrease in frequencies and more frequent replenishments 

is met in normal demanded scenarios. These decreased frequencies are due to the 

addition of clusters and decreased consolidation possibility. In the high demand 

scenarios addition of clusters results is less frequent replenishments. The reason for 

frequency increase is that by increasing the time between two successive 

replenishments we have better consolidated oreders. Higher consolidation causes 

decrease in replenishment costs while increasing the holding cost.  

Lot sizes changes is parallel to the changes occurred in average frequencies. In 

scenarios with normal demand and clusters, both frequency and lot sizes decrease. 

On the other hand, in the high demand scenarios, higher frequencies cause lot sizes 

to grow larger. In this case lot sizes increase for capacities equal to 7-10 and 14-20. 

The reason is that the demand is increased without changing the carrying capacity. 

Aditionally, in the scenarios with higher demands for the mentioned capacities(7-10, 

14-20) the combination of low and high capacity vehicle utilization is different from 

the scenarios with low demands, i.e, in general higher number of vehicles are utilized 

and a shift from high capacity utilization to low capacity utilization is observed. 
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Conversely, for the vehicles with capacities 21-27 with demand increase lot sizes 

decrease. This change is due to more frequent replenishments which leads to smaller 

lot transportation.The percentage changes are shown in Chart  4.7. 

 

Chart  4.7: Percentage changes of average lot 

After analyzing the changes in average lot size, the changes in number of vehicles 

used in each case should be considered. Generally speaking, the addition of clusters 

in both cases ( high and normal capacities) causes a shif to the large vehicle usage. 

This happens in order to create a flexibility for demand consolidation. As discussed 

previously, adding clusters causes less frequent replenishments and larger lot sizes. 

In order to consolidate demands into these large lot sizes and also for neutralizing the 

clustering restrictions vehicle selection shifts to large vehicles. The changes are 

represented in Chart  4.8. 
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Chart  4.8: Number of vehicles used under each scenario 

 For problems with vehicle capacities equal to 7 and 10 units, in the first two 

scenarios using  larger capacity vehicles (10 unit) is preferred. This may be for 

reducing the replenishment costs and also the part of routing costs which is 

proportional to the repetitions in a year. Demand increase leads to utilization of small 

capacity vehicles. This will increase the average lots and thus holding costs will go 

higher. In the case of increased demand the reason for small capacity selection can be 

the limitation that routing rules create. Using larger number of low capacity vehicles 

allows to consolidate the lots as much as possible while the routing and ownership 

costs does not increase as much as they would if we utilized high capacities. 

Considering the vehicles with capacities 14 and 20, we see that in scenarios 1 and 3 

vehicles with capacity of 14 units are used. This capacity maybe enough for 

consolidating the lots to a desirable level. In scenario 4, larger demands and low 

consolidation possibilities lead to utilization of more vehicles of capacity 20 which 

will consolidate more lots if possible. 

In case of capacities 21 and 27, the obvious point is that the capacity of 21 units is 

clearly enough to handle distribution plans and the lot transportation as capacity 27 is 

never used in any scenarios. 
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routes. The reason of this decrease is obviously more consolidated transportation 

under clustered demand. The changes in route numbers are parallel with our 

expectations as shown in Chart  4.9. 

 

Chart  4.9: Percentage changes in number of routes under scenarios 
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5. VALID INEQUALITIES AND LOWER BOUND ANALYSIS 

5.1 LP Based Lower Bound Analysis 

As mentioned previously, special case of the problem studied in this thesis can be 

shown to be a “Bin Packing Problem”, which is known to be Np-hard. This 

characteristic leads into excessive computational time as the problem size gets larger. 

For large problems, the performance of our heuristic methods applied to the problem 

should be compared with the lower bounds of the problems under consideration. 

The problem considered in this thesis is in form of an integer programming model 

and all of the decision variables are binaries or integers. We used two types of 

relaxations for obtaining lower bounds. First method we used is full LP relaxation, in 

which all of the binary variables are relaxed in the interval [0, 1] and integer 

variables are taken as belonging to 𝑅+. For further analysis of bounds we 

investigated the bounds from partial LP relaxation problems. In this case, all the 

binary variables except 𝑉𝑣 are relaxed in [0, 1] interval and 𝑉𝑣 is still defined as a 

binary variable. The integer variable 𝐶𝑣𝑓 is set to be in 𝑅+ . As expected, the results 

with a binary variable and other variables as continuous values show a tighter lower 

bound for the scenarios under study. Problems were solved with commercial solver 

CPLEX 12.4. Results for different scenarios and parameter settings are given in 

tables Table  5.1throughTable  5.4. 
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Table  5.1: Full and partial LP bounds for scenario 1. 

Parameter 

settings 

Lower 

Bounds 

Full LP 

Lower 

Bounds 

Partial 

LP 

Optimal 

Gap 

From 

LB Full 

LP 

Gap 

From 

LB 

Partial 

LP 

1 80738.42 110566.40 113304.72 28.74% 2.42% 

2 77581.18 88761.72 91365.27 15.09% 2.85% 

3 77581.18 80615.21 81868.76 5.24% 1.53% 

4 80923.66 111804.10 114578.72 29.37% 2.42% 

5 77581.18 88761.72 91503.29 15.21% 3.00% 

6 77581.18 80615.21 81868.76 5.24% 1.53% 

7 83114.85 118726.40 121464.72 31.57% 2.25% 

8 77581.18 88761.72 91503.29 15.21% 3.00% 

9 77581.18 80615.21 81868.76 5.24% 1.53% 

10 83234.52 119964.10 122738.72 32.19% 2.26% 

11 77581.18 88761.72 91503.29 15.21% 3.00% 

12 77581.18 80615.21 81868.76 5.24% 1.53% 

13 94893.63 118066.40 120527.44 21.27% 2.04% 

14 93859.04 99261.72 101778.94 7.78% 2.47% 

15 93859.04 95801.90 95981.98 2.21% 0.19% 

16 94966.82 119304.10 121801.44 22.03% 2.05% 

17 93859.04 99261.72 101778.94 7.78% 2.47% 

18 93859.04 95801.90 95981.98 2.21% 0.19% 

19 95674.93 126226.40 128687.44 25.65% 1.91% 

20 93859.04 99261.72 101778.94 7.78% 2.47% 

21 93859.04 95801.90 95981.98 2.21% 0.19% 

22 95784.12 127646.10 129961.44 26.30% 1.78% 

23 93859.04 99261.72 101778.94 7.78% 2.47% 

24 93859.04 95801.90 95981.98 2.21% 0.19% 

Average Gap       14.12% 1.91% 
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Table  5.2: Full and partial LP bounds for scenario 2. 

Parameter 

settings 

Lower 

Bounds 

Full LP 

Lower 

Bounds 

Partial LP 

Optimal  

Gap 

From 

LB Full 

LP 

Gap 

From 

LB 

Partial 

LP 

1 80738.42 110566.37 114788.66 29.66% 3.68% 

2 77851.18 88761.72 92188.28 15.55% 3.72% 

3 77851.18 80615.21 83268.44 6.51% 3.19% 

4 80923.57 111804.09 116099.06 30.30% 3.70% 

5 77851.18 88761.72 92846.28 16.15% 4.40% 

6 77851.18 80615.21 83268.44 6.51% 3.19% 

7 83114.85 118726.37 122948.66 32.40% 3.43% 

8 77581.18 88761.72 95850.94 19.06% 7.40% 

9 77581.18 80615.21 83268.44 6.83% 3.19% 

10 83234.52 119964.09 124259.06 33.02% 3.46% 

11 77581.18 88761.72 95850.94 19.06% 7.40% 

12 77581.18 80615.21 83268.44 6.83% 3.19% 

13 94893.63 118066.37 121976.93 22.20% 3.21% 

14 93859.04 99261.72 105218.27 10.80% 5.66% 

15 93859.04 95801.90 96341.47 2.58% 0.56% 

16 94966.82 119304.09 123287.33 22.97% 3.23% 

17 93859.04 99261.72 105489.51 11.03% 5.90% 

18 93859.04 95801.90 96341.47 2.58% 0.56% 

19 95674.93 126226.37 130136.93 26.48% 3.00% 

20 93859.04 99261.72 105489.51 11.03% 5.90% 

21 93859.04 95801.90 96341.47 2.58% 0.56% 

22 95748.12 127464.09 131447.33 27.16% 3.03% 

23 93859.04 99261.72 105489.51 11.03% 5.90% 

24 93859.04 95801.90 96341.47 2.58% 0.56% 

Average 

Gap 
      15.62% 3.67% 
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Table  5.3: Full and partial LP bounds for scenario 3. 

Parameter 

settings 

Lower 

Bounds 

Full LP 

Lower 

Bounds 

Partial 

LP 

Optimal  

Gap 

From 

LB Full 

LP 

Gap 

From 

LB 

Partial 

LP 

1 90749.08 147965.46 158635.24 42.79% 6.73% 

2 86900.19 104603.93 107246.37 18.97% 2.46% 

3 86540.09 94011.72 96680.70 10.49% 2.76% 

4 90991.00 147965.46 158635.24 42.64% 6.73% 

5 86900.18 105535.89 108192.77 19.68% 2.46% 

6 86540.09 94011.72 96680.70 10.49% 2.76% 

7 93809.75 147965.46 158635.24 40.86% 6.73% 

8 86900.18 107165.46 108993.58 20.27% 1.68% 

9 86540.09 94011.72 96680.70 10.49% 2.76% 

10 94017.39 147965.46 158635.24 40.73% 6.73% 

11 86900.18 107165.46 108993.58 20.27% 1.68% 

12 86540.09 94011.72 96680.70 10.49% 2.76% 

13 109049.90 158465.46 167550.49 34.92% 5.42% 

14 105926.12 117665.46 119415.17 11.30% 1.47% 

15 105926.12 109761.72 111975.40 5.40% 1.98% 

16 109317.46 158465.46 167550.49 34.76% 5.42% 

17 105926.12 117665.46 119415.17 11.30% 1.47% 

18 105926.12 109761.72 111975.40 5.40% 1.98% 

19 111906.13 158465.46 167550.49 33.21% 5.42% 

20 105926.12 117665.46 119415.17 11.30% 1.47% 

21 105926.12 109761.72 111975.40 5.40% 1.98% 

22 112173.69 158465.46 167550.49 33.05% 5.42% 

23 105926.12 117665.46 119415.17 11.30% 1.47% 

24 105926.12 109761.72 111975.40 5.40% 1.98% 

Average Gap       20.45% 3.40% 
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Table  5.4: Full and partial LP bounds for scenario 4. 

Parameter 

settings 

Lower 

Bounds 

Full LP 

Lower 

Bounds 

Partial 

LP 

Optimal  

Gap 

From 

LB Full 

LP 

Gap 

From 

LB 

Partial 

LP 

1 90749.07 147965.46 160457.25 43.44% 7.79% 

2 86900.18 104603.93 110814.77 21.58% 5.60% 

3 86540.09 94011.72 100685.25 14.05% 6.63% 

4 90991.00 147965.46 161405.53 43.63% 8.33% 

5 86900.18 105535.89 111884.37 22.33% 5.67% 

6 86540.09 94011.72 100685.25 14.05% 6.63% 

7 93809.75 147965.46 168593.93 44.36% 12.24% 

8 86900.18 107165.46 119128.74 27.05% 10.04% 

9 86540.09 94011.72 100685.25 14.05% 6.63% 

10 94017.39 147965.46 169565.53 44.55% 12.74% 

11 86900.18 107165.46 120088.45 27.64% 10.76% 

12 86540.09 94011.72 100685.25 14.05% 6.63% 

13 109049.90 158465.46 171362.55 36.36% 7.53% 

14 105926.12 117665.46 124261.15 14.76% 5.31% 

15 105926.12 109761.72 114577.27 7.55% 4.20% 

16 109317.46 158465.46 172345.35 36.57% 8.05% 

17 105926.12 117665.46 125353.15 15.50% 6.13% 

18 105926.12 109761.72 114577.27 7.55% 4.20% 

19 111906.13 158465.46 179522.55 37.66% 11.73% 

20 105926.12 117665.46 132421.15 20.01% 11.14% 

21 105926.12 109761.72 114577.27 7.55% 4.20% 

22 112173.69 15465.46 180505.35 37.86% 91.43% 

23 105926.12 117665.46 133513.15 20.66% 11.87% 

24 105926.12 109761.72 114577.27 7.55% 4.20% 

Average Gap       24.18% 11.24% 
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As it is presented in the tables, due to full integer nature of the problem under 

consideration, full LP gaps are relatively high. In our problem the highest costs are 

related to vehicle ownership which is directly dependent to vehicle utilization. Low 

full LP bounds is the results of relaxing 𝑉𝑣 in [0, 1] interval together with other 

binary variables. Partial LP bounds performed much better than full LP bounds for 

nearly all of the scenarios. The highest average gap for partial LP bounds is for 

scenario4. The improved gaps in partial LP relaxation results is due to keeping 

vehicle utilization indicating variable as a binary variable.  

5.2 Cover Inequalities For Improving Lower Bound 

In order to improve the lower bounds from full LP and partial LP relaxations, we 

generated cover inequalities. According to Wolsey (1998a),  a set C ⊆ N is a cover 

for set X = { x∈ 𝐵𝑛 : ∑ 𝑎𝑗
𝑛
𝑗=1 𝑥𝑗  ≤ b} if  ∑ 𝑎𝑗𝑗∈𝐶  > b. If C ⊆ N is a cover for set X, 

the cover inequality ∑ 𝑥𝑗𝑗∈𝐶  ≤ |C| -1 is a valid inequality for X. The constraint 

∑ 𝜆𝑖𝑓𝑋𝑖𝑣𝑓𝑖∈𝐼 ≤ 𝑐𝑣  which is used to ensure the transported lots is less than each 

vehicle’s capacity is of the type ∑ 𝑎𝑗
𝑛
𝑗=1 𝑥𝑗 ≤ b with x∈ 𝐵𝑛. We utilized this property 

to generate for different cover type inequalities: covers using minimum demand, 

normal cover inequalities, cover inequalities generated by taking alternate demand 

indices and randomly generated cover inequalities. First type of cover inequalities 

were generated using Excel functions and the rest were generated using Eclipse Java. 

5.2.1 Covers using minimum demand 

In covers which are generated using minimum demand of the customers we 

determined the least demand value among all customers and then found the 

parameter “𝑊𝑣𝑓” by dividing demand value at each frequency by capacity of each 

vehicle type. The general idea of this cover type is that the lots carried to customers 

must be at most as large as vehicle’s capacity. Another capacity constraint which 

must be considered is the capacity constraint in coinciding frequencies. To generate 

covers for coinciding frequencies, again with the same general idea, we determined 

the least demand in coinciding frequency sets. All the coinciding frequencies sets 

contain daily replenishments. Obviously daily demands are the least between other 

frequency related demands. Therefore, we divided the minimum of daily demands by 
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the capacity of each vehicle type and named it as “𝑉𝑗𝑓” in which index j represents 

the index of coinciding frequency sets. The constraints added to model as a result of 

these operations are as below: 

∑ 𝑥𝑖𝑣𝑓𝑖  ≤ 𝑊𝑣𝑓 -1                                                                            ∀ v ∈ 𝑉, 𝑓 ∈ 𝐹 

∑ ∑ 𝑥𝑖𝑣𝑓𝑖𝑓∈𝐹𝑗
 ≤ 𝑉𝑣𝑗 -1                                                                    ∀ v ∈ 𝑉, 𝑗 ∈ 𝑛 

5.2.2 Normal cover inequalities 

Utilizing the definitions by Wolsey (1998b) we generated cover inequalities based on 

demands of the customers using Eclipse Java programming software. We added up 

the demands of customers progressively until the total demand exceeded the capacity 

of vehicles which were utilized, i.e. for each carrying capacity a specific set of cover 

inequalities were generated. At the point in which the total demand is higher than the 

capacity the total demand is equated to zero and process of demand addition starts 

from the next customer demand. In this manner we could generate 3 different types 

cover sets which caused some improvement in lower bounds from full LP relaxation. 

5.2.3 Alternate demand cover inequalities 

For generating this type of cover inequalities we added up the demands of customers 

alternately and after each capacity breach the total demand is again equated to zero 

and the addition process continue starting from the next customer index. As a result 

of this procedure we could generate 6 different cover sets which are applicable for 

various carrying capacities. 

5.2.4 Random cover inequalities 

Random covers were generated using random customer indices. At each iteration we 

added up the demand of a random customer to the previous random customer’s 

demand and after capacity breach we cleared the total demand and started adding up 

the demand of other random customers. The important point which must be 

considered in generating this type of cover inequalities is that covers may have the 

same customer indices and same total demand values. For handling this problem, at 

the point in which total demand exceeds the capacity of a specific vehicle, the value 
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of total demand should be compared to the value of previous total demand array. If 

the same total does not exist on the previous total demands’ array a new cover set 

will be at hand. As in other processes, the covers are generated for each specific 

capacity in a distinct way. The results of valid inequality addition are given in 

Table  5.5 to Table  5.8. 

Table  5.5: Lower bounds for scenario 1 after valid inequality addition, Full LP. 

Parameter 

settings 

Lower 

Bounds  

Lower 

Bounds 

after 

Covers 

Optimal  

Gap 

From 

Optimal 

No 

Covers 

Gap 

From 

Optimal 

with 

Covers 

Improvement 

of Gaps 

1 80738.42 80857.03 113304.70 28.74% 28.64% 0.36% 

2 77581.18 77581.18 91365.28 15.09% 15.09% 0.00% 

3 77581.18 77581.18 81868.77 5.24% 5.24% 0.00% 

4 80923.66 81042.90 114578.70 29.37% 29.27% 0.35% 

5 77581.18 77581.18 91503.29 15.21% 15.21% 0.00% 

6 77581.18 77581.18 81868.77 5.24% 5.24% 0.00% 

7 83114.85 83111.85 121464.70 31.57% 31.58% -0.01% 

8 77581.18 77581.18 91503.29 15.21% 15.21% 0.00% 

9 77581.18 77581.18 81868.77 5.24% 5.24% 0.00% 

10 83234.52 83234.52 122738.70 32.19% 32.19% 0.00% 

11 77581.18 77581.18 91503.29 15.21% 15.21% 0.00% 

12 77581.18 77581.18 81868.77 5.24% 5.24% 0.00% 

13 94893.63 94893.63 120527.40 21.27% 21.27% 0.00% 

14 93859.04 93859.04 101778.90 7.78% 7.78% 0.00% 

15 93859.04 93859.04 95981.98 2.21% 2.21% 0.00% 

16 94966.82 94966.82 121801.40 22.03% 22.03% 0.00% 

17 93859.04 93859.04 101778.90 7.78% 7.78% 0.00% 

18 93859.04 93859.04 95981.98 2.21% 2.21% 0.00% 

19 95674.93 95674.93 128687.40 25.65% 25.65% 0.00% 

20 93859.04 93859.04 101778.90 7.78% 7.78% 0.00% 

21 93859.04 93859.04 95981.98 2.21% 2.21% 0.00% 

22 95784.12 95784.12 129961.40 26.30% 26.30% 0.00% 

23 93859.04 93859.04 101778.90 7.78% 7.78% 0.00% 

24 93859.04 93859.04 95981.98 2.21% 2.21% 0.00% 

Average 

Gap 
      14.12% 14.11% 0.03% 
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Table  5.6: Lower bounds for scenario 2 after valid inequality addition, Full LP. 

Parameter 

settings 

Lower 

Bounds  

Lower 

Bounds 

after 

Covers 

Optimal  

Gap 

From 

Optimal 

No Cuts 

Gap 

From 

Optimal 

with 

Cuts 

Improvement 

of Gaps 

1 80738.40 80857.03 114788.70 29.66% 29.56% 0.35% 

2 77851.20 77851.18 92188.28 15.55% 15.55% 0.00% 

3 77851.20 77851.18 83268.44 6.51% 6.51% 0.00% 

4 80923.60 81042.90 116099.10 30.30% 30.20% 0.34% 

5 77851.20 77851.18 92846.28 16.15% 16.15% 0.00% 

6 77851.20 77851.18 83268.44 6.51% 6.51% 0.00% 

7 83114.90 83114.85 122948.70 32.40% 32.40% 0.00% 

8 77581.20 77581.18 95850.94 19.06% 19.06% 0.00% 

9 77581.20 77581.18 83268.44 6.83% 6.83% 0.00% 

10 83234.50 83234.52 124259.10 33.02% 33.02% 0.00% 

11 77581.20 77581.18 95850.94 19.06% 19.06% 0.00% 

12 77581.20 77581.18 83268.44 6.83% 6.83% 0.00% 

13 94893.60 94893.63 121976.90 22.20% 22.20% 0.00% 

14 93859.00 93859.04 105218.30 10.80% 10.80% 0.00% 

15 93859.00 93859.04 96341.47 2.58% 2.58% 0.00% 

16 94966.80 94966.82 123287.30 22.97% 22.97% 0.00% 

17 93859.00 93859.04 105489.50 11.03% 11.03% 0.00% 

18 93859.00 93859.04 96341.47 2.58% 2.58% 0.00% 

19 95674.90 95674.93 130136.90 26.48% 26.48% 0.00% 

20 93859.00 93859.04 105489.50 11.03% 11.03% 0.00% 

21 93859.00 93859.04 96341.47 2.58% 2.58% 0.00% 

22 95748.10 95748.12 131447.30 27.16% 27.16% 0.00% 

23 93859.00 93859.04 105489.50 11.03% 11.03% 0.00% 

24 93859.00 93859.04 96341.47 2.58% 2.58% 0.00% 

Average 

Gap 
      15.62% 15.61% 0.03% 
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Table  5.7: Lower bounds for scenario 3 after valid inequality addition, Full LP. 

Parameter 

settings 
Lower 

Bounds  

Lower 

Bounds 

after 

Covers 

Optimal  

Gap 

From 

Optimal 

No 

Covers 

Gap 

From 

Optimal 

with 

Covers 

Improvement 

of Gaps 

1 90749.10 93859.00 158635.20 42.79% 40.83% 4.58% 

2 86900.20 86900.20 107246.40 18.97% 18.97% 0.00% 

3 86540.10 86540.10 96680.70 10.49% 10.49% 0.00% 

4 90991.00 92044.90 158635.20 42.64% 41.98% 1.56% 

5 86900.20 86900.20 108192.80 19.68% 19.68% 0.00% 

6 86540.10 86540.10 96680.70 10.49% 10.49% 0.00% 

7 93809.80 95661.80 158635.20 40.86% 39.70% 2.86% 

8 86900.20 86900.20 108993.60 20.27% 20.27% 0.00% 

9 86540.10 86540.10 96680.70 10.49% 10.49% 0.00% 

10 94017.40 95930.60 158635.20 40.73% 39.53% 2.96% 

11 86900.20 86900.20 108993.60 20.27% 20.27% 0.00% 

12 86540.10 86540.10 96680.70 10.49% 10.49% 0.00% 

13 109050.00 110176.00 167550.50 34.92% 34.24% 1.92% 

14 105926.00 105926.00 119415.20 11.30% 11.30% 0.00% 

15 105926.00 105926.00 111975.40 5.40% 5.40% 0.00% 

16 109317.00 110511.00 167550.50 34.76% 34.04% 2.05% 

17 105926.00 105926.00 119415.20 11.30% 11.30% 0.00% 

18 105926.00 105926.00 111975.40 5.40% 5.40% 0.00% 

19 111906.00 112414.00 167550.50 33.21% 32.91% 0.91% 

20 105926.00 105926.00 119415.20 11.30% 11.30% 0.00% 

21 105926.00 105926.00 111975.40 5.40% 5.40% 0.00% 

22 112174.00 112605.00 167550.50 33.05% 32.79% 0.78% 

23 105926.00 105926.00 119415.20 11.30% 11.30% 0.00% 

24 105926.00 105926.00 111975.40 5.40% 5.40% 0.00% 

Average 

Gap 
      20.45% 20.17% 0.73% 
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Table  5.8: Lower bounds for scenario 4 after valid inequality addition, Full LP. 

Parameter 

settings 

Lower 

Bounds  

Lower 

Bounds 

after 

Covers 

Optimal  

Gap 

From 

Optimal 

No Cuts 

Gap 

From 

Optimal 

with 

Cuts 

Improvement 

of Gaps 

1 90749.10 91776.10 160457.30 43.44% 42.80% 1.47% 

2 86900.20 86900.20 110814.80 21.58% 21.58% 0.00% 

3 86540.10 86540.10 100685.20 14.05% 14.05% 0.00% 

4 90991.00 92044.90 161405.50 43.63% 42.97% 1.50% 

5 86900.20 86900.20 111884.40 22.33% 22.33% 0.00% 

6 86540.10 86540.10 100685.20 14.05% 14.05% 0.00% 

7 93809.80 95661.80 168593.90 44.36% 43.26% 2.48% 

8 86900.20 86900.20 119128.70 27.05% 27.05% 0.00% 

9 86540.10 86540.10 100685.20 14.05% 14.05% 0.00% 

10 94017.40 95930.60 169565.50 44.55% 43.43% 2.53% 

11 86900.20 86900.20 120088.40 27.64% 27.64% 0.00% 

12 86540.10 86540.10 100685.20 14.05% 14.05% 0.00% 

13 109050.00 110176.00 171362.50 36.36% 35.71% 1.81% 

14 105926.00 105926.00 124261.10 14.76% 14.76% 0.00% 

15 105926.00 105926.00 114577.30 7.55% 7.55% 0.00% 

16 109317.00 110511.00 172345.30 36.57% 35.88% 1.89% 

17 105926.00 105926.00 125353.10 15.50% 15.50% 0.00% 

18 105926.00 105926.00 114577.30 7.55% 7.55% 0.00% 

19 111906.00 112414.00 179522.50 37.66% 37.38% 0.75% 

20 105926.00 105926.00 132421.10 20.01% 20.01% 0.00% 

21 105926.00 105926.00 114577.30 7.55% 7.55% 0.00% 

22 112174.00 112605.00 180505.30 37.86% 37.62% 0.63% 

23 105926.00 105926.00 133513.10 20.66% 20.66% 0.00% 

24 105926.00 105926.00 114577.30 7.55% 7.55% 0.00% 

Average 

Gap 
      24.18% 23.96% 0.54% 
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Table  5.9: Lower bounds for scenario 1 after valid inequality addition , Partial LP. 

Parameter 

settings 

Lower 

Bounds  

Lower 

Bounds 

after 

Covers 

Optimal  

Gap 

From 

Optimal 

Gap 

From 

Optimal 

with 

Cuts 

Improvement 

of Gaps 

1 110566.37 110566.37 113304.70 2.42% 2.42% 0.00% 

2 88761.72 88761.72 91365.28 2.85% 2.85% 0.00% 

3 80615.21 80615.21 81868.77 1.53% 1.53% 0.00% 

4 111804.09 111804.09 114578.70 2.42% 2.42% 0.00% 

5 88761.72 88761.72 91503.29 3.00% 3.00% 0.00% 

6 80615.21 80615.21 81868.77 1.53% 1.53% 0.00% 

7 118726.37 118726.37 121464.70 2.25% 2.25% 0.00% 

8 88761.72 88761.72 91503.29 3.00% 3.00% 0.00% 

9 80615.21 80615.21 81868.77 1.53% 1.53% 0.00% 

10 119964.09 119964.09 122738.70 2.26% 2.26% 0.00% 

11 88761.72 88761.72 91503.29 3.00% 3.00% 0.00% 

12 80615.21 80615.21 81868.77 1.53% 1.53% 0.00% 

13 118066.37 118066.37 120527.40 2.04% 2.04% 0.00% 

14 99261.72 99261.72 101778.90 2.47% 2.47% 0.00% 

15 95801.90 95801.90 95981.98 0.19% 0.19% 0.00% 

16 119304.09 119304.09 121801.40 2.05% 2.05% 0.00% 

17 99261.72 99261.72 101778.90 2.47% 2.47% 0.00% 

18 95801.90 95801.90 95981.98 0.19% 0.19% 0.00% 

19 126226.37 126226.37 128687.40 1.91% 1.91% 0.00% 

20 99261.72 99261.72 101778.90 2.47% 2.47% 0.00% 

21 95801.90 95801.90 95981.98 0.19% 0.19% 0.00% 

22 127646.09 127646.09 129961.40 1.78% 1.78% 0.00% 

23 99261.72 99261.72 101778.90 2.47% 2.47% 0.00% 

24 95801.90 95801.90 95981.98 0.19% 0.19% 0.00% 

Average 

Gap 
      1.91% 1.91% 0.00% 

 

  



 

45 

 

Table  5.10: Lower bounds for scenario 2 after valid inequality addition, Partial LP. 

Parameter 

settings 

Lower 

Bounds  

Lower 

Bounds 

after 

Covers 

Optimal  

Gap 

From 

Optimal 

No Cuts 

Gap 

From 

Optimal 

with 

Cuts 

Improvement 

of Gaps 

1 110566.37 110566.37 114788.66 3.68% 3.68% 0.00% 

2 88761.72 88761.72 92188.28 3.72% 3.72% 0.00% 

3 80615.21 80615.21 83268.44 3.19% 3.19% 0.00% 

4 111804.09 111804.09 116099.06 3.70% 3.70% 0.00% 

5 88761.72 88761.72 92846.28 4.40% 4.40% 0.00% 

6 80615.21 80615.21 83268.44 3.19% 3.19% 0.00% 

7 118726.37 118726.37 122948.66 3.43% 3.43% 0.00% 

8 88761.72 88761.72 95850.94 7.40% 7.40% 0.00% 

9 80615.21 80615.21 83268.44 3.19% 3.19% 0.00% 

10 119964.09 119964.09 124259.06 3.46% 3.46% 0.00% 

11 88761.72 88761.72 95850.94 7.40% 7.40% 0.00% 

12 80615.21 80615.21 83268.44 3.19% 3.19% 0.00% 

13 118066.37 118066.37 121976.93 3.21% 3.21% 0.00% 

14 99261.72 99261.72 105218.27 5.66% 5.66% 0.00% 

15 95801.90 95801.90 96341.47 0.56% 0.56% 0.00% 

16 119304.09 119304.09 123287.33 3.23% 3.23% 0.00% 

17 99261.72 99261.72 105489.51 5.90% 5.90% 0.00% 

18 95801.90 95801.90 96341.47 0.56% 0.56% 0.00% 

19 126226.37 126226.37 130136.93 3.00% 3.00% 0.00% 

20 99261.72 99261.72 105489.51 5.90% 5.90% 0.00% 

21 95801.90 95801.90 96341.47 0.56% 0.56% 0.00% 

22 127464.09 127464.09 131447.33 3.03% 3.03% 0.00% 

23 99261.72 99261.72 105489.51 5.90% 5.90% 0.00% 

24 95801.90 95801.90 96341.47 0.56% 0.56% 0.00% 

Average 

Gap 
      3.67% 3.67% 0.00% 
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Table  5.11: Lower bounds for scenario 3 after valid inequality addition (Partial LP). 

Parameter 

settings 

Lower 

Bounds  

Lower 

Bounds 

after 

Covers 

Optimal  

Gap 

From 

Optimal 

No 

Covers 

Gap 

From 

Optimal 

with 

Covers 

Improvement 

of Gaps 

1 147965.46 147965.46 158635.20 6.73% 6.73% 0.00% 

2 104603.93 104603.93 107246.40 2.46% 2.46% 0.00% 

3 94011.72 94011.72 96680.70 2.76% 2.76% 0.00% 

4 147965.46 147965.46 158635.20 6.73% 6.73% 0.00% 

5 105535.89 105535.89 108192.80 2.46% 2.46% 0.00% 

6 94011.72 94011.72 96680.70 2.76% 2.76% 0.00% 

7 147965.46 147965.46 158635.20 6.73% 6.73% 0.00% 

8 107165.46 107165.46 108993.60 1.68% 1.68% 0.00% 

9 94011.72 94011.72 96680.70 2.76% 2.76% 0.00% 

10 147965.46 147965.46 158635.20 6.73% 6.73% 0.00% 

11 107165.46 107165.46 108993.60 1.68% 1.68% 0.00% 

12 94011.72 94011.72 96680.70 2.76% 2.76% 0.00% 

13 158465.46 158465.46 167550.50 5.42% 5.42% 0.00% 

14 117665.46 117665.46 119415.20 1.47% 1.47% 0.00% 

15 109761.72 109761.72 111975.40 1.98% 1.98% 0.00% 

16 158465.46 158465.46 167550.50 5.42% 5.42% 0.00% 

17 117665.46 117665.46 119415.20 1.47% 1.47% 0.00% 

18 109761.72 109761.72 111975.40 1.98% 1.98% 0.00% 

19 158465.46 158465.46 167550.50 5.42% 5.42% 0.00% 

20 117665.46 117665.46 119415.20 1.47% 1.47% 0.00% 

21 109761.72 109761.72 111975.40 1.98% 1.98% 0.00% 

22 158465.46 158465.46 167550.50 5.42% 5.42% 0.00% 

23 117665.46 117665.46 119415.20 1.47% 1.47% 0.00% 

24 109761.72 109761.72 111975.40 1.98% 1.98% 0.00% 

Average 

Gap 
      3.40% 3.40% 0.00% 
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Table  5.12: Lower bounds for scenario 4 after valid inequality addition , Partial LP . 

Parameter 

settings 

Lower 

Bounds  

Lower 

Bounds 

after 

Covers 

Optimal  

Gap 

From 

Optimal 

No Cuts 

Gap 

From 

Optimal 

with 

Cuts 

Improvement 

of Gaps 

1 147965.46 147965.46 160457.30 7.79% 7.79% 0.00% 

2 104603.93 104603.93 110814.80 5.60% 5.60% 0.00% 

3 94011.72 94011.72 100685.20 6.63% 6.63% 0.00% 

4 147965.46 147965.46 161405.50 8.33% 8.33% 0.00% 

5 105535.89 105535.89 111884.40 5.67% 5.67% 0.00% 

6 94011.72 94011.72 100685.20 6.63% 6.63% 0.00% 

7 147965.46 147965.46 168593.90 12.24% 12.24% 0.00% 

8 107165.46 107165.46 119128.70 10.04% 10.04% 0.00% 

9 94011.72 94011.72 100685.20 6.63% 6.63% 0.00% 

10 147965.46 147965.46 169565.50 12.74% 12.74% 0.00% 

11 107165.46 107165.46 120088.40 10.76% 10.76% 0.00% 

12 94011.72 94011.72 100685.20 6.63% 6.63% 0.00% 

13 158465.46 158465.46 171362.50 7.53% 7.53% 0.00% 

14 117665.46 117665.46 124261.10 5.31% 5.31% 0.00% 

15 109761.72 109761.72 114577.30 4.20% 4.20% 0.00% 

16 158465.46 158465.46 172345.30 8.05% 8.05% 0.00% 

17 117665.46 117665.46 125353.10 6.13% 6.13% 0.00% 

18 109761.72 109761.72 114577.30 4.20% 4.20% 0.00% 

19 158465.46 158465.46 179522.50 11.73% 11.73% 0.00% 

20 117665.46 117665.46 132421.10 11.14% 11.14% 0.00% 

21 109761.72 109761.72 114577.30 4.20% 4.20% 0.00% 

22 15465.46 15465.46 180505.30 91.43% 91.43% 0.00% 

23 117665.46 117665.46 133513.10 11.87% 11.87% 0.00% 

24 109761.72 109761.72 114577.30 4.20% 4.20% 0.00% 

Average 

Gap 
      11.24% 11.24% 0.00% 
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However cover inequalities have improved lower bounds from full LP relaxation 

slightly, there is no change observed in partial LP relaxation results. To improve the 

efficiency of the cover inequalities the number of covers added to each problem can 

be increased. We think generating higher number of cover sets will affect the lower 

bounds from both full and partial LP relaxations. Summary of average gaps and 

improvements from full LP and partial LP bounds through cover inequality addition 

is given below in Table  5.13. 

Table  5.13: Summary of LP relaxation results. 

  Scenarios  

  1 2 3 4   

  
Gap from 

optimal 

Gap from 

optimal 

Gap from 

optimal 

Gap from 

optimal 
  

Full LP  14.12% 15.62% 20.45% 24.18%   

Full LP with cover 

inequalities 
14.11% 15.61% 20.17% 23.96%   

Partial LP  1.91% 3.67% 3.40% 11.24%   

Partial LP with cover 

inequalities 
1.91% 3.67% 3.40% 11.24% 

  

Full LP gap 

improvement 
0.03% 0.03% 0.73% 0.54% 

  

Partial LP gap 

improvement 
0.00% 0.00% 0.00% 0.00%   
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6. SUGGESTED HEURISTIC METHOD 

Our problem is NP-Hard, which needs an excessive amount of solution time for large 

scale problems. The heuristic method suggested here is a “fix and optimize heuristic” 

that has two main phases. In the first phase, a feasible and quality solution  is found, 

and in the second phase an improvement process is executed on this solution. The 

main logic here is that the problem is divided into smaller parts, and it is solved in 

the form of partial integer programming problems.  

First phase of the heuristic method for the case of our problem consists of seven steps 

as given below. At first step, the problem is divided to P smaller sub problems based 

on customer indices. Next, the first sub problem’s variables are defined as binaries 

and the  other (P -1) sub problems are left as linearly relaxed problems, which means 

that all the binary variables are defined in the [0,1] interval and the integer variables 

are defined as 𝑅≥0. In the case of our model, the only variable which has the index i 

which demonstrates customer numbers, is 𝑋𝑖𝑣𝑓 and thus we define these variables as 

binaries in each sub problem iteratively and fix the binary solutions for them. In 

addition to 𝑋𝑖𝑣𝑓, the variable related to the ownership cost, i.e. vehicle usage 

indicator variable 𝑉𝑣 are defined as a binary variable in all of the steps during the first 

phase. After defining first sub problem’s 𝑋𝑖𝑣𝑓 and 𝑉𝑣 as binaries, the main problem is 

solved. In the second step, the values for binary variables from the first step solution 

is fixed and 𝑋𝑖𝑣𝑓  of the next sub problem is defined as binaries. The rest (P- 2) sub 

problems are solved as relaxed problems. This process continues until all the 𝑋𝑖𝑣𝑓 

variables for the P sub problems become binaries. At this step, the 𝑋𝑖𝑣𝑓 values are 

fixed and all the other variables are re-defined as binaries and the main problem is 

solved another time. At the end of these five steps a feasible integer solution will be 

in hand. Steps of the heuristic’s first phase are given below: 
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6.1 First Phase  

Step 1: Determine the number of customers based on which the problem is divided 

into sub problems. Divide the decision variables to P parts based on the same 

criterion. Let  𝐴𝑖be the set of binary variables in ith sub problem. 

Step 2:  Set the iterator to zero ( i = 0). 

Step 3: If i > 0 , set the binaries in  𝐴𝑗 to  the values of variables in  iteration(i-1)  for 

J = 1…i-1  

Step 4: Relax the binary variables in 𝐴𝑗  for J = i+1 …P . 

Step 5: Define the variables in 𝑆𝑖 as binaries. 

Step 6: Solve the model and set i to i+1. If i< P go to step 3. If i =Z go to step 7. 

Step 7: Re-define all the binaries except 𝑋𝑖𝑣𝑓 and resolve the problem using the 𝑋𝑖𝑣𝑓 

values from iteration i = Z-1. 

At the end of first phase, a quality feasible solution is found. In the second phase the 

heuristic tries to improve the solution from first phase. In this procedure no variables 

are relaxed and all of the variables are defined either as binaries or are fixed to the 

values from previous step. At the beginning of phase two the counter i is set to zero, 

i.e. i = 0. Then the values of  𝑋𝑖𝑣𝑓 ‘s from first phase are cleared and are re-defined as 

binaries for ith sub problem.  Next 𝑋𝑖𝑣𝑓 variables for the rest of (P-1) sub problems 

are fixed to the values from the first phase. After these settings the main problem is 

solved. In the next step, setting 𝑋𝑖𝑣𝑓 values to the solution from the last step, we 

define all the other variables of ith problem as binaries or integers and we re-solve 

the main problem. Let’s call the last step in which we define all the variables as 

binaries “binarizer”. In the second step, we define the 𝑋𝑖𝑣𝑓 variables of the next sub 

problem as binaries and get the other 𝑋𝑖𝑣𝑓 values from previously fixed solutions. 

After re-defining the 𝑋𝑖𝑣𝑓s and solving the sub problem, at each iteration we use the 

binarizer step to force all the variables to be binaries/integers. Except for step one, 

after each binarizer step we compare the new objective value to the last objective 
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value we found from previous solutions. If any improvements occur, we fix the 𝑋𝑖𝑣𝑓  

values, go back to the first sub problem and re-define 𝑋𝑖𝑣𝑓 and solve the problem 

again. If no improvements occur, no backward movements are done. Steps of second 

phase are explained below. 

6.2 Second Phase  

Step 1: Set the counter i to 0 

Step2: Clear the values of all variables in 𝐴𝑖 and re-define them as binaries 

Step 3: For j =1,2,..,P and j≠i set the variable values to previously found solutions. 

Step 4: Solve the model and fix 𝑋𝑖𝑣𝑓 values, re-solve the model defining all the 

variables as binaries and getting 𝑋𝑖𝑣𝑓 values from the last solution, set i =i+1 

Step 5: Check the objective value, if improvements occurred and i< P, update the 

objective value and go to step 2. If no improvement occurred and i< P go to step 2. If 

i = P stop. 
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7. PERFORMANCE ANALYSIS OF THE SUGGESTED HEURISTIC 

The heuristic approach which is suggested above was applied to the problem using 

Eclipse Java, and mathematical models were solved using Concert Technology with 

Java. We solved the problem in presence and absence of valid inequalities for 

assessing the effect of the cuts we generated previously. For some parameter settings 

the valid inequalities could decrease the gaps between optimal solution and solution 

form heuristic application. For the cases which we could not get optimal solutions 

with CPLEX, we compared the heuristic solutions with the best LP bound from 

CPLEX. Solution times decreased significantly and all of the parameter settings were 

solved under 20 seconds. In general, the gaps between optimal solution and heuristic 

solutions were tight but in some cases we had large gaps. In order to decrease these 

gaps we changed the order of sub problem selection which led into reductions for 

some problems. All the results are presented in Table  7.1 to Table ‎7.8. 
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Table  7.1: Heuristic results for Scenario 1 without cover inequalities. 

Parameter 

settings 

First 

Step 

Second 

Step 
Optimal 

Gap 

from 

Optimal 

1 115021.11 115021.11 113304.72 1.51% 

2 92472.44 92472.44 91365.28 1.21% 

3 82783.72 82783.72 81868.77 1.12% 

4 116331.51 116331.51 114578.72 1.53% 

5 93220.81 93220.81 91503.29 1.88% 

6 82783.72 82783.72 81868.77 1.12% 

7 123181.11 123181.11 121464.72 1.41% 

8 93886.58 93886.58 91503.29 2.60% 

9 82776.07 82776.07 81868.77 1.11% 

10 123214.90 123214.90 122738.72 0.39% 

11 92472.44 92472.44 91503.29 1.06% 

12 82783.72 82783.72 81868.77 1.12% 

13 121999.82 121999.82 120527.44 1.22% 

14 102674.87 102674.87 101778.94 0.88% 

15 96934.10 96934.10 95981.98 0.99% 

16 122243.44 122243.44 121801.44 0.36% 

17 102232.87 102232.87 101778.94 0.45% 

18 97087.10 97087.10 95981.98 1.15% 

19 130159.82 130159.82 128687.44 1.14% 

20 104049.79 104049.79 101778.94 2.23% 

21 96935.10 96935.10 95981.98 0.99% 

22 130403.44 130403.44 129961.44 0.34% 

23 102689.62 102689.62 101778.94 0.89% 

24 97087.10 97087.10 95981.98 1.15% 

Average 

Gap 
      1.16% 
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Table  7.2: Heuristic results for scenario2 without cover inequalities. 

Parameter 

settings 

First 

Step 

Second 

Step 
Optimal 

Gap 

from 

Optimal 

Gap 

from 

best LP 

1 114788.66 114788.66 114788.66 0.00%   

2 96909.51 96909.51 92188.28 5.12%   

3 83268.44 83268.44 83268.44   2.86% 

4 116099.06 116099.06 116099.06 0.00%   

5 96909.51 96909.51 92846.28   0.84% 

6 83268.44 83268.44 83268.44   2.92% 

7 122948.66 122948.66 122948.66 0.00%   

8 96909.51 96909.51 95850.94   2.87% 

9 83268.44 83268.44 83268.44   1.97% 

10 124259.06 124259.06 124259.06 0.00%   

11 96909.51 96909.51 95850.94   3.85% 

12 83268.44 83268.44 83268.44   2.01% 

13 121976.93 121976.93 121976.93 0.00%   

14 106449.97 106449.97 105218.27   2.26% 

15 98211.87 98211.87 96341.47   0.82% 

16 123287.33 123287.33 123287.33 0.00%   

17 106449.97 106449.97 105489.51   1.96% 

18 98211.87 98211.87 96341.47   1.00% 

19 130136.93 130136.93 130136.93 0.00%   

20 106449.97 106449.97 105489.51   2.53% 

21 98211.87 98211.87 96341.47 1.94%   

22 131447.33 131447.33 131447.33 0.00%   

23 106449.97 106449.97 105489.51   2.37% 

24 98211.87 98211.87 96341.47 1.94%   

Average 

Gap 
      0.82% 2.17% 
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Table  7.3: Heuristic results for scenario3 without cover inequalities. 

Parameter 

settings 

First 

Step 

Second 

Step 
Optimal 

Gap 

from 

Optimal 

1 198942.24 198942.24 158635.20 25.41% 

2 109841.04 109841.04 107246.40 2.42% 

3 98257.17 98257.17 96680.70 1.63% 

4 194883.34 194883.34 158635.20 22.85% 

5 109306.46 109306.46 108192.80 1.03% 

6 98176.22 98176.22 96680.70 1.55% 

7 207102.24 207102.24 158635.20 30.55% 

8 146473.24 146473.24 108993.60 34.39% 

9 97573.66 97573.66 96680.70 0.92% 

10 207228.24 207228.24 158635.20 30.63% 

11 146762.24 146762.24 108993.60 34.65% 

12 98494.90 98494.90 96680.70 1.88% 

13 211345.06 211345.06 167550.50 26.14% 

14 139040.89 139040.89 119415.20 16.43% 

15 113042.43 113042.43 111975.40 0.95% 

16 212447.46 212447.46 167550.50 26.80% 

17 120165.12 120165.12 119415.20 0.63% 

18 113484.43 113484.43 111975.40 1.35% 

19 220425.47 220425.47 167550.50 31.56% 

20 159145.49 159145.49 119415.20 33.27% 

21 113042.43 113042.43 111975.40 0.95% 

22 220287.22 220287.22 167550.50 31.48% 

23 159145.46 159145.46 119415.20 33.27% 

24 113627.27 113627.27 111975.40 1.48% 

Average 

Gap 
      16.34% 
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Table  7.4: Heuristic results for scenario 4 without cover inequalities. 

Parameter 

settings 

First 

Step 

Second 

Step 
Optimal 

Gap 

from 

Optimal 

Gap 

from 

best LP 

1 193845.87 193845.87 160457.30   22.19% 

2 110969.37 110969.37 110814.80   2.62% 

3 101700.26 101700.26 100685.20   3.90% 

4 194223.87 194223.87 161405.50 20.33%   

5 112027.77 112027.77 111884.40   2.87% 

6 101700.26 101700.26 100685.20   3.96% 

7 202005.87 202005.87 168593.90   20.03% 

8 119129.37 119129.37 119128.70   2.84% 

9 101700.26 101700.26 100685.20   3.00% 

10 202383.87 202383.87 169565.50 19.35%   

11 120187.77 120187.77 120088.40   3.87% 

12 101700.26 101700.26 100685.20   3.04% 

13 208987.13 208987.13 171362.50 21.96%   

14 124261.15 124261.15 124261.10   1.12% 

15 115009.15 115009.15 114577.30   1.20% 

16 209387.53 209387.53 172345.30   22.25% 

17 125353.15 125353.15 125353.10   1.16% 

18 115009.15 115009.15 114577.30   1.38% 

19 180256.40 180256.40 179522.50   1.02% 

20 132421.15 132421.15 132421.10   0.93% 

21 115009.15 115009.15 114577.30 0.38%   

22 217547.53 217547.53 180505.30   20.59% 

23 133513.15 133513.15 133513.10   0.80% 

24 115009.15 115009.15 114577.30 0.38%   

Average 

Gap 
      12.48% 6.25% 
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Table  7.5: Heuristic results for scenario1 with cover inequalities. 

Parameter 

settings 

First 

Step 

Second 

Step 
Optimal 

Gap 

from 

Optimal 

improvement 

with cuts 

1 113746.72 113746.72 113304.70 0.39% 1.12% 

2 93220.81 93220.81 91365.28 2.03% -0.80% 

3 82783.72 82783.72 81868.77 1.12% 0.00% 

4 115020.72 115020.72 114578.70 0.39% 1.14% 

5 92472.44 92472.44 91503.29 1.06% 0.81% 

6 82783.72 82783.72 81868.77 1.12% 0.00% 

7 121906.72 121906.72 121464.70 0.36% 1.05% 

8 92506.51 92506.51 91503.29 1.10% 1.49% 

9 82783.72 82783.72 81868.77 1.12% -0.01% 

10 123180.72 123180.72 122738.70 0.36% 0.03% 

11 93302.50 93302.50 91503.29 1.97% -0.89% 

12 82783.72 82783.72 81868.77 1.12% 0.00% 

13 120969.44 120969.44 120527.40 0.37% 0.85% 

14 102743.02 102743.02 101778.90 0.95% -0.07% 

15 96781.10 96781.10 95981.98 0.83% 0.16% 

16 122243.44 122243.44 121801.40 0.36% 0.00% 

17 102743.02 102743.02 101778.90 0.95% -0.50% 

18 97087.10 97087.10 95981.98 1.15% 0.00% 

19 129129.44 129129.44 128687.40 0.34% 0.80% 

20 102743.02 102743.02 101778.90 0.95% 1.27% 

21 96781.10 96781.10 95981.98 0.83% 0.16% 

22 130403.44 130403.44 129961.40 0.34% 0.00% 

23 102743.02 102743.02 101778.90 0.95% -0.05% 

24 97087.10 97087.10 95981.98 1.15% 0.00% 

Average 

Gaps 
      0.89% 0.27% 
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Table  7.6: Heuristic results for scenario2 with cover inequalities. 

Parameter 

settings 

First 

Step 

Second 

Step 
Optimal 

Gap 

from 

Optimal 

Gap 

from 

best LP 

improvement 

with cuts 

1 114788.66 114788.66 114788.70 0.00%   0.00% 

2 96909.51 96909.51 92188.28 5.12%   0.00% 

3 83268.44 83268.44 83268.44   2.86% 0.00% 

4 116099.06 116099.06 116099.10 0.00%   0.00% 

5 96909.51 96909.51 92846.28   0.84% 0.00% 

6 83268.44 83268.44 83268.44   2.92% 0.00% 

7 122948.66 122948.66 122948.70 0.00%   0.00% 

8 96909.51 96909.51 95850.94   2.87% 0.00% 

9 83268.44 83268.44 83268.44   1.97% 0.00% 

10 124259.06 124259.06 124259.10 0.00%   0.00% 

11 96909.51 96909.51 95850.94   3.85% 0.00% 

12 83268.44 83268.44 83268.44   2.01% 0.00% 

13 121976.93 121976.93 121976.90 0.00%   0.00% 

14 106449.97 106449.97 105218.30   2.26% 0.00% 

15 98211.87 98211.87 96341.47   0.82% 0.00% 

16 123287.33 123287.33 123287.30 0.00%   0.00% 

17 106449.97 106449.97 105489.50   1.96% 0.00% 

18 98058.87 98058.87 96341.47   1.00% 0.16% 

19 130136.93 130136.93 130136.90 0.00%   0.00% 

20 106449.97 106449.97 105489.50   2.53% 0.00% 

21 98211.87 98211.87 96341.47 1.94%   0.00% 

22 131447.33 131447.33 131447.30 0.00%   0.00% 

23 106449.97 106449.97 105489.50   2.37% 0.00% 

24 98058.87 98058.87 96341.47 1.78%   0.16% 

Average 

Gaps 
      0.80% 2.17% 0.01% 
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Table ‎7.7: Heuristic results for scenario3 with cover inequalities. 

Parameter 

settings 

First 

Step 

Second 

Step 
Optimal 

Gap 

from 

Optimal 

improvement 

with cuts 

1 198942.24 198942.24 158635.24 25.41% 0.00% 

2 109399.04 109399.04 107246.37 2.01% 0.40% 

3 97573.66 97573.66 96680.70 0.92% 0.70% 

4 199068.24 199068.24 158635.24 25.49% -2.15% 

5 109728.31 109728.31 108192.77 1.42% -0.39% 

6 98618.22 98618.22 96680.70 2.00% -0.45% 

7 206218.24 206218.24 158635.24 30.00% 0.43% 

8 146762.24 146762.24 108993.58 34.65% -0.20% 

9 97573.66 97573.66 96680.70 0.92% 0.00% 

10 207228.24 207228.24 158635.24 30.63% 0.00% 

11 146762.24 146762.24 108993.58 34.65% 0.00% 

12 97573.66 97573.66 96680.70 0.92% 0.94% 

13 211345.06 211345.06 167550.49 26.14% 0.00% 

14 120165.12 120165.12 119415.17 0.63% 13.58% 

15 112877.31 112877.31 111975.40 0.81% 0.15% 

16 212447.46 212447.46 167550.49 26.80% 0.00% 

17 120165.12 120165.12 119415.17 0.63% 0.00% 

18 113513.57 113513.57 111975.40 1.37% -0.03% 

19 220425.47 220425.47 167550.49 31.56% 0.00% 

20 159145.49 159145.49 119415.17 33.27% 0.00% 

21 112877.31 112877.31 111975.40 0.81% 0.15% 

22 220607.46 220607.46 167550.49 31.67% -0.15% 

23 120165.12 120165.12 119415.17 0.63% 24.49% 

24 113008.66 113008.66 111975.40 0.92% 0.54% 

Average 

Gaps 
      14.34% 1.58% 
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Table ‎7.8: Heuristic results for scenario4 with cover inequalities. 

Parameter 

settings 

First 

Step 

Second 

Step 
Optimal 

Gap 

from 

Optimal 

Gap 

from 

best 

LP 

improvement 

with cuts 

1 193845.87 193845.87 160457.25   
22.19

% 
0.00% 

2 110969.37 110969.37 110814.77   2.62% 0.00% 

3 101700.26 101700.26 100685.25   3.90% 0.00% 

4 194223.87 194223.87 161405.53 20.33%   0.00% 

5 112027.77 112027.77 111884.37   2.87% 0.00% 

6 101700.26 101700.26 100685.25   3.96% 0.00% 

7 169383.40 169383.40 168593.93   0.65% 16.15% 

8 119129.37 119129.37 119128.74   2.84% 0.00% 

9 101700.26 101700.26 100685.25   3.00% 0.00% 

10 202383.87 202383.87 169565.53 19.35%   0.00% 

11 120187.77 120187.77 120088.45   3.87% 0.00% 

12 101700.26 101700.26 100685.25   3.04% 0.00% 

13 208987.13 208987.13 171362.55 21.96%   0.00% 

14 124261.15 124261.15 124261.15   1.12% 0.00% 

15 115009.15 115009.15 114577.27   1.20% 0.00% 

16 209387.53 209387.53 172345.35   
22.25

% 
0.00% 

17 125353.15 125353.15 125353.15   1.16% 0.00% 

18 115009.15 115009.15 114577.27   1.38% 0.00% 

19 217147.13 217147.13 179522.55   
21.70

% 
-20.47% 

20 132421.15 132421.15 132421.15   0.93% 0.00% 

21 115009.15 115009.15 114577.27 0.38%   0.00% 

22 181020.80 181020.80 180505.35   0.35% 16.79% 

23 133513.15 133513.15 133513.15   0.80% 0.00% 

24 115009.15 115009.15 114577.27 0.38%   0.00% 

Average 

Gap 
      12.48% 5.25% 0.52% 
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As it is shown in the tables, in general the heuristic method we utilized for solving 

our problem yields good and near optimal solutions for large number of parameter 

settings. For example, in the case without the addition of cover inequalities in 

scenario 2 with parameter settings 1, 4, 7, 10, 16, 19 and 22 we could find the 

optimal solution of the problem. After addition of cover inequalities of four different 

types, we can see the difference between solutions in absence of valid inequalities 

and the ones in presence of them. To illustrate more, in scenario 3 with parameter 

setting 14, we have an improvement of 13.58% from the solution without cover 

inequalities and in the same scenario with parameter setting of 23 we have 24.49% of 

improvement in comparison to the results gained in absence of valid inequalities. 

One other scenario in which we met an acceptable improvement through cover 

inequalities addition is scenario 4 in which for parameter settings 7 and 22 we have 

16.15% and 16.79% of improvement respectively.  

Along with these improvements, in a few cases we have high gaps such as the 

33.27% gap in scenario 3 with parameter setting 20. Summary of the results of 

heuristic approach application is given below in Table  7.9. 

Table  7.9: Result of heuristic method. 

 
Scenarios 

 
1 2 3 4 

 

Gap from 

optimal 

Gap from 

optimal 

Gap from 

optimal 

Gap from 

optimal 

Without cover 

inequalities 
1.16% 1.55% 16.34% 7.55% 

Avr. max and 

min gap 

 

(2.60%, 

0.34%) 
(5.12%,0.0%) (34.65%,0.63%) (22.25%,0.63%) 

With cover 

inequalities 
0.89% 1.55% 14.34% 6.67% 

Avr., max and 

min gap  
(2.03%,0.34%) (5.12%,0.0%) (34.65%,0.63%) (22.25%,0.63%) 
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After heuristic application we could get results which have gaps under 1% for all 

scenarios. The number of problems which had gaps under 1% with cover inequality 

addition and without cover inequality addition is summarized in Table  7.10. 

 

Table  7.10: Number of solutions with gaps under 1%. 

 

Number of gaps under 1% 

without covers 

Number of gaps under 1% with 

covers 

Scenario1 8 15 

Scenario2 11 11 

Scenario3 4 9 

Scenario4 4 6 

 

To handle high gap problem we changed the order of fixation in alternative ways. 

Instead of starting solution from first customer we start from different customer 

groups. To exemplify, the solution process started from customer group 4 and 

respectively went through 2, 3 and 1. We also tested following there combinations as 

the additional combinations. The order of fixation in each random combination is 

given in Table  7.11. The results gained through these random fixation orders are 

presented in Table  7.12 throug Table  7.15. 

Table  7.11: Table of random fixations. 

Order of fixation Number of combinations 

4-2-3-1 1 

3-4-2-1 2 

2-3-4-1 3 
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Table  7.12: Results of Scenario 1 with random combinations. 

Parameter 

settings 

Gap from 

Optimal/LB, 

Fixation 

order1 

Gap from 

Optimal/LB, 

Fixation 

order2 

Gap from 

Optimal/LB, 

Fixation 

order3 

1 0.39% 0.47% 1.51% 

2 2.12% 1.21% 2.12% 

3 1.47% 1.17% 1.20% 

4 0.39% 1.52% 0.39% 

5 2.45% 1.79% 39.84% 

6 1.17% 1.18% 13.38% 

7 1.40% 0.37% 0.37% 

8 1.97% 1.12% 1.97% 

9 1.47% 1.17% 2.63% 

10 0.36% 1.42% 0.36% 

11 2.45% 2.37% 1.20% 

12 1.17% 1.18% 2.66% 

13 0.37% 0.50% 0.50% 

14 1.50% 1.78% 18.67% 

15 1.15% 0.99% 0.99% 

16 0.37% 0.37% 0.37% 

17 1.50% 0.98% 1.93% 

18 0.99% 1.15% 1.15% 

19 1.13% 0.35% 0.35% 

20 1.50% 1.78% 1.50% 

21 1.15% 1.15% 0.99% 

22 0.35% 0.35% 0.35% 

23 1.50% 0.98% 1.93% 

24 0.99% 1.15% 1.15% 

Average Gaps 1.22% 1.10% 4.06% 
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Table  7.13 : Results of Scenario 2 with random combinations. 

Parameter 

settings 

Gap from 

Optimal/LB, 

Fixation 

order1 

Gap from 

Optimal/LB, 

Fixation 

order2 

Gap from 

Optimal/LB, 

Fixation 

order3 

1 0.00% 0.00% 0.00% 

2 5.12% 4.02% 5.18% 

3 2.86% 2.86% 4.87% 

4 0.00% 0.00% 0.00% 

5 0.84% 0.84% 5.32% 

6 2.92% 2.92% 4.94% 

7 0.00% 0.00% 0.00% 

8 2.87% 2.87% 4.07% 

9 1.97% 1.97% 3.97% 

10 0.00% 0.00% 0.00% 

11 3.85% 3.85% 5.06% 

12 2.01% 2.01% 4.01% 

13 0.00% 0.00% 0.00% 

14 2.26% 2.26% 3.34% 

15 0.82% 0.82% 1.07% 

16 0.00% 0.00% 0.00% 

17 1.96% 1.96% 2.77% 

18 1.00% 1.00% 1.25% 

19 0.00% 0.00% 0.00% 

20 2.53% 2.53% 3.35% 

21 0.24% 1.78% 0.24% 

22 0.00% 0.00% 0.00% 

23 2.37% 2.37% 3.18% 

24 0.24% 1.78% 0.24% 

Average Gaps 1.41% 1.49% 2.20% 
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Table  7.14: Results of Scenario 3 with random combinations. 

Parameter 

settings 

Gap from 

Optimal/LB, 

Fixation 

order1 

Gap from 

Optimal/LB, 

Fixation 

order2 

Gap from 

Optimal/LB, 

Fixation 

order3 

1 21.40% 26.63% 21.16% 

2 1.45% 2.48% 1.01% 

3 1.00% 1.60% 1.68% 

4 22.85% 26.12% 22.80% 

5 2.11% 2.11% 2.11% 

6 1.03% 0.91% 1.00% 

7 22.85% 21.16% 24.74% 

8 2.03% 1.01% 1.01% 

9 1.68% 1.01% 1.68% 

10 22.85% 22.80% 21.12% 

11 19.63% 1.01% 1.01% 

12 1.03% 0.91% 39.63% 

13 21.51% 20.07% 21.51% 

14 1.22% 33.95% 1.22% 

15 1.18% 0.79% 0.94% 

16 21.60% 20.34% 20.01% 

17 0.60% 1.22% 1.22% 

18 0.94% 1.38% 0.99% 

19 21.51% 21.51% 21.51% 

20 1.22% 33.95% 1.22% 

21 1.18% 1.38% 0.94% 

22 21.60% 21.60% 21.60% 

23 0.60% 1.22% 1.22% 

24 0.94% 1.38% 0.99% 

Average Gaps 8.92% 11.11% 9.68% 
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Table  7.15 : Results of Scenario 4 with random combinations. 

Parameter 

settings 

Gap from 

Optimal/LB, 

Fixation 

order1 

Gap from 

Optimal/LB, 

Fixation 

order2 

Gap from 

Optimal/LB, 

Fixation 

order3 

1 1.54% 22.12% 22.04% 

2 2.62% 2.62% 3.46% 

3 3.90% 3.38% 3.76% 

4 20.31% 20.27% 20.19% 

5 2.87% 2.88% 3.74% 

6 3.96% 3.44% 3.82% 

7 20.01% 19.97% 19.90% 

8 2.84% 2.84% 3.63% 

9 3.00% 2.48% 2.87% 

10 19.33% 19.29% 0.26% 

11 3.87% 3.87% 4.68% 

12 3.04% 2.52% 2.91% 

13 21.91% 21.79% 21.71% 

14 1.12% 1.28% 1.54% 

15 1.20% 0.82% 1.08% 

16 22.20% 22.08% 0.88% 

17 1.16% 1.32% 1.61% 

18 1.38% 1.00% 1.26% 

19 21.65% 21.54% 21.46% 

20 0.93% 1.08% 1.33% 

21 0.38% 0.00% 0.25% 

22 20.55% 0.31% 20.36% 

23 0.80% 0.95% 1.22% 

24 0.38% 0.00% 0.25% 

Average Gaps 7.54% 7.41% 6.84% 

  



 

68 

 

As it is presented in the tables, the order of fixation operation affects the amount of 

gaps from optimal solution. Summary of best gaps we got from multiple fixation 

orders is presented below: 

Table  7.16: Summary of best gaps through heuristic application. 

 

 

  

 
Scenarios 

  1 2 3 4 

  
Gap from 

optimal/LB 

Gap from 

optimal/LB 

Gap from 

optimal/LB 

Gap from 

optimal/LB 

Best average gap 0.81% 1.37% 7.67% 4.04% 

Min gap 0.34% 0.00% 0.60% 0.00% 

Max gap 1.21% 4.02% 22.80% 21.71% 

Number of 

solutions with 

gaps under 1% 

16 12 11 9 
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8. CONCLUSION 

In this research, we studied a problem of integrated replenishment planning and fleet 

sizing in a vendor managed inventory system. The decisions to be made are the 

assignment of vehicles and frequencies to the customers, which have deterministic 

demand, along with the fleet composition. As mentioned in the section of problem 

definition, demand divisibility is not considered in this problem and the demand of 

each customer can be shipped using  only single vehicle and a single frequency. We 

have a given set of discrete frequencies based on weeks and a single frequency for 

daily replenishments. The model used to represent the problem is a full integer 

formulation. The introduced mathematical model of the problem itself is a new 

contribution to the literature  

The problem solutions are examined and analyzed under four different scenarios 

including no clusters/ four clusters with normal and 50% higher demand. Analyzing 

the results of decision variables under different cases we showed some logical 

relations between different factors and their effects on the solution. As seen in the 

computational results section, grouping customers into different categories directly 

affects all costs. In the case with no clusters and normal demand, the possibility of 

demand consolidation is high resulting in less frequent replenishments and higher 

inventory holding costs versus lower transportation costs due to less number of 

replenishments. Grouping into four categories, brings the limitation for some 

customers that are not allowed to be in the same route. This situation results in higher 

frequencies, lower lot sizes, higher transportation costs, and also lower inventory 

costs. When clusters are formed, frequencies are reduced in order to create more 

consolidation possibility. The reduction in replenishment frequencies will result in 

lower dead heading and replenishment costs.  

An additional chance of consolidation is provided by shifting from small vehicles to 

large vehicles with the addition of the clusters. If the replenishment frequencies did 
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not change with the cluster addition, there would be a need for more vehicles, which 

would cause the ownership and routing costs to grow very high. To avoid this cost 

explosion, frequencies are lowered and lots are adjusted to be shipped in larger 

vehicles. In scenarios with larger vehicles (capacities of 21-27), this consolidation of 

clustered case can be handled using a less number of large vehicles. For the same 

case, in some scenarios only small vehicles are used. This change is occurred 

because the capacity of small vehicles is large enough for handling the consolidated 

demands under the mentioned scenarios.  

Generally, cluster addition causes frequency increases and thus less frequent 

replenishments will be performed. As a result, the lots carried at each replenishment 

will be larger in comparison to the cases in which customers are not divided into 

clusters. This is the reason to route number reduction in clustered scenarios.. This 

reduced route number will reduce dead heading costs.  Considering lower 

replenishment frequencies (less repetitions of fixed per kilometer cost) and lower 

dead heading costs we expect the routing costs reduction. Routing costs are 

composed of dead heading costs and fixed per kilometer costs, which are higher for 

the larger vehicles. This fact makes it possible to explain the reason for increase in 

routing costs when customers are grouped. A shift from smaller vehicles to larger 

vehicles causes this increase. 

In thist, the suggested problem is NP-hard and we introduced a fix and optimize type 

solution procedure. Generally the heuristic results showed an acceptable gap from 

optimal/ best LP bound, except for a very few parameter settings. The problem of 

high gaps from optimality was reduced through changing the order of fixation in 

steps of the heuristic approach. As a result of this adjustment, we could successfully 

decrease further the gaps of specific parameter settings. Checking table 7.28, we can 

see that, overall, the average optimality gap we obtained in 96 problems is 3.47% and 

half of the problems are solved with less than 1% optimality gap. 

In summary, we contributed to the literature in three aspects; 1. We suggested a 

mathematical model for this important problem. 2. We carried out some numerical 

analysis and drawn some insights. 3. We developed an effective optimization based 

heuristic approach as a solution procedure.  
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Appendix1  

 CPLEX Code 

   

 // problem size 

 int n=...;// number of customers 

 int m=...;// number of vehicles 

 int f=...;// number of frequencies 

 int d=...;// number of days 

 int H=...;//number of weeks 

 int g=...; 

 int s=5;// number of coinciding frequency sets 

 int t1 = 17; // number of beginning set members 

 int t2 = 18; 

 int t3 = 19; 

 int t4 = 15; 

 int t5 = 13; 

 int t6 = 10; 

 int t7 = 7; 

 int t8 = 16; 

 int t9 = 4; 

 int t10 = 20; 

 int t11 = 14; 

 int t12 = 11; 

 int t13 = 7; 

 int t14 = 1; 
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 int t15 = 8; 

 int t16 = 12; 

 int t17 = 20; 

 int t18 = 3; 

 

  

{int} F1={1,2,7,12,17};// Mondays 

{int} F2={1,3,8,13,18};//Teusdays 

{int} F3={1,4,9,14,19};//Wednesday 

{int} F4={1,5,10,15,20};//Thursday 

{int} F5={1,6,11,16,21};//Friday 

{int} H1=...;// Weekly 

{int} H2=...;//Every two weeks 

{int} H3=...;//Every three weeks 

{int} H4=...;//Every four weeks 

 

 

 

 range ccounter=1..n; //customer counter 

 range vcounter=1..m; //vehicle counter 

 range fcounter=1..f;//frequency counter 

 range dcounter=1..d;//day counter 

 range Hcounter=1..H;// Week counter 

 range Dcounter=1..s; 

 range tcounter1 = 1..t1;// counter for end and beginning members 

 range tcounter2 = 1..t2;// counter for end and beginning sets 

 range tcounter3 = 1..t3; 

 range tcounter4 = 1..t4; 

 range tcounter5 = 1..t5; 
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 range tcounter6 = 1..t6; 

 range tcounter7 = 1..t7; 

 range tcounter8 = 1..t8; 

 range tcounter9 = 1..t9; 

 range tcounter10 = 1..t10; 

 range tcounter11 = 1..t11; 

 range tcounter12 = 1..t12; 

 range tcounter13 = 1..t13; 

 range tcounter14 = 1..t14; 

 range tcounter15 = 1..t15; 

 range tcounter16 = 1..t16; 

 range tcounter17 = 1..t17; 

 range tcounter18 = 1..t18; 

  

 // Random Cover sets for normal demand 

 int p1 = 9; 

 int q1 = 4; 

 range pcounter1 = 1..p1; 

 range qcounter1 = 1..q1; 

 int RndCov7_f2[pcounter1][qcounter1] =...; 

 int RndCov7_f5[pcounter1][qcounter1] = ...; 

  

 int p2 = 10; 

 range pcounter2 = 1..p2; 

 int RndCov7_f3[pcounter2][qcounter1] = ...; 

 int RndCov7_f4[pcounter2][qcounter1] = ...; 

 int RndCov7_f6[pcounter2][qcounter1] = ...; 

  

 int RndCov14_f7[pcounter2][qcounter1] = ...; 
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 int RndCov14_f8[pcounter2][qcounter1] = ...; 

 int RndCov14_f9[pcounter2][qcounter1] = ...; 

 int RndCov14_f10[pcounter2][qcounter1] = ...; 

 int RndCov14_f11[pcounter2][qcounter1] = ...; 

  

 int p3 = 32; 

 int q2 = 3; 

 range pcounter3 = 1..p3; 

 range qcounter2 = 1..q2; 

 int RndCov7_f7[pcounter3][qcounter2] = ...; 

  

 int p4 = 12; 

 range pcounter4 = 1..p4; 

 int RndCov7_f8[pcounter4][qcounter2] = ...; 

 

int p5 = 13; 

range pcounter5 = 1..p5; 

int RndCov7_f9[pcounter5][qcounter2] = ...; 

 

int q3 = 2; 

int p6 = 7; 

range pcounter6 = 1..p6; 

range qcounter3 = 1..q3; 

int RndCov7_f10[pcounter6][qcounter3] = ...; 

 

int p7 = 6; 

int q4 = 6; 

range pcounter7 = 1..p7; 

range qcounter4 = 1..q4; 
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int RndCov10_f2[pcounter7][qcounter4] = ...; 

int RndCov10_f3[pcounter7][qcounter4] = ...; 

int RndCov10_f4[pcounter7][qcounter4] = ...; 

int RndCov10_f5[pcounter7][qcounter4] = ...; 

int RndCov10_f6[pcounter7][qcounter4] = ...; 

 

int RndCov10_f7[pcounter4][qcounter2] = ...; 

int RndCov10_f8[pcounter4][qcounter2] = ...; 

int RndCov10_f9[pcounter4][qcounter2] = ...; 

int RndCov10_f10[pcounter4][qcounter2] = ...; 

int RndCov10_f11[pcounter4][qcounter2] = ...; 

 

int RndCov10_f12[pcounter2][qcounter3] = ...; 

 

int p8 = 4; 

int q5 = 8; 

range pcounter8 = 1..p8; 

range qcounter5 = 1..q5; 

int RndCov14_f2[pcounter8][qcounter5] = ...; 

int RndCov14_f3[pcounter8][qcounter5] = ...; 

int RndCov14_f4[pcounter8][qcounter5] = ...; 

int RndCov14_f5[pcounter8][qcounter5] = ...; 

int RndCov14_f6[pcounter8][qcounter5] = ...; 

int RndCov14_f12[pcounter4][qcounter2] = ...; 

int RndCov14_f13[pcounter4][qcounter2] = ...; 

int RndCov14_f14[pcounter7][qcounter2] = ...; 

 

int p9 = 2; 

int q6 = 10; 
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int q7 = 11; 

int p10 = 11; 

int q8 = 14; 

int q9 = 7; 

int p11 = 8; 

int q10 = 5; 

int p12 = 22; 

int p13 = 1; 

range pcounter9 = 1..p9; 

range pcounter10 = 1..p10; 

range qcounter6 = 1..q6; 

range qcounter7 = 1..q7; 

range qcounter8 = 1..q8; 

range qcounter9 = 1..q9; 

range pcounter11 = 1..p11; 

range qcounter10 = 1..q10; 

range pcounter12 = 1..p12; 

range pcounter13 = 1..p13; 

 

 

int RndCov20_f2[pcounter9][qcounter6] = ...; 

int RndCov20_f3[pcounter9][qcounter7] = ...; 

int RndCov20_f4[pcounter9][qcounter7] = ...; 

int RndCov20_f5[pcounter9][qcounter7] = ...; 

int RndCov20_f6[pcounter9][qcounter7] = ...; 

int RndCov20_f7[pcounter7][qcounter4] = ...; 

int RndCov20_f8[pcounter7][qcounter4] = ...; 

int RndCov20_f9[pcounter7][qcounter4] = ...; 

int RndCov20_f10[pcounter7][qcounter4] = ...; 
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int RndCov20_f11[pcounter7][qcounter4] = ...; 

int RndCov20_f12[pcounter2][qcounter1] = ...; 

int RndCov20_f13[pcounter2][qcounter1] = ...; 

int RndCov20_f14[pcounter2][qcounter1] = ...; 

int RndCov20_f15[pcounter2][qcounter1] = ...; 

int RndCov20_f16[pcounter2][qcounter1] = ...; 

int RndCov20_f17[pcounter6][qcounter2] = ...; 

 

int RndCov21_f2[pcounter9][qcounter7] = ...; 

int RndCov21_f3[pcounter9][qcounter7] = ...; 

int RndCov21_f4[pcounter9][qcounter7] = ...; 

int RndCov21_f5[pcounter9][qcounter7] = ...; 

int RndCov21_f6[pcounter9][qcounter7] = ...; 

int RndCov21_f7[pcounter7][qcounter4] = ...; 

int RndCov21_f8[pcounter7][qcounter4] = ...; 

int RndCov21_f9[pcounter7][qcounter4] = ...; 

int RndCov21_f10[pcounter7][qcounter4] = ...; 

int RndCov21_f11[pcounter7][qcounter4] = ...; 

int RndCov21_f12[pcounter2][qcounter1] = ...; 

int RndCov21_f13[pcounter2][qcounter1] = ...; 

int RndCov21_f14[pcounter2][qcounter1] = ...; 

int RndCov21_f15[pcounter1][qcounter1] = ...; 

int RndCov21_f16[pcounter2][qcounter1] = ...; 

int RndCov21_f17[pcounter10][qcounter2] = ...; 

 

int RndCov27_f2[pcounter9][qcounter8] = ...; 

int RndCov27_f3[pcounter9][qcounter8] = ...; 

int RndCov27_f4[pcounter9][qcounter8] = ...; 

int RndCov27_f5[pcounter9][qcounter8] = ...; 
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int RndCov27_f6[pcounter9][qcounter8] = ...; 

int RndCov27_f7[pcounter8][qcounter5] = ...; 

int RndCov27_f8[pcounter8][qcounter5] = ...; 

int RndCov27_f9[pcounter8][qcounter9] = ...; 

int RndCov27_f10[pcounter8][qcounter5] = ...; 

int RndCov27_f11[pcounter8][qcounter5] = ...; 

int RndCov27_f12[pcounter11][qcounter10] = ...; 

int RndCov27_f13[pcounter12][qcounter6] = ...; 

int RndCov27_f14[pcounter6][qcounter4] = ...; 

int RndCov27_f15[pcounter11][qcounter10] = ...; 

int RndCov27_f16[pcounter11][qcounter10] = ...; 

int RndCov27_f17[pcounter2][qcounter1] = ...; 

int RndCov27_f18[pcounter2][qcounter1] = ...; 

int RndCov27_f19[pcounter2][qcounter1] = ...; 

int RndCov27_f20[pcounter13][qcounter1] = ...; 

 

/* Random cut sets for 50D*/ 

int q11 = 17; 

int p14 = 18; 

int p15 = 17; 

int p16 = 20; 

int p17 = 14; 

int p18 = 15; 

int p19 = 3; 

int p20 = 5; 

int q12 = 9; 

range qcounter11 = 1..q11; 

range pcounter14 = 1..p14; 

range pcounter15 = 1..p15; 
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range pcounter16 = 1..p16; 

range pcounter17 = 1..p17; 

range pcounter18 = 1..p18; 

range pcounter19 = 1..p19; 

range pcounter20 = 1..p20; 

int RndCov7_f1_50[pcounter9][qcounter11] = ...; 

int RndCov7_f2_50[pcounter10][qcounter2] = ...; 

int RndCov7_f3_50[pcounter4][qcounter2] = ...; 

int RndCov7_f4_50[pcounter10][qcounter2] = ...; 

int RndCov7_f5_50[pcounter4][qcounter2] = ...; 

int RndCov7_f6_50[pcounter10][qcounter2] = ...; 

int RndCov7_f7_50[pcounter14][qcounter2] = ...; 

int RndCov7_f8_50[pcounter15][qcounter3] = ...; 

int RndCov7_f9_50[pcounter8][qcounter3] = ...; 

 

int RndCov10_f2_50[pcounter2][qcounter1] = ...; 

int RndCov10_f3_50[pcounter2][qcounter1] = ...; 

int RndCov10_f4_50[pcounter2][qcounter1] = ...; 

int RndCov10_f5_50[pcounter1][qcounter1] = ...; 

int RndCov10_f6_50[pcounter2][qcounter1] = ...; 

int RndCov10_f7_50[pcounter16][qcounter3] = ...; 

int RndCov10_f8_50[pcounter17][qcounter3] = ...; 

int RndCov10_f9_50[pcounter18][qcounter3] = ...; 

int RndCov10_f10_50[pcounter9][qcounter3] = ...; 

 

int RndCov14_f2_50[pcounter11][qcounter10] = ...; 

int RndCov14_f3_50[pcounter11][qcounter10] = ...; 

int RndCov14_f5_50[pcounter11][qcounter10] = ...; 

int RndCov14_f4_50[pcounter6][qcounter4] = ...; 
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int RndCov14_f6_50[pcounter6][qcounter4] = ...; 

int RndCov14_f7_50[pcounter4][qcounter2] = ...; 

int RndCov14_f8_50[pcounter4][qcounter2] = ...; 

int RndCov14_f9_50[pcounter4][qcounter2] = ...; 

int RndCov14_f10_50[pcounter4][qcounter2] = ...; 

int RndCov14_f11_50[pcounter10][qcounter2] = ...; 

int RndCov14_f12_50[pcounter19][qcounter3] = ...; 

 

int RndCov20_f2_50[pcounter8][qcounter9] = ...; 

int RndCov20_f3_50[pcounter8][qcounter9] = ...; 

int RndCov20_f4_50[pcounter8][qcounter5] = ...; 

int RndCov20_f5_50[pcounter8][qcounter5] = ...; 

int RndCov20_f6_50[pcounter8][qcounter5] = ...; 

int RndCov20_f7_50[pcounter2][qcounter1] = ...; 

int RndCov20_f8_50[pcounter2][qcounter1] = ...; 

int RndCov20_f9_50[pcounter2][qcounter1] = ...; 

int RndCov20_f10_50[pcounter2][qcounter1] = ...; 

int RndCov20_f11_50[pcounter2][qcounter1] = ...; 

int RndCov20_f12_50[pcounter4][qcounter2] = ...; 

int RndCov20_f13_50[pcounter4][qcounter2] = ...; 

int RndCov20_f14_50[pcounter20][qcounter2] = ...; 

 

int RndCov21_f2_50[pcounter8][qcounter5] = ...; 

int RndCov21_f3_50[pcounter8][qcounter5] = ...; 

int RndCov21_f4_50[pcounter8][qcounter5] = ...; 

int RndCov21_f5_50[pcounter8][qcounter5] = ...; 

int RndCov21_f6_50[pcounter8][qcounter5] = ...; 

int RndCov21_f7_50[pcounter1][qcounter1] = ...; 

int RndCov21_f8_50[pcounter2][qcounter1] = ...; 
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int RndCov21_f9_50[pcounter2][qcounter1] = ...; 

int RndCov21_f10_50[pcounter2][qcounter1] = ...; 

int RndCov21_f11_50[pcounter2][qcounter1] = ...; 

int RndCov21_f12_50[pcounter4][qcounter2] = ...; 

int RndCov21_f13_50[pcounter4][qcounter2] = ...; 

int RndCov21_f14_50[pcounter6][qcounter2] = ...; 

 

int RndCov27_f2_50[pcounter8][qcounter6] = ...; 

int RndCov27_f3_50[pcounter8][qcounter6] = ...; 

int RndCov27_f4_50[pcounter8][qcounter6] = ...; 

int RndCov27_f5_50[pcounter8][qcounter6] = ...; 

int RndCov27_f6_50[pcounter8][qcounter6] = ...; 

int RndCov27_f7_50[pcounter11][qcounter10] = ...; 

int RndCov27_f8_50[pcounter11][qcounter10] = ...; 

int RndCov27_f9_50[pcounter11][qcounter10] = ...; 

int RndCov27_f10_50[pcounter11][qcounter10] = ...; 

int RndCov27_f11_50[pcounter11][qcounter10] = ...; 

int RndCov27_f12_50[pcounter2][qcounter1] = ...; 

int RndCov27_f13_50[pcounter10][qcounter1] = ...; 

int RndCov27_f14_50[pcounter10][qcounter1] = ...; 

int RndCov27_f15_50[pcounter1][qcounter1] = ...; 

 

 

 //parameters 

 float r[vcounter]=...;// approximate cost of a route 

 int cc=17; // constant cost of a route 

 int A[vcounter]=...;// vehicle renting cost 

 float Y[ccounter][fcounter]=...;// Customer demand 

 int h=300; // inventory holding cost 
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 float k[ccounter][fcounter]=...;// ordering cost 

 int S=5; // maximum number of cusomers to visit in a day 

 int cap[vcounter]=...;// capacity of vehicles 

 int M=21;// big number 

 int F[fcounter]=...;// frequency dependent repetition number 

 int a[ccounter][ccounter]=...;// incidence matrice of customers 

 int W[vcounter][fcounter]=...;// normal frequency inequality 

 int V[vcounter][Dcounter]=...;// coinciding frequencies inequality 

 int End1[tcounter1] = ...; // end set for cover1 

 int End2[tcounter2] = ... ;// end set for cover2 

 int End3[tcounter3] = ... ; 

 int End4[tcounter4] = ...; 

 int End5[tcounter5] = ...; 

 int End6[tcounter6] = ...; 

 int End6_1[tcounter6] = ...; 

 int End7[tcounter7] = ...; 

 int End5_1[tcounter5] = ...; 

 int End8[tcounter8] = ...; 

 int End9[tcounter9] = ...; 

 int End10[tcounter10]=...; 

 int End3_1[tcounter3] = ...; 

 int End11[tcounter11]= ...; 

 int End12[tcounter12]= ...; 

 int Ende10[tcounter10] = ...; 

 int Ende2[tcounter2] = ...; 

 int Ende6[tcounter6] = ...; 

 int Ende13[tcounter13] = ...; 

 int Ende14[tcounter14] = ...;  

 int Ende6p[tcounter6] = ...; 
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 int Ende15[tcounter15]= ...; 

 int Ende16[tcounter16] = ...; 

 int Ende11[tcounter11] = ...; 

 int Ende17[tcounter17] = ...; 

 int Ende11p[tcounter11] = ...; 

 int Ende2p[tcounter2] = ...; 

 int Ende10p[tcounter10] = ...; 

 int End16[tcounter16] = ...; 

 int Ende15p[tcounter15] = ...; 

 int Ende8[tcounter8] = ...; 

 int Ende13p[tcounter13] = ...; 

int Ende2pr[tcounter2] = ...; 

int Ende18[tcounter18] = ...; 

int Ende11pr[tcounter11] = ...; 

  

 

  

 // decision variables 

  dvar boolean x[ccounter][vcounter][fcounter]; 

 dvar boolean CC[vcounter][fcounter]; 

 dvar int+ c[vcounter][fcounter]; 

 dvar boolean CV[vcounter]; 

 dvar float AvLotSize; 

 dvar float AvFrequency; 

 dvar boolean R[dcounter][vcounter][Hcounter]; 

 dvar float Z; 

 dvar float P; 

 dvar float RoutingCost; 

 dvar float RentingCost; 
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 dvar float Inventory1; 

 dvar float Inventory2; 

 dvar float TotalLot[vcounter]; 

 dvar int NumCustomer[vcounter]; 

 

 //model 

 minimize sum(v in vcounter) F[1]*CC[v][1]*cc+ sum(d in dcounter,H in 
Hcounter,v in vcounter)R[d][v][H]* cc +sum(f in fcounter,v in 
vcounter)c[v][f]*r[v]*F[f]+sum(v in vcounter)A[v]*CV[v]+sum(i in 
ccounter,v in vcounter,f in fcounter)(x[i][v][f]*Y[i][f])*1/2*h+sum(i in 
ccounter,v in vcounter,f in fcounter)x[i][v][f]*k[i][f]; 

  

 subject to{ 

           

      forall(i in ccounter){ 

       constallocation:    

       sum(v in vcounter,f in fcounter) x[i][v][f]==1;// demand    

     }    

     forall(f in fcounter, v in vcounter){ 

      cut1:    

      sum(i in ccounter) x[i][v][f]<= W[v][f]-1; 

     }  

     forall(v in vcounter){ 

       cut2: 

       sum(i in ccounter, f in F1) x[i][v][f]<= V[v][1] - 1; 

       sum(i in ccounter, f in F2) x[i][v][f]<= V[v][2] - 1; 

       sum(i in ccounter, f in F3) x[i][v][f]<= V[v][3] - 1; 

       sum(i in ccounter, f in F4) x[i][v][f]<= V[v][4] - 1; 

       sum(i in ccounter, f in F5) x[i][v][f]<= V[v][5] - 1; 

     }              

   forall(v in vcounter,f in fcounter) 
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     sum(i in ccounter)x[i][v][f]==c[v][f];// number of customers 

                      

           forall(v in vcounter,f in fcounter ){ 

            constroute: 

            CC[v][f]*S>= c[v][f];//route existance 

            CC[v][f]<=c[v][f]; 

            }                           

               forall(v in vcounter) 

                 CV[v]*M>=sum(f in fcounter ,i in 
ccounter)x[i][v][f];//vehicle number 

              forall(v in vcounter,f in fcounter ) 

                capconst: 

                sum(i in ccounter)((x[i][v][f]*Y[i][f]))<=cap[v]; 

                  forall(v in vcounter){ 

                    maximumcustomer: 

                     sum(f in F1) c[v][f]<=S; 

                     sum(f in F2) c[v][f]<=S; 

                     sum(f in F3) c[v][f]<=S; 

                     sum(f in F4) c[v][f]<=S; 

                     sum(f in F5) c[v][f]<=S; 

                   }  

                        

                     forall(v in vcounter){ 

                       vnumber1: 

                        sum(i in ccounter,f in 
F1)(x[i][v][f]*Y[i][f])<=cap[v]; 

                        sum(i in ccounter,f in 
F2)(x[i][v][f]*Y[i][f])<=cap[v]; 

                        sum(i in ccounter,f in 
F3)(x[i][v][f]*Y[i][f])<=cap[v]; 
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                        sum(i in ccounter,f in 
F4)(x[i][v][f]*Y[i][f])<=cap[v]; 

                        sum(i in ccounter,f in 
F5)(x[i][v][f]*Y[i][f])<=cap[v]; 

                  } 

                  forall(v in vcounter,i in ccounter,j in ccounter: i<j){ 

                  sum(f in F1)x[i][v][f] + sum(f in F1)x[j][v][f]<= 
a[i][j]; 

                  sum(f in F2)x[i][v][f] + sum(f in F2)x[j][v][f]<= 
a[i][j]; 

                  sum(f in F3)x[i][v][f] + sum(f in F3)x[j][v][f]<= 
a[i][j]; 

                  sum(f in F4)x[i][v][f] + sum(f in F4)x[j][v][f]<= 
a[i][j]; 

                  sum(f in F5)x[i][v][f] + sum(f in F5)x[j][v][f]<= 
a[i][j]; 

                  }   

                    forall(v in vcounter,H in H1) 

                     R[1][v][H]>= CC[v][2]- CC[v][1]; 

                     forall(v in vcounter,H in H2) 

                     R[1][v][H]>= CC[v][7]- CC[v][1]; 

                     forall(v in vcounter,H in H3) 

                     R[1][v][H]>= CC[v][12]- CC[v][1]; 

                     forall(v in vcounter,H in H4) 

                     R[1][v][H]>= CC[v][17]- CC[v][1]; 

                      

                      forall(v in vcounter,H in H1) 

                     R[2][v][H]>= CC[v][3]- CC[v][1]; 

                     forall(v in vcounter,H in H2) 

                     R[2][v][H]>= CC[v][8]- CC[v][1]; 

                     forall(v in vcounter,H in H3) 

                     R[2][v][H]>= CC[v][13]- CC[v][1]; 
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                     forall(v in vcounter,H in H4) 

                     R[2][v][H]>= CC[v][18]- CC[v][1]; 

                      

                     forall(v in vcounter,H in H1) 

                     R[3][v][H]>= CC[v][4]- CC[v][1]; 

                     forall(v in vcounter,H in H2) 

                     R[3][v][H]>= CC[v][9]- CC[v][1]; 

                     forall(v in vcounter,H in H3) 

                     R[3][v][H]>= CC[v][14]- CC[v][1]; 

                     forall(v in vcounter,H in H4) 

                     R[3][v][H]>= CC[v][19]- CC[v][1]; 

                      

                      forall(v in vcounter,H in H1) 

                     R[4][v][H]>= CC[v][5]- CC[v][1]; 

                     forall(v in vcounter,H in H2) 

                     R[4][v][H]>= CC[v][10]- CC[v][1]; 

                     forall(v in vcounter,H in H3) 

                     R[4][v][H]>= CC[v][15]- CC[v][1]; 

                     forall(v in vcounter,H in H4) 

                     R[4][v][H]>= CC[v][20]- CC[v][1]; 

                      

                      forall(v in vcounter,H in H1) 

                     R[5][v][H]>= CC[v][6]- CC[v][1]; 

                     forall(v in vcounter,H in H2) 

                     R[5][v][H]>= CC[v][11]- CC[v][1]; 

                     forall(v in vcounter,H in H3) 

                     R[5][v][H]>= CC[v][16]- CC[v][1]; 

                     forall(v in vcounter,H in H4) 

                     R[5][v][H]>= CC[v][21]- CC[v][1]; 
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      AvLotSize== sum(i in ccounter,v in vcounter,f in 
fcounter)(x[i][v][f]*Y[i][f])/n; 

                  AvFrequency==sum(i in ccounter,v in vcounter,f in 
fcounter)(x[i][v][f]*f)/n; 

                   Z==  sum(v in vcounter) F[1]*CC[v][1]*cc+ sum(d in 
dcounter,H in Hcounter,v in vcounter)R[d][v][H]* cc +sum(v in 
vcounter)A[v]*CV[v]+sum(f in fcounter,v in vcounter)c[v][f]*r[v]*F[f];  

                   P==sum(i in ccounter,v in vcounter,f in 
fcounter)(x[i][v][f]*Y[i][f])*1/2*h+sum(i in ccounter,v in vcounter,f in 
fcounter)x[i][v][f]*k[i][f];   

                   RoutingCost== sum(v in vcounter)F[1]*CC[v][1]*cc+sum(d 
in dcounter,H in Hcounter,v in vcounter)R[d][v][H]* cc+sum(f in fcounter,v 
in vcounter)c[v][f]*r[v]*F[f]; 

                  RentingCost==sum(v in vcounter)A[v]*CV[v]; 

                   Inventory1== sum(i in ccounter,v in vcounter,f in 
fcounter)(x[i][v][f]*Y[i][f])*1/2*h; 

                   Inventory2== sum(i in ccounter,v in vcounter,f in 
fcounter)x[i][v][f]*k[i][f]; 

                   forall(v in vcounter){ 

                   TotalLot[v]==sum(f in fcounter,i in ccounter ) 
x[i][v][f]*Y[i][f]; 

                   NumCustomer[v]==sum(f in fcounter)c[v][f]; 

                 }    

                  

                 /* Valid inequalities for Normal demand scenarios*/ 

     // cap 7, weekly 

                 VI1_cap7: 

                 forall(v in vcounter, f in fcounter, t in tcounter1 : 
3<=v<=4 && 2<=f<=6) 

                   sum(i in ccounter : t<= i <= End1[t]) x[i][v][f] <= 
End1[t] - t; 

                    

                    

                // cap 7 , bi-weekly  
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                VI2_cap7: 

               forall(v in vcounter, f in fcounter, t in tcounter2:  
3<=v<=4 && 7<=f<=11) 

                 sum(i in ccounter : t<= i<= End2[t]) x[i][v][f] <= 
End2[t] - t;  

                  

                // cap 7, thrice-weekly 

                VI3_cap7: 

                forall(v in vcounter, f in fcounter, t in tcounter3 : 
3<=v<=4 && 12<=f<=16) 

                   sum(i in ccounter : t<= i<= End3[t]) x[i][v][f] <= 
End3[t] - t;  

                    

               // cap 7, quad-weekly 

               VI4_cap7: 

               forall(v in vcounter, f in fcounter, t in tcounter3 :  
3<=v<=4 && 17<=f<=21) 

                sum(i in ccounter : t<= i<= End3[t]) x[i][v][f] <= End3[t] 
- t;  

                 

                 

              // cap 10, weekly  

              VI1_cap10: 

               forall(v in vcounter, f in fcounter, t in tcounter4 : 
1<=v<=2 && 2<=f<=6) 

                   sum(i in ccounter : t<= i<= End4[t]) x[i][v][f] <= 
End4[t] - t; 

                    

             // cap 10, bi-weekly  

             VI2_cap10: 

                forall(v in vcounter, f in fcounter, t in tcounter2 : 
1<=v<=2 && 7<=f<=11) 

                   sum(i in ccounter : t<= i<= End2[t]) x[i][v][f] <= 
End2[t] - t; 
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            // cap 10, thrice-weekly 

            VI3_cap10: 

              forall(v in vcounter, f in fcounter, t in tcounter3 : 
1<=v<=2 && 12<=f<=16) 

                   sum(i in ccounter : t<= i<= End3[t]) x[i][v][f] <= 
End3[t] - t; 

                    

           // cap 10, quad-weekly 

           VI4_cap10: 

              forall(v in vcounter, f in fcounter, t in tcounter3 : 
1<=v<=2 && 17<=f<=21) 

                   sum(i in ccounter : t<= i<= End3[t]) x[i][v][f] <= 
End3[t] - t; 

                    

          // cap 14, weekly 

          VI1_cap14: 

            forall(v in vcounter, f in fcounter, t in tcounter5: 3<=t<=4 
&& 2<=f<=6) 

              sum(i in ccounter : t<=i<= End5[t]) x[i][v][f] <= End5[t] - 
t; 

               

         // cap 14, bi-weekly 

         VI2_cap14: 

           forall(v in vcounter, f in fcounter, t in tcounter1 : 3<=v<=4 
&& 7<=f<=11) 

             sum( i in ccounter : t<=i<=End1[t]) x[i][v][f] <= End1[t] - 
t; 

              

        // cap 14, thrice-weekly 

        VI3_cap14: 

          forall(v in vcounter, f in fcounter, t in tcounter2 : 3<=v<=4 && 
12<=f<=16) 
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            sum(i in ccounter : t<=i<=End2[t]) x[i][v][f] <= End2[t] - t; 

             

       // cap 14, quad-weekly 

       VI4_cap14: 

         forall(v in vcounter, f in fcounter, t in tcounter2: 3<=v<=4 && 
17<=f<=21) 

           sum(i in ccounter : t<=i<=End2[t]) x[i][v][f] <= End2[t] - t; 

            

      // cap 20, weekly 

      VI1_cap20 : 

        forall( v in vcounter, f in fcounter, t in tcounter6: 1<=v<=2 && 
2<=f<=6) 

          sum(i in ccounter : t<=i<=End6[6]) x[i][v][f] <= End6[t] - t; 

           

     // cap 20, bi-weekly  

     VI2_cap20: 

       forall( v in vcounter, f in fcounter, t in tcounter4 : 1<=v<=2 && 
7<=f<=11) 

         sum( i in ccounter : t<=i<=End4[t]) x[i][v][f] <= End4[t] - t; 

          

    // cap 20, thrice-weekly 

    VI3_cap20: 

      forall( v in vcounter, f in fcounter, t in tcounter1: 1<=v<=2 && 
12<=f<=16) 

        sum(i in ccounter : t<=i<=End1[t]) x[i][v][f] <= End1[t] - t; 

         

   // cap 20, quad_weekly 

   VI4_cap20: 

     forall( v in vcounter, f in fcounter, t in tcounter2: 1<=v<=2 && 
17<=f<=21) 

       sum( i in ccounter : t<= i<= End2[t]) x[i][v][f] <= End2[t] - t; 
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   // cap 21, weekly 

   VI1_cap21: 

     forall( v in vcounter, f in fcounter, t in tcounter6: 3<=v<=4 && 
2<=f<=6) 

       sum( i in ccounter : t<=i<=End6_1[t]) x[i][v][f] <= End6_1[t] - t; 

        

  // cap 21, bi-weekly 

  VI2_cap21: 

    forall(  v in vcounter, f in fcounter, t in tcounter4: 3<=v<=4 && 
7<=f<=11 ) 

       sum( i in ccounter : t<=i<=End4[t]) x[i][v][f] <= End4[t] - t; 

        

  // cap 21, thrice_weekly 

  VI3_cap21: 

     forall(  v in vcounter, f in fcounter, t in tcounter1: 3<=v<=4 && 
12<=f<=16 ) 

       sum( i in ccounter : t<=i<=End1[t]) x[i][v][f] <= End1[t] - t;  

        

   // cap 21, quad_weekly 

  VI4_cap21: 

     forall(  v in vcounter, f in fcounter, t in tcounter2: 3<=v<=4 && 
17<=f<=21 ) 

       sum( i in ccounter : t<=i<=End2[t]) x[i][v][f] <= End2[t] - t;  

        

  // cap 27,weekly 

  VI1_cap27: 

     forall(  v in vcounter, f in fcounter, t in tcounter7: 1<=v<=2 && 
2<=f<=6 ) 

       sum( i in ccounter : t<=i<=End7[t]) x[i][v][f] <= End7[t] - t;  
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   // cap 27,bi-weekly 

  VI2_cap27: 

     forall(  v in vcounter, f in fcounter, t in tcounter5: 1<=v<=2 && 
7<=f<=11 ) 

       sum( i in ccounter : t<=i<=End5_1[t]) x[i][v][f] <= End5_1[t] - t;  

        

   // cap 27,thrice-weekly 

  VI3_cap27: 

     forall(  v in vcounter, f in fcounter, t in tcounter8: 1<=v<=2 && 
12<=f<=16 ) 

       sum( i in ccounter : t<=i<=End8[t]) x[i][v][f] <= End8[t] - t;  

        

  // cap 27,quad-weekly 

  VI4_cap27: 

     forall(  v in vcounter, f in fcounter, t in tcounter1: 1<=v<=2 && 
17<=f<=21) 

       sum( i in ccounter : t<=i<=End1[t]) x[i][v][f] <= End1[t] - t; 

        

        

       /* valid inequalities for 50% demand */  

        

    // cap 7, daily 

    VI1_cap7_50: 

    forall(v in vcounter, f in fcounter, t in tcounter8: 3<=v<=4 && f == 
1) 

      sum( i in ccounter: t<=i<=End8[t]) x[i][v][f] <= End8[t] - t; 

        

    // cap 7,weekly 

    VI2_cap7_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter2: 3<=v<=4 && 
2<=f<=6) 
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       sum( i in ccounter : t<=i<=End2[t]) x[i][v][f] <= End2[t] - t; 

        

   // cap 7,bi-weekly 

    VI3_cap7_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter3: 3<=v<=4 && 
7<=f<=11) 

       sum( i in ccounter : t<=i<=End3[t]) x[i][v][f] <= End3[t] - t; 

        

   // cap 7,thrice-weekly 

    VI4_cap7_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter10: 3<=v<=4 && 
12<=f<=16) 

       sum( i in ccounter : t<=i<=End10[t]) x[i][v][f] <= End10[t] - t; 

        

  // cap 7,quad-weekly 

    VI5_cap7_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter10: 3<=v<=4 && 
17<=f<=21) 

       sum( i in ccounter : t<=i<=End10[t]) x[i][v][f] <= End10[t] - t; 

        

  // cap 10,weekly 

    VI1_cap10_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter1: 1<=v<=2 && 
2<=f<=6) 

       sum( i in ccounter : t<=i<=End1[t]) x[i][v][f] <= End1[t] - t; 

        

  // cap 10,bi-weekly 

    VI2_cap10_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter3: 1<=v<=2 && 
7<=f<=11) 

       sum( i in ccounter : t<=i<=End3[t]) x[i][v][f] <= End3[t] - t; 
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  // cap 10,thrice-weekly 

    VI3_cap10_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter3: 1<=v<=2 && 
12<=f<=16) 

       sum( i in ccounter : t<=i<=End3[t]) x[i][v][f] <= End3[t] - t; 

        

  // cap 10,quad-weekly 

    VI4_cap10_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter3: 1<=v<=2 && 
17<=f<=21) 

       sum( i in ccounter : t<=i<=End3[t]) x[i][v][f] <= End3[t] - t; 

        

  // cap 14,weekly 

    VI1_cap14_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter8: 3<=v<=4 && 
2<=f<=6) 

       sum( i in ccounter : t<=i<=End8[t]) x[i][v][f] <= End8[t] - t; 

        

  

  // cap 14,bi-weekly 

    VI2_cap14_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter2: 3<=v<=4 && 
7<=f<=11) 

       sum( i in ccounter : t<=i<=End2[t]) x[i][v][f] <= End2[t] - t;      

       

  // cap 14,thrice-weekly 

    VI3_cap14_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter3: 3<=v<=4 && 
12<=f<=16) 

       sum( i in ccounter : t<=i<=End3[t]) x[i][v][f] <= End3[t] - t;  
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  // cap 14,quad-weekly 

    VI4_cap14_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter3: 3<=v<=4 && 
17<=f<=21) 

       sum( i in ccounter : t<=i<=End3[t]) x[i][v][f] <= End3[t] - t;  

        

  // cap 20,weekly 

    VI1_cap20_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter11: 1<=v<=2 && 
2<=f<=6) 

       sum( i in ccounter : t<=i<=End11[t]) x[i][v][f] <= End11[t] - t;  

        

  // cap 20,bi-weekly 

    VI2_cap20_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter1: 1<=v<=2 && 
7<=f<=11) 

       sum( i in ccounter : t<=i<=End1[t]) x[i][v][f] <= End1[t] - t; 

        

  // cap 20,thrice-weekly 

    VI3_cap20_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter2: 1<=v<=2 && 
12<=f<=16) 

       sum( i in ccounter : t<=i<=End2[t]) x[i][v][f] <= End2[t] - t;   

        

  // cap 20,quad-weekly 

    VI4_cap20_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter3: 1<=v<=2 && 
17<=f<=21) 

       sum( i in ccounter : t<=i<=End3[t]) x[i][v][f] <= End3[t] - t;  
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  // cap 21,weekly 

    VI1_cap21_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter5: 3<=v<=4 && 
2<=f<=6) 

       sum( i in ccounter : t<=i<=End5[t]) x[i][v][f] <= End5[t] - t;  

   

  // cap 21,bi-weekly 

    VI2_cap21_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter1: 3<=v<=4 && 
7<=f<=11) 

       sum( i in ccounter : t<=i<=End1[t]) x[i][v][f] <= End1[t] - t; 

        

  // cap 21,thrice-weekly 

    VI3_cap21_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter2: 3<=v<=4 && 
12<=f<=16) 

       sum( i in ccounter : t<=i<=End2[t]) x[i][v][f] <= End2[t] - t;  

        

  // cap 21,quad-weekly 

    VI4_cap21_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter2: 3<=v<=4 && 
17<=f<=21) 

       sum( i in ccounter : t<=i<=End2[t]) x[i][v][f] <= End2[t] - t; 

        

  // cap 27,weekly 

    VI1_cap27_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter11: 1<=v<=2 && 
2<=f<=6) 

       sum( i in ccounter : t<=i<=End11[t]) x[i][v][f] <= End11[t] - t; 

        

  // cap 27,bi-weekly 
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    VI2_cap27_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter8: 1<=v<=2 && 
7<=f<=11) 

       sum( i in ccounter : t<=i<=End8[t]) x[i][v][f] <= End8[t] - t; 

        

  // cap 27,thrice-weekly 

    VI3_cap27_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter1: 1<=v<=2 && 
12<=f<=16) 

       sum( i in ccounter : t<=i<=End1[t]) x[i][v][f] <= End1[t] - t; 

        

  // cap 27,quad-weekly 

    VI4_cap27_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter2: 1<=v<=2 && 
17<=f<=21) 

       sum( i in ccounter : t<=i<=End2[t]) x[i][v][f] <= End2[t] - t; 

        

    

   /*Extra cuts with double increement D*/ 

    

    // cap 7,weekly 

    VIE1_cap7: 

     forall(  v in vcounter, f in fcounter, t in tcounter11: 3<=v<=4 && 
2<=f<=6) 

       sum( i in ccounter : t<=i<=End11[t] && i == i+2) x[i][v][f] <=( 
End11[t] - t)/2; 

        

   // cap 7,bi-weekly 

    VIE2_cap7: 

     forall(  v in vcounter, f in fcounter, t in tcounter2: 3<=v<=4 && 
7<=f<=11) 
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       sum( i in ccounter : t<=i<=Ende2[t]) x[i][v][f] <=( Ende2[t] - 
t)/2; 

   

  // cap 7,thrice-weekly 

    VIE3_cap7: 

     forall(  v in vcounter, f in fcounter, t in tcounter2: 3<=v<=4 && 
12<=f<=16) 

       sum( i in ccounter : t<=i<=End2[t]) x[i][v][f] <=( End2[t] - t)/2; 

  

            

     // cap 7,quad-weekly 

    VIE4_cap7: 

     forall(  v in vcounter, f in fcounter, t in tcounter10: 3<=v<=4 && 
17<=f<=21) 

       sum( i in ccounter : t<=i<=Ende10[t]) x[i][v][f] <=( Ende10[t] - 
t)/2;  

        

     // cap 10,weekly 

    VIE1_cap10: 

     forall(  v in vcounter, f in fcounter, t in tcounter6: 1<=v<=2 && 
2<=f<=6) 

       sum( i in ccounter : t<=i<=Ende6[t]) x[i][v][f] <=( Ende6[t] - 
t)/2;       

        

     // cap 10,bi-weekly 

    VIE2_cap10: 

     forall(  v in vcounter, f in fcounter, t in tcounter8: 1<=v<=2 && 
7<=f<=11) 

       sum( i in ccounter : t<=i<=End8[t]) x[i][v][f] <=( End8[t] - t)/2;    

        

     // cap 10,thrice-weekly 

    VIE3_cap10: 
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     forall(  v in vcounter, f in fcounter, t in tcounter2: 1<=v<=2 && 
12<=f<=16) 

       sum( i in ccounter : t<=i<=End2[t]) x[i][v][f] <=( End2[t] - t)/2;            

        

     // cap 10,quad-weekly 

    VIE4_cap10: 

     forall(  v in vcounter, f in fcounter, t in tcounter2: 1<=v<=2 && 
17<=f<=21) 

       sum( i in ccounter : t<=i<=End2[t]) x[i][v][f] <=( End2[t] - t)/2; 

        

     // cap 14,weekly 

    VIE1_cap14: 

     forall(  v in vcounter, f in fcounter, t in tcounter13: 3<=v<=4 && 
2<=f<=6) 

       sum( i in ccounter : t<=i<=Ende13[t]) x[i][v][f] <=( Ende13[t] - 
t)/2;   

        

     // cap 14,bi-weekly 

    VIE2_cap14: 

     forall(  v in vcounter, f in fcounter, t in tcounter11: 3<=v<=4 && 
7<=f<=11) 

       sum( i in ccounter : t<=i<=End11[t]) x[i][v][f] <=( End11[t] - 
t)/2;     

        

    // cap 14,thrice-weekly 

    VIE3_cap14: 

     forall(  v in vcounter, f in fcounter, t in tcounter8: 3<=v<=4 && 
12<=f<=16) 

       sum( i in ccounter : t<=i<=End8[t]) x[i][v][f] <=( End8[t] - t)/2;                    

                                

     // cap 14,quad-weekly 

    VIE4_cap14: 
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     forall(  v in vcounter, f in fcounter, t in tcounter2: 3<=v<=4 && 
17<=f<=21) 

       sum( i in ccounter : t<=i<=End2[t]) x[i][v][f] <=( End2[t] - t)/2;   

        

      // cap 20,weekly 

    VIE1_cap20: 

     forall(  v in vcounter, f in fcounter, t in tcounter14: 1<=v<=2 && 
2<=f<=6) 

       sum( i in ccounter : t<=i<=Ende14[t]) x[i][v][f] <=( Ende14[t] - 
t)/2;  

        

     // cap 20,bi-weekly 

    VIE2_cap20: 

     forall(  v in vcounter, f in fcounter, t in tcounter6: 1<=v<=2 && 
7<=f<=11) 

       sum( i in ccounter : t<=i<=Ende6[t]) x[i][v][f] <=( Ende6[t] - 
t)/2;  

        

   // cap 20,thrice-weekly 

    VIE3_cap20: 

     forall(  v in vcounter, f in fcounter, t in tcounter11: 1<=v<=2 && 
12<=f<=16) 

       sum( i in ccounter : t<=i<=End11[t]) x[i][v][f] <=( End11[t] - 
t)/2; 

        

  // cap 20,thrice-weekly 

    VIE4_cap20: 

     forall(  v in vcounter, f in fcounter, t in tcounter8: 1<=v<=2 && 
17<=f<=21) 

       sum( i in ccounter : t<=i<=End8[t]) x[i][v][f] <=( End8[t] - t)/2; 

        

  // cap 21,bi-weekly 

   VIE1_cap21: 
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     forall(  v in vcounter, f in fcounter, t in tcounter6: 3<=v<=4 && 
7<=f<=11) 

       sum( i in ccounter : t<=i<=Ende6p[t]) x[i][v][f] <=( Ende6p[t] - 
t)/2; 

        

    // cap 21,thrice-weekly 

    VIE2_cap21: 

     forall(  v in vcounter, f in fcounter, t in tcounter11: 3<=v<=4 && 
12<=f<=16) 

       sum( i in ccounter : t<=i<=End11[t]) x[i][v][f] <=( End11[t] - 
t)/2; 

        

    // cap 21,quad-weekly 

    VIE3_cap21: 

     forall(  v in vcounter, f in fcounter, t in tcounter8: 3<=v<=4 && 
17<=f<=21) 

       sum( i in ccounter : t<=i<=End8[t]) x[i][v][f] <=( End8[t] - t)/2; 

        

     // cap 27,bi-weekly 

    VIE1_cap27: 

     forall(  v in vcounter, f in fcounter, t in tcounter15: 1<=v<=2 && 
7<=f<=11) 

       sum( i in ccounter : t<=i<=Ende15[t]) x[i][v][f] <=( Ende15[t] - 
t)/2; 

        

    // cap 27,thrice-weekly 

    VIE2_cap27: 

     forall(  v in vcounter, f in fcounter, t in tcounter16: 1<=v<=2 && 
12<=f<=16) 

       sum( i in ccounter : t<=i<=Ende16[t]) x[i][v][f] <=( Ende16[t] - 
t)/2; 

   

     // cap 27,quad-weekly 
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    VIE3_cap27: 

     forall(  v in vcounter, f in fcounter, t in tcounter11: 1<=v<=2 && 
17<=f<=21) 

       sum( i in ccounter : t<=i<=Ende11[t]) x[i][v][f] <=( Ende11[t] - 
t)/2; 

        

        

       /*Extra cuts with double increement 50D*/ 

        

    // cap 7,weekly 

    VIE1_cap7_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter8: 3<=v<=4 && 
2<=f<=6) 

       sum( i in ccounter : t<=i<=End8[t]) x[i][v][f] <=( End8[t] - t)/2; 

        

    // cap 7,bi-weekly 

    VIE2_cap7_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter2: 3<=v<=4 && 
7<=f<=11) 

       sum( i in ccounter : t<=i<=End2[t]) x[i][v][f] <=( End2[t] - t)/2; 

        

   // cap 7,thrice-weekly 

    VIE3_cap7_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter17: 3<=v<=4 && 
12<=f<=16) 

       sum( i in ccounter : t<=i<=Ende17[t]) x[i][v][f] <=( Ende17[t] - 
t)/2; 

        

    // cap 7,quad-weekly 

    VIE4_cap7_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter17: 3<=v<=4 && 
17<=f<=21) 
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       sum( i in ccounter : t<=i<=Ende17[t]) x[i][v][f] <=( Ende17[t] - 
t)/2; 

        

      // cap 10,weekly 

    VIE1_cap10_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter11: 1<=v<=2 && 
2<=f<=6) 

       sum( i in ccounter : t<=i<=Ende11p[t]) x[i][v][f] <=( Ende11p[t] - 
t)/2; 

        

    // cap 10,bi-weekly 

    VIE2_cap10_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter2: 1<=v<=2 && 
7<=f<=11) 

       sum( i in ccounter : t<=i<=End2[t]) x[i][v][f] <=( End2[t] - t)/2; 

        

         

    // cap 10,thrice-weekly 

    VIE3_cap10_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter2: 1<=v<=2 && 
12<=f<=16) 

       sum( i in ccounter : t<=i<=Ende2p[t]) x[i][v][f] <=( Ende2p[t] - 
t)/2; 

        

   // cap 10,quad-weekly 

    VIE4_cap10_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter10: 1<=v<=2 && 
12<=f<=16) 

       sum( i in ccounter : t<=i<=Ende10p[t]) x[i][v][f] <=( Ende10p[t] - 
t)/2; 

        

    // cap 14,weekly 

    VIE1_cap14_50: 
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     forall(  v in vcounter, f in fcounter, t in tcounter16: 3<=v<=4 && 
2<=f<=6) 

       sum( i in ccounter : t<=i<=End16[t]) x[i][v][f] <=( End16[t] - 
t)/2; 

        

    // cap 14,bi-weekly 

    VIE2_cap14_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter8: 3<=v<=4 && 
7<=f<=11) 

       sum( i in ccounter : t<=i<=End8[t]) x[i][v][f] <=( End8[t] - t)/2; 

        

    // cap 14,thrice-weekly 

    VIE3_cap14_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter2: 3<=v<=4 && 
12<=f<=16) 

       sum( i in ccounter : t<=i<=End2[t]) x[i][v][f] <=( End2[t] - t)/2; 

        

     // cap 14,quad-weekly 

    VIE4_cap14_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter2: 3<=v<=4 && 
17<=f<=21) 

       sum( i in ccounter : t<=i<=End2[t]) x[i][v][f] <=( End2[t] - t)/2; 

        

    // cap 20,weekly 

    VIE1_cap20_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter15: 1<=v<=2 && 
2<=f<=6) 

       sum( i in ccounter : t<=i<=Ende15p[t]) x[i][v][f] <=( Ende15p[t] - 
t)/2; 

        

    // cap 20,bi-weekly 

    VIE2_cap20_50: 
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     forall(  v in vcounter, f in fcounter, t in tcounter11: 1<=v<=2 && 
7<=f<=11) 

       sum( i in ccounter : t<=i<=Ende11p[t]) x[i][v][f] <=( Ende11p[t] - 
t)/2; 

        

    // cap 20,thrice-weekly 

    VIE3_cap20_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter8: 1<=v<=2 && 
12<=f<=16) 

       sum( i in ccounter : t<=i<=Ende8[t]) x[i][v][f] <=( Ende8[t] - 
t)/2; 

        

    // cap 20,quad-weekly 

    VIE4_cap20_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter2: 1<=v<=2 && 
17<=f<=21) 

       sum( i in ccounter : t<=i<=End2[t]) x[i][v][f] <=( End2[t] - t)/2; 

        

     // cap 21,weekly 

    VIE1_cap21_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter13: 3<=v<=4 && 
2<=f<=6) 

       sum( i in ccounter : t<=i<=Ende13p[t]) x[i][v][f] <=( Ende13p[t] - 
t)/2; 

        

    // cap 21,bi-weekly 

    VIE2_cap21_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter11: 3<=v<=4 && 
7<=f<=11) 

       sum( i in ccounter : t<=i<=End11[t]) x[i][v][f] <=( End11[t] - 
t)/2; 

        

     // cap 21,thrice-weekly 
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    VIE3_cap21_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter8: 3<=v<=4 && 
12<=f<=16) 

       sum( i in ccounter : t<=i<=End8[t]) x[i][v][f] <=( End8[t] - t)/2; 

        

    // cap 21,quad-weekly 

    VIE4_cap21_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter2: 3<=v<=4 && 
17<=f<=21) 

       sum( i in ccounter : t<=i<=Ende2pr[t]) x[i][v][f] <=( Ende2pr[t] - 
t)/2; 

        

   // cap 27,weekly 

    VIE1_cap27_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter18: 1<=v<=2 && 
2<=f<=6) 

       sum( i in ccounter : t<=i<=Ende18[t]) x[i][v][f] <=( Ende18[t] - 
t)/2; 

        

   // cap 27,bi-weekly 

    VIE2_cap27_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter16: 1<=v<=2 && 
7<=f<=11) 

       sum( i in ccounter : t<=i<=Ende16[t]) x[i][v][f] <=( Ende16[t] - 
t)/2; 

      

     // cap 27,thrice-weekly 

    VIE3_cap27_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter11: 1<=v<=2 && 
12<=f<=16) 

       sum( i in ccounter : t<=i<=Ende11pr[t]) x[i][v][f] <=( Ende11pr[t] 
- t)/2; 
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    // cap 27,quad-weekly 

    VIE4_cap27_50: 

     forall(  v in vcounter, f in fcounter, t in tcounter8: 1<=v<=2 && 
17<=f<=21) 

       sum( i in ccounter : t<=i<=Ende8[t]) x[i][v][f] <=( Ende8[t] - 
t)/2; 

        

        

       /* Rnadom covers, D*/ 

        

       //cap7 

       forall( v in vcounter, f in fcounter, p in pcounter1 : f ==2 && 
3<=v<=4) 

         sum(i in ccounter, q in qcounter1 : i == RndCov7_f2[p][q]) 
x[i][v][f] <= 3; 

          

       forall( v in vcounter, f in fcounter, p in pcounter2 : f ==3 && 
3<=v<=4) 

         sum(i in ccounter, q in qcounter1 : i == RndCov7_f3[p][q]) 
x[i][v][f] <= 3; 

          

       forall( v in vcounter, f in fcounter, p in pcounter2 : f ==4 && 
3<=v<=4) 

         sum(i in ccounter, q in qcounter1 : i == RndCov7_f4[p][q]) 
x[i][v][f] <= 3; 

          

       forall( v in vcounter, f in fcounter, p in pcounter1 : f ==5 && 
3<=v<=4) 

         sum(i in ccounter, q in qcounter1 : i == RndCov7_f5[p][q]) 
x[i][v][f] <= 3; 

          

       forall( v in vcounter, f in fcounter, p in pcounter2 : f ==6 && 
3<=v<=4) 

         sum(i in ccounter, q in qcounter1 : i == RndCov7_f6[p][q]) 
x[i][v][f] <= 3; 
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       forall( v in vcounter, f in fcounter, p in pcounter3 : f ==7 && 
3<=v<=4 &&  p!= 31 ) 

         sum(i in ccounter, q in qcounter2 : i == RndCov7_f7[p][q]) 
x[i][v][f] <= 1; 

       forall( v in vcounter, f in fcounter, p in pcounter3 : f ==7 && 
3<=v<=4 && p== 31) 

         sum(i in ccounter, q in qcounter2 : i == RndCov7_f7[p][q]) 
x[i][v][f] <= 2; 

          

       forall( v in vcounter, f in fcounter, p in pcounter4 : f ==8 && 
3<=v<=4 && p != 11) 

         sum(i in ccounter, q in qcounter2 : i == RndCov7_f8[p][q]) 
x[i][v][f] <= 1; 

       forall( v in vcounter, f in fcounter, p in pcounter4 : f ==8 && 
3<=v<=4 && p4== 11 ) 

         sum(i in ccounter, q in pcounter2 : i == RndCov7_f8[p][q]) 
x[i][v][f] <= 2; 

          

       forall( v in vcounter, f in fcounter, p in pcounter5 : f ==9 && 
3<=v<=4 && p!= 3 && p != 13) 

         sum(i in ccounter, q in qcounter2 : i == RndCov7_f9[p][q]) 
x[i][v][f] <= 1; 

       forall( v in vcounter, f in fcounter, p in pcounter5 : f ==9 && 
3<=v<=4 && p == 3 && p ==13) 

         sum(i in ccounter, q in qcounter2 : i == RndCov7_f9[p][q]) 
x[i][v][f] <= 2; 

          

       forall( v in vcounter, f in fcounter, p in pcounter6 : f ==10 && 
3<=v<=4) 

         sum(i in ccounter,q in qcounter3 : i == RndCov7_f10[p][q]) 
x[i][v][f] <= 1; 

          

          

         //cap10 
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       forall( v in vcounter, f in fcounter, p in pcounter7 : f ==2 && 
1<=v<=2 && p != 1 ) 

         sum(i in ccounter, q in qcounter4 : i == RndCov10_f2[p][q]) 
x[i][v][f] <= 5; 

       forall( v in vcounter, f in fcounter, p in pcounter7 : f ==2 && 
1<=v<=2 && p == 1 ) 

         sum(i in ccounter, q in qcounter4 : i == RndCov10_f2[p][q]) 
x[i][v][f] <= 4; 

          

       forall( v in vcounter, f in fcounter, p in pcounter7 : f ==3 && 
1<=v<=2 && p!= 1) 

         sum(i in ccounter, q in qcounter4 : i == RndCov10_f3[p][q]) 
x[i][v][f] <= 5; 

       forall( v in vcounter, f in fcounter, p in pcounter7 : f ==3 && 
1<=v<=2 && p== 1) 

         sum(i in ccounter, q in qcounter4 : i == RndCov10_f3[p][q]) 
x[i][v][f] <= 4; 

          

       forall( v in vcounter, f in fcounter, p in pcounter7 : f ==4 && 
1<=v<=2 && p!= 3 && p!=5 && p!=6) 

         sum(i in ccounter, q in qcounter4 : i == RndCov10_f4[p][q]) 
x[i][v][f] <= 5; 

       forall( v in vcounter, f in fcounter, p in pcounter7 : f ==4 && 
1<=v<=2 && p== 3 && p==5 && p==6) 

         sum(i in ccounter, q in qcounter4 : i == RndCov10_f4[p][q]) 
x[i][v][f] <= 4; 

          

       forall( v in vcounter, f in fcounter, p in pcounter7 : f ==5 && 
1<=v<=2 && p!= 1 && p!=3 && p!=6) 

         sum(i in ccounter, q in qcounter4 : i == RndCov10_f5[p][q]) 
x[i][v][f] <= 5; 

       forall( v in vcounter, f in fcounter, p in pcounter7 : f ==5 && 
1<=v<=2 && p== 1 && p==3 && p==6) 

         sum(i in ccounter, q in qcounter4 : i == RndCov10_f5[p][q]) 
x[i][v][f] <= 4; 
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      forall( v in vcounter, f in fcounter, p in pcounter7 : f ==6 && 
1<=v<=2 && p!= 1 && p!=3 && p!=6 && p!=5) 

         sum(i in ccounter, q in qcounter4 : i == RndCov10_f6[p][q]) 
x[i][v][f] <= 5; 

      forall( v in vcounter, f in fcounter, p in pcounter7 : f ==6 && 
1<=v<=2 && p== 1 && p==3 && p==6 && p==5) 

         sum(i in ccounter, q in qcounter4 : i == RndCov10_f6[p][q]) 
x[i][v][f] <= 4; 

          

      forall( v in vcounter, f in fcounter, p in pcounter4 : f ==7 && 
1<=v<=2) 

         sum(i in ccounter,q in qcounter2 : i == RndCov10_f7[p][q]) 
x[i][v][f] <= 2; 

          

      forall( v in vcounter, f in fcounter, p in pcounter4 : f ==8 && 
1<=v<=2) 

         sum(i in ccounter,q in qcounter2 : i == RndCov10_f8[p][q]) 
x[i][v][f] <= 2; 

          

      forall( v in vcounter, f in fcounter, p in pcounter4 : f ==9 && 
1<=v<=2) 

         sum(i in ccounter,q in qcounter2 : i == RndCov10_f9[p][q]) 
x[i][v][f] <= 2; 

          

      forall( v in vcounter, f in fcounter, p in pcounter4 : f ==10 && 
1<=v<=2) 

         sum(i in ccounter,q in qcounter2 : i == RndCov10_f10[p][q]) 
x[i][v][f] <= 2; 

          

      forall( v in vcounter, f in fcounter, p in pcounter4 : f ==11 && 
1<=v<=2) 

         sum(i in ccounter,q in qcounter2 : i == RndCov10_f11[p][q]) 
x[i][v][f] <= 2; 

          

      forall( v in vcounter, f in fcounter, p in pcounter2 : f ==12 && 
1<=v<=2) 
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         sum(i in ccounter,q in qcounter3 : i == RndCov10_f12[p][q]) 
x[i][v][f] <= 1; 

          

     //cap14 

      

      forall( v in vcounter, f in fcounter, p in pcounter8 : f ==2 && 
3<=v<=4 && p!= 2) 

         sum(i in ccounter, q in qcounter5 : i == RndCov14_f2[p][q]) 
x[i][v][f] <= 7; 

      forall( v in vcounter, f in fcounter, p in pcounter8 : f ==2 && 
3<=v<=4 && p== 2) 

         sum(i in ccounter, q in qcounter5 : i == RndCov14_f2[p][q]) 
x[i][v][f] <= 6;  

          

      forall( v in vcounter, f in fcounter, p in pcounter8 : f ==3 && 
3<=v<=4 && p!= 1 && p!=3) 

         sum(i in ccounter, q in qcounter5 : i == RndCov14_f3[p][q]) 
x[i][v][f] <= 7; 

      forall( v in vcounter, f in fcounter, p in pcounter8 : f ==3 && 
3<=v<=4 && p== 1 && p==3) 

         sum(i in ccounter, q in qcounter5 : i == RndCov14_f3[p][q]) 
x[i][v][f] <= 6;   

          

     forall( v in vcounter, f in fcounter, p in pcounter8 : f ==4 && 
3<=v<=4 && p!= 2) 

         sum(i in ccounter, q in qcounter5 : i == RndCov14_f4[p][q]) 
x[i][v][f] <= 7; 

     forall( v in vcounter, f in fcounter, p in pcounter8 : f ==4 && 
3<=v<=4 && p== 2) 

         sum(i in ccounter, q in qcounter5 : i == RndCov14_f4[p][q]) 
x[i][v][f] <= 6;   

          

             

     forall( v in vcounter, f in fcounter, p in pcounter8 : f ==5 && 
3<=v<=4 && p!= 2) 
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         sum(i in ccounter, q in qcounter5 : i == RndCov14_f5[p][q]) 
x[i][v][f] <= 7; 

     forall( v in vcounter, f in fcounter, p in pcounter8 : f ==5 && 
3<=v<=4 && p== 2) 

         sum(i in ccounter, q in qcounter5 : i == RndCov14_f5[p][q]) 
x[i][v][f] <= 6;  

          

                 

     forall( v in vcounter, f in fcounter, p in pcounter8 : f ==6 && 
3<=v<=4 && p!= 4) 

         sum(i in ccounter, q in qcounter5 : i == RndCov14_f6[p][q]) 
x[i][v][f] <= 7; 

     forall( v in vcounter, f in fcounter, p in pcounter8 : f ==6 && 
3<=v<=4 && p== 4) 

         sum(i in ccounter, q in qcounter5 : i == RndCov14_f6[p][q]) 
x[i][v][f] <= 6; 

            

            

    forall( v in vcounter, f in fcounter, p in pcounter2 : f ==7 && 
3<=v<=4) 

         sum(i in ccounter,q in qcounter1 : i == RndCov14_f7[p][q]) 
x[i][v][f] <= 3; 

          

    forall( v in vcounter, f in fcounter, p in pcounter2 : f ==8 && 
3<=v<=4) 

         sum(i in ccounter,q in qcounter1 : i == RndCov14_f8[p][q]) 
x[i][v][f] <= 3; 

      

    forall( v in vcounter, f in fcounter, p in pcounter2 : f ==9 && 
3<=v<=4) 

         sum(i in ccounter,q in qcounter1 : i == RndCov14_f9[p][q]) 
x[i][v][f] <= 3; 

          

    forall( v in vcounter, f in fcounter, p in pcounter2 : f ==10 && 
3<=v<=4) 
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         sum(i in ccounter,q in qcounter1 : i == RndCov14_f10[p][q]) 
x[i][v][f] <= 3; 

          

    forall( v in vcounter, f in fcounter, p in pcounter2 : f ==11 && 
3<=v<=4) 

         sum(i in ccounter,q in qcounter1 : i == RndCov14_f11[p][q]) 
x[i][v][f] <= 3; 

          

       forall( v in vcounter, f in fcounter, p in pcounter4 : f ==12 && 
3<=v<=4) 

         sum(i in ccounter,q in qcounter2 : i == RndCov14_f12[p][q]) 
x[i][v][f] <= 2; 

          

   forall( v in vcounter, f in fcounter, p in pcounter4 : f ==13 && 
3<=v<=4) 

         sum(i in ccounter,q in qcounter2 : i == RndCov14_f13[p][q]) 
x[i][v][f] <= 2; 

          

   forall( v in vcounter, f in fcounter, p in pcounter7 : f ==14 && 
3<=v<=4) 

         sum(i in ccounter,q in qcounter2 : i == RndCov14_f14[p][q]) 
x[i][v][f] <= 2; 

          

          

         //cap20 

    

   forall( v in vcounter, f in fcounter, p in pcounter9 : f ==2 && 
1<=v<=2) 

         sum(i in ccounter,q in qcounter6 : i == RndCov20_f2[p][q]) 
x[i][v][f] <= 9; 

          

   forall( v in vcounter, f in fcounter, p in pcounter9 : f ==3 && 
1<=v<=2) 

         sum(i in ccounter,q in qcounter7 : i == RndCov20_f3[p][q]) 
x[i][v][f] <= 10; 
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   forall( v in vcounter, f in fcounter, p in pcounter9 : f ==4 && 
1<=v<=2) 

         sum(i in ccounter,q in qcounter7 : i == RndCov20_f4[p][q]) 
x[i][v][f] <= 10; 

          

   forall( v in vcounter, f in fcounter, p in pcounter9 : f ==5 && 
1<=v<=2) 

         sum(i in ccounter,q in qcounter7 : i == RndCov20_f5[p][q]) 
x[i][v][f] <= 10; 

          

  forall( v in vcounter, f in fcounter, p in pcounter9 : f ==6 && 1<=v<=2) 

         sum(i in ccounter,q in qcounter7 : i == RndCov20_f6[p][q]) 
x[i][v][f] <= 10; 

          

  forall( v in vcounter, f in fcounter, p in pcounter7 : f ==7 && 1<=v<=2 
&& p!=3 && p!=4) 

         sum(i in ccounter,q in qcounter4 : i == RndCov20_f7[p][q]) 
x[i][v][f] <= 5; 

  forall( v in vcounter, f in fcounter, p in pcounter7 : f ==7 && 1<=v<=2 
&& p==3 && p==4) 

         sum(i in ccounter,q in qcounter4 : i == RndCov20_f7[p][q]) 
x[i][v][f] <= 4; 

          

  forall( v in vcounter, f in fcounter, p in pcounter7 : f ==8 && 
1<=v<=2&& p!=1 && p!=5) 

         sum(i in ccounter,q in qcounter4 : i == RndCov20_f8[p][q]) 
x[i][v][f] <= 5; 

 forall( v in vcounter, f in fcounter, p in pcounter7 : f ==8 && 1<=v<=2&& 
p==1 && p==5) 

         sum(i in ccounter,q in qcounter4 : i == RndCov20_f8[p][q]) 
x[i][v][f] <= 4; 

          

  forall( v in vcounter, f in fcounter, p in pcounter7 : f ==9 && 1<=v<=2 
&& p!=4 && p!=5 && p!=6) 
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         sum(i in ccounter,q in qcounter4 : i == RndCov20_f9[p][q]) 
x[i][v][f] <= 5; 

  forall( v in vcounter, f in fcounter, p in pcounter7 : f ==9 && 1<=v<=2 
&& p==4 && p==5 && p==6) 

         sum(i in ccounter,q in qcounter4 : i == RndCov20_f9[p][q]) 
x[i][v][f] <= 4; 

          

  forall( v in vcounter, f in fcounter, p in pcounter7 : f ==10 && 
1<=v<=2&& p!=3 && p!=5) 

         sum(i in ccounter,q in qcounter4 : i == RndCov20_f10[p][q]) 
x[i][v][f] <= 5; 

  forall( v in vcounter, f in fcounter, p in pcounter7 : f ==10 && 
1<=v<=2&& p==3 && p==5) 

         sum(i in ccounter,q in qcounter4 : i == RndCov20_f10[p][q]) 
x[i][v][f] <= 4; 

          

  forall( v in vcounter, f in fcounter, p in pcounter7 : f ==11 && 1<=v<=2 
&& p!=3 && p!=5) 

         sum(i in ccounter,q in qcounter4 : i == RndCov20_f11[p][q]) 
x[i][v][f] <= 5; 

  forall( v in vcounter, f in fcounter, p in pcounter7 : f ==11 && 
1<=v<=2&& p==3 && p==5) 

         sum(i in ccounter,q in qcounter4 : i == RndCov20_f11[p][q]) 
x[i][v][f] <= 4; 

          

  forall( v in vcounter, f in fcounter, p in pcounter2 : f ==12 && 1<=v<=2 
&& p!=9) 

         sum(i in ccounter,q in qcounter1 : i == RndCov20_f12[p][q]) 
x[i][v][f] <= 3; 

  forall( v in vcounter, f in fcounter, p in pcounter2 : f ==12 && 1<=v<=2 
&& p==9) 

         sum(i in ccounter,q in qcounter1 : i == RndCov20_f12[p][q]) 
x[i][v][f] <= 2; 

          

  forall( v in vcounter, f in fcounter, p in pcounter2 : f ==13 && 
1<=v<=2) 
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         sum(i in ccounter,q in qcounter1 : i == RndCov20_f13[p][q]) 
x[i][v][f] <= 3; 

          

  forall( v in vcounter, f in fcounter, p in pcounter2 : f ==14 && 
1<=v<=2) 

         sum(i in ccounter,q in qcounter1 : i == RndCov20_f14[p][q]) 
x[i][v][f] <= 3; 

          

  forall( v in vcounter, f in fcounter, p in pcounter2 : f ==15 && 
1<=v<=2) 

         sum(i in ccounter,q in qcounter1 : i == RndCov20_f15[p][q]) 
x[i][v][f] <= 3; 

          

  forall( v in vcounter, f in fcounter, p in pcounter2 : f ==16 && 
1<=v<=2) 

         sum(i in ccounter,q in qcounter1 : i == RndCov20_f16[p][q]) 
x[i][v][f] <= 3; 

          

  forall( v in vcounter, f in fcounter, p in pcounter6 : f ==17 && 
1<=v<=2) 

         sum(i in ccounter,q in qcounter2 : i == RndCov20_f17[p][q]) 
x[i][v][f] <= 2; 

          

    

   //cap21 

     

    forall( v in vcounter, f in fcounter, p in pcounter9 : 2<=f<=6 && 
3<=v<=4){ 

         sum(i in ccounter,q in qcounter7 : i == RndCov21_f2[p][q]) 
x[i][v][2] <= q7-1;   

         sum(i in ccounter,q in qcounter7 : i == RndCov21_f3[p][q]) 
x[i][v][3] <= q7-1;  

         sum(i in ccounter,q in qcounter7 : i == RndCov21_f4[p][q]) 
x[i][v][4] <= q7-1;  

         sum(i in ccounter,q in qcounter7 : i == RndCov21_f5[p][q]) 
x[i][v][5] <= q7-1;  
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         sum(i in ccounter,q in qcounter7 : i == RndCov21_f6[p][q]) 
x[i][v][6] <= q7-1;   

       } 

        

    forall( v in vcounter, f in fcounter, p in pcounter7 : 7<=f<=11 && 
3<=v<=4){ 

         sum(i in ccounter,q in qcounter4 : i == RndCov21_f7[p][q]) 
x[i][v][7] <= q4-1;   

         sum(i in ccounter,q in qcounter4 : i == RndCov21_f8[p][q]) 
x[i][v][8] <= q4-1;  

         sum(i in ccounter,q in qcounter4 : i == RndCov21_f11[p][q]) 
x[i][v][11] <= q4-1;   

       } 

        

    forall( v in vcounter, f in fcounter, p in pcounter7 : f == 9 && 
3<=v<=4 && p!=4) 

        sum(i in ccounter,q in qcounter4 : i == RndCov21_f9[p][q]) 
x[i][v][f] <= q4-1; 

    forall( v in vcounter, f in fcounter, p in pcounter7 : f == 9 && 
3<=v<=4 && p==4) 

        sum(i in ccounter,q in qcounter4 : i == RndCov21_f9[p][q]) 
x[i][v][f] <= q4-2; 

        

    forall( v in vcounter, f in fcounter, p in pcounter7 : f == 10 && 
3<=v<=4 && p!=5) 

        sum(i in ccounter,q in qcounter4 : i == RndCov21_f10[p][q]) 
x[i][v][f] <= q4-1; 

    forall( v in vcounter, f in fcounter, p in pcounter7 : f == 10 && 
3<=v<=4 && p==5) 

        sum(i in ccounter,q in qcounter4 : i == RndCov21_f10[p][q]) 
x[i][v][f] <= q4-2; 

         

         

    forall( v in vcounter, f in fcounter, p in pcounter2 : 12<=f<=16 && 
3<=v<=4 && f !=15){ 
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         sum(i in ccounter,q in qcounter1 : i == RndCov21_f12[p][q]) 
x[i][v][12] <= q1-1;   

         sum(i in ccounter,q in qcounter1 : i == RndCov21_f13[p][q]) 
x[i][v][13] <= q1-1;  

         sum(i in ccounter,q in qcounter1 : i == RndCov21_f14[p][q]) 
x[i][v][14] <= q1-1;  

         sum(i in ccounter,q in qcounter1 : i == RndCov21_f16[p][q]) 
x[i][v][16] <= q1-1;   

       } 

    forall( v in vcounter, f in fcounter, p in pcounter1 : f == 15 && 
3<=v<=4) 

         sum(i in ccounter,q in qcounter1 : i == RndCov21_f15[p][q]) 
x[i][v][15] <= q1-1;  

        

    forall( v in vcounter, f in fcounter, p in pcounter10 : f ==17 && 
3<=v<=4) 

         sum(i in ccounter,q in qcounter2 : i == RndCov21_f17[p][q]) 
x[i][v][f] <= q2-1; 

          

          

    //cap27 

     

     forall( v in vcounter, f in fcounter, p in pcounter9 : 2<=f<=6 && 
1<=v<=2){ 

         sum(i in ccounter,q in qcounter8 : i == RndCov27_f2[p][q]) 
x[i][v][2] <= q8-1;   

         sum(i in ccounter,q in qcounter8 : i == RndCov27_f3[p][q]) 
x[i][v][3] <= q8-1;  

         sum(i in ccounter,q in qcounter8 : i == RndCov27_f4[p][q]) 
x[i][v][4] <= q8-1;  

         sum(i in ccounter,q in qcounter8 : i == RndCov27_f5[p][q]) 
x[i][v][5] <= q8-1;  

         sum(i in ccounter,q in qcounter8 : i == RndCov27_f6[p][q]) 
x[i][v][6] <= q8-1;   

       } 
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    /* Random covers for 50D*/ 

     

    //cap7 

      forall( v in vcounter, f in fcounter, p in pcounter9 : f ==1 && 
3<=v<=4) 

         sum(i in ccounter,q in qcounter11 : i == RndCov7_f1_50[p][q]) 
x[i][v][f] <= q11-1;     

          

      forall( v in vcounter, f in fcounter, p in pcounter10 : 2<=f<=6 && 
3<=v<=4 && f !=3 && f !=5){ 

         sum(i in ccounter,q in qcounter2 : i == RndCov7_f2_50[p][q]) 
x[i][v][2] <= q2-1; 

         sum(i in ccounter,q in qcounter2 : i == RndCov7_f4_50[p][q]) 
x[i][v][4] <= q2-1;   

         sum(i in ccounter,q in qcounter2 : i == RndCov7_f6_50[p][q]) 
x[i][v][6] <= q2-1;     

       }   

         

     forall( v in vcounter, f in fcounter, p in pcounter4 :  3<=v<=4 && f 
== 3 && f == 5){ 

        sum(i in ccounter,q in qcounter2 : i == RndCov7_f3_50[p][q]) 
x[i][v][3] <= q2-1; 

        sum(i in ccounter,q in qcounter2 : i == RndCov7_f5_50[p][q]) 
x[i][v][5] <= q2-1; 

      }         

        

     forall( v in vcounter, f in fcounter, p in pcounter14 : f ==7 && 
3<=v<=4 && 1<=p<=6) 

         sum(i in ccounter,q in qcounter2 : i == RndCov7_f7_50[p][q]) 
x[i][v][f] <= q2-1;  

     forall( v in vcounter, f in fcounter, p in pcounter14 : f ==7 && 
3<=v<=4 && p>=7) 

         sum(i in ccounter,q in qcounter2 : i == RndCov7_f7_50[p][q]) 
x[i][v][f] <= q3-1;     
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     forall( v in vcounter, f in fcounter, p in pcounter15 : f ==8 && 
3<=v<=4) 

         sum(i in ccounter,q in qcounter3 : i == RndCov7_f8_50[p][q]) 
x[i][v][f] <= q3-1;    

          

    forall( v in vcounter, f in fcounter, p in pcounter8 : f ==9 && 
3<=v<=4) 

         sum(i in ccounter,q in qcounter3 : i == RndCov7_f9_50[p][q]) 
x[i][v][f] <= q3-1;   

          

     //cap10     

    forall( v in vcounter, f in fcounter, p in pcounter2 : 2<=f<=6 && 
1<=v<=2 && f != 5){ 

         sum(i in ccounter,q in qcounter1 : i == RndCov10_f2_50[p][q]) 
x[i][v][2] <= q1-1;    

         sum(i in ccounter,q in qcounter1 : i == RndCov10_f3_50[p][q]) 
x[i][v][3] <= q1-1; 

         sum(i in ccounter,q in qcounter1 : i == RndCov10_f4_50[p][q]) 
x[i][v][4] <= q1-1; 

         sum(i in ccounter,q in qcounter1 : i == RndCov10_f6_50[p][q]) 
x[i][v][6] <= q1-1; 

    } 

     forall( v in vcounter, f in fcounter, p in pcounter1 : 1<=v<=2 && f 
== 5) 

         sum(i in ccounter,q in qcounter1 : i == RndCov10_f5_50[p][q]) 
x[i][v][5] <= q1-1; 

     

     forall( v in vcounter, f in fcounter, p in pcounter16 : f ==7 && 
1<=v<=2) 

         sum(i in ccounter,q in qcounter3 : i == RndCov10_f7_50[p][q]) 
x[i][v][f] <= q3-1;  

          

     forall( v in vcounter, f in fcounter, p in pcounter17 : f ==8 && 
1<=v<=2) 

         sum(i in ccounter,q in qcounter3 : i == RndCov10_f8_50[p][q]) 
x[i][v][f] <= q3-1; 



 

128 

 

          

     forall( v in vcounter, f in fcounter, p in pcounter18 : f ==9 && 
1<=v<=2) 

         sum(i in ccounter,q in qcounter3 : i == RndCov10_f9_50[p][q]) 
x[i][v][f] <= q3-1; 

          

     forall( v in vcounter, f in fcounter, p in pcounter9 : f ==10 && 
1<=v<=2) 

         sum(i in ccounter,q in qcounter3 : i == RndCov10_f10_50[p][q]) 
x[i][v][f] <= q3-1; 

           

     //cap14 

               

     forall( v in vcounter, f in fcounter, p in pcounter11 : 2<=f<=6 && f 
!=4 && f!=6 && 3<=v<=4){ 

         sum(i in ccounter,q in qcounter10 : i == RndCov14_f2_50[p][q]) 
x[i][v][2] <= q10-1; 

         sum(i in ccounter,q in qcounter10 : i == RndCov14_f3_50[p][q]) 
x[i][v][3] <= q10-1; 

         sum(i in ccounter,q in qcounter10 : i == RndCov14_f5_50[p][q]) 
x[i][v][5] <= q10-1; 

       } 

        

      forall( v in vcounter, f in fcounter, p in pcounter6 :  f ==4 && 
f==6 && 3<=v<=4){ 

         sum(i in ccounter,q in qcounter4 : i == RndCov14_f4_50[p][q]) 
x[i][v][4] <= q4-1;   

         sum(i in ccounter,q in qcounter4 : i == RndCov14_f6_50[p][q]) 
x[i][v][6] <= q4-1;         

             }   

               

    forall( v in vcounter, f in fcounter, p in pcounter4 :  7<=f<=11 && 
3<=v<=4 && f != 11){ 

         sum(i in ccounter,q in qcounter2 : i == RndCov14_f7_50[p][q]) 
x[i][v][7] <= q2-1;    
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         sum(i in ccounter,q in qcounter2 : i == RndCov14_f8_50[p][q]) 
x[i][v][8] <= q2-1; 

         sum(i in ccounter,q in qcounter2 : i == RndCov14_f9_50[p][q]) 
x[i][v][9] <= q2-1; 

         sum(i in ccounter,q in qcounter2 : i == RndCov14_f10_50[p][q]) 
x[i][v][10] <= q2-1;     

         }   

          

    forall( v in vcounter, f in fcounter, p in pcounter10 :  3<=v<=4 && f 
== 11)   

        sum(i in ccounter,q in qcounter2 : i == RndCov14_f11_50[p][q]) 
x[i][v][11] <= q2-1;     

            

    forall( v in vcounter, f in fcounter, p in pcounter19 : f==12 && 
3<=v<=4) 

         sum(i in ccounter,q in qcounter3 : i == RndCov14_f12_50[p][q]) 
x[i][v][7] <= q3-1;   

          

    //cap20 

    forall( v in vcounter, f in fcounter, p in pcounter8 :  2<=f<=3 && 
1<=v<=2){ 

         sum(i in ccounter,q in qcounter9 : i == RndCov20_f2_50[p][q]) 
x[i][v][2] <= q9-1; 

         sum(i in ccounter,q in qcounter9 : i == RndCov20_f3_50[p][q]) 
x[i][v][3] <= q9-1;   

      } 

      forall( v in vcounter, f in fcounter, p in pcounter8 :  4<=f<=6 && 
1<=v<=2){ 

         sum(i in ccounter,q in qcounter5 : i == RndCov20_f4_50[p][q]) 
x[i][v][4] <= q5-1;          

         sum(i in ccounter,q in qcounter5 : i == RndCov20_f5_50[p][q]) 
x[i][v][5] <= q5-1;     

         sum(i in ccounter,q in qcounter5 : i == RndCov20_f6_50[p][q]) 
x[i][v][6] <= q5-1;  

         }   
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    forall( v in vcounter, f in fcounter, p in pcounter2 :  7<=f<=11 && 
1<=v<=2){ 

         sum(i in ccounter,q in qcounter1 : i == RndCov20_f7_50[p][q]) 
x[i][v][7] <= q1-1; 

         sum(i in ccounter,q in qcounter1 : i == RndCov20_f8_50[p][q]) 
x[i][v][8] <= q1-1; 

         sum(i in ccounter,q in qcounter1 : i == RndCov20_f9_50[p][q]) 
x[i][v][9] <= q1-1; 

         sum(i in ccounter,q in qcounter1 : i == RndCov20_f10_50[p][q]) 
x[i][v][10] <= q1-1; 

         sum(i in ccounter,q in qcounter1 : i == RndCov20_f11_50[p][q]) 
x[i][v][11] <= q1-1;   

      } 

      forall( v in vcounter, f in fcounter, p in pcounter4 :  12<=f<=13 && 
1<=v<=2){ 

         sum(i in ccounter,q in qcounter2 : i == RndCov20_f12_50[p][q]) 
x[i][v][12] <= q2-1; 

         sum(i in ccounter,q in qcounter2 : i == RndCov20_f13_50[p][q]) 
x[i][v][13] <= q2-1; 

      } 

      forall( v in vcounter, f in fcounter, p in pcounter20 :  f == 14 && 
1<=v<=2) 

         sum(i in ccounter,q in qcounter2 : i == RndCov20_f14_50[p][q]) 
x[i][v][14] <= q2-1;  

        

        

    //cap21 

     forall( v in vcounter, f in fcounter, p in pcounter8 : f==2 && 
3<=v<=4 && p!=4) 

         sum(i in ccounter,q in qcounter5 : i == RndCov21_f2_50[p][q]) 
x[i][v][2] <= q5-1; 

     forall( v in vcounter, f in fcounter, p in pcounter8 : f==2 && 
3<=v<=4 && p==4) 

         sum(i in ccounter,q in qcounter5 : i == RndCov21_f2_50[p][q]) 
x[i][v][2] <= q9-1;      
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     forall( v in vcounter, f in fcounter, p in pcounter8 :  f == 3 && 
3<=v<=4 && p!=2 && p!=3)   

         sum(i in ccounter,q in qcounter5 : i == RndCov21_f3_50[p][q]) 
x[i][v][3] <= q5-1; 

     forall( v in vcounter, f in fcounter, p in pcounter8 : f == 3 && 
3<=v<=4 && p==2 && p==3)   

         sum(i in ccounter,q in qcounter5 : i == RndCov21_f3_50[p][q]) 
x[i][v][3] <= q9-1; 

          

     forall( v in vcounter, f in fcounter, p in pcounter8 :  f == 4 && p 
!= 3) 

         sum(i in ccounter,q in qcounter5 : i == RndCov21_f4_50[p][q]) 
x[i][v][4] <= q5-1; 

     forall( v in vcounter, f in fcounter, p in pcounter8 :  f == 4 && p 
== 3) 

         sum(i in ccounter,q in qcounter5 : i == RndCov21_f4_50[p][q]) 
x[i][v][4] <= q9-1; 

          

     forall( v in vcounter, f in fcounter, p in pcounter8 :  f == 5 && 
3<=v<=4 && p!=2 && p!=4) 

         sum(i in ccounter,q in qcounter5 : i == RndCov21_f5_50[p][q]) 
x[i][v][5] <= q5-1; 

     forall( v in vcounter, f in fcounter, p in pcounter8 :  f == 5 && 
3<=v<=4 && p==2 && p==4) 

         sum(i in ccounter,q in qcounter5 : i == RndCov21_f5_50[p][q]) 
x[i][v][5] <= q9-1; 

          

     forall( v in vcounter, f in fcounter, p in pcounter8 : f == 6 && 
3<=v<=4 && p!=3) 

         sum(i in ccounter,q in qcounter5 : i == RndCov21_f6_50[p][q]) 
x[i][v][6] <= q5-1; 

     forall( v in vcounter, f in fcounter, p in pcounter8 : f == 5 && 
3<=v<=4 && p ==3) 

         sum(i in ccounter,q in qcounter5 : i == RndCov21_f6_50[p][q]) 
x[i][v][6] <= q9-1; 
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     forall( v in vcounter, f in fcounter, p in pcounter2 :  8<=f<=11 && 
3<=v<=4){ 

         sum(i in ccounter,q in qcounter1 : i == RndCov21_f8_50[p][q]) 
x[i][v][8] <= q1-1; 

         sum(i in ccounter,q in qcounter1 : i == RndCov21_f9_50[p][q]) 
x[i][v][9] <= q1-1; 

         sum(i in ccounter,q in qcounter1 : i == RndCov21_f10_50[p][q]) 
x[i][v][10] <= q1-1; 

         sum(i in ccounter,q in qcounter1 : i == RndCov21_f11_50[p][q]) 
x[i][v][11] <= q1-1;   

       } 

       forall( v in vcounter, f in fcounter, p in pcounter1 : f == 7 && 
3<=v<=4) 

         sum(i in ccounter,q in qcounter1 : i == RndCov21_f7_50[p][q]) 
x[i][v][7] <= q1-1; 

          

      forall( v in vcounter, f in fcounter, p in pcounter4 :  12<=f<=13 && 
3<=v<=4){ 

         sum(i in ccounter,q in qcounter2 : i == RndCov21_f12_50[p][q]) 
x[i][v][12] <= q2-1; 

         sum(i in ccounter,q in qcounter2 : i == RndCov21_f13_50[p][q]) 
x[i][v][13] <= q2-1;  

       } 

      forall( v in vcounter, f in fcounter, p in pcounter6 : f == 14 && 
3<=v<=4) 

         sum(i in ccounter,q in qcounter2 : i == RndCov21_f14_50[p][q]) 
x[i][v][12] <= q2-1;   

          

      //cap27 

      forall( v in vcounter, f in fcounter, p in pcounter8 : f == 2 && 
1<=v<=2 && p!=2 && p!=3 ) 

         sum(i in ccounter,q in qcounter6 : i == RndCov27_f2_50[p][q]) 
x[i][v][f] <= q6-1; 

     forall( v in vcounter, f in fcounter, p in pcounter8 : f == 2 && 
1<=v<=2 && p==2 && p==3) 

         sum(i in ccounter,q in qcounter6 : i == RndCov27_f2_50[p][q]) 
x[i][v][f] <= q12-1;  
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     forall( v in vcounter, f in fcounter, p in pcounter8 : f == 3 && 
1<=v<=2 && p==3 ) 

         sum(i in ccounter,q in qcounter6 : i == RndCov27_f3_50[p][q]) 
x[i][v][f] <= q6-1; 

     forall( v in vcounter, f in fcounter, p in pcounter8 : f == 3 && 
1<=v<=2 && p!=3) 

         sum(i in ccounter,q in qcounter6 : i == RndCov27_f3_50[p][q]) 
x[i][v][f] <= q12-1;    

          

     forall( v in vcounter, f in fcounter, p in pcounter8 : f == 4 && 
1<=v<=2 && p==4 ) 

         sum(i in ccounter,q in qcounter6 : i == RndCov27_f4_50[p][q]) 
x[i][v][f] <= q12-1; 

     forall( v in vcounter, f in fcounter, p in pcounter8 : f == 4 && 
1<=v<=2 && p!=4) 

         sum(i in ccounter,q in qcounter6 : i == RndCov27_f4_50[p][q]) 
x[i][v][f] <= q6-1;  

          

     forall( v in vcounter, f in fcounter, p in pcounter8 : f == 5 && 
1<=v<=2 && p!=1 && p!=3 ) 

         sum(i in ccounter,q in qcounter6 : i == RndCov27_f5_50[p][q]) 
x[i][v][f] <= q6-1; 

     forall( v in vcounter, f in fcounter, p in pcounter8 : f == 5 && 
1<=v<=2 && p==1 && p==3) 

         sum(i in ccounter,q in qcounter6 : i == RndCov27_f5_50[p][q]) 
x[i][v][f] <= q12-1;    

          

     forall( v in vcounter, f in fcounter, p in pcounter8 : f == 6 && 
1<=v<=2 && p!=1 && p!=4 ) 

         sum(i in ccounter,q in qcounter6 : i == RndCov27_f6_50[p][q]) 
x[i][v][f] <= q6-1; 

     forall( v in vcounter, f in fcounter, p in pcounter8 : f == 6 && 
1<=v<=2 && p==1 && p==4) 

         sum(i in ccounter,q in qcounter6 : i == RndCov27_f6_50[p][q]) 
x[i][v][f] <= q12-1;   
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     forall( v in vcounter, f in fcounter, p in pcounter11 : f == 7 && 
1<=v<=2 && p!=5 && p!=6 ) 

         sum(i in ccounter,q in qcounter10 : i == RndCov27_f7_50[p][q]) 
x[i][v][f] <= q10 -1 ; 

     forall( v in vcounter, f in fcounter, p in pcounter11 : f == 7 && 
1<=v<=2 && p==5) 

         sum(i in ccounter,q in qcounter10 : i == RndCov27_f7_50[p][q]) 
x[i][v][f] <= q3 -1;  

    forall( v in vcounter, f in fcounter, p in pcounter11 : f == 7 && 
1<=v<=2 && p==6) 

         sum(i in ccounter,q in qcounter10 : i == RndCov27_f7_50[p][q]) 
x[i][v][f] <= q2 -1;   

          

    forall( v in vcounter, f in fcounter, p in pcounter11 :  8<=f<=11 && 
1<=v<=2){ 

         sum(i in ccounter,q in qcounter10 : i == RndCov27_f8_50[p][q]) 
x[i][v][8] <= q10-1; 

         sum(i in ccounter,q in qcounter10 : i == RndCov27_f9_50[p][q]) 
x[i][v][9] <= q10-1; 

         sum(i in ccounter,q in qcounter10 : i == RndCov27_f10_50[p][q]) 
x[i][v][10] <= q10-1; 

         sum(i in ccounter,q in qcounter10 : i == RndCov27_f11_50[p][q]) 
x[i][v][11] <= q10-1; 

       } 

        

     forall( v in vcounter, f in fcounter, p in pcounter2 : f == 12 && 
1<=v<=2 && p!=1 && p!=3 && p!=7 && p!=8 && p!=9) 

         sum(i in ccounter,q in qcounter1 : i == RndCov27_f12_50[p][q]) 
x[i][v][f] <= q1-1; 

     forall( v in vcounter, f in fcounter, p in pcounter2 : f == 12 && 
1<=v<=2 && p ==1 && p ==3 && p ==7 && p ==8 && p ==9) 

         sum(i in ccounter,q in qcounter1 : i == RndCov27_f12_50[p][q]) 
x[i][v][f] <= q2-1;   

          

    forall( v in vcounter, f in fcounter, p in pcounter2 : f == 13 && 
1<=v<=2 && p!=3 && p!=4 && p!=5 && p!=6 && p!=10 && p!=11) 
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         sum(i in ccounter,q in qcounter1 : i == RndCov27_f13_50[p][q]) 
x[i][v][f] <= q1-1; 

     forall( v in vcounter, f in fcounter, p in pcounter2 : f == 13 && 
1<=v<=2 && p ==3 && p ==4 && p ==5 && p ==6 && p ==10 && p==11 ) 

         sum(i in ccounter,q in qcounter1 : i == RndCov27_f13_50[p][q]) 
x[i][v][f] <= q2-1; 

          

        forall( v in vcounter, f in fcounter, p in pcounter10 : f == 14 && 
1<=v<=2 && p!=1 && p!=5 && p!=6 && p!=7 && p!=8 && p!=10&& p!=11) 

         sum(i in ccounter,q in qcounter1 : i == RndCov27_f14_50[p][q]) 
x[i][v][f] <= q1-1; 

     forall( v in vcounter, f in fcounter, p in pcounter10 : f == 14 && 
1<=v<=2 && p ==1 && p ==5 && p ==6 && p ==7 && p ==8 && p==10 && p==11) 

         sum(i in ccounter,q in qcounter1 : i == RndCov27_f14_50[p][q]) 
x[i][v][f] <= q2-1; 

        

     forall( v in vcounter, f in fcounter, p in pcounter1 : f == 15 && 
1<=v<=2 && p!=1 && p!=2 && p!=5 && p!=7) 

         sum(i in ccounter,q in qcounter1 : i == RndCov27_f15_50[p][q]) 
x[i][v][f] <= q1-1; 

     forall( v in vcounter, f in fcounter, p in pcounter1 : f == 15 && 
1<=v<=2 && p ==1 && p ==2 && p ==5 && p ==7) 

         sum(i in ccounter,q in qcounter1 : i == RndCov27_f15_50[p][q]) 
x[i][v][f] <= q2-1;         

                                                 

       }    
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 Appendix2  

 JAVA CODE FOR FIX & OPTIMIZE HEURISTIC 

import ilog.concert.*; 

import ilog.cplex.*; 

import java.io.BufferedReader; 

import java.io.File; 

import java.io.FileInputStream; 

import java.io.FileNotFoundException; 

import java.io.FileReader; 

import java.io.IOException; 

 

import org.apache.poi.xssf.usermodel.XSSFCell; 

import org.apache.poi.xssf.usermodel.XSSFRow; 

import org.apache.poi.xssf.usermodel.XSSFSheet; 

import org.apache.poi.xssf.usermodel.XSSFWorkbook; 

 

public class F_And_O_Second_Step_Test1 { 

     

public static int n = 20;// number of customers 

public static   int v = 4; // number of vehicles 

public static   int F = 21;// number of available frequencies 

public static   int D = 5; // number of days of the week 

public static   int H =52;// number of weeks in a year 

public static    int h1 = 300; 

//public static    int h1 = 600; 
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public static   int smax = 5;// maximum number of customers being visited 
on a route 

public static   int m = 21; // big m 

public static   int F1[] = {0,1,6,11,16}; 

public static   int F2[] = {0,2,7,12,17}; 

public static   int F3[] = {0,3,8,13,18}; 

public static   int F4[] = {0,4,9,14,19}; 

public static   int F5[] = {0,5,10,15,20}; 

public static   double r[] = {8.4,8.4,7,7}; 

//public static    double r[] = {9.8,9.8,7,7}; 

public static   int g[] = {17,17,17,17}; 

public static   int a[] = {48960,48960,40800,40800}; 

//public static int a[] = {57120,57120,40800,40800}; 

public static   int c[]= {10,10,7,7}; 

//public static int c[]= {20,20,14,14}; 

//public static int c[]= {27,27,21,21}; 

public static   int p[] = 
{365,52,52,52,52,52,26,26,26,26,26,18,18,18,18,18,13,13,13,13,13}; 

public static   int delta = 5; 

public static int step = 0; 

public static int binarizer = 0; 

public static int improver = 0; 

public static double newobjective = 0; 

public static double newobjectivep = 0; 

public static double fixedXValues[][][] = new double[n][v][F]; 

public static double fixedLValues[][] = new double[v][F]; 

public static double fixedRValues[][][] = new double[D][v][H]; 

public static double fixedCValues[][] = new double[v][F]; 

public static double fixedVValues[] = new double[v]; 
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public static IloNumVar [][] L = new IloNumVar[v][F]; 

public static IloNumVar [][] BL = new IloNumVar[v][F]; 

public static IloNumVar [][] DL = new IloNumVar[v][F]; 

 

public static IloNumVar [][] C = new IloNumVar[v][F]; 

 

public static IloNumVar [] V = new IloNumVar [v]; 

public static IloNumVar [] BV = new IloNumVar [v]; 

public static IloNumVar [] DV = new IloNumVar [v]; 

 

public static IloNumVar [][][] R = new IloNumVar[D][v][H]; 

public static IloNumVar [][][] BR = new IloNumVar[D][v][H]; 

public static IloNumVar [][][] DR = new IloNumVar[D][v][H]; 

 

public static IloNumVar [][][] x = new IloNumVar[n][v][F]; 

public static IloNumVar [][][] Bx = new IloNumVar[n][v][F]; 

public static IloNumVar [][][] Dx = new IloNumVar[n][v][F]; 

 

 

public static void main(String[] args)throws Exception { 

     

    int i=0; 

    int f =0; 

    File excel = new File("C:\\Book1.xlsx"); 

    FileInputStream fis = new FileInputStream(excel); 

    XSSFWorkbook wb = new XSSFWorkbook(fis); 

    XSSFSheet ws = wb.getSheet("Sheet6"); 
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    int rowNum = ws.getLastRowNum() + 1; 

    int colNum = ws.getRow(0).getLastCellNum(); 

     

    double y[][] = new double[rowNum][colNum]; 

     

    for( i=0;i<rowNum;i++){ 

        XSSFRow row = ws.getRow(i); 

        for(f=0;f<colNum;f++){ 

            XSSFCell cell = row.getCell(f); 

            double value = cellToDouble(cell); 

            y[i][f]= value; 

    //  System.out.print(y[i][f] + "\t\t" ); 

        } 

         

    //  System.out.println(" " ); 

    } 

//  System.out.println(y[2][4]); 

 

    int k=0; 

    int l =0; 

    File excel1 = new File("C:\\Book1.xlsx"); 

    FileInputStream fis1 = new FileInputStream(excel1); 

    XSSFWorkbook wb1 = new XSSFWorkbook(fis1); 

    XSSFSheet ws1 = wb1.getSheet("Sheet2"); 

     

    int rowNum1 = ws1.getLastRowNum() + 1; 

    int colNum1 = ws1.getRow(0).getLastCellNum(); 

     

    double K[][] = new double[rowNum1][colNum1]; 
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    for( k=0;k<rowNum1;k++){ 

        XSSFRow row1 = ws1.getRow(k); 

        for(l=0;l<colNum1;l++){ 

            XSSFCell cell1 = row1.getCell(l); 

            double value = cellToDouble(cell1); 

            K[k][l]= value; 

    //  System.out.print(K[k][l] + "\t\t" ); 

        } 

         

    //  System.out.println(" " ); 

    } 

    int s=0; 

    int q =0; 

    File excel2 = new File("C:\\Book4.xlsx"); 

    FileInputStream fis2 = new FileInputStream(excel2); 

    XSSFWorkbook wb2 = new XSSFWorkbook(fis2); 

    XSSFSheet ws2 = wb2.getSheet("Sheet7"); 

     

    int rowNum2 = ws2.getLastRowNum() + 1; 

    int colNum2 = ws2.getRow(0).getLastCellNum(); 

     

    double b[][] = new double[rowNum2][colNum2]; 

     

    for( s=0;s<rowNum2;s++){ 

        XSSFRow row = ws2.getRow(s); 

        for(q=0;q<colNum2;q++){ 

            XSSFCell cell = row.getCell(q); 

            double value = cellToDouble(cell); 
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            b[s][q]= value; 

        //  System.out.print(b[s][q] + "\t\t"  ); 

             

        }  

    //  System.out.println(" " ); 

    } 

         

    Model(n,v,F,F1,F2,F3,F4,F5,D,H,r,g,a,y,h1,K,smax,c,m,p,b ); 

}    

 

private static int cellToInteger(XSSFCell cell) { 

    int type; 

    int result1; 

    type = cell.getCellType(); 

    switch(type){ 

    case 0 : 

        result1 = (int) cell.getNumericCellValue(); 

        break; 

    case 1: 

        result1=Integer.parseInt(cell.getStringCellValue()) ; 

        break; 

        default: 

            throw new RuntimeException(" There is no support for this type 
of cell"); 

             

    } 

    return result1; 

} 
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private static double cellToDouble(XSSFCell cell) { 

    int type; 

    double result; 

    type = cell.getCellType(); 

    switch(type){ 

    case 0 : 

        result = (double) cell.getNumericCellValue(); 

        break; 

    case 1: 

        result =Double.parseDouble(cell.getStringCellValue()) ; 

        break; 

        default: 

            throw new RuntimeException(" There is no support for this type 
of cell"); 

             

    } 

     

    return result  ; 

} 

     

 

public static void Model(int n,int v, int F,int F1[],int F2[],int F3[], 
int F4[],int F5[],int D, int H, double r[], int g[], int a[], double 
y[][], int h1, double[][] K, int smax, int c[], int m, int p[], double[][] 
b ){ 

    try{ 

         

        //creating an empty model 

        IloCplex model = new IloCplex(); 

        for(int i = 0; i<n; i++){ 

            for(int j = 0; j<v;j++){ 
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                for( int f = 0; f<F; f++){ 

                x[i][j][f] =  model.numVar(0,1); 

                } 

            } 

        } 

           for(int i = 0; i<n; i++){ 

            for(int j = 0; j<v;j++){ 

                for( int f = 0; f<F; f++){ 

                Bx[i][j][f] =  model.boolVar(); 

                } 

            } 

        } 

        for(int i = 0; i<n; i++){ 

            for(int j = 0; j<v;j++){ 

                for( int f = 0; f<F; f++){ 

                Dx[i][j][f] =  model.numVar(0, 1); 

                } 

            } 

        } 

        // defining L[v][f] as Double 

        for(int j = 0; j <v; j++){ 

            for(int f = 0; f<F; f++){ 

                L[j][f] =model.numVar(0,1); 

            } 

        } 

        //defining L[v][f]'s boolean part 

        for(int j = 0; j <v; j++){ 

            for(int f = 0; f<F; f++){ 

                BL[j][f] = model.boolVar(); 
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            } 

        } 

        //defining L[v][f]'s double part 

        for(int j = 0; j <v; j++){ 

            for(int f = 0; f<F; f++){ 

                DL[j][f] = model.numVar(0,1); 

            } 

        } 

        // defining C[v][f] as integer 

        for(int j = 0; j < v; j++){ 

            for(int f = 0 ; f< F; f++){ 

                C[j][f] = model.numVar(0,Double.MAX_VALUE); 

            } 

        } 

        //defining V[v] as double 

        for(int j = 0 ; j< v ; j++){ 

            V[j] =  model.boolVar(); 

        } 

        //defining R[d][v][H] as double 

        for(int d = 0; d<D; d++){ 

            for(int j = 0 ; j <v; j++){ 

                for(int l= 0; l< H; l++){ 

                    R[d][j][l] =model.numVar(0,1); 

                } 

            } 

        } 

        // defining R[d][v][H]'s boolean part 

        for(int d = 0; d<D; d++){ 

            for(int j = 0 ; j <v; j++){ 
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                for(int l= 0; l< H; l++){ 

                    BR[d][j][l] = model.boolVar(); 

                } 

            } 

        } 

        //defining R[d][v][H]'s double part 

        for(int d = 0; d<D; d++){ 

            for(int j = 0 ; j <v; j++){ 

                for(int l= 0; l< H; l++){ 

                    DR[d][j][l] =model.numVar(0,1); 

                } 

            } 

        } 

        //objective 

        IloLinearNumExpr obj = model.linearNumExpr(); 

        // adding first objective element 

        for(int j = 0; j<v;j++){ 

            for(int f = 0; f<F;f++){ 

                if(f == 0){ 

            int t = g[j] * p[f]; 

            obj.addTerm(t,L[j][f]); 

        //  System.out.println(t); 

            }else{ 

                obj.addTerm(0, L[j][f]); 

            } 

        } 

        } 

        //adding second objective element 

        for(int d=0; d<D;d++){ 
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            for(int l=0;l<H;l++){ 

                for(int j=0;j<v;j++){ 

                    obj.addTerm(g[j], R[d][j][l]); 

                } 

            } 

        } 

        //adding third objective element 

        for(int j=0; j<v;j++){ 

            for(int f=0;f<F;f++){ 

                double S = r[j] * p[f]; 

                obj.addTerm(S, C[j][f]);     

            } 

        } 

        //adding fourth objective element 

        for(int j= 0; j<v; j++){ 

            obj.addTerm(a[j], V[j]); 

        } 

        // adding holding cost to objective 

        for(int i =0; i<n;i++){ 

            for(int j = 0; j<v;j++){ 

                for(int f=0; f<F; f++){ 

                    double HoldingCost = y[i][f] * h1*0.5; 

                    obj.addTerm(HoldingCost,x[i][j][f]); 

                     

                } 

            } 

        } 

        //adding replenishment cost 

        for(int i=0;i<n;i++){ 
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            for(int j=0; j<v;j++){ 

                for(int f=0; f<F; f++){ 

                    obj.addTerm(K[i][f], x[i][j][f]); 

                } 

            } 

        } 

    //  System.out.println(obj); 

        model.addMinimize(obj); 

         

    for(int w =0; w<5;w++){ 

        for(int fixer =0; fixer<n;fixer = fixer+delta){ 

            //resolving customers 0-4 

            if(step==5){ 

                for(int i = 0; i<n; i++){ 

                    for(int j = 0; j<v;j++){ 

                        for( int f = 0; f<F; f++){ 

                        Bx[i][j][f] =  model.boolVar(); 

                        } 

                    } 

                } 

                for(int i = 0; i<n; i++){ 

                    for(int j = 0; j<v;j++){ 

                        for( int f = 0; f<F; f++){ 

                        Dx[i][j][f] =  model.numVar(0, 1); 

                        } 

                    } 

                } 

                // defining L[v][f] as Double 

                for(int j = 0; j <v; j++){ 
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                    for(int f = 0; f<F; f++){ 

                        L[j][f] =model.numVar(0,1); 

                    } 

                } 

                // defining C[v][f] as integer 

                for(int j = 0; j < v; j++){ 

                    for(int f = 0 ; f< F; f++){ 

                        C[j][f] = model.numVar(0,Double.MAX_VALUE); 

                    } 

                } 

                //defining V[v] as double 

                for(int j = 0 ; j< v ; j++){ 

                    V[j] =  model.numVar(0,1); 

                } 

                //defining R[d][v][H] as double 

                for(int d = 0; d<D; d++){ 

                    for(int j = 0 ; j <v; j++){ 

                        for(int l= 0; l< H; l++){ 

                            R[d][j][l] =model.numVar(0,1); 

                        } 

                    } 

                } 

                for(int i = fixer;i<fixer+delta;i++){ 

                    for(int j =0; j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 

                            constraint312.addTerm(1.0, Dx[i][j][f]); 

                            model.addEq(constraint312,0 ); 
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                        } 

                    } 

                     

                } 

                for(int i = fixer+delta;i<n;i++){ 

                    for(int j =0; j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 

                            constraint312.addTerm(1.0, x[i][j][f]); 

                            
model.addEq(constraint312,fixedXValues[i][j][f] ); 

                        //  System.out.println("fixedXValues["+(i+1)+ 
"]["+(j+1)+"]["+(f+1)+"]="  + fixedXValues[i][j][f]); 

                        } 

                    } 

                } 

            } 

            //Binarizing the resolved problem for customers 0-4 

            if(step == 6 && binarizer == 1){ 

                 

                for(int i = 0; i<n; i++){ 

                    for(int j = 0; j<v;j++){ 

                        for( int f = 0; f<F; f++){ 

                        Bx[i][j][f] =  model.boolVar(); 

                        } 

                    } 

                } 

                for(int i = 0; i<n; i++){ 

                    for(int j = 0; j<v;j++){ 
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                        for( int f = 0; f<F; f++){ 

                        Dx[i][j][f] =  model.numVar(0, 1); 

                        } 

                    } 

                } 

                //defining L[v][f]'s boolean part 

                for(int j = 0; j <v; j++){ 

                    for(int f = 0; f<F; f++){ 

                        BL[j][f] = model.boolVar(); 

                    } 

                } 

                //defining L[v][f]'s double part 

                for(int j = 0; j <v; j++){ 

                    for(int f = 0; f<F; f++){ 

                        DL[j][f] = model.numVar(0,1); 

                    } 

                } 

                //defining V[v]'s boolean part 

                    for(int j = 0 ; j< v ; j++){ 

                        BV[j] = model.boolVar(); 

                            } 

                //defining V[v]'s double part 

                    for(int j = 0 ; j< v ; j++){ 

                        DV[j] =  model.numVar(0,1); 

                            } 

             

                for(int d = 0; d<D; d++){ 

                    for(int j = 0 ; j <v; j++){ 

                        for(int l= 0; l< H; l++){ 
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                            BR[d][j][l] = model.boolVar(); 

                        } 

                    } 

                } 

                //defining R[d][v][H]'s double part 

                for(int d = 0; d<D; d++){ 

                    for(int j = 0 ; j <v; j++){ 

                        for(int l= 0; l< H; l++){ 

                            DR[d][j][l] =model.numVar(0,1); 

                        } 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        IloLinearNumExpr constraintL= 
model.linearNumExpr(); 

                        constraintL.addTerm(1.0, L[j][f]); 

                        
model.addEq(constraintL,model.sum(BL[j][f],DL[j][f])); 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        IloLinearNumExpr constraintL= 
model.linearNumExpr(); 

                        constraintL.addTerm(1.0, DL[j][f]); 

                        model.addEq(constraintL,0); 

                    } 

                } 

                for(int d = 0; d<D; d++){ 
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                    for(int j=0;j<v;j++){ 

                        for(int l=0;l<H;l++){ 

                            IloLinearNumExpr constraintR= 
model.linearNumExpr(); 

                            constraintR.addTerm(1.0, R[d][j][l]); 

                            
model.addEq(constraintR,model.sum(BR[d][j][l],DR[d][j][l]) ); 

                        } 

                    } 

                } 

                for(int d = 0; d<D; d++){ 

                    for(int j=0;j<v;j++){ 

                        for(int l=0;l<H;l++){ 

                            IloLinearNumExpr constraintR= 
model.linearNumExpr(); 

                            constraintR.addTerm(1.0, DR[d][j][l]); 

                            model.addEq(constraintR,0 ); 

                        } 

                    } 

                } 

                for(int i = 0;i<n;i++){ 

                    for(int j =0; j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 

                            constraint312.addTerm(1.0, x[i][j][f]); 

                            
model.addEq(constraint312,fixedXValues[i][j][f] ); 

                        //  System.out.println("fixedXValues["+(i+1)+ 
"]["+(j+1)+"]["+(f+1)+"]="  + fixedXValues[i][j][f]); 

                        } 

                    } 
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                } 

            } 

            // resolving problem for customers 5-9 

        /*  System.out.println("step: " + step); 

            System.out.println("fixer: " + fixer);*/ 

            if(step == 7){ 

                 

                for(int i = 0; i<n; i++){ 

                    for(int j = 0; j<v;j++){ 

                        for( int f = 0; f<F; f++){ 

                        Bx[i][j][f] =  model.boolVar(); 

                        } 

                    } 

                } 

                for(int i = 0; i<n; i++){ 

                    for(int j = 0; j<v;j++){ 

                        for( int f = 0; f<F; f++){ 

                        Dx[i][j][f] =  model.numVar(0, 1); 

                        } 

                    } 

                } 

                // defining L[v][f] as Double 

                for(int j = 0; j <v; j++){ 

                    for(int f = 0; f<F; f++){ 

                        L[j][f] =model.numVar(0,1); 

                    } 

                } 

                // defining C[v][f] as integer 

                for(int j = 0; j < v; j++){ 
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                    for(int f = 0 ; f< F; f++){ 

                        C[j][f] = model.numVar(0,Double.MAX_VALUE); 

                    } 

                } 

                //defining V[v] as double 

                for(int j = 0 ; j< v ; j++){ 

                    V[j] =  model.numVar(0,Double.MAX_VALUE); 

                } 

                //defining R[d][v][H] as double 

                for(int d = 0; d<D; d++){ 

                    for(int j = 0 ; j <v; j++){ 

                        for(int l= 0; l< H; l++){ 

                            R[d][j][l] =model.numVar(0,Double.MAX_VALUE); 

                        } 

                    } 

                } 

                for(int i = fixer-delta;i<fixer;i++){ 

                    for(int j =0; j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 

                            constraint312.addTerm(1.0, Dx[i][j][f]); 

                            model.addEq(constraint312,0 ); 

                        } 

                    } 

                     

                } 

                for(int i = fixer;i<n;i++){ 

                    for(int j =0; j<v;j++){ 
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                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 

                            constraint312.addTerm(1.0, x[i][j][f]); 

                            
model.addEq(constraint312,fixedXValues[i][j][f] ); 

                            //System.out.println("fixedXValues["+(i+1)+ 
"]["+(j+1)+"]["+(f+1)+"]="  + fixedXValues[i][j][f]); 

                        } 

                    } 

                }    

                for(int i = 0;i<fixer-delta;i++){ 

                    for(int j =0; j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 

                            constraint312.addTerm(1.0, x[i][j][f]); 

                            
model.addEq(constraint312,fixedXValues[i][j][f] ); 

                        } 

                    } 

                } 

                 

            } 

            //binarizing customers 5-9 

            if(step == 8 && binarizer == 2){ 

                 

                for(int i = 0;i<n;i++){ 

                    for(int j =0; j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 
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                            constraint312.addTerm(1.0, x[i][j][f]); 

                            
model.addEq(constraint312,fixedXValues[i][j][f] ); 

                        } 

                    } 

                } 

                 for(int i = 0; i<n; i++){ 

                        for(int j = 0; j<v;j++){ 

                            for( int f = 0; f<F; f++){ 

                            Bx[i][j][f] =  model.boolVar(); 

                            } 

                        } 

                    } 

                    for(int i = 0; i<n; i++){ 

                        for(int j = 0; j<v;j++){ 

                            for( int f = 0; f<F; f++){ 

                            Dx[i][j][f] =  model.numVar(0, 
Double.MAX_VALUE); 

                            } 

                        } 

                    } 

                    for(int i = 0;i<n;i++){ 

                        for(int j =0; j<v;j++){ 

                            for(int f=0;f<F;f++){ 

                                IloLinearNumExpr constraintw= 
model.linearNumExpr(); 

                                constraintw.addTerm(1.0, Dx[i][j][f]); 

                                model.addEq(constraintw,0 ); 

                            } 

                        } 



 

158 

 

                    } 

                 

                //defining L[v][f]'s boolean part 

                for(int j = 0; j <v; j++){ 

                    for(int f = 0; f<F; f++){ 

                        BL[j][f] = model.boolVar(); 

                    } 

                } 

                //defining L[v][f]'s double part 

                for(int j = 0; j <v; j++){ 

                    for(int f = 0; f<F; f++){ 

                        DL[j][f] = model.numVar(0,1); 

                    } 

                } 

                //defining V[v]'s boolean part 

                        for(int j = 0 ; j< v ; j++){ 

                            BV[j] = model.boolVar(); 

                        } 

                        //defining V[v]'s double part 

                        for(int j = 0 ; j< v ; j++){ 

                            DV[j] =  model.numVar(0,1); 

                        } 

         

                // defining R[d][v][H]'s boolean part 

                for(int d = 0; d<D; d++){ 

                    for(int j = 0 ; j <v; j++){ 

                        for(int l= 0; l< H; l++){ 

                            BR[d][j][l] = model.boolVar(); 

                        } 
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                    } 

                } 

                //defining R[d][v][H]'s double part 

                for(int d = 0; d<D; d++){ 

                    for(int j = 0 ; j <v; j++){ 

                        for(int l= 0; l< H; l++){ 

                            DR[d][j][l] =model.numVar(0,1); 

                        } 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        IloLinearNumExpr constraintL= 
model.linearNumExpr(); 

                        constraintL.addTerm(1.0, L[j][f]); 

                        
model.addEq(constraintL,model.sum(BL[j][f],DL[j][f])); 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        IloLinearNumExpr constraintL= 
model.linearNumExpr(); 

                        constraintL.addTerm(1.0, DL[j][f]); 

                        model.addEq(constraintL,0); 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                        IloLinearNumExpr constraintV= 
model.linearNumExpr(); 

                        constraintV.addTerm(1.0, V[j]); 
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                        model.addEq(constraintV,model.sum(BV[j],DV[j])); 

                    } 

                for(int j=0;j<v;j++){ 

                    IloLinearNumExpr constraintV= model.linearNumExpr(); 

                    constraintV.addTerm(1.0, DV[j]); 

                    model.addEq(constraintV,0); 

                } 

                for(int d = 0; d<D; d++){ 

                    for(int j=0;j<v;j++){ 

                        for(int l=0;l<H;l++){ 

                            IloLinearNumExpr constraintR= 
model.linearNumExpr(); 

                            constraintR.addTerm(1.0, R[d][j][l]); 

                            
model.addEq(constraintR,model.sum(BR[d][j][l],DR[d][j][l]) ); 

                        } 

                    } 

                } 

                for(int d = 0; d<D; d++){ 

                    for(int j=0;j<v;j++){ 

                        for(int l=0;l<H;l++){ 

                            IloLinearNumExpr constraintR= 
model.linearNumExpr(); 

                            constraintR.addTerm(1.0, DR[d][j][l]); 

                            model.addEq(constraintR,0 ); 

                        } 

                    } 

                } 

                 

            } 
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            //reoptimizing for customers 10-14 

            if(step == 9 && improver >0){ 

                 

                for(int i = 0; i<n; i++){ 

                    for(int j = 0; j<v;j++){ 

                        for( int f = 0; f<F; f++){ 

                        Bx[i][j][f] =  model.boolVar(); 

                        } 

                    } 

                } 

                for(int i = 0; i<n; i++){ 

                    for(int j = 0; j<v;j++){ 

                        for( int f = 0; f<F; f++){ 

                        Dx[i][j][f] =  model.numVar(0, 1); 

                        } 

                    } 

                } 

                // defining L[v][f] as Double 

                for(int j = 0; j <v; j++){ 

                    for(int f = 0; f<F; f++){ 

                        L[j][f] =model.numVar(0,1); 

                    } 

                } 

                // defining C[v][f] as integer 

                for(int j = 0; j < v; j++){ 

                    for(int f = 0 ; f< F; f++){ 

                        C[j][f] = model.numVar(0,Double.MAX_VALUE); 

                    } 

                } 
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                //defining V[v] as double 

                for(int j = 0 ; j< v ; j++){ 

                    V[j] =  model.numVar(0,Double.MAX_VALUE); 

                } 

                //defining R[d][v][H] as double 

                for(int d = 0; d<D; d++){ 

                    for(int j = 0 ; j <v; j++){ 

                        for(int l= 0; l< H; l++){ 

                            R[d][j][l] =model.numVar(0,Double.MAX_VALUE); 

                        } 

                    } 

                } 

        /*      for(int i = 0;i<2*delta;i++){ 

                    for(int j =0; j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 

                            constraint312.addTerm(1.0, Dx[i][j][f]); 

                            model.addEq(constraint312,0 ); 

                        } 

                    } 

                     

                }*/ 

                for(int i = 2*delta;i<n;i++){ 

                    for(int j =0; j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 

                            constraint312.addTerm(1.0, x[i][j][f]); 
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model.addEq(constraint312,fixedXValues[i][j][f] ); 

                            //System.out.println(fixedXValues[i][j][f]); 

                        } 

                    } 

                }    

            } 

            //case without improvement customers 10-14 

            if(step == 9 && improver == 0 ){ 

                 

                for(int i = 0; i<n; i++){ 

                    for(int j = 0; j<v;j++){ 

                        for( int f = 0; f<F; f++){ 

                        Bx[i][j][f] =  model.boolVar(); 

                        } 

                    } 

                } 

                for(int i = 0; i<n; i++){ 

                    for(int j = 0; j<v;j++){ 

                        for( int f = 0; f<F; f++){ 

                        Dx[i][j][f] =  model.numVar(0, 1); 

                        } 

                    } 

                } 

                // defining L[v][f] as Double 

                for(int j = 0; j <v; j++){ 

                    for(int f = 0; f<F; f++){ 

                        L[j][f] =model.numVar(0,1); 

                    } 
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                } 

                // defining C[v][f] as integer 

                for(int j = 0; j < v; j++){ 

                    for(int f = 0 ; f< F; f++){ 

                        C[j][f] = model.numVar(0,Double.MAX_VALUE); 

                    } 

                } 

                //defining V[v] as double 

                for(int j = 0 ; j< v ; j++){ 

                    V[j] =  model.numVar(0,Double.MAX_VALUE); 

                } 

                //defining R[d][v][H] as double 

                for(int d = 0; d<D; d++){ 

                    for(int j = 0 ; j <v; j++){ 

                        for(int l= 0; l< H; l++){ 

                            R[d][j][l] =model.numVar(0,Double.MAX_VALUE); 

                        } 

                    } 

                } 

            /*  for(int i = 2*delta;i<3*delta;i++){ 

                    for(int j =0; j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraintq= 
model.linearNumExpr(); 

                            constraintq.addTerm(1.0, Dx[i][j][f]); 

                            model.addEq(constraintq,0 ); 

                        } 

                    } 
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                }*/ 

                for(int i = 0;i<10;i++){ 

                    for(int j =0; j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraintpr= 
model.linearNumExpr(); 

                            constraintpr.addTerm(1.0, x[i][j][f]); 

                            model.addEq(constraintpr,fixedXValues[i][j][f] 
); 

                        } 

                    } 

                }    

                for(int i = 15;i<n;i++){ 

                    for(int j =0; j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 

                            constraint312.addTerm(1.0, x[i][j][f]); 

                            
model.addEq(constraint312,fixedXValues[i][j][f] ); 

                        //  System.out.println("fixedXValues["+(i+1)+ 
"]["+(j+1)+"]["+(f+1)+"]="  + fixedXValues[i][j][f]); 

                        } 

                    } 

                } 

            } 

             

            //binarize 10-14 

            if(step == 10 && binarizer == 3){ 

            /*  System.out.println("fixer:" + fixer); 

                System.out.println("step:" + step);*/ 
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                for(int i = 0;i<n;i++){ 

                    for(int j =0; j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 

                            constraint312.addTerm(1.0, x[i][j][f]); 

                            
model.addEq(constraint312,fixedXValues[i][j][f] ); 

                        //  System.out.println("fixedXValues["+(i+1)+ 
"]["+(j+1)+"]["+(f+1)+"]="  + fixedXValues[i][j][f]); 

                        } 

                    } 

                } 

            /*  for(int i = 0;i<n;i++){ 

                    for(int j =0; j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 

                            constraint312.addTerm(1.0, Dx[i][j][f]); 

                            model.addEq(constraint312,0 ); 

                        //  System.out.println("fixedXValues["+(i+1)+ 
"]["+(j+1)+"]["+(f+1)+"]="  + fixedXValues[i][j][f]); 

                        } 

                    } 

                }*/ 

                 for(int i = 0; i<n; i++){ 

                        for(int j = 0; j<v;j++){ 

                            for( int f = 0; f<F; f++){ 

                            Bx[i][j][f] =  model.boolVar(); 

                            } 

                        } 
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                    } 

                    for(int i = 0; i<n; i++){ 

                        for(int j = 0; j<v;j++){ 

                            for( int f = 0; f<F; f++){ 

                            Dx[i][j][f] =  model.numVar(0, 
Double.MAX_VALUE); 

                            } 

                        } 

                    } 

                 

                //defining L[v][f]'s boolean part 

                for(int j = 0; j <v; j++){ 

                    for(int f = 0; f<F; f++){ 

                        BL[j][f] = model.boolVar(); 

                    } 

                } 

                //defining L[v][f]'s double part 

                for(int j = 0; j <v; j++){ 

                    for(int f = 0; f<F; f++){ 

                        DL[j][f] = model.numVar(0,1); 

                    } 

                } 

                //defining V[v]'s boolean part 

                        for(int j = 0 ; j< v ; j++){ 

                            BV[j] = model.boolVar(); 

                        } 

                        //defining V[v]'s double part 

                        for(int j = 0 ; j< v ; j++){ 

                            DV[j] =  model.numVar(0,1); 
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                        } 

         

                // defining R[d][v][H]'s boolean part 

                for(int d = 0; d<D; d++){ 

                    for(int j = 0 ; j <v; j++){ 

                        for(int l= 0; l< H; l++){ 

                            BR[d][j][l] = model.boolVar(); 

                        } 

                    } 

                } 

                //defining R[d][v][H]'s double part 

                for(int d = 0; d<D; d++){ 

                    for(int j = 0 ; j <v; j++){ 

                        for(int l= 0; l< H; l++){ 

                            DR[d][j][l] =model.numVar(0,1); 

                        } 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        IloLinearNumExpr constraintL= 
model.linearNumExpr(); 

                        constraintL.addTerm(1.0, L[j][f]); 

                        
model.addEq(constraintL,model.sum(BL[j][f],DL[j][f])); 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 
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                        IloLinearNumExpr constraintL= 
model.linearNumExpr(); 

                        constraintL.addTerm(1.0, DL[j][f]); 

                        model.addEq(constraintL,0); 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                        IloLinearNumExpr constraintV= 
model.linearNumExpr(); 

                        constraintV.addTerm(1.0, V[j]); 

                        model.addEq(constraintV,model.sum(BV[j],DV[j])); 

                    } 

                for(int j=0;j<v;j++){ 

                    IloLinearNumExpr constraintV= model.linearNumExpr(); 

                    constraintV.addTerm(1.0, DV[j]); 

                    model.addEq(constraintV,0); 

                } 

                for(int d = 0; d<D; d++){ 

                    for(int j=0;j<v;j++){ 

                        for(int l=0;l<H;l++){ 

                            IloLinearNumExpr constraintR= 
model.linearNumExpr(); 

                            constraintR.addTerm(1.0, R[d][j][l]); 

                            
model.addEq(constraintR,model.sum(BR[d][j][l],DR[d][j][l]) ); 

                        } 

                    } 

                } 

                for(int d = 0; d<D; d++){ 

                    for(int j=0;j<v;j++){ 

                        for(int l=0;l<H;l++){ 
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                            IloLinearNumExpr constraintR= 
model.linearNumExpr(); 

                            constraintR.addTerm(1.0, DR[d][j][l]); 

                            model.addEq(constraintR,0 ); 

                        } 

                    } 

                } 

            } 

            //reoptimizing customers 15-19 

            if(step == 11 && improver >0){ 

                for(int i = 0; i<n; i++){ 

                    for(int j = 0; j<v;j++){ 

                        for( int f = 0; f<F; f++){ 

                        Bx[i][j][f] =  model.boolVar(); 

                        } 

                    } 

                } 

                for(int i = 0; i<n; i++){ 

                    for(int j = 0; j<v;j++){ 

                        for( int f = 0; f<F; f++){ 

                        Dx[i][j][f] =  model.numVar(0, 1); 

                        } 

                    } 

                } 

                // defining L[v][f] as Double 

                for(int j = 0; j <v; j++){ 

                    for(int f = 0; f<F; f++){ 

                        L[j][f] =model.numVar(0,1); 

                    } 
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                } 

                // defining C[v][f] as integer 

                for(int j = 0; j < v; j++){ 

                    for(int f = 0 ; f< F; f++){ 

                        C[j][f] = model.numVar(0,Double.MAX_VALUE); 

                    } 

                } 

                //defining V[v] as double 

                for(int j = 0 ; j< v ; j++){ 

                    V[j] =  model.numVar(0,Double.MAX_VALUE); 

                } 

                //defining R[d][v][H] as double 

                for(int d = 0; d<D; d++){ 

                    for(int j = 0 ; j <v; j++){ 

                        for(int l= 0; l< H; l++){ 

                            R[d][j][l] =model.numVar(0,Double.MAX_VALUE); 

                        } 

                    } 

                } 

            /*  for(int i = 0;i<fixer+delta;i++){ 

                    for(int j =0; j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 

                            constraint312.addTerm(1.0, Dx[i][j][f]); 

                            model.addEq(constraint312,0 ); 

                        } 

                    } 
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                }*/ 

                for(int i = fixer+delta;i<n;i++){ 

                    for(int j =0; j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 

                            constraint312.addTerm(1.0, x[i][j][f]); 

                            
model.addEq(constraint312,fixedXValues[i][j][f] ); 

                        } 

                    } 

                }    

            } 

            //reoptimizing 15-19 

            if(step == 11 && improver == 0){ 

                for(int i = 0; i<n; i++){ 

                    for(int j = 0; j<v;j++){ 

                        for( int f = 0; f<F; f++){ 

                        Bx[i][j][f] =  model.boolVar(); 

                        } 

                    } 

                } 

                for(int i = 0; i<n; i++){ 

                    for(int j = 0; j<v;j++){ 

                        for( int f = 0; f<F; f++){ 

                        Dx[i][j][f] =  model.numVar(0, 1); 

                        } 

                    } 

                } 

                // defining L[v][f] as Double 
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                for(int j = 0; j <v; j++){ 

                    for(int f = 0; f<F; f++){ 

                        L[j][f] =model.numVar(0,1); 

                    } 

                } 

                // defining C[v][f] as integer 

                for(int j = 0; j < v; j++){ 

                    for(int f = 0 ; f< F; f++){ 

                        C[j][f] = model.numVar(0,Double.MAX_VALUE); 

                    } 

                } 

                //defining V[v] as double 

                for(int j = 0 ; j< v ; j++){ 

                    V[j] =  model.numVar(0,Double.MAX_VALUE); 

                } 

                //defining R[d][v][H] as double 

                for(int d = 0; d<D; d++){ 

                    for(int j = 0 ; j <v; j++){ 

                        for(int l= 0; l< H; l++){ 

                            R[d][j][l] =model.numVar(0,Double.MAX_VALUE); 

                        } 

                    } 

                } 

            /*  for(int i = fixer+delta;i<n;i++){ 

                    for(int j =0; j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 

                            constraint312.addTerm(1.0, Dx[i][j][f]); 
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                            model.addEq(constraint312,0 ); 

                        } 

                    } 

                     

                }*/ 

                for(int i =0 ;i<fixer+delta;i++){ 

                    for(int j =0; j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 

                            constraint312.addTerm(1.0, x[i][j][f]); 

                            
model.addEq(constraint312,fixedXValues[i][j][f] ); 

                        } 

                    } 

                }    

            } 

            if(step == 12 && binarizer == 4){ 

                for(int i = 0;i<n;i++){ 

                    for(int j =0; j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 

                            constraint312.addTerm(1.0, x[i][j][f]); 

                            
model.addEq(constraint312,fixedXValues[i][j][f] ); 

                        } 

                    } 

                } 

            /*  for(int i = 0;i<n;i++){ 

                    for(int j =0; j<v;j++){ 
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                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 

                            constraint312.addTerm(1.0, Dx[i][j][f]); 

                            model.addEq(constraint312,0 ); 

                        } 

                    } 

                }*/ 

                 for(int i = 0; i<n; i++){ 

                        for(int j = 0; j<v;j++){ 

                            for( int f = 0; f<F; f++){ 

                            Bx[i][j][f] =  model.boolVar(); 

                            } 

                        } 

                    } 

                    for(int i = 0; i<n; i++){ 

                        for(int j = 0; j<v;j++){ 

                            for( int f = 0; f<F; f++){ 

                            Dx[i][j][f] =  model.numVar(0, 
Double.MAX_VALUE); 

                            } 

                        } 

                    } 

                 

                //defining L[v][f]'s boolean part 

                for(int j = 0; j <v; j++){ 

                    for(int f = 0; f<F; f++){ 

                        BL[j][f] = model.boolVar(); 

                    } 

                } 
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                //defining L[v][f]'s double part 

                for(int j = 0; j <v; j++){ 

                    for(int f = 0; f<F; f++){ 

                        DL[j][f] = model.numVar(0,1); 

                    } 

                } 

                //defining V[v]'s boolean part 

                        for(int j = 0 ; j< v ; j++){ 

                            BV[j] = model.boolVar(); 

                        } 

                        //defining V[v]'s double part 

                        for(int j = 0 ; j< v ; j++){ 

                            DV[j] =  model.numVar(0,1); 

                        } 

         

                // defining R[d][v][H]'s boolean part 

                for(int d = 0; d<D; d++){ 

                    for(int j = 0 ; j <v; j++){ 

                        for(int l= 0; l< H; l++){ 

                            BR[d][j][l] = model.boolVar(); 

                        } 

                    } 

                } 

                //defining R[d][v][H]'s double part 

                for(int d = 0; d<D; d++){ 

                    for(int j = 0 ; j <v; j++){ 

                        for(int l= 0; l< H; l++){ 

                            DR[d][j][l] =model.numVar(0,1); 

                        } 
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                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        IloLinearNumExpr constraintL= 
model.linearNumExpr(); 

                        constraintL.addTerm(1.0, L[j][f]); 

                        
model.addEq(constraintL,model.sum(BL[j][f],DL[j][f])); 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        IloLinearNumExpr constraintL= 
model.linearNumExpr(); 

                        constraintL.addTerm(1.0, DL[j][f]); 

                        model.addEq(constraintL,0); 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                        IloLinearNumExpr constraintV= 
model.linearNumExpr(); 

                        constraintV.addTerm(1.0, V[j]); 

                        model.addEq(constraintV,model.sum(BV[j],DV[j])); 

                    } 

                for(int j=0;j<v;j++){ 

                    IloLinearNumExpr constraintV= model.linearNumExpr(); 

                    constraintV.addTerm(1.0, DV[j]); 

                    model.addEq(constraintV,0); 

                } 

                for(int d = 0; d<D; d++){ 
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                    for(int j=0;j<v;j++){ 

                        for(int l=0;l<H;l++){ 

                            IloLinearNumExpr constraintR= 
model.linearNumExpr(); 

                            constraintR.addTerm(1.0, R[d][j][l]); 

                            
model.addEq(constraintR,model.sum(BR[d][j][l],DR[d][j][l]) ); 

                        } 

                    } 

                } 

                for(int d = 0; d<D; d++){ 

                    for(int j=0;j<v;j++){ 

                        for(int l=0;l<H;l++){ 

                            IloLinearNumExpr constraintR= 
model.linearNumExpr(); 

                            constraintR.addTerm(1.0, DR[d][j][l]); 

                            model.addEq(constraintR,0 ); 

                        } 

                    } 

                }    

            } 

            if(step == 13 && improver >0){ 

                for(int i = 0; i<n; i++){ 

                    for(int j = 0; j<v;j++){ 

                        for( int f = 0; f<F; f++){ 

                        Bx[i][j][f] =  model.boolVar(); 

                        } 

                    } 

                } 

                for(int i = 0; i<n; i++){ 
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                    for(int j = 0; j<v;j++){ 

                        for( int f = 0; f<F; f++){ 

                        Dx[i][j][f] =  model.numVar(0, 1); 

                        } 

                    } 

                } 

                // defining L[v][f] as Double 

                for(int j = 0; j <v; j++){ 

                    for(int f = 0; f<F; f++){ 

                        L[j][f] =model.numVar(0,1); 

                    } 

                } 

                // defining C[v][f] as integer 

                for(int j = 0; j < v; j++){ 

                    for(int f = 0 ; f< F; f++){ 

                        C[j][f] = model.numVar(0,Double.MAX_VALUE); 

                    } 

                } 

                //defining V[v] as double 

                for(int j = 0 ; j< v ; j++){ 

                    V[j] =  model.numVar(0,Double.MAX_VALUE); 

                } 

                //defining R[d][v][H] as double 

                for(int d = 0; d<D; d++){ 

                    for(int j = 0 ; j <v; j++){ 

                        for(int l= 0; l< H; l++){ 

                            R[d][j][l] =model.numVar(0,Double.MAX_VALUE); 

                        } 

                    } 
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                } 

                for(int i = fixer;i<n;i++){ 

                    for(int j =0; j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 

                            constraint312.addTerm(1.0, Dx[i][j][f]); 

                            model.addEq(constraint312,0 ); 

                        } 

                    } 

                     

                }    

            } 

            if(step == 13 && improver == 0){ 

                for(int i = 0;i<n;i++){ 

                    for(int j =0; j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 

                            constraint312.addTerm(1.0, x[i][j][f]); 

                            
model.addEq(constraint312,fixedXValues[i][j][f] ); 

                        } 

                    } 

                } 

                 for(int i = 0; i<n; i++){ 

                        for(int j = 0; j<v;j++){ 

                            for( int f = 0; f<F; f++){ 

                            Bx[i][j][f] =  model.boolVar(); 

                            } 
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                        } 

                    } 

                    for(int i = 0; i<n; i++){ 

                        for(int j = 0; j<v;j++){ 

                            for( int f = 0; f<F; f++){ 

                            Dx[i][j][f] =  model.numVar(0, 
Double.MAX_VALUE); 

                            } 

                        } 

                    } 

                 

                //defining L[v][f]'s boolean part 

                for(int j = 0; j <v; j++){ 

                    for(int f = 0; f<F; f++){ 

                        BL[j][f] = model.boolVar(); 

                    } 

                } 

                //defining L[v][f]'s double part 

                for(int j = 0; j <v; j++){ 

                    for(int f = 0; f<F; f++){ 

                        DL[j][f] = model.numVar(0,1); 

                    } 

                } 

                //defining V[v]'s boolean part 

                        for(int j = 0 ; j< v ; j++){ 

                            BV[j] = model.boolVar(); 

                        } 

                        //defining V[v]'s double part 

                        for(int j = 0 ; j< v ; j++){ 
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                            DV[j] =  model.numVar(0,1); 

                        } 

         

                // defining R[d][v][H]'s boolean part 

                for(int d = 0; d<D; d++){ 

                    for(int j = 0 ; j <v; j++){ 

                        for(int l= 0; l< H; l++){ 

                            BR[d][j][l] = model.boolVar(); 

                        } 

                    } 

                } 

                //defining R[d][v][H]'s double part 

                for(int d = 0; d<D; d++){ 

                    for(int j = 0 ; j <v; j++){ 

                        for(int l= 0; l< H; l++){ 

                            DR[d][j][l] =model.numVar(0,1); 

                        } 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        IloLinearNumExpr constraintL= 
model.linearNumExpr(); 

                        constraintL.addTerm(1.0, L[j][f]); 

                        
model.addEq(constraintL,model.sum(BL[j][f],DL[j][f])); 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 
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                        IloLinearNumExpr constraintL= 
model.linearNumExpr(); 

                        constraintL.addTerm(1.0, DL[j][f]); 

                        model.addEq(constraintL,0); 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                        IloLinearNumExpr constraintV= 
model.linearNumExpr(); 

                        constraintV.addTerm(1.0, V[j]); 

                        model.addEq(constraintV,model.sum(BV[j],DV[j])); 

                    } 

                for(int j=0;j<v;j++){ 

                    IloLinearNumExpr constraintV= model.linearNumExpr(); 

                    constraintV.addTerm(1.0, DV[j]); 

                    model.addEq(constraintV,0); 

                } 

                for(int d = 0; d<D; d++){ 

                    for(int j=0;j<v;j++){ 

                        for(int l=0;l<H;l++){ 

                            IloLinearNumExpr constraintR= 
model.linearNumExpr(); 

                            constraintR.addTerm(1.0, R[d][j][l]); 

                            
model.addEq(constraintR,model.sum(BR[d][j][l],DR[d][j][l]) ); 

                        } 

                    } 

                } 

                for(int d = 0; d<D; d++){ 

                    for(int j=0;j<v;j++){ 

                        for(int l=0;l<H;l++){ 
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                            IloLinearNumExpr constraintR= 
model.linearNumExpr(); 

                            constraintR.addTerm(1.0, DR[d][j][l]); 

                            model.addEq(constraintR,0 ); 

                        } 

                    } 

                }    

            } 

        /*  if( step == 14 && binarizer == 5){ 

                for(int i = 0;i<n;i++){ 

                    for(int j =0; j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 

                            constraint312.addTerm(1.0, x[i][j][f]); 

                            model.addEq(constraint312,fixedXValues[i][j][f
] ); 

                        } 

                    } 

                } 

                 for(int i = 0; i<n; i++){ 

                        for(int j = 0; j<v;j++){ 

                            for( int f = 0; f<F; f++){ 

                            Bx[i][j][f] =  model.boolVar(); 

                            } 

                        } 

                    } 

                    for(int i = 0; i<n; i++){ 

                        for(int j = 0; j<v;j++){ 

                            for( int f = 0; f<F; f++){ 
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                            Dx[i][j][f] =  model.numVar(0, 
Double.MAX_VALUE); 

                            } 

                        } 

                    } 

                 

                //defining L[v][f]'s boolean part 

                for(int j = 0; j <v; j++){ 

                    for(int f = 0; f<F; f++){ 

                        BL[j][f] = model.boolVar(); 

                    } 

                } 

                //defining L[v][f]'s double part 

                for(int j = 0; j <v; j++){ 

                    for(int f = 0; f<F; f++){ 

                        DL[j][f] = model.numVar(0,1); 

                    } 

                } 

                //defining V[v]'s boolean part 

                        for(int j = 0 ; j< v ; j++){ 

                            BV[j] = model.boolVar(); 

                        } 

                        //defining V[v]'s double part 

                        for(int j = 0 ; j< v ; j++){ 

                            DV[j] =  model.numVar(0,1); 

                        } 

         

                // defining R[d][v][H]'s boolean part 

                for(int d = 0; d<D; d++){ 
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                    for(int j = 0 ; j <v; j++){ 

                        for(int l= 0; l< H; l++){ 

                            BR[d][j][l] = model.boolVar(); 

                        } 

                    } 

                } 

                //defining R[d][v][H]'s double part 

                for(int d = 0; d<D; d++){ 

                    for(int j = 0 ; j <v; j++){ 

                        for(int l= 0; l< H; l++){ 

                            DR[d][j][l] =model.numVar(0,1); 

                        } 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        IloLinearNumExpr constraintL= 
model.linearNumExpr(); 

                        constraintL.addTerm(1.0, L[j][f]); 

                        model.addEq(constraintL,model.sum(BL[j][f],DL[j][f
])); 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        IloLinearNumExpr constraintL= 
model.linearNumExpr(); 

                        constraintL.addTerm(1.0, DL[j][f]); 

                        model.addEq(constraintL,0); 

                    } 
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                } 

                for(int j=0;j<v;j++){ 

                        IloLinearNumExpr constraintV= 
model.linearNumExpr(); 

                        constraintV.addTerm(1.0, V[j]); 

                        model.addEq(constraintV,model.sum(BV[j],DV[j])); 

                    } 

                for(int j=0;j<v;j++){ 

                    IloLinearNumExpr constraintV= model.linearNumExpr(); 

                    constraintV.addTerm(1.0, DV[j]); 

                    model.addEq(constraintV,0); 

                } 

                for(int d = 0; d<D; d++){ 

                    for(int j=0;j<v;j++){ 

                        for(int l=0;l<H;l++){ 

                            IloLinearNumExpr constraintR= 
model.linearNumExpr(); 

                            constraintR.addTerm(1.0, R[d][j][l]); 

                            model.addEq(constraintR,model.sum(BR[d][j][l],
DR[d][j][l]) ); 

                        } 

                    } 

                } 

                for(int d = 0; d<D; d++){ 

                    for(int j=0;j<v;j++){ 

                        for(int l=0;l<H;l++){ 

                            IloLinearNumExpr constraintR= 
model.linearNumExpr(); 

                            constraintR.addTerm(1.0, DR[d][j][l]); 

                            model.addEq(constraintR,0 ); 

                        } 
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                    } 

                }    

            }*/ 

        //  System.out.println(fixer); 

            if(step==4){ 

                 

                 for(int i = 0; i<n; i++){ 

                        for(int j = 0; j<v;j++){ 

                            for( int f = 0; f<F; f++){ 

                            Bx[i][j][f] =  model.boolVar(); 

                            } 

                        } 

                    } 

                    for(int i = 0; i<n; i++){ 

                        for(int j = 0; j<v;j++){ 

                            for( int f = 0; f<F; f++){ 

                            Dx[i][j][f] =  model.numVar(0, 
Double.MAX_VALUE); 

                            } 

                        } 

                    } 

                 

                //defining L[v][f]'s boolean part 

                for(int j = 0; j <v; j++){ 

                    for(int f = 0; f<F; f++){ 

                        BL[j][f] = model.boolVar(); 

                    } 

                } 

                //defining L[v][f]'s double part 
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                for(int j = 0; j <v; j++){ 

                    for(int f = 0; f<F; f++){ 

                        DL[j][f] = model.numVar(0,1); 

                    } 

                } 

                //defining V[v] as double 

                for(int j = 0 ; j< v ; j++){ 

                    V[j] =  model.boolVar(); 

                } 

                //defining V[v]'s boolean part 

                    /*  for(int j = 0 ; j< v ; j++){ 

                            BV[j] = model.boolVar(); 

                        } 

                        //defining V[v]'s double part 

                        for(int j = 0 ; j< v ; j++){ 

                            DV[j] =  model.numVar(0,1); 

                        }*/ 

         

                // defining R[d][v][H]'s boolean part 

                for(int d = 0; d<D; d++){ 

                    for(int j = 0 ; j <v; j++){ 

                        for(int l= 0; l< H; l++){ 

                            BR[d][j][l] = model.boolVar(); 

                        } 

                    } 

                } 

                //defining R[d][v][H]'s double part 

                for(int d = 0; d<D; d++){ 

                    for(int j = 0 ; j <v; j++){ 
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                        for(int l= 0; l< H; l++){ 

                            DR[d][j][l] =model.numVar(0,1); 

                        } 

                    } 

                } 

                for(int i = 0; i<n; i++){ 

                    for(int j=0;j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 

                            constraint312.addTerm(1.0, x[i][j][f]); 

                            
model.addEq(constraint312,fixedXValues[i][j][f] ); 

                        } 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        IloLinearNumExpr constraintL= 
model.linearNumExpr(); 

                        constraintL.addTerm(1.0, L[j][f]); 

                        
model.addEq(constraintL,model.sum(BL[j][f],DL[j][f])); 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        IloLinearNumExpr constraintL= 
model.linearNumExpr(); 

                        constraintL.addTerm(1.0, DL[j][f]); 

                        model.addEq(constraintL,0); 
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                    } 

                } 

            /*  for(int j=0;j<v;j++){ 

                        IloLinearNumExpr constraintV= 
model.linearNumExpr(); 

                        constraintV.addTerm(1.0, V[j]); 

                        model.addEq(constraintV,model.sum(BV[j],DV[j])); 

                    } 

                for(int j=0;j<v;j++){ 

                    IloLinearNumExpr constraintV= model.linearNumExpr(); 

                    constraintV.addTerm(1.0, DV[j]); 

                    model.addEq(constraintV,0); 

                }*/ 

                for(int d = 0; d<D; d++){ 

                    for(int j=0;j<v;j++){ 

                        for(int l=0;l<H;l++){ 

                            IloLinearNumExpr constraintR= 
model.linearNumExpr(); 

                            constraintR.addTerm(1.0, R[d][j][l]); 

                            
model.addEq(constraintR,model.sum(BR[d][j][l],DR[d][j][l]) ); 

                        } 

                    } 

                } 

                for(int d = 0; d<D; d++){ 

                    for(int j=0;j<v;j++){ 

                        for(int l=0;l<H;l++){ 

                            IloLinearNumExpr constraintR= 
model.linearNumExpr(); 

                            constraintR.addTerm(1.0, DR[d][j][l]); 

                            model.addEq(constraintR,0 ); 
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                        } 

                    } 

                } 

                 

            } 

        //  System.out.println("step : " +step); 

            else if(step>0 && step<4){ 

                 for(int i = 0; i<n; i++){ 

                        for(int j = 0; j<v;j++){ 

                            for( int f = 0; f<F; f++){ 

                            Bx[i][j][f] =  model.boolVar(); 

                            } 

                        } 

                    } 

                    for(int i = 0; i<n; i++){ 

                        for(int j = 0; j<v;j++){ 

                            for( int f = 0; f<F; f++){ 

                            Dx[i][j][f] =  model.numVar(0, 
Double.MAX_VALUE); 

                            } 

                        } 

                    } 

            //  System.out.println(fixer); 

                for(int i = 0; i<fixer; i++){ 

                    for(int j=0;j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            IloLinearNumExpr constraint312= 
model.linearNumExpr(); 

                            constraint312.addTerm(1.0, x[i][j][f]); 
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model.addEq(constraint312,fixedXValues[i][j][f] ); 

                        } 

                    } 

                } 

                 

             } 

            for(int i=fixer;i<n;i++){ 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        IloLinearNumExpr constraint30= 
model.linearNumExpr(); 

                        constraint30.addTerm(1.0, x[i][j][f]); 

                        
model.addEq(constraint30,model.sum(Bx[i][j][f],Dx[i][j][f]) ); 

                    } 

                } 

            } 

             

            for(int i=fixer;i<fixer+delta;i++){ 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        IloLinearNumExpr constraintb= 
model.linearNumExpr(); 

                        constraintb.addTerm(1.0, Dx[i][j][f]); 

                        model.addEq(constraintb, 0); 

                    } 

                } 

            } 

            for(int i=fixer+delta;i<n;i++){ 

                for(int j=0;j<v;j++){ 
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                    for(int f=0;f<F;f++){ 

                        IloLinearNumExpr constraintI= 
model.linearNumExpr(); 

                        constraintI.addTerm(1.0, Bx[i][j][f]); 

                        model.addEq(constraintI, 0); 

                         

                    } 

                } 

            } 

        /*  for(int j=0;j<v;j++){ 

                for(int f=0;f<F;f++){ 

                    IloLinearNumExpr constraintL= model.linearNumExpr(); 

                    constraintL.addTerm(1.0, L[j][f]); 

                    model.addEq(constraintL,model.sum(BL[j][f],DL[j][f])); 

                } 

            } 

            for(int j=0;j<v;j++){ 

                IloLinearNumExpr constraintV= model.linearNumExpr(); 

                constraintV.addTerm(1.0, V[j]); 

                model.addEq(constraintV,model.sum(BV[j],DV[j])); 

            } 

            for(int d = 0; d<D; d++){ 

                for(int j=0;j<v;j++){ 

                    for(int l=0;l<H;l++){ 

                        IloLinearNumExpr constraintR= 
model.linearNumExpr(); 

                        constraintR.addTerm(1.0, R[d][j][l]); 

                        model.addEq(constraintR,model.sum(BR[d][j][l],DR[d
][j][l]) ); 

                    } 
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                } 

            }*/ 

            //System.out.println(fixer); 

         

            //defining demand satisfaction constraint 

            for(int i =0; i<n; i++){ 

                IloLinearNumExpr constraint2 = model.linearNumExpr(); 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        constraint2.addTerm(1.0,x[i][j][f]); 

                    } 

                } 

                model.addEq(constraint2,1.0); 

            }//System.out.println(fixer); 

            for(int j=0;j<v;j++){ 

                for(int f=0;f<F;f++){ 

                    IloLinearNumExpr constraint1 = model.linearNumExpr(); 

                    for(int i =0; i<n;i++){ 

                        constraint1.addTerm(1,x[i][j][f]); 

                    } 

                model.addEq(constraint1, C[j][f]); 

                } 

            } 

 

            //adding route distinguishing constraints 

            for(int j=0;j<v;j++){ 

                for(int f=0;f<F;f++){ 

                    IloLinearNumExpr constraint3 = model.linearNumExpr(); 

                    constraint3.addTerm(smax,L[j][f]); 
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                    model.addGe(constraint3, C[j][f]); 

                     

                } 

            } 

            for(int j=0;j<v;j++){ 

                for(int f=0;f<F;f++){ 

                    IloLinearNumExpr constraint4 = model.linearNumExpr(); 

                    constraint4.addTerm(1,L[j][f]); 

                    model.addLe(constraint4, C[j][f]); 

                     

                } 

            } 

            //adding vehicle number constraint 

            for(int j=0;j<v;j++){ 

                IloLinearNumExpr constraint5 = model.linearNumExpr(); 

                for(int i=0;i<n;i++){ 

                for(int f=0; f<F;f++){ 

                    constraint5.addTerm(1.0,x[i][j][f]); 

                } 

                } 

                model.addLe(constraint5, model.prod(m, V[j])); 

            } 

            //adding capacity constraint in normal frequencies 

            for(int j=0;j<v;j++){ 

                for(int f=0;f<F;f++){ 

                    IloLinearNumExpr constraint6 = model.linearNumExpr(); 

                    for(int i=0;i<n;i++){ 

                        constraint6.addTerm(y[i][f],x[i][j][f]); 

                    } 
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                    model.addLe(constraint6, c[j]); 

                } 

            } 

            //adding capacity constraint in coinciding frequencies 

            for(int j=0;j<v;j++){ 

                    IloLinearNumExpr constraint7 = model.linearNumExpr(); 

                    IloLinearNumExpr constraint8 = model.linearNumExpr(); 

                    IloLinearNumExpr constraint9 = model.linearNumExpr(); 

                    IloLinearNumExpr constraint10 = model.linearNumExpr(); 

                    IloLinearNumExpr constraint11= model.linearNumExpr(); 

                for(int i=0;i<n;i++){ 

                    for(int f=0;f<F;f++){ 

                     for(int f1=0;f1<5;f1++){ 

                                if(f==F1[f1]){ 

                                        
constraint7.addTerm(y[i][f],x[i][j][f]); 

                                    } 

                                 if(f==F2[f1]){ 

                                        
constraint8.addTerm(y[i][f],x[i][j][f]); 

                                    } 

                                if(f==F3[f1]){ 

                                        
constraint9.addTerm(y[i][f],x[i][j][f]); 

                                    } 

                             if(f==F4[f1]){ 

                                        
constraint10.addTerm(y[i][f],x[i][j][f]); 

                                    } 

                             if(f==F5[f1]){ 
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constraint11.addTerm(y[i][f],x[i][j][f]); 

                                         

                                    } 

                                     

                                } 

                            } 

                        } 

                             model.addLe(constraint7, c[j]); 

                             model.addLe(constraint8, c[j]); 

                             model.addLe(constraint9, c[j]); 

                             model.addLe(constraint10, c[j]); 

                             model.addLe(constraint11, c[j]); 

                              

                        } 

             

                        

            //adding maximum customers to be visited 

            for(int j=0;j<v;j++){ 

                    IloLinearNumExpr constraint12 = model.linearNumExpr(); 

                    IloLinearNumExpr constraint13= model.linearNumExpr(); 

                    IloLinearNumExpr constraint14 = model.linearNumExpr(); 

                    IloLinearNumExpr constraint15 = model.linearNumExpr(); 

                    IloLinearNumExpr constraint16 = model.linearNumExpr(); 

                for(int f=0;f<F;f++){ 

                        for(int f1=0;f1<5;f1++){ 

                                if(f==F1[f1]){ 

                                        constraint12.addTerm(1.0,C[j][f]); 

                                    } 



 

199 

 

                                    if(f==F2[f1]){ 

                                        constraint13.addTerm(1.0,C[j][f]); 

                                    } 

                                    if(f==F3[f1]){ 

                                        constraint14.addTerm(1.0,C[j][f]); 

                                    } 

                                    if(f==F4[f1]){ 

                                        constraint15.addTerm(1.0,C[j][f]); 

                                    } 

                                    if(f==F5[f1]){ 

                                        constraint16.addTerm(1.0,C[j][f]); 

                                    } 

                            } 

                        } 

                        model.addLe(constraint12, smax); 

                        model.addLe(constraint13, smax); 

                        model.addLe(constraint14, smax); 

                        model.addLe(constraint15, smax); 

                        model.addLe(constraint16, smax); 

                   } 

                    

            //adding routing rules 

            for(int j=0;j<v;j++){ 

                for(int i=0;i<n;i++){ 

                    for(int k=0;k<n;k++){ 

                         if(i<k){ 

                            IloLinearNumExpr constraint17 = 
model.linearNumExpr(); 

                            IloLinearNumExpr constraint18 = 
model.linearNumExpr(); 
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                            IloLinearNumExpr constraint19 = 
model.linearNumExpr(); 

                            IloLinearNumExpr constraint20 = 
model.linearNumExpr(); 

                            IloLinearNumExpr constraint21 = 
model.linearNumExpr(); 

                        for(int f=0;f<F;f++){ 

                         for(int f1=0;f1<5;f1++){ 

                                if(f == F1[f1]){ 

                                    constraint17.addTerm(1.0,x[i][j][f]); 

                                    constraint17.addTerm(1.0,x[k][j][f]); 

                                }    

                                if(f == F2[f1]){ 

                                    constraint18.addTerm(1.0,x[i][j][f]); 

                                    constraint18.addTerm(1.0,x[k][j][f]); 

                                } 

                                if(f == F3[f1]){ 

                                    constraint19.addTerm(1.0,x[i][j][f]); 

                                    constraint19.addTerm(1.0,x[k][j][f]); 

                                } 

                                if(f == F4[f1]){ 

                                    constraint20.addTerm(1.0,x[i][j][f]); 

                                    constraint20.addTerm(1.0,x[k][j][f]); 

                                } 

                                if(f == F5[f1]){ 

                                    constraint21.addTerm(1.0,x[i][j][f]); 

                                    constraint21.addTerm(1.0,x[k][j][f]); 

                                } 

                                } 

                            } 
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                        model.addLe(constraint17, b[i][k]);  

                        model.addLe(constraint18, b[i][k]); 

                        model.addLe(constraint19, b[i][k]); 

                        model.addLe(constraint20, b[i][k]); 

                        model.addLe(constraint21, b[i][k]); 

                        } 

                         

                    } 

                } 

            } 

            //adding repetition omitting constraint 

            for(int j=0;j<v;j++){ 

                for(int l=0;l<H;l++){ 

                                    IloLinearNumExpr constraint10 = 
model.linearNumExpr(); 

                                    IloLinearNumExpr constraint11 = 
model.linearNumExpr(); 

                                    IloLinearNumExpr constraint12 = 
model.linearNumExpr(); 

                                    IloLinearNumExpr constraint13 = 
model.linearNumExpr(); 

                                    IloLinearNumExpr constraint14 = 
model.linearNumExpr(); 

                                    constraint10.addTerm(1.0, L[j][1]); 

                                    constraint10.addTerm(-1.0, L[j][0]); 

                                    model.addLe(constraint10, R[0][j][l]);   

                                     

                                    constraint11.addTerm(1.0, L[j][2]); 

                                    constraint11.addTerm(-1.0, L[j][0]); 

                                    model.addLe(constraint11, R[1][j][l]); 
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                                    constraint12.addTerm(1.0, L[j][3]); 

                                    constraint12.addTerm(-1.0, L[j][0]); 

                                    model.addLe(constraint12, R[2][j][l]); 

                                     

                                    constraint13.addTerm(1.0, L[j][4]); 

                                    constraint13.addTerm(-1.0, L[j][0]); 

                                    model.addLe(constraint13, R[3][j][l]); 

                                     

                                    constraint14.addTerm(1.0, L[j][5]); 

                                    constraint14.addTerm(-1.0, L[j][0]); 

                                    model.addLe(constraint14, R[4][j][l]); 

                                         

                 } 

                } 

            for(int j=0;j<v;j++){ 

                for(int l=1;l<H;l =l+2){ 

                                    IloLinearNumExpr constraint15 = 
model.linearNumExpr(); 

                                    IloLinearNumExpr constraint16 = 
model.linearNumExpr(); 

                                    IloLinearNumExpr constraint17 = 
model.linearNumExpr(); 

                                    IloLinearNumExpr constraint18 = 
model.linearNumExpr(); 

                                    IloLinearNumExpr constraint19 = 
model.linearNumExpr(); 

                                    constraint15.addTerm(1.0, L[j][6]); 

                                    constraint15.addTerm(-1.0, L[j][0]); 

                                    model.addLe(constraint15, R[0][j][l]);   

                                     

                                    constraint16.addTerm(1.0, L[j][7]); 
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                                    constraint16.addTerm(-1.0, L[j][0]); 

                                    model.addLe(constraint16, R[1][j][l]); 

                                     

                                    constraint17.addTerm(1.0, L[j][8]); 

                                    constraint17.addTerm(-1.0, L[j][0]); 

                                    model.addLe(constraint17, R[2][j][l]); 

                                     

                                    constraint18.addTerm(1.0, L[j][9]); 

                                    constraint18.addTerm(-1.0, L[j][0]); 

                                    model.addLe(constraint18, R[3][j][l]); 

                                     

                                    constraint19.addTerm(1.0, L[j][10]); 

                                    constraint19.addTerm(-1.0, L[j][0]); 

                                    model.addLe(constraint19, R[4][j][l]); 

                                         

                 } 

                } 

            for(int j=0;j<v;j++){ 

                for(int l=2;l<51;l =l+3){ 

                                    IloLinearNumExpr constraint20 = 
model.linearNumExpr(); 

                                    IloLinearNumExpr constraint21 = 
model.linearNumExpr(); 

                                    IloLinearNumExpr constraint22 = 
model.linearNumExpr(); 

                                    IloLinearNumExpr constraint23 = 
model.linearNumExpr(); 

                                    IloLinearNumExpr constraint24 = 
model.linearNumExpr(); 

                                    constraint20.addTerm(1.0, L[j][11]); 

                                    constraint20.addTerm(-1.0, L[j][0]); 
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                                    model.addLe(constraint20, R[0][j][l]);   

                                     

                                    constraint21.addTerm(1.0, L[j][12]); 

                                    constraint21.addTerm(-1.0, L[j][0]); 

                                    model.addLe(constraint21, R[1][j][l]); 

                                     

                                    constraint22.addTerm(1.0, L[j][13]); 

                                    constraint22.addTerm(-1.0, L[j][0]); 

                                    model.addLe(constraint22, R[2][j][l]); 

                                     

                                    constraint23.addTerm(1.0, L[j][14]); 

                                    constraint23.addTerm(-1.0, L[j][0]); 

                                    model.addLe(constraint23, R[3][j][l]); 

                                     

                                    constraint24.addTerm(1.0, L[j][15]); 

                                    constraint24.addTerm(-1.0, L[j][0]); 

                                    model.addLe(constraint24, R[4][j][l]); 

                                         

                 } 

                } 

            for(int j=0;j<v;j++){ 

                for(int l=3;l<H;l =l+4){ 

                                    IloLinearNumExpr constraint25 = 
model.linearNumExpr(); 

                                    IloLinearNumExpr constraint26 = 
model.linearNumExpr(); 

                                    IloLinearNumExpr constraint27 = 
model.linearNumExpr(); 

                                    IloLinearNumExpr constraint28 = 
model.linearNumExpr(); 
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                                    IloLinearNumExpr constraint29 = 
model.linearNumExpr(); 

                                    constraint25.addTerm(1.0, L[j][16]); 

                                    constraint25.addTerm(-1.0, L[j][0]); 

                                    model.addLe(constraint25, R[0][j][l]);   

                                     

                            //      
System.out.println("R[0]["+(j+1)+"]["+(l+1)+"]= " ); 

                                     

                                    constraint26.addTerm(1.0, L[j][17]); 

                                    constraint26.addTerm(-1.0, L[j][0]); 

                                    model.addLe(constraint26, R[1][j][l]); 

                                     

                                    constraint27.addTerm(1.0, L[j][18]); 

                                    constraint27.addTerm(-1.0, L[j][0]); 

                                    model.addLe(constraint27, R[2][j][l]); 

                                     

                                    constraint28.addTerm(1.0, L[j][19]); 

                                    constraint28.addTerm(-1.0, L[j][0]); 

                                    model.addLe(constraint28, R[3][j][l]); 

                                     

                                    constraint29.addTerm(1.0, L[j][20]); 

                                    constraint29.addTerm(-1.0, L[j][0]); 

                                    model.addLe(constraint29, R[4][j][l]); 

                                         

                     } 

                } 

               

            if( model.solve()){ 

                   step++; 
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                //   System.out.println("objective[" + (step)+ "]=" + 
model.getValue(obj)); 

                   if(step<5){ 

                System.out.println("objective[" + (step)+ "]=" + 
model.getValue(obj)); 

                 

                 

                double replenishmentCost = 0; 

                double holdingCost = 0; 

                for(int i=0; i<n;i++){ 

                    for(int j=0;j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            fixedXValues[i][j][f] = 
model.getValue(x[i][j][f]); 

                         replenishmentCost = replenishmentCost + 
K[i][f]*model.getValue(x[i][j][f]); 

                         holdingCost = holdingCost + y[i][f] * 
0.5*model.getValue(x[i][j][f])*h1; 

                        //  System.out.println("x["+(i+1)+ 
"]["+(j+1)+"]["+(f+1)+"]=" + model.getValue(x[i][j][f])); 

                        //  System.out.println("fixedXValues["+(i+1)+ 
"]["+(j+1)+"]["+(f+1)+"]="  + fixedXValues[i][j][f]); 

                        //  System.out.println("model is solved"); 

                             

                             

                        } 

                    } 

                } 

            //  System.out.println(" replenishmentCost = " + 
replenishmentCost + " holdingCost = " + holdingCost); 

                 

                double repetitionCost = 0; 

                double routeCost = 0; 
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                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        if(f==0){ 

                            repetitionCost = repetitionCost+ 
(g[j]*p[f]*model.getValue(L[j][f])); 

                             

                             

                        }routeCost = routeCost+ 
(r[j]*p[f]*model.getValue(C[j][f])); 

                //  System.out.println("C["+(j+1)+"]["+(f+1)+"]= " 
+model.getValue(C[j][f])); ;  

                         

                    } 

                }//System.out.println(" repetitionCost = " + 
repetitionCost + " routeCost = " + routeCost); 

                 

                 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                //      System.out.println("L["+(j+1)+"]["+(f+1)+"]= " + 
model.getValue(L[j][f])); 

                         

                    } 

                } 

                double ownership = 0; 

                for(int j=0;j<v;j++){ 

                System.out.println("V["+(j+1)+"]= " + 
model.getValue(V[j])); 

                     ownership = ownership + a[j] * model.getValue(V[j]); 

                //  System.out.println(ownership); 

                } 

            //  System.out.println(" ownership = " + ownership ); 
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                double rTotal =0; 

                for(int d=0; d<D;d++){ 

                    for(int j=0;j<v;j++){ 

                        for(int l=0;l<H;l++){ 

                            fixedRValues[d][j][l] = 
model.getValue(R[d][j][l]);; 

                            rTotal = rTotal+ 
g[j]*model.getValue(R[d][j][l]); 

                             

                        } 

                    } 

                } 

        //      System.out.println(" rTotal  = " + rTotal ); 

                 

                double totalCost = replenishmentCost + holdingCost + 
repetitionCost + routeCost + ownership + rTotal; 

            //  System.out.println(" totalCost  = " + totalCost ); 

                   } 

            }else{ 

                System.out.print(" no solution exists "); 

                 

            } 

            if(step ==5){ 

                 System.out.println("objective[" + (step)+ "]=" + 
model.getValue(obj)); 

                newobjective = model.getValue(obj); 

            /*System.out.println("newobjective: " + newobjective); 

                System.out.println("objective[" + (step)+ "]=" + 
model.getValue(obj));*/ 

                for(int i=0; i<n;i++){ 
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                    for(int j=0;j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            fixedXValues[i][j][f] = 
model.getValue(x[i][j][f]);  

                        //  System.out.println("fixedXValues["+(i+1)+ 
"]["+(j+1)+"]["+(f+1)+"]="  + fixedXValues[i][j][f]); 

                        } 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        fixedCValues[j][f] = model.getValue(C[j][f]);    

                         

                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        fixedLValues[j][f] = model.getValue(L[j][f]);    

                        System.out.println("L["+(j+1)+"]["+(f+1)+"]=" + 
model.getValue(L[j][f])); 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                        fixedVValues[j] = model.getValue(V[j]); 

                    //  System.out.println("V["+(j+1)+"]=" + 
model.getValue(V[j])); 

                    } 

                for(int d=0; d<D;d++){ 

                    for(int j=0;j<v;j++){ 

                        for(int l=0;l<H;l++){ 
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                            fixedRValues[d][j][l] = 
model.getValue(R[d][j][l]);  

                        } 

                    } 

                } 

                 

                break; 

            } 

            if(step == 6){ 

                 System.out.println("objective[" + (step)+ "]=" + 
model.getValue(obj)); 

            //  System.out.println("fixer : " + fixer); 

                binarizer++; 

                for(int i=0; i<n;i++){ 

                    for(int j=0;j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            fixedXValues[i][j][f] = 
model.getValue(x[i][j][f]);  

                            //System.out.println("fixedXValues["+(i+1)+ 
"]["+(j+1)+"]["+(f+1)+"]="  + fixedXValues[i][j][f]); 

                        } 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        fixedCValues[j][f] = model.getValue(C[j][f]);    

                         

                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 
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                        fixedLValues[j][f] = model.getValue(L[j][f]);    

                        System.out.println("L["+(j+1)+"]["+(f+1)+"]=" + 
model.getValue(L[j][f])); 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                        fixedVValues[j] = model.getValue(V[j]); 

                    //  System.out.println("V["+(j+1)+"]=" + 
model.getValue(V[j])); 

                    } 

                for(int d=0; d<D;d++){ 

                    for(int j=0;j<v;j++){ 

                        for(int l=0;l<H;l++){ 

                            fixedRValues[d][j][l] = 
model.getValue(R[d][j][l]);  

                        } 

                    } 

                } 

                double replenishmentCost = 0; 

                double holdingCost = 0; 

                for(int i=0; i<n;i++){ 

                    for(int j=0;j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            fixedXValues[i][j][f] = 
model.getValue(x[i][j][f]); 

                         replenishmentCost = replenishmentCost + 
K[i][f]*model.getValue(x[i][j][f]); 

                         holdingCost = holdingCost + y[i][f] * 
0.5*model.getValue(x[i][j][f])*h1; 

                        } 

                    } 

                } 



 

212 

 

                double repetitionCost = 0; 

                double routeCost = 0; 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        if(f==0){ 

                            repetitionCost = repetitionCost+ 
(g[j]*p[f]*model.getValue(L[j][f])); 

                             

                             

                        }routeCost = routeCost+ 
(r[j]*p[f]*model.getValue(C[j][f])); 

                //  System.out.println("C["+(j+1)+"]["+(f+1)+"]= " 
+model.getValue(C[j][f])); ;  

                         

                    } 

                } 

                double ownership = 0; 

                for(int j=0;j<v;j++){ 

                System.out.println("V["+(j+1)+"]= " + 
model.getValue(V[j])); 

                     ownership = ownership + a[j] * model.getValue(V[j]); 

                //  System.out.println(ownership); 

                } 

            //  System.out.println(" ownership = " + ownership ); 

                 

                double rTotal =0; 

                for(int d=0; d<D;d++){ 

                    for(int j=0;j<v;j++){ 

                        for(int l=0;l<H;l++){ 

                            fixedRValues[d][j][l] = 
model.getValue(R[d][j][l]);; 
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                            rTotal = rTotal+ 
g[j]*model.getValue(R[d][j][l]); 

                             

                        } 

                    } 

                } 

        //      System.out.println(" rTotal  = " + rTotal ); 

                 

                double totalCost = replenishmentCost + holdingCost + 
repetitionCost + routeCost + ownership + rTotal; 

                System.out.println(" totalCost  = " + totalCost ); 

            } 

            if(step == 7){ 

                 System.out.println("objective[" + (step)+ "]=" + 
model.getValue(obj)); 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        fixedLValues[j][f] = model.getValue(L[j][f]);    

                        System.out.println("L["+(j+1)+"]["+(f+1)+"]=" + 
model.getValue(L[j][f])); 

                    } 

                } 

                for(int i=0; i<n;i++){ 

                    for(int j=0;j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                        //  fixedXValues[i][j][f] = 
model.getValue(x[i][j][f]);  

                            //System.out.println("fixedXValues["+(i+1)+ 
"]["+(j+1)+"]["+(f+1)+"]="  + fixedXValues[i][j][f]); 

                        } 

                    } 

                } 
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            //  System.out.println("fixer : " + fixer); 

                if(newobjective> model.getValue(obj)){ 

                    improver++; 

                newobjective = model.getValue(obj); 

                for(int i=0; i<n;i++){ 

                    for(int j=0;j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            fixedXValues[i][j][f] = 
model.getValue(x[i][j][f]);  

                            //System.out.println("fixedXValues["+(i+1)+ 
"]["+(j+1)+"]["+(f+1)+"]="  + fixedXValues[i][j][f]); 

                        } 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        fixedCValues[j][f] = model.getValue(C[j][f]);    

                         

                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        fixedLValues[j][f] = model.getValue(L[j][f]);    

                    //  
System.out.println("fixedLValues["+(j+1)+"]["+(f+1)+"]=" + 
fixedLValues[j][f]); 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                        fixedVValues[j] = model.getValue(V[j]); 
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                    //  System.out.println("V["+(j+1)+"]=" + 
model.getValue(V[j])); 

                    } 

                for(int d=0; d<D;d++){ 

                    for(int j=0;j<v;j++){ 

                        for(int l=0;l<H;l++){ 

                            fixedRValues[d][j][l] = 
model.getValue(R[d][j][l]);  

                        } 

                    } 

                } 

            }else{ 

                improver = 0; 

            } 

            } 

            if(step == 8){ 

                 System.out.println("objective[" + (step)+ "]=" + 
model.getValue(obj)); 

                binarizer++; 

                for(int i=0; i<n;i++){ 

                    for(int j=0;j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            fixedXValues[i][j][f] = 
model.getValue(x[i][j][f]);  

                        //  System.out.println("fixedXValues["+(i+1)+ 
"]["+(j+1)+"]["+(f+1)+"]="  + fixedXValues[i][j][f]); 

                        } 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 
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                        fixedCValues[j][f] = model.getValue(C[j][f]);    

                         

                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        fixedLValues[j][f] = model.getValue(L[j][f]);    

                    //  
System.out.println("fixedLValues["+(j+1)+"]["+(f+1)+"]=" + 
fixedLValues[j][f]); 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                        fixedVValues[j] = model.getValue(V[j]); 

                    //  System.out.println("V["+(j+1)+"]=" + 
model.getValue(V[j])); 

                    } 

                for(int d=0; d<D;d++){ 

                    for(int j=0;j<v;j++){ 

                        for(int l=0;l<H;l++){ 

                            fixedRValues[d][j][l] = 
model.getValue(R[d][j][l]);  

                        } 

                    } 

                } 

            } 

            if(step == 9){ 

                 System.out.println("objective[" + (step)+ "]=" + 
model.getValue(obj)); 

                newobjectivep = model.getValue(obj); 

                if(newobjective>newobjectivep){ 
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                //  System.out.println(model.getValue(obj)); 

                    improver++; 

                    newobjective = model.getValue(obj); 

                    for(int i=0; i<n;i++){ 

                        for(int j=0;j<v;j++){ 

                            for(int f=0;f<F;f++){ 

                                fixedXValues[i][j][f] = 
model.getValue(x[i][j][f]);  

                            //  System.out.println("fixedXValues["+(i+1)+ 
"]["+(j+1)+"]["+(f+1)+"]="  + fixedXValues[i][j][f]); 

                            } 

                        } 

                    } 

                    for(int j=0;j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            fixedCValues[j][f] = model.getValue(C[j][f]);    

                             

                        } 

                    } 

                    for(int j=0;j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            fixedLValues[j][f] = model.getValue(L[j][f]);    

                        //  
System.out.println("fixedLValues["+(j+1)+"]["+(f+1)+"]=" + 
fixedLValues[j][f]); 

                        } 

                    } 

                    for(int j=0;j<v;j++){ 

                            fixedVValues[j] = model.getValue(V[j]); 

                        //  System.out.println("V["+(j+1)+"]=" + 
model.getValue(V[j])); 
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                        } 

                    for(int d=0; d<D;d++){ 

                        for(int j=0;j<v;j++){ 

                            for(int l=0;l<H;l++){ 

                                fixedRValues[d][j][l] = 
model.getValue(R[d][j][l]);  

                            } 

                        } 

                    } 

                }else{ 

                    improver = 0; 

                } 

            } 

            if(step == 10){  

                 System.out.println("objective[" + (step)+ "]=" + 
model.getValue(obj)); 

                binarizer++; 

                for(int i=0; i<n;i++){ 

                    for(int j=0;j<v;j++){ 

                        for(int f=0;f<F;f++){ 

                            fixedXValues[i][j][f] = 
model.getValue(x[i][j][f]);  

                        //  System.out.println("fixedXValues["+(i+1)+ 
"]["+(j+1)+"]["+(f+1)+"]="  + fixedXValues[i][j][f]); 

                        } 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        fixedCValues[j][f] = model.getValue(C[j][f]);    
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                    } 

                } 

                for(int j=0;j<v;j++){ 

                    for(int f=0;f<F;f++){ 

                        fixedLValues[j][f] = model.getValue(L[j][f]);    

                    //  
System.out.println("fixedLValues["+(j+1)+"]["+(f+1)+"]=" + 
fixedLValues[j][f]); 

                    } 

                } 

                for(int j=0;j<v;j++){ 

                        fixedVValues[j] = model.getValue(V[j]); 

                    //  System.out.println("V["+(j+1)+"]=" + 
model.getValue(V[j])); 

                    } 

                for(int d=0; d<D;d++){ 

                    for(int j=0;j<v;j++){ 

                        for(int l=0;l<H;l++){ 

                            fixedRValues[d][j][l] = 
model.getValue(R[d][j][l]);  

                        } 

                    } 

                } 
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